WorldWideScience

Sample records for vks2 dynamo experiment

  1. Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    Ravelet, F.; Monchaux, R.; Aumaitre, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Odier, Ph.; Plihon, N.; Pinton, J.-F.; Volk, R.

    2008-01-01

    We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow

  2. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  3. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  4. Magnetic field saturation in the Riga dynamo experiment.

    Science.gov (United States)

    Gailitis, A; Lielausis, O; Platacis, E; Dement'ev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G

    2001-04-02

    After the dynamo experiment in November 1999 [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000)] had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.

  5. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  6. New Mexico Liquid Metal αω -dynamo experiment: Most Recent Progress

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui

    2017-10-01

    The goal of the New Mexico Liquid Metal αω -dynamo experiment is to demonstrate a galactic dynamo can be generated through two phases, the ω-phase and α-phase by two semi-coherent flows in laboratory. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, major upgrades are needed. The upgrades include building a helicity injection facility, mounting new 100hp motors and new sensors, designing a new data acquisition system capable of transmitting data from about 80 sensors in a high speed rotating frame with an overall 200kS/sec sampling rate. We hope the upgrade can be utilized to answer the question of whether a self-sustaining αω -dynamo can be implemented with a realistic lab fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  7. Identification of vortexes obstructing the dynamo mechanism in laboratory experiments

    Science.gov (United States)

    Limone, A.; Hatch, D. R.; Forest, C. B.; Jenko, F.

    2013-06-01

    The magnetohydrodynamic dynamo effect explains the generation of self-sustained magnetic fields in electrically conducting flows, especially in geo- and astrophysical environments. Yet the details of this mechanism are still unknown, e.g., how and to which extent the geometry, the fluid topology, the forcing mechanism, and the turbulence can have a negative effect on this process. We report on numerical simulations carried out in spherical geometry, analyzing the predicted velocity flow with the so-called singular value decomposition, a powerful technique that allows us to precisely identify vortexes in the flow which would be difficult to characterize with conventional spectral methods. We then quantify the contribution of these vortexes to the growth rate of the magnetic energy in the system. We identify an axisymmetric vortex, whose rotational direction changes periodically in time, and whose dynamics are decoupled from those of the large scale background flow, that is detrimental for the dynamo effect. A comparison with experiments is carried out, showing that similar dynamics were observed in cylindrical geometry. These previously unexpected eddies, which impede the dynamo effect, offer an explanation for the experimental difficulties in attaining a dynamo in spherical geometry.

  8. Effects of discontinuous magnetic permeability on magnetodynamic problems

    KAUST Repository

    Guermond, J.-L.

    2011-07-01

    A novel approximation technique using Lagrange finite elements is proposed to solve magneto-dynamics problems involving discontinuous magnetic permeability and non-smooth interfaces. The algorithm is validated on benchmark problems and is used for kinematic studies of the Cadarache von Kármán Sodium 2 (VKS2) experimental fluid dynamo. © 2011 Elsevier Inc.

  9. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  10. Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks

    Science.gov (United States)

    Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark

    2016-10-01

    The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.

  11. New results on an equipartition dynamo

    DEFF Research Database (Denmark)

    Dorch, S. B. F.; Archontis, V.

    2006-01-01

    This contribution presents results from numerical computer experiments with a 3-d steady sine flow (with zero mean helicity) that drives fast dynamo action. The mode of operation of this so-called ``no-cosines" dynamo (recently dubbed ``the Archontis dynamo"" by David Galloway) was studied during...... significantly higher that intermittent turbulent dynamos: Namely very close to energy equipartition for high Reynolds numbers. The equipartition solution however is not turbulent but a laminar solution that acts as an attractor to other modes. Similarities and differences, in the way the magnetic field...

  12. Strategický rozvoj společnosti VKS Pohledští Dvořáci a.s.

    OpenAIRE

    Hniličková, Kristýna

    2011-01-01

    Presented diploma thesis deals with the strategic development of the company VKS Pohledští Dvořáci a.s. The thesis contains a list of current activities of the company and suggests opportunities for further development. To reach this objective various internal and external analysis are used, namely PEST analysis, Porter's five forces model, the Value chain and SWOT analysis. To explore the possibilities for future development of the company, two growth strategies are applied -- Porter's Gener...

  13. Measurement of the dynamo effect in a plasma

    International Nuclear Information System (INIS)

    Ji, H.; Prager, S.C.; Almagri, A.F.; Sarff, J.S.; Hirano, Y.; Toyama, H.

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the α effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the α effect accounts for the dynamo current generation, even in the time dependence through a ''sawtooth'' cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ''electron diamagnetic dynamo'' is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor's conjecture

  14. Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Fatima [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences

    2018-02-22

    Magnetic fields are observed to exist on all scales in many astrophysical sources such as stars, galaxies, and accretion discs. Understanding the origin of large scale magnetic fields, whereby the field emerges on spatial scales large compared to the fluctuations, has been a particularly long standing challenge. Our physics objective are: 1) what are the minimum ingredients for large-scale dynamo growth? 2) could a large-scale magnetic field grow out of turbulence and sustained despite the presence of dissipation? These questions are fundamental for understanding the large-scale dynamo in both laboratory and astrophysical plasmas. Here, we report major new findings in the area of Large-Scale Dynamo (magnetic field generation).

  15. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow

    International Nuclear Information System (INIS)

    Ravelet, F.

    2005-09-01

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  16. Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow; Bifurcations globales hydrodynamiques et magnetohydrodynamiques dans un ecoulement de von Karman turbulent

    Energy Technology Data Exchange (ETDEWEB)

    Ravelet, F

    2005-09-15

    We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)

  17. Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas: Simulations and Experiments

    Science.gov (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E.; Forest, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B.; Ross, J.; Ryutov, D.; Ryu, D.; Reville, B.; Miniati, F.; Schekochihin, A.; Froula, D.; Lamb, D.; Gregori, G.

    2017-10-01

    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model for cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo. We have conceived experiments to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through large-scale 3D FLASH simulations on the Mira supercomputer at ANL, and the laser-driven experiments we conducted with the OMEGA laser at LLE. Our results indicate that turbulence is capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. This work was supported in part from the ERC (FP7/2007-2013, No. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 and DE-SC0016566 to the University of Chicago, and DE-AC02-06CH11357 to ANL.

  18. An Experimental MHD Dynamo

    International Nuclear Information System (INIS)

    Forest, C. B.

    2002-01-01

    The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na

  19. Faraday's first dynamo: A retrospective

    Science.gov (United States)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  20. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

    2016-08-01

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.

  1. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  2. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    Science.gov (United States)

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  3. The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services.

    Science.gov (United States)

    Castaño-Díez, Daniel

    2017-06-01

    Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.

  4. Magnetic field dynamos and magnetically triggered flow instabilities

    Science.gov (United States)

    Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O. N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.

    2017-07-01

    The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.

  5. Waldmeier's Rules in the Solar and Stellar Dynamos

    Science.gov (United States)

    Pipin, Valery; Kosovichev, Alexander

    2015-08-01

    The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284

  6. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS

    International Nuclear Information System (INIS)

    Lemerle, Alexandre; Charbonneau, Paul

    2017-01-01

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  7. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)

    2017-01-10

    In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.

  8. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  9. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  10. Statistical theory of dynamo

    Science.gov (United States)

    Kim, E.; Newton, A. P.

    2012-04-01

    One major problem in dynamo theory is the multi-scale nature of the MHD turbulence, which requires statistical theory in terms of probability distribution functions. In this contribution, we present the statistical theory of magnetic fields in a simplified mean field α-Ω dynamo model by varying the statistical property of alpha, including marginal stability and intermittency, and then utilize observational data of solar activity to fine-tune the mean field dynamo model. Specifically, we first present a comprehensive investigation into the effect of the stochastic parameters in a simplified α-Ω dynamo model. Through considering the manifold of marginal stability (the region of parameter space where the mean growth rate is zero), we show that stochastic fluctuations are conductive to dynamo. Furthermore, by considering the cases of fluctuating alpha that are periodic and Gaussian coloured random noise with identical characteristic time-scales and fluctuating amplitudes, we show that the transition to dynamo is significantly facilitated for stochastic alpha with random noise. Furthermore, we show that probability density functions (PDFs) of the growth-rate, magnetic field and magnetic energy can provide a wealth of useful information regarding the dynamo behaviour/intermittency. Finally, the precise statistical property of the dynamo such as temporal correlation and fluctuating amplitude is found to be dependent on the distribution the fluctuations of stochastic parameters. We then use observations of solar activity to constrain parameters relating to the effect in stochastic α-Ω nonlinear dynamo models. This is achieved through performing a comprehensive statistical comparison by computing PDFs of solar activity from observations and from our simulation of mean field dynamo model. The observational data that are used are the time history of solar activity inferred for C14 data in the past 11000 years on a long time scale and direct observations of the sun spot

  11. MHD turbulent dynamo in astrophysics: Theory and numerical simulation

    Science.gov (United States)

    Chou, Hongsong

    2001-10-01

    This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).

  12. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    hour) likely precludes impact fields as a source of thermoremanent magnetization. Our paleointensity experiments and Ar/Ar thermochronometry, currently in progress, should permit us to determine whether this remanence was acquired from a late lunar core dynamo. (1) Tikoo et al. (2012) Proc. Lunar Planet Sci. Conf. 43rd, #2691. (2) Gose et al. (1973) The Moon (7), p. 196-201.

  13. A two-billion-year history for the lunar dynamo.

    Science.gov (United States)

    Tikoo, Sonia M; Weiss, Benjamin P; Shuster, David L; Suavet, Clément; Wang, Huapei; Grove, Timothy L

    2017-08-01

    Magnetic studies of lunar rocks indicate that the Moon generated a core dynamo with surface field intensities of ~20 to 110 μT between at least 4.25 and 3.56 billion years ago (Ga). The field subsequently declined to lunar dynamo by at least 1 billion years. Such a protracted history requires an extraordinarily long-lived power source like core crystallization or precession. No single dynamo mechanism proposed thus far can explain the strong fields inferred for the period before 3.56 Ga while also allowing the dynamo to persist in such a weakened state beyond ~2.5 Ga. Therefore, our results suggest that the dynamo was powered by at least two distinct mechanisms operating during early and late lunar history.

  14. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  15. Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence

    International Nuclear Information System (INIS)

    Eyink, Gregory L; Neto, Antonio F

    2010-01-01

    We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawedzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.

  16. A THREE-DIMENSIONAL BABCOCK-LEIGHTON SOLAR DYNAMO MODEL

    International Nuclear Information System (INIS)

    Miesch, Mark S.; Dikpati, Mausumi

    2014-01-01

    We present a three-dimensional (3D) kinematic solar dynamo model in which poloidal field is generated by the emergence and dispersal of tilted sunspot pairs (more generally bipolar magnetic regions, or BMRs). The axisymmetric component of this model functions similarly to previous 2.5 dimensional (2.5D, axisymmetric) Babcock-Leighton (BL) dynamo models that employ a double-ring prescription for poloidal field generation but we generalize this prescription into a 3D flux emergence algorithm that places BMRs on the surface in response to the dynamo-generated toroidal field. In this way, the model can be regarded as a unification of BL dynamo models (2.5D in radius/latitude) and surface flux transport models (2.5D in latitude/longitude) into a more self-consistent framework that builds on the successes of each while capturing the full 3D structure of the evolving magnetic field. The model reproduces some basic features of the solar cycle including an 11 yr periodicity, equatorward migration of toroidal flux in the deep convection zone, and poleward propagation of poloidal flux at the surface. The poleward-propagating surface flux originates as trailing flux in BMRs, migrates poleward in multiple non-axisymmetric streams (made axisymmetric by differential rotation and turbulent diffusion), and eventually reverses the polar field, thus sustaining the dynamo. In this Letter we briefly describe the model, initial results, and future plans

  17. A long-lived lunar dynamo driven by continuous mechanical stirring.

    Science.gov (United States)

    Dwyer, C A; Stevenson, D J; Nimmo, F

    2011-11-09

    Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

  18. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  19. The solar dynamo

    International Nuclear Information System (INIS)

    Brandenburg, A.; Helsinki Univ.; Tuominen, I.

    1991-01-01

    The traditional αΩ-dynamo as a model for the solar cycle has been successful in explaining the butterfly diagram, phase relations between poloidal and toroidal field, and polar branch migration features. Observational and theoretical achievements in recent years have however shaken this picture. The current trend is towards dynamos operating in the overshoot region of the convection zone. Nevertheless, there are many open questions and a consistent picture has not been established. In this paper we compare recent approaches and discuss remaining problems. (orig.)

  20. Towards the geophysical regime in numerical dynamo models: studies of rapidly-rotating convection driven dynamos with low Pm and constant heat flux boundary conditions

    DEFF Research Database (Denmark)

    Sheyko, A.A.; Finlay, Chris; Marti, P.

    We present a set of numerical dynamo models with the convection strength varied by a factor of 30 and the ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates (E =nu/(2 Omega d^2 ) = 10-6 and 10-7 ) using a heat flux outer BC. This regime has been little explored...... on the structure of the dynamos and how this changes in relation to the selection of control parameters, a comparison with the proposed rotating convection and dynamo scaling laws, energy spectra of steady solutions and inner core rotation rates. Magnetic field on the CMB. E=2.959*10-7, Ra=6591.0, Pm=0.05, Pr=1....

  1. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes ...... to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.......A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...

