WorldWideScience

Sample records for vls growth mechanism

  1. Synthesis and growth mechanisms of ZrC whiskers fabricated by a VLS process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of). Nuclear Materials Development Division; Song, Sung Ho [Kongju National Univ., Chungnam (Korea, Republic of). Division of Advanced Materials Engineering

    2017-08-15

    The mechanisms of nano-sized ZrC whisker formation by a vapor-liquid-solid process (VLS) are investigated, which produces a very high purity, single crystal whisker. Rectangular ZrC whiskers with a cross-sectional diameter of 100-200 nm and lengths up to tens of microns are formed under the catalytic effect of nickel. The ZrC whiskers are characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. ZrC whiskers can be used as a potential reinforcing and strengthening phase for ceramic composites.

  2. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion.

    Science.gov (United States)

    Zhang, J R; Norris, S J

    1998-08-01

    The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.

  3. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2009-12-01

    Full Text Available Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA, BB0022 (ruvB, BB0797 (mutS, and BB0098 (mutS-II, showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the 'parental' vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together

  4. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  5. Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein.

    Science.gov (United States)

    Bykowski, Tomasz; Babb, Kelly; von Lackum, Kate; Riley, Sean P; Norris, Steven J; Stevenson, Brian

    2006-07-01

    The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

  6. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    Science.gov (United States)

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  7. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection.

    Directory of Open Access Journals (Sweden)

    Loïc Coutte

    2009-02-01

    Full Text Available Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

  8. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    Science.gov (United States)

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  9. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  10. Glass fabrics self-cracking catalytic growth of boron nitride nanotubes

    Science.gov (United States)

    Wang, Jilin; Peng, Daijang; Long, Fei; Wang, Weimin; Gu, Yunle; Mo, Shuyi; Zou, Zhengguang; Fu, Zhengyi

    2017-02-01

    Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.

  11. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    Science.gov (United States)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  12. X-ray investigation of the interface structure of free standing InAs nanowires grown on GaAs[ anti 1 anti 1 anti 1]{sub B}

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jens; Gottschalch, Volker; Wagner, Gerald [Universitaet Leipzig, Halbleiterchemie, Leipzig (Germany); Pietsch, Ullrich; Davydok, Anton; Biermanns, Andreas [Universitaet Siegen, Festkoerperphysik, Siegen (Germany); Grenzer, Joerg [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, Dresden (Germany)

    2009-09-15

    The heteroepitaxial growth process of InAs nanowires (NW) on GaAs[ anti 1 anti 1 anti 1]{sub B} substrate was investigated by X-ray grazing-incidence diffraction using synchrotron radiation. For crystal growth we applied the vapor-liquid-solid (VLS) growth mechanism via gold seeds. The general sample structure was extracted from various electron microscopic and X-ray diffraction experiments. We found a closed Ga{sub x}In{sub 1-x} As graduated alloy layer at the substrate to NW interface which was formed in the initial stage of VLS growth with a Au-Ga-In liquid alloy. With ongoing growth time a transition from this VLS layer growth to the conventional VLS NW growth was observed. The structural properties of both VLS grown crystal types were examined. Furthermore, we discuss the VLS layer growth process. (orig.)

  13. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  14. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    International Nuclear Information System (INIS)

    Ng, D.K.T.; Hong, M.H.; Tan, L.S.; Zhou, Y.; Chen, G.X.

    2008-01-01

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices

  15. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Hong, M.H. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)], E-mail: HONG_Minghui@dsi.a-star.edu.sg; Tan, L.S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Zhou, Y. [Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Chen, G.X. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2008-01-31

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices.

  16. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  17. Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment

    International Nuclear Information System (INIS)

    Shafiei, Sepideh; Nourbakhsh, Amirhasan; Ganjipour, Bahram; Zahedifar, Mostafa; Vakili-Nezhaad, Gholamreza

    2007-01-01

    The possibility of diameter optimization of ZnO nanowires by using statistical design of experiment (DoE) is investigated. In this study, nanowires were synthesized using a vapor-liquid-solid (VLS) growth method in a horizontal reactor. The effects of six synthesis parameters (synthesis time, synthesis temperature, thickness of gold layer, distance between ZnO holder and substrate, mass of ZnO and Ar flow rate) on the average diameter of a ZnO nanowire were examined using the fractional factorial design (FFD) coupled with response surface methodology (RSM). Using a 2 III 6-3 FFD, the main effects of the thickness of the gold layer, synthesis temperature and synthesis time were concluded to be the key factors influencing the diameter. Then Box-Behnken design (BBD) was exploited to create a response surface from the main factors. The total number of required runs for the DoE process is 25, 8 runs for FFD parameter screening and 17 runs for the response surface obtained by BBD. Three extra runs are done to confirm the predicted results

  18. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    International Nuclear Information System (INIS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-01-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the Unreal TM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures

  19. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    Science.gov (United States)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  20. VLS-grown diffusion doped ZnO nanowires and their luminescence properties

    International Nuclear Information System (INIS)

    Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi

    2015-01-01

    Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)

  1. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  2. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  3. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    Science.gov (United States)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  4. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Ko, F.K.; Schatz, K. [Advanced Product Development, Bristol, PA (United States)

    1995-04-01

    As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processes such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.

  5. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    Science.gov (United States)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  6. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  7. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  8. Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties

    International Nuclear Information System (INIS)

    Kumar, R. Rakesh; Rao, K. Narasimha; Rajanna, K.; Phani, A.R.

    2014-01-01

    Highlights: • ITO nanowires were grown by e-beam evaporation method. • ITO nanowires growth done at low substrate temperature of 350 °C. • Nanowires growth was carried out without use of catalyst and reactive oxygen gas. • Nanowires growth proceeds via self catalytic VLS growth. • Grown nanowires have diameter 10–20 nm and length 1–4 μm long. • ITO nanowire films have shown good antireflection property. - Abstract: We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250–400 °C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (∼10–15 nm) and micron long ITO NWs growth was observed in a temperature window of 300–400 °C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300–400 °C have shown ∼2–6% reflection and ∼70–85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices

  9. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  10. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    Science.gov (United States)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  11. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    Science.gov (United States)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  12. Controlling growth density and patterning of single crystalline silicon nanowires

    International Nuclear Information System (INIS)

    Chang, Tung-Hao; Chang, Yu-Cheng; Liu, Fu-Ken; Chu, Tieh-Chi

    2010-01-01

    This study examines the usage of well-patterned Au nanoparticles (NPs) as a catalyst for one-dimensional growth of single crystalline Si nanowires (NWs) through the vapor-liquid-solid (VLS) mechanism. The study reports the fabrication of monolayer Au NPs through the self-assembly of Au NPs on a 3-aminopropyltrimethoxysilane (APTMS)-modified silicon substrate. Results indicate that the spin coating time of Au NPs plays a crucial role in determining the density of Au NPs on the surface of the silicon substrate and the later catalysis growth of Si NWs. The experiments in this study employed optical lithography to pattern Au NPs, treating them as a catalyst for Si NW growth. The patterned Si NW structures easily produced and controlled Si NW density. This approach may be useful for further studies on single crystalline Si NW-based nanodevices and their properties.

  13. 2-tiered antibody testing for early and late Lyme disease using only an immunoglobulin G blot with the addition of a VlsE band as the second-tier test.

    Science.gov (United States)

    Branda, John A; Aguero-Rosenfeld, Maria E; Ferraro, Mary Jane; Johnson, Barbara J B; Wormser, Gary P; Steere, Allen C

    2010-01-01

    Standard 2-tiered immunoglobulin G (IgG) testing has performed well in late Lyme disease (LD), but IgM testing early in the illness has been problematic. IgG VlsE antibody testing, by itself, improves early sensitivity, but may lower specificity. We studied whether elements of the 2 approaches could be combined to produce a second-tier IgG blot that performs well throughout the infection. Separate serum sets from LD patients and control subjects were tested independently at 2 medical centers using whole-cell enzyme immunoassays and IgM and IgG immunoblots, with recombinant VlsE added to the IgG blots. The results from both centers were combined, and a new second-tier IgG algorithm was developed. With standard 2-tiered IgM and IgG testing, 31% of patients with active erythema migrans (stage 1), 63% of those with acute neuroborreliosis or carditis (stage 2), and 100% of those with arthritis or late neurologic involvement (stage 3) had positive results. Using new IgG criteria, in which only the VlsE band was scored as a second-tier test among patients with early LD (stage 1 or 2) and 5 of 11 IgG bands were required in those with stage 3 LD, 34% of patients with stage 1, 96% of those with stage 2, and 100% of those with stage 3 infection had positive responses. Both new and standard testing achieved 100% specificity. Compared with standard IgM and IgG testing, the new IgG algorithm (with VlsE band) eliminates the need for IgM testing; it provides comparable or better sensitivity, and it maintains high specificity.

  14. Defect-induced polytype transformations in LPE grown SiC epilayers on (1 1 1) 3C-SiC seeds grown by VLS on 6H-SiC

    International Nuclear Information System (INIS)

    Marinova, Maya; Zoulis, Georgios; Robert, Teddy; Mercier, Frederic; Mantzari, Alkioni; Galben, Irina; Kim-Hak, Olivier; Lorenzzi, Jean; Juillaguet, Sandrine; Chaussende, Didier; Ferro, Gabriel; Camassel, Jean; Polychroniadis, Efstathios K.

    2009-01-01

    The results of transmission electron microscopy (TEM) with low-temperature photoluminescence (LTPL) and Raman studies of liquid phase grown epilayers on top of a vapor liquid solid (VLS) grown 3C-SiC buffer layer are compared. While the 6H-SiC substrate was completely covered by the 3C-SiC seed after the first VLS process, degradation occurred during the early stage of the liquid phase epitaxy process. This resulted in polytype instabilities, such that several rhombohedral forms stabilized one after the other. These (21R-SiC, 57R-SiC) eventually led after few microns to a final transition back to 6H-SiC. This interplay of polytypes resulted in a complex optical signature, with specific LTPL and Raman features.

  15. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  16. The continuous and persistent periodical growth induced by substrate accommodation in In{sub 2}O{sub 3} nanostructure chains and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, Mohsen [Islamic Azad University, Department of Physics, Faculty of Science, Roudehen (Iran, Islamic Republic of)

    2014-12-10

    The growth of pyramidal and triangular beaded In{sub 2}O{sub 3} nanocrystal chains by using oxygen-assisted thermal evaporation, substrate accommodation and condensation method has been articulated. Self-assembled In{sub 2}O{sub 3} nanocrystal chains have been synthesized by the vapor-solid (VS) and vapor-liquid-solid (VLS) growth mechanism and also through controlling the kinetics factors (saturation ratio). A periodical one-dimensional (1-D) and persistent (0-D) growth was proposed to explain the formation of lateral nanostructures, and this formation aspect was ascribed to the alternate 1-D and 0-D growth. Preparing the needed growth factor, the In{sub 2}O{sub 3} nanocrystal chains extended to several micrometers. The growth mechanism analysis was useful to realize the relation between the kinetics factors and the complex nanostructure. The morphology and size of nanocrystals intensively were changed by oxygen concentration and led to interesting photoluminescence property. (orig.)

  17. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  18. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity

    Directory of Open Access Journals (Sweden)

    Wilske Bettina

    2006-08-01

    Full Text Available Abstract Background At least three species of Borrelia burgdorferi sensu lato (Bbsl cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. Results To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. Conclusion The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia

  19. Origin of the near-band-edge photoluminescence in ZnO nanorods realised by vapour phase epitaxy and aqueous chemical growth

    Energy Technology Data Exchange (ETDEWEB)

    Bekeny, C.; Hilker, B.; Wischmeier, L.; Voss, T. [IFP, University of Bremen, P.O Box 330440, 28334 Bremen (Germany); Postels, B.; Mofor, A.; Bakin, Andrey; Waag, A. [IHT, TU Braunschweig, P.O Box 3329, 38023 Braunschweig (Germany)

    2007-07-01

    Well established high temperature growth techniques like the vapourliquid-solid (VLS: 1100 C) and vapour-phase-epitaxy (VPE: 800 C) have been successfully optimized while the low-temperature aqueous chemical growth (ACG: 90 C) is being extended to yield large-scale high quality ZnO nanorods. Here, a detailed and systematic photoluminescence (PL) study is presented to understand the microscopic processes responsible for the near-band-edge (NBE) emission in nanorods obtained from these processes. For the ACG samples, the as-grown nanorods show relatively broad NBE emission (15 meV) attributed to the presence of large donor densities. After annealing in various atmospheres at {proportional_to}800 C, a significant reduction of the linewidth ({proportional_to}4 meV) and even the appearance of relatively sharp excitonic transitions is explained by the drastic reduction of the donor density. In contrast, the as-grown VPE and VLS samples exhibit well-resolved and sharp peaks resulting from exciton-related transitions. There is a shift in the room-temperature PL peak for VLS and VPE samples and is shown to result from contributions of the free exciton peak, its first and second order phonon replicas and not due to quantum confinement and or laser heating as assumed in literature.

  20. Growth dynamics of SiGe nanowires by the Vapour Liquid Solid method and its impact on SiGe/Si axial heterojunction abruptness.

    Science.gov (United States)

    Pura, Jose Luis; Periwal, Priyanka; Baron, Thierry; Jimenez, Juan

    2018-06-05

    The Vapour Liquid Solid (VLS) method is by far the most extended procedure for bottom-up nanowire growth. This method also allows for the manufacture of nanowire axial heterojunctions in a straightforward way. To do this, during the growth process the precursor gases are switched on/off to obtain the desired change in the nanowire composition. Using this technique axially heterostructured nanowires can be grown, which are crucial for the fabrication of electronic and optoelectronic devices. SiGe/Si nanowires are compatible with Complementary Metal Oxide Semiconductor (CMOS) technology, this improves their versatility and the possibility of integration with the current electronic technologies. Abrupt heterointerfaces are fundamental for the development and correct operation of electronic and optoelectronic devices. Unfortunately, VLS growth of SiGe/Si heterojunctions does not provide abrupt transitions because of the high solubility of group IV semiconductors in Au, with the corresponding reservoir effect that precludes the growth of sharp interfaces. In this work, we studied the growth dynamics of SiGe/Si heterojunctions based on already developed models for VLS growth. A composition map of the Si-Ge-Au liquid alloy is proposed to better understand the impact of the growing conditions on the nanowire growth process and the heterojunction formation. The solution of our model provides heterojunction profiles in good agreement with experimental measurements. Finally, the in-depth study of the composition map provides a practical approach to reduce drastically the heterojunction abruptness by reducing the Si and Ge concentrations in the catalyst droplet. This converges with previous approaches that use catalysts aiming to reduce the solubility of the atomic species. This analysis opens new paths to reduce the heterojunction abruptness using Au catalysts, but the model can be naturally extended to other catalysts and semiconductors. © 2018 IOP Publishing Ltd.

  1. Why droplet dimension can be larger than, equal to, or smaller than the nanowire dimension

    Science.gov (United States)

    Mohammad, S. Noor

    2009-11-01

    Droplets play central roles in the nanowire (NW) growth by vapor phase mechanisms. These mechanisms include vapor-liquid-solid (VLS), vapor-solid-solid or vapor-solid (VSS), vapor-quasisolid-solid or vapor-quasiliquid-solid (VQS), oxide-assisted growth (OAG), and self-catalytic growth (SCG) mechanisms. Fundamentals of the shape, size, characteristics, and dynamics of droplets and the impacts of them on the NW growth, have been studied. The influence of growth techniques, growth parameters (e.g., growth temperature, partial pressure, gas flow rates, etc.), thermodynamic conditions, surface and interface energy, molar volume, chemical potentials, etc. have been considered on the shapes and sizes of droplets. A model has been presented to explain why droplets can be larger than, equal to, or smaller than the associated NWs. Various growth techniques have been analyzed to understand defects created in NWs. Photoluminescence characteristics have been presented to quantify the roles of droplets in the creation of NW defects. The study highlights the importance of the purity of the droplet material. It attests to the superiority of the SCG mechanism, and clarifies the differences between the VSS, VQS, VLS, and SCG mechanisms. It explains why droplets produced by some mechanisms are visible but droplets produced by some other mechanisms are not visible. It elucidates the formation mechanisms of very large and very small droplets, and discusses the ground rules for droplets creating necked NWs. It puts forth reasons to demonstrate that very large droplets may not behave as droplets.

  2. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  3. Molecular beam epitaxy of GaAs nanowires and their sustainability for optoelectronic applications. Comparing Au- and self-assisted growth methods

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Steffen

    2011-09-28

    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1 % is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

  4. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    Science.gov (United States)

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  5. Homo- and heteroepitaxial growth behavior of upright InAs nanowires on InAs and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jens; Gottschalch, Volker; Paetzelt, Hendrik [Institut fuer Anorganische Chemie, Universitaet Leipzig, Johannesallee 29, D-04103 Leipzig (Germany); Wagner, Gerald [Institut fuer Kristallographie und Mineralogie, Universitaet Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Pietsch, Ulrich [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2008-07-01

    Semiconductor nanowires (NW) acquire recently attraction because of promising new application fields in electronics and optoelectronic. We applied the vapor-liquid-solid mechanism with gold seeds in combination with low-pressure metal-organic vapor phase epitaxy (LP-MOVPE) to achieve replicable InAs NW growth with high growth rates. Since the initial alloying of the gold seeds with the substrate material plays a deciding role for the inceptive NW growth, InAs free standing nanowires were grown on GaAs(111)B substrate as well as on InAs/GaAs(111)B quasi-substrate. The influence of the MOVPE parameters will be discussed with respect to NW morphology and real-structure. A special focus will be set on the heteroepitaxial InAs NW growth on GaAs substrates. Gracing-incidence X-ray studies and transmission electron microscopy investigations revealed the existence of a thin Ga{sub x}In{sub 1-x}As graduated alloy layer with embedded crystalline gold alloy particles at the NW substrate interface. The effect of droplet composition on the VLS growth will be presented in a thermodynamic model.

  6. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    Science.gov (United States)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  7. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  8. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli

    2012-12-01

    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  9. Comparative study of initial growth stage in PVT growth of AlN on SiC and on native AlN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, B.M.; Heimann, P.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany)

    2005-05-01

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates appears to be aluminum oxynitride poisoning of seed surface leading to polycrystalline growth at 1750-1850 C. This is well below the lowest growth temperature appropriate for physical vapor transport (PVT) of bulk AlN, which is about 2150 C. Contrary, heteroepitaxial growth of AlN on SiC is relatively easy to achieve because of natural formation of a thin molten layer on the seed surface and VLS growth of AlN via the molten buffer layer. The most critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion. Optimization of seeded growth process can be achieved by proper choice of SiC seed orientation and by use of ultra-pure starting material. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures.

    Science.gov (United States)

    Tateno, Kouta; Zhang, Guoqiang; Gotoh, Hideki; Sogawa, Tetsuomi

    2012-06-13

    We investigated the Au-assisted growth of alternating InAsP/InP heterostructures in wurtzite InP nanowires on InP(111)B substrates for constructing multiple-quantum-dot structures. Vertical InP nanowires without stacking faults were obtained at a high PH(3)/TMIn mole flow ratio of 300-1000. We found that the growth rate changed largely when approximately 40 min passed. Ten InAsP layers were inserted in the InP nanowire, and it was found that both the InP growth rate and the background As level increased after the As supply. We also grew the same structure using TBAs/TBP and could reduce the As level in the InP segments. A simulation using a finite-difference time-domain method suggests that the nanowire growth was dominated by the diffusion of the reaction species with long residence time on the surface. For TBAs/TBP, when the source gases were changed, the formed surface species showed a short diffusion length so as to reduce the As background after the InAsP growth.

  11. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  12. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  13. Growth of GaAs-nanowires on GaAs (111)B substrates induced by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schott, Ruediger; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    Semiconductor nanowires are a promising system for applications in the areas of electronics and photonics and also for exploring phenomena at the nanoscale. There are several approaches to grow nanowires at arbitrary sites on the wafer. We report about growing GaAs-nanowires on GaAs(111)B substrates via the vapour-liquid-solid (VLS) mechanism in an ultra-high-vacuum (UHV)-cluster of a molecular beam epitaxy (MBE) and a focused ion beam (FIB) system. Our idea is to implant metal seeds (especially Au) for the nanowire growth by in situ patterning using FIB. Due to the UHV transfer between the FIB and the MBE chamber, no further cleaning step of the substrate surface is necessary. Formations of organized GaAs-nanowires and high aspect ratios are observed.

  14. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  15. Concepts on Low Temperature Mechanical Grain Growth

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.; Boyce, Brad Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  16. Plasma-plasmonics synergy in the Ga-catalyzed growth of Si-nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Giuseppe Valerio, E-mail: giuseppevalerio.bianco@cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Giangregorio, Maria M.; Capezzuto, Pio [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Kim, Tong-Ho; Brown, April S. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Bruno, Giovanni, E-mail: giovanni.bruno@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, IMIP-CNR, Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari (Italy)

    2012-06-05

    This paper reports on the growth of Si nanowires (NWs) by SiH{sub 4}/H{sub 2} plasmas using the non-noble Ga-nanoparticles (NPs) catalysts. A comparative investigation of conventional Si-NWs vapour-liquid-solid (VLS) growth catalyzed by Au NPs is also reported. We investigate the use of a hydrogen plasma and of a SiH{sub 4}/H{sub 2} plasma for removing Ga oxide shell and for enhancing the Si dissolution into the catalyst, respectively. By exploiting the Ga NPs surface plasmon resonance (SPR) sensitivity to their surface chemistry, the SPR characteristic of Ga NPs has been monitored by real time spectroscopic ellipsometry in order to control the hydrogen plasma/Ga NPs interaction and the involved processes (oxide removal and NPs dissolution by volatile gallium hydride). Using in situ laser reflectance interferometry the metal catalyzed Si NWs growth process has been investigated to find the effect of the plasma activation on the growth kinetics. The role of atomic hydrogen in the NWs growth mechanism and, in particular, in the SiH{sub 4} dissolution into the catalysts, is discussed. We show that while Au catalysts because of the re-aggregation of NPs yields NWs that do not correspond to the original size of the Au NPs catalyst, the NWs grown by the Ga catalyst retains the diameter dictated by the size of the Ga NPs. Therefore, the advantage of Ga NPs as catalysts for controlling NWs diameter is demonstrated.

  17. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  18. Effect of Temperature on Nucleation of Nanocrystalline Indium Tin Oxide Synthesized by Electron-Beam Evaporation

    Science.gov (United States)

    Shen, Yan; Zhao, Yujun; Shen, Jianxing; Xu, Xiangang

    2017-07-01

    Indium tin oxide (ITO) has been widely applied as a transparent conductive layer and optical window in light-emitting diodes, solar cells, and touch screens. In this paper, crystalline nano-sized ITO dendrites are obtained using an electron-beam evaporation technique. The surface morphology of the obtained ITO was studied for substrate temperatures of 25°C, 130°C, 180°C, and 300°C. Nano-sized crystalline dendrites were synthesized only at a substrate temperature of 300°C. The dendrites had a cubic structure, confirmed by the results of x-ray diffraction and transmission electron microscopy. The growth mechanism of the nano-crystalline dendrites could be explained by a vapor-liquid-solid (VLS) growth model. The catalysts of the VLS process were indium and tin droplets, confirmed by varying the substrate temperature, which further influenced the nucleation of the ITO dendrites.

  19. Advances in the understanding of crystal growth mechanisms

    CERN Document Server

    Nishinaga, T; Harada, J; Sasaki, A; Takei, H

    1997-01-01

    This book contains the results of a research project entitled Crystal Growth Mechanisms on an Atomic Scale, which was carried out for 3 years by some 72 reseachers. Until recently in Japan, only the technological aspects of crystal growth have been emphasized and attention was paid only to its importance in industry. However the scientific aspects also need to be considered so that the technology of crystal growth can be developed even further. This project therefore aimed at understanding crystal growth and the emphasis was on finding growth mechanisms on an atomic scale.

  20. Mechanisms of radiation induced creep and growth

    International Nuclear Information System (INIS)

    Bullough, R.; Wood, M.H.

    1980-01-01

    Irradiation creep occurs primarily because the applied stress causes the evolving microstructure to respond in an anisotropic fashion to the interstitial and vacancy fluxes. On the other hand, irradiation growth requires the response to be naturally anisotropic in the absence of applied stress. Four fundamental mechanisms of irradiation creep have been conjectured: stress induced preferred absorption (SIPA) of the point defects on the dislocations, stress induced preferred nucleation (SIPN) of point defects in planar aggregates (edge dislocation loops), stress induced climb and glide (SICG) of the dislocation network and stress induced gas driven interstitial deposition (SIGD). These mechanisms will be briefly outlined and commented upon. The contributions made by these mechanisms to the total strain are not, in general, mutually separable and also depend on the prevailing (and changing) microstructure during irradiation. The fundamental mechanism of irradiation growth will be discussed: it is believed to arise by the preferred condensation of point defects and climb of dislocation loops and network on certain crystallographic planes. The preferred absorption and nucleation is thus a consequence of natural crystallographic anisotropy and not due to any external stresses. Again the effectiveness of this mechanism depends on the prevailing microstructure in the material. In this connection will be particularly drawn to the significance of solute trapping, segregation at grain boundaries, dislocation bias for interstitials and transport parameters for an understanding of irradiation growth in materials like zirconium and its alloys; the relevance of recent simulation studies of growth in such materials using electrons to the growth under neutron irradiation will be discussed in detail and a consistent model of growth in these materials will be presented. (orig.)

  1. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  2. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    International Nuclear Information System (INIS)

    Samotoin, N. D.

    2008-01-01

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 μm in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ in sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as ∼10 9 cm -2 . Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.

  3. Portraying mechanics of plant growth promoting rhizobacteria (PGPR: A review

    Directory of Open Access Journals (Sweden)

    Dweipayan Goswami

    2016-12-01

    Full Text Available Population growth and increase in food requirement is the global problem. It is inevitable to introduce new practices that help to increase agricultural productivity. Use of plant growth promoting rhizobacteria (PGPR has shown potentials to be a promising technique in the practice of sustainable agriculture. A group of natural soil microbial flora acquire dwelling in the rhizosphere and on the surface of the plant roots which impose beneficial effect on the overall well-being of the plant are categorized as PGPR. Researchers are actively involved in understanding plant growth promoting mechanics employed by PGPR. Broadly, these are divided into direct and indirect mechanics. Any mechanism that directly enhances plant growth either by providing nutrients or by producing growth regulators are portrayed as direct mechanics. Whereas, any mechanisms that protects plant from acquiring infections (biotic stress or helps plant to grow healthily under environmental stresses (abiotic stress are considered indirect mechanics. This review is focused to describe cogent mechanics employed by PGPR that assists plant to sustain healthy growth. Also, we emphasized on the PGPR-based products which have been commercially developed exploiting these mechanics of PGPR.

  4. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  5. Mechanisms of growth plate maturation and epiphyseal fusion

    NARCIS (Netherlands)

    Emons, J.; Chagin, A.S.; Karperien, Hermanus Bernardus Johannes; Wit, J.M.

    2011-01-01

    Longitudinal growth occurs within the long bones at the growth plate. During childhood, the growth plate matures, its total width decreases and eventually it disappears at the end of puberty with complete replacement by bone along with cessation of longitudinal growth. The exact mechanism of

  6. The mathematics and mechanics of biological growth

    CERN Document Server

    Goriely, Alain

    2017-01-01

    This monograph presents a general mechanical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods is illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the pro...

  7. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  8. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  9. Mechanical growth and morphogenesis of seashells

    KAUST Repository

    Moulton, D.E.

    2012-10-01

    Seashells grow through the local deposition of mass along the aperture. Many mathematical descriptions of the shapes of shells have been provided over the years, and the basic logarithmic coiling seen in mollusks can be simulated with few parameters. However, the developmental mechanisms underlying shell coiling are largely not understood and the ubiquitous presence of ornamentation such as ribs, tubercles, or spines presents yet another level of difficulty. Here we develop a general model for shell growth based entirely on the local geometry and mechanics of the aperture and mantle. This local description enables us to efficiently describe both arbitrary growth velocities and the evolution of the shell aperture itself. We demonstrate how most shells can be simulated within this framework. We then turn to the mechanics underlying the shell morphogenesis, and develop models for the evolution of the aperture. We demonstrate that the elastic response of the mantle during shell deposition provides a natural mechanism for the formation of three-dimensional ornamentation in shells. © 2012 Elsevier Ltd.

  10. Early Stages of Pulsed-Laser Growth of Silicon Microcolumns and Microcones in Air and SF6

    International Nuclear Information System (INIS)

    Fowlkes, J.D.; Lowndes, D.H.; Pedraza, A.J.

    1999-01-01

    Dense arrays of high-aspect-ratio silicon microcolumns and microcones are formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in oxidizing atmospheres such as air and SF 6 . Growth of such surface microstructures requires a redeposition model and also involves elements of self-organization. The shape of the microstructures, i.e. straight columns vs steeply sloping cones and connecting walls, is governed by the type and concentration of the oxidizing species, e.g. oxygen vs fluorine. Growth is believed to occur by a catalyst-free VLS (vapor-liquid-solid) mechanism that involves repetitive melting of the tips of the columns/cones and deposition there of the ablated flux of Si-containing vapor. Results are presented of a new investigation of how such different final microstructures as microcolumns or microcones joined by walls nucleate and develop. The changes in silicon surface morphology were systematically determined and compared as the number of pulsed KrF (248 nm) laser shots was increased from 25 to several thousand in both air and SF 6 . The experiments in air and SF 6 reveal significant differences in initial surface cracking and pattern formation. Consequently, local protrusions are first produced and column or cone/wall growth is initiated by different processes and at different rates. Differences in the spatial organization of column or cone/wall growth also are apparent

  11. Growth Mechanism of Pumpkin-Shaped Vaterite Hierarchical Structures

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Mu

    2015-03-01

    CaCO3-based biominerals possess sophisticated hierarchical structures and promising mechanical properties. Recent researches imply that vaterite may play an important role in formation of CaCO3-based biominerals. However, as a less common polymorph of CaCO3, the growth mechanism of vaterite remains not very clear. Here we report the growth of a pumpkin-shaped vaterite hierarchical structure with a six-fold symmetrical axis and lamellar microstructure. We demonstrate that the growth is controlled by supersaturation and the intrinsic crystallographic anisotropy of vaterite. For the scenario of high supersaturation, the nucleation rate is higher than the lateral extension rate, favoring the ``double-leaf'' spherulitic growth. Meanwhile, nucleation occurs preferentially in as determined by the crystalline structure of vaterite, modulating the grown products with a hexagonal symmetry. The results are beneficial for an in-depth understanding of the biomineralization of CaCO3. The growth mechanism may also be applicable to interpret the formation of similar hierarchical structures of other materials. The authors gratefully acknowledge the financial support from National Science Foundation of China (Grant Nos. 51172104 and 50972057) and National Key Basic Research Program of China (Grant No. 2010CB630705).

  12. Growth and characterization of iridium dioxide nanorods

    International Nuclear Information System (INIS)

    Chen, R.S.; Huang, Y.S.; Liang, Y.M.; Tsai, D.S.; Tiong, K.K.

    2004-01-01

    Conductive iridium dioxide (IrO 2 ) nanorods have been successfully grown on the Si(1 0 0) substrates via metalorganic chemical vapor deposition (MOCVD). A wedge-shaped morphology and naturally formed sharp tips are observed for IrO 2 nanorods using field-emission scanning electron microscopy (FESEM). High-resolution transmission electron microscopy (TEM) image and electron diffraction pattern show the growth of IrO 2 nanorods preferentially along c-axis. Structure and composition of IrO 2 nanorods have also been characterized using the techniques of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. It is noted that the IrO 2 nanorods are self-mediated instead of the conventional vapor-liquid-solid (VLS) approach or catalyst-mediated method

  13. Structural and optical properties of CdO nanostructures prepared by atmospheric-pressure CVD

    International Nuclear Information System (INIS)

    Terasako, T.; Fujiwara, T.; Nakata, Y.; Yagi, M.; Shirakata, S.

    2013-01-01

    Cadmium oxide (CdO) nanostructures of various shapes were successfully grown on gold (Au) nanocolloid coated c-plane sapphire substrates by atmospheric-pressure CVD using Cd powder and H 2 O as source materials. CdO nanorods (NRs) exhibited tapered shapes and the degree of the tapering became larger with increasing substrate temperature. One of the possible reasons for the tapering behavior is the competition between the axial growth due to the vapor–liquid–solid (VLS) mechanism and the radial growth due to the vapor–solid (VS) mechanism. The influence of the competition between the two different growth mechanisms was also confirmed on the appearance of “seaweed-like” NRs. Moreover, we cannot neglect the influence of the shrinkage of catalyst particles during the growth process on the tapering behavior. In addition, there is a possibility that the temporal evolution of catalyst particles, such as diffusion, splitting, migration and coalescence, contributes not only to the disappearance of catalyst particles on the tips of the NRs, resulting in the enhancement of the radial growth relative to the axial growth, but also to the formation of nanobelts (NBs) and nanotrees (NTs). Photoacoustic measurements revealed that the absorption edge shifts towards lower energies and the absorption band below the absorption edge becomes larger with increasing T S . This tendency may be due to the increase of intrinsic defects and/or the decrease in residual impurities. - Highlights: ► Various shapes of CdO nanostructures were grown by AP-CVD using Cd and H 2 O. ► This diversity is due to the competition between VLS and VS mechanisms. ► The temporal evolution of Au catalyst particles also contributes to the diversity. ► Photoacoustic spectra were changed, depending on the substrate temperature. ► This is probably related to the intrinsic defects and/or residual impurities

  14. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  15. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  16. Optical properties of Mg doped p-type GaN nanowires

    Science.gov (United States)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  17. Growth and applicability of radiation-responsive silica nanowires

    Science.gov (United States)

    Bettge, Martin

    Surface energetics play an important role in processes on the nanoscale. Nanowire growth via vapor-liquid-solid (VLS) mechanism is no exception in this regard. Interfacial and line energies are found to impose some fundamental limits during three-phase nanowire growth and lead to formation of stranded nanowires with fascinating characteristics such as high responsiveness towards ion irradiation. By using two materials with a relatively low surface energy (indium and silicon oxide) this is experimentally and theoretically demonstrated in this doctoral thesis. The augmentation of VLS nanowire growth with ion bombardment enables fabrication of vertically aligned silica nanowires over large areas. Synthesis of their arrays begins with a thin indium film deposited on a Si or SiO 2 surface. At temperatures below 200ºC, the indium film becomes a self-organized seed layer of molten droplets, receiving a flux of atomic silicon by DC magnetron sputtering. Simultaneous vigorous ion bombardment through substrate biasing aligns the growing nanowires vertically and expedites mixing of oxygen and silicon into the indium. The vertical growth rate can reach up to 1000 nm-min-1 in an environment containing only argon and traces of water vapor. Silicon oxide precipitates from each indium seed in the form of multiple thin strands having diameters less than 9 nm and practically independent of droplet size. The strands form a single loose bundle, eventually consolidating to form one vertically aligned nanowire. These observations are in stark contrast to conventional VLS growth in which one liquid droplet precipitates a single solid nanowire and in which the precipitated wire diameter is directly proportional to the droplet diameter. The origin of these differences is revealed through a detailed force balance analysis, analogous to Young's relation, at the three-phase line. The liquid-solid interfacial energy of indium/silica is found to be the largest energy contribution at the three

  18. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  19. Comparison of the top-down and bottom-up approach to fabricate nanowire-based Silicon/Germanium heterostructures

    International Nuclear Information System (INIS)

    Wolfsteller, A.; Geyer, N.; Nguyen-Duc, T.-K.; Das Kanungo, P.; Zakharov, N.D.; Reiche, M.; Erfurth, W.; Blumtritt, H.; Werner, P.; Goesele, U.

    2010-01-01

    Silicon nanowires (NWs) and vertical nanowire-based Si/Ge heterostructures are expected to be building blocks for future devices, e.g. field-effect transistors or thermoelectric elements. In principle two approaches can be applied to synthesise these NWs: the 'bottom-up' and the 'top-down' approach. The most common method for the former is the vapour-liquid-solid (VLS) mechanism which can also be applied to grow NWs by molecular beam epitaxy (MBE). Although MBE allows a precise growth control under highly reproducible conditions, the general nature of the growth process via a eutectic droplet prevents the synthesis of heterostructures with sharp interfaces and high Ge concentrations. We compare the VLS NW growth with two different top-down methods: The first is a combination of colloidal lithography and metal-assisted wet chemical etching, which is an inexpensive and fast method and results in large arrays of homogenous Si NWs with adjustable diameters down to 50 nm. The second top-down method combines the growth of Si/Ge superlattices by MBE with electron beam lithography and reactive ion etching. Again, large and homogeneous arrays of NWs were created, this time with a diameter of 40 nm and the Si/Ge superlattice inside.

  20. Room temperature mushrooming of gallium wires and its growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Shen, L.W.; Ouyang, J.; Zhang, Y.M.; Wu, S.Q. [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Sun, Z.M., E-mail: sunzhengming@gmail.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569 (Japan)

    2015-01-15

    Highlights: • Fast spontaneous growth of Ga wires (∼200 nm/s) from a composite system of Cr{sub 2}GaC–Ga is reported. • The fact that Ga wires’ growth phenomena on the composite share most features with metals whiskers with metal/alloy substrates suggests the same mechanism highly likely operating with both systems. • Compelling evidences indicate that the popular stress-based mechanism developed in metal/alloy systems does not hold water in the Cr{sub 2}GaC–Ga composite system. • A new catalysis mechanism is proposed, in which the cleavage planes of Cr{sub 2}GaC grains act as a catalyst for the Ga wires growth. • The new findings in this composite system would lead a new route to address this old problem, and it might see significance in the electronics industry. On the other hand, it is likely to be harnessed to engineer a promising and facile route to prepare various metal wires in large scale. - Abstract: Spontaneous growth of Ga wires at high rate (∼200 nm/s) from a composite system of Cr{sub 2}GaC (a MAX phase) and Ga is presented. A Ga wire growth mechanism based on a catalysis model, which involves fractured Cr{sub 2}GaC grains as the catalyst, is proposed. Regarding the morphologies and the incubation time of the Ga wires, this system shares most features with metal/alloy substrates, such as tin and zinc, where the whiskering phenomenon has been well established and has resisted interpretation for 60+ years. The same growth mechanism is thus considered to operate across different substrates, including the composite one in this study. However, the experimental findings in this composite system oppose the popular stress-based mechanism for the whisker growth with metal/alloy substrates, and provide new sights on this phenomenon. In addition, compelling evidences strongly indicate that fractured Cr{sub 2}GaC grains produced by ball milling initiated the growth of Ga wires, like a ‘catalyst’, and the pristine Cr{sub 2}GaC grains do not

  1. Growth Mechanism of Nanowires: Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  2. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  3. Growth of ZnO nanostructures on Au-coated Si: Influence of growth temperature on growth mechanism and morphology

    DEFF Research Database (Denmark)

    Kumar, Rajendra; McGlynn, E.; Biswas, M.

    2008-01-01

    ZnO nanostructures were grown on Au-catalyzed Si silicon substrates using vapor phase transport at growth temperatures from 800 to 1150 degrees C. The sample location ensured a low Zn vapor supersaturation during growth. Nanostructures grown at 800 and 850 degrees C showed a faceted rodlike...... growth tended to dominate resulting in the formation of a porous, nanostructured morphology. In all cases growth was seen only on the Au-coated region. Our results show that the majority of the nanostructures grow via a vapor-solid mechanism at low growth temperatures with no evidence of Au nanoparticles...

  4. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  5. Fracture processes and mechanisms of crack growth resistance in human enamel

    Science.gov (United States)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  6. Mechanism of growth retardation of the adenocarcinoma EO 771

    International Nuclear Information System (INIS)

    Bassukas, I.D.; Maurer-Schultze, B.

    1987-01-01

    Growth retardation of tumors has been predominantly described by an increase of the ''cell loss factor'' Φ. However, this cell loss factor alone merely reflects the growth deceleration without giving information on the mechanism that causes growth retardation. In the present study a quantitative analysis of the mechanism causing growth retardation of the adenocarcinoma EO 771 has been carried out by determining separately the components of the cell loss factor Φ, namely the cell production rate and the cell loss rate of the tumor cell population. For this purpose the alteration of the histology of the tumor (proportion of necrotic tumor tissue, tumor cell density) and the proliferative capacity of the tumor cell population as a function of the tumor size was studied by applying morphometric and cell kinetic methods. The results show that growth deceleration is due to a decrease of the cell production rate k p and a simultaneous increase of the cell rate k l . Both processes contribute to about the same extent to the growth deceleration of the tumor cell population. In early tumor growth deceleration is mainly due to a prolongation of the cycle time of the tumor cells, in later phases of tumor growth to an increasing probability of the tumor cells to decycle leading to a decrease of the growth fraction GF and an increase of the cell loss rate k l . (orig.)

  7. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  8. Chemical vapor deposition of tetraboron silicide whiskers

    International Nuclear Information System (INIS)

    Motozima, Seizi; Sugiyama, Kozoh; Takahashi, Yasutaka

    1975-01-01

    Growth conditions of B 4 Si whiskers were investigated at the temperature range of 1000 - 1100 0 C. Optimum composition of halides was determined as BCl 3 /SiCl 4 =2 - 0.5, and BCl 3 =1 - 6 vol%, SiCl 4 =1 - 7 vol%. Gold had an excellent impurity effect with optimum concentration of 20 - 50 μg/cm 2 on whisker growth, and gave wool like whiskers of 0.1 - 1 μ in thickness and 0.5 - 2 mm in length. B 4 Si whisker growth was explained in terms of a tip VLS mechanism, for a drop-like deposit of impurity was observed on each tip. (auth.)

  9. Molecular mechanisms of intrauterine growth restriction.

    Science.gov (United States)

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  10. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    Science.gov (United States)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  11. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  12. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    Science.gov (United States)

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-04

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  13. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  14. Mechanical tension as a driver of connective tissue growth in vitro.

    Science.gov (United States)

    Wilson, Cameron J; Pearcy, Mark J; Epari, Devakara R

    2014-07-01

    We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous "scaffold" that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in

  15. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, M.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Jevasuwan, W.; Fukata, N. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  16. RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA

    Directory of Open Access Journals (Sweden)

    H. Boulaassal

    2012-09-01

    Full Text Available Airborne Laser Scanning (ALS, Terrestrial Laser Scanning (TLS and Vehicle based Laser Scanning (VLS are widely used as data acquisition methods for 3D building modelling. ALS data is often used to generate, among others, roof models. TLS data has proven its effectiveness in the geometric reconstruction of building façades. Although the operating algorithms used in the processing chain of these two kinds of data are quite similar, their combination should be more investigated. This study explores the possibility of combining ALS and TLS data for simultaneously producing 3D building models from bird point of view and pedestrian point of view. The geometric accuracy of roofs and façades models is different due to the acquisition techniques. In order to take these differences into account, the surfaces composing roofs and façades are extracted with the same algorithm of segmentation. Nevertheless the segmentation algorithm must be adapted to the properties of the different point clouds. It is based on the RANSAC algorithm, but has been applied in a sequential way in order to extract all potential planar clusters from airborne and terrestrial datasets. Surfaces are fitted to planar clusters, allowing edge detection and reconstruction of vector polygons. Models resulting from TLS data are obviously more accurate than those generated from ALS data. Therefore, the geometry of the roofs is corrected and adapted according to the geometry of the corresponding façades. Finally, the effects of the differences between raw ALS and TLS data on the results of the modeling process are analyzed. It is shown that such combination could be used to produce reliable 3D building models.

  17. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  18. Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy

    International Nuclear Information System (INIS)

    Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu

    2011-01-01

    Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).

  19. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; Hettick, Mark; Zheng, Maxwell; Lien, Der-Hsien; Miller, D. Westley; Warren, Charles W.; Roe, Ellis T; Lonergan, Mark C; Guthrey, Harvey L.; Haegel, Nancy M.; Ager, Joel W.; Carraro, Carlo; Maboudian, Roya; He, Jr-Hau; Javey, Ali

    2016-01-01

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  20. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping

    2016-06-08

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  1. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  2. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  3. Mechanisms and pathways of growth failure in primordial dwarfism.

    Science.gov (United States)

    Klingseisen, Anna; Jackson, Andrew P

    2011-10-01

    The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.

  4. Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma.

    Directory of Open Access Journals (Sweden)

    Hongbing Guan

    Full Text Available Immunotherapy with high-dose interleukin-2 (HDIL-2 is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS. In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1(+CD11b(+ myeloid-derived suppressor cells (MDSC and FoxP3(+CD4(+ regulatory T cells (Treg. We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory

  5. A theory of economic growth with material/energy resources and dematerialization: interaction of three growth mechanisms

    NARCIS (Netherlands)

    Ayes, R.U.; van den Bergh, J.C.J.M.

    2005-01-01

    The nature of energy and material resources in a non-optimizing growth theory framework is clarified. This involves two modifications of the conventional theory. Firstly, multiple feedback mechanisms or "growth engines" are identified, such that the impact of the cost of production through demand on

  6. Comparative analysis of the mechanical signals in lung development and compensatory growth.

    Science.gov (United States)

    Hsia, Connie C W

    2017-03-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

  7. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.

    Science.gov (United States)

    Sugime, Hisashi; Esconjauregui, Santiago; D'Arsié, Lorenzo; Yang, Junwei; Makaryan, Taron; Robertson, John

    2014-09-10

    We evaluate the growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests. They are synthesized by chemical vapor deposition at 450 °C using a conductive Ti/Cu support and Co-Mo catalyst system. We find that Mo stabilizes Co particles preventing lift off during the initial growth stage, thus promoting the growth of ultrahigh mass density nanotube forests by the base growth mechanism. The morphology of the forest gradually changes with growth time, mostly because of a structural change of the catalyst particles. After 100 min growth, toward the bottom of the forest, the area density decreases from ∼ 3-6 × 10(11) cm(-2) to ∼ 5 × 10(10) cm(-2) and the mass density decreases from 1.6 to 0.38 g cm(-3). We also observe part of catalyst particles detached and embedded within nanotubes. The progressive detachment of catalyst particles results in the depletion of the catalyst metals on the substrate surfaces. This is one of the crucial reasons for growth termination and may apply to other catalyst systems where the same features are observed. Using the packed forest morphology, we demonstrate patterned forest growth with a pitch of ∼ 300 nm and a line width of ∼ 150 nm. This is one of the smallest patterning of the carbon nanotube forests to date.

  8. Mechanism for longitudinal growth of rod-shaped bacteria

    Science.gov (United States)

    Taneja, Swadhin; Levitan, Ben; Rutenberg, Andrew

    2013-03-01

    The peptidoglycan (PG) cell wall along with MreB proteins are major determinants of shape in rod-shaped bacteria. However the mechanism guiding the growth of this elastic network of cross-linked PG (sacculus) that maintains the integrity and shape of the rod-shaped cell remains elusive. We propose that the known anisotropic elasticity and anisotropic loading, due to the shape and turgor pressure, of the sacculus is sufficient to direct small gaps in the sacculus to elongate around the cell, and that subsequent repair leads to longitudinal growth without radial growth. We computationally show in our anisotropically stressed anisotropic elasticity model small gaps can extend stably in the circumferential direction for the known elasticity of the sacculus. We suggest that MreB patches that normally propagate circumferentially, are associated with these gaps and are steered with this common mechanism. This basic picture is unchanged in Gram positive and Gram negative bacteria. We also show that small changes of elastic properties can in fact lead to bi-stable propagation of gaps, both longitudinal and circumferential, that can explain the bi-stability in patch movement observed in ΔmblΔmreb mutants.

  9. Thermo-Mechanical Fatigue Crack Growth of RR1000

    OpenAIRE

    Christopher John Pretty; Mark Thomas Whitaker; Steve John Williams

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechan...

  10. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  11. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  12. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  13. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal; Rachidi, Mariam El; Chung, Suk-Ho; Sarathy, Mani

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot

  14. Epitaxial growth mechanisms of graphene and effects of substrates

    OpenAIRE

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-01-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-hepta...

  15. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  16. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  17. Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Jiang Jun; Feng Tao; Cheng Xinhong; Dai Lijuan; Cao Gongbai; Jiang Bingyao; Wang Xi; Liu Xianghuai; Zou Shichang

    2006-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) was used to grow Fe-catalyzed carbon nanotubes (CNTs). The nanotubes had a uniform diameter in the range of about 10-20 nm. A base growth mode was responsible for the CNTs growth using a mixture of H 2 (60 sccm) and C 2 H 2 (15 sccm). For a mixture of H 2 (100 sccm) and C 2 H 2 (25 sccm), a complicated growth mechanism took place involving both the base growth and the tip growth. X-ray photoelectron spectroscopy measurements revealed that the grown CNTs contained C-H covalent bonds and Fe-C bonds located at the interface between them and the substrates. The factors determining the growth mechanism of CNTs are discussed and their growth mechanisms with the different gas ratios are suggested

  18. A theory of economic growth with material/energy resources and dematerialization. Interaction of three growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, Robert U. [Department of Physical Resource Theory, Chalmers Institute, Gothenburg (Sweden); Van den Bergh, Jeroen C.J.M. [Department of Spatial Economics, Faculty of Economics and Business Administration, and Institute for Environmental Studies, Free University, De Boelelaan 1105, Amsterdam 1081 HV (Netherlands)

    2005-10-05

    The nature of energy and material resources in a non-optimizing growth theory framework is clarified. This involves two modifications of the conventional theory. Firstly, multiple feedback mechanisms or 'growth engines' are identified, such that the impact of the cost of production through demand on growth is accounted for. Secondly, a production function distinguishes between resource use, technical efficiency, and value creation. The resulting model is analytically solved under the condition of a constant growth rate. Given model complexity, numerical experiments are performed as well, providing relevant insights to the academic and political debates on 'environmental Kuznets curves' and 'dematerialization.'.

  19. Agglomerate formation and growth mechanisms during melt agglomeration in a rotary processor.

    Science.gov (United States)

    Vilhelmsen, Thomas; Schaefer, Torben

    2005-11-04

    The purpose of this study was to investigate the effect of the binder particle size and the binder addition method on the mechanisms of agglomerate formation and growth during melt agglomeration in a laboratory scale rotary processor. Lactose monohydrate was agglomerated with molten polyethylene glycol (PEG) 3000 by adding the PEG either as solid particles from the size fraction 0-250, 250-500, or 500-750 microm or as droplets with a median size of 25, 48, or 69 microm. It was found that the PEG particle size, the PEG droplet size, and the massing time significantly influenced the agglomerate size and size distribution. Agglomerate formation and growth were found to occur primarily by distribution and coalescence for the PEG size fraction 0-250 microm and mainly by the immersion mechanism for the PEG size fractions 250-500 and 500-750 microm. When the PEG was sprayed upon the lactose, the mechanism of agglomerate formation was supposed to be a mixture of immersion and distribution, and the agglomerate growth was found to occur by coalescence regardless of the PEG mean droplet size. Compared to high shear mixers and conventional fluid bed granulators, the mechanisms of agglomerate formation and growth in the rotary processor resembled mostly those seen in the fluid bed granulator.

  20. Epitaxial growth mechanisms of graphene and effects of substrates

    Science.gov (United States)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  1. Mechanism of Microbubble Growth at Mitral Mechanical Heart Valve (MHV) Closure

    Science.gov (United States)

    Rambod, Edmond; Beizaie, Masoud; Shusser, Michael; Gharib, Morteza

    1999-11-01

    The growth mechanism of microbubbles at mitral MHV closure has been experimentally studied. In the heart, some of the tiny bubbles grow explosively and form larger and persistent bubbles. An experimental set-up was designed to allow the passage of micron-size bubbles through an 80 micron-wide slot, simulating a typical gap between the housing ring and the occluders in MHV. The bubbles were generated using an air-liquid dispenser and were delivered to the system via a 250 micron-diameter hypedermic needle positioned vertically near the slot. A solenoid valve was used to deliver a 10cc volume of liquid in 25ms time through the slot. High-speed imaging was used to study the impact of flow through the slot on bubble growth. The velocity of liquid through the slot was assessed to be in the range of 12-15 m/s. Our observations confirmed the rapid and drastic growth of microbubbles following their passage through the narrow slot, due to pressure drop. Vortices, which were induced by flow separation on the downstream of the slot, caused the grown bubbles to shatter and form more stable bubbles.

  2. Growth mechanism and magnon excitation in NiO nanowalls

    Directory of Open Access Journals (Sweden)

    Yang Chun

    2011-01-01

    Full Text Available Abstract The nanosized effects of short-range multimagnon excitation behavior and short-circuit diffusion in NiO nanowalls synthesized using the Ni grid thermal treatment method were observed. The energy dispersive spectroscopy mapping technique was used to characterize the growth mechanism, and confocal Raman scattering was used to probe the antiferromagnetic exchange energy J 2 between next-nearest-neighboring Ni ions in NiO nanowalls at various growth temperatures below the Neel temperature. This study shows that short spin correlation leads to an exponential dependence of the growth temperatures and the existence of nickel vacancies during the magnon excitation. Four-magnon configurations were determined from the scattering factor, revealing a lowest state and monotonic change with the growth temperature. PACS: 75.47.Lx; 61.82.Rx; 75.50.Tt; 74.25.nd; 72.10.Di

  3. Growth mechanism and magnon excitation in NiO nanowalls

    Science.gov (United States)

    2011-01-01

    The nanosized effects of short-range multimagnon excitation behavior and short-circuit diffusion in NiO nanowalls synthesized using the Ni grid thermal treatment method were observed. The energy dispersive spectroscopy mapping technique was used to characterize the growth mechanism, and confocal Raman scattering was used to probe the antiferromagnetic exchange energy J2 between next-nearest-neighboring Ni ions in NiO nanowalls at various growth temperatures below the Neel temperature. This study shows that short spin correlation leads to an exponential dependence of the growth temperatures and the existence of nickel vacancies during the magnon excitation. Four-magnon configurations were determined from the scattering factor, revealing a lowest state and monotonic change with the growth temperature. PACS: 75.47.Lx; 61.82.Rx; 75.50.Tt; 74.25.nd; 72.10.Di PMID:21824408

  4. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal

    2014-04-24

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot formation in flames. Although the hydrogen abstraction C2H2 addition (HACA) mechanism is believed to be the main contributor to PAH growth, it has been shown to under-predict some of the experimental data on PAHs and soot concentrations in flames. This article presents a submechanism of PAH growth that is initiated by propargyl (C 3H3) addition onto naphthalene (A2) and the naphthyl radical. C3H3 has been chosen since it is known to be a precursor of benzene in combustion and has appreciable concentrations in flames. This mechanism has been developed up to the formation of pyrene (A4), and the temperature-dependent kinetics of each elementary reaction has been determined using density functional theory (DFT) computations at the B3LYP/6-311++G(d,p) level of theory and transition state theory (TST). H-abstraction, H-addition, H-migration, β-scission, and intramolecular addition reactions have been taken into account. The energy barriers of the two main pathways (H-abstraction and H-addition) were found to be relatively small if not negative, whereas the energy barriers of the other pathways were in the range of (6-89 kcal·mol-1). The rates reported in this study may be extrapolated to larger PAH molecules that have a zigzag site similar to that in naphthalene, and the mechanism presented herein may be used as a complement to the HACA mechanism to improve prediction of PAH and soot formation. © 2014 American Chemical Society.

  5. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    Science.gov (United States)

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  6. Micromechanical analysis of volumetric growth in the context of open systems thermodynamics and configurational mechanics. Application to tumor growth

    Science.gov (United States)

    Ganghoffer, J. F.; Boubaker, M. B.

    2017-03-01

    We adopt in this paper the physically and micromechanically motivated point of view that growth (resp. resorption) occurs as the expansion (resp. contraction) of initially small tissue elements distributed within a host surrounding matrix, due to the interfacial motion of their boundary. The interface motion is controlled by the availability of nutrients and mechanical driving forces resulting from the internal stresses that built in during the growth. A general extremum principle of the zero potential for open systems witnessing a change of their mass due to the diffusion of nutrients is constructed, considering the framework of open systems thermodynamics. We postulate that the shape of the tissue element evolves in such a way as to minimize the zero potential among all possible admissible shapes of the growing tissue elements. The resulting driving force for the motion of the interface sets a surface growth models at the scale of the growing tissue elements, and is conjugated to a driving force identified as the interfacial jump of the normal component of an energy momentum tensor, in line with Hadamard's structure theorem. The balance laws associated with volumetric growth at the mesoscopic level result as the averaging of surface growth mechanisms occurring at the microscopic scale of the growing tissue elements. The average kinematics has been formulated in terms of the effective growth velocity gradient and elastic rate of deformation tensor, both functions of time. This formalism is exemplified by the simulation of the avascular growth of multicell spheroids in the presence of diffusion of nutrients, showing the respective influence of mechanical and chemical driving forces in relation to generation of internal stresses.

  7. Mechanical model for filament buckling and growth by phase ordering.

    Science.gov (United States)

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  8. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  9. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    Science.gov (United States)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  10. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Praveen K; Ramgir, Niranjan S; Joshi, Rakesh K; Bhansali, Shekhar [Bio-MEMS and Microfabrication Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL 33620 (United States)], E-mail: bhansali@eng.usf.edu

    2008-06-18

    The vapor-liquid-solid (VLS) growth procedure has been extended for the selective growth of silica nanowires on SiO{sub 2} layer by using Au as a catalyst. The nanowires were grown in an open tube furnace at 1100 deg. C for 60 min using Ar as a carrier gas. The average diameter of these bottom-up nucleated wires was found to be 200 nm. Transmission electron microscopy analysis indicates the amorphous nature of these nanoscale wires and suggests an Si-silica heterostructure. The localized silica nanowires have been used as an immunoassay template in the detection of interleukin-10 which is a lung cancer biomarker. Such a nanostructured platform offered a tenfold enhancement in the optical response, aiding the recognition of IL-10 in comparison to a bare silica substrate. The role of nanowires in the immunoassay was verified through the quenching behavior in the photoluminescence (PL) spectra. Two orders of reduction in PL intensity have been observed after completion of the immunoassay with significant quenching after executing every step of the protocol. The potential of this site-specific growth of silica nanowires on SiO{sub 2} as a multi-modal biosensing platform has been discussed.

  11. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  12. Detwinning mechanisms for growth twins in face-centered cubic metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J., E-mail: wangj6@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, N.; Anderoglu, O. [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Zhang, X., E-mail: zhangx@tamu.edu [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Misra, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Huang, J.Y. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Hirth, J.P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-04-15

    Using in situ transmission electron microscopy, we studied the stability of growth twins. We observed the rapid migration of incoherent twin boundaries (ITBs), indicating that nanotwins are unstable. Topological analysis and atomistic simulations are adopted to explore detwinning mechanisms. The results show that: (i) the detwinning process is accomplished via the collective glide of multiple twinning dislocations that form an ITB; (ii) detwinning can easily occur for thin twins, and the driving force is mainly attributed to a variation of the excess energy of a coherent twin boundary; (iii) shear stresses enable ITBs to migrate easily, causing the motion of coherent twin boundaries; and (iv) the migration velocity depends on stacking fault energy. The results imply that detwinning becomes the dominant deformation mechanism for growth twins of the order of a few nanometers thick.

  13. Computational modeling of the mechanical modulation of the growth plate by sustained loading

    Directory of Open Access Journals (Sweden)

    Narváez-Tovar Carlos A

    2012-09-01

    Full Text Available Abstract This paper presents a computational model that describes the growth of the bone as a function of the proliferation and hypertrophy of chondrocytes in the growth plate. We have included the effects of the mechanical loads on the sizes of the proliferative and hypertrophic areas, the number of proliferative chondrocytes and the final size of the hypertrophic chondrocytes. The validation of the model was performed with experimental data published on other investigations about proximal tibia of rats, subjected to sustained axial stresses of 0.1 MPa, 0.0 MPa, -0.1 MPa and −0.2 MPa. Growth was simulated during 23 days, obtaining numerical errors between 2.77% and 3.73% with respect to experimental growth rates. The results obtained show that the model adequately simulates the behavior of the growth plate and the effect of mechanical loads over its cellular activity.

  14. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression.

    Science.gov (United States)

    Nahta, Rita; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Andrade-Vieira, Rafaela; Bay, Sarah N; Brown, Dustin G; Calaf, Gloria M; Castellino, Robert C; Cohen-Solal, Karine A; Colacci, Annamaria; Cruickshanks, Nichola; Dent, Paul; Di Fiore, Riccardo; Forte, Stefano; Goldberg, Gary S; Hamid, Roslida A; Krishnan, Harini; Laird, Dale W; Lasfar, Ahmed; Marignani, Paola A; Memeo, Lorenzo; Mondello, Chiara; Naus, Christian C; Ponce-Cusi, Richard; Raju, Jayadev; Roy, Debasish; Roy, Rabindra; Ryan, Elizabeth P; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Vento, Renza; Vondráček, Jan; Wade, Mark; Woodrick, Jordan; Bisson, William H

    2015-06-01

    As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  16. Research on SiC Whisker Prepared by H-PSO

    Directory of Open Access Journals (Sweden)

    WANG Yao

    2017-10-01

    Full Text Available SiC whiskers were prepared on the matrix of graphite by using high hydrogenous silicone oil(PSO as raw material. The effect of surface conditions of graphite and heating temperature on the growth of SiC whisker was mainly studied in this paper. The main factor which affects the nucleation and growth of SiC whisker is the heating temperature, with the heating temperature rising, the production of SiC whisker increases. The surface condition of graphite matrix also influences the growth of SiC whisker. With the nucleation points provided by graphite matrix defects increasing, the production of SiC whisker incleases and SiC whisker starts to overlap with each other. The formation process of SiC whisker includes two steps:nucleation and growth. SiC whisker nucleates at low temperature and grows at high temperature, which follows the VLS (vapor-liquid-solid growth mechanism.

  17. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  18. MOCVD growth and structural characterization of In-Sb-Te nanowires

    International Nuclear Information System (INIS)

    Selmo, S.; Fanciulli, M.; Cecchi, S.; Cecchini, R.; Wiemer, C.; Longo, M.; Rotunno, E.; Lazzarini, L.

    2016-01-01

    In this work, the self-assembly of In 3 Sb 1 Te 2 and In-doped Sb 4 Te 1 nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, coupled with vapor-liquid-solid (VLS) mechanism, catalyzed by Au nanoparticles. Single crystal In 3 Sb 1 Te 2 and In-doped Sb 4 Te 1 NWs were obtained for different reactor pressures at 325 C. The parameters influencing the NW self-assembly were studied and the compositional, morphological, and structural analysis of the grown structures was performed, also comparing the effect of the used substrate (crystalline Si and SiO 2 ). In both cases, NWs of several micrometer in length and with diameters as small as 15 nm were obtained. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  20. Boehmite (AlOOH) nanostrips and their growth mechanism

    KAUST Repository

    Dar, Farooq Ahmad

    2015-02-04

    Crystalline nanostrips of AlOOH have been prepared at 240∘C through a fast route. Powder X-ray diffraction studies reveal that the as-prepared nanostrips are highly crystalline in nature and by morphological investigations using FESEM, it was revealed that the strips have average length of 210 nm and width of 60 ± 20 nm. A plausible theory is proposed which reveals the growth mechanism of nanostrips.

  1. Boehmite (AlOOH) nanostrips and their growth mechanism

    KAUST Repository

    Dar, Farooq Ahmad; Sofi, Ashaq Hussain; Shah, Mohammad Ashraf

    2015-01-01

    Crystalline nanostrips of AlOOH have been prepared at 240∘C through a fast route. Powder X-ray diffraction studies reveal that the as-prepared nanostrips are highly crystalline in nature and by morphological investigations using FESEM, it was revealed that the strips have average length of 210 nm and width of 60 ± 20 nm. A plausible theory is proposed which reveals the growth mechanism of nanostrips.

  2. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth

    Science.gov (United States)

    Bedewy, Mostafa; Hart, A. John

    2013-03-01

    Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is enabled by comprehensive X-ray characterization of the spatially and temporally-varying internal morphology of CNT forests. Based on this data, we model the time evolution and diameter-dependent scaling of the ensuing mechanical forces on catalyst nanoparticles during CNT growth, which arise from the mismatch between the collective lengthening rate of the forest and the diameter-dependent growth rates of individual CNTs. In addition to enabling self-organization of CNTs into forests, time-varying forces between CNTs in contact dictate the hierarchical tortuous morphology of CNT forests, and may be sufficient to influence the structural quality of CNTs. These forces reach a maximum that is coincident with the maximum density observed in our growth process, and are proportional to CNT diameter. Therefore, we propose that improved manufacturing strategies for self-organized CNTs should consider both chemical and mechanical effects. This may be especially necessary to achieve high density CNT forests with low defect density, such as for improved thermal interfaces and high-permeability membranes.Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is

  3. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Directory of Open Access Journals (Sweden)

    Wang Yiqian

    2009-01-01

    Full Text Available Abstract Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.

  4. A fracture- mechanics calculation of crack growth rate for a gas turbine blade

    International Nuclear Information System (INIS)

    Mirzaei, M.; Karimi, R.

    2002-01-01

    The existence of thermo-mechanical stresses, due to the frequent start-ups and shutdowns of gas turbines. Combined with high working temperatures may cause creep and fatigue failure of the blades. This paper describes a fracture-mechanics life assessment of a gas turbine blade. Initially, the distributions of thermal and mechanical stresses were obtained by using the finite element method. Accordingly; the crack modeling was performed in a high stress region at the suction side surface of the blade. Several crack growth increments were observed and the related crack tip parameters were calculated. Finally; the creep-fatigue crack growth in each cycle was calculated and the total number of start-stop cycles was determined

  5. Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    M. Zahedifar

    2013-03-01

    Full Text Available Germanium nanowires (GeNWs were synthesized using chemical vapor deposition (CVD based on vapor–liquid–solid (VLS mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4 as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS.

  6. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  7. EBSD characterization of the growth mechanism of SiC synthesized via direct microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jigang, E-mail: wangjigang@seu.edu.cn [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Xizang Key Laboratory of Optical Information Processing and Visualization Technology, School of Information Engineering, Xizang Minzu University, Xianyang 712082 (China); Huang, Shan; Liu, Song; Qing, Zhou [Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-04-15

    Well-crystallized 3C-silicon carbide (SiC) grains/nanowires have been synthesized rapidly and conveniently via direct microwave heating, simply using silicon dioxide powders and artificial graphite as raw materials. The comprehensive characterizations have been employed to investigate the micro-structure of the obtained 3C-SiC products. Results indicated that, different from the classic screw dislocation growth mechanism, the 3C-SiC grains/nanowires synthesized via high-energy vacuum microwave irradiation were achieved through the two-dimension nucleation and laminar growth mechanism. Especially, the electron backscattered diffraction (EBSD) was employed to characterize the crystal planes of the as-grown SiC products. The calculated Euler angles suggested that the fastest-growing crystal planes (211) were overlapped gradually. Through the formation of the (421) transformation plane, (211) finally evolved to (220) which existed as the side face of SiC grains. The most stable crystal planes (111) became the regular hexagonal planes in the end, which could be explained by the Bravais rule. The characterization results of EBSD provided important experimental information for the evolution of crystal planes. - Graphical abstract: The formation of 3C-SiC prepared via direct microwave heating follows the mechanism of two-dimension nucleation and laminar growth. - Highlights: • 3C−SiC grains/nanowires were obtained via direct microwave heating. • 3C−SiC followed the mechanism of two-dimension nucleation and laminar growth. • In-situ EBSD analysis provided the experimental evidences of the growth.

  8. Growth Mechanism of Cluster-Assembled Surfaces: From Submonolayer to Thin-Film Regime

    Science.gov (United States)

    Borghi, Francesca; Podestà, Alessandro; Piazzoni, Claudio; Milani, Paolo

    2018-04-01

    Nanostructured films obtained by assembling preformed atomic clusters are of strategic importance for a wide variety of applications. The deposition of clusters produced in the gas phase onto a substrate offers the possibility to control and engineer the structural and functional properties of the cluster-assembled films. To date, the microscopic mechanisms underlying the growth and structuring of cluster-assembled films are poorly understood, and, in particular, the transition from the submonolayer to the thin-film regime is experimentally unexplored. Here we report the systematic characterization by atomic force microscopy of the evolution of the structural properties of cluster-assembled films deposited by supersonic cluster beam deposition. As a paradigm of nanostructured systems, we focus our attention on cluster-assembled zirconia films, investigating the influence of the building block dimensions on the growth mechanisms and roughening of the thin films, following the growth process from the early stages of the submonolayer to the thin-film regime. Our results demonstrate that the growth dynamics in the submonolayer regime determines different morphological properties of the cluster-assembled thin film. The evolution of the roughness with the number of deposited clusters reproduces the growth exponent of the ballistic deposition in the 2 +1 model from the submonolayer to the thin-film regime.

  9. Molecular mechanisms of crystal growth

    International Nuclear Information System (INIS)

    Pina, C. M.

    2000-01-01

    In this paper I present an example of the research that the Mineral Surface Group of the Munster University is conducting in the field of Crystal Growth. Atomic Force Microscopy (Am) in situ observations of different barite (BaSO4) faces growing from aqueous solutions, in combination with computer simulations of the surface attachment of growth units allows us to test crystal growth models. Our results demonstrate the strong structural control that a crystal can exert on its own growth, revealing also the limitation of the classical crystal growth theories (two dimensional nucleation and spiral growth models) in providing a complete explanation for the growth behaviour at a molecular scale. (Author) 6 refs

  10. Mechanism of abnormally slow crystal growth of CuZr alloy

    International Nuclear Information System (INIS)

    Yan, X. Q.; Lü, Y. J.

    2015-01-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed

  11. Micro- and macroapproaches in fracture mechanics for interpreting brittle fracture and fatigue crack growth

    International Nuclear Information System (INIS)

    Ekobori, T.; Konosu, S.; Ekobori, A.