  2. The Global Solar Dynamo

    Science.gov (United States)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  3. Convection and Dynamo Action in Ice Giant Dynamo Models with Electrical Conductivity Stratification

    Science.gov (United States)

    Soderlund, K. M.; Featherstone, N. A.; Heimpel, M. H.; Aurnou, J. M.

    2017-12-01

    Uranus and Neptune are relatively unexplored, yet critical for understanding the physical and chemical processes that control the behavior and evolution of giant planets. Because their multipolar magnetic fields, three-jet zonal winds, and extreme energy balances are distinct from other planets in our Solar System, the ice giants provide a unique opportunity to test hypotheses for internal dynamics and magnetic field generation. While it is generally agreed that dynamo action in the ionic ocean generates their magnetic fields, the mechanisms that control the morphology, strength, and evolution of the dynamos - which are likely distinct from those in the gas giants and terrestrial planets - are not well understood. We hypothesize that the dynamos and zonal winds are dynamically coupled and argue that their characteristics are a consequence of quasi-three-dimensional turbulence in their interiors. Here, we will present new dynamo simulations with an inner electrically conducting region and outer electrically insulating layer to self-consistently couple the ionic oceans and molecular envelopes of these planets. For each simulation, the magnetic field morphology and amplitude, zonal flow profile, and internal heat flux pattern will be compared against corresponding observations of Uranus and Neptune. We will also highlight how these simulations will both contribute to and benefit from a future ice giant mission.

  4. Data acquisition in a high-speed rotating frame for New Mexico Institute of Mining and Technology liquid sodium αω dynamo experiment.

    Science.gov (United States)

    Si, Jiahe; Colgate, Stirling A; Li, Hui; Martinic, Joe; Westpfahl, David

    2013-10-01

    New Mexico Institute of Mining and Technology liquid sodium αω-dynamo experiment models the magnetic field generation in the universe as discussed in detail by Colgate, Li, and Pariev [Phys. Plasmas 8, 2425 (2001)]. To obtain a quasi-laminar flow with magnetic Reynolds number R(m) ~ 120, the dynamo experiment consists of two co-axial cylinders of 30.5 cm and 61 cm in diameter spinning up to 70 Hz and 17.5 Hz, respectively. During the experiment, the temperature of the cylinders must be maintained to 110 °C to ensure that the sodium remains fluid. This presents a challenge to implement a data acquisition (DAQ) system in such high temperature, high-speed rotating frame, in which the sensors (including 18 Hall sensors, 5 pressure sensors, and 5 temperature sensors, etc.) are under the centrifugal acceleration up to 376g. In addition, the data must be transmitted and stored in a computer 100 ft away for safety. The analog signals are digitized, converted to serial signals by an analog-to-digital converter and a field-programmable gate array. Power is provided through brush/ring sets. The serial signals are sent through ring/shoe sets capacitively, then reshaped with cross-talk noises removed. A microcontroller-based interface circuit is used to decode the serial signals and communicate with the data acquisition computer. The DAQ accommodates pressure up to 1000 psi, temperature up to more than 130 °C, and magnetic field up to 1000 G. First physics results have been analyzed and published. The next stage of the αω-dynamo experiment includes the DAQ system upgrade.

  5. A homopolar disc dynamo experiment with liquid metal contacts

    OpenAIRE

    Avalos-Zúñiga, R. A.; Priede, J.; Bello-Morales, C. E.

    2017-01-01

    We present experimental results of a homopolar disc dynamo constructed at CICATA-Quer\\'etaro in Mexico. The device consists of a flat, multi-arm spiral coil which is placed above a fast-spinning metal disc and connected to the latter by sliding liquid-metal electrical contacts. Theoretically, self-excitation of the magnetic field is expected at the critical magnetic Reynolds number Rm~45, which corresponds to a critical rotation rate of about 10 Hz. We measured the magnetic field above the di...

  6. Dynamo generated by the centrifugal instability

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-10-01

    We present a scenario for magnetic field amplification where an electrically conducting fluid is confined in a differentially rotating, spherical shell with thin aspect ratio. When the angular momentum sufficiently decreases outwards, a hydrodynamic instability develops in the equatorial region, characterized by pairs of counter-rotating toroidal vortices similar to those observed in cylindrical Couette flow. These spherical Taylor-Couette vortices generate a subcritical dynamo magnetic field dominated by nonaxisymmetric components. We show that the critical magnetic Reynolds number seems to reach a constant value at large Reynolds number and that the global rotation can strongly decrease the dynamo onset. Our numerical results are understood within the framework of a simple dynamical system, and we propose a low-dimensional model for subcritical dynamo bifurcations. Implications for both laboratory dynamos and astrophysical magnetic fields are finally discussed.

  7. Bipolar Jets Launched by a Mean-field Accretion Disk Dynamo

    Science.gov (United States)

    Fendt, Christian; Gaßmann, Dennis

    2018-03-01

    By applying magnetohydrodynamic simulations, we investigate the launching of jets driven by a disk magnetic field generated by a mean-field disk dynamo. Extending our earlier studies, we explore the bipolar evolution of the disk α 2Ω-dynamo and the outflow. We confirm that a negative dynamo-α leads to a dipolar field geometry, whereas positive values generate quadrupolar fields. The latter remain mainly confined to the disk and cannot launch outflows. We investigate a parameter range for the dynamo-α ranging from a critical value below which field generation is negligible, {α }0,{crit}=-0.0005, to α 0 = ‑1.0. For weak | {α }0| ≤slant 0.07, two magnetic loop structures with opposite polarity may arise, which leads to reconnection and disturbs the field evolution and accretion-ejection process. For a strong dynamo-α, a higher poloidal magnetic energy is reached, roughly scaling with {E}mag}∼ | {α }0| , which also leads to higher accretion and ejection rates. The terminal jet speed is governed by the available magnetic energy and increases with the dynamo-α. We find jet velocities on the order of the inner disk Keplerian velocity. For a strong dynamo-α, oscillating dynamo modes may occur that can lead to a pulsed ejection. This is triggered by an oscillating mode in the toroidal field component. The oscillation period is comparable to the Keplerian timescale in the launching region, thus too short to be associated with the knots in observed jets. We find a hemispherically asymmetric evolution for the jet and counter-jet in the mass flux and field structure.

  8. GRAND MINIMA AND EQUATORWARD PROPAGATION IN A CYCLING STELLAR CONVECTIVE DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Augustson, Kyle; Miesch, Mark [High Altitude Observatory, Center Green 1, Boulder, CO 80301 (United States); Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/DSM–CNRS–Université Paris Diderot, IRFU/SAp, Gif-sur-Yvette (France); Toomre, Juri [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-08-20

    The 3D MHD Anelastic Spherical Harmonic code, using slope-limited diffusion, is employed to capture convective and dynamo processes achieved in a global-scale stellar convection simulation for a model solar-mass star rotating at three times the solar rate. The dynamo-generated magnetic fields possesses many timescales, with a prominent polarity cycle occurring roughly every 6.2 years. The magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation. The polarity reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. An equatorial migration of the magnetic field is seen, which is due to the strong modulation of the differential rotation rather than a dynamo wave. A poleward migration of magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families. This intermittent dynamo state potentially results from the simulation’s relatively low magnetic Prandtl number. A mean-field-based analysis of this dynamo simulation demonstrates that it is of the α-Ω type. The timescales that appear to be relevant to the magnetic polarity reversal are also identified.

  9. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  10. Persistence and origin of the lunar core dynamo

    Science.gov (United States)

    Suavet, Clément; Weiss, Benjamin P.; Cassata, William S.; Shuster, David L.; Gattacceca, Jérôme; Chan, Lindsey; Garrick-Bethell, Ian; Head, James W.; Grove, Timothy L.; Fuller, Michael D.

    2013-01-01

    The lifetime of the ancient lunar core dynamo has implications for its power source and the mechanism of field generation. Here, we report analyses of two 3.56-Gy-old mare basalts demonstrating that they were magnetized in a stable and surprisingly intense dynamo magnetic field of at least ∼13 μT. These data extend the known lifetime of the lunar dynamo by ∼160 My and indicate that the field was likely continuously active until well after the final large basin-forming impact. This likely excludes impact-driven changes in rotation rate as the source of the dynamo at this time in lunar history. Rather, our results require a persistent power source like precession of the lunar mantle or a compositional convection dynamo. PMID:23650386

  11. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  12. 3-dimensional simulation of dynamo effect of reversed field pinch

    International Nuclear Information System (INIS)

    Koide, Shinji.

    1990-09-01

    A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)

  13. A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution

    Science.gov (United States)

    Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.

    2014-05-01

    While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.

  14. High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α-Ω Dynamo

    International Nuclear Information System (INIS)

    Colgate, Stirling A.; Beckley, Howard; Si, Jiahe; Martinic, Joe; Westpfahl, David; Slutz, James; Westrom, Cebastian; Klein, Brianna; Schendel, Paul; Scharle, Cletus; McKinney, Travis; Ginanni, Rocky; Bentley, Ian; Mickey, Timothy; Ferrel, Regnar; Li, Hui; Pariev, Vladimir; Finn, John

    2011-01-01

    The Ω phase of the liquid sodium α-Ω dynamo experiment at New Mexico Institute of Mining and Technology in cooperation with Los Alamos National Laboratory has demonstrated a high toroidal field B φ that is ≅8xB r , where B r is the radial component of an applied poloidal magnetic field. This enhanced toroidal field is produced by the rotational shear in stable Couette flow within liquid sodium at a magnetic Reynolds number Rm≅120. Small turbulence in stable Taylor-Couette flow is caused by Ekman flow at the end walls, which causes an estimated turbulence energy fraction of (δv/v) 2 ∼10 -3 .

  15. Present state of the theory of a MHD-dynamo

    Energy Technology Data Exchange (ETDEWEB)

    Soward, A M; Roberts, P H

    1976-01-01

    A review is given of the state of the theory of a MHD-dynamo, that is, the theory of self-excited magnetic fields in homogeneous moving liquids. A description is given of two basic approaches-the turbulent dynamos of Steinbeck, Krause and Redler and the high-conductivity dynamo of Braginski, and a look is also taken at the relation between these dynamos. Finally a look is taken at the results of recent studies of the total problem of a MHD-dynamo, that is, at the results of recent attempts to solve the electro- and hydrodynamic equations and to obtain self-excited fields. 6 figs., 122 ref. (SJR)

  16. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  17. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  18. On self-exciting coupled Faraday disk homopolar dynamos driving series motors

    Science.gov (United States)

    Moroz, Irene M.; Hide, Raymond; Soward, Andrew M.

    1998-06-01

    We present the results of a preliminary analytical and numerical study of one of the simpler members of a hierarchy of N (where N ≥ 1) coupled self-exciting Faraday disk homopolar dynamos, incorporating motors as additional electrical elements driven by the dynamo-generated current, as proposed by Hide (1997). The hierarchy is a generalisation of a single disk dynamo ( N = 1) with just one electric motor in the system, and crucially, incorporating effects due to mechanical friction in both the disk and the motor, as investigated by Hide et al. (1996). This is describable by a set of three coupled autonomous nonlinear ordinary differential equations, which, due to the presence of the motor, has solutions corresponding to co-existing periodic states of increasing complexity, as well as to chaotic dynamics. We consider the case of two such homopolar dynamos ( N = 2) with generally dissimilar characteristics but coupled together magnetically, with the aim of determining the extent to which this coupled system differs in its behaviour from the single disk dynamo with a series motor (Hide et al. 1996). In the case when the units are identical, the behaviour of the double dynamo system (after initial transients have decayed away) is identical to that of the single dynamo system, with solutions (including “synchronised chaos”) locked in both amplitude and phase. When there is no motor in the system and the coefficient of mechanical friction in the disks is small, these transients resemble the well-known ‘non-synchronous’, but structurally unstable Rikitake solution.

  19. Ionospheric disturbance dynamo

    International Nuclear Information System (INIS)

    Blanc, M.; Richmond, A.D.

    1980-01-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes

  20. Planetary Dynamos: Investigations of Saturn and Ancient Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Sabine [University of Toronto

    2012-04-18

    Magnetic field observations by spacecraft missions have provided vital information on planetary dynamos. The four giant planets as well as Earth, Mercury and Ganymede have observable magnetic fields generated by active dynamos. In contrast, Moon and Mars only have remanent crustal fields from dynamo action in their early histories. A variety of magnetic field morphologies and intensities can be found in the solar system. We have found that some of the differences between planetary magnetic fields can be explained as the result of the presence of boundary thermal variations or stably-stratified layers. In this talk, I will discuss how dynamos are affected by these complications and discuss the implications for Mars’ magnetic dichotomy and Saturn’s extremely axisymmetric magnetic field.

  1. Stellar rotation, dynamo, electromagnetic braking, age an lithium burning

    International Nuclear Information System (INIS)

    Schatzmann, E.