    1980-01-01

    Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data

  12. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction

    International Nuclear Information System (INIS)

    Gao Yan; Jiang Peng; Song Li; Liu Lifeng; Yan Xiaoqin; Zhou Zhenping; Liu Dongfang; Wang Jianxiong; Yuan Huajun; Zhang Zengxing; Zhao Xiaowei; Dou Xinyuan; Zhou Weiya; Wang Gang; Xie Sishen

    2005-01-01

    Silver (Ag) nanowires with a pentagonal cross section have been synthesized by polyvinylpyrrolidone (PVP)-assisted polyol reduction in the presence of Pt nanoparticle seeds. The UV-visible absorption spectra and scanning electron microscopy have been used to trace the growth process of the Ag nanowires. X-ray photoelectron spectroscopy investigation further shows that the PVP molecules are adsorbed on the surface of the Ag nanowires through Ag : O coordination. Comparing with the growth process of Ag nanoparticles, a possible growth mechanism of the Ag nanowires has been proposed. It is implied that the PVP molecules are used as both a protecting agent and a structure-directing agent for the growth of Ag nanowires. It is concluded that the five-fold twinning Ag nanoparticles are formed through heterogenous nucleation after the introduction of Pt nanoparticle seeds and then grow anisotropically along the (110) direction, while the growth along (100) is relatively depressed

  13. MOCVD growth and structural characterization of In-Sb-Te nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Selmo, S.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Milano (Italy); Cecchi, S.; Cecchini, R.; Wiemer, C.; Longo, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Rotunno, E.; Lazzarini, L. [IMEM-CNR, Parma (Italy)

    2016-02-15

    In this work, the self-assembly of In{sub 3}Sb{sub 1}Te{sub 2} and In-doped Sb{sub 4}Te{sub 1} nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, coupled with vapor-liquid-solid (VLS) mechanism, catalyzed by Au nanoparticles. Single crystal In{sub 3}Sb{sub 1}Te{sub 2} and In-doped Sb{sub 4}Te{sub 1} NWs were obtained for different reactor pressures at 325 C. The parameters influencing the NW self-assembly were studied and the compositional, morphological, and structural analysis of the grown structures was performed, also comparing the effect of the used substrate (crystalline Si and SiO{sub 2}). In both cases, NWs of several micrometer in length and with diameters as small as 15 nm were obtained. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  15. Mechanisms of action of plant growth promoting bacteria.

    Science.gov (United States)

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  16. The birth and growth of quantum theory. From quantum hypothesis to quantum mechanics

    International Nuclear Information System (INIS)

    Peng Huanwu

    2001-01-01

    The short history covers the birth and early growth of quantum theory from 1900 to 1928, beginning with Planck's formula and the quantum hypothesis for the black-body radiation. After a description of the rise and decline of the old quantum theory in connection with its application in spectroscopy, two paths based on the rigorous formulation of the correspondence principle leading to matrix mechanics (1925) and Dirac's non-commuting q-numbers (1925) are explained. Another path based on the generalization of the wave-particle aspect of light quanta is then shown to lead to wave mechanics (1926). Among the works during the early growth of quantum mechanics in 1927-1928, representation theory, the uncertainty principle, two-electron problems, and Dirac's relativistic theory of electrons are discussed

  17. Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25 wt.% Co alloy

    International Nuclear Information System (INIS)

    Ryoo, H.S.; Hwang, S.K.

    1998-01-01

    During liquid phase sintering, cemented carbide particles grow into either faceted or non-faceted grain shapes depending on ally system. In case of WC-Co alloy, prism-shape faceted grains with (0001) planes and {1 bar 100} planes on each face are observed, and furthermore an abnormal grain growth has been reported to occur. When abnormal grain growth occurs in WC crystals, dimension ratio, R, of the length of the side of the triangular prism face to the height of the prism is higher than 4 whereas that for normal grains is approximately 2. Abnormal grain growth in this alloy is accelerated by the fineness of starting powders and by high sintering temperature. To account for the mechanism of the abnormal grain growth, there are two proposed models which drew much research attention: nucleation and subsequent carburization and transformation of η (W 3 Co 3 C) phase into WC, and coalescence of coarse WC grains through dissolution and re-precipitation. Park et al. proposed a two-dimensional nucleation theory to explain the abnormal grain growth of faceted grains. There are questions, however, on the role of η phase on abnormal grain growth. The mechanism of coalescence of spherical grains as proposed by Kingery is also unsuitable for faceted grains. So far theories on abnormal grain growth do not provide a satisfactory explanation on the change of R value during the growth process. In the present work a new mechanism of nucleation and growth of faceted WC grains is proposed on the ground of anisotropic packing sequence of each atom

  18. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Mohamed, N.M. [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Shaharun, M.S. [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Naz, M.Y. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia)

    2016-06-15

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al{sub 2}O{sub 3} supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I{sub D}/I{sub G} ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  19. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N.M.; Shaharun, M.S.; Naz, M.Y.

    2016-01-01

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al_2O_3 supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I_D/I_G ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  20. Growth mechanics of bacterial cell wall and morphology of bacteria

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean

    2010-03-01

    The peptidoglycan cell wall of bacteria is responsible for maintaining the cell shape and integrity. During the bacterial life cycle, the growth of the cell wall is affected by mechanical stress and osmotic pressure internal to the cell. We develop a theory to describe cell shape changes under the influence of mechanical forces. We find that the theory predicts a steady state size and shape for bacterial cells ranging from cocci to spirillum. Moreover, the theory suggest a mechanism by which bacterial cytoskeletal proteins such as MreB and crescentin can maintain the shape of the cell. The theory can also explain the several recent experiments on growing bacteria in micro-environments.

  1. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  2. The dynamics of streamer formation and its growth mechanism

    International Nuclear Information System (INIS)

    Zalikhanov, B.Zh.

    2004-01-01

    We report the results of experimental studies of physical processes responsible for the transformation of the electron avalanche to the streamer and its growth towards the cathode. The new experimental data on the mechanism of formation and the structure of the streamer allow a more concrete understanding of the pattern of evolution of long spark discharges, including the lightning, and the interrelation of basic processes in such discharges. (author)

  3. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Science.gov (United States)

    Patera, Laerte L; Africh, Cristina; Weatherup, Robert S; Blume, Raoul; Bhardwaj, Sunil; Castellarin-Cudia, Carla; Knop-Gericke, Axel; Schloegl, Robert; Comelli, Giovanni; Hofmann, Stephan; Cepek, Cinzia

    2013-09-24

    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

  4. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  5. Theoretical model of the Bergeron-Findeisen mechanism of ice crystal growth in clouds

    Science.gov (United States)

    Castellano, N. E.; Avila, E. E.; Saunders, C. P. R.

    A numerical study of growth rate of ice particles in an array of water droplets (Bergeron-Findeisen mechanism) has used the method of electrostatic image charges to determine the vapour field in which a particle grows. Analysis of growth rate in various conditions of relevance to clouds has shown that it is proportional to liquid water content and to ice particle size, while it is inversely proportional to cloud droplet size. The results show that growth rate is enhanced by several percent relative to the usual treatment in which vapour is assumed to diffuse from infinity towards a growing ice particle. The study was performed for ice particles between 25 and 150 μm radii, water droplet sizes between 6 and 20 μm diameter and a wide range of liquid water contents. A study was also made to determine the effect of reducing the vapour source at infinity so that the droplets alone provided the vapour for particle growth. A parameterisation of ice particle growth rate is given as a function of liquid water content and ice particle and droplet sizes. These studies are of importance to considerations in thunderstorm electrification processes, where the mechanism of charge transfer between ice particles and graupel could take place.

  6. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  7. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported......, and it is argued how these processes may lead to different nanofiber structures. The proposed growth model is found to be in good agreement with previous findings....

  8. Stiff mutant genes of Phycomyces target turgor pressure and wall mechanical properties to regulate elongation growth rate

    Directory of Open Access Journals (Sweden)

    Joseph K. E. Ortega

    2012-05-01

    Full Text Available Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses and differential elongation growth rate (tropic responses. Stiff mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least four genes; madD, madE, madF and madG. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the growth zone. Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type. A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (- and C216 geo- (-. Experimental results demonstrate that turgor pressure is larger but irreversible deformation rates of the wall within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to wild type. These findings explain the diminished tropic responses of the stiff mutant sporangiophores and suggest that the defective genes affect the amount of wall-building material delivered to the inner

  9. Influence of substrate orientation on the structural properties of GaAs nanowires in MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, R., E-mail: rosnita@utm.my; Othaman, Z., E-mail: zulothaman@gmail.com; Ibrahim, Z., E-mail: zuhairi@utm.my; Sakrani, S., E-mail: samsudi3@yahoo.com [Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM, Johor (Malaysia); Wahab, Y., E-mail: wyussof@gmail.com [Razak School, UniversitiTeknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2016-04-19

    In this study, the effect of substrate orientation on the structural properties of GaAs nanowires grown by a metal organic chemical vapor deposition has been investigated. Gold colloids were used as catalyst to initiate the growth of nanowiresby the vapour-liquid-solid (VLS) mechanism. From the field-emission scanning electron microscopy (FE-SEM), the growth of the nanowires were at an elevation angle of 90°, 60°, 65° and 35° with respect to the GaAs substrate for (111)B, (311)B, (110) and (100) orientations respectively. The preferential NW growth direction is always <111>B. High-resolution transmission electron microscope (HRTEM) micrograph showed the NWs that grew on the GaAs(111)B has more structural defects when compared to others. Energy dispersive X-ray analysis (EDX) indicated the presence of Au, Ga and As. The bigger diameter NWs dominates the (111)B substrate surface.

  10. Alteration of placental haemostatic mechanisms in idiopathic intrauterine growth restriction

    Directory of Open Access Journals (Sweden)

    Jaime Eduardo Bernal Villegas

    2012-08-01

    Full Text Available Intrauterine growth restriction is a complication of pregnancy with a high probability of perinatal morbidity and mortality. It appears tobe caused by abnormal development of placental vasculature. Haemostatic processes are important for the development of the placenta,and an imbalance between procoagulant and anticoagulant factors has been associated with risk of intrauterine growth restriction.Objective. To evaluate coagulation abnormalities in placenta of pregnancies complicated with idiopathic intrauterine growth restriction.Materials and methods. Five placentas from pregnancies with idiopathic intrauterine growth restriction were compared to 19 controls.We performed gross and histological examination of the placenta. Analysis was made of both mRNA expression by real-time PCRand protein by ELISA of tissue factor and thrombomodulin in placental tissue. Results. Results based on histological evaluation wereconsistent with an increased prothrombotic state in placentas from pregnancies with idiopathic intrauterine growth restriction, andthrombosis of chorionic vessels was the most important finding. The study showed an increased expression of tissue factor protein(p=0.0411 and an increase in the ratio of tissue factor/thrombomodulin mRNA (p=0.0411 and protein (p=0.0215 in placentas frompregnancies with idiopathic intrauterine growth restriction. There were no statistically significant differences neither between cases andcontrols in the mRNA levels of tissue factor or thrombomodulin nor at the protein level of thrombomodulin. Conclusion. Evidence ofalteration of local haemostatic mechanisms at the level of the placenta, including abnormal expression of tissue factor and tissue factor/thrombomodulin ratio, in pregnancies that occur with idiopathic intrauterine growth restriction is presented.

  11. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.

  12. Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root?

    Science.gov (United States)

    De Vos, Dirk; Vissenberg, Kris; Broeckhove, Jan; Beemster, Gerrit T S

    2014-10-01

    In recent years there has been a strong development of computational approaches to mechanistically understand organ growth regulation in plants. In this study, simulation methods were used to explore which regulatory mechanisms can lead to realistic output at the cell and whole organ scale and which other possibilities must be discarded as they result in cellular patterns and kinematic characteristics that are not consistent with experimental observations for the Arabidopsis thaliana primary root. To aid in this analysis, a 'Uniform Longitudinal Strain Rule' (ULSR) was formulated as a necessary condition for stable, unidirectional, symplastic growth. Our simulations indicate that symplastic structures are robust to differences in longitudinal strain rates along the growth axis only if these differences are small and short-lived. Whereas simple cell-autonomous regulatory rules based on counters and timers can produce stable growth, it was found that steady developmental zones and smooth transitions in cell lengths are not feasible. By introducing spatial cues into growth regulation, those inadequacies could be avoided and experimental data could be faithfully reproduced. Nevertheless, a root growth model based on previous polar auxin-transport mechanisms violates the proposed ULSR due to the presence of lateral gradients. Models with layer-specific regulation or layer-driven growth offer potential solutions. Alternatively, a model representing the known cross-talk between auxin, as the cell proliferation promoting factor, and cytokinin, as the cell differentiation promoting factor, predicts the effect of hormone-perturbations on meristem size. By down-regulating PIN-mediated transport through the transcription factor SHY2, cytokinin effectively flattens the lateral auxin gradient, at the basal boundary of the division zone, (thereby imposing the ULSR) to signal the exit of proliferation and start of elongation. This model exploration underlines the value of

  13. Irradiation-induced growth of zircaloy and its effects on the mechanical design of fuel assemblies

    International Nuclear Information System (INIS)

    Yao Pu

    1991-01-01

    Zircaloy growth could be induced due to irradiation. The ammount of growth is described as a function of texture, irradiation temperature, fast neutron fluence and the reduction of cold work, and it should be given great attention in the mechanical design of fuel assemblies

  14. Microstructure and growth mechanism of tin whiskers on RESn3 compounds

    International Nuclear Information System (INIS)

    Li Caifu; Liu Zhiquan

    2013-01-01

    Graphical abstract: Large amount of intact tin whiskers were firstly prepared without post handling, and their microstructures were investigated systematically with TEM. A growth model was proposed to explain the observed growth characteristics from Sn–RE alloys. - Abstract: An exclusive method was developed to prepare intact tin whiskers as transmission electron microscope specimens, and with this technique in situ observation of tin whisker growth from RESn 3 (RE = Nd, La, Ce) film specimen was first achieved. Electron irradiation was discovered to have an effect on the growth of a tin whisker through its root. Large quantities of tin whiskers with diameters from 20 nm to 10 μm and lengths ranging from 50 nm to 500 μm were formed at a growth rate of 0.1–1.8 nm s −1 on the surface of RESn 3 compounds. Most (>85%) of these tin whiskers have preferred growth directions of 〈1 0 0〉, 〈0 0 1〉, 〈1 0 1〉 and 〈1 0 3〉, as determined by statistics. This kind of tin whisker is single-crystal β-Sn even if it has growth striations, steps and kinks, and no dislocations or twin or grain boundaries were observed within the whisker body. RESn 3 compounds undergo selective oxidation during whisker growth, and the oxidation provides continuous tin atoms for tin whisker growth until they are exhausted. The driving force for whisker growth is the compressive stress resulting from the restriction of the massive volume expansion (38–43%) during the oxidation by the surface RE(OH) 3 layer. Tin atoms diffuse and flow to feed the continuous growth of tin whiskers under a compressive stress gradient formed from the extrusion of tin atoms/clusters at weak points on the surface RE(OH) 3 layers. A growth model was proposed to discuss the characteristics and growth mechanism of tin whiskers from RESn 3 compounds.

  15. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.

    Science.gov (United States)

    Ambrosi, D; Pezzuto, S; Riccobelli, D; Stylianopoulos, T; Ciarletta, P

    2017-12-01

    The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

  16. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction.

    Science.gov (United States)

    Meephansan, Jitlada; Thummakriengkrai, J; Ponnikorn, S; Yingmema, W; Deenonpoe, R; Suchonwanit, P

    2017-11-01

    Tofacitinib is a Janus kinase 3 (JAK3) inhibitor that promotes hair growth; however, the efficacy and mechanism of this effect are not yet understood. This study aimed to evaluate the efficacy and mechanism of topical tofacitinib on hair growth in mice. Eight-week-old male C57BL/6 mice were divided equally into four groups and treated topically with tofacitinib, minoxidil, or vehicle once daily for 21 days. Weekly photographs were taken to determine the area and rate of hair growth, and tissue samples were collected for histopathological evaluation. mRNA and protein expression of anagen-maintaining growth factors, including vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), were determined via RT-PCR and ELISA, respectively. Tofacitinib-treated mice exhibited more hair regrowth than either minoxidil-treated or control mice did between day 7 and 21 (P tofacitinib also promoted more rapid hair growth rate than topical minoxidil or control did (P tofacitinib-treated group. Hair follicles in the minoxidil- and vehicle-treated groups were more often classified as catagen and anagen. VEGF mRNA and protein expression in the tofacitinib-treated group was significantly greater than those in the other groups (P tofacitinib-treated mice. Topical tofacitinib is effective in promoting hair growth, and the possible mechanism involves increased VEGF levels and lowered inflammation. This study will help develop a new therapeutic option for non-scarring alopecia.

  17. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    International Nuclear Information System (INIS)

    Sun, Jie; Lindvall, Niclas; Yurgens, August; Nam, Youngwoo; Cole, Matthew T.; Teo, Kenneth B. K.; Woo Park, Yung

    2014-01-01

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature

  18. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  19. Experimental evidence for several spheroid growth mechanisms in the liquid-phase sintered tungsten-base composites

    International Nuclear Information System (INIS)

    Zukas, E.G.; Rogers, P.S.Z.; Rogers, R.S.

    1976-01-01

    The generally accepted mechanism for spheroid growth during sintering of tungsten-base composites in the presence of a liquid phase is the dissolution of the small spheroids with simultaneous precipitation of tungsten from the molten matrix onto the larger spheroids, the process being driven by the difference in surface energy between the larger and smaller spheroids. From theoretical considerations, the slope of the straight line of log diameter versus log time should be 1 / 3 for this process. The experimental evidence for the dissolution and reprecipitation mechanism is meager, being based primarily on the spheroid growth rate during the latter stages of liquid-phase sintering. Experimental evidence is presented that shows spheroid growth taking place in systems where the tungsten and the matrix are mutually insoluble thereby making dissolution and reprecipitation impossible. Furthermore, the results from these studies and others using the usual matrix compositions indicate that spheroid growth takes place predominantly by the combination or coalescence of two or more spheroids. Deposition of tungsten from the molten matrix also occurs, although not necessarily on spheroid surfaces which have the lowest surface energy. Thus, many mechanisms, each depending on temperature and other variables, operate simultaneously. A satisfactory theoretical treatment must include them all

  20. Design of a visible-light spectroscopy clinical tissue oximeter.

    Science.gov (United States)

    Benaron, David A; Parachikov, Ilian H; Cheong, Wai-Fung; Friedland, Shai; Rubinsky, Boris E; Otten, David M; Liu, Frank W H; Levinson, Carl J; Murphy, Aileen L; Price, John W; Talmi, Yair; Weersing, James P; Duckworth, Joshua L; Hörchner, Uwe B; Kermit, Eben L

    2005-01-01

    We develop a clinical visible-light spectroscopy (VLS) tissue oximeter. Unlike currently approved near-infrared spectroscopy (NIRS) or pulse oximetry (SpO2%), VLS relies on locally absorbed, shallow-penetrating visible light (475 to 625 nm) for the monitoring of microvascular hemoglobin oxygen saturation (StO2%), allowing incorporation into therapeutic catheters and probes. A range of probes is developed, including noncontact wands, invasive catheters, and penetrating needles with injection ports. Data are collected from: 1. probes, standards, and reference solutions to optimize each component; 2. ex vivo hemoglobin solutions analyzed for StO2% and pO2 during deoxygenation; and 3. human subject skin and mucosal tissue surfaces. Results show that differential VLS allows extraction of features and minimization of scattering effects, in vitro VLS oximetry reproduces the expected sigmoid hemoglobin binding curve, and in vivo VLS spectroscopy of human tissue allows for real-time monitoring (e.g., gastrointestinal mucosal saturation 69+/-4%, n=804; gastrointestinal tumor saturation 45+/-23%, n=14; and p<0.0001), with reproducible values and small standard deviations (SDs) in normal tissues. FDA approved VLS systems began shipping earlier this year. We conclude that VLS is suitable for the real-time collection of spectroscopic and oximetric data from human tissues, and that a VLS oximeter has application to the monitoring of localized subsurface hemoglobin oxygen saturation in the microvascular tissue spaces of human subjects.

  1. The growth mechanism of grain boundary carbide in Alloy 690

    International Nuclear Information System (INIS)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-01-01

    The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface

  2. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  3. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  4. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  5. Expression of PDGF and growth of VSMC after mechanical injury and exposure to autologous serum

    International Nuclear Information System (INIS)

    Niu Huanzhang; Lu Qin; An Yanli; Teng Gaojun; Pan Meng

    2006-01-01

    Objective: To investigate the growth and expression of PDGF of VSMCs in response to stimulation of autologous serum and mechanical injury. Methods: An vitro model simulating the condition as possible as that after PTA. PDGF of every medium sample from every group was detected by ELISA, and the values of MTT of every cellular sample was measured by MTT to show the growth and proliferation of every group. Results: After stimulation by autologous serum and mechanical injury, SMCs of the experimental group showed the value of MTT increasing, but SMCs in control group reached on 3rd day. At the same time, the expression of PDGF also increased gradually, obtaining peak gradually up to peak on day 4/5 nearly 2.0-fold as much as that of SMCs in the control group. Conclusions: After on the 5th day, stimulation with autologous serum and mechanical injury, VSMCs of rabbit showed the stronger ability of growth/proliferation, and autocrine of PDGF also increased gradually, reaching peak on 4-5 d, probobly simulating to those in vivo. (authors)

  6. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A.

    2008-01-01

    The mechanisms of Ga-assisted GaAs nanowires grown by molecular beam epitaxy are addressed. The axial and radial growth rates as a function of the Ga rate and As pressure indicate that on the opposite of what is observed in thin film epitaxy, the growth rate of the nanowires is arsenic limited. As a consequence, the axial growth rate of the wires can be controlled by the As 4 pressure. Additionally, due to the small As 4 pressure leading to nanowire growth, the deposition on the facets is very slow, leading to a much lower radial growth rate. Finally, we present a model that is able to accurately describe the presented observations and predicts a maximum length of nontapered nanowires of 40 μm

  7. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    Science.gov (United States)

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  8. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  9. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liyan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Lu, Tao; Shi, Yi; Wang, Jianyu [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  10. Crack growth retardation due to micro-roughness: a mechanism for overload effects in fatigue

    International Nuclear Information System (INIS)

    Suresh, S.

    1982-01-01

    A new mechanism for fatigue crack growth retardation following an overload is presented in this paper, based on a micro-roughness model. It is reasoned, with the aid of extensive experimental evidence available in the literature, that retardation following an overload is governed by the micromechanisms of near-threshold crack growth. This model is found to rationalize a number of hitherto unexplained experimental observations. Moreover, the present arguments, which suggest that plasticity-induced crack closure is not likely to be the primary mechanism for retardation following single overloads, do not exclude the role of residual stresses or blunting, but provide further mechanistic basis to account for the inconsistencies in the previous models. Additional sources of prolonged retardation, in terms of crack closure due to corrosion debris formed in moist environments, are suggested. It is pointed out that such environmental effects could play an important role in post-overload crack growth in certain alloy systems

  11. Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates

    Directory of Open Access Journals (Sweden)

    Kouta Tateno

    2012-01-01

    Full Text Available The VLS (vapor-liquid-solid method is one of the promising techniques for growing vertical III-V compound semiconductor nanowires on Si for application to optoelectronic circuits. Heterostructures grown in the axial direction by the VLS method and in the radial direction by the general layer-by-layer growth method make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. We can grow some vertical heterostructure nanopillars with flat tops on Si(111 substrates, and we have obtained core-multishell Ga(InP/GaAs/GaP nanowires with flat tops and their air-gap structures by using selective wet etching. Simulations indicate that a high- factor of over 2000 can be achieved for this air-gap structure. From the GaAs growth experiments, we found that zincblende GaAs without any stacking faults can be grown after the GaP nanowire growth. Pillars containing a quantum dot and without stacking faults can be grown by using this method. We can also obtain flat-top pillars without removing the Au catalysts when using small Au particles.

  12. Effect of solution volume covariation on the growth mechanism of Au nanorods using the seed-mediated method

    International Nuclear Information System (INIS)

    Ma, Xiao; Wang, Moo-Chin; Feng, Jinyang; Zhao, Xiujian

    2015-01-01

    The effect of solution volume covariation on the growth mechanism of Au nanorods synthesized using a seed-mediated method was studied. The results from the ultraviolet–visible absorption spectra of gold nanorods (GNRs) revealed that the transverse surface plasmon resonance was ∼550 nm for all GNR samples synthesized in various total volumes of growth solutions. The wavelength of longitudinal surface plasmon resonance of GNRs increased from 757 to 915 nm, with the total volume of growth solution being raised from 10 to 320 ml. Moreover, the calculated aspect ratio (AR) also increased from 3.55 to 5.21 while the total volume of growth solution increased from 10 to 320 ml. Transmission electron microscopy microstructures showed that the growth mechanism of GNRs along 〈1 0 0〉 is in accordance with the hypothesis that the ratio of the number of monodispersed Au atoms existing in the growth solution to the number of seeds explain the behavior of Au atoms deposited on the nanorods with respect to all of the constituent concentrations in the growth solution on the AR of GNRs

  13. Understanding the true shape of Au-catalyzed GaAs nanowires.

    Science.gov (United States)

    Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-10-08

    With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.

  14. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy

    International Nuclear Information System (INIS)

    McAneney, H; O'Rourke, S F C

    2007-01-01

    The standard linear-quadratic survival model for radiotherapy is used to investigate different schedules of radiation treatment planning to study how these may be affected by different tumour repopulation kinetics between treatments. The laws for tumour cell repopulation include the logistic and Gompertz models and this extends the work of Wheldon et al (1977 Br. J. Radiol. 50 681), which was concerned with the case of exponential re-growth between treatments. Here we also consider the restricted exponential model. This has been successfully used by Panetta and Adam (1995 Math. Comput. Modelling 22 67) in the case of chemotherapy treatment planning.Treatment schedules investigated include standard fractionation of daily treatments, weekday treatments, accelerated fractionation, optimized uniform schedules and variation of the dosage and α/β ratio, where α and β are radiobiological parameters for the tumour tissue concerned. Parameters for these treatment strategies are extracted from the literature on advanced head and neck cancer, prostate cancer, as well as radiosensitive parameters. Standardized treatment protocols are also considered. Calculations based on the present analysis indicate that even with growth laws scaled to mimic initial growth, such that growth mechanisms are comparable, variation in survival fraction to orders of magnitude emerged. Calculations show that the logistic and exponential models yield similar results in tumour eradication. By comparison the Gompertz model calculations indicate that tumours described by this law result in a significantly poorer prognosis for tumour eradication than either the exponential or logistic models. The present study also shows that the faster the tumour growth rate and the higher the repair capacity of the cell line, the greater the variation in outcome of the survival fraction. Gaps in treatment, planned or unplanned, also accentuate the differences of the survival fraction given alternative growth

  15. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mary, I. Reeta [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Department of Physics, Government Arts College, Coimbatore 641018 (India); Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N., E-mail: ponpandian@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2016-01-15

    Graphical abstract: - Highlights: • Novel multiform morphologies of hydroxyapatite from nanoscale building blocks. • Facile hydro/solvothermal method under mild reaction conditions without the necessity of post-annealing treatment. • Growth mechanism by Ostwald ripening and self-assembly processes. - Abstract: Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  16. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  17. Fabrication and growth mechanism of carbon nanospheres by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tian, F.; He, C.N.

    2010-01-01

    The synthesis of carbon nanospheres (CNSs) by chemical vapor deposition (CVD) of methane on catalyst of Ni-Al composite powders was reported. The influence factors on the growth morphology of CNSs, such as reaction temperature, reaction time and different carrier gases concerning hydrogen, nitrogen as well as no carrier gas were investigated using transmission electron microscope. The results showed that the reaction temperature had great effect on the structure of CNSs, higher temperature led to high-crystallized CNSs with high purity. The reaction time brought no significant influence to the structure of CNSs, but the average diameter of the CNSs was obviously increased with prolonging the reaction time. Relatively pure CNSs could be obtained with hydrogen as the carrier gas but with poor product rate compared with the CNSs with no carrier gas. Proper amount of CNSs with pure characteristic could be obtained with nitrogen as the carrier gas. Finally, a growth mechanism of dissolution-precipitation-diffusion is proposed for elucidating the growth process of general CNSs.

  18. Localized synthesis, assembly and integration of silicon nanowires

    Science.gov (United States)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire

  19. Experimental study of different carbon dust growth mechanisms

    International Nuclear Information System (INIS)

    Arnas, C.; Dominique, C.; Roubin, P.; Martin, C.; Laffon, C.; Parent, P.; Brosset, C.; Pegourie, B.

    2005-01-01

    Laboratory experiments are proposed to understand the growth mechanisms of spheroid carbon dust grains observed in Tokamaks with inside wall elements in graphite based materials. Different categories of solid grains in the nanometer size range are produced from graphite sputtering in rare gas plasmas. Dense primary particles are observed either individually or in the form of spherical agglomerates. The agglomeration process is likely to be stopped by Coulomb repulsion. Other particulates of higher size and cauliflower texture are formed by atomic-molecule accretion. Examples of these different cases are presented with specific characteristics provided by ex situ diagnostics. A comparison with dust samples collected in Tore Supra or observed in other Tokamaks is proposed

  20. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    Science.gov (United States)

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  1. Effects of Be doping on InP nanowire growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Yee, R. J.; Gibson, S. J.; LaPierre, R. R. [Department of Engineering Physics, Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Dubrovskii, V. G. [St. Petersburg Academic University, Khlopina 8/3, 194021 St. Petersburg (Russian Federation); Ioffe Physical Technical Institute RAS, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2012-12-24

    Be-doped InP nanowires were grown by the gold-assisted vapour-liquid-solid mechanism in a gas source molecular beam epitaxy system. The InP nanowire length versus diameter [L(D)] dependence revealed an unexpected transition with increasing Be dopant concentration. At Be dopant concentration below {approx}10{sup 18} cm{sup -3}, nanowires exhibited the usual inverse L(D) relationship, indicating a diffusion-limited growth regime. However, as dopant concentration increased, the nanowire growth rate was suppressed for small diameters, resulting in an unusual L(D) dependence that increased before saturating in height at about 400 nm. The cause of this may be a change in the droplet chemical potential, introducing a barrier to island nucleation. We propose a model accounting for the limitations of diffusion length and monolayer nucleation to explain this behaviour.

  2. Growth limit of carbon onions – A continuum mechanical study

    DEFF Research Database (Denmark)

    Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.

    2014-01-01

    of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature......The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth...... induced surface energy and its consequential stress state is investigated and found to be rather negligible. Furthermore, it is shown that the nonlinear character of the van der Waals interactions has to be considered to obtain maximum layer numbers comparable to experimental observations. The proposed...

  3. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Haddad, Fadia

    2006-01-01

    Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon...... because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle....... However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal...

  4. Interest and difficulties of O-g studies of the mechanisms of eutectic growth

    International Nuclear Information System (INIS)

    Lemaignan, Clement; Malmejac, Yves.

    1976-01-01

    The possible modifications of the very diverse mechanisms involved in a typical eutectic solidification due to the effects of O-g conditions are described. The convection effects, eutectic solidification, nucleation and relations between interlamellar spacing and growth rate are studied [fr

  5. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

    Science.gov (United States)

    Jagiella, Nick; Müller, Benedikt; Müller, Margareta; Vignon-Clementel, Irene E; Drasdo, Dirk

    2016-02-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  6. Growth mechanisms and morphology of NaCl monocrystals obtained by the Czochralski method

    International Nuclear Information System (INIS)

    Goujon, Gilles G.

    1969-01-01

    In its first part, this research thesis describes the various aspects of the theory of crystal growth in melt bath by drawing with growth being limited either by heat transfer phenomena or by mechanisms of molecule transport through the interface. The second part addresses the quality of the obtained monocrystals (dislocations, dislocation density) while discussing the impact of external growth parameters (germ choice and orientation, drawing speed, rotating speed, atmosphere, impurities, crystal diameter). Then, the author presents an experimental study (equipment, experimental conditions) and discusses its results (influence of temperature on crystal geometry, morphology of side surface, study of crystal plane faces by chemical attack). The next part proposes an interpretation of the morphology change of a crystal drawn by the Czochralski method

  7. Formation and growth mechanism of TiC crystal in TiCp/Ti composites

    Institute of Scientific and Technical Information of China (English)

    金云学; 王宏伟; 曾松岩; 张二林

    2002-01-01

    Ti-C and Ti-Al-C alloys were prepared using gravity and directional solidification processes. Morphologies of TiC crystal were investigated by using SEM, XRD and EDX. Also, the formation and growth mechanism of TiC crystal have been analyzed on the basis of coordination polyhedron growth unit theory. During solidification of titanium alloys, the coordination polyhedron growth unit is TiC6. TiC6 growth units stack in a linking mode of edge to edge and form octahedral TiC crystal with {111} planes as present faces. Although the growing geometry of TiC crystal is decided by its lattice structure, the final morphology of TiC crystal depends on the effects of its growth environment. In solute concentration distribution, the super-saturation of C or TiC6 at the corners of octahedral TiC crystal is much higher than that of edges and faces of octahedral TiC crystal. At these corners the driving force for crystal growth is greater and the interface is instable which contribute to quick stacking rate of growth units at these corners and result in secondary dendrite arms along TiC crystallographic 〈100〉 directions. TiC crystal finally grows to be dendrites.

  8. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  9. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  10. Spine growth mechanisms: friction and seismicity at Mt. Unzen, Japan

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Hirose, Takehiro; Henton De Angelis, Sarah; De Angelis, Silvio; Umakoshi, Kodo; Miwa, Takahiro; Wadsworth, Fabian; Dingwell, Don; Lavallee, Yan

    2014-05-01

    The final episode of dome growth during the 1991-1995 eruption of Mt. Unzen was characterised by spine extrusion accompanied by repetitive seismicity. This type of cyclic activity has been observed at several dome-building volcanoes and recent work suggests a source mechanism of brittle failure of magma in the conduit. Spine growth may proceed by densification and closure of permeable pathways within the uppermost conduit magma, leading to sealing of the dome and inflation of the edifice. Amplified stresses on the wall rock and plug cause brittle failure near the conduit wall once static friction forces are overcome, and during spine growth these fractures may propagate to the dome surface. The preservation of these features is rare, and the conduit is typically inaccessible; therefore spines, the extruded manifestation of upper conduit material, provide the opportunity to study direct evidence of brittle processes in the conduit. At Mt. Unzen the spine retains evidence for brittle deformation and slip, however mechanical constraints on the formation of these features and their potential impact on eruption dynamics have not been well constrained. Here, we conduct an investigation into the process of episodic spine growth using high velocity friction apparatus at variable shear slip rate (0.4-1.5 m.s-1) and normal stress (0.4-3.5 MPa) on dome rock from Mt. Unzen, generating frictional melt at velocity >0.4 m.s-1 and normal stress >0.7 MPa. Our results show that the presence of frictional melt causes a deviation from Byerlee's frictional rule for rock friction. Melt generation is a disequilibrium process: initial amphibole breakdown leads to melt formation, followed by chemical homogenization of the melt layer. Ultimately, the experimentally generated frictional melts have a similar final chemistry, thickness and comminuted clast size distribution, thereby facilitating the extrapolation of a single viscoelastic model to describe melt-lubricated slip events at Mt

  11. Mechanical mandible competence in rats with nutritional growth retardation.

    Science.gov (United States)

    Lezón, Christian Esteban; Pintos, Patricia Mabel; Bozzini, Clarisa; Romero, Alan Agüero; Casavalle, Patricia; Friedman, Silvia María; Boyer, Patricia Mónica

    2017-08-01

    In order to provide a better understanding of the sympathetic nervous system as a negative regulator of bone status, the aim of the study was to establish the biomechanical mandible response to different doses of a β-adrenergic antagonist such as propranolol (P) in a stress-induced food restriction model of growth retardation. Rats were assigned to eight groups: Control (C), C+P3.5 (CP3.5), C+P7 (CP7), C+P14 (CP14), NGR, NGR+P3.5 (NGRP3.5), NGR+P7 (NGRP7) and NGR+P14 (NGRP14). C, CP3.5, CP7 and CP14 rats were freely fed with the standard diet. NGR, NGRP3.5, NGRP7 and NGRP14 rats received, for 4 weeks (W4), 80% of the amount of controls food consumed. Propranolol 3.5, 7 and 14mg/kg/day was injected ip 5days per week in CP3.5 and NGRP3.5, CP7 and NGRP7, CP14 and NGRP14, respectively. At W4, zoometry, mandible morphometry, static histomorphometric and biomechanical competence were performed. A dose of Propranolol 7mg/kg/day induced interradicular bone volume accretion reaching a mandible stiffness according to chronological age. These findings evidenced that sympathetic nervous system activity is a negative regulator of mandible mechanical competence in the nutritional growth retardation model. Propranolol 7mg/kg/day, under the regimen usage, seems to be appropriate to blockade SNS activity on mandible mechanical performance in NGR rats, probably associated to an effect on bone mechanostat system ability to detect disuse mode as an error. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  13. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    Energy Technology Data Exchange (ETDEWEB)

    Teys, S.A., E-mail: teys@isp.nsc.ru

    2017-01-15

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  14. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    International Nuclear Information System (INIS)

    Teys, S.A.

    2017-01-01

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  15. Reinforcements for high temperature ceramics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacou, C.I.; Sepulveda, J.L.; Watson, M.A. [Keramont Corp., Tucson, AZ (United States)

    1992-04-01

    A method has been investigated and developed to grow TiB{sub 2} whiskers by the VLS mechanism. The reaction was carried out in a quartz tube 3 in. in diameter, 30 in. long at about 1150{degrees}C in the presence of a catalyst. The basic experimental parameters, a substrate, and a catalyst, for the growth of the whiskers have been defined. The whiskers produced have shown variable size and morphology depending on the experimental conditions, and location of the whiskers from the input port. The corrosion of the catalyst by the gas environment, and the gas distribution profile in the furnace had a serious effect on the reproducibility of the experimental results, and the overall yield of whiskers.

  16. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.

    Science.gov (United States)

    Gosvami, N N; Bares, J A; Mangolini, F; Konicek, A R; Yablon, D G; Carpick, R W

    2015-04-03

    Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation. Copyright © 2015, American Association for the Advancement of Science.

  17. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis.

    Science.gov (United States)

    Zheng, Liwei; Ma, Juanjuan; Zhang, Lizhi; Gao, Cai; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2018-02-20

    Brassinosteroid is identified as an important hormone. However, information about brassinosteroid has not been fully elucidated, and few studies concerned its role in apple. The aim of this work was to study the role of brassinosteroid for apple tree growth. In our study, the effect of brassinosteroid on apple nursery tree was analyzed. The biomass, cell size and xylem content of apple nursery tree were obviously evaluated by brassinosteroid treatment; mineral elements contents, photosynthesis indexes, carbohydrate level and hormone contents were significantly high in brassinosteroid treated trees. To explore the molecular mechanisms of these phenotypic differences, iTRAQ-based quantitative proteomics were used to identify the expression profiles of proteins in apple nursery tree shoot tips in response to brassinosteroid at a key period (14days after brassinosteroid treatment). A total of 175 differentially expressed proteins were identified. They were mainly involved in chlorophyII biosynthesis, photosynthesis, carbohydrate metabolism, glycolysis, citric acid cycle, respiratory action, hormone signal, cell growth and ligin metabolism. The findings in this study indicate that brassinosteroid mediating apple nursery tree growth may be mainly through energy metabolism. Important biological processes identified here can be useful theoretical basis and provide new insights into the molecular mechanisms of brassinosteroid. Brassinosteroid is very important for plant growth and development. However, the molecular mechanism of brassinosteroid mediating growth process is not perfectly clear in plant, especially in apple nursery tree. We used a combination of physiological and bioinformatics analysis to investigate the effects of brassinosteroid on apple nursery tree growth and development. The data reported here demonstrated that brassinosteroid regulates apple nursery tree growth mainly through energy metabolism. Therefore it can provide a theoretical basis from energy

  18. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption

    International Nuclear Information System (INIS)

    Luo Xiaolin; Li Zongxiao; Yuan Chunlan; Chen Yashao

    2011-01-01

    Highlights: → Silver nanoplates have been successfully synthesized by polyol reduction in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . → Due to the discovery of CN - ions in the solution, a mechanism for the anisotropic growth of silver nanoplates is systematically discussed. → TG, FT-IR and SERS were used to provide some direct evidences of rivalrous adsorption between PVP and CN - ions on the surface of the silver crystals. - Abstract: A polyol reducing approach has been applied to synthesize silver nanoplates with an average thickness of 50 nm and edge length of 3 μm in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscropy (TEM), and electron diffraction are used to characterize these silver nanoplates. Findings indicate that the nanoplates are single crystals and with their basal plane as (1 1 1) lattice plane. On the basis of the results from thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, a crystal growth mechanism based on the rivalrous adsorption between PVP and CN - ions on the surface of silver nanoplates is supposed to explain the crystal anisotropic growth.

  19. Promoting Second Language Learners’ Vocabulary Learning Strategies: Can Autonomy and Critical Thinking Make a Contribution?

    Directory of Open Access Journals (Sweden)

    Mania Nosratinia

    2015-05-01

    Full Text Available Based on the findings of previous studies which highlight the role of vocabulary knowledge in English as a Foreign Language/English as a Second Language (EFL/ESL learners’ learning process, this study investigated the relationship among EFL learners’ Critical Thinking (CT, Autonomy (AU, and choice of Vocabulary Learning Strategies (VLS. To fulfill the purpose of this study, 100 male and female undergraduate EFL learners, between the ages of 18 and 25 (Mage = 21 were randomly selected. These participants, who were receiving formal instruction by means of English as the main language along with learners’ first language, were asked to complete three questionnaires, estimating their CT, AU, and VLS. Analyzing the collected data by Pearson’s product-moment correlation coefficient revealed significant relationships between participants' AU and CT, CT and VLS, and AU and VLS. Furthermore, a linear regression through the stepwise method revealed that between CT and AU, AU is the best predictor of VLS. The findings of this provide EFL teachers, EFL learners, and syllabus designers with insights into the nature of VLS and the way it can be promoted through other internal factors.

  20. Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

    Science.gov (United States)

    Jung, Jaejoon; Jang, In-Ae; Ahn, Sungeun; Shin, Bora; Kim, Jisun; Park, Chulwoo; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2015-11-01

    Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

  1. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  2. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  3. Fabrication and characterization of silicon nanowires by means of molecular beam epitaxy; Herstellung und Charakterisierung von Silizium-Nanodraehten mittels Molekularstrahlepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Luise

    2007-06-19

    In this work, basic processes of silicon whisker growth were examined. For the first time, Si nanowhiskers were produced under UHV conditions by Molecular Beam Epitaxy (MBE) and characterized by different analysis methods afterwards. The existence of Au/Si droplets on a Si(111) substrate surface is a precondition of this growth method. Analyses of the temporal development of the Au/Si droplets during the whisker growth show a decrease of the number of small droplets resp. whiskers during the whisker growth with increasing growth time. This behaviour, i.e. the dissolution of smaller droplets/whiskers and the growth of larger ones in parallel can be explained by Ostwald ripenning. The diffusion-determined material transition of gold, which occurs during this process, is theoretically described by the Lifshitz-Slyozov-Wagner (LSW)-Theory. After this theory only whiskers grow which radii are larger than the critical radius. The whisker radii are temperature dependend whereas analogous whisker radii exist for identical growth times. Electron microscopy analysis show that all whiskers possess a hexagonal but no cylindrical habitus. The planes that form during the growth are crystallographic (111) planes. The growth of Si nanowhiskers under MBE conditions is determined by the Vapour Liquid Solid (VLS) mechanism and by surface diffusion of Si atoms. (orig.)

  4. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.; Jagger, J.

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315 to 405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis (''relaxed'' or rel - strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-uv fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similar to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-uv irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-uv-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay

  5. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    Science.gov (United States)

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  6. Raising Virtual Laboratories in Australia onto global platforms

    Science.gov (United States)

    Wyborn, L. A.; Barker, M.; Fraser, R.; Evans, B. J. K.; Moloney, G.; Proctor, R.; Moise, A. F.; Hamish, H.

    2016-12-01

    Across the globe, Virtual Laboratories (VLs), Science Gateways (SGs), and Virtual Research Environments (VREs) are being developed that enable users who are not co-located to actively work together at various scales to share data, models, tools, software, workflows, best practices, etc. Outcomes range from enabling `long tail' researchers to more easily access specific data collections, to facilitating complex workflows on powerful supercomputers. In Australia, government funding has facilitated the development of a range of VLs through the National eResearch Collaborative Tools and Resources (NeCTAR) program. The VLs provide highly collaborative, research-domain oriented, integrated software infrastructures that meet user community needs. Twelve VLs have been funded since 2012, including the Virtual Geophysics Laboratory (VGL); Virtual Hazards, Impact and Risk Laboratory (VHIRL); Climate and Weather Science Laboratory (CWSLab); Marine Virtual Laboratory (MarVL); and Biodiversity and Climate Change Virtual Laboratory (BCCVL). These VLs share similar technical challenges, with common issues emerging on integration of tools, applications and access data collections via both cloud-based environments and other distributed resources. While each VL began with a focus on a specific research domain, communities of practice have now formed across the VLs around common issues, and facilitate identification of best practice case studies, and new standards. As a result, tools are now being shared where the VLs access data via data services using international standards such as ISO, OGC, W3C. The sharing of these approaches is starting to facilitate re-usability of infrastructure and is a step towards supporting interdisciplinary research. Whilst the focus of the VLs are Australia-centric, by using standards, these environments are able to be extended to analysis on other international datasets. Many VL datasets are subsets of global datasets and so extension to global is a

  7. Varied line-space gratings: past, present and future

    International Nuclear Information System (INIS)

    Hettrick, M.C.

    1985-08-01

    A classically ruled diffraction grating consists of grooves which are equidistant, straight and parallel. Conversely, the so-called ''holographic'' grating (formed by the interfering waves of coherent visible light), although severely constrained by the recording wavelength and recording geometry, has grooves which are typically neither equidistant, straight nor parallel. In contrast, a varied line-space (VLS) grating, in common nomenclature, is a design in which the groove positions are relatively unconstrained yet possess sufficient symmetry to permit mechanical ruling. Such seemingly exotic gratings are no longer only a theoretical curiosity, but have been ruled and used in a wide variety of applications. These include: (1) aberration-corrected normal incidence concave gratings for Seya-Namioka monochromators and optical de-multiplexers, (2) flat-field grazing incidence concave gratings for plasma diagnostics, (3) aberration-corrected grazing incidence plane gratings for space-borne spectrometers, (4) focusing grazing incidence plane grating for synchrotron radiation monochromators, and (5) wavefront generators for visible interferometry of optical surfaces (particularly aspheres). Future prospects of VLS gratings as dispersing elements, wavefront correctors and beamsplitters appear promising. The author discusses the history of VLS gratings, their present applications, and their potential in the future. 61 refs., 24 figs

  8. Vanishing Lung Syndrome in a Patient with HIV Infection and Heavy Marijuana Use

    Directory of Open Access Journals (Sweden)

    Basheer Tashtoush

    2014-01-01

    Full Text Available Vanishing lung syndrome (VLS is a rare and distinct clinical syndrome that usually affects young men. VLS leads to severe progressive dyspnea and is characterized by extensive, asymmetric, peripheral, and predominantly upper lobe giant lung bullae. Case reports have suggested an additive role of marijuana use in the development of this disease in young male tobacco smokers. We herein report a case of a 65-year-old Hispanic male previously diagnosed with severe emphysema and acquired immune deficiency syndrome (AIDS, with a history of intravenous heroin use and active marijuana smoking who presents to the emergency department with severe progressive shortness of breath he was found to have multiple large subpleural bullae occupying more than one-third of the hemithorax on chest computerized tomography (CT, characteristic of vanishing lung syndrome. The patient was mechanically ventilated and later developed a pneumothorax requiring chest tube placement and referral for surgical bullectomy. Surgical bullectomy has shown high success rates in alleviating the debilitating symptoms and preventing the life threatening complications of this rare syndrome. This case further emphasizes the importance of recognizing VLS in patients with severe emphysema and heavy marijuana smoking.

  9. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism.

    Directory of Open Access Journals (Sweden)

    Laurent Kappeler

    2008-10-01

    Full Text Available Mutations that decrease insulin-like growth factor (IGF and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.

  10. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide.

    Science.gov (United States)

    Gamage, Dananjali; Thompson, Michael; Sutherland, Mark; Hirotsu, Naoki; Makino, Amane; Seneweera, Saman

    2018-04-02

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) significantly influences plant growth, development and biomass. Increased photosynthesis rate, together with lower stomatal conductance, have been identified as the key factors that stimulate plant growth at elevated [CO 2 ] (e[CO 2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO 2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO 2 ], despite the emerging evidence of e[CO 2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO 2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO 2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO 2 ] have been identified with the aim of improving crop productivity under a CO 2 rich atmosphere. This article is protected by copyright. All rights reserved.

  11. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000-1100deg C

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1990-01-01

    After a short overview of the production, microstructure and mechanical properties of nickel- and iron-based oxide dispersion strengthened (ODS) alloys, the oxidation properties of this class of materials is extensively discussed. The excellent oxidation resistance of ODS alloys is illustrated by comparing their behaviour with conventional chromia and alumina forming wrought alloys of the same base composition. ODS alloys exhibit improved scale adherence, decreased oxide growth rates, enhanced selective oxidation and decreased oxide grain size compared to corresponding non-ODS alloys. It is shown, that these experimental observations can be explained by a change in oxide growth mechanism. The presence of the oxide dispersion reduces cation diffusion in the scale, causing the oxides on the ODS alloys to grow mainly by oxygen grain boundary transport. As oxide grain size increases with time, the oxide growth kinetics obey a sub-parabolic time dependence especially in the case of the alumina forming iron-based ODS alloy. (orig.) [de

  12. Study of growth mechanism of conducting polymers by pulse radiolysis

    International Nuclear Information System (INIS)

    Coletta, Cecilia

    2016-01-01

    Today conductive polymers have many applications in several devices. For these reasons they have received much attention in recent years. Despite intensive research, the mechanism of conducting polymers growth is still poorly understood and the methods of polymerization are limited to two principal ways: chemical and electrochemical synthesis. On the other hand, the complex properties of polymers can be controlled only if a good knowledge of polymerization process is acquired. In this case, it is possible to control the process during the synthesis (functionalization, hydrophilicity, chain length, doping level), and consequently to improve the conductive properties of the synthesized polymers. Water radiolysis represents an easy and efficient method of synthesis comparing to chemical and electrochemical polymerization routes. It enables the polymerization under soft conditions: ambient temperature and pressure, without any external dopant. Among all conductive polymers, poly(3, 4-ethylenedioxy-thiophene) (PEDOT, a derivative of poly-thiophene) and poly-Pyrrole (PPy) have gained some large scale applications for their chemical and physical proprieties. The aim of the present work was the synthesis of PEDOT and PPy in aqueous solution and the study of their growth mechanism by pulsed radiolysis. Thanks to the electron accelerator ELYSE, the use of pulsed radiolysis coupled with time-resolved absorption spectroscopy allowed to study the kinetics of polymerization. The first transient species involved in the mechanism were identified by time resolved spectroscopy and the rate constants were determined. First, the reaction of hydroxyl radicals onto EDOT and Py monomers was studied, as well as the corresponding radiation induced polymerization. Then, the study was transposed to others oxidizing radicals such as CO3 .- , N 3 . and SO 4 .- at different pHs. This approach allowed to check and to highlight the influence of oxidizing species onto the first transient species

  13. Boosting Autonomous Foreign Language Learning: Scrutinizing the Role of Creativity, Critical Thinking, and Vocabulary Learning Strategies

    Directory of Open Access Journals (Sweden)

    Mania Nosratinia

    2015-07-01

    Full Text Available This study set out to investigate the association among English language learners' Autonomy (AU, Creativity (CR, Critical Thinking (CT, and Vocabulary Learning Strategies (VLS. The participants of this study were 202 randomly selected male and female undergraduate (English as a Foreign Language EFL learners, between the ages of 19 and 26 (Mage = 22 years. These participants filled out four questionnaires estimating their AU, CR, CT, and VLS. The characteristics of the collected data legitimated running Pearson's product-moment correlation coefficient. The results suggested that there is a significant and positive relationship between EFL learners' AU and CR, AU and CT, AU and VLS, CR and CT, CR and VLS, as well as their CT and VLS. Considering AU as the predicted variable for this study, it was confirmed that CT is the best predictor of AU. The article concludes with some pedagogical implications and some avenues for future research.

  14. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.

    Science.gov (United States)

    Gulam Razul, M S; Hendry, J G; Kusalik, P G

    2005-11-22

    In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.

  15. Growth of 2D and 3D plane cracks under thermo-mechanical loading with varying amplitudes

    International Nuclear Information System (INIS)

    Sbitti, Amine

    2009-01-01

    After a presentation of the phenomenon of thermal fatigue (in industrial applications and nuclear plants), this research thesis reports the investigation of the growth and arrest of a 2D crack under thermal fatigue (temperature and stress distribution over thickness, calculation of stress intensity factors, laws of fatigue crack growth, growth under varying amplitude), and the investigation of 3D crack growth under cyclic loading with varying amplitudes (analytic and numerical calculation of stress intensity factors, variational formulation in failure mechanics, 3D crack propagation under fatigue, use of the Aster code, use of the extended finite element method or X-FEM). The author discusses the origin and influence of the 3D crack network under thermal fatigue

  16. The Role of Mechanical Variance and Spatial Clustering on the Likelihood of Tumor Incidence and Growth

    Science.gov (United States)

    Mirzakhel, Zibah

    When considering factors that contribute to cancer progression, modifications to both the biological and mechanical pathways play significant roles. However, less attention is placed on how the mechanical pathways can specifically contribute to cancerous behavior. Experimental studies have found that malignant cells are significantly softer than healthy, normal cells. In a tissue environment where healthy or malignant cells exist, a distribution of cell stiffness values is observed, with the mean values used to differentiate between these two populations. Rather than focus on the mean values, emphasis will be placed on the distribution, where instances of soft and stiff cells exist in the healthy tissue environment. Since cell deformability is a trait associated with cancer, the question arises as to whether the mechanical variation observed in healthy tissue cell stiffness distributions can influence any instances of tumor growth. To approach this, a 3D discrete model of cells is used, able to monitor and predict the behavior of individual cells while determining any instances of tumor growth in a healthy tissue. In addition to the mechanical variance, the spatial arrangement of cells will also be modeled, as cell interaction could further implicate any incidences of tumor-like malignant populations within the tissue. Results have shown that the likelihood of tumor incidence is driven by both by the increases in the mechanical variation in the distributions as well as larger clustering of cells that are mechanically similar, quantified primarily through higher proliferation rates of tumor-like soft cells. This can be observed though prominent negative shifts in the mean of the distribution, as it begins to transition and show instances of earlystage tumor growth. The model reveals the impact that both the mechanical variation and spatial arrangement of cells has on tumor progression, suggesting the use of these parameters as potential novel biomarkers. With a

  17. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    Science.gov (United States)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  18. Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE

    Science.gov (United States)

    Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas

    2013-05-01

    The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.

  19. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, Kyle A.; Kruzic, Jamie J.; Sears, John S.; Hawk, Jeffrey A.

    2015-10-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

  20. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons.

    Science.gov (United States)

    Emlen, Douglas J; Warren, Ian A; Johns, Annika; Dworkin, Ian; Lavine, Laura Corley

    2012-08-17

    Many male animals wield ornaments or weapons of exaggerated proportions. We propose that increased cellular sensitivity to signaling through the insulin/insulin-like growth factor (IGF) pathway may be responsible for the extreme growth of these structures. We document how rhinoceros beetle horns, a sexually selected weapon, are more sensitive to nutrition and more responsive to perturbation of the insulin/IGF pathway than other body structures. We then illustrate how enhanced sensitivity to insulin/IGF signaling in a growing ornament or weapon would cause heightened condition sensitivity and increased variability in expression among individuals--critical properties of reliable signals of male quality. The possibility that reliable signaling arises as a by-product of the growth mechanism may explain why trait exaggeration has evolved so many different times in the context of sexual selection.

  1. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  2. Mechanisms of irradiation growth of alpha-zirconium alloys

    International Nuclear Information System (INIS)

    Holt, R.A.

    1988-01-01

    Experimental observations in the last few years have shown that the range of irradiation growth behaviour of alpha-zirconium alloys is more varied, that a wider variety of sinks must be considered, and that there are more potential sources of anisotropy than was previously recognized. The important new experimental observations which influence our preception of the growth phenomenon in zirconium alloys include the growth of single crystals, accelerating growth in annealed material with the coincident appearance of vacancy loops on the basal planes, the occurrence of 'negative' growth, i.e., contractions along prism directions, the absence of a pronounced effect of grain size on the long term growth rate at low temperatures, and the presence of intergranular constraints prior to irradiation. With the greater complexity of behaviour now being observed, it is necessary to apply new theoretical concepts to assist in understanding growth, e.g., the potential role of anisotropic diffusion in segregation point defects to different sinks and 'growth' caused by the anisotropic relaxation of intergranular constrains. These can be combined with earlier ideas to predict a variety of growth behaviours, including 'negative growth'. Because the most important physical information required for theoretical treatments of growth, i.e, the characteristics of vacancies and self interstitial atoms, are still poorly understood, it is almost impossible to test rigorously any particular theoretical concept and a complete picture of growth has yet to emerge. (orig./MM)

  3. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    International Nuclear Information System (INIS)

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E 2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G 0 /G 1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E 2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  4. Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP): Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mizejewski, Gerald J. [Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States)

    2011-06-20

    The Alpha-fetoprotein (AFP) derived Growth Inhibitory Peptide (GIP) is a 34-amino acid segment of the full-length human AFP molecule that inhibits tumor growth and metastasis. The GIP-34 and its carboxy-terminal 8-mer segment, termed GIP-8, were found to be effective as anti-cancer therapeutic peptides against nine different human cancer types. Following the uptake of GIP-34 and GIP-8 into the cell cytoplasm, each follows slightly different signal transduction cascades en route to inhibitory pathways of tumor cell growth and proliferation. The parallel mechanisms of action of GIP-34 versus GIP-8 are demonstrated to involve interference of signaling transduction cascades that ultimately result in: (1) cell cycle S-phase/G2-phase arrest; (2) prevention of cyclin inhibitor degradation; (3) protection of p53 from inactivation by phosphorylation; and (4) blockage of K{sup +} ion channels opened by estradiol and epidermal growth factor (EGF). The overall mechanisms of action of both peptides are discussed in light of their differing modes of cell attachment and uptake fortified by RNA microarray analysis and electrophysiologic measurements of cell membrane conductance and resistance. As a chemotherapeutic adjunct, the GIPs could potentially aid in alleviating the negative side effects of: (1) tamoxifen resistance, uterine hyperplasia/cancer, and blood clotting; (2) Herceptin antibody resistance and cardiac (arrest) arrhythmias; and (3) doxorubicin's bystander cell toxicity.

  5. Nucleation and growth mechanism of Co–Pt alloy nanowires electrodeposited within alumina template

    Energy Technology Data Exchange (ETDEWEB)

    Srivastav, Ajeet K., E-mail: srivastav.ajeet.kumar@gmail.com, E-mail: mm09d004@smail.iitm.ac.in [Indian Institute of Technology Madras, Department of Metallurgical and Materials Engineering (India); Shekhar, Rajiv [Indian Institute of Technology Kanpur, Department of Materials Science and Engineering (India)

    2015-01-15

    Co–Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co–Pt alloy nanowires was investigated. The less negative deposition potential (−0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co–Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.

  6. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  7. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure

    Science.gov (United States)

    ROSNER, SABINE; KLEIN, ANDREA; MÜLLER, ULRICH; KARLSSON, BO

    2011-01-01

    Summary Stem segments of eight five-year-old Norway spruce (Picea abies (L.) Karst.) clones differing in growth characteristics were tested for maximum specific hydraulic conductivity (ks100), vulnerability to cavitation and behavior under mechanical stress. The vulnerability of the clones to cavitation was assessed by measuring the applied air pressure required to cause 12 and 50% loss of conductivity (Ψ12, Ψ50) and the percent loss of conductivity at 4 MPa applied air pressure (PLC4MPa). The bending strength and stiffness and the axial compression strength and stiffness of the same stem segments were measured to characterize wood mechanical properties. Growth ring width, wood density, latewood percentage, lumen diameter, cell wall thickness, tracheid length and pit dimensions of earlywood cells, spiral grain and microfibril angles were examined to identify structure–function relationships. High ks100 was strongly and positively related to spiral grain angle, which corresponded positively to tracheid length and pit dimensions. Spiral grain may reduce flow resistance of the bordered pits of the first earlywood tracheids, which are characterized by rounded tips and an equal distribution of pits along the entire length. Wood density was unrelated to hydraulic vulnerability parameters. Traits associated with higher hydraulic vulnerability were long tracheids, high latewood percentage and thick earlywood cell walls. The positive relationship between earlywood cell wall thickness and vulnerability to cavitation suggest that air seeding through the margo of bordered pits may occur in earlywood. There was a positive phenotypic and genotypic relationship between ks100 and PLC4MPa, and both parameters were positively related to tree growth rate. Variability in mechanical properties depended mostly on wood density, but also on the amount of compression wood. Accordingly, hydraulic conductivity and mechanical strength or stiffness showed no tradeoff. PMID:17472942

  8. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  9. Electrodeposition of CdTe thin films onto n-Si(1 0 0): nucleation and growth mechanisms

    International Nuclear Information System (INIS)

    Gomez, H.; Henriquez, R.; Schrebler, R.; Cordova, R.; Ramirez, D.; Riveros, G.; Dalchiele, E.A.

    2005-01-01

    The mechanisms related to the initial stages of the nucleation and growth of cadmium telluride (CdTe) thin films on the rough face side of a (1 0 0) monocrystalline n-type silicon have been studied as a function of different potential steps that varied from an initial value of -0.200 V to values comprised between -0.515 and -0.600 V versus saturated calomel electrode (SCE). The analysis of the corresponding potentiostatic j/t transients suggests that the main phenomena involved at short times is the formation of a Te-Cd bi-layer (BL). For potentials below -0.540 V, the formation of this bi-layer can be considered independent of potential. At greater times, the mechanisms is controlled by two process: (i) progressive nucleation three dimensional charge transfer controlled growth (PN-3D) ct and (ii) progressive nucleation three dimensional diffusion controlled growth (PN-3D) diff , both giving account for the formation of conical and hemispherical nuclei, respectively. Ex situ AFM images of the surface seem to support these assumptions

  10. Growth mechanism of InGaN nanodots on three-dimensional GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwy; Min, Daehong; Nam, Okhyun [Department of Nano-Optical Engineering, Convergence Center for Advanced Nano-Semiconductor (CANS), Korea Polytechnic University (KPU), Siheung-si, Gyeonggi-do (Korea, Republic of)

    2017-07-15

    In this study, we investigated the growth mechanism of indium gallium nitride (InGaN) nanodots (NDs) and an InGaN layer, which were simultaneously formed on a three-dimensional (3D) gallium nitride (GaN) structure, having (0001) polar, (11-22) semi-polar, and (11-20) nonpolar facets. We observed the difference in the morphological and compositional properties of the InGaN structures. From the high resolution transmission electron microscopy (HR-TEM) images, it can be seen that the InGaN NDs were formed only on the polar and nonpolar facets, whereas an InGaN layer was formed on the semi-polar facet. The indium composition variation in all the InGaN structures was observed using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray spectroscopy (EDS). The different growth mechanism can be explained by two reasons: (i) The difference in the diffusivities of indium and gallium adatoms at each facet of 3D GaN structure; and (ii) the difference in the kinetic Wulff plots of polar, semi-polar, and nonpolar GaN planes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  12. Study of rare gases behavior in uranium dioxide: diffusion and bubble nucleation and growth mechanisms

    International Nuclear Information System (INIS)

    Michel, A.

    2011-01-01

    During in-reactor irradiation of the nuclear fuel, fission gases, mainly xenon and krypton, are generated that are subject to several phenomena: diffusion and precipitation. These phenomena can have adverse consequences on the fuel physical and chemical properties and its in-reactor behavior. The purpose of this work is to better understand the behavior of fission gases by identifying diffusion, bubble nucleation and growth mechanisms. To do this, studies involving separate effects have been established coupling ion irradiations/implantations with fine characterizations on Large Scale Facilities. The influence of several parameters such as gas type, concentration and temperature has been identified separately. Interpretation of the Thermal Desorption Spectrometry (TDS) measurements has enabled us to determine xenon and krypton diffusion coefficients in uranium dioxide. A heterogeneous nucleation mechanism on defects was determined by means of experiments on the JANNuS platform in Orsay that consists of a coupling of an implantor, an accelerator and a Transmission Electron Microscope (TEM). Finally, TEM and X-ray Absorption Spectroscopy characterizations of implanted and annealed samples put in relieve a bubble growth mechanism by atoms and vacancies capture. (author) [fr

  13. Disilane chemisorption on Si(x)Ge(1-x)(100)-(2 x 1): molecular mechanisms and implications for film growth rates.

    Science.gov (United States)

    Ng, Rachel Qiao-Ming; Tok, E S; Kang, H Chuan

    2009-07-28

    At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Si(x)Ge((1-x)) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate.

  14. Functional Development of the Human Gastrointestinal Tract: Hormone- and Growth Factor-Mediated Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Daniel Ménard

    2004-01-01

    Full Text Available The present review focuses on the control of gastrointestinal (GI tract development. The first section addresses the differences in general mechanisms of GI development in humans versus rodents, highlighting that morphogenesis of specific digestive organs and the differentiation of digestive epithelia occur not only at different stages of ontogeny but also at different rates. The second section provides an overview of studies from the author's laboratory at the Université de Sherbrooke pertaining to the development of the human fetal small intestine and colon. While both segments share similar morphological and functional characteristics, they are nevertheless modulated by distinct regulatory mechanisms. Using the organ culture approach, the author and colleagues were able to establish that hormones and growth factors, such as glucocorticoids, epidermal growth factor, insulin and keratinocyte growth factor, not only exert differential effects within these two segments, they can also trigger opposite responses in comparison with animal models. In the third section, emphasis is placed on the functional development of human fetal stomach and its various epithelial cell types; in particular, the glandular chief cells responsible for the synthesis and secretion of gastric enzymes such as pepsinogen-5 and gastric lipase. Bearing in mind that limitations of available cell models have, until now, greatly impeded the comprehension of molecular mechanisms regulating human gastric epithelial cell functions, the last section focuses on new human gastric epithelial cell models recently developed in the author's laboratory. These models comprise a novel primary culture system of human fetal gastric epithelium including, for the first time, functional chief cells, and human gastric epithelium cell lines cloned from the parental NCI-N87 strain. These new cells lines could serve important applications in the study of pathogenic action and epithelial

  15. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    Science.gov (United States)

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  16. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    OpenAIRE

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W.; Boyd, Steven K.

    2012-01-01

    Growth hormone (GH) deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD) mouse model undergoing GH treatment commencing at an early (prepubertal) or late (postpubertal) time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostruc...

  17. Infrared spectroscopic study of polytypic effects on the crystal-growth mechanism of n-hexatriacontane (n-C36H74)

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya; Kawasaki, Masatsugu

    2005-10-01

    The solution-crystallization mechanism was investigated for two polytypes in the M011 modification of n-hexatriacontane (n-C36H74), single-layered structure Mon, and double-layered one Orth II. The crystal growth under controlled supersaturation was followed with a micro- Fourier-transform-infrared spectrometer equipped with an optical system for oblique transmission measurements. Supersaturation dependence of growth behavior was significantly different between Mon and Orth II. Although the Mon crystal continued growing at a supersaturation of 0.27, the overgrowth of Orth II on the (001) face of the Mon crystal was confirmed at supersaturations below 0.21. Such a polytypic transformation was not observed for the Orth II crystal at any supersaturation below 0.30. The growth rate of Mon showed a quadratic dependence on supersaturation, while that of Orth II was approximately linear, suggesting spiral growth and two-dimensional-nucleation mechanisms for Mon and Orth II, respectively.

  18. Characterization and growth mechanism of nonpolar and semipolar GaN layers grown on patterned sapphire substrates

    International Nuclear Information System (INIS)

    Okada, Narihito; Tadatomo, Kazuyuki

    2012-01-01

    Nonpolar and semipolar GaN layers with markedly improved crystalline quality can be obtained by selective-area growth from the sapphire sidewalls of patterned sapphire substrates (PSSs). In this paper, we review the crystalline qualities of GaN layers grown on PSSs and their growth mechanism. We grew semipolar {1 1 −2 2} and {1 0 −1 1} GaN layers on r- and n-PSSs. The crystalline qualities of the GaN layers grown on the PSSs were higher than those of GaN layers grown directly on heteroepitaxial substrates. To reveal the growth mechanism of GaN layers grown on PSSs, we also grew various nonpolar and semipolar GaN layers such as m-GaN on a-PSS, {1 1 −2 2} GaN on r-PSS, {1 0 − 1  1} GaN on n-PSS, m-GaN on c-PSS and a-GaN on m-PSS. It was found that the nucleation of GaN on the c-plane-like sapphire sidewall results in selective growth from the sapphire sidewall, and nonpolar or semipolar GaN can be obtained. Finally, we demonstrated a light-emitting diode fabricated on a {1 1 −2 2} GaN layer grown on an r-PSS. (paper)

  19. Microspheres for the Growth of Silicon Nanowires via Vapor-Liquid-Solid Mechanism

    Directory of Open Access Journals (Sweden)

    Arancha Gómez-Martínez

    2014-01-01

    Full Text Available Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. The resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  20. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-09

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nucleation and growth mechanism for flame synthesis of MoO2 hollow microchannels with nanometer wall thickness.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Taylor, Aaron M

    2009-12-01

    The growth and morphological evolution of molybdenum-oxide microstructures formed in the high temperature environment of a counter-flow oxy-fuel flame using molybdenum probes is studied. Experiments conducted using various probe retention times show the sequence of the morphological changes. The morphological row begins with micron size objects exhibiting polygonal cubic shape, develops into elongated channels, changes to large structures with leaf-like shape, and ends in dendritic structures. Time of probe-flame interaction is found to be a governing parameter controlling the wide variety of morphological patterns; a molecular level growth mechanism is attributed to their development. This study reveals that the structures are grown in several consecutive stages: material "evaporation and transportation", "transformation", "nucleation", "initial growth", "intermediate growth", and "final growth". XRD analysis shows that the chemical compositions of all structures correspond to MoO(2).