    1989-01-01

    After an introduction describing the problem and the observational tests of the theory a consistant model of the dynamo mechanism in rotating star is presented. This provides for the electromagnetic braking a law Ω ∼ (1.t/t c har) -3 / 4 , in good agreement with the observations. This rests on the hypothesis that the main contribution to the EM braking is due to the magnetic field present in bipolar magnetic spots at the surface of the stellar disk. The premain sequence EM braking provides an initial angular velocity on arrival on the main sequence which is slightly smaller than the angular velocity when the dynamo turns on. Starting the dynamo takes place when the level at which the (αΩ) dynamo number becomes larger than one drops below the ionization level of hydrogen. Before that time, the surface dynamo mechanism would take place in a region of low ionization, where the magnetic Reynods number is so small that dissipation overtakes the building of the magnetic field. Turbulent mixing with a turbulent diffusion coefficient proportional to Ω 2 provides a consistant picture of the time and mass dependance of the surface abundance of Lithium. When the level of Li-burning is sufficiently far from the bottom of the convective zone an asymptotic value of lithium abundance is reached. This can explain the anomalous Li abundance of pop.II stars. (author). 40 refs

  2. The effect of collisionality and diamagnetism on the plasma dynamo

    International Nuclear Information System (INIS)

    Ji, H.; Yagi, Y.; Hattori, K.; Hirano, Y.; Shimada, T.; Maejima, Y.; Hayase, K.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1995-01-01

    Fluctuation-induced dynamo forces are measured over a wide range of electron collisionality in the edge of TPE-1RM20 Reversed-Field Pinch (RFP). In the collisionless region the Magnetohydrodynamic (MHD) dynamo alone can sustain the parallel current, while in the collisional region a new dynamo mechanism resulting from the fluctuations in the electron diamagnetic drift becomes dominant. A comprehensive picture of the RFP dynamo emerges by combining with earlier results from MST and REPUTE RFPs

  3. Saturn Dynamo Model (Invited)

    Science.gov (United States)

    Glatzmaier, G. A.

    2010-12-01

    There has been considerable interest during the past few years about the banded zonal winds and global magnetic field on Saturn (and Jupiter). Questions regarding the depth to which the intense winds extend below the surface and the role they play in maintaining the dynamo continue to be debated. The types of computer models employed to address these questions fall into two main classes: general circulation models (GCMs) based on hydrostatic shallow-water assumptions from the atmospheric and ocean modeling communities and global non-hydrostatic deep convection models from the geodynamo and solar dynamo communities. The latter class can be further divided into Boussinesq models, which do not account for density stratification, and anelastic models, which do. Recent efforts to convert GCMs to deep circulation anelastic models have succeeded in producing fluid flows similar to those obtained from the original deep convection anelastic models. We describe results from one of the original anelastic convective dynamo simulations and compare them to a recent anelastic dynamo benchmark for giant gas planets. This benchmark is based on a polytropic reference state that spans five density scale heights with a radius and rotation rate similar to those of our solar system gas giants. The resulting magnetic Reynolds number is about 3000. Better spatial resolution will be required to produce more realistic predictions that capture the effects of both the density and electrical conductivity stratifications and include enough of the turbulent kinetic energy spectrum. Important additional physics may also be needed in the models. However, the basic models used in all simulation studies of the global dynamics of giant planets will hopefully first be validated by doing these simpler benchmarks.

  4. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  5. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  6. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  7. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  8. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  9. Transitions in rapidly rotating convection dynamos

    Science.gov (United States)

    Tilgner, A.

    2013-12-01

    It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

  10. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  11. Differential rotation and the solar dynamo

    International Nuclear Information System (INIS)

    Stix, M.

    1976-01-01

    A number of numerical models for the generation of mean magnetic fields is examined and the fields are compared with the mean field of the Sun. In particular, αω-dynamos, which are based on differential rotation and cyclonic turbulence, are studied in the case of cylindrical surfaces of isorotation. Such dynamos have an oscillatory antisymmetric field as the most easily excited mode. Only models with an angular velocity which increases with increasing depth appear to be compatible with observations. A search for oscillatory ω x j-dynamos, where the α-effect is replaced by a different mean electric field perpendicular to the rotation vector ω and the mean current density j is also made. Oscillatory modes do exist for models with radial shear. Their migration is equatorwards for inwards increasing angular velocity. (orig./BJ) [de

  12. Efficiency Measurement Using a Motor-Dynamo Module

    Science.gov (United States)

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2009-01-01

    In this article, we describe a simple method which can be used to measure the efficiency of a low power dc motor, a motor-converted dynamo and a coupled motor-dynamo module as a function of the speed of rotation. The result can also be used to verify Faraday's law of electromagnetic induction. (Contains 1 table and 8 figures.)

  13. Physical conditions for Jupiter-like dynamo models

    Science.gov (United States)

    Duarte, Lúcia D. V.; Wicht, Johannes; Gastine, Thomas

    2018-01-01

    The Juno mission will measure Jupiter's magnetic field with unprecedented precision and provide a wealth of additional data that will allow us to constrain the planet's interior structure and dynamics. Here we analyse 66 different numerical simulations in order to explore the sensitivity of the dynamo-generated magnetic field to the planets interior properties. Jupiter field models based on pre-Juno data and up-to-date interior models based on ab initio simulations serve as benchmarks. Our results suggest that Jupiter-like magnetic fields can be found for a number of different models. These complement the steep density gradients in the outer part of the simulated shell with an electrical conductivity profile that mimics the low conductivity in the molecular hydrogen layer and thus renders the dynamo action in this region largely unimportant. We find that whether we assume an ideal gas or use the more realistic interior model based on ab initio simulations makes no difference. However, two other factors are important. A low Rayleigh number leads to a too strong axial dipole contribution while the axial dipole dominance is lost altogether when the convective driving is too strong. The required intermediate range that yields Jupiter-like magnetic fields depends on the other system properties. The second important factor is the convective magnetic Reynolds number radial profile Rmc(r), basically a product of the non-axisymmetric flow velocity and electrical conductivity. We find that the depth where Rmc exceeds about 50 is a good proxy for the top of the dynamo region. When the dynamo region sits too deep, the axial dipole is once more too dominant due to geometric reasons. Extrapolating our results to Jupiter and the result suggests that the Jovian dynamo extends to 95% of the planetary radius. The zonal flow system in our simulations is dominated by an equatorial jet which remains largely confined to the molecular layer. Where the jet reaches down to higher

  14. Faraday rotation signatures of fluctuation dynamos in young galaxies

    Science.gov (United States)

    Sur, Sharanya; Bhat, Pallavi; Subramanian, Kandaswamy

    2018-03-01

    Observations of Faraday rotation through high-redshift galaxies have revealed that they host coherent magnetic fields that are of comparable strengths to those observed in nearby galaxies. These fields could be generated by fluctuation dynamos. We use idealized numerical simulations of such dynamos in forced compressible turbulence up to rms Mach number of 2.4 to probe the resulting rotation measure (RM) and the degree of coherence of the magnetic field. We obtain rms values of RM at dynamo saturation of the order of 45-55 per cent of the value expected in a model where fields are assumed to be coherent on the forcing scale of turbulence. We show that the dominant contribution to the RM in subsonic and transonic cases comes from the general sea of volume filling fields, rather than from the rarer structures. However, in the supersonic case, strong field regions as well as moderately overdense regions contribute significantly. Our results can account for the observed RMs in young galaxies.

  15. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  16. The metastable dynamo model of stellar rotational evolution

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2014-01-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  17. Magnetohydrodynamic dynamos in the presence of fossil magnetic fields

    International Nuclear Information System (INIS)

    Boyer, D.W.

    1982-01-01

    A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively

  18. Magnetic reversals from planetary dynamo waves.

    Science.gov (United States)

    Sheyko, Andrey; Finlay, Christopher C; Jackson, Andrew

    2016-11-24

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines by columnar convection. Here we present an example of another class of reversing-geodynamo model, which operates in a regime of comparatively low viscosity and high magnetic diffusivity. This class does not fit into the paradigm of reversal regimes that are dictated by the value of the local Rossby number (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin to kinematic dynamo waves. Because our results are relevant in a regime of low viscosity and high magnetic diffusivity, and with geophysically appropriate boundary conditions, this form of dynamo wave may also be involved in geomagnetic reversals.

  19. Systematic parameter study of dynamo bifurcations in geodynamo simulations

    Science.gov (United States)

    Petitdemange, Ludovic

    2018-04-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike in previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the geostrophic zonal flow can develop and participate to the dynamo mechanism for non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently. The following three regimes are distinguished: (i) Close to the onset of convection (Rac) with only the most critical convective mode (wave number) being present, dynamos set in supercritically in the Ekman number regime explored here and are dipole-dominated. Larger critical magnetic Reynolds numbers indicate that they are particularly inefficient. (ii) in the range 3 10) , the relative importance of zonal flows increases with Ra in non-magnetic models. The field topology depends on the magnitude of the initial magnetic field. The dipolar branch has a subcritical behavior whereas the multipolar branch has a supercritical behavior. By approaching more realistic parameters, the extension of this bistable regime increases. A hysteretic behavior questions the common interpretation for geomagnetic reversals. Far above the dynamo threshold (by increasing the magnetic Prandtl number), Lorentz forces contribute to the first order force balance, as predicted for planetary dynamos. When

  20. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  1. Boundary effects on the MHD dynamo in laboratory plasmas

    International Nuclear Information System (INIS)

    Ho, Y.L.; Prager, S.C.

    1989-07-01

    In recent laboratory experiments, a dynamo-like mechanism has been demonstrated in which a portion of the axisymmetric component of the magnetic field is believed to be sustained by 3D spatial fluctuations in the field and flow. With a conducting shell at the plasma surface, past MHD computation shows that sustainment arises from fluctuations which cause magnetic reconnection. If the conducting wall is retracted from the plasma surface, the fluctuations are amplified and the dynamo sustainment is still active for the times studied, but an increased energy input to the plasma is required through the applied electric field. The retraction of the conducting wall enhances the helicity dissipation rate by the intersection of the fields with the resistive surface which bounds the plasma. This enhanced helicity dissipation is balanced by the helicity injection that accompanies the increased applied electric field. 17 refs., 7 figs., 1 tab

  2. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  3. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  4. Solar and Stellar Dynamos Saas-Fee Advanced Course 39 Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    2013-01-01

    Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in underst...

  5. The importance of wind-flux feedbacks during the November CINDY-DYNAMO MJO event

    Science.gov (United States)

    Riley Dellaripa, Emily; Maloney, Eric; van den Heever, Susan

    2015-04-01

    High-resolution, large-domain cloud resolving model (CRM) simulations probing the importance of wind-flux feedbacks to Madden-Julian Oscillation (MJO) convection are performed for the November 2011 CINDY-DYNAMO MJO event. The work is motivated by observational analysis from RAMA buoys in the Indian Ocean and TRMM precipitation retrievals that show a positive correlation between MJO precipitation and wind-induced surface fluxes, especially latent heat fluxes, during and beyond the CINDY-DYNAMO time period. Simulations are done using Colorado State University's Regional Atmospheric Modeling System (RAMS). The domain setup is oceanic and spans 1000 km x 1000 km with 1.5 km horizontal resolution and 65 stretched vertical levels centered on the location of Gan Island - one of the major CINDY-DYNAMO observation points. The model is initialized with ECMWF reanalysis and Aqua MODIS sea surface temperatures. Nudging from ECMWF reanalysis is applied at the domain periphery to encourage realistic evolution of MJO convection. The control experiment is run for the entire month of November so both suppressed and active, as well as, transitional phases of the MJO are modeled. In the control experiment, wind-induced surface fluxes are activated through the surface bulk aerodynamic formula and allowed to evolve organically. Sensitivity experiments are done by restarting the control run one week into the simulation and controlling the wind-induced flux feedbacks. In one sensitivity experiment, wind-induced surface flux feedbacks are completely denied, while in another experiment the winds are kept constant at the control simulations mean surface wind speed. The evolution of convection, especially on the mesoscale, is compared between the control and sensitivity simulations.

  6. Magnetorotational Dynamo Action in the Shearing Box

    Science.gov (United States)

    Walker, Justin; Boldyrev, Stanislav

    2017-10-01

    Magnetic dynamo action caused by the magnetorotational instability is studied in the shearing-box approximation with no imposed net magnetic flux. Consistent with recent studies, the dynamo action is found to be sensitive to the aspect ratio of the box: it is much easier to obtain in tall boxes (stretched in the direction normal to the disk plane) than in long boxes (stretched in the radial direction). Our direct numerical simulations indicate that the dynamo is possible in both cases, given a large enough magnetic Reynolds number. To explain the relatively larger effort required to obtain the dynamo action in a long box, we propose that the turbulent eddies caused by the instability most efficiently fold and mix the magnetic field lines in the radial direction. As a result, in the long box the scale of the generated strong azimuthal (stream-wise directed) magnetic field is always comparable to the scale of the turbulent eddies. In contrast, in the tall box the azimuthal magnetic flux spreads in the vertical direction over a distance exceeding the scale of the turbulent eddies. As a result, different vertical sections of the tall box are permeated by large-scale nonzero azimuthal magnetic fluxes, facilitating the instability. NSF AGS-1261659, Vilas Associates Award, NSF-Teragrid Project TG-PHY110016.

  7. Mean-field dynamos: The old concept and some recent developments. Karl Schwarzschild Award Lecture 2013

    Science.gov (United States)

    Rädler, K.-H.

    This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.