  2. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    Science.gov (United States)

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  3. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    Science.gov (United States)

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  4. G4S fuajee ruumiinstallatsioon = G4S lobby spatial installation / Ville Lausmäe

    Index Scriptorium Estoniae

    Lausmäe, Ville, 1981-

    2013-01-01

    Turvafirma G4S büroohoone (Paldiski mnt 80, Tallinn) fuajee sisekujundusest. Autorid: Ville Lausmäe, Kadi Karmann (sisearhitektuuribüroo VLS). Kultuuriministeeriumi kunstinõuniku Maria-Kristiina Soomre arvamus. Lühidalt sisearhitektuuribüroost VLS

  5. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  6. Mechanism for selective growth in electrical steel

    Science.gov (United States)

    Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo

    2018-01-01

    Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110} annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.

  7. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    Science.gov (United States)

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

    International Nuclear Information System (INIS)

    Ayyagari, Vijayalakshmi N; Brard, Laurent

    2014-01-01

    Drug resistance is a cause of ovarian cancer recurrence and low overall survival rates. There is a need for more effective treatment approaches because the development of new drug is expensive and time consuming. Alternatively, the concept of ‘drug repurposing’ is promising. We focused on Bithionol (BT), a clinically approved anti-parasitic drug as an anti-ovarian cancer drug. BT has previously been shown to inhibit solid tumor growth in several preclinical cancer models. A better understanding of the anti-tumor effects and mechanism(s) of action of BT in ovarian cancer cells is essential for further exploring its therapeutic potential against ovarian cancer. The cytotoxic effects of BT against a panel of ovarian cancer cell lines were determined by Presto Blue cell viability assay. Markers of apoptosis such as caspases 3/7, cPARP induction, nuclear condensation and mitochondrial transmembrane depolarization were assessed using microscopic, FACS and immunoblotting methods. Mechanism(s) of action of BT such as cell cycle arrest, reactive oxygen species (ROS) generation, autotaxin (ATX) inhibition and effects on MAPK and NF-kB signalling were determined by FACS analysis, immunoblotting and colorimetric methods. BT caused dose dependent cytotoxicity against all ovarian cancer cell lines tested with IC 50 values ranging from 19 μM – 60 μM. Cisplatin-resistant variants of A2780 and IGROV-1 have shown almost similar IC 50 values compared to their sensitive counterparts. Apoptotic cell death was shown by expression of caspases 3/7, cPARP, loss of mitochondrial potential, nuclear condensation, and up-regulation of p38 and reduced expression of pAkt, pNF-κB, pIκBα, XIAP, bcl-2 and bcl-xl. BT treatment resulted in cell cycle arrest at G1/M phase and increased ROS generation. Treatment with ascorbic acid resulted in partial restoration of cell viability. In addition, dose and time dependent inhibition of ATX was observed. BT exhibits cytotoxic effects on various

  9. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  10. Growth reponses of eggplant and soybean seedlings to mechanical stress in greenhouse and outdoor environments

    Science.gov (United States)

    Latimer, J. G.; Pappas, T.; Mitchell, C. A.

    1986-01-01

    Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.

  11. Nutritionally-Induced Catch-Up Growth

    Directory of Open Access Journals (Sweden)

    Galia Gat-Yablonski

    2015-01-01

    Full Text Available Malnutrition is considered a leading cause of growth attenuation in children. When food is replenished, spontaneous catch-up (CU growth usually occurs, bringing the child back to its original growth trajectory. However, in some cases, the CU growth is not complete, leading to a permanent growth deficit. This review summarizes our current knowledge regarding the mechanism regulating nutrition and growth, including systemic factors, such as insulin, growth hormone, insulin- like growth factor-1, vitamin D, fibroblast growth factor-21, etc., and local mechanisms, including autophagy, as well as regulators of transcription, protein synthesis, miRNAs and epigenetics. Studying the molecular mechanisms regulating CU growth may lead to the establishment of better nutritional and therapeutic regimens for more effective CU growth in children with malnutrition and growth abnormalities. It will be fascinating to follow this research in the coming years and to translate the knowledge gained to clinical benefit.

  12. Alternative splicing and expression of the insulin-like growth factor (IGF-1) gene in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    XIAN Chengyu; WANG Yuanliang; ZHANG Bingbing; TANG Liling; PAN Jun; LUO Yanfeng; JIANG Peng; LI Dajun

    2006-01-01

    Insulin-like growth factor 1 (IGF-1) promotes osteoblasts differentiation and bone formation,and its expression is induced by mechanical stretch,thus IGF-1 has been considered an effector molecule that links mechanical stimulation and local tissue responses. In this study, a mechanical stretching device was designed to apply physiological level static or cyclic stretching stimulation to osteoblasts.Different isoforms of IGF-1 mRNA were amplified by RT-PCR from the cells using respective primers and these amplified products were sequenced. An isoform of IGF-1 splicing product was found to be selectively produced by osteoblasts under stretching stimulation. This IGF-1 isoform had identical sequence with the mechano growth factor (MGF) which was originally identified in muscle cells. Regulations of the expression of the liver-type IGF (L.IGF-1) and MGF in osteoblasts under stretch stimulation were further studied using semi-quantitative RT-PCR.Stretch stimulation was found to promot the expression of IGF-1 (L.IGF-1 and MGF), and for both isoforms expression was more effectively stimulated by cyclic stretch than static stretch. MGF was detected only in osteoblasts subjected to mechanical stretch,suggesting MGF was a stretch sensitive growth factor.Expression of MGF peaked earlier than that of L.IGF-1, which was similar to their regulation in muscie and suggested similar roles of MGF and L.IGF-1in bone as in muscle cells. The functions of MGF and L.IGF-1 in osteoblasts shall be established by further experimental studies.

  13. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    Science.gov (United States)

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  14. Competitive growth mechanisms of InAs quantum dots on InxGa1-xAs layer during post growth interruption

    International Nuclear Information System (INIS)

    Yang, Changjae; Kim, Jungsub; Sim, Uk; Lee, Jaeyel; Choi, Won Jun; Yoon, Euijoon

    2010-01-01

    We investigated the effect of the post growth interruption (GI) on InAs quantum dots (QDs) grown on In x Ga 1-x As strained buffer layers (SBL). When QDs were grown on the 5 and 10% In content SBLs by using post GI, the size of QDs increased as its density decreased. Based on the 50 meV red-shift of PL in these cases, the transport of materials between QDs leads to the increase of QD size with maintaining its composition during the post GI. On the other hand, when using SBLs with the 15 and 20% In contents, the size of QDs increased, but its density was a little reduced. In addition, PL results were observed blue-shifted by about 20 meV and 2 meV, respectively. Considering the interruption of source gases during the post GI, these observations are strong evidence of the Ga incorporation from 15 and 20% In content SBLs. Therefore, these results imply that the dominant mechanism which increases the size of QDs during the post GI depends on the growth condition of SBL.

  15. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  16. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  17. Inflammation and intracranial aneurysms: mechanisms of initiation, growth, and rupture

    Directory of Open Access Journals (Sweden)

    Peter S Amenta

    2015-06-01

    Full Text Available Outcomes following aneurysmal subarachnoid hemorrhage remain poor in many patients, despite advances in microsurgical and endovascular management. Consequently, considerable effort has been placed in determining the mechanisms of aneurysm formation, growth, and rupture. Various environmental and genetic factors are implicated as key components in the aneurysm pathogenesis. Currently, sufficient evidence exists to incriminate the inflammatory response as the common pathway leading to aneurysm generation and rupture. Central to this model is the interaction between the vessel wall and inflammatory cells. Dysfunction of the endothelium and vascular smooth muscle cells (VSMCs promotes a chronic pathological inflammatory response that progressively weakens the vessel wall. We review the literature pertaining to the cellular and chemical mechanisms of inflammation that contribute to aneurysm development. Hemodynamic stress and alterations in blood flow are discussed regarding their role in promoting chronic inflammation. Endothelial cell and VSMC dysfunction are examined concerning vascular remodeling. The contribution of inflammatory cytokines, especially tumor necrosis factor-α is illustrated. Inflammatory cell infiltration, particularly macrophage-mediated deterioration of vascular integrity, is reviewed. We discuss the inflammation as a means to determine aneurysms at greatest risk of rupture. Finally, future therapeutic implications of pharmacologic modulation of the inflammation are discussed.

  18. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    Science.gov (United States)

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  19. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy

    International Nuclear Information System (INIS)

    Wisniewski, J.

    2009-03-01

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed

  20. Green synthesis of Au nanoparticles using potato extract: stability and growth mechanism

    Science.gov (United States)

    Castillo-López, D. N.; Pal, U.

    2014-08-01

    We report on the synthesis of spherical, well-dispersed colloidal gold nanoparticles of 17.5-23.5 nm average sizes in water using potato extract (PE) both as reducing and stabilizing agent. The effects of PE content and the pH value of the reaction mixture have been studied. Formation and growth dynamics of the Au nanoparticles in the colloids were studied using transmission electron microscopy and UV-Vis optical absorption spectroscopy techniques. While the reductor content and, hence, the nucleation and growth rates of the nanoparticles could be controlled by controlling the PE content in the reaction solution, the stability of the nanoparticles depended strongly on the pH of the reaction mixture. The mechanisms of Au ion reduction and stabilization of Au nanoparticles by potato starch have been discussed. The use of common natural solvent like water and biological reductor like PE in our synthesis process opens up the possibility of synthesizing Au nanoparticles in fully green (environmental friendly) way, and the Au nanoparticles produced in such way should have good biocompatibility.

  1. Protein nanocrystallography: growth mechanism and atomic structure of crystals induced by nanotemplates.

    Science.gov (United States)

    Pechkova, E; Vasile, F; Spera, R; Fiordoro, S; Nicolini, C

    2005-11-01

    Protein nanocrystallography, a new technology for crystal growth based on protein nanotemplates, has recently been shown to produce diffracting, stable and radiation-resistant lysozyme crystals. This article, by computing these lysozyme crystals' atomic structures, obtained by the diffraction patterns of microfocused synchrotron radiation, provides a possible mechanism for this increased stability, namely a significant decrease in water content accompanied by a minor but significant alpha-helix increase. These data are shown to be compatible with the circular dichroism and two-dimensional Fourier transform spectra of high-resolution H NMR of proteins dissolved from the same nanotemplate-based crystal versus those from a classical crystal. Finally, evidence for protein direct transfer from the nanotemplate to the drop and the participation of the template proteins in crystal nucleation and growth is provided by high-resolution NMR spectrometry and mass spectrometry. Furthermore, the lysozyme nanotemplate appears stable up to 523 K, as confirmed by a thermal denaturation study using spectropolarimetry. The overall data suggest that heat-proof lysozyme presence in the crystal provides a possible explanation of the crystal's resistance to synchrotron radiation.

  2. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  3. Enhanced vegetation growth peak and its key mechanisms

    Science.gov (United States)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  4. Virtual Learning System Usage in Higher Education – A Study at Two South African Institutions

    Directory of Open Access Journals (Sweden)

    Indira Padayachee

    2015-12-01

    Full Text Available In higher education institutions various VLSs have been formally adopted to support online teaching and learning. However, there has been little research on patterns of VLS use among educators. The purpose of the research was to provide a descriptive analysis of VLS feature usage, and associated challenges at two South African higher education institutions. A case study research strategy was adopted, combining qualitative and quantitative approaches to data collection and analysis. Survey findings revealed four clusters of VLS feature usage, namely, communication, management, content and pedagogic. Analysis showed that the ‘content cluster’ was used more than the other clusters. The average usage of the ‘pedagogic cluster’ for Durban University of Technology (DUT was significantly greater than that of University of KwaZulu-Natal (UKZN, which tentatively indicates that staff development seems to be an important aspect of VLS usage. There was no significant difference in the usage of the ‘communication’ and ‘management’ clusters between the two institutions, DUT and UKZN. The study contributes to the body of system utilisation research by confirming an uneven pattern of VLS feature usage among educators, whilst providing fresh insights into the challenges associated with the usage of two different VLSs in two different universities.

  5. Videolaryngoscopes differ substantially in illumination of the oral cavity: A manikin study

    Directory of Open Access Journals (Sweden)

    Barbe MA Pieters

    2016-01-01

    Full Text Available Background and Aims: Insufficient illumination of the oral cavity during endotracheal intubation may result in suboptimal conditions. Consequently, suboptimal illumination and laryngoscopy may lead to potential unwanted trauma to soft tissues of the pharyngeal mucosa. We investigated illumination of the oral cavity by different videolaryngoscopes (VLS in a manikin model. Methods: We measured light intensity from the mouth opening of a Laerdal intubation trainer comparing different direct and indirect VLS at three occasions, resembling optimal to less-than-optimal intubation conditions; at the photographer′s dark room, in an operating theatre and outdoors in bright sunlight. Results: Substantial differences in luminance were detected between VLS. The use of LED light significantly improved light production. All VLS produced substantial higher luminance values in a well-luminated environment compared to the dark photographer′s room. The experiments outside-in bright sunlight-were interfered with by direct sunlight penetration through the synthetic material of the manikin, making correct measurement of luminance in the oropharynx invalid. Conclusion: Illumination of the oral cavity differs widely among direct and indirect VLS. The clinician should be aware of the possibility of suboptimal illumination of the oral cavity and the potential risk this poses for the patient.

  6. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    Science.gov (United States)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  7. Statistical mechanics of normal grain growth in one dimension: A partial integro-differential equation model

    International Nuclear Information System (INIS)

    Ng, Felix S.L.

    2016-01-01

    We develop a statistical-mechanical model of one-dimensional normal grain growth that does not require any drift-velocity parameterization for grain size, such as used in the continuity equation of traditional mean-field theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accordingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versus neighbour grain size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is applicable before as well as after statistically self-similar grain growth has been reached, shows that the traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations observed in direct simulations. The PIDE is then reducible to the standard continuity equation, and we derive an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free models of normal grain growth in two and three dimensions.

  8. Effects of curcumin on growth of human cervical cancer xenograft in nude mice and underlying mechanism

    Directory of Open Access Journals (Sweden)

    Aixue LIU

    Full Text Available Abstract The present study investigated the effects of curcumin (Cur on growth of human cervical cancer xenograft in nude mice and underlying mechanism. The nude mice modeled with human cervical cancer HeLa cell xenograft were treated with normal saline (control, 3 mg/kg Cisplatin, 50, 100 and 200 mg/kg Cur, respectively. The animal body weight and growth of tumor were measured. The expressions of Bax, Bcl-2, p53, p21, HIF-1α, VEGF and MIF protein in tumor tissue were determined. Results showed that, after treatment for 20 days, the tumor mass and tumor volume in 100 and 200 mg/kg Cur group were significantly lower than control group (P < 0.05. The expressions of Bax, p53 and p21 protein in tumor tissue in 200 mg/kg Cur group were significantly higher than control group (P < 0.05, and the expressions of Bcl-2, HIF-1α, VEGF and MIF protein in tumor tissue in 200 mg/kg Cur group were significantly lower than control group (P < 0.05. Cur can inhibit the growth of HeLa cell xenograft in nude mice. The possible mechanism may be related to its up-regulation of Bax, p53 and p21 protein expression in tumor tissue, and down-regulation of Bcl-2, HIF-1α, VEGF and MIF protein expression.

  9. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.

    Science.gov (United States)

    Nessim, Gilbert D

    2010-08-01

    Carbon nanotubes (CNTs) have been extensively investigated in the last decade because their superior properties could benefit many applications. However, CNTs have not yet made a major leap into industry, especially for electronic devices, because of fabrication challenges. This review provides an overview of state-of-the-art of CNT synthesis techniques and illustrates their major technical difficulties. It also charts possible in situ analyses and new reactor designs that might enable commercialization. After a brief description of the CNT properties and of the various techniques used to synthesize substrate-free CNTs, the bulk of this review analyzes chemical vapor deposition (CVD). This technique receives special attention since it allows CNTs to be grown in predefined locations, provides a certain degree of control of the types of CNTs grown, and may have the highest chance to succeed commercially. Understanding the primary growth mechanisms at play during CVD is critical for controlling the properties of the CNTs grown and remains the major hurdle to overcome. Various factors that influence CNT growth receive a special focus: choice of catalyst and substrate materials, source gases, and process parameters. This review illustrates important considerations for in situ characterization and new reactor designs that may enable researchers to better understand the physical growth mechanisms and to optimize the synthesis of CNTs, thus contributing to make carbon nanotubes a manufacturing reality.

  10. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism.

    Science.gov (United States)

    Yao, Maoqing; Sheng, Chunyang; Ge, Mingyuan; Chi, Chun-Yung; Cong, Sen; Nakano, Aiichiro; Dapkus, P Daniel; Zhou, Chongwu

    2016-02-23

    Monolithic integration of III-V semiconductors with Si has been pursued for some time in the semiconductor industry. However, the mismatch of lattice constants and thermal expansion coefficients represents a large technological challenge for the heteroepitaxial growth. Nanowires, due to their small lateral dimension, can relieve strain and mitigate dislocation formation to allow single-crystal III-V materials to be grown on Si. Here, we report a facile five-step heteroepitaxial growth of GaAs nanowires on Si using selective area growth (SAG) in metalorganic chemical vapor deposition, and we further report an in-depth study on the twin formation mechanism. Rotational twin defects were observed in the nanowire structures and showed strong dependence on the growth condition and nanowire size. We adopt a model of faceted growth to demonstrate the formation of twins during growth, which is well supported by both a transmission electron microscopy study and simulation based on nucleation energetics. Our study has led to twin-free segments in the length up to 80 nm, a significant improvement compared to previous work using SAG. The achievements may open up opportunities for future functional III-V-on-Si heterostructure devices.

  11. Simple Synthesis and Growth Mechanism of Core/Shell CdSe/SiOx Nanowires

    Directory of Open Access Journals (Sweden)

    Guozhang Dai

    2010-01-01

    Full Text Available Core-shell-structured CdSe/SiOx nanowires were synthesized on an equilateral triangle Si (111 substrate through a simple one-step thermal evaporation process. SEM, TEM, and XRD investigations confirmed the core-shell structure; that is, the core zone is single crystalline CdSe and the shell zone is SiOx amorphous layer and CdSe core was grown along (001 direction. Two-stage growth process was present to explain the growth mechanism of the core/shell nanwires. The silicon substrate of designed equilateral triangle providing the silicon source is the key factor to form the core-shell nanowires, which is significant for fabrication of nanowire-core sheathed with a silica system. The PL of the product studied at room temperature showed two emission bands around 715 and 560 nm, which originate from the band-band transition of CdSe cores and the amorphous SiOx shells, respectively.

  12. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms

    Science.gov (United States)

    Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song

    2016-04-01

    A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.

  13. Vocabulary Learning Strategies Used by Medical Students: Croatian Perspective

    Directory of Open Access Journals (Sweden)

    Jasmina Rogulj

    2018-02-01

    Full Text Available In order to be able to fully develop their academic and professional competencies, medical doctors (MDs need to be highly proficient in English, which, among other things, implies the acquisition of vocabulary as an essential part of language knowledge. The current study aims at exploring vocabulary learning strategies (VLS employed by freshman and sophomore medical students at the University of Split School of Medicine, Croatia. In particular, it focuses on (a most and least frequently used VLS; (b relationship between VLS subscales and different types of vocabulary knowledge; (c differences in the mean strategy use between male and female students, and among low-, middle- and high-scoring students. The instruments used in the research were adapted version of the VLS Questionnaire (Pavičić Takač, 2008, p.152 and a vocabulary test designed by the author. The results indicate that medical students use a core inventory of VLS, whereby showing preference for the category of self-initiated vocabulary learning (SI-IVL strategies and some individual formal vocabulary learning (FVL and spontaneous vocabulary learning (SVL strategies. Although students were not in favour of FVL at the level of the category as a whole, the results showed that the more frequently they employed FVL strategies, the better they scored on vocabulary tasks measuring controlled-productive type of vocabulary knowledge. Correlations revealed that female students used SI-IVL and FVL strategies significantly more often than their male counterparts. Results also suggest that there are no statistically significant differences in the mean VLS use among low-, middle- and high-scoring students. In conclusion, the results of this study provide a preliminary insight into the VLS used by medical students and their effect on students' vocabulary learning outcomes as well as into differences by gender and vocabulary proficiency. Since findings have proved rather inconclusive, these

  14. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  15. Direct Evidence of Mg Incorporation Pathway in Vapor-Liquid-Solid Grown p-type Nonpolar GaN Nanowires

    OpenAIRE

    Patsha, Avinash; Amirthapandian, S.; Pandian, Ramanathaswamy; Bera, S.; Bhattacharya, Anirban; Dhara, Sandip

    2015-01-01

    Doping of III-nitride based compound semiconductor nanowires is still a challenging issue to have a control over the dopant distribution in precise locations of the nanowire optoelectronic devices. Knowledge of the dopant incorporation and its pathways in nanowires for such devices is limited by the growth methods. We report the direct evidence of incorporation pathway for Mg dopants in p-type nonpolar GaN nanowires grown via vapour-liquid-solid (VLS) method in a chemical vapour deposition te...

  16. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.

    Science.gov (United States)

    Schneuwly, Dominique M; Stoffel, Markus; Dorren, Luuk K A; Berger, Frédéric

    2009-10-01

    Studies on tree reaction after wounding were so far based on artificial wounding or chemical treatment. For the first time, type, spread and intensity of anatomical responses were analyzed and quantified in naturally disturbed Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees. The consequences of rockfall impacts on increment growth were assessed at the height of the wounds, as well as above and below the injuries. A total of 16 trees were selected on rockfall slopes, and growth responses following 54 wounding events were analyzed on 820 cross-sections. Anatomical analysis focused on the occurrence of tangential rows of traumatic resin ducts (TRD) and on the formation of reaction wood. Following mechanical disturbance, TRD production was observed in 100% of L. decidua and P. abies wounds. The radial extension of TRD was largest at wound height, and they occurred more commonly above, rather than below, the wounds. For all species, an intra-annual radial shift of TRD was observed with increasing axial distance from wounds. Reaction wood was formed in 87.5% of A. alba following wounding, but such cases occurred only in 7.7% of L. decidua. The results demonstrate that anatomical growth responses following natural mechanical disturbance differ significantly from the reactions induced by artificial stimuli or by decapitation. While the types of reactions remain comparable between the species, their intensity, spread and persistence disagree considerably. We also illustrate that the external appearance of wounds does not reflect an internal response intensity. This study reveals that disturbance induced under natural conditions triggers more intense and more widespread anatomical responses than that induced under artificial stimuli, and that experimental laboratory tests considerably underestimate tree response.

  17. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    International Nuclear Information System (INIS)

    Li, Shaowei; Zheng, Yanjun; Chen, Changfeng

    2016-01-01

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought to play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.

  18. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    Directory of Open Access Journals (Sweden)

    Erika Kristensen

    2012-01-01

    Full Text Available Growth hormone (GH deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD mouse model undergoing GH treatment commencing at an early (prepubertal or late (postpubertal time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostructure and vertebral trabecular microarchitecture, and mechanical properties were determined using finite element analyses. In the GHD animals, bone macrostructure was 25 to 43% smaller as compared to the GH-sufficient (GHS controls (P<0.001. GHD animals had 20% and 19% reductions in bone volume ratio (BV/TV and trabecular thickness (Tb.Th, respectively. Whole bone mechanical properties of the GHD mice were lower at the femur and vertebra (67% and 45% resp. than the GHS controls (P<0.001. Both early and late GH treatment partially recovered the bone macrostructure (15 to 32 % smaller than GHS controls and the whole bone mechanical properties (24 to 43% larger than GHD animals although there remained a sustained 27–52% net deficit compared to normal mice (P<0.05. Importantly, early treatment with GH led to a recovery of BV/TV and Tb.Th with a concomitant improvement of trabecular mechanical properties. Therefore, the results suggest that GH treatment should start early, and that measurements of microarchitecture should be considered in the management of GHD.

  19. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  20. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  1. Energy from the desert. Very large scale photovoltaic systems: socio-economic, financial, technical and environmental aspects. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, K.; Ito, M.; Komoto, K.; Vleuten, P. van der; Faiman, D. (eds.)

    2009-05-15

    This executive summary report for the International Energy Agency (IEA) summarises the objectives and concepts of very large scale photovoltaic power generation (VLS-PV) systems and takes a look at the socio-economic, financial and technical aspects involved as well as the environmental impact of such systems. Potential benefits for desert communities, agricultural development and desalination of water are topics that are looked at. The potential of VLS-PV, its energy payback time and CO{sub 2} emission rates are discussed. Case studies for the Sahara and the Gobi Dessert areas are discussed. A VLS-PV roadmap is proposed and scenarios are discussed. Finally, conclusions are drawn and recommendations are made.

  2. Synthesis; characterization; and growth mechanism of Au/CdS heterostructured nanoflowers constructed with nanorods

    International Nuclear Information System (INIS)

    Kong Qingcheng; Wu Rong; Feng Xiumei; Ye Cui; Hu Guanqi; Hu Jianqiang; Chen Zhiwu

    2011-01-01

    Research highlights: → Well-defined and flower-shaped Au/CdS heterostructured nanocrystals were for the first time synthesized. → The Au-nanorod-induced hydrothermal strategy was for the first time used to fabricate metal/semiconductor heterostructured nanomaterials. → A preliminary crystal growing mechanism was also proposed for better understanding the growth process of other Au/semiconductor heterostructure nanocrystals. → The route devised here should also be extendable to fabricate other Au/semiconductor heterostructure nanomaterials. - Abstract: Gold/sulfide cadmium (Au/CdS) heterostructured nanocrystals with a flower-like shape were for the first time synthesized through an Au-nanorod-induced hydrothermal method. The Au/CdS nanoflowers possessed the average size of about 350 nm while the nanorods constructing the nanoflowers had the average diameter, length, and aspect ratio of approximately 50 nm, 100 nm, and 2, respectively. Our method suggested that Au-nanorods played a decisive role in the formation of Au/CdS heterostructured nanoflowers, demonstrated by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), energy-dispersive X-ray spectroscopy (EDS), and UV-visible absorption spectroscopy measurements. A preliminary experiment model to reveal the Au/CdS growth mechanism was also put forward. The route devised here should be perhaps extendable to fabricate other Au/semiconductor heterostructured nanomaterials, and the Au/CdS nanoflowers may have potential applications in nanodevices, biolabels, and clinical detection and diagnosis.

  3. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  4. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  5. Using hierarchical linear growth models to evaluate protective mechanisms that mediate science achievement

    Science.gov (United States)

    von Secker, Clare Elaine

    The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.

  6. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO2 layers

    International Nuclear Information System (INIS)

    Sharma, Parul; Anguita, J V; Stolojan, V; Henley, S J; Silva, S R P

    2010-01-01

    A large area compatible and solid-state process for growing silica nanowires is reported using nickel, titanium and silicon dioxide layers on silicon. The silica nanowires also contain silicon, as indicated by Raman spectroscopy. The phonon confinement model is employed to measure the diameter of the Si rich tail for our samples. The measured Raman peak shift and full width at half-maximum variation with the nanowire diameter qualitatively match with data available in the literature. We have investigated the effect of the seedbed structure on the nanowires, and the effect of using different gas conditions in the growth stages. From this, we have obtained the growth mechanism, and deduced the role of each individual substrate seedbed layer in the growth of the nanowires. We report a combined growth mechanism, where the growth is initiated by a solid-liquid-solid process, which is then followed by a vapour-liquid-solid process. We also report on the formation of two distinct structures of nanowires (type I and type II). The growth of these can be controlled by the use of titanium in the seedbed. We also observe that the diameter of the nanowires exhibits an inverse relation with the catalyst thickness.

  7. Formation of Stone-Wales edge: Multistep reconstruction and growth mechanisms of zigzag nanographene.

    Science.gov (United States)

    Dang, Jing-Shuang; Wang, Wei-Wei; Zheng, Jia-Jia; Nagase, Shigeru; Zhao, Xiang

    2017-10-05

    Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C 2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

    International Nuclear Information System (INIS)

    Dispenza, Clelia; Todaro, Simona; Bulone, Donatella; Sabatino, Maria Antonietta; Ghersi, Giulio; San Biagio, Pier Luigi; Lo Presti, Caterina

    2017-01-01

    The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37 °C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation. - Highlights: • In-situ forming gels incorporating a growth factor are formulated and characterized. • The gel retains the growth factor and is colonized by chondrocytes. • Mechanical properties and porosity of gels are controlled by polymer concentration. • Incubation at 37 °C increases the gel strength and opens up the porous structure.

  9. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  10. Electrodeposition of ZnO from DMSO solution: influence of anion nature and its concentration in the nucleation and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Gonzalo; Ramirez, Daniel, E-mail: gonzalo.riveros@uv.cl [Departamento de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso (Chile); Tello, Alejandra; Schrebler, Ricardo; Henriquez, Rodrigo; Gomez, Humberto [Instituto de Quimica, Pontificia Universidad Catolica de Valparaiso, Curauma, Valparaiso (Chile)

    2012-03-15

    The influence of the anion nature and its concentration in the electrodeposition of ZnO onto a gold electrode from dimethylsulfoxide (DMSO) solutions was studied. Voltammetric experiments revealed important changes in the zinc oxide electrodeposition process depending on the employed anion as electrolyte. From chronoamperometric experiments, the corresponding current-time curves were fitted with different nucleation and growth mechanism models. The analysis of these results showed changes from an instantaneous to a progressive growth when the solution composition was changed from ZnCl{sub 2} to ZnCl{sub 2} + LiCl. The change of the mechanism is associated to the adsorption of chloride ion on the active sites of the electrode surface when LiCl is present in the solution. (author)

  11. Two-step growth mechanism of supported Co3O4-based sea-urchin like hierarchical nanostructures

    Science.gov (United States)

    Maurizio, Chiara; Edla, Raju; Michieli, Niccolo'; Orlandi, Michele; Trapananti, Angela; Mattei, Giovanni; Miotello, Antonio

    2018-05-01

    Supported 3D hierarchical nanostructures of transition metal oxides exhibit enhanced photocatalytic performances and long-term stability under working conditions. The growth mechanisms crucially determine their intimate structure, that is a key element to optimize their properties. We report on the formation mechanism of supported Co3O4 hierarchical sea urchin-like nanostructured catalyst, starting from Co-O-B layers deposited by Pulsed Laser Deposition (PLD). The particles deposited on the layer surface, that constitute the seeds for the urchin formation, have been investigated after separation from the underneath deposited layer, by X-ray diffraction, X-ray absorption spectroscopy and scanning electron microscopy. The comparison with PLD deposited layers without O and/or B indicates a crucial role of B for the urchin formation that (i) limits Co oxidation during the deposition process and (ii) induces a chemical reduction of Co, especially in the particle core, in the first step of air annealing (2 h, 500 °C). After 2 h heating Co oxidation proceeds and Co atoms outdiffuse from the Co fcc particle core likely through fast diffusion channel present in the shell and form Co3O4 nano-needles. The growth of nano-needles from the layer beneath the particles is prevented by a faster Co oxidation and a minimum fraction of metallic Co. This investigation shows how diffusion mechanisms and chemical effects can be effectively coupled to obtain hierarchical structures of transition metal oxides.

  12. The effects on grid matching and ramping requirements, of single and distributed PV systems employing various fixed and sun-tracking technologies

    International Nuclear Information System (INIS)

    Solomon, A.A.; Faiman, D.; Meron, G.

    2010-01-01

    In this second paper, which studies the hourly generation data from the Israel Electric Corporation for the year 2006, with a view to adding very large-scale photovoltaic power (VLS-PV) plants, three major extensions are made to the results reported in our first paper. In the first extension, PV system simulations are extended to include the cases of 1- and 2-axis sun-tracking, and 2-axis concentrator photovoltaic (CPV) technologies. Secondly, the effect of distributing VLS-PV plants among 8 Negev locations, for which hourly metrological data exist, is studied. Thirdly, in addition to studying the effect of VLS-PV on grid penetration, the present paper studies its effect on grid ramping requirements. The principal results are as follows: (i) sun-tracking improves grid matching at high but not low levels of grid flexibility; (ii) geographical distribution has little effect on grid penetration; (iii) VLS-PV significantly increases grid ramping requirements, particularly for CPV systems, but not beyond existing ramping capabilities; (iv) geographical distribution considerably ameliorates this effect.

  13. Cytomegalovirus viral load kinetics in patients with HIV/AIDS admitted to a medical intensive care unit: a case for pre-emptive therapy.

    Directory of Open Access Journals (Sweden)

    Simnikiwe H Mayaphi

    Full Text Available BACKGROUND: Cytomegalovirus (CMV infection is associated with severe diseases in immunosuppressed patients; however, there is a lack of data for pre-emptive therapy in patients with HIV/AIDS. METHOD: This was a retrospective study, which enrolled patients diagnosed with HIV/AIDS (CD41,000 copies/ml at baseline testing had significantly higher mortality compared to those who had 5,100 copies/ml and did not receive ganciclovir had 100% mortality compared to 58% mortality in those who received ganciclovir at VLs of >5,100 copies/ml, 50% mortality in those who were not treated and had low VLs of <5,100 copies/ml, and 44% mortality in those who had ganciclovir treatment at VLs of <5,100 copies/ml (p = 0.084, 0.046, 0.037, respectively. CONCLUSION: This study showed a significantly increased mortality in patients with HIV/AIDS who had high CMV VLs, and suggests that a threshold value of 1,000 copies/ml may be appropriate for pre-emptive treatment in this group.

  14. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  15. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    enhancement in dorsal root ganglion ( DRG ) cells with the released drug. In the first year of this 18 month project we have completed device fabrication of...the nerve guide conduit and drug delivery reservoir. We were able to release NGF at a concentration that enhancing DRG nerve growth in vitro. We next...KrF excimer laser system (Optec) and with diameters larger than 100μm using the VLS3.60 CO2 system (Universal Laser Systems )) (Figure 3). The laser

  16. Paramecium tetraurelia growth stimulation under low-level chronic irradiation: investigations on a possible mechanism

    International Nuclear Information System (INIS)

    Croute, F.; Soleilhavoup, J.P.; Vidal, S.; Dupouy, D.; Planel, H.