  8. Dynamos and MHD theory of turbulence suppression

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu; Itoh, Sanae-I; Itoh, Kimitaka

    2003-12-01

    Characteristics of electrically-conducting media are reviewed from the macroscopic viewpoint based on the mean-field magnetohydrodynamics, while being compared with the methodology and knowledge in fluid mechanics. The themes covered in this review range from the generation mechanism of stellar magnetic fields (dynamo) to transport properties in fusion. The primary concern here is to see the characteristics common to these apparently different phenomena, within the framework of the mean-field theory. Owing to the intrinsic limitation of the approach, the present discussions are limited more or less to specific aspects of phenomena. They are supplemented with the reference to theoretical, numerical, and observational approaches intrinsic to each theme. In the description of dynamo phenomena, an emphasis is put on the cross-helicity dynamo. Features common to the stellar magnetic-field generation and the rotational-motion drive in toroidal plasmas are illustrated on this basis. (author)

  9. DIPOLE COLLAPSE AND DYNAMO WAVES IN GLOBAL DIRECT NUMERICAL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schrinner, Martin; Dormy, Emmanuel [MAG (ENS/IPGP), LRA, Ecole Normale Superieure, 24 Rue Lhomond, 75252 Paris Cedex 05 (France); Petitdemange, Ludovic, E-mail: martin@schrinner.eu [Previously at Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg, Germany. (Germany)

    2012-06-20

    Magnetic fields of low-mass stars and planets are thought to originate from self-excited dynamo action in their convective interiors. Observations reveal a variety of field topologies ranging from large-scale, axial dipoles to more structured magnetic fields. In this article, we investigate more than 70 three-dimensional, self-consistent dynamo models in the Boussinesq approximation obtained by direct numerical simulations. The control parameters, the aspect ratio, and the mechanical boundary conditions have been varied to build up this sample of models. Both strongly dipolar and multipolar models have been obtained. We show that these dynamo regimes in general can be distinguished by the ratio of a typical convective length scale to the Rossby radius. Models with a predominantly dipolar magnetic field were obtained, if the convective length scale is at least an order of magnitude larger than the Rossby radius. Moreover, we highlight the role of the strong shear associated with the geostrophic zonal flow for models with stress-free boundary conditions. In this case the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. We interpret our results in terms of dynamo eigenmodes using the so-called test-field method. We can thus show that models in the dipolar regime are characterized by an isolated 'single mode'. Competing overtones become significant as the boundary to multipolar dynamos is approached. We discuss how these findings relate to previous models and to observations.

  10. Steady-state dynamo and current drive in a nonuniform bounded plasma

    International Nuclear Information System (INIS)

    Mett, R.R.; Taylor, J.B.

    1991-03-01

    Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs

  11. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  12. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    Science.gov (United States)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the

  13. Latitudinal profile of the ionospheric disturbance dynamo magnetic signature: comparison with the DP2 magnetic disturbance

    Directory of Open Access Journals (Sweden)

    K. Z. Zaka

    2009-09-01

    Full Text Available During magnetic storms, the auroral electrojets intensification affects the thermospheric circulation on a global scale. This process which leads to electric field and current disturbance at middle and low latitudes, on the quiet day after the end of a storm, has been attributed to the ionospheric disturbance dynamo (Ddyn. The magnetic field disturbance observed as a result of this process is the reduction of the H component amplitude in the equatorial region which constitutes the main characteristic of the ionospheric disturbance dynamo process, associated with a westward electric current flow. The latitudinal profile of the Ddyn disturbance dynamo magnetic signature exhibits an eastward current at mid latitudes and a westward one at low latitudes with a substantial amplification at the magnetic equator. Such current flow reveals an "anti-Sq" system established between the mid latitudes and the equatorial region and opposes the normal Sq current vortex. However, the localization of the eastward current and consequently the position and the extent of the "anti-Sq" current vortex changes from one storm to another. Indeed, for a strong magnetic storm, the eastward current is well established at mid latitudes about 45° N and for a weak magnetic storm, the eastward current is established toward the high latitudes (about 60° N, near the Joule heating region, resulting in a large "anti-Sq" current cell. The latitudinal profile of the Ddyn disturbance as well as the magnetic disturbance DP2 generated by the mechanism of prompt penetration of the magnetospheric convection electric field in general, show a weak disturbance at the low latitudes with a substantial amplification at the magnetic equator. Due to the intensity of the storm, the magnitude of the DP2 appears higher than the Ddyn over the American and Asian sector contrary to the African sector.

  14. Simulation study of dynamo structure in reversed field pinch

    International Nuclear Information System (INIS)

    Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.

    1992-10-01

    The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)

  15. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  16. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  17. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit; Verma, Mahendra K.; Samtaney, Ravi

    2015-01-01

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due

  18. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Gasquet, C.; Marie, L.; Ravelet, F.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Moulin, M.; Odier, Ph.; Pinton, J.-F.; Volk, R.

    2007-01-01

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R m ∼30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows

  19. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  20. Investigation into catalytic activity of chelates of transition elements with azomethine in connection with their bacteriostatic action

    Energy Technology Data Exchange (ETDEWEB)

    Aptekar' , M D; Gordeev, Yu M [Voroshilovgradskij Mashinostroitel' nyj Inst. (USSR)

    1975-07-01

    By gas-volumimetric methods catalytic activity of VKS Co(2), Ni(2), Cu(2), Zn(2) and Cd(2) on the o-oxyarylazometine basis in the hydroperoxide decomposition and ascorbic acid oxidation reactions was studied. Dependence of catalytic activity of VKS on nature of central atom, aldehyde and amine fragments structure of ligands, complex stability was determined. It was shown that some similarity exist between catalytic activity of studied VKS and their bacteriostatic influence on E.coli,Staph. aureus,B.subtilis.

  1. Stable Alfven-wave dynamo action in the reversed-field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  2. Feasible homopolar dynamo with sliding liquid-metal contacts

    OpenAIRE

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm~34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the ri...

  3. Dynamo: A Model Transition Framework for Dynamic Stability Control and Body Mass Manipulation

    Science.gov (United States)

    2011-11-01

    driving at high speed, and you turn the steering wheel hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the...sensors (GPS, IMU, LIDAR ) for vehicle control. Figure 17: Dynamo high-speed small UGV hardware platform We will perform experiments to measure the MTC

  4. Dynamical Regimes and the Dynamo Bifurcation in Geodynamo Simulations

    Science.gov (United States)

    Petitdemange, L.

    2017-12-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core : in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the strong shear of geostrophic zonal flows can develop and gives rise to non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently.Close to the onset of convection (Rac), the axial dipole grows exponentially in the kinematic phase and saturation occurs by marginally changing the flow structure close to the dynamo threshold Rmc. The resulting bifurcation is then supercritical.In the range 3RacIf (Ra/Ra_c>10), important zonal flows develop in non-magnetic models with low viscosity. The field topology depends on the initial magnetic field. The dipolar branch has a subcritical behaviour whereas the multipolar branch is supercritical. By approaching more realistic parameters, the extension of this bistable regime increases (lower Rossby numbers). An hysteretic behaviour questions the common interpretation for geomagnetic reversals. Far above Rm_c$, the Lorentz force becomes dominant, as it is expected in planetary cores.

  5. Spectral gaps, inertial manifolds and kinematic dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)]. E-mail: mnjmhd@am.uva.es

    2005-10-17

    Inertial manifolds are desirable objects when ones wishes a dynamical process to behave asymptotically as a finite-dimensional ones. Recently [Physica D 194 (2004) 297] these manifolds are constructed for the kinematic dynamo problem with time-periodic velocity. It turns out, however, that the conditions imposed on the fluid velocity to guarantee the existence of inertial manifolds are too demanding, in the sense that they imply that all the solutions tend exponentially to zero. The inertial manifolds are meaningful because they represent different decay rates, but the classical dynamos where the magnetic field is maintained or grows are not covered by this approach, at least until more refined estimates are found.

  6. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    Science.gov (United States)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  7. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  8. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    Science.gov (United States)

    Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2018-01-01

    Aims: We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. Methods: We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the α tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. Results: We find that the φφ-component of the α tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

  9. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  10. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  11. EFFECTS OF FOSSIL MAGNETIC FIELDS ON CONVECTIVE CORE DYNAMOS IN A-TYPE STARS

    International Nuclear Information System (INIS)

    Featherstone, Nicholas A.; Toomre, Juri; Browning, Matthew K.; Brun, Allan Sacha

    2009-01-01

    The vigorous magnetic dynamo action achieved within the convective cores of A-type stars may be influenced by fossil magnetic fields within their radiative envelopes. We study such effects through three-dimensional simulations that model the inner 30% by radius of a 2 M sun A-type star, capturing the convective core and a portion of the overlying radiative envelope within our computational domain. We employ the three-dimensional anelastic spherical harmonic code to model turbulent dynamics within a deep rotating spherical shell. The interaction between a fossil field and the core dynamo is examined by introducing a large-scale magnetic field into the radiative envelope of a mature A star dynamo simulation. We find that the inclusion of a twisted toroidal fossil field can lead to a remarkable transition in the core dynamo behavior. Namely, a super-equipartition state can be realized in which the magnetic energy built by dynamo action is 10-fold greater than the kinetic energy of the convection itself. Such strong-field states may suggest that the resulting Lorentz forces should seek to quench the flows, yet we have achieved super-equipartition dynamo action that persists for multiple diffusion times. This is achieved by the relative co-alignment of the flows and magnetic fields in much of the domain, along with some lateral displacements of the fastest flows from the strongest fields. Convection in the presence of such strong magnetic fields typically manifests as 4-6 cylindrical rolls aligned with the rotation axis, each possessing central axial flows that imbue the rolls with a helical nature. The roll system also possesses core-crossing flows that couple distant regions of the core. We find that the magnetic fields exhibit a comparable global topology with broad, continuous swathes of magnetic field linking opposite sides of the convective core. We have explored several poloidal and toroidal fossil field geometries, finding that a poloidal component is essential

  12. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  13. DYNAMO-HIA--a Dynamic Modeling tool for generic Health Impact Assessments.

    Directory of Open Access Journals (Sweden)

    Stefan K Lhachimi

    Full Text Available BACKGROUND: Currently, no standard tool is publicly available that allows researchers or policy-makers to quantify the impact of policies using epidemiological evidence within the causal framework of Health Impact Assessment (HIA. A standard tool should comply with three technical criteria (real-life population, dynamic projection, explicit risk-factor states and three usability criteria (modest data requirements, rich model output, generally accessible to be useful in the applied setting of HIA. With DYNAMO-HIA (Dynamic Modeling for Health Impact Assessment, we introduce such a generic software tool specifically designed to facilitate quantification in the assessment of the health impacts of policies. METHODS AND RESULTS: DYNAMO-HIA quantifies the impact of user-specified risk-factor changes on multiple diseases and in turn on overall population health, comparing one reference scenario with one or more intervention scenarios. The Markov-based modeling approach allows for explicit risk-factor states and simulation of a real-life population. A built-in parameter estimation module ensures that only standard population-level epidemiological evidence is required, i.e. data on incidence, prevalence, relative risks, and mortality. DYNAMO-HIA provides a rich output of summary measures--e.g. life expectancy and disease-free life expectancy--and detailed data--e.g. prevalences and mortality/survival rates--by age, sex, and risk-factor status over time. DYNAMO-HIA is controlled via a graphical user interface and is publicly available from the internet, ensuring general accessibility. We illustrate the use of DYNAMO-HIA with two example applications: a policy causing an overall increase in alcohol consumption and quantifying the disease-burden of smoking. CONCLUSION: By combining modest data needs with general accessibility and user friendliness within the causal framework of HIA, DYNAMO-HIA is a potential standard tool for health impact assessment based

  14. Evidence favoring an internally generated dynamo in the H chondrite parent planetesimal from the Forest Vale meteorite

    Science.gov (United States)

    Getzin, B. L.; Bryson, J. F. J.; Weiss, B. P.; Gattacceca, J.

    2016-12-01

    Chondritic meteorites are traditionally assumed to originate from undifferentiated asteroids due to their unmelted texture and composition. This implies that their parent bodies should not have formed a core or generated a dynamo. However, recent measurements of the H chondrite Portales Valley (Bryson et al., this meeting) observed post-accretional remanent magnetization interpreted as a record of a core dynamo, indicating that some chondrite parent bodies were partially differentiated. However, it has been proposed that the H chondrites may have been magnetized instead by a crustal remanent field. If this crustal magnetization was imparted by an early external source, such as nebular fields or even the solar wind, then the magnetization of H chondrites may not require a core dynamo. To test this hypothesis, we measured the magnetic properties of the Forest Vale H4 ordinary chondrite. Forest Vale cooled quickly (10000 K/My) and so would have acquired magnetization that represents the bulk of the H chondrite parent body's crust during the first 10 My of the solar system. Based on alternating field and pressure demagnetization experiments of natural remanent magnetization (NRM) and anhysteretic remanent magnetization, we conclude that Forest Vale contains no ancient magnetization and, due to its poor intrinsic magnetic recording properties, is unable to acquire a magnetization that is stable against even weak shocks (0.2 GPa). Furthermore, we show that a crust composed of Forest-Vale-like material magnetized by the upper limit field intensities expected for the nebula and solar wind fields (50 μT and 1 μT, respectively) produces an insufficient crustal remanent field (<2.5 μT and <0.045 μT, respectively) to explain the paleointensity recorded by Portales Valley ( 10 μT). Thus, we conclude that the field that magnetization Portales Valley is unlikely to be from a crustal remanence magnetized by early external fields, favoring a partially differentiated asteroid

  15. An update of Leighton's solar dynamo model

    Science.gov (United States)

    Cameron, R. H.; Schüssler, M.