    1982-01-01

    Experiments were carried out to demonstrate the effects of low-level chronic irradiation on Paramecium tetraurelia proliferation. Biological effects were strongly dependent on the bacterial density of culture medium and more exactly on the catalase content of the medium. Significant growth stimulation was found under 60 Co chronic irradiation at a dose rate of 2 rad/year when paramecia were grown in a medium containing a high bacterial concentration (2.5 x 10 2 cells/m) or supplemented with catalase (300 U/ml). In a medium with a low bacterial density (1 x 10 6 cell/ml) or supplemented with a catalase activity inhibitor, growth simulation was preceded by a transitory inhibiting effect which could be correlated with extracellularly radioproduced H 2 O 2 . H 2 O 2 addition appeared to be able to simulate the biological effects of chronic irradiation. A possible mechanism is discussed.We proposed that the stimulating effects were the result of intracellular enzymatic scavenging of radioproduced H 2 O 2

  17. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)

    Science.gov (United States)

    Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Gu, Honghao; Li, Quan; Zhang, Chao

    2016-01-01

    Moso bamboo can rapidly complete its growth in both height and diameter within only 35–40 days after shoot emergence. However, the underlying mechanism for this “explosive growth” remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the “explosively growing” shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the “explosive growth” of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo. PMID:27181522

  18. Growth of the (001) face of borax crystals

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    he growth rates of borax crystals from aqueous solutions in the (001) direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001) face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  19. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Science.gov (United States)

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  20. The MOVPE growth mechanism of catalyst-free self-organized GaN columns in H2 and N2 carrier gases

    Science.gov (United States)

    Wang, Xue; Jahn, Uwe; Ledig, Johannes; Wehmann, Hergo-H.; Mandl, Martin; Straßburg, Martin; Waag, Andreas

    2013-12-01

    Columnar structures of III-V semiconductors recently attract considerable attention because of their potential applications in novel optoelectronic and electronic devices. In the present study, the mechanisms for the growth of catalyst-free self-organized GaN columns on sapphire substrate by metal organic vapor phase epitaxy have been thoroughly investigated. The growth behaviours are strongly affected by the choice of carrier gas. If pure nitrogen is used, Ga droplets are able to accumulate on the top of columns during growth, and they are converted into a high quality GaN layer during the cool down phase due to nitridation. Hydrogen as the carrier gas can improve the optical quality of the overall GaN columns substantially, and in addition increase the vertical growth rate. In this case, no indication of Ga droplets could be detected. Furthermore, silane doping during the growth promotes the vertical growth in both cases either pure nitrogen or pure hydrogen as the carrier gas.

  1. The effect of cation:anion ratio in solution on the mechanism of barite growth at constant supersaturation: Role of the desolvation process on the growth kinetics

    Science.gov (United States)

    Kowacz, M.; Putnis, C. V.; Putnis, A.

    2007-11-01

    The mechanism of barite growth has been investigated in a fluid cell of an Atomic Force Microscope by passing solutions of constant supersaturation ( Ω) but variable ion activity ratio ( r=a/a) over a barite substrate.The observed dependence of step-spreading velocity on solution stoichiometry can be explained by considering non-equivalent attachment frequency factors for the cation and anion. We show that the potential for two-dimensional nucleation changes under a constant thermodynamic driving force due to the kinetics of barium integration into the surface, and that the growth mode changes from preexisting step advancement to island spreading as the cation/anion activity ratio increases. Scanning electron microscopy studies of crystals grown in bulk solutions support our findings that matching the ion ratio in the fluid to that of the crystal lattice does not result in maximum growth and nucleation rates. Significantly more rapid rates correspond to solution stoichiometries where [Ba 2+] is in excess with respect to [ SO42-]. Experiments performed in dilute aqueous solutions of methanol show that even 0.02 molar fraction of organic cosolvent in the growth solution significantly accelerates step growth velocity and nucleation rates (while keeping Ω the same as in the reference solution in water). Our observations suggest that the effect of methanol on barite growth results first of all from reduction of the barrier that prevents the Ba 2+ from reaching the surface and corroborate the hypothesis that desolvation of the cation and of the surface is the rate limiting kinetic process for two-dimensional nucleation and for crystal growth.

  2. Accurate rates of the complex mechanisms for growth and dissolution of minerals using a combination of rare event theories

    International Nuclear Information System (INIS)

    Stack, Andrew G.; Raiten, Paolo; Gale, Julian D.

    2012-01-01

    Mineral growth and dissolution are often treated as occurring via a single, reversible process that governs the rate of reaction. We show that multiple, distinct intermediate states can occur during both growth and dissolution. Specifically, we have used metadynamics, a method to efficiently explore the free energy landscape of a system, coupled to umbrella sampling and reactive flux calculations, to examine the mechanism and rates of attachment and detachment of a barium ion onto a stepped, barite (BaSO4) surface. The activation energies calculated for the rate limiting reactions, which are different for attachment and detachment, precisely match those measured experimentally during both growth and dissolution. These results can potentially explain anomalous, non-steady state mineral reaction rates observed experimentally, and will enable the design of more efficient growth inhibitors and facilitate an understanding of the effect of impurities.

  3. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  4. Distinct mechanisms are responsible for osteopenia and growth retardation in OASIS-deficient mice.

    Science.gov (United States)

    Murakami, Tomohiko; Hino, Shin-Ichiro; Nishimura, Riko; Yoneda, Toshiyuki; Wanaka, Akio; Imaizumi, Kazunori

    2011-03-01

    Old astrocyte specifically induced substance (OASIS), which is a new type of endoplasmic reticulum (ER) stress transducer, is a basic leucine zipper transcription factor of the CREB/ATF family that contains a transmembrane domain and is processed by regulated intramembrane proteolysis in response to ER stress. OASIS is selectively expressed in certain types of cells such as astrocytes and osteoblasts. We have previously demonstrated that OASIS activates transcription of the type I collagen gene Col1a1 and contributes to the secretion of bone matrix proteins in osteoblasts, and that OASIS-/- mice exhibit osteopenia and growth retardation. In the present study, we examined whether osteopenia in OASIS-/- mice is rescued by OASIS introduction into osteoblasts. We generated OASIS-/- mice that specifically expressed OASIS in osteoblasts using a 2.3-kb osteoblast-specific type I collagen promoter (OASIS-/-;Tg mice). Histological analysis of OASIS-/-;Tg mice revealed that osteopenia in OASIS-/- mice was rescued by osteoblast-specific expression of the OASIS transgene. The decreased expression levels of type I collagen mRNAs in the bone tissues of OASIS-/- mice were recovered by the OASIS transgene accompanied by the rescue of an abnormal expansion of the rough ER in OASIS-/- osteoblasts. In contrast, growth retardation in OASIS-/- mice did not improve in OASIS-/-;Tg mice. Interestingly, the serum levels of growth hormone (GH) and insulin-like growth factor (IGF)-1 were downregulated in OASIS-/- mice compared with those in wild-type mice. These decreased GH and IGF-1 levels in OASIS-/- mice did not change when OASIS was introduced into osteoblasts. Taken together, these results indicate that OASIS regulates skeletal development by osteoblast-dependent and -independent mechanisms. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Analysing the mechanical performance and growth adaptation of Norway spruce using a non-linear finite-element model and experimental data.

    Science.gov (United States)

    Lundström, T; Jonas, T; Volkwein, A

    2008-01-01

    Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.

  6. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  7. Determining of the growth mechanisms in the MBE growth of ternary Cd1-xAxTe (A = Zn, Mn, Hg) compounds. Part I - Methods of analysis of surface processes

    International Nuclear Information System (INIS)

    Sadowski, J.T.

    1999-01-01

    This paper is the first part of an extended abstract of the PhD thesis entitled 'Determining of the growth mechanisms in MBE growth of ternary Cd 1-x A x Te (A = Zn, Mn, Hg) compounds' written on the base of experiments performed in the MBE Lab. in Institute of Vacuum Technology, Warsaw. In that paper, the scientific problems to be solved in thesis are described. Also the analytical techniques (reflection quadrupole mass spectroscopy (REMS), reflection high-energy electron diffraction (RHEED), and laser interferometry (LI)) used in investigation and its implementation to 'in situ' measurements in MBE growth system are depicted. The experiments and extracted scientific results will be presented in the following paper, in next Elektronika issue. (author)

  8. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Science.gov (United States)

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  9. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  10. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  11. Linking Ethics and Economic Growth

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    2012-01-01

    Hunt (2012) builds on his work concerning ethics and resource-advantage theory to link personal ethical standards, societal norms, and economic growth but offers few details concerning the precise mechanisms that link ethics and growth. This comment suggests a number of such mechanisms – for exam...... – for example, the influence of prevailing ethical norms on the aggregate elasticity of substitution and, therefore, total factor productivity and growth....

  12. Insulin-like growth factor I (IGF-1 Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    Directory of Open Access Journals (Sweden)

    Werner Schlegel

    Full Text Available Human insulin-like growth factor 1 Ec (IGF-1Ec, also called mechano growth factor (MGF, is a splice variant of insulin-like growth factor 1 (IGF-1, which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  13. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta.

    Science.gov (United States)

    Gutiérrez-Arzapalo, Perla Y; Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; López de Pablo, Ángel L; López-Giménez, María Rosario; Condezo-Hoyos, Luis; Greenwald, Stephen E; González, Maria Del Carmen; Arribas, Silvia M

    2017-12-26

    Intrauterine growth restriction (IUGR), induced by maternal undernutrition, leads to impaired aortic development. This is followed by hypertrophic remodelling associated with accelerated growth during lactation. Fetal nutrient restriction is associated with increased aortic compliance at birth and at weaning, but not in adult animals. This mechanical alteration may be related to a decreased perinatal collagen deposition. Aortic elastin scaffolds purified from young male and female IUGR animals also exhibit increased compliance, only maintained in adult IUGR females. These mechanical alterations may be related to differences in elastin deposition and remodelling. Fetal undernutrition induces similar aortic structural and mechanical alterations in young male and female rats. Our data argue against an early mechanical cause for the sex differences in hypertension development induced by maternal undernutrition. However, the larger compliance of elastin in adult IUGR females may contribute to the maintenance of a normal blood pressure level. Fetal undernutrition programmes hypertension development, males being more susceptible. Deficient fetal elastogenesis and vascular growth is a possible mechanism. We investigated the role of aortic mechanical alterations in a rat model of hypertension programming, evaluating changes at birth, weaning and adulthood. Dams were fed ad libitum (Control) or 50% of control intake during the second half of gestation (maternal undernutrition, MUN). Offspring aged 3 days, 21 days and 6 months were studied. Blood pressure was evaluated in vivo. In the thoracic aorta we assessed gross structure, mechanical properties (intact and purified elastin), collagen and elastin content and internal elastic lamina (IEL) organization. Only adult MUN males developed hypertension (systolic blood pressure: MUN males  = 176.6 ± 5.6 mmHg; Control males  = 136.1 ± 4.9 mmHg). At birth MUN rats were lighter, with smaller aortic cross-sectional area

  14. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  15. Effects of physical properties of powder particles on binder liquid requirement and agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-09-01

    A study was performed in order to elucidate the effects of the physical properties of small powder particles on binder liquid requirement and agglomerate growth mechanisms. Three grades of calcium carbonate having different particle size distribution, surface area, and particle shape but approximately the same median particle size (4-5 microm), were melt agglomerated with polyethylene glycol (PEG) 3000 or 20,000 in an 8-l high shear mixer at three impeller speeds. The binder liquid requirement was found to be very dependent on the packing properties of the powder, a denser packing resulting in a lower binder liquid requirement. The densification of the agglomerates in the high shear mixer could be approximately predicted by compressing a powder sample in a compaction simulator. With the PEG having the highest viscosity (PEG 20,000), the agglomerate formation and growth occurred primarily by the immersion mechanism, whereas PEG 3000 gave rise to agglomerate growth by coalescence. Powder particles with a rounded shape and a narrow size distribution resulted in breakage of agglomerates with PEG 3000, whereas no breakage was seen with PEG 20,000. Powder particles having an irregular shape and surface structure could be agglomerated with PEG 20,000, whereas agglomerate growth became uncontrollable with PEG 3000. When PEG 20,000 was added as a powder instead of flakes, the resultant agglomerates became rounder and the size distribution narrower.

  16. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Science.gov (United States)

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  17. A unique growth mechanism of donut-shaped Mg–Al layered double hydroxides crystals revealed by AFM and STEM–EDX

    NARCIS (Netherlands)

    Budhysutanto, W.N.; Van Den Bruele, F.J.; Rossenaar, B.D.; Van Agterveld, D.; Van Enckevort, W.J.P.; Kramer, H.J.M.

    2010-01-01

    Donut-like crystals of Mg–Al layered double hydroxides (LDH) are synthesized using a hydrothermal method with microwave heating. This morphology provides enlargement of the specific surface area of the {h k 0} faces, needed for adsorption application. The growth mechanism for donut-shaped crystals

  18. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  19. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  20. Growth mechanisms and thickness effect on the properties of Al-doped ZnO thin films grown on polymeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Koidis, Christos; Logothetidis, Stergios; Kassavetis, Spiridon; Laskarakis, Argiris [Lab for Thin Films-Nanosystems and Nanometrology (LTFN), Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hastas, Nikolaos A.; Valassiades, Odisseas [Solid State Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2010-07-15

    The properties of Al-doped ZnO (AZO) thin films deposited by pulsed DC magnetron sputtering under various target power on polyethylene terephthalate (PET) substrates have been investigated. In situ and real-time spectroscopic ellipsometry (1.5-6.5 eV) has been employed to study the optical properties of the AZO films as well as the growth mechanisms taking place. With X-ray diffraction technique under grazing-incidence geometry, the structural characteristics profiles of the AZO films have been depicted. Nanoindentation measurements revealed information about the mechanical properties of the films and have been correlated to the conductivity measurements towards growth insights understanding. As results have shown, the increase of target power led to the increase of the carrier density as well as the hardness of the AZO films possibly both ascribed to dislocations induced. The stress during the deposition of AZO film under high target power favoured the island growth which is possibly both connected to the formation of defects as electron traps and dislocations as electron sources. Finally, the increase of AZO film thickness led to the increase of the resistivity possibly due to the enrichment of grain boundaries with defects as electron traps. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Platinum boride nanowires: Synthesis and characterization

    International Nuclear Information System (INIS)

    Ding Zhanhui; Qiu Lixia; Zhang Jian; Yao Bin; Cui Tian; Guan Weiming; Zheng Weitao; Wang Wenquan; Zhao Xudong; Liu Xiaoyang

    2012-01-01

    Highlights: ► Platinum boride nanowires have been synthesized via the direct current arc discharge method. ► XRD, TEM and SAED indicate that the nanowires are single-crystal PtB. ► Two broad photoluminescence emission peaks at about 586 nm and 626 nm have been observed in the PL spectroscopy of PtB nanowires. - Abstract: Platinum boride (PtB) nanowires have been successfully fabricated with direct current arc discharge method using a milled mixture of platinum (Pt) and boron nitride (BN) powders. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the compositions, morphology, and structures of the samples. The results show that PtB nanowires are 30–50 nm thick and 20–30 μm long. TEM and selected area electron diffraction (SAED) patterns identify that the PtB nanowires are single-crystalline in nature. A growth mechanism based on vapor–liquid–solid (VLS) process is proposed for the formation of nanowires.

  2. Synthesis, characterization and magnetic properties of Fe-Al nanopins

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Zhang, Z.D.

    2005-01-01

    We report the synthesis of Fe-Al nanopins using arc discharge. The morphology and chemical composition of the Fe-Al nanopins were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). The nanopins are composed of a spherical base of about 20-100 nm and a needle-like tip of about several hundred nanometers. EDX and HRTEM studies indicate that the spherical base is mainly composed of α-Fe and FeAl core coated with a thin Al 2 O 3 layer, while the needle-like part contains only Al and O and corresponds to Al 2 O 3 . The formation mechanism of the nanopins is suggestive of a vapor-liquid-solid (VLS) growth process. The as-prepared Fe-Al nanopins show ferromagnetic properties. The temperature dependence of the magnetization at high temperatures indicates the existence of some phase transformations

  3. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  4. Insulin-like growth factor (IGF)-like peptide and 20-hydroxyecdysone regulate the growth and development of the male genital disk through different mechanisms in the silkmoth, Bombyx mori.

    Science.gov (United States)

    Fujinaga, Daiki; Kohmura, Yusuke; Okamoto, Naoki; Kataoka, Hiroshi; Mizoguchi, Akira

    2017-08-01

    It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Very-large-scale production of antibodies in plants: The biologization of manufacturing.

    Science.gov (United States)

    Buyel, J F; Twyman, R M; Fischer, R

    2017-07-01

    Gene technology has facilitated the biologization of manufacturing, i.e. the use and production of complex biological molecules and systems at an industrial scale. Monoclonal antibodies (mAbs) are currently the major class of biopharmaceutical products, but they are typically used to treat specific diseases which individually have comparably low incidences. The therapeutic potential of mAbs could also be used for more prevalent diseases, but this would require a massive increase in production capacity that could not be met by traditional fermenter systems. Here we outline the potential of plants to be used for the very-large-scale (VLS) production of biopharmaceutical proteins such as mAbs. We discuss the potential market sizes and their corresponding production capacities. We then consider available process technologies and scale-down models and how these can be used to develop VLS processes. Finally, we discuss which adaptations will likely be required for VLS production, lessons learned from existing cell culture-based processes and the food industry, and practical requirements for the implementation of a VLS process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    Science.gov (United States)

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.

  7. A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO{sub 2} nanorods growth

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N. [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Dariani, R.S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of); Rajabi, M. [Deparment of Advanced Materials and Renewable Energies, Iranian Research Organization for Science and Technology (IROST), Tehran 3353136846 (Iran, Islamic Republic of)

    2016-03-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanorods (NRs) are synthesized on silicon and porous silicon (PS) substrates by hydrothermal method. • TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. • Also increasing substrate porosity leads to an increase in density of the NRs. • We proposed a growth mechanism to explain how can control the local surface chemical potential. - Abstract: In this study, we have synthesized TiO{sub 2} nanorods (NRs) on silicon and porous silicon (PS) substrates by hydrothermal method. The PS substrates with different porosities were fabricated by electrochemical anodization on silicon. According to the field emission electron microscopy images, TiO{sub 2} NRs grown on PS substrates have a better growth compared to those grown on silicon. Also increasing substrate porosity leads to an increase in density of the NRs. Atomic force microscopy observation demonstrates that porous layer formation due to etching of silicon surface leads to an increase of its roughness. Results indicate surface roughness evolution with porosity increasing enhances TiO{sub 2} nucleation on substrate and thus increases TiO{sub 2} NRs density. We propose a growth mechanism to explain how we can control the local surface chemical potential and thus the nucleation and alignment of TiO{sub 2} NRs by surface roughness variation. Also, photoluminescence studies show a red-shift in band gap energy of NRs compared to that of common bulk TiO{sub 2}.

  8. Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Wu, Xiaodong; Qi, Xian; Liang, Mifang; Li, Chuan; Cardona, Carol J; Li, Dexin; Xing, Zheng

    2014-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick-borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins G(n) and G(c), nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ-promoter activities. In this article, we demonstrate that NSs protein can form viroplasm-like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs-formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs-formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV-infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses. © FASEB.

  9. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  10. A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival

    Directory of Open Access Journals (Sweden)

    Roussos Charis

    2009-12-01

    Full Text Available Abstract Background Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor growth activity through inhibition of cancer cell proliferation, survival, angiogenesis and inflammatory response. However, no studies have addressed its mechanisms of action at genome-wide gene expression level. Methods To investigate molecular mechanisms triggered by mastic oil, Lewis Lung Carcinoma cells were treated with mastic oil or DMSO and RNA was collected at five distinct time points (3-48 h. Microarray expression profiling was performed using Illumina mouse-6 v1 beadchips, followed by computational analysis. For a number of selected genes, RT-PCR validation was performed in LLC cells as well as in three human cancer cell lines of different origin (A549, HCT116, K562. PTEN specific inhibition by a bisperovanadium compound was applied to validate its contribution to mastic oil-mediated anti-tumor growth effects. Results In this work we demonstrated that exposure of Lewis lung carcinomas to mastic oil caused a time-dependent alteration in the expression of 925 genes. GO analysis associated expression profiles with several biological processes and functions. Among them, modifications on cell cycle/proliferation, survival and NF-κB cascade in conjunction with concomitant regulation of genes encoding for PTEN, E2F7, HMOX1 (up-regulation and NOD1 (down-regulation indicated some important mechanistic links underlying the anti-proliferative, pro-apoptotic and anti-inflammatory effects of mastic oil. The expression profiles of Hmox1, Pten and E2f7 genes were similarly altered by mastic oil in the majority of test cancer cell lines. Inhibition of PTEN partially reversed mastic oil effects on tumor cell growth, indicating a multi-target mechanism of action. Finally, k-means clustering, organized the significant gene list in eight clusters demonstrating a similar

  11. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    Science.gov (United States)

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  12. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    Science.gov (United States)

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  13. Normal and abnormal growth plate

    International Nuclear Information System (INIS)

    Kumar, R.; Madewell, J.E.; Swischuk, L.E.

    1987-01-01

    Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities

  14. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  15. [Investigation of mechanisms of action of growth factors of autologous platelet-rich plasma used to treat erectile dysfunction].

    Science.gov (United States)

    Epifanova, M V; Chalyi, M E; Krasnov, A O

    2017-09-01

    To determine the quantitative and qualitative composition of growth factors (PDGF-AA, PDGF-BB, VEGF, VEGF-D, FGF-acid, FGF-basic) and platelets in various modifications of APRP. Blood of 12 male volunteers (control group) and 12 patients with ED was used to prepare APRP and the subsequently determine the concentration of growth factors. The growth factor concentrations (FGF acid, FGF basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D) was determined using a flow cytometry-based xMAP Luminex (Gen-Probe) system. Concentration of platelets in APRP obtained by two stage centrifugation, reached 1480 (1120-1644) in the control group and 1232 (956-1502) in patients with ED. The concentration of growth factors in the samples prepared without preliminary freezing was: PDGF-AA 842 (22-3700), PDGF-BB 2837 (1460-4100), FGF-basic 7.9 (0.28-127), FGF-acid 3, 4 (0.14-11), VEGF 19 (4.6-46), VEGF-D 21 (14-38). After thawing, the concentration of all growth factors in the samples increased. The study findings suggest that the mechanism of erectile function recovery following the use of APRP is through the active substances detected in APRP, i.e. FGF-basic, PDGF-AA, PDGF-BB, VEGF, VEGF-D and FGF-acid. Also, the study showed that the content of growth factors in APRP after of freezing/thawing is higher than in APRP that has not been frozen. This is due to the cell membrane destruction at extremely low temperatures during freezing.

  16. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  17. Mechanism of growth, composition and structure of oxide films formed on ferrous alloys in molten salt electrolytes - a review

    International Nuclear Information System (INIS)

    Tzvetkoff, Tz.; Kolchakov, J.

    2004-01-01

    The growth kinetics, chemical composition and structure of scales formed during corrosion of Fe and its alloys in molten salts are reviewed. Special attention is paid to the effect of the composition of the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers. First, the thermodynamical background of the corrosion and oxidation of Fe-base engineering materials in molten salt media is briefly commented. A concise review of the growth kinetics of passivating oxide films is also presented. These two introductory chapters serve as a guide for the extensive survey of the growth mechanism, nature and properties of oxide and related scales on ferrous alloys in a range of molten electrolytes - chlorides, nitrates, sulphates, carbonates, hydroxides and mixtures thereof in gas atmospheres containing O 2 , CO 2 , SO 2 , SO 3 and HCl

  18. Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles

    Science.gov (United States)

    Londono-Calderon, Alejandra

    A thorough control of nanoscale systems is crucial for developing and improving their activity in a variety of application fields. These range from nanocatalysis, plasmonics, nanosensors, nanomedicine, communications, and others. Controlling and understanding the growth and spatial distribution of multi metallic systems allow us to explore the correlation between the characteristics of the nanoparticle (composition, surface chemistry, crystallinity, etc.) and their properties (mechanical, optical, structural, etc.). In this dissertation bimetallic and multi-metallic nanoparticles were obtained by a seed mediated method and galvanic replacement. Combinations of the type core shell of Au Ag, Au Pd and Au Pd-Au Au multi-metallic systems were studied. A galvanic replacement method was used to obtain hollow-like Au/Pt nanoboxes and Au AgM (M = Au, Pd or Pt) yolk-shell structures with voids in the middle shell. Characterization regarding composition, morphology, optical properties and atomic structures was performed. The mechanical properties of Au Pd nanocubes were studied in situ by the use of a TEM-AFM nanomechanical holder. The nanoparticles strengthening mechanism relies on the Au core resistance to the motion of partial dislocations. The catalytic efficiency of core-shell and nanorattles structures were tested with a model reaction for the decomposition of 4-ntp to 4-amp. Yolk-shell systems exhibit an enhancement in the catalytic decomposition rate in comparison with solid and bimetallic system. Finally, the development of an Electrospray assisted Langmuir Blodgett technique was successfully employed for the deposition of nanoparticles monolayer on a substrate. High particle density and coverage of the substrate makes this a promising technique to finely tune nanoparticles self-assembly.

  19. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    Science.gov (United States)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  20. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    International Nuclear Information System (INIS)

    Sarma, Bimal K; Das, Apurba; Barman, Pintu; Pal, Arup R

    2016-01-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO 2 substrates. The possibility of TiO 2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO 2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO 2 /nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO 2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite. (paper)

  1. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  2. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Marta Agati

    2017-02-01

    Full Text Available Scanning transmission electron microscopy (STEM was successfully applied to the analysis of silicon nanowires (SiNWs that were self-assembled during an inductively coupled plasma (ICP process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

  3. Time for Growth

    DEFF Research Database (Denmark)

    Boerner, Lars; Severgnini, Battista

    This paper studies the impact of the early adoption of one of the most important high-technology machines in history, the public mechanical clock, on long-run growth in Europe. We avoid endogeneity by considering the relationship between the adoption of clocks with two sets of instruments: distance...... from the first adopters and the appearance of repeated solar eclipses. The latter instrument is motivated by the predecessor technologies of mechanical clocks, astronomic instruments that measured the course of heavenly bodies. We find significant growth rates between 1500 and 1700 in the range of 30...

  4. The onset condition of equatorial plasma bubbles - the role of seeding mechanism and growth condition

    Science.gov (United States)

    Kil, H.; Choi, J. M.; Kwak, Y. S.; Lee, W. K.; Park, J.

    2015-12-01

    We investigate the role of seeding mechanism and growth condition of perturbations in the creation of equatorial plasma bubbles by analyzing the C/NOFS and ROCSAT-1 satellite observations. The initial development times of bubbles were identified by manual processing of the data, and the periodic characteristics in the occurrence of bubbles were investigated using periodograms obtained from segments of bubble chains. Our preliminary results show that bubbles initiate at the time that the pre-reversal enhancement (PRE) ends. This time corresponds to the time that the F region reaches the highest altitude where the growth rate of the Rayleigh-Taylor (R-T) instability is large. The initial onset time of bubbles varies with season and longitude in accordance with the variation of the PRE ending time. Our investigation of the periodicity in the occurrence of bubbles (spacing between bubbles) shows that a dominant periodicity does not exist; the spacing between bubbles ranges from 100 km to over 1000 km. A pronounced periodicity occurs in some series of bubbles, but, in general, multiple periodicity co-exists. The initiation of bubbles at a specific local time but the absence of a preferential wave property in the occurrence of bubbles lead to the conclusion that the onset of bubbles is controlled by the growth condition of the R-T instability.

  5. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  6. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  7. Experimental evidence of the impact of rare-earth elements on particle growth and mechanical behaviour of silicon nitride

    International Nuclear Information System (INIS)

    Satet, Raphaelle L.; Hoffmann, Michael J.; Cannon, Rowland M.

    2006-01-01

    The impact of various rare-earth and related doping elements (R = Lu, Sc, Yb, Y, Sm, La) on the grain growth anisotropy and the mechanical properties of polycrystalline β-silicon nitride ceramics has been studied. Model experiments, in which Si 3 N 4 particles can grow freely in an R-Si-Mg-oxynitride glass matrix, show that, with increasing ionic radius of the additive, grain anisotropy increases due to non-linear growth kinetics. Toughness and strength are affected by the rare-earth element. Samples of equivalent grain sizes and morphologies yield an increasing toughness with increasing ion size of the R 3+ , reflecting an increasingly intergranular crack path. These samples are also strong and flaw tolerant, but the trends of strength and toughness do not exactly match. The choice of the rare-earth is essential to tailor microstructure, interfacial strength and mechanical properties. However, somewhat different trends for properties from IIIb and lanthanide additives indicate that more than the R 3+ size (i.e., purely ionic bond strength between R 3+ and its neighbours) is important. The electronic structure of the R-element is responsible for the type of dopant adsorption and the properties of the interface

  8. Explaining growth variation over large spatial scales: Effects of temperature and food on walleye growth

    DEFF Research Database (Denmark)

    Mosgaard, Thomas; Venturelli, Paul; Lester, Nigel P.

    2012-01-01

    freshwater fish species in North America. We then use length at age data from yellow perch (Perca flavescens) to identify the mechanisms behind the remaining variation in the length at age – temperature relationship for walleye. A positive perch – walleye relationship indicates that the mechanism behind......Most fishes exhibit strong spatial variation in growth. Because fish growth and production are tightly linked, quantifying and explaining variation in growth can mean the difference between successful management and unforeseen collapse. However, disentangling the factors that are responsible...

  9. Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon

    Science.gov (United States)

    Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor

    2018-04-01

    We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.

  10. Immune mechanisms in Ehrlich ascites tumor growth in mice

    International Nuclear Information System (INIS)

    Marusic, M.

    1979-01-01

    Normal mice immunised with irradiated Ehrlich ascites tumor (EAT) cells rejected EAT challenge given 2 weeks later but T-cell-deficient thymectomised lethally irradiated, and bone-marrow-reconstituted (TIR) mice succumbed. However, when TIR mice were injected i.v. with thymus, lymph node, or spleen cells from normalsyngetic donors immediately following i.p. injection of irradiated EAT cells, they rejected the subsequent tumor challenge. This induction of immunity in TIR mice was shown to be T-cell dependent. Spleen cells from EAT- bearing mice given immediately after irradiated tumor cells were also able to promote rejection of EAT challenge in TIR mice. Spleen cells from EAT-immune mice inhibited EAT growth when admixed with tumor cells prior to i.p. injection into normal recipients, but had no effect on progressive tumor growth when given i.v. immediately after i.p. tumor injection. Immune serum inhibited i.p. EAT growth when given either i.p. or i.v. Whereas inhibition of EAT growth by admixed spleen cells was shown to be T-cell independent. The data indicate that T lymphocytes are required only in the induction phase of the immune reponse of mice against EAT, while the efferent phase of the response is accomplished by serum antibodies, perhaps through an interaction with host macrophages. (author)

  11. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    Science.gov (United States)

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  12. A proposal for evaluation method of crack growth due to cyclic overload for piping materials based on an elastic-plastic fracture mechanics parameter

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshihito; Katsuyama, Jinya; Onizawa, Kunio; Li, Yinsheng; Sugino, Hideharu

    2011-01-01

    The magnitude of Niigata-ken Chuetsu-Oki earthquake in 2007 was beyond the assumed one provided in seismic design. Therefore it becomes an important issue to evaluate the crack growth behaviors due to the cyclic overload like large earthquake. Fatigue crack growth is usually evaluated by Paris's law using the range of stress intensity factor (ΔK). However, ΔK is inappropriate in a loading condition beyond small scale yielding. In this study, the crack growth behaviors for piping materials were investigated based on an elastic-plastic fracture mechanics parameter, J-integral. It was indicated that the crack growth due to the cyclic overload beyond small scale yielding could be the sum of fatigue and ductile crack growth. The retardation effect of excessive loading on the crack growth was observed after the loading. The modified Wheeler model using J-integral has been proposed for the prediction of retardation effect. Finally, an evaluation method for crack growth behaviors due to the cyclic overload is suggested. (author)

  13. Synthesis of Cubic Phase-Co Microspheres by Mechanical Solid-State Reaction-Thermal Decomposition and Research on Its Growth Kinetics

    Directory of Open Access Journals (Sweden)

    Ying Deng

    2016-01-01

    Full Text Available Cubic phase cobalt (Co, which can be used as a key component for composite materials given its excellent ductility and internal structure, is not easy to obtain at room temperature. In this study, oxalic acid and cobalt nitrate are used as raw materials to synthesize the cobalt oxalate precursor, which has a stable structure with a five-membered chelate ring. Cobalt oxalate microspheres, having a high internal energy content, were prepared by using mechanical solid-state reaction in the presence of a surfactant, which can produce spherical micelles. The thermal decomposition of the precursor was carried out by maintaining it in a nitrogen atmosphere at 450°C for 3 h. At the end of the procedure, 100 nm cubic phase-Co microspheres, stable at room temperature, were obtained. Isothermal and nonisothermal kinetic mechanisms of cobalt grain growth were investigated. The cubic-Co grain growth activation energy, Q, was calculated in this study to be 71.47 kJ/mol. The required reaction temperature was low, making the production process simple and suitable for industrial applications.

  14. One-step synthesis of bird cage-like ZnO and other controlled morphologies: Structural, growth mechanism and photocatalytic properties

    International Nuclear Information System (INIS)

    Yang, Shuo; Wang, Jian; Li, Xiuyan; Zhai, Hongju; Han, Donglai; Wei, Bing; Wang, Dandan; Yang, Jinghai

    2014-01-01

    Highlights: • ZnO nanocage arrays were synthesized by a one-step etching route. • ZnO nanocage exhibit higher photocatalytic activity than other samples. • The different photocatalytic activities of different samples were analyzed. • The formation mechanism of ZnO nanocages was proposed. - Abstract: ZnO nanocages and other nanostructures have been synthesized via a simple one-pot hydrothermal method with different reaction times. It is worth mentioning that this is a completely green method which does not require any other chemicals except that Zn foil served as Zn source in the experiment. X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and UV–Vis diffuse reflection spectra were used to characterize the crystallinity, morphology and optical property of ZnO structures. Growth mechanisms of ZnO were proposed based on these results. Furthermore, ZnO films with different morphologies and crystal growth habits exhibited different activities to rhodamine B degradation. The influence of the reaction time on the morphology of ZnO films and the effect of the morphologies on the photocatalytic activity are discussed

  15. Biochemomechanical poroelastic theory of avascular tumor growth

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  16. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Willander, M; Nur, O; Zhao, Q X; Yang, L L [Department of Science and Technology, Linkoeping University, SE-601 74 Norrkoeping (Sweden); Lorenz, M; Cao, B Q; Zuniga Perez, J; Czekalla, C; Zimmermann, G; Grundmann, M [Institut fuer Experimentelle Physik II, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany); Bakin, A; Behrends, A; Al-Suleiman, M; El-Shaer, A; Che Mofor, A; Postels, B; Waag, A [Institute of Semiconductor Technology, Technical University of Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Boukos, N; Travlos, A [National Center for Scientific Research ' Demokritos' , Institute of Materials Science, GR 15310 Agia Paraskevi Attikis, Athens (Greece); Kwack, H S, E-mail: magwi@itn.liu.s [CEA-CNRS Group ' Nanophysique et Semiconducteurs' , Institut Neel, CNRS and Universit' e Joseph Fourier, F-38042 Grenoble (France)

    2009-08-19

    Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence

  17. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Meng; Zhao, Jian [School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266061 (China); Li, Zhenjiang, E-mail: zhenjiangli@qust.edu.cn [School of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China (China); Yu, Hongyuan [School of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266061 (China); Wang, Yaqi [School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042 (China); Meng, Alan, E-mail: alanmengqust@163.com [School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042 (China); Li, Qingdang [School of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China (China)

    2016-11-15

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm and 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED). - Graphical abstract: Based on the synergistic growth mechanism from homogeneous substrate and elastic energy, bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. The blue-violet light emission properties of the bamboo-like nanowires have also been investigated for exploring their peculiar optical application. - Highlights: • Bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. • A synergistic growth mechanism from homogeneous substrate and elastic energy has been proposed firstly. • The blue-violet light emission properties of the products displayed peculiar optical application.