    2017-03-01

    In 1969, Leighton developed a quasi-1D mathematical model of the solar dynamo, building upon the phenomenological scenario of Babcock published in 1961. Here we present a modification and extension of Leighton's model. Using the axisymmetric component (longitudinal average) of the magnetic field, we consider the radial field component at the solar surface and the radially integrated toroidal magnetic flux in the convection zone, both as functions of latitude. No assumptions are made with regard to the radial location of the toroidal flux. The model includes the effects of (I) turbulent diffusion at the surface and in the convection zone; (II) poleward meridional flow at the surface and an equatorward return flow affecting the toroidal flux; (III) latitudinal differential rotation and the near-surface layer of radial rotational shear; (iv) downward convective pumping of magnetic flux in the shear layer; and (v) flux emergence in the form of tilted bipolar magnetic regions treated as a source term for the radial surface field. While the parameters relevant for the transport of the surface field are taken from observations, the model condenses the unknown properties of magnetic field and flow in the convection zone into a few free parameters (turbulent diffusivity, effective return flow, amplitude of the source term, and a parameter describing the effective radial shear). Comparison with the results of 2D flux transport dynamo codes shows that the model captures the essential features of these simulations. We make use of the computational efficiency of the model to carry out an extended parameter study. We cover an extended domain of the 4D parameter space and identify the parameter ranges that provide solar-like solutions. Dipole parity is always preferred and solutions with periods around 22 yr and a correct phase difference between flux emergence in low latitudes and the strength of the polar fields are found for a return flow speed around 2 m s-1, turbulent

  16. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    Science.gov (United States)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  17. A basal magma ocean dynamo to explain the early lunar magnetic field

    Science.gov (United States)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  18. A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. I. Surface Magnetic Flux Evolution

    Science.gov (United States)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  19. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    International Nuclear Information System (INIS)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud

    2015-01-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics

  20. A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. I. SURFACE MAGNETIC FLUX EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Lemerle, Alexandre; Charbonneau, Paul; Carignan-Dugas, Arnaud, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de physique, Université de Montréal, 2900 boul. Édouard-Montpetit, Montréal, QC, H3T 1J4 (Canada)

    2015-09-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model’s key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.

  1. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  2. Large-scale dynamo action due to α fluctuations in a linear shear flow

    Science.gov (United States)

    Sridhar, S.; Singh, Nishant K.

    2014-12-01

    We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.

  3. A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations

    Directory of Open Access Journals (Sweden)

    Domenico G. eMeduri

    2016-04-01

    Full Text Available Earth's axial dipole field changes in a complex fashion on many differenttime scales ranging from less than a year to tens of million years.Documenting, analysing, and replicating this intricate signalis a challenge for data acquisition, theoretical interpretation,and dynamo modelling alike. Here we explore whether axial dipole variationscan be described by the superposition of a slow deterministic driftand fast stochastic fluctuations, i.e. by a Langevin-type system.The drift term describes the time averaged behaviour of the axial dipole variations,whereas the stochastic part mimics complex flow interactions over convective time scales.The statistical behaviour of the system is described by a Fokker-Planck equation whichallows useful predictions, including the average rates of dipole reversals and excursions.We analyse several numerical dynamo simulations, most of which havebeen integrated particularly long in time, and also the palaeomagneticmodel PADM2M which covers the past 2 Myr.The results show that the Langevin description provides a viable statistical modelof the axial dipole variations on time scales longer than about 1 kyr.For example, the axial dipole probability distribution and the average reversalrate are successfully predicted.The exception is PADM2M where the stochastic model reversal rate seems too low.The dependence of the drift on the axial dipolemoment reveals the nonlinear interactions that establish thedynamo balance. A separate analysis of inductive and diffusive magnetic effectsin three dynamo simulations suggests that the classical quadraticquenching of induction predicted by mean-field theory seems at work.

  4. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  5. SpF: Enabling Petascale Performance for Pseudospectral Dynamo Models

    Science.gov (United States)

    Jiang, W.; Clune, T.; Vriesema, J.; Gutmann, G.

    2013-12-01

    Pseudospectral (PS) methods possess a number of characteristics (e.g., efficiency, accuracy, natural boundary conditions) that are extremely desirable for dynamo models. Unfortunately, dynamo models based upon PS methods face a number of daunting challenges, which include exposing additional parallelism, leveraging hardware accelerators, exploiting hybrid parallelism, and improving the scalability of global memory transposes. Although these issues are a concern for most models, solutions for PS methods tend to require far more pervasive changes to underlying data and control structures. Further, improvements in performance in one model are difficult to transfer to other models, resulting in significant duplication of effort across the research community. We have developed an extensible software framework for pseudospectral methods called SpF that is intended to enable extreme scalability and optimal performance. High-level abstractions provided by SpF unburden applications of the responsibility of managing domain decomposition and load balance while reducing the changes in code required to adapt to new computing architectures. The key design concept in SpF is that each phase of the numerical calculation is partitioned into disjoint numerical 'kernels' that can be performed entirely in-processor. The granularity of domain-decomposition provided by SpF is only constrained by the data-locality requirements of these kernels. SpF builds on top of optimized vendor libraries for common numerical operations such as transforms, matrix solvers, etc., but can also be configured to use open source alternatives for portability. SpF includes several alternative schemes for global data redistribution and is expected to serve as an ideal testbed for further research into optimal approaches for different network architectures. In this presentation, we will describe the basic architecture of SpF as well as preliminary performance data and experience with adapting legacy dynamo codes

  6. Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature

    Directory of Open Access Journals (Sweden)

    A. D. Pataraya

    1997-01-01

    Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.

  7. Tidal excitation of elliptical instability in the Martian core: Possible mechanism for generating the core dynamo

    Science.gov (United States)

    Arkani-Hamed, J.; Seyed-Mahmoud, B.; Aldridge, K. D.; Baker, R. E.

    2008-06-01

    We propose a causal relationship between the creation of the giant impact basins on Mars by a large asteroid, ruptured when it entered the Roche limit, and the excitation of the Martian core dynamo. Our laboratory experiments indicate that the elliptical instability of the Martian core can be excited if the asteroid continually exerts tidal forces on Mars for ~20,000 years. Our numerical experiments suggest that the growth-time of the instability was 5,000-15,000 years when the asteroid was at a distance of 50,000-75,000 km. We demonstrate the stability of the orbital motion of an asteroid captured by Mars at a distance of 100,000 km in the presence of the Sun and Jupiter. We also present our results for the tidal interaction of the asteroid with Mars. An asteroid captured by Mars in prograde fashion can survive and excite the elliptical instability of the core for only a few million years, whereas a captured retrograde asteroid can excite the elliptical instability for hundreds of millions of years before colliding with Mars. The rate at which tidal energy dissipates in Mars during this period is over two orders of magnitude greater than the rate at which magnetic energy dissipates. If only 1% of the tidal energy dissipation is partitioned to the core, sufficient energy would be available to maintain the core dynamo. Accordingly, a retrograde asteroid is quite capable of exciting an elliptical instability in the Martian core, thus providing a candidate process to drive a core dynamo.

  8. Stochastic disk dynamo as a model of reversals of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Ito, H.M.

    1988-01-01

    A stochastic model is given of a system composed of N similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the Earth's magnetic field are regarded as large deviations caused by a small random force of O(N/sup -1/2/) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the paleomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparison are made between the model and dynamical disk dynamo models

  9. A comprehensive view of solar-terrestrial relationships in terms of a chain of four dynamo-powered plasma acceleration processes

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1983-01-01

    This paper emphasizes an effort to link processes which relate solar activity and magnetospheric disturbances in terms of energy transfer through a chain of four elements. In this view, each element is explicitly thought to be powered by a dynamo, namely the solar wind generation dynamo, the solar flare dynamo, the solar wind-magnetosphere dynamo and the aurora dynamo, respectively. Each dynamo powers a plasma acceleration process by the Lorentz force and the plasma flows thus generated are the solar wind, the flare-generated solar wind disturbance, the magnetospheric plasma convection and the ionospheric convection, respectively. Each plasma flow conveys the energy from one element to the next in the chain. Some of the kinetic energy of the photospheric plasma is eventually deposited in the polar ionosphere as heat energy. (author)

  10. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  11. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  12. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  13. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  14. Tracing control of chaos for the coupled dynamos dynamical system

    International Nuclear Information System (INIS)

    Wang Xuedi; Tian Lixin

    2004-01-01

    This paper introduces a new method for the coupled dynamos dynamical system, which can be applied to the decision of the chaotic behavior of the system. And research the tracing control of the chaos for the coupled dynamos dynamical system by gradually changing the driving parameter for the chaos. With the different design of controllers, the numerical simulation results show the relation between the chaotic behavior and the changes of the parameter value. Furthermore, the result shows the difference of the controllers. In the mean time, it reveals the process of the orbit's gradual changing with the parameter value

  15. THE MEAN-FIELD SOLAR DYNAMO WITH A DOUBLE CELL MERIDIONAL CIRCULATION PATTERN

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-10-10

    Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity. Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.

  16. Sustainment dynamo reexamined: nonlocal electrical conductivity of plasma in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Moses, R.W.

    1984-01-01

    The plasma dynamo is both an intriguing and a practical concept. The intrigue derives from attempting to explain naturally occurring and man-made plasmas whose strong field-aligned currents j/sub parallel/ apparently disobey the most naive Ohm's law j/sub parallel/ = sigma/sub parallel/E/sub parallel/. The practical importance derives from the dynamo's role both in formation and in sustainment of reversed-field pinch (RFP) and Spheromak fusion plasmas. We will examine certain features of the documented quasi-steady discharges on ZT-40M, and RFP in apparent need of a sustainment dynamo. We will show that the tail electrons (which carry j/sub parallel/) are probably wandering (along stochastic B Vector-field lines) over much of the minor radius in one mean-free-path

  17. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Kinetic and magnetic helicities do not affect the renormalized parameters, ... Generation of magnetic field in plasma, usually referred to as 'dynamo', is one of the ..... energy fluxes for the inertial-range wave numbers where the same power.

  18. Inertial effects on thermochemically driven convection and hydromagnetic dynamos in a spherical shell

    Czech Academy of Sciences Publication Activity Database

    Šimkanin, Ján; Kyselica, Juraj; Guba, P.

    2018-01-01

    Roč. 212, č. 3 (2018), s. 2194-2205 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : composition and structure of the core * dynamo * nonlinear differential equations * numerical modelling Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.414, year: 2016

  19. Feasible homopolar dynamo with sliding liquid-metal contacts

    International Nuclear Information System (INIS)

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm≈34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the rings R i /R o ≈0.36 and the spiral pitch angle 54.7°. In a setup of two copper rings with the thickness of 3 cm, R i =10 cm and R o =30 cm, self-excitation of the magnetic field is expected at a critical rotation frequency around 10 Hz

  20. A Study of Stochastic Resonance in the Periodically Forced Rikitake Dynamo

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen Chih-Yuan Tseng

    2007-01-01

    Full Text Available The geodynamo has widely been thought to be an intuitive and selfsustained model of the Earth¡¦s magnetic field. In this paper, we elucidate how a periodic signal could be embedded in the geomagnetic filed via the mechanism of stochastic resonance in a forced Rikitake dynamo. Based on the stochastic resonance observed in the periodically forced Rikitake dynamo, we thus suggest a common triggering for geomagnetic reversal and glacial events. Both kinds of catastrophes may result from the cyclic variation of the Earth¡¦s orbital eccentricity.

  1. Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.

    Science.gov (United States)

    Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H

    2013-11-01

    We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.

  2. Anelastic spherical dynamos with radially variable electrical conductivity

    Science.gov (United States)

    Dietrich, W.; Jones, C. A.

    2018-05-01

    A series of numerical simulations of the dynamo process operating inside gas giant planets has been performed. We use an anelastic, fully nonlinear, three-dimensional, benchmarked MHD code to evolve the flow, entropy and magnetic field. Our models take into account the varying electrical conductivity, high in the ionised metallic hydrogen region, low in the molecular outer region. Our suite of electrical conductivity profiles ranges from Jupiter-like, where the outer hydrodynamic region is quite thin, to Saturn-like, where there is a thick non-conducting shell. The rapid rotation leads to the formation of two distinct dynamical regimes which are separated by a magnetic tangent cylinder - mTC. Outside the mTC there are strong zonal flows, where Reynolds stress balances turbulent viscosity, but inside the mTC Lorentz force reduces the zonal flow. The dynamic interaction between both regions induces meridional circulation. We find a rich diversity of magnetic field morphologies. There are Jupiter-like steady dipolar fields, and a belt of quadrupolar dominated dynamos spanning the range of models between Jupiter-like and Saturn-like conductivity profiles. This diversity may be linked to the appearance of reversed sign helicity in the metallic regions of our dynamos. With Saturn-like conductivity profiles we find models with dipolar magnetic fields, whose axisymmetric components resemble those of Saturn, and which oscillate on a very long time-scale. However, the non-axisymmetric field components of our models are at least ten times larger than those of Saturn, possibly due to the absence of any stably stratified layer.

  3. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.; Watts, C.; Mattor, N.

    1992-01-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus reversed-field pinch with a five channel charge exchange analyzer. The ion temperature, T i ∼ 200 eV for I = 350 kA, increases by as much as 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5--5 MHz were also measured. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion gyro-orbit scales

  4. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisa; Lopes, Ilidio, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-09-20

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  5. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    International Nuclear Information System (INIS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-01-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  6. BABCOCK–LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY

    International Nuclear Information System (INIS)

    Karak, Bidya Binay; Cameron, Robert

    2016-01-01

    The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  7. BABCOCK–LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Karak, Bidya Binay; Cameron, Robert, E-mail: bkarak@ucar.edu [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-11-20

    The key elements of the Babcock–Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock–Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock–Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.