  18. Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: Homogeneous synthesis, synergistic growth mechanism, and their luminescence properties

    International Nuclear Information System (INIS)

    Zhang, Meng; Zhao, Jian; Li, Zhenjiang; Yu, Hongyuan; Wang, Yaqi; Meng, Alan; Li, Qingdang

    2016-01-01

    Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm and 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED). - Graphical abstract: Based on the synergistic growth mechanism from homogeneous substrate and elastic energy, bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. The blue-violet light emission properties of the bamboo-like nanowires have also been investigated for exploring their peculiar optical application. - Highlights: • Bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. • A synergistic growth mechanism from homogeneous substrate and elastic energy has been proposed firstly. • The blue-violet light emission properties of the products displayed peculiar optical application.

  19. MECHANISM OF BORAX CRYSTALLIZATION USING CONDUCTIVITY METHOD

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The kinetics of crystal growth of borax has been studied by using conductivity method at temperature of 25 °C and at various relative supersaturations. It was found that the growth rate increases with increasing supersaturation. At low concentration, growth occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating.     Keywords: borax; growth rate; crystallization; conductivity method

  20. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  1. A Vocabulary Learning Tool for L2 Undergraduates Reading Science and Technology Textbooks

    Science.gov (United States)

    Hsu, Chihcheng; Yang, Fang-Chuan Ou

    2013-05-01

    Students of English as a second language who major in science and technology use English-language textbooks to ensure that they can read English materials upon graduation. Research indicates that teachers spend little time helping these students on the linguistic complexity of such textbooks. Vocabulary, grammar, and article structure are elements of this complexity, but to many students, these elements can be akin to locked doors. This study presents MyVLS-Reader, which focuses on unlocking the first of these doors-vocabulary-while assisting in reading. With explicit vocabulary learning, students learn and memorize individual vocabulary, but the context is lost if the depth of learning discards context. In implicit vocabulary learning, students acquire vocabulary through repeated exposure to contexts, but repeated encounters with new words are required. Few e-learning systems combine both vocabulary-learning approaches. MyVLS-Reader achieves such synergy by (1) using a keyword setting to provide context-matched vocabulary explanation while reading and (2) embedding multiple learning choices, such as keyword setting, the review and memorization of explicit vocabulary, and the option to ask instructors. This study includes two rounds of evaluations: (1) an evaluation of the learning achievements of control and treatment groups and (2) a quantitative and qualitative investigation of perceptions regarding the use of MyVLS-Reader. The evaluation results indicate that the treatment group developed a better vocabulary than the control group in significantly less time. The use of MyVLS-Reader also slightly improved higher-order thinking skills. This result suggests that MyVLS-Reader can effective assist students in building their vocabulary while reading.

  2. Long-term maintenance therapy for vulvar lichen sclerosus: the results of a randomized study comparing topical vitamin E with an emollient.

    Science.gov (United States)

    Virgili, Annarosa; Minghetti, Sara; Borghi, Alessandro; Corazza, Monica

    2013-04-01

    The chronic and relapsing nature of vulvar lichen sclerosus (VLS) represents a challenge for its long-term management after an effective treatment with topical corticosteroids. To compare the effect of topical vitamin E with that of an emollient in reducing the risk of VLS relapse over a 52-week maintenance treatment. 156 patients with VLS were enrolled in a 12-week active treatment phase on topical 0.1% mometasone furoate ointment once daily. Those who achieved disease remission entered a 52-week maintenance phase in which patients were randomized to apply either an emollient or topical vitamin E once daily. 80 patients entered the maintenance phase. At 52 weeks, for the vitamin E maintenance group, the cumulative crude relapse rate was 27.8% and the cumulative modified crude relapse rate was 55.6%. For the emollient maintenance group, the cumulative crude relapse rate was 22.7% and the cumulative modified crude relapse rate was 50.0%. The median time to relapse was 20 weeks for the vitamin E group and 18.7 weeks for the emollient group. Once VLS has been stabilized with topical corticosteroids, long-term treatment with both vitamin E and emollients may be considered in maintain LS remission.

  3. Understanding the growth mechanism of stabilizer-free Ag nanoparticles on reduced graphene oxide: the role of CO

    International Nuclear Information System (INIS)

    Gao Weiyin; Ran Chenxin; Wang Minqiang; Yao Xi; He Delong; Bai Jinbo

    2013-01-01

    In this study, one-step approach to prepare stabilizer-free Ag–graphene nanocomposites using DMAc-assisted thermal reduction method with uniform distribution of “near spherical” Ag nanoparticles (Ag NPs) in the range of 16–20 nm is reported. Interestingly, from the change of absorption spectrum as a function of reaction time, we observed that the characteristic absorption peak of Ag NPs shows no peak position shift in a quite long time without extra stabilizer while red-shift and broaden after continuous reaction. To explain this phenomenon, we further proposed a growth mechanism that CO, which is generated from reduction of functional groups on GO, adsorbed on the surface of Ag NPs and leaded to growth cease of Ag NPs into a narrow size distribution during the reduction of GO. Meanwhile, Ag NPs can catalyze the oxidation of adsorbed-CO to CO 2 in the presence of O 2 which can easily desorb from Ag surfaces. Hence, after fully removal of functional groups on GO, continuous supply of CO was cutoff while the desorption of adsorbed-CO was still happening continually, so Ag NPs start to gradually grow and resulting in aggregation. Moreover, the dosage of less DMAc or more AgNO 3 would cause the anisotropic growth and form multiply twinned structure of Ag NPs. Our study presents a useful understanding on the growth of Ag NPs on graphene.

  4. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail: qiuxm13@163.com

    2015-11-15

    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  5. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  6. Growth, optical, thermal and mechanical characterization of an ...

    Indian Academy of Sciences (India)

    Growth from solution; X-ray diffraction; organic compounds; optical properties. 1. Introduction. Materials exhibiting nonlinear optical (NLO) properties have been studied ..... The fracture toughness (Kc) (Marshall and Lawn 1986) is given by.

  7. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  8. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    Science.gov (United States)

    Boi, Filippo S.; Wang, Shanling; He, Yi

    2016-08-01

    The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  9. Post-pollination mechanisms in Nicotiana longiflora and N. plumbaginifolia: pollen tube growth rate, offspring paternity and hybridization.

    Science.gov (United States)

    Figueroa-Castro, Dulce M; Holtsford, Timothy P

    2009-09-01

    In natural populations where interfertile species coexist, conspecific and heterospecific pollen can be delivered to the stigmas. Post-pollination mechanisms might determine the seed siring success of different pollen donors within species as well as the chances for hybridization between species. Nicotiana longiflora and N. plumbaginifolia occur in sympatry in Northwest Argentina, where they have overlapping flowering seasons and share floral visitors. We explored (1) pollen tube growth rates for outcross versus self pollen in single-donor pollinations; (2) siring success of self versus outcross pollen donors in competitive pollinations, and (3) possibilities for hybridization by performing two- (outcross conspecific vs. heterospecific) and three-pollen donor (self vs. outcross vs. heterospecific) crosses. In N. longiflora, both pollen tube growth rate and siring success favored outcross pollen over self pollen and strong rejection of heterospecific pollen. In N. plumbaginifolia, pollen tube growth rate was similar for self and outcross pollen, self pollen sired similar numbers of offspring than outcross pollen and heterospecific pollen sired roughly the same number of progeny than self pollen. Results suggest that in natural sympatric populations, interspecific crosses would likely lead to unidirectional hybridization with N. plumbaginifolia as the seed parent.

  10. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    Science.gov (United States)

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-06

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  11. Caracterização mecânica e microestrutural do aço MARAGING 300, soldado a plasma e submetidas a reparos

    OpenAIRE

    Silva, Deivid Ferreira da [UNESP

    2014-01-01

    This study aims to evaluate and quantify the possible losses of mechanical resistance in the welded join of MARAGING 300 steel submitted within three after repairs in the cords of the welded. The Institute of Aeronautics and Space (IAE) designs, develops and manufactures sounding rockets and satellite launcher vehicles (VLS) using solid propellant and the motor case is responsible for supporting the pressure during the burning of this propellant. Currently, the motor case is made of 300M-ESR ...

  12. Regulators of growth plate maturation

    NARCIS (Netherlands)

    Emons, Joyce Adriana Mathilde

    2010-01-01

    Estrogen is known to play an important role in longitudinal bone growth and growth plate maturation, but the mechanism by which estrogens exert their effect is not fully understood. In this thesis this role is further explored. Chapter 1 contains a general introduction to longitudinal bone growth

  13. Revisit of the Saito-Dresselhaus-Dresselhaus C2 ingestion model: on the mechanism of atomic-carbon-participated fullerene growth.

    Science.gov (United States)

    Wang, Wei-Wei; Dang, Jing-Shuang; Zhao, Xiang; Nagase, Shigeru

    2017-11-09

    We introduce a mechanistic study based on a controversial fullerene bottom-up growth model proposed by R. Saito, G. Dresselhaus, and M. S. Dresselhaus. The so-called SDD C 2 addition model has been dismissed as chemically inadmissible but here we prove that it is feasible via successive atomic-carbon-participated addition and migration reactions. Kinetic calculations on the formation of isolated pentagon rule (IPR)-obeying C 70 and Y 3 N@C 80 are carried out by employing the SDD model for the first time. A stepwise mechanism is proposed with a considerably low barrier of ca. 2 eV which is about 3 eV lower than a conventional isomerization-containing fullerene growth pathway.

  14. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  15. Nanostructured Semiconductor Electrodes for Solar Energy Conversion and Innovations in Undergraduate Chemical Lab Curriculum

    Science.gov (United States)

    Lee, Sudarat

    This dissertation presents the methodology and discussion of preparing nanostructured, high aspect ratio p-type phosphide-based binary and ternary semiconductors via "top-down" anodic etching, a process which creates nanostructures from a large parent entity, and "bottom-up" vapor-liquid-solid growth, a mechanism which builds up small clusters of molecules block-by-block. Such architecture is particularly useful for semiconducting materials with incompatible optical absorption depth and charge carrier diffusion length, as it not only relaxes the requirement for high-grade crystalline materials, but also increases the carrier collection efficiencies for photons with energy greater than or equal to the band gap. The main focus of this dissertation is to obtain nanostructured p-type phosphide semiconductors for photoelectrochemical (PEC) cell applications. Chapter II in the thesis describes a methodology for creating high-aspect ratio p-GaP that function as a photocathode under white light illumination. Gallium phosphide (GaP, band gap: 2.26 eV) is a suitable candidate for solar conversion and energy storage due to its ability to generate large photocurrent and photovoltage to drive fuel-forming reactions. Furthermore, the band edge positions of GaP can provide sufficient kinetics for the reduction of protons and carbon dioxide. The structure is prepared by anodic etching, and the resulting macroporous structures are subsequently doped with Zn by thermally driving in Zn from conformal ZnO films prepared by atomic layer deposition (ALD). The key finding of this work is a viable doping strategy involving ALD ZnO films for making functioning p-type GaP nanostructures. Chapter III compares the GaP nanowires grown from gold (Au) and tin (Sn) VLS catalysts in a benign solid sublimation growth scheme in terms of crystal structure and photoactivity. Sn is less noble than Au, allowing complete removal of Sn metal catalysts from the nanowires through wet chemical etching which

  16. Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method

    Science.gov (United States)

    Shao, Bin; Yin, Xueguo; Hua, Weidong; Ma, Yilong; Sun, Jianchun; Li, Chunhong; Chen, Dengming; Guo, Donglin; Li, Kejian

    2018-05-01

    Sponge-like nickel composed of micro-chains with a diameter of 1-5 μm was selectively synthesized by the hydrothermal method, using sodium hydroxide (NaOH) as the alkaline reagent, aqueous hydrazine as reducing agent and citric acid as a coordination agent. The time-dependent samples prepared at different NaOH concentrations were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The results showed that the agglomerates of nickel citrate hydrazine complex nanoplates were first precipitated and then reduced to prickly nickel micro-chains at a lower NaOH concentration, which played a role in the further formation of sponge-like nickel. Also, the probable growth mechanism of the sponge-like nickel was proposed. The magnetic properties of sponge-like nickel were studied using a vibrating sample magnetometer. The sponge-like nickel exhibited a ferromagnetic behavior with a saturation magnetization value of 43.8 emu g-1 and a coercivity value of 120.7 Oe.

  17. Mechanical growth and morphogenesis of seashells

    KAUST Repository

    Moulton, D.E.; Goriely, A.; Chirat, R.

    2012-01-01

    . However, the developmental mechanisms underlying shell coiling are largely not understood and the ubiquitous presence of ornamentation such as ribs, tubercles, or spines presents yet another level of difficulty. Here we develop a general model for shell

  18. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization.

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-05-09

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100 °C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000 °C to ~32 nm at growth temperature of 1100 °C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics.

  19. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  20. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    Directory of Open Access Journals (Sweden)

    Filippo S. Boi

    2016-08-01

    Full Text Available The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  1. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    Science.gov (United States)

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  2. VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms

    NARCIS (Netherlands)

    Roorda, Berber D.; ter Elst, Arja; Scherpen, Frank J. G.; Meemusen-de Boer, Tiny G. J.; Kamps, Willem A.; de Bont, Eveline S. J. M.

    Increased levels of circulating VEGF-A have been demonstrated in patients with non-Hodgkin lymphoma (NHL) and are associated with progressive disease and poor clinical outcome. We investigated the role of VEGF-A in lymphoma tumour growth on a molecular level in order to identify the mechanism of

  3. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  4. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C. Justin; Varma, K.B.R. [Materials Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Joshi, R.K. [Special Center for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2011-11-15

    We report the synthesis of various morphological micro to nano structured zinc oxide crystals via simple precipitation technique. The growth mechanisms of the zinc oxide nanostructures such as snowflake, rose, platelets, porous pyramid and rectangular shapes were studied in detail under various growth conditions. The precursor powders were prepared using several zinc counter ions such as chloride, nitrate and sulphate along with oxalic acid as a precipitating agent. The precursors were decomposed by heating in air resulting in the formation of different shapes of zinc oxide crystals. Variations in ZnO nanostructural shapes were possibly due to the counter ion effect. Sulphate counter ion led to unusual rose-shape morphology. Strong ultrasonic treatment on ZnO rose shows that it was formed by irregular arrangement of micro to nano size hexagonal zinc oxide platelets. The X-ray diffraction studies confirmed the wurzite structure of all zinc oxide samples synthesized using different zinc counter ions. Functional groups of the zinc oxalate precursor and zinc oxide were identified using micro Raman studies. The blue light emission spectra of the various morphologies were recorded using luminescence spectrometer. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    Science.gov (United States)

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  6. Challenges in nourishing the intrauterine growth-restricted foetus - Lessons learned from studies in the intrauterine growth-restricted foetal sheep.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Rozance, Paul J; Wesolowski, Stephanie R; Limesand, Sean W

    2016-08-01

    Previous attempts to improve growth and development of the intrauterine growth-restricted (IUGR) foetus during pregnancy have not worked or caused harm. Our research identifies tissue-specific mechanisms underlying foetal growth restriction and then tests strategies to improve growth and ameliorate many of the metabolic problems before the infant is born. The goal of our studies is to reduce the impact of foetal growth restriction at critical stages of development on the lifelong complications of IUGR offspring. Defining specific mechanisms that cause growth restriction in the foetus might identify specific nutrients and hormones that could be given to the mother to improve foetal growth and reduce metabolic complications, using strategies first tested in our IUGR animal model. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  7. Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures

    Science.gov (United States)

    Möller, M.; Oliveira, D. S.; Sahoo, P. K.; Cotta, M. A.; Iikawa, F.; Motisuke, P.; Molina-Sánchez, A.; de Lima, M. M., Jr.; García-Cristóbal, A.; Cantarero, A.

    2017-07-01

    InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ˜20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

  8. Proteomic analysis reveals the mechanisms of Mycena dendrobii promoting transplantation survival and growth of tissue culture seedlings of Dendrobium officinale.

    Science.gov (United States)

    Xu, X B; Ma, X Y; Lei, H H; Song, H M; Ying, Q C; Xu, M J; Liu, S B; Wang, H Z

    2015-06-01

    Dendrobium officinale is an important traditional Chinese medicinal herb. Its seedlings generally show low survival and growth when transferred from in vitro tissue culture to a greenhouse or field environment. In this study, the effect of Mycena dendrobii on the survival and growth of D. officinale tissue culture seedlings and the mechanisms involved was explored. Mycena dendrobii were applied underneath the roots of D. officinale tissue culture seedlings. The seedling survival and growth were analysed. The root proteins induced by M. dendrobii were identified using two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF-MS). Mycena dendrobii treatment significantly enhanced survival and growth of D. officinale seedlings. Forty-one proteins induced by M. dendrobii were identified. Among them, 10 were involved in defence and stress response, two were involved in the formation of root or mycorrhizae, and three were related to the biosynthesis of bioactive constituents. These results suggest that enhancing stress tolerance and promoting new root formation induced by M. dendrobii may improve the survival and growth of D. officinale tissue culture seedlings. This study provides a foundation for future use of M. dendrobii in the large-scale cultivation of Dendrobiums. © 2015 The Society for Applied Microbiology.

  9. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens.

    Science.gov (United States)

    Crisol-Martínez, Eduardo; Stanley, Dragana; Geier, Mark S; Hughes, Robert J; Moore, Robert J

    2017-06-01

    Unravelling the mechanisms of how antibiotics influence growth performance through changes in gut microbiota can lead to the identification of highly productive microbiota in animal production. Here we investigated the effect of zinc bacitracin and avilamycin on growth performance and caecal microbiota in chickens and analysed associations between individual bacteria and growth performance. Two trials were undertaken; each used 96 individually caged 15-day-old Cobb broilers. Trial 1 had a control group (n = 48) and a zinc bacitracin (50 ppm) treatment group (n = 48). Trial 2 had a control group (n = 48) and an avilamycin (15 ppm) treatment group (n = 48). Chicken growth performance was evaluated over a 10-day period, and caecal microbiota was characterised by sequencing of bacterial 16S rRNA gene amplicons. Avilamycin produced no effect on growth performance and exhibited little significant disturbance of the microbiota structure. However, zinc bacitracin reduced the feed conversion ratio (FCR) in treated birds, changed the composition and increased the diversity of their caecal microbiota by reducing dominant species. Avilamycin only produced minor reductions in the abundance of two microbial taxa, whereas zinc bacitracin produced relatively large shifts in a number of taxa, primarily Lactobacillus species. Also, a number of phylotypes closely related to lactobacilli species were positively or negatively correlated with FCR values, suggesting contrasting effects of Lactobacillus spp. on chicken growth performance. By harnessing such bacteria, it may be possible to develop high-productivity strategies in poultry that rely on the use of probiotics and less on in-feed antibiotics.

  10. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000°C to ~32 nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  11. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    Science.gov (United States)

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The Effect of No Agricultural Productivity Growth on Future Land Use and Climate through Biogeophysical Mechanisms

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Singarayer, J. S.; Jones, C.

    2012-12-01

    Future land use and the consequent land cover change will have a significant impact on future climate through biogeophysical (albedo, surface roughness and latent heat transfer, etc.) as well as biogeochemical (greenhouse gas emissions etc.) mechanisms. One of the major determinants of the extent of land use induced land cover change is the agricultural productivity growth within the socio-economic models used for developing the RCP scenarios. There are considerable uncertainties in the size of agricultural productivity under climate change, as yields are projected to vary spatially in signal and strength. Previous climate modeling work has considered the impacts to the carbon cycle of different levels of agricultural productivity growth, but has failed to consider the biogeophysical effects of the land use induced land cover change on climate. Here we examine the climate impacts of the assumption of agricultural productivity growth and business as usual land use. The effects are considered through the biogeophysical land use induced land cover change, using the Hadley Centre climate model HadGEM2. The model simulations use the set biogeochemical climate forcing of the RCP 4.5 scenario, but the biogeophysical land use change specification is altered over a 100 year simulation. Simulations are run with combinations of no land use change; standard RCP 4.5 land use change; business as usual land use change; and zero agricultural productivity growth. The key effect of no agricultural productivity growth is that more cropland is required to feed the same population, necessitating cropland expansion. The expansion of cropland and consequent deforestation increases the albedo and gives an extensive cooling effect in the northern hemisphere (up to 2°C). Differences in global mean temperature between the zero agricultural productivity growth with business as usual land use change specified run and the standard RCP 4.5 run are -0.2°C by 2040 and -0.7°C by 2100. There is

  13. RHEED studies of MBE growth mechanisms of CdTe and CdMnTe

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A.; Behr, T.; Litz, T.; Kuhn-Heinrich, B.; Hommel, D.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1993-01-30

    We report on reflection high energy electron diffraction (RHEED) studies of molecular beam epitaxy (MBE) growth of CdTe and CdMnTe on (100) oriented CdTe substrates. RHEED oscillations were measured for both the growth and desorption of CdTe and CdMnTe as a function of flux and temperature. For the first time, the influence of laser and electron irradiation on the growth rate, as well as desorption, of CdTe is studied in detail using RHEED oscillations. We found a very small effect on the growth rate as well as on the CdTe desorption rate. The growth rate of CdTe was determined for different temperatures and CdTe flux ratios. The obtained experimental results are compared with a kinetic growth model to get information on the underlying growth processes, taking into account the influence of a precursor by including surface diffusion. From the comparison between model and experimental results the sticking coefficients of Cd and Te are determined. The growth rate of CdMnTe increases with Mn flux. This dependence can be used to calibrate the Mn content during growth by comparing the growth rate of CdTe with the growth rate of CdMnTe. The change in growth rate has been correlated with Mn content via photoluminescence measurements. In addition, the sticking coefficient of Mn is derived by comparing experimental results with a kinetic growth model. For high manganese content a transition to three-dimensional growth occurs. (orig.).

  14. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  15. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, Daniel J.

    2015-11-25

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  16. Evaluation of Six Recombinant Proteins for Serological Diagnosis of Lyme Borreliosis in China.

    Science.gov (United States)

    Liu, Wei; Liu, Hui Xin; Zhang, Lin; Hou, Xue Xia; Wan, Kang Lin; Hao, Qin

    2016-05-01

    In this study, we evaluated the diagnostic efficiency of six recombinant proteins for the serodiagnosis of Lyme borreliosis (LB) and screened out the appropriate antigens to support the production of a Chinese clinical ELISA (enzyme-linked immunosorbent assay) kit for LB. Six recombinant antigens, Fla B.g, OspC B.a, OspC B.g, P39 B.g, P83 B.g, and VlsE B.a, were used for ELISA to detect serum antibodies in LB, syphilis, and healthy controls. The ELISA results were used to generate receiver operating characteristic (ROC) curves, and the sensitivity and specificity of each protein was evaluated. All recombinant proteins were evaluated and screened by using logistic regression models. Two IgG (VlsE and OspC B.g) and two IgM (OspC B.g and OspC B.a) antigens were left by the logistic regression model screened. VlsE had the highest specificity for syphilis samples in the IgG test (87.7%, Precombinant antigens, OspC B.g, OspC B.a, and VlsE B.a, were useful for ELISAs of LB. Additionally, the interaction between OspC B.a and Fla B.g should be examined in future research. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  18. Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2016-03-01

    Full Text Available Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs and have a high secondary organic aerosol (SOA forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27–44 s reaction times and in static Teflon chambers (30–60 min reaction times. The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and electrospray ionization mass spectrometry (ESI-MS, or measured online using direct analysis in real-time mass spectrometry (DART-MS and aerosol mass spectrometry (AMS. The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3  ×  10−15 cm2 s−1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW  ≤  300 Da reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  19. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans.

    Science.gov (United States)

    Winterhager, Elke; Gellhaus, Alexandra

    2017-01-01

    Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will

  20. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans

    Directory of Open Access Journals (Sweden)

    Elke Winterhager

    2017-11-01

    Full Text Available Although the causes of intrauterine growth restriction (IUGR have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy

  1. Effects of loading frequency on fatigue crack growth mechanisms in α/β Ti microstructure with large colony size

    International Nuclear Information System (INIS)

    Sansoz, F.; Ghonem, H.

    2003-01-01

    This paper deals with crack tip/microstructure interactions at 520 deg. C in lamellar Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti6242) alloy under different fatigue loading frequencies. A series of heat treatments were performed in order to produce large colony microstructures that vary in their lamellar and colony size. Fatigue crack growth (FCG) experiments were conducted on these microstructures at loading frequencies of 10 and 0.05 Hz. The lower frequency was explored with and without imposing a 5 min hold-time at the peak stress level during each loading cycle. Results show that the crack growth behavior is sensitive to the loading frequency. For the same microstructure, the crack growth rate is found to be lower at 10 than at 0.05 Hz. The addition of a hold-time, however, did not alter the FCG rate indicating that creep strain during one loading cycle does not contribute significantly in the crack growth process. It is also shown that variations in lamella and colony size have no effects on the FCG rate except for the early stage of crack propagation. Scanning Electron Microscope examinations are performed on the fracture surface in order to identify the relevant crack growth mechanisms with respect to the loading frequency and the microstructure details. Quasi-cleavage of the α/β colonies along strong planar shear bands is shown to be a major mode of failure under all test condition. At a loading frequency of 10 Hz, the crack path proceeds arbitrary along planes either perpendicular or parallel to the long axis of α lamellae, while at 0.05 Hz, parallel-to-lamellae crack paths become favored. Corresponding differences of crack growth behavior are examined in terms of slip emission at the crack tip and interactions with the microstructure details

  2. Magnetic movement of biological fluid droplets

    International Nuclear Information System (INIS)

    Garcia, Antonio A.; Egatz-Gomez, Ana; Lindsay, Solitaire A.; Dominguez-Garcia, P.; Melle, Sonia; Marquez, Manuel; Rubio, Miguel A.; Picraux, S.T.; Yang, Dongqing; Aella, P.; Hayes, Mark A.; Gust, Devens; Loyprasert, Suchera; Vazquez-Alvarez, Terannie; Wang, Joseph

    2007-01-01

    Magnetic fields can be used to control the movement of aqueous drops on non-patterned, silicon nanowire superhydrophobic surfaces. Drops of aqueous and biological fluids are controlled by introducing magnetizable carbonyl iron microparticles into the liquid. Key elements of operations such as movement, coalescence, and splitting of water and biological fluid drops, as well as electrochemical measurement of an analyte are demonstrated. Superhydrophobic surfaces were prepared using vapor-liquid-solid (VLS) growth systems followed by coating with a perfluorinated hydrocarbon molecule. Drops were made from aqueous and biological fluid suspensions with magnetizable microparticle concentrations ranging from 0.1 to 10 wt%

  3. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    Science.gov (United States)

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Vanishing Lung Syndrome: Compound Effect of Tobacco and Marijuana Use on the Development of Bullous Lung Disease – A Joint Effort

    OpenAIRE

    Wiesel, Shimshon; Siddiqui, Faraz; Khan, Tahir; Hossri, Sami; El-Sayegh, Dany

    2017-01-01

    Marijuana use has been increasing across the United States due to its legalization as both a medicinal and recreational product. A small number of case reports have described a pathological entity called vanishing lung syndrome (VLS), which is a rare bullous lung disease usually caused by tobacco smoking. Recent case reports have implicated marijuana in the development of VLS. We present a case of a 47-year-old man, who presented to our hospital with shortness of breath, fevers and a producti...

  5. Incentives and Earnings Growth

    DEFF Research Database (Denmark)

    Frederiksen, Anders

    2013-01-01

    The career prospects of newly recruited employees differ substantially within an organization. The stars experience considerable growth in earnings; others can hardly maintain their entry salaries. This article sheds light on the mechanisms generating the observed heterogeneity in earnings growth...... by investigating the effects that explicit short-run incentives and implicit incentives have on earnings growth. The model’s predictions are tested using personnel records from a large bank and are found to be consistent with the observed earnings growth during the first half of the employees’ careers....

  6. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  7. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

    Science.gov (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert

    2004-10-01

    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  8. Si Nano wires Produced by Very High Frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) via VLS Mechanism

    International Nuclear Information System (INIS)

    Yussof Wahab; Yussof Wahab; Habib Hamidinezhad; Habib Hamidinezhad

    2013-01-01

    Silicon nano wires (SiNWs) with diameter of about a few nanometers and length of 3 μm on silicon wafers were synthesized by very high frequency plasma enhanced chemical vapor deposition. Scanning electron microscopy (SEM) observations showed that the silicon nano wires were grown randomly and energy-dispersive X-ray spectroscopy analysis indicates that the nano wires have the composition of Si, Au and O elements. The SiNWs were characterized by high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. SEM micrographs displayed SiNWs that are needle-like with a diameter ranged from 30 nm at the top to 100 nm at the bottom of the wire and have length a few of micrometers. In addition, HRTEM showed that SiNWs consist of crystalline silicon core and amorphous silica layer. (author)

  9. Effect of dietary boron on growth performance, calcium and phosphorus metabolism, and bone mechanical properties in growing barrows.

    Science.gov (United States)

    Armstrong, T A; Spears, J W

    2001-12-01

    An experiment was conducted to evaluate the effects of dietary boron (B) on growth performance, bone mechanical properties, and calcium (Ca) and phosphorus (P) metabolism in pigs. Thirty-six barrows were weaned at approximately 21 d of age and randomly assigned to receive one of three dietary treatments. Treatments consisted of 1) low-B basal diet (control), 2) basal + 5 mg B/kg diet, and 3) basal + 15 mg B/kg diet. Boron was supplemented as sodium borate. Barrows remained on their respective experimental diets throughout the nursery (35 d) and growing (30 d) phases of production. Blood samples were obtained from each barrow at the end of each phase. Following the 30-d growing period, eight barrows per treatment were transferred to stainless steel metabolism crates. Barrows had an adjustment period of 7 d, followed by a 7-d total collection of urine and feces. All barrows were fed at 90% of the previous ad libitum grower intake of the control animals during the adjustment and collection periods. At the end of the 7-d collection period, barrows were killed and femurs and fibulas were harvested for the assessment of bone mechanical properties. During the nursery phase, ADG and ADFI were increased (P 0.05) by dietary B. These data indicate that B supplementation to pigs can increase growth and bone strength without greatly affecting Ca and P metabolism.

  10. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.

    Science.gov (United States)

    Niebudek-Bogusz, Ewa; Kopczynski, Bartosz; Strumillo, Pawel; Morawska, Joanna; Wiktorowicz, Justyna; Sliwinska-Kowalska, Mariola

    2017-07-01

    Digital imaging techniques enable exploration of novel visualization modalities of the vocal folds during phonation and definition of parameters, facilitating more precise diagnosis of voice disorders. Application of computer vision algorithms for analysis of videolaryngostroboscopic (VLS) images aimed at qualitative and quantitative description of phonatory vibrations. VLS examinations were conducted for 45 females, including 15 subjects with vocal nodules, 15 subjects with glottal incompetence, and 15 normophonic females. The recorded VLS images were preprocessed, the glottis area was segmented out, and the glottal cycles were identified. The glottovibrograms were built, and then the glottal area waveforms (GAW) were quantitatively described by computing the following parameters: open quotient (OQ), closing quotient (CQ), speed quotient (SQ), minimal relative glottal area (MRGA), and a new parameter termed closure difference index (CDI). Profiles of the glottal widths assessed along the glottal length differentiated the study groups (P diagnostics. Results of the performed ROC curve analysis suggest that the evaluated parameters can distinguish patients with voice disorders from normophonic subjects.

  11. An economical model for mastering the art of intubation with different video laryngoscopes

    Directory of Open Access Journals (Sweden)

    Jitin N Trivedi

    2014-01-01

    Full Text Available Video laryngoscope (VL provides excellent laryngeal exposure in patients when anaesthesiologists encounter difficulty with direct laryngoscopy. Videolaryngoscopy, like flexible fibreoptic laryngoscopy demands a certain level of training by practitioners to become dexterous at successful intubation with a given instrument. Due to their cost factors, VLs are not easily available for training purposes to all the students, paramedics and emergency medical services providers in developing countries. We tried to develop a cost-effective instrument, which can work analogous to various available VLs. An inexpensive and easily available instrument was used to create an Airtraq Model for VL guided intubation training on manikin. Using this technique, successful intubation of manikin could be achieved. The Airtraq Model mimics the Airtraq Avant ® and may be used for VL guided intubation training for students as well as paramedics, and decrease the time and shorten the learning curve for Airtraq ® as well as various other VLs.

  12. Nutritional catch-up growth.

    Science.gov (United States)

    Gat-Yablonski, Galia; Pando, Rakefet; Phillip, Moshe

    2013-01-01

    Malnutrition, marked by variant nutrient deficiencies, is considered a leading cause of stunted growth worldwide. In developing countries, malnutrition is caused mainly by food shortage and infectious diseases. Malnutrition may also be found in the developed world, where it is due mostly to prematurity, chronic diseases, and anorexia nervosa. In most cases, when food consumption is corrected, spontaneous catch-up (CU) growth occurs. However, CU growth is not always complete, leading to growth deficits. Therefore, it is important to understand the mechanisms that govern this process. Using a rat model of food restriction followed by refeeding, we established a nutrition-induced CU growth model. Levels of leptin and insulin-like growth factor-1 were found to significantly decrease when food was restricted and to increase already 1 day after refeeding. Gene expression analysis of the growth plate revealed that food restriction specifically affects transcription factors such as the hypoxia inducible factor-1 and its downstream targets on the one hand, and global gene expression, indicating epigenetic regulation, on the other. Food restriction also reduced the level of several microRNAs, including the chondrocyte-specific miR-140, which led to an increase in its target, SIRT1, a class III histone deacetylase. These findings may explain the global changes in gene expression observed under nutritional manipulation. We suggest that multiple levels of regulation, including transcription factors, epigenetic mechanisms, and microRNAs respond to nutritional cues and offer a possible explanation for some of the effects of food restriction on epiphyseal growth plate growth. The means whereby these components sense changes in nutritional status are still unknown. Deciphering the role of epigenetic regulation in growth may pave the way for the development of new treatments for children with growth disorders. Copyright © 2013 S. Karger AG, Basel.

  13. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H.; Tulp, I.Y.M.; Piersma, T.; Visser, G.H.

    2003-01-01

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  14. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H; Tulp, Ingrid; Piersma, T.; Visser, G.H.

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  15. Protein metabolism in marine animals: the underlying mechanism of growth.

    Science.gov (United States)

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  16. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  17. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    OpenAIRE

    Boeckx, Carolien; Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against epidermal growth factor receptor (EGFR) is one of the most promising therapeutics for head and neck squamous cell carcinoma, and EGFR is overexpressed in a wide range of malignancies. An improved understanding of the resistance to EGFR inhibitors may provide new treatment options. This review summarizes some mechanisms and decribes strategies to overcome this resistance.

  18. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    Science.gov (United States)

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  19. Axial Ge/Si nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Sanuel T [Los Alamos National Laboratory; Daych, Shadi A [Los Alamos National Laboratory

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  20. Crack growth and fracture toughness of amorphous Li-Si anodes: Mechanisms and role of charging/discharging studied by atomistic simulations

    Science.gov (United States)

    Khosrownejad, S. M.; Curtin, W. A.

    2017-10-01

    Fracture is the main cause of degradation and capacity fading in lithiated silicon during cycling. Experiments on the fracture of lithiated silicon show conflicting results, and so mechanistic models can help interpret experiments and guide component design. Here, large-scale K-controlled atomistic simulations of crack propagation (R-curve KI vs. Δa) are performed at LixSi compositions x = 0.5 , 1.0 , 1.5 for as-quenched/relaxed samples and at x = 0.5 , 1.0 for samples created by discharging from higher Li compositions. In all cases, the fracture mechanism is void nucleation, growth, and coalescence. In as-quenched materials, with increasing Li content the plastic flow stress and elastic moduli decrease but void nucleation and growth happen at smaller stress, so that the initial fracture toughness KIc ≈ 1.0 MPa√{ m} decreases slightly but the initial fracture energy JIc ≈ 10.5J/m2 is similar. After 10 nm of crack growth, the fracture toughnesses increase and become similar at KIc ≈ 1.9 MPa√{ m} across all compositions. Plane-strain equi-biaxial expansion simulations of uncracked samples provide complementary information on void nucleation and growth. The simulations are interpreted within the framework of Gurson model for ductile fracture, which predicts JIc = ασy D where α ≃ 1 and D is the void spacing, and good agreement is found. In spite of flowing plastically, the fracture toughness of LixSi is low because voids nucleate within nano-sized distances ahead of the crack (D ≈ 1nm). Scaling simulation results to experimental conditions, reasonable agreement with experimentally-estimated fracture toughnesses is obtained. The discharging process facilitates void nucleation but decreases the flow stress (as shown previously), leading to enhanced fracture toughness at all levels of crack growth. Therefore, the fracture behavior of lithiated silicon at a given composition is not a material property but instead depends on the history of charging

  1. Synthesis, growth, optical, mechanical and electrical properties of L ...

    Indian Academy of Sciences (India)

    K RAMAMURTHI. Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India ..... Green light emission (532 nm) ... pattern was observed on the screen as shown in figure 5.

  2. SiC nanofibers grown by high power microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Honda, Shin-ichi; Baek, Yang-Gyu; Ikuno, Takashi; Kohara, Hidekazu; Katayama, Mitsuhiro; Oura, Kenjiro; Hirao, Takashi

    2003-01-01

    Silicon carbide (SiC) nanofibers have been synthesized on Si substrates covered by Ni thin films using high power microwave chemical vapor deposition (CVD). Characterization using transmission electron microscopy (TEM) combined with electron energy-dispersive X-ray spectroscopy (EDX) revealed that the resultant fibrous nanostructures were assigned to β-SiC with high crystallinity. The formation of SiC nanofibers can be explained by the vapor liquid solid (VLS) mechanism in which precipitation of SiC occurs from the supersaturated Ni nanoparticle containing Si and C

  3. The cell biology of bone growth.

    Science.gov (United States)

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  4. A-axis oriented superconductive YBCO thin films. Growth mechanism on MgO substrate. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Hamet, J F; Mercey, B; Hervieu, M; Poullain, G; Raveau, B [Centre de Materiaux Supraconducteurs, CRISMAT-ISMRa, 14 - Caen (France)

    1992-08-01

    The growth mechanism of a-axis oriented YBCO thin films has been studied by TEM. At 650degC, a disordered cubic perovskite is first formed with a[sub p]parallela[sub MgO], then a strained tetragonal a-axis oriented perovskite is observed, with c=3a[sub p], slightly misoriented with respect to MgO and showing a marquetry-like contrast. At 750degC, a [1anti 10] axis oriented perovskite is formed whose lattice exhibits a rotation with respect to MgO lattice, but also a tilting of the [CuO[sub 2

  5. A computed microtomography method for understanding epiphyseal growth plate fusion

    Science.gov (United States)

    Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.

    2017-12-01

    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.

  6. Mechanotransduction mechanisms in growing spherically structured tissues

    Science.gov (United States)

    Littlejohns, Euan; Dunlop, Carina M.

    2018-04-01

    There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.

  7. Rice black-streaked dwarf virus P6 self-interacts to form punctate, viroplasm-like structures in the cytoplasm and recruits viroplasm-associated protein P9-1

    Directory of Open Access Journals (Sweden)

    Yu Jialin

    2011-01-01

    Full Text Available Abstract Background Rice black-streaked dwarf virus (RBSDV, a member of the genus Fijivirus within the family Reoviridae, can infect several graminaceous plant species including rice, maize and wheat, and is transmitted by planthoppers. Although several RBSDV proteins have been studied in detail, functions of the nonstructural protein P6 are still largely unknown. Results In the current study, we employed yeast two-hybrid assays, bimolecular fluorescence complementation and subcellular localization experiments to show that P6 can self-interact to form punctate, cytoplasmic viroplasm-like structures (VLS when expressed alone in plant cells. The region from residues 395 to 659 is necessary for P6 self-interaction, whereas two polypeptides (residues 580-620 and 615-655 are involved in the subcellular localization of P6. Furthermore, P6 strongly interacts with the viroplasm-associated protein P9-1 and recruits P9-1 to localize in VLS. The P6 395-659 region is also important for the P6-P9-1 interaction, and deleting any region of P9-1 abolishes this heterologous interaction. Conclusions RBSDV P6 protein has an intrinsic ability to self-interact and forms VLS without other RBSDV proteins or RNAs. P6 recruits P9-1 to VLS by direct protein-protein interaction. This is the first report on the functionality of RBSDV P6 protein. P6 may be involved in the process of viroplasm nucleation and virus morphogenesis.

  8. Differential expression of oestrogen receptor isoforms and androgen receptor in the normal vulva and vagina compared with vulval lichen sclerosus and chronic vaginitis.

    Science.gov (United States)

    Taylor, A H; Guzail, M; Al-Azzawi, F

    2008-02-01

    Although the expression of the oestrogen receptor (ER) alpha isoform and androgen receptor (AR) has been examined in vulval lichen sclerosus (VLS), the distribution pattern of ERalpha, ERbeta and AR has not been described in chronic atrophic vaginitis nor correlated with markers of proliferation (Ki-67) in either of these diseased tissues. To measure the levels and distribution of ERalpha, ERbeta and AR immunoreactivity in relation to Ki-67 in normal and diseased vulva and vagina. The expression of ERalpha, ERbeta and AR in relation to the proliferation marker Ki-67 in VLS, squamous hyperplasia of the vulva and chronic atrophic vaginitis was determined by immunohistomorphometric analysis and compared with that in normal vulva and vagina. VLS showed similar ERalpha and ERbeta expression in the 'epidermal' and 'dermal' tissue layers to that of normal vulvae, whereas AR expression appeared to be absent in most cases. ERbeta and Ki-67 expression was correlated with ERalpha expression but only in the 'fibrovascular' layer of the vulva. ERalpha expression was absent from the 'fibromuscular' layer of diseased vulvae, while ERbeta expression was absent in normal tissues but was highly expressed in diseased vulvae. ERalpha expression was significantly correlated with AR expression in the fibrovascular layer of the vagina and inversely correlated with Ki-67 staining in the parabasal cells of the epidermis in patients with chronic atrophic vaginitis. These data suggest that ER expression and levels may be implicated in the aetiopathology of VLS and chronic atrophic vaginitis.

  9. Orientation aspects of growth during recrystallization

    International Nuclear Information System (INIS)

    Juul Jensen, D.

    1997-04-01

    Recrystallization of heavily cold rolled aluminium and copper is studied with the aim of achieving information about effects of crystallography orientation on the growth process. The potentials of several experimental techniques are analysed, and a method well suited for characterizing growth rates of grains with different orientations is developed. This method, which is referred to as the extended Cahn-Hagel method, is used for growth rate determinations in aluminium and copper deformed and annealed under five different conditions. In all the investigated cases, preferential growth of cube oriented grains is observed. Recrystallization models, which simulates the orientational as well as microstructural development, are described. selected models are applied for studies of recrystallization in aluminium and copper under specific deformation and annealing conditions as well as for more general studies of the effects of orientation dependent growth rates on the recrystallization microstructure and texture. Finally, reasons for the observed orientation dependent growth rates are discussed. A new mechanism, orientation pinning, is suggested and it is shown that this mechanism is necessary for the understanding of experimental results. (au) 4 tabs., 41 ills., 153 refs

  10. Orientation aspects of growth during recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Juul Jensen, D.

    1997-04-01

    Recrystallization of heavily cold rolled aluminium and copper is studied with the aim of achieving information about effects of crystallography orientation on the growth process. The potentials of several experimental techniques are analysed, and a method well suited for characterizing growth rates of grains with different orientations is developed. This method, which is referred to as the extended Cahn-Hagel method, is used for growth rate determinations in aluminium and copper deformed and annealed under five different conditions. In all the investigated cases, preferential growth of cube oriented grains is observed. Recrystallization models, which simulates the orientational as well as microstructural development, are described. selected models are applied for studies of recrystallization in aluminium and copper under specific deformation and annealing conditions as well as for more general studies of the effects of orientation dependent growth rates on the recrystallization microstructure and texture. Finally, reasons for the observed orientation dependent growth rates are discussed. A new mechanism, orientation pinning, is suggested and it is shown that this mechanism is necessary for the understanding of experimental results. (au) 4 tabs., 41 ills., 153 refs.

  11. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  12. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Sung, Kuo-Li Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412 (United States)

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  13. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.

  14. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, Iver H.

    2001-01-01

    Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions

  15. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    Science.gov (United States)

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  16. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  17. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  18. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Lee, Y.-H.; Hung, I-M.; Wang, M.-C.; Wen, S.-B.; Fung, K.-Z.; Shih, C.-J.

    2008-01-01

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO 2 . The activation energy for the crystallization of the cubic ZrO 2 formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO 2 formation. The TEM examination shows that the cubic ZrO 2 has a spherical-like morphology with a size ranging from 10 to 20 nm

  19. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.

  20. Unsustainable growth, unsustainable capitalism

    DEFF Research Database (Denmark)

    Næss, Petter

    2006-01-01

    problems, but serve to further highlight the difficulties of changing capitalism towards sustainability. In a profit-oriented economy, capital accumulation is a prime driving force, and non-growth for the economy at large tends to result in serious economic and social crises. On the other hand, a de...... according to which the powers and mechanisms of the natural world are considered totally controllable by humans as if they were mere epiphenomena of the human world. On the other hand, the assumptions of certain ecological economists about the possibility of steady-state capitalism disregard the relation...... between capital and surplus value, which constitutes a strong mechanism driving the capitalist economy toward limitless growth....

  1. Directed Self-Assembly of Star-Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism.

    Science.gov (United States)

    Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming

    2018-04-01

    Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of Mechanical Site Preparation on Growth of Oaks Planted on Former Agricultural Fields

    Directory of Open Access Journals (Sweden)

    John D. Hodges

    2011-12-01

    Full Text Available Mechanical site preparation is frequently proposed to alleviate problematic soil conditions when afforesting retired agricultural fields. Without management of soil problems, any seedlings planted in these areas may exhibit poor growth and survival. While mechanical site preparation methods currently employed in hardwood afforestation are proven, there is a substantial void in research comparing subsoiling, bedding, and combination plowing treatments. A total of 4,320 bare-root Nuttall oak (Quercus texana Buckley, Shumard oak (Quercus shumardii Buckley, and swamp chestnut oak (Quercus michauxii Nutt. seedlings were planted in February 2008 on three Mississippi sites. All sites were of comparable soils and received above average precipitation throughout the three-year duration of the study. Four site preparation treatments were replicated at each site, with 480 seedlings planted in each of nine replications, and a total of 1,440 seedlings per species planted across all sites. Mechanical treatments were installed using 3.1 m row centers, with treatments as follows: control, subsoiling, bedding, and combination plowing. Treatment effects on seedling height, groundline diameter (GLD, and survival were analyzed. Seedlings exhibited greater height in bedded and combination plowed areas (79.7 cm to 102.7 cm and 82.6 cm to 100.1 cm, respectively compared to subsoiled or control areas (70.4 cm to 84.6 cm and 71.4 cm to 86.9 cm, respectively. Greater GLD was observed in bedded and combination plowed areas (11.9 mm to 18.4 mm and 12.2 mm to 18.3 mm, respectively compared to subsoiled or control areas (10.2 mm to 14.6 mm and 10.5 mm to 15.6 mm, respectively. Survival was high for this study (94.%, and no differences were detected among treatments.

  3. Experimental analysis of dark frame growth mechanism in organic light-emitting diodes

    Science.gov (United States)

    Minagawa, Masahiro; Tanabe, Takuma; Kondo, Eiki; Kamimura, Kenji; Kimura, Munehiro

    2018-02-01

    Organic light-emitting diodes (OLEDs) were fabricated with heterojunction interfaces and layers that were prepared by cold isostatic pressing (CIP), and the growth characteristics of their non-emission areas, or dark frames (D/Fs), were investigated during storage. We fabricated an OLED with an indium-tin-oxide (ITO)/N,N‧-di(1-naphthyl)-N,N‧-diphenyl-(1,1‧-biphenyl)-4,4‧-diamine (α-NPD)/tris(8-hydroxylquinoline)aluminum (Alq3)/LiF/Al structure without CIP treatment (Device I), as well as OLEDs that were pressed after the deposition of α-NPD (Device II), Alq3 (Device III), and LiF/Al (Device IV) layers. Although Devices I, II, and III showed typical D/F growth characteristics, the D/F growth rate in Device IV was markedly mitigated, indicating that the Alq3/LiF/Al interfaces dominated the D/F growth. Moreover, we found that the electron injection characteristic was poorer in the electron-only device stored after the LiF layer deposition than in that stored before the LiF deposition. Therefore, the decreased electron injection due to storage at the interfaces was attributed to the D/F growth.

  4. Material removal mechanisms in electrochemical-mechanical polishing of tantalum

    International Nuclear Information System (INIS)

    Gao, F.; Liang, H.

    2009-01-01

    Material removal mechanisms in tantalum chemical-mechanical polishing (CMP) and electrochemical-mechanical polishing (ECMP) were investigated using the single frequency electrochemical impedance spectroscopy (EIS). Through measuring the impedance of the tantalum surface, the single frequency EIS scan made it possible to observe the CMP and ECMP processes in situ. The impedance results presented competing mechanisms of removal and formation of a surface oxide layer of tantalum. Analysis indicated that the thickness of the oxide layer formed during polishing was related to the mechanical power correlated to the friction force and the rotating speed. Furthermore, the rate of growth and removal of the oxide film was a function of the mechanical power. This understanding is beneficial for optimization of CMP and ECMP processes.

  5. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  6. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    Science.gov (United States)

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  7. Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Mohan, R.

    2014-08-01

    Guanidinium p-nitrophenolate (GUNP), a novel organic compound, was synthesized and crystals were grown from methanol solution by a slow evaporation solution growth technique. A single crystal X-ray diffraction study elucidated the crystal structure of GUNP belonging to the orthorhombic crystal system with space group Pnma. Thermal studies revealed that the GUNP crystal is thermally stable up to 192 °C. The lower cut-off wavelength of GUNP was found to be 505 nm by UV-vis-NIR spectral studies. The luminescence properties of the GUNP crystal were investigated. The three independent tensor coefficients ε11, ε22 and ε33 of the dielectric permittivity were calculated. The mechanical properties of the grown crystal were studied by Vickers' microhardness hardness technique.

  8. Synthesis and growth mechanism of Zn0.5Cd0.5S nanohexagon dendrite

    Science.gov (United States)

    Yu, Wen; Fang, Pengfei; Wang, Shaojie

    2014-12-01

    Hierarchical Zn0.5Cd0.5S nanohexagon dendrites were synthesized by a one-step hydrothermal method. The Zn0.5Cd0.5S nanohexagon dendrites were made up of nanohexagons with a side length of about 90 nm. The nanohexagons were regularly arranged forming as embranchments which were parallel to each other along certain hexagonal directions. Furthermore, these embranchments made up primary trunks shaping as dendrites. The growth mechanism of Zn0.5Cd0.5S nanohexagon dendrites was proposed in which molecular soft template and lowest energy principle played key roles. By adjusting the composition of the reactants, a series of ZnxCd1-xS solid solutions could be obtained. The morphology of the synthesized ZnxCd1-xS depended much on the x value. The UV-vis spectra absorb edges of the ZnxCd1-xS samples continuously shifted indicating the changes of the band gap.

  9. CdMoO{sub 4} micro-ellipsoids: controllable synthesis, growth mechanism, and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ke; Gao, Tianyu [College of Resources and Environment, Huazhong Agricultural University, Hubei, Wuhan (China); Liu, Hui; Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Hubei, Wuhan (China); Wang, Qi, E-mail: hchenhao@mail.hzau.edu.cn [School of Environment Sciences and Engineering, Zhejiang Gongshang University, Zhejiang, Hangzhou (China)

    2017-01-15

    CdMoO{sub 4} micro-ellipsoids were synthesized by a simple hydrothermal route with the assistance of nonionic surfactant Triton X-100 and characterized by X-ray diffraction, scanning electron microscopy and UV-Vis diffuse reflectance spectroscopy. The effects of hydrothermal pH, temperature, and time on the morphology and photocatalytic activity of CdMoO{sub 4} were investigated. With an initial hydrothermal pH of 5.00, CdMoO{sub 4} micro-ellipsoids were obtained at 180 °C for 24 h and found to possess the highest photocatalytic activity - 89% Rhodamine B can be degraded for 30 minutes presented in the 0.4 g/L CdMoO{sub 4} suspension. The formation mechanism of the CdMoO{sub 4} micro-ellipsoids was initiated by the formation of small nanoparticles and bulk structures afterwards, which was followed by the growth of micro-ellipsoids. Experiment results showed that the evolution of the micro-ellipsoids was an Ostwald ripening process. (author)

  10. Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.

    Science.gov (United States)

    Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J

    2014-02-01

    Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.

  11. Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials

    International Nuclear Information System (INIS)

    Pantzas, K.; Abid, M.; Voss, P.L.; Ougazzaden, A.; Patriarche, G.; Orsal, G.; Gautier, S.; Moudakir, T.; Gorge, V.; Djebbour, Z.

    2012-01-01

    In this paper we report on a spontaneous 2D/3D transition observed in InGaN alloys after 60 nm of growth. This transition is responsible for the formation of a stack of distinct InGaN layers. The driving mechanism is shown to be lateral fluctuations of the indium composition, that arise to accommodate the increasing strain energy of the InGaN layer. Three distinct stages of growth have been identified. First, a homogeneous, 2D InGaN layer forms, pseudomorphically strained on the underlying GaN. Then, at around 30 nm large lateral fluctuations of the indium composition are observed and a second pseudomorphic layer, composed of indium-rich and indium-poor clusters, is formed. Finally induces a 2D/3D transition at 60 nm and a 3D InGaN layer is formed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed.

    Science.gov (United States)

    Seo, Anette; Holm, Per; Schaefer, Torben

    2002-08-01

    This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.

  13. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  14. Determining the Mechanism of Low Temperature Graphene Growth

    Science.gov (United States)

    2014-05-27

    of three films (still on copper foils) in figure 2a, figure 2b and figure 2c, respectively. Figure 2a clearly shows the graphene flakes for a growth...shown in figure 3c. The coalesced graphene flakes fully cover the surface of the copper foil after synthesizing for exposure times longer than 30 s, as...Nickel and copper are the two most chosen catalysts to promote graphene formation [1, 16]. Due to the low carbon solubility in nickel or copper

  15. Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action

    International Nuclear Information System (INIS)

    Tsujita-Kyutoku, Miki; Ogawa, Yutaka; Tsubura, Airo; Yuri, Takashi; Danbara, Naoyuki; Senzaki, Hideto; Kiyozuka, Yasuhiko; Uehara, Norihisa; Takada, Hideho; Hada, Takahiko; Miyazawa, Teruo

    2004-01-01

    The present study was conducted to examine the effect of conjugated docosahexaenoic acid (CDHA) on cell growth, cell cycle progression, mode of cell death, and expression of cell cycle regulatory and/or apoptosis-related proteins in KPL-1 human breast cancer cell line. This effect of CDHA was compared with that of docosahexaenoic acid (DHA). KPL-1 cell growth was assessed by colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; cell cycle progression and mode of cell death were examined by flow cytometry; and levels of expression of p53, p21 Cip1/Waf1 , cyclin D 1 , Bax, and Bcl-2 proteins were examined by Western blotting analysis. In vivo tumor growth was examined by injecting KPL-1 cells subcutaneously into the area of the right thoracic mammary fat pad of female athymic mice fed a CDHA diet. CDHA inhibited KPL-1 cells more effectively than did DHA (50% inhibitory concentration for 72 hours: 97 μmol/l and 270 μmol/l, respectively). With both CDHA and DHA growth inhibition was due to apoptosis, as indicated by the appearance of a sub-G 1 fraction. The apoptosis cascade involved downregulation of Bcl-2 protein; Bax expression was unchanged. Cell cycle progression was due to G 0 /G 1 arrest, which involved increased expression of p53 and p21 Cip1/Waf1 , and decreased expression of cyclin D 1 . CDHA modulated cell cycle regulatory proteins and apoptosis-related proteins in a manner similar to that of parent DHA. In the athymic mouse system 1.0% dietary CDHA, but not 0.2%, significantly suppressed growth of KPL-1 tumor cells; CDHA tended to decrease regional lymph node metastasis in a dose dependent manner. CDHA inhibited growth of KPL-1 human breast cancer cells in vitro more effectively than did DHA. The mechanisms of action involved modulation of apoptosis cascade and cell cycle progression. Dietary CDHA at 1.0% suppressed KPL-1 cell growth in the athymic mouse system

  16. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Science.gov (United States)

    Barick, B. K.; Rodríguez-Fernández, Carlos; Cantarero, Andres; Dhar, S.

    2015-05-01

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [ 11 2 ¯ 0 ] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  17. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  18. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Energy Technology Data Exchange (ETDEWEB)

    Barick, B. K., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in; Dhar, S., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400076 (India); Rodríguez-Fernández, Carlos; Cantarero, Andres [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  19. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Far-East Road, Chung-Li, Taoyuan, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: cjshih@kmu.edu.tw

    2008-04-03

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO{sub 2}. The activation energy for the crystallization of the cubic ZrO{sub 2} formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO{sub 2} formation. The TEM examination shows that the cubic ZrO{sub 2} has a spherical-like morphology with a size ranging from 10 to 20 nm.

  20. Comprehensive study of growth mechanism and properties of low Zn content Cd_1_-_xZn_xS thin films by chemical bath

    International Nuclear Information System (INIS)

    Rodriguez, Carlos Anibal; Sandoval-Paz, Myrna Guadalupe; Saavedra, Renato; De la Carrera, Francisco; Trejo-Cruz, Cuauhthemoc; Aragon, Luis E.; Sirena, Martin; Delplancke, Marie-Paule; Carrasco, Claudia

    2016-01-01

    Cd_1_-_xZn_xS thin films have been studied extensively as window layers for solar cell applications. However, a mismatch between the Cd_1_-_xZn_xS and copper-indium-gallium-selenide absorber layers increases with Zn film concentration, which reduces the device efficiency. In this work, Cd_1_-_xZn_xS thin films with low Zn concentrations were analyzed. The effect of the addition of different molar Zn concentrations to the reaction mixture on the growth mechanism of Cd_1_-_xZn_xS thin films and the influence of these mechanisms on structural, optical and morphological properties of the films has been studied. Cd_1_-_xZn_xS thin films were synthesized by chemical bath deposition using an ammonia-free alkaline solution. Microstructural analysis by X-ray diffraction showed that all deposited films grew with hexagonal structure and crystallite sizes decreased as the Zn concentration in the film increased. Optical measurements indicated a high optical transmission between 75% and 90% for wavelengths above the absorption edge. Band gap value increased from 2.48 eV to 2.62 eV, and the refractive index values for Cd_1_-_xZn_xS thin films decreased as the Zn increased. These changes in films and properties are related to a modification in growth mechanism of the Cd_1_-_xZn_xS thin films, with the influence of Zn(OH)_2 formation being more important as Zn in solution increases. (author)

  1. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, I.H.

    2000-01-01

    Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space

  2. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    International Nuclear Information System (INIS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loic; Gnecco, Enrico

    2011-01-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H 2 O 2 was observed in the presence of 'cethyl trimethylammonium bromide' (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H 2 O 2 : Au 0 → Au + , Au 0 + Au n+ → 2Au 3+ , n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H 2 O 2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H 2 O 2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au 3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br - ions.

  3. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  4. Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

    Science.gov (United States)

    2010-01-01

    cell lines (NCI-N417, NCI-H345, NCI-N592) were found to convert exogenous NT into the fragments NT1 –8 and NT9–13, reflecting the presence of...secrete NT. However, exogenous NT was degraded primarily to NT1 –11, consistent with the presence of neutral endopeptidase 3.4.24.11 in these cells . This...TITLE: Prostate Cancer Cell Growth: Stimulatory Role of Neurotensin and Mechanism of Inhibition by Flavonoids as Related to Protein Kinase C

  5. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  6. Applied model for the growth of the daytime mixed layer

    DEFF Research Database (Denmark)

    Batchvarova, E.; Gryning, Sven-Erik

    1991-01-01

    numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed...... layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained....

  7. On the mechanism of self-deceleration of the thin oxide film growth

    CERN Document Server

    Mukhambetov, D G

    2002-01-01

    The objective of this work was to investigate the kinetics of the two-phase oxide film growth on the alpha-Fe surface at temperatures of 650-750 K. We experimentally determined that the film thickness (h)-time oxidation (tau) relationship in the range denoted above is a logarithmic function, whereas Cabrera and Mott's theory gives a square law of film growth. In our work, analytical treatment of experimental data was made based on this theory, but we propose that self-deceleration of the film growth is caused not by attenuation of the electric intensity in the film because of an increase of h but by the shielding influence of the space charge of diffusing ions and electrons in that oxide film. With that purpose in view, the Debye shielding distance for plasma substance state in the oxide film was taken into consideration. The logarithmic law of oxide film growth was derived. Estimated calculations of this law's parameters were made that quantitatively correspond with literature data. The results obtained were...

  8. Mechanisms of plasma-assisted catalyzed growth of carbon nanofibres: a theoretical modeling

    Science.gov (United States)

    Gupta, R.; Sharma, S. C.; Sharma, R.

    2017-02-01

    A theoretical model is developed to study the nucleation and catalytic growth of carbon nanofibers (CNFs) in a plasma environment. The model includes the charging of CNFs, the kinetics of the plasma species (neutrals, ions and electrons), plasma pretreatment of the catalyst film, and various processes unique to a plasma-exposed catalyst surface such as adsorption of neutrals, thermal dissociation of neutrals, ion induced dissociation, interaction between neutral species, stress exerted by the growing graphene layers and the growth of CNFs. Numerical calculations are carried out for typical glow discharge plasma parameters. It is found that the growth rate of CNFs decreases with the catalyst nanoparticle size. In addition, the effect of hydrogen on the catalyst nanoparticle size, CNF tip diameter, CNF growth rate, and the tilt angle of the graphene layers to the fiber axis are investigated. Moreover, it is also found that the length of CNFs increases with hydrocarbon number density. Our theoretical findings are in good agreement with experimental observations and can be extended to enhance the field emission characteristics of CNFs.

  9. Effect of residual stresses on interface crack growth by void expansion mechanism

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2006-01-01

    Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids to c....... The results show that the value of the T-stress component in the softer material adjacent to the interface crack plays the dominant role, such that a negative value of this stress component gives a significant increase of the interface fracture toughness.......Crack growth along an interface between two adjacent elastic-plastic materials in a layered solid is analysed, using special interface elements to represent the fracture process ahead of the crack-tip. These interface elements account for ductile failure by the nucleation and growth of voids...... to coalescence. In these elements the stress components normal to the interface and the shear stresses are given by equilibrium with the surrounding material, and the stress component tangential to the interface is determined by the requirement of compatibility with the surrounding material in the tangential...

  10. Trajectories and models of individual growth

    Directory of Open Access Journals (Sweden)

    Arseniy Karkach

    2006-11-01

    Full Text Available It has long been recognized that the patterns of growth play an important role in the evolution of age trajectories of fertility and mortality (Williams, 1957. Life history studies would benefit from a better understanding of strategies and mechanisms of growth, but still no comparative research on individual growth strategies has been conducted. Growth patterns and methods have been shaped by evolution and a great variety of them are observed. Two distinct patterns - determinate and indeterminate growth - are of a special interest for these studies since they present qualitatively different outcomes of evolution. We attempt to draw together studies covering growth in plant and animal species across a wide range of phyla focusing primarily on the noted qualitative features. We also review mathematical descriptions of growth, namely empirical growth curves and growth models, and discuss the directions of future research.

  11. A nonpeptidyl growth hormone secretagogue.

    Science.gov (United States)

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  12. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Sakamoto Atsuhiro

    2011-01-01

    Full Text Available Abstract Background Local anesthetics alleviate neuropathic pain in some cases in clinical practice, and exhibit longer durations of action than those predicted on the basis of the pharmacokinetics of their blocking effects on voltage-dependent sodium channels. Therefore, local anesthetics may contribute to additional mechanisms for reversal of the sensitization of nociceptive pathways that occurs in the neuropathic pain state. In recent years, spinal glial cells, microglia and astrocytes, have been shown to play critical roles in neuropathic pain, but their participation in the analgesic effects of local anesthetics remains largely unknown. Results Repetitive epidural administration of ropivacaine reduced the hyperalgesia induced by chronic constrictive injury of the sciatic nerve. Concomitantly with this analgesia, ropivacaine suppressed the increases in the immunoreactivities of CD11b and glial fibrillary acidic protein in the dorsal spinal cord, as markers of activated microglia and astrocytes, respectively. In addition, epidural administration of a TrkA-IgG fusion protein that blocks the action of nerve growth factor (NGF, which was upregulated by ropivacaine in the dorsal root ganglion, prevented the inhibitory effect of ropivacaine on microglia, but not astrocytes. The blockade of NGF action also abolished the analgesic effect of ropivacaine on neuropathic pain. Conclusions Ropivacaine provides prolonged analgesia possibly by suppressing microglial activation in an NGF-dependent manner and astrocyte activation in an NGF-independent manner in the dorsal spinal cord. Local anesthetics, including ropivacaine, may represent a new approach for glial cell inhibition and, therefore, therapeutic strategies for neuropathic pain.

  13. Segmentation of foreground apple targets by fusing visual attention mechanism and growth rules of seed points

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.; Shang, W.; Shao, Y.; Wang, D.; Yu, X.; Song, H.

    2015-07-01

    Accurate segmentation of apple targets is one of the most important problems to be solved in the vision system of apple picking robots. This work aimed to solve the difficulties that background targets often bring to foreground targets segmentation, by fusing the visual attention mechanism and the growth rule of seed points. Background targets could be eliminated by extracting the ROI (region of interest) of apple targets; the ROI was roughly segmented on the HSV color space, and then each of the pixels was used as a seed growing point. The growth rule of the seed points was adopted to obtain the whole area of apple targets from seed growing points. The proposed method was tested with 20 images captured in a natural scene, including 54 foreground apple targets and approximately 84 background apple targets. Experimental results showed that the proposed method can remove background targets and focus on foreground targets, while the k-means algorithm and the chromatic aberration algorithm cannot. Additionally, its average segmentation error rate was 13.23%, which is 2.71% higher than that of the k-means algorithm and 2.95% lower than that of the chromatic aberration algorithm. In conclusion, the proposed method contributes to the vision system of apple-picking robots to locate foreground apple targets quickly and accurately under a natural scene. (Author)

  14. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  15. On the growth of ammonium nitrate(III) crystals

    NARCIS (Netherlands)

    Vogels, L.J.P.; Marsman, H.A.M.; Verheijen, M.A.; Bennema, P.; Elwenspoek, Michael Curt

    The growth rate of NH4NO3 phase III crystals is measured and interpreted using two models. The first is a standard crystal growth model based on a spiral growth mechanism, the second outlines the concept of kinetical roughening. As the crystal becomes rough a critical supersaturation can be

  16. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  17. 35. Conference of the DVM Working Group on Fracture Processes: Advances in fracture and damage mechanics - simulation methods of fracture mechanics

    International Nuclear Information System (INIS)

    2003-01-01

    Subjects of the meeting were: Simulation of fatigue crack growth in real strucures using FEA (M. Fulland, Paderborn); Modelling of ductile crack growth (W. Brocks, Geesthacht); Advances in non-local modelling of ductile damage (F. Reusch et al., Berlin, Dortmund); Fracture mechanics of ceramics (D. Munz, Karlsruhe); From materials testing to vehicle crash testing (J.G. Blauel, Freiburg); Analytical simulation of crack growth in thin-walled structures (U. Zerbst, Geesthacht); The influence of intrinsic stresses on fatigue crack growth (C. Dalle Donne etc., Cologne, Dortmund, Pisa, and M. Sander, Paderborn); Fracture mechanical strength calculation in case of mixed mode loads on cracks (H.A. Richard, Paderborn); Numeric simulation of intrinsic stresses during welding (C. Veneziano, Freiburg); New research fields of the Fraunhofer-Institut fuer Werkstoffmechanik (P. Gumbsch, Head of the Institute, Freiburg); Modern developments and advances in fracture and damage mechanics; Numeric and experimental simulation of crack propagation and damage processes; Exemplary damage cases; Fracture mechanics in product development; Failure characteristics of lightweight constructional materials and joints [de

  18. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  19. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  20. Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth

    Science.gov (United States)

    Gladfelter, E. H.

    2007-12-01

    Many Acropora palmata colonies consist of an encrusting basal portion and erect branches. Linear growth of the skeleton results in extension along the substrate (encrusting growth), lengthening of branches (axial growth) and thickening of branches and crust (radial growth). Scanning Electron Microscopy is used to compare the mechanisms of skeletal extension between encrusting growth and axial growth. In encrusting growth, the distal margin of the skeleton lacks corallites (which develop about 1 mm from the edge); in contrast, in axial growth, axial corallites along the branch tip form the distal portion of the skeleton. In both locations, the distal margin of the skeleton consists of a lattice-like structure composed of rods that extend from the body of the skeleton and bars that connect these rods. An actively extending skeleton is characterized by sharply pointed rods and partially developed bars. Distal growth of rods (and formation of bars) is effected by the formation of new sclerodermites. Each sclerodermite begins with the deposition of fusiform crystals (that range in length from 1 to 5 μm). These provide a surface for nucleation and growth of spherulitic tufts, clusters of short (<1 μm long) aragonite needles. The needles that are oriented perpendicular to the axis of the skeletal element (rod or bar), and perpendicular to the overlying calicoblastic epithelium, continue extension to appear on the surface of the skeleton as 10-15 μm wide bundles (of needle tips) called fasciculi. However, some crusts that abut competitors for space have a different morphology of skeletal elements (rods and bars). The distal edge of these crusts terminates in blunt coalescing rods, and bars that are fully formed. Absence of fusiform crystals, lack of sharply pointed rods and bars, and full development of sclerodermites characterize a skeletal region that has ceased, perhaps only temporarily, skeletal extension.