  8. Effects due to induced azimuthal eddy currents in a self-exciting Faraday disk homopolar dynamo with a nonlinear series motor. I.. Two special cases

    Science.gov (United States)

    Hide, Raymond; Moroz, Irene M.

    1999-10-01

    The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied couple, α, driving the disk is steady and the Lorentz couple driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated current x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal eddy currents, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate

  9. Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes

    Science.gov (United States)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-03-01

    Strongly magnetized accretion discs around black holes have attractive features that may explain enigmatic aspects of X-ray binary behaviour. The structure and evolution of these discs are governed by a dynamo-like mechanism, which channels part of the accretion power liberated by the magnetorotational instability (MRI) into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. The strength of the self-sustained toroidal magnetic field depends on the net vertical magnetic flux, which we vary across almost the entire range over which the MRI is linearly unstable. We quantify disc structure and dynamo properties as a function of the initial ratio of mid-plane gas pressure to vertical magnetic field pressure, β _0^mid = p_gas / p_B. For 10^5 ≥ β _0^mid ≥ 10 the effective α-viscosity parameter scales as a power law. Dynamo activity persists up to and including β _0^mid = 10^2, at which point the entire vertical column of the disc is magnetic pressure dominated. Still stronger fields result in a highly inhomogeneous disc structure, with large density fluctuations. We show that the turbulent steady state βmid in our simulations is well matched by the analytic model of Begelman et al. describing the creation and buoyant escape of toroidal field, while the vertical structure of the disc can be broadly reproduced using this model. Finally, we discuss the implications of our results for observed properties of X-ray binaries.

  10. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    Science.gov (United States)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l ~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  11. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  12. Time-resolved observation of discrete and continuous MHD dynamo in the reversed-field pinch edge

    International Nuclear Information System (INIS)

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S.

    1994-01-01

    We report the first experimental verification of the MHD dynamo in the RFP. A burst of magnetohydrodynamic (MHD) dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the MST RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes

  13. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  14. Sleuthing the Dynamo: the Final Frontier

    Science.gov (United States)

    Ayres, Thomas

    1996-07-01

    Innovative technologies are opening new windows into the Sun;from its hidden interior to the far reaches of its turbulentouter envelope: rare-earth detectors for solar neutrinos; theGONG project for helioseismology; SOHO for high-resolutionXUV spectroscopy, and YOHKOH for coronal X-ray imaging. Atthe same time, a fleet of space observatories--ROSAT, EUVE,ASCA, and HST itself--are providing unprecedented views ofthe vacuum-UV and X-ray emissions of stars in our Galacticneighborhood. These seemingly unrelated developments are infact deeply connected. A central issue of solar-stellarphysics is the nature and origin of magnetic activity: thelink between the interior dynamics of a late-type star and theviolent state of its outermost coronal layers. As solarphysicists are unlocking the secrets of the hydromagneticDynamo deep inside the Sun, we and others have beendocumenting the early evolution of the Dynamo and itsassociated external gas-dynamic activity. In particular, wehave obtained HST/FOS spectra of ten young solar-type starsin three nearby open clusters--the Hyades, Pleiades, andAlpha Persei--ranging in age from 50 Myr to 600 Myr. We havesupplemented the HST spectroscopy with deep ROSAT pointings, and ground-based studies. Here, we will continue the HSTside of our project by obtaining FUV spectra of two AlphaPerseids from our original program (but not yet observed),and high-S/N follow-up measurements of the hyperactive PleiadH II 314.

  15. The Geodynamo: Models and supporting experiments

    International Nuclear Information System (INIS)

    Mueller, U.; Stieglitz, R.

    2003-03-01

    The magnetic field is a characteristic feature of our planet Earth. It shelters the biosphere against particle radiation from the space and offers by its direction orientation to creatures. The question about its origin has challenged scientists to find sound explanations. Major progress has been achieved during the last two decades in developing dynamo models and performing corroborating laboratory experiments to explain convincingly the principle of the Earth magnetic field. The article reports some significant steps towards our present understanding of this subject and outlines in particular relevant experiments, which either substantiate crucial elements of self-excitation of magnetic fields or demonstrate dynamo action completely. The authors are aware that they have not addressed all aspects of geomagnetic studies; rather, they have selected the material from the huge amount of literature such as to motivate the recently growing interest in experimental dynamo research. (orig.)

  16. Magnetic fluctuation induced transport and edge dynamo measurements in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Fiksel, G.; Ji, H.

    1994-09-01

    Probe measurements in MST indicate that RFP particle and energy loss is governed by magnetic fluctuations inside r/a = 0.8, with energy carried out convectively by superthermal electrons. The radial loss rate is lower than the Rechester-Rosenbluth level, presumably due to the establishment of a restraining ambipolar potential. Several aspects of these measurements contradict the Kinetic Dynamo Theory, while the MHD dynamo EMF is measured to be large enough to drive the edge current carried by these superthermal electrons

  17. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  18. Large-scale dynamo of accretion disks around supermassive nonrotating black holes

    Directory of Open Access Journals (Sweden)

    Poplavsky A.L.

    2006-01-01

    Full Text Available In this paper one presents an analytical model of accretion disk magnetosphere dynamics around supermassive nonrotating black holes in the centers of active galactic nuclei. Based on general relativistic equations of magneto hydrodynamics, the nonstationary solutions for time-dependent dynamo action in the accretion disks, spatial and temporal distribution of magnetic field are found. It is shown that there are two distinct stages of dynamo process: the transient and the steady-state regimes, the induction of magnetic field at t > 6:6665 x 1011GM/c3 s becomes stationary, magnetic field is located near the innermost stable circular orbit, and its value rises up to ~ 105 G. Applications of such systems with nonrotating black holes in real active galactic nuclei are discussed.

  19. Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

    Science.gov (United States)

    Šimkanin, Ján; Kyselica, Juraj

    2017-12-01

    Numerical simulations of the geodynamo are becoming more realistic because of advances in computer technology. Here, the geodynamo model is investigated numerically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY dynamo code. These parameters are more realistic than those used in previous numerical studies of the geodynamo. Our model is based on the Boussinesq approximation and the temperature gradient between upper and lower boundaries is a source of convection. This study attempts to answer the question how realistic the geodynamo models are. Numerical results show that our dynamo belongs to the strong-field dynamos. The generated magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows (plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields are separated, which enables hydromagnetic dynamos to maintain the magnetic field at the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in previous geodynamo models. On the other hand, dimensional magnitudes of velocity and magnetic fields and those of the magnetic and viscous dissipation are larger than those expected in the Earth's core due to our parameter range chosen.

  20. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, N.; Hamba, F. [Institute of Industrial Science, University of Tokyo, Tokyo 153-8505 (Japan); Schmitt, D. [Max-Planck Institut für Sonnensystemforschung, Göttingen D-37077 (Germany); Pipin, V., E-mail: nobyokoi@iis.u-tokyo.ac.jp [Institute of Solar–Terrestrial Physics, Russian Academy of Science, Irkutsk 664033 (Russian Federation)

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solved simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.

  1. Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo

    Science.gov (United States)

    Hide, R.

    In the interpretation of geomagnetic polarity reversals with their highly variable frequency over geological time it is necessary, as with other irregularly fluctuating geophysical phenomena, to consider the relative importance of forced contributions associated with changing boundary conditions and of free contributions characteristic of the behaviour of nonlinear systems operating under fixed boundary conditions. New evidence -albeit indirect- in favour of the likely predominance of forced contributions is provided by the discovery reported here of the possibility of complete quenching by nonlineax effects of current fluctuations in a self-exciting homopolar dynamo with its single Faraday disk driven into rotation with angular speed y(τ) (where τ denotes time) by a steady applied couple. The armature of an electric motor connected in series with the coil of the dynamo is driven into rotation' with angular speed z(τ) by a torque xf (x) due to Lorentz forces associated with the electric current x(τ) in the system (just as certain parts of the spectrum of eddies within the liquid outer core are generated largely by Lorentz forces associated with currents generated by the self-exciting magnetohydrodynamic (MHD) geodynamo). The discovery is based on bifurcation analysis supported by computational studies of the following (mathematically novel) autonomous set of nonlinear ordinary differential equations: dx/dt = x(y - 1) - βzf(x), dy/dt = α(1 - x²) - κy, dz/dt = xf (x) -λz, where f (x) = 1 - ɛ + ɛσx, in cases when the dimensionless parameters (α, β, κ, λ, σ) are all positive and 0 ≤ ɛ ≤ 1. Within those regions of (α, β, κ, λ, σ) parameter space where the applied couple, as measured by α, is strong enough for persistent dynamo action (i.e. x ≠ 0) to occur at all, there are in general extensive regions where x(τ) exhibits large amplitude regular or irregular (chaotic) fluctuations. But these fluctuating régimes shrink in size as increases

  2. Degenerate Hopf bifurcation in a self-exciting Faraday disc dynamo

    Indian Academy of Sciences (India)

    Weiquan Pan

    2017-05-31

    May 31, 2017 ... Recently, self-exciting Faraday disk dynamo is also a topic of con- cern [16–20]. ..... Hopf bifurcation. (a) Projected on the x–z plane and (b) pro- ... Key Lab of Com- plex System Optimization and Big Data Processing. (No.

  3. Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, S.A.; Li, H.

    1998-12-31

    An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.

  4. Helicity--vorticity turbulent pumping of magnetic fields in the solar dynamo

    OpenAIRE

    Pipin, V. V.

    2012-01-01

    The interaction of helical convective motions and differential rotation in the solar convection zone results in turbulent drift of a large-scale magnetic field. We discuss the pumping mechanism and its impact on the solar dynamo.

  5. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.E.

    1992-05-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus (MST) reversed field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The evolution of the ion and electron temperature, as well as density and charge exchange power loss, were measured for a series of reproducible discharges. The ion heating expected from collisional processes with the electrons is calculated and shown too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened CV 227.1 nm line. The ion temperature, T i ∼ 250 eV for I = 360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5 endash 5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies. Theoretical models for ion heating are reviewed and discussed in light of the experimental results. Similar electron heating mechanisms may be responsible for the discrepancy between measured and expected loop voltages in the RFP. The electrons, as well as the ions, may be heated by turbulent mechanisms, and a RFP energy budget including such phenomena is described

  6. New computation results for the solar dynamo

    International Nuclear Information System (INIS)

    Csada, I.K.

    1983-01-01

    The analytical solution to the solar dynamo equation leads to a relatively simple algorythm for the computation in terms of kinematic models. The internal and external velocities taken to be in the form of axisymmetric meridional circulation and differential rotation, respectively. Pure radial expanding motions in the corona are also taken into consideration. Numerical results are presented in terms of the velocity parameters for the period of field reversal, decay time, magnitudes and phases of the first four multipoles. (author)

  7. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Soumitra; Nandy, Dibyendu [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata (India)

    2016-11-20

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  8. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    International Nuclear Information System (INIS)

    Hazra, Soumitra; Nandy, Dibyendu

    2016-01-01

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  9. Low-latitude plasma drifts from a simulation of the global atmospheric dynamo

    International Nuclear Information System (INIS)

    Crain, D.J.; Heelis, R.A.; Bailey, G.J.; Richmond, A.D.

    1993-01-01

    The authors work with a dynamo model to address questions about plasma drifts in the E region, primarily at low latitudes. Tidal winds have been known to have a big influence on electric fields in the E region, and magnetic fields and ion drifts in the equatorial F region. Recent work has centered on self consistency in simulations, using realistic wind distributions, 3-D current distributions, and more accurate measures of the currents and conductivities. The wind dynamo in the ionosphere is well accepted as the main source of electric fields in the low and mid latitudes. The authors present a self consistent model of the plasma distribution and the dynamo driven electric potential distribution. Their results are compared with other simulations. A major concern in their model was reproducing ion drift observations in the equatorial region. Their conclusion is that the F region plays a significant role in the low latitude dyanamo effects, much larger than was previously assumed. When they build into their model realistic ionospheric conditions, allow for appropriate wind distributions, and allow a self consistent redistribution of plasma in the night, they find the model simulates measured ion drifts more closely. Their model is normalized against observations at Jicamarca. By allowing E x B drifts in the ionosphere, and F region zonal winds they can reproduce many of the night changes in the ion drifts at Jicamarca

  10. Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo

    Directory of Open Access Journals (Sweden)

    R. Hide

    1997-01-01

    Full Text Available In the interpretation of geomagnetic polarity reversals with their highly variable frequency over geological time it is necessary, as with other irregularly fluctuating geophysical phenomena, to consider the relative importance of forced contributions associated with changing boundary conditions and of free contributions characteristic of the behaviour of nonlinear systems operating under fixed boundary conditions.  New evidence -albeit indirect- in favour of the likely predominance of forced contributions is provided by the discovery reported here of the possibility of complete quenching by nonlineax effects of current fluctuations in a self-exciting homopolar dynamo with its single Faraday disk driven into rotation with angular speed y(τ (where τ denotes time by a steady applied couple.  The armature of an electric motor connected in series with the coil of the dynamo is driven into rotation' with angular speed z(τ by a torque xf (x due to Lorentz forces associated with the electric current x(τ in the system (just as certain parts of the spectrum of eddies within the liquid outer core are generated largely by Lorentz forces associated with currents generated by the self-exciting magnetohydrodynamic (MHD geodynamo.   The discovery is based on bifurcation analysis supported by computational studies of the following (mathematically novel autonomous set of nonlinear ordinary differential equations: dx/dt = x(y - 1 - βzf(x, dy/dt = α(1 - x² - κy, dz/dt = xf (x -λz,          where f (x = 1 - ε + εσx, in cases when the dimensionless parameters (α, β, κ, λ, σ are all positive and 0 ≤ ε ≤ 1. Within those regions of (α, β, κ, λ, σ parameter space where the applied couple, as measured by α, is strong enough for persistent dynamo action (i.e. x ≠ 0 to occur at all, there are in general extensive regions where x(τ exhibits large amplitude regular or irregular (chaotic fluctuations.  But these fluctuating r

  11. Recovery from Maunder-like Grand Minima in a Babcock–Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2018-06-01

    The Sun occasionally goes through Maunder-like extended grand minima when its magnetic activity drops considerably from the normal activity level for several decades. Many possible theories have been proposed to explain the origin of these minima. However, how the Sun managed to recover from such inactive phases every time is even more enigmatic. The Babcock–Leighton type dynamos, which are successful in explaining many features of the solar cycle remarkably well, are not expected to operate during grand minima due to the lack of a sufficient number of sunspots. In this Letter, we explore the question of how the Sun could recover from grand minima through the Babcock–Leighton dynamo. In our three-dimensional dynamo model, grand minima are produced spontaneously as a result of random variations in the tilt angle of emerging active regions. We find that the Babcock–Leighton process can still operate during grand minima with only a minimal number of sunspots, and that the model can emerge from such phases without the need for an additional generation mechanism for the poloidal field. The essential ingredient in our model is a downward magnetic pumping, which inhibits the diffusion of the magnetic flux across the solar surface.

  12. MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, Ulrich R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Poppenhaeger, Katja, E-mail: rakesh.yadav@cfa.harvard.edu [Astrophysics Research Center, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-12-20

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  13. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  14. Dynamos of the Sun, Stars, and Planets - Preface

    Science.gov (United States)

    Stix, M.

    2005-04-01

    The conference ``Dynamos of the Sun, Stars, and Planets'' was organized by the Kiepenheuer-Institut für Sonnenphysik Freiburg, and was held at the University of Freiburg from 4th to 6th October 2004. About 50 participants attended the conference, with 8 review lectures, 20 contributed talks, and 6 posters. With only few exceptions, these contributions appear in the present issue of Astronomische Nachrichten. This preface summarizes the discussion of the closing session.

  15. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  16. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  17. Integration of Environmental Sensors with BIM: case studies using Arduino, Dynamo, and the Revit API

    Directory of Open Access Journals (Sweden)

    Kensek, K. M.

    2014-12-01

    Full Text Available This paper investigates the feasibility of connecting environmental sensors such as light, humidity, or CO2 receptors to a building information model (BIM. A base case was created in Rhino; using Grasshopper and Firefly, a simple digital model responded to lighting-levels detected by a photoresistor on an Arduino board. The case study was duplicated using Revit Architecture, a popular BIM software, and Dynamo, a visual programming environment, in an innovative application. Another case study followed a similar procedure by implementing the Revit API directly instead of using Dynamo. Then the process was reversed to demonstrate that not only could data could be sent from sensors to change the 3D model, but changes to parameters of a 3D model could effect a physical model through the use of actuators. It is intended that these virtual/physical prototypes could be used as the basis for testing intelligent façade systems before constructing full size mock-ups.Este estudio investiga la posibilidad de conectar sensores ambientales como de luz, humedad, o dióxido de carbono con un modelo de información de un edificio (siglas BIM en inglés. Un caso base fue creado en Rhino; usando Grasshopper and Firefly, donde un simple modelo digital respondió a niveles de luz detectados por un foto resistor en una tarjeta Arduino. El caso de estudio fue duplicado usando Revit Architecture, una herramienta popular en BIM, y Dynamo, un ambiente de programación gráfica, en una creativa aplicación. Un segundo caso de estudio siguió un procedimiento similar implementando Revit API directamente en vez de usar Dynamo. Entonces el proceso fue revertido para demostrar que no solamente la información podría ser enviada desde sensores para cambiar el modelo tridimensional, pero cambios en los parámetros de un modelo tridimensional podrían afectar un modelo físico mediante el uso de actuadores. Se espera que esos modelos virtuales puedan ser usados como base para

  18. Linear astrophysical dynamos in rotating spheres: Differential rotation, anisotropic turbulent magnetic diffusivity, and solar-stellar cycle magnetic parity

    International Nuclear Information System (INIS)

    Yoshimura, H.; Wang, Z.; Wu, F.

    1984-01-01

    Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected

  19. Bounds on the growth of the magnetic energy for the Hall kinematic dynamo equation

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico Universidad de Valladolid 47005 Valladolid (Spain)

    2005-09-09

    While the magnetic induction equation in plasmas, governing kinematic dynamos, is a linear one admitting exponential growth of the magnetic energy for certain velocity fields, the addition of the Hall term turns it into a nonlinear parabolic equation. Local existence of solutions may be proved, but in contrast with the magnetohydrodynamics case, for a number of boundary conditions the magnetic energy grows at most linearly in time for stationary velocity fields, and like the square of the time in the general case. It appears that the Hall effect enhances diffusivity in some way to compensate for the positive contribution of the transport of the magnetic field by the flow occurring in fast dynamos.

  20. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde

  1. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  2. Dynamo Tests for Stratification Below the Core-Mantle Boundary

    Science.gov (United States)

    Olson, P.; Landeau, M.

    2017-12-01

    Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.

  3. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  4. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  5. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett; Forgács-Dajka, Emese [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2015-06-20

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  6. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi

    2015-01-01

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed

  7. Lorentz violation bounds from torsion trace fermion sector and galaxy M51 data and chiral dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Andrade, L.C. [IF-UERJ, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2017-06-15

    Earlier we have computed a Lorentz violation (LV) bound for torsion terms via galactic dynamos and found bounds similar to the one obtained by Kostelecky et al. (Phys Rev Lett 100:111102, 2008) which is of the order of 10{sup -31} GeV. Their result was found making use of the axial torsion vector in terms of Dirac spinors and minimal torsion coupling in flat space-time of fermions. In this paper, a torsion dynamo equation obtained using the variation of the torsion trace and galaxy M51 data of 500 pc are used to place an upper bound of 10{sup -26} GeV in LV, which agrees with the one by Kostelecky and his group using an astrophysical framework background. Their lowest bound was obtained in earth laboratory using dual masers. One of the purposes of this paper is to apply the Faraday self-induction magnetic equation, recently extended to torsioned space-time, by the author to show that it lends support to physics in Riemann-Cartan space-time, in several distinct physical backgrounds. Backreaction magnetic effects are used to obtain the LV bounds. Previously Bamba et al. (JCAP 10:058, 2012) have used the torsion trace in their teleparallel investigation of the IGMF, with the argument that the torsion trace leads to less weaker effects than the other irreducible components of the torsion tensor. LV is computed in terms of a chiral-torsion-like current in the new dynamo equation analogous to the Dvornikov and Semikoz dynamo equation with chiral magnetic currents. Making use of the chiral-torsion dynamo equation we estimate the LV bounds in the early universe to be of the order of 10{sup -24} GeV, which was the order of the charged-lepton sector. Our main result is that it is possible to obtain more stringent bounds than the ones found in the fermion sector of astrophysics in the new revised 2017 data table for CPT and Lorentz violation by Kostelecky and Mewes. They found in several astrophysical backgrounds, orders of magnitude such as 10{sup -24} and 10{sup -23} Ge

  8. First Numerical Simulations of Turbulent Dynamos Driven by Libration, Precession and Tides in Triaxial Ellipsoids - An Alternative Route for Planetary Magnetism

    Science.gov (United States)

    Le Bars, M.; Kanuganti, S. R.; Favier, B.

    2017-12-01

    Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current Earth's magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early Earth is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or tides, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early Earth, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and tides, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques

  9. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  10. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  11. The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos

    Science.gov (United States)

    Hide, Raymond

    1997-02-01

    This paper discusses the derivation of the autonomous sets of dimensionless nonlinear ordinary differential equations (ODE's) that govern the behaviour of a hierarchy of related electro-mechanical self-exciting Faraday-disk homopolar dynamo systems driven by steady mechanical couples. Each system comprises N interacting units which could be arranged in a ring or lattice. Within each unit and connected in parallel or in series with the coil are electric motors driven into motion by the dynamo, all having linear characteristics, so that nonlinearity arises entirely through the coupling between components. By introducing simple extra terms into the equations it is possible to represent biasing effects arising from impressed electromotive forces due to thermoelectric or chemical processes and from the presence of ambient magnetic fields. Dissipation in the system is due not only to ohmic heating but also to mechanical friction in the disk and the motors, with the latter agency, no matter how weak, playing an unexpectedly crucial rôle in the production of régimes of chaotic behaviour. This has already been demonstrated in recent work on a case of a single unit incorporating just one series motor, which is governed by a novel autonomous set of nonlinear ODE's with three time-dependent variables and four control parameters. It will be of mathematical as well as geophysical and astrophysical interest to investigate systematically phase and amplitude locking and other types of behaviour in the more complicated cases that arise when N > 1, which can typically involve up to 6 N dependent variables and 19 N-5 control parameters. Even the simplest members of the hierarchy, with N as low as 1, 2 or 3, could prove useful as physically-realistic low-dimensional models in theoretical studies of fluctuating stellar and planetary magnetic fields. Geomagnetic polarity reversals could be affected by the presence of the Earth's solid metallic inner core, driven like an electric motor

  12. Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid

    Science.gov (United States)

    Bryson, James F. J.; Weiss, Benjamin P.; Harrison, Richard J.; Herrero-Albillos, Julia; Kronast, Florian

    2017-08-01

    The direction in which a planetary core solidifies has fundamental implications for the feasibility and nature of dynamo generation. Although Earth's core is outwardly solidifying, the cores of certain smaller planetary bodies have been proposed to inwardly solidify due to their lower central pressures. However, there have been no unambiguous observations of inwardly solidified cores or the relationship between this solidification regime and planetary magnetic activity. To address this gap, we present the results of complimentary paleomagnetic techniques applied to the matrix metal and silicate inclusions within the IVA iron meteorites. This family of meteorites has been suggested to originate from a planetary core that had its overlaying silicate mantle removed by collisions during the early solar system. This process is thought to have produced a molten ball of metal that cooled rapidly and has been proposed to have inwardly solidified. Recent thermal evolution models of such a body predict that it should have generated an intense, multipolar and time-varying dynamo field. This field could have been recorded as a remanent magnetisation in the outer, cool layers of a solid crust on the IVA parent core. We find that the different components in the IVA iron meteorites display a range of paleomagnetic fidelities, depending crucially on the cooling rate of the meteorite. In particular, silicate inclusions in the quickly cooled São João Nepomuceno meteorite are poor paleomagnetic recorders. On the other hand, the matrix metal and some silicate subsamples from the relatively slowly cooled Steinbach meteorite are far better paleomagnetic recorders and provide evidence of an intense (≳100 μT) and directionally varying (exhibiting significant changes on a timescale ≲200 kyr) magnetic field. This is the first demonstration that some iron meteorites record ancient planetary magnetic fields. Furthermore, the observed field intensity, temporal variability and dynamo

  13. Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories

    OpenAIRE

    Filippi, Enrico

    2016-01-01

    The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...

  14. Sudden transitions and grand variations in the solar dynamo, past and future

    NARCIS (Netherlands)

    de Jager, C.; Duhau, S.

    2012-01-01

    The solar dynamo is the exotic dance of the sun's two major magnetic field components, the poloidal and the toroidal, interacting in anti-phase. On the basis of new data on the geomagnetic aa index, we improve our previous forecast of the properties of the current Schwabe cycle #24. Its maximum will

  15. The aurora and the magnetosphere - The Chapman Memorial Lecture. [dynamo theory development, 1600-present

    Science.gov (United States)

    Akasofu, S.-I.

    1974-01-01

    Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.

  16. Energy coupling function and solar wind-magnetosphere dynamo

    International Nuclear Information System (INIS)

    Kan, J.R.; Lee, L.C.

    1979-01-01

    The power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories. By recognizing a previously overlooked geometrical relationship between the reconnection electric field and the magnetic field, the calculated power is shown to be approximately proportional to the Akasofu-Perreault energy coupling function for the magnetospheric substorm. In addition to the polar cap potential, field line reconnection also gives rise to parallel electric fields on open field lines in the high-latitude cusp and the polar cap reions

  17. Finite correlation time effects in kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, A.A.; Kulsrud, R.M.

    2000-01-01

    One-point statistics of the magnetic fluctuations in kinematic regime with large Prandtl number and non delta-correlated in time advecting velocity field are studied. A perturbation expansion in the ratio of the velocity correlation time to the dynamo growth time is constructed in the spirit of the Kliatskin-Tatarskii functional method and carried out to first order. The convergence properties are improved compared to the commonly used van Kampen-Terwiel method. The zeroth-order growth rate of the magnetic energy is estimated to be reduced (in three dimensions) by approximately 40%. This reduction is quite close to existing numerical results

  18. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha [Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, F-91191 Gif-Sur-Yvette (France); Fournier, Alexandre [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris (France); Talagrand, Olivier [Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05 (France)

    2015-12-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales.

  19. ESTIMATING THE DEEP SOLAR MERIDIONAL CIRCULATION USING MAGNETIC OBSERVATIONS AND A DYNAMO MODEL: A VARIATIONAL APPROACH

    International Nuclear Information System (INIS)

    Hung, Ching Pui; Jouve, Laurène; Brun, Allan Sacha; Fournier, Alexandre; Talagrand, Olivier

    2015-01-01

    We show how magnetic observations of the Sun can be used in conjunction with an axisymmetric flux-transport solar dynamo model in order to estimate the large-scale meridional circulation throughout the convection zone. Our innovative approach rests on variational data assimilation, whereby the distance between predictions and observations (measured by an objective function) is iteratively minimized by means of an optimization algorithm seeking the meridional flow that best accounts for the data. The minimization is performed using a quasi-Newton technique, which requires knowledge of the sensitivity of the objective function to the meridional flow. That sensitivity is efficiently computed via the integration of the adjoint flux-transport dynamo model. Closed-loop (also known as twin) experiments using synthetic data demonstrate the validity and accuracy of this technique for a variety of meridional flow configurations, ranging from unicellular and equatorially symmetric to multicellular and equatorially asymmetric. In this well-controlled synthetic context, we perform a systematic study of the behavior of our variational approach under different observational configurations by varying their spatial density, temporal density, and noise level, as well as the width of the assimilation window. We find that the method is remarkably robust, leading in most cases to a recovery of the true meridional flow to within better than 1%. These encouraging results are a first step toward using this technique to (i) better constrain the physical processes occurring inside the Sun and (ii) better predict solar activity on decadal timescales

  20. Integración de sensores medioambientales con BIM: casos de estudio usando Arduino, Dynamo, y Revit API

    OpenAIRE

    Kensek, K. M.

    2014-01-01

    This paper investigates the feasibility of connecting environmental sensors such as light, humidity, or CO2 receptors to a building information model (BIM). A base case was created in Rhino; using Grasshopper and Firefly, a simple digital model responded to lighting-levels detected by a photoresistor on an Arduino board. The case study was duplicated using Revit Architecture, a popular BIM software, and Dynamo, a visual programming environment, in an innovative application. Another case study...

  1. Self-organisation and intermittent coherent oscillations in the EXTRAP T2 reversed field pinch

    International Nuclear Information System (INIS)

    Cecconello, M.; Malmberg, J.A.; Sallander, E.; Drake, J.R.

    2002-01-01

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented

  2. Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch

    Science.gov (United States)

    Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.

  3. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  4. Magnetism, dynamo action and the solar-stellar connection

    Directory of Open Access Journals (Sweden)

    Allan Sacha Brun

    2017-09-01

    Full Text Available Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observations of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connection”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, including a very brief discussion of mean-field theory and related concepts. Next we turn to simulations of convection and magnetism in stellar interiors, highlighting both some peculiarities of field generation in different types of stars and some unifying physical processes that likely influence dynamo action in general. We conclude with a brief summary of what we have learned, and a sampling of issues that remain uncertain or unsolved.

  5. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?

    International Nuclear Information System (INIS)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai

    2014-01-01

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

  6. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-02-20

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

  7. Introduction to Plasma Dynamo, Reconnection and Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    In our plasma universe, most of what we can observe is composed of ionized gas, or plasma. This plasma is a conducting fluid, which advects magnetic fields when it flows. Magnetic structure occurs from the smallest planetary to the largest cosmic scales. We introduce at a basic level some interesting features of non linear magnetohydrodynamics (MHD). For example, in our plasma universe, dynamo creates magnetic fields from gravitationally driven flow energy in an electrically conducting medium, and conversely magnetic reconnection annihilates magnetic field and accelerates particles. Shocks occur when flows move faster than the local velocity (sonic or Alfven speed) for the propagation of information. Both reconnection and shocks can accelerate particles, perhaps to gigantic energies, for example as observed with 10{sup 20} eV cosmic rays.

  8. Reducing and measuring fluctuations in the MST RFP: Enhancement of energy confinement and measurement of the MHD dynamo

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Almagri, A.F.

    1996-09-01

    A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude b/B decreases from 1.5% to 0.8%, the electron temperature T e0 increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta β 0 increases from 6% to 9%, and the energy confinement time τ E increases from 1 ms to ∼5 ms in I φ = 340 kA plasmas with density n = 1 x 10 19 m -3 . Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the 'electron diamagnetic dynamo,' is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E r with a robust biased probe. 24 refs

  9. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    Science.gov (United States)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  10. TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Xu Hao; Collins, David C.; Norman, Michael L.; Li Hui; Li Shengtai

    2009-01-01

    We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach ∼10 61 erg while micro Gauss (μG) fields can distribute over ∼ Mpc scales throughout the whole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields.

  11. An analytic interface dynamo over a shear layer of finite depth

    OpenAIRE

    Petrovay, K.; Kerekes, A.; Erdélyi, R.

    2010-01-01

    Parker's analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity ("tachocline"), bounded by a perfect conductor ("radiative zone") on the one side, and by a highly diffusive medium ("convective zone") supporting an $\\alpha$-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be relevant for the Sun, a pair of exact dispersion relations for the growth rat...

  12. Angular momentum transport and dynamo action in the sun - Implications of recent oscillation measurements

    International Nuclear Information System (INIS)

    Gilman, P. A.; Morrow, C. A.; Deluca, E. E.

    1989-01-01

    The implications of a newly proposed picture of the sun's internal rotation (Brown et al., 1989; Morrow, 1988) for the distribution and transport of angular momentum and for the solar dynamo are considered. The new results, derived from an analysis of solar acoustic oscillations, affect understanding of how momentum is cycled in the sun and provide clues as to how and where the solar dynamo is driven. The data imply that the only significant radial gradient of angular velocity exists in a transitional region between the bottom of the convection zone, which is rotating like the solar surface, and the top of the deep interior, which is rotating rigidly at a rate intermediate between the equatorial and polar rates at the surface. Thus the radial gradient must change sign at the latitude where the angular velocity of the surface matches that of the interior. These inferences suggest that the cycle of angular momentum that produces the observed latitudinal differential rotation in the convection zone may be coupled to layers of the interior beneath the convection zone. 35 refs

  13. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  14. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  15. Role of asymmetric meridional circulation in producing north-south asymmetry in a solar cycle dynamo model

    Energy Technology Data Exchange (ETDEWEB)

    Belucz, Bernadett [Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32 (Hungary); Dikpati, Mausumi [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2013-12-10

    Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does not change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.

  16. Role of asymmetric meridional circulation in producing north-south asymmetry in a solar cycle dynamo model

    International Nuclear Information System (INIS)

    Belucz, Bernadett; Dikpati, Mausumi

    2013-01-01

    Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does not change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.

  17. Computer simulation of a magnetohydrodynamic dynamo II

    International Nuclear Information System (INIS)

    Kageyama, Akira; Sato, Tetsuya.

    1994-11-01

    We performed a computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell. Extensive parameter runs are carried out changing the electrical resistivity. It is found that the total magnetic energy can grow more than ten times larger than the total kinetic energy of the convection motion when the resistivity is sufficiently small. When the resistivity is relatively large and the magnetic energy is comparable or smaller than the kinetic energy, the convection motion maintains its well-organized structure. However, when the resistivity is small and the magnetic energy becomes larger than the kinetic energy, the well-organized convection motion is highly disturbed. The generated magnetic field is organized as a set of flux tubes which can be divided into two categories. The magnetic field component parallel to the rotation axis tends to be confined inside the anticyclonic columnar convection cells. On the other hand, the component perpendicular to the rotation axis is confined outside the convection cells. (author)

  18. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields

    DEFF Research Database (Denmark)

    Chassefiere, E.; Nagy, A.; Mandea, M.

    2004-01-01

    DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure...... of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate...

  19. STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION

    International Nuclear Information System (INIS)

    Metcalfe, Travis S.; Egeland, Ricky; Van Saders, Jennifer

    2016-01-01

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish the new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.

  20. STELLAR EVIDENCE THAT THE SOLAR DYNAMO MAY BE IN TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Travis S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder CO 80301 (United States); Egeland, Ricky [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder CO 80307 (United States); Van Saders, Jennifer [Carnegie Observatories, 813 Santa Barbara Street, Pasadena CA 91101 (United States)

    2016-07-20

    Precise photometry from the Kepler space telescope allows not only the measurement of rotation in solar-type field stars, but also the determination of reliable masses and ages from asteroseismology. These critical data have recently provided the first opportunity to calibrate rotation–age relations for stars older than the Sun. The evolutionary picture that emerges is surprising: beyond middle-age the efficiency of magnetic braking is dramatically reduced, implying a fundamental change in angular momentum loss beyond a critical Rossby number (Ro ∼ 2). We compile published chromospheric activity measurements for the sample of Kepler asteroseismic targets that were used to establish the new rotation–age relations. We use these data along with a sample of well-characterized solar analogs from the Mount Wilson HK survey to develop a qualitative scenario connecting the evolution of chromospheric activity to a fundamental shift in the character of differential rotation. We conclude that the Sun may be in a transitional evolutionary phase, and that its magnetic cycle might represent a special case of stellar dynamo theory.

  1. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  2. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO, 80307 (United States)

    2017-09-10

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed through the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.

  3. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Drake, J.R.

    2002-01-01

    The EXTRAP T2R reversed-field pinch is operated with a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<1 ms) and the pulse length (= 20 ms). The internally-resonant tearing modes do not wall lock and exhibit natural rotation with velocities in the range of 20 to 600 krad/s. Under these conditions the radial component of the tearing mode perturbation at the shell is suppressed. Therefore the linear growth rates of the unstable, non-resonant, ideal (resistive-wall) kink modes can be observed even at very low amplitudes (0.01% of the equilibrium field). Both internally-non-resonant and externally non-resonant RW mode types are observed. The growth rates have been measured for a range of equilibrium current profile parameters and are compared with theoretical estimates. Previous observations and simulations for the resistive-shell RFP have shown an increased loop voltage associated with altered dynamo dynamics. When the tearing modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting-shell RFP. (author)

  4. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  5. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo

    Science.gov (United States)

    Wei, Zhouchao; Moroz, Irene; Sprott, J. C.; Akgul, Akif; Zhang, Wei

    2017-03-01

    We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.

  6. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  7. DYNAMO: Distributed Leisure Yacht-Carried Sensor-Network for Atmosphere and Marine Data Crowdsourcing Applications

    DEFF Research Database (Denmark)

    Montella, Raffaele; Kosta, S.; Foster, I.

    2018-01-01

    Data crowdsourcing is a increasingly pervasive and lifestyle-changing technology, due to the flywheel effect that results from the interaction between the internet of things and cloud computing. In smart cities, for example, many initiatives harvest valuable data from citizen sensors. However, th...... weather and marine predictions via the use of data assimilation methods. We show our preliminary results about the DYNAMO Daemon, a SignalK server we embedded in the native level of the Android operating system enabling the data gathering and transfer from vessels to the cloud....

  8. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  9. Energetic Approach to Investigation of Chaotic Behavior of Low-Dimensional Dynamic Systems and its Illustration on a Two-Disc Rikitake Dynamo

    Czech Academy of Sciences Publication Activity Database

    Pánek, D.; Hrušák, J.; Doležel, Ivo

    2007-01-01

    Roč. 43, č. 596 (2007), s. 46-51 ISSN 0321-0499 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : chaotic behavior * low-dimensional chaotic systems * Rikitake dynamo Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Kinematic Dynamo Action in the Presence of a Large Scale Velocity

    Science.gov (United States)

    Carvalho, J. C.

    1990-11-01

    RESUMEN. Se investiga la influencia de Un campo de velocidades de ran escala sobre la acci6n del tur bulento. Usando Un proceso de expansi6n, las soluciones se encuentran en el del movimiento lobal y de cizalla pequeflo y para randes de Reynolds. Se calcula la re jeneraci6n tica hasta un orden en el de expansi6n usando convectivas ciclotr6nicas para el campo turbulento de velocidad. ABSTRACT. The influence a scale velocity field upon the kinernatic turbulent dynamo action is . Usinj an expansion process, the solutions are found in the limit of small bulk motion and shear, and for Reynolds number. The majnetic is calculated up to second order in the expansion parameter usin cyclonic convective cells for the turbulent velocity field. Key o'td : HYDROMAGNETICS

  11. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  12. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    OpenAIRE

    A. M. de Paor

    1998-01-01

    International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...

  13. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    International Nuclear Information System (INIS)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal; Kosovichev, A. G.; Mansour, N. N.

    2016-01-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT at the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.

  14. Evolution of pulsarmagnetism by virtue of a Faraday dynamo mechanism

    International Nuclear Information System (INIS)

    Heintzmann, H.; Novello, M.

    1983-01-01

    The evidence that radio-pulsars are slowed-down and Roentgen - pulsars accelerated predominantly by magnetic torques is now very strong. Angular momentum is transferred away from the neutron star to the velocity-of-light cylinder or from the Alfven - cylinder down to the neutron star by means of a magnetic spring the physical origin of which is an appropriate current flowing along the magnetic field lines. As this current must be closed at the neutron star's surface and no Hall-Field can be built-up a Faraday dynamo mechanism is set up. It is pointed out that this mechanism could switch -off a radio pulsar or turn-on a Roentgen pulsar. Many disconcerting pulsar observations could thus be explained, if radio pulsars can be reactivated in the galactic plane by means of accretion of matter in dense clouds and if Roentgenpulsars must first create a sufficiently strong magnetic field to function as a regularly pulsed emitter. (Author) [pt

  15. Experimental studies of confinement in the EXTRAP T2 and T2R reversed field pinches

    International Nuclear Information System (INIS)

    Cecconello, Marco

    2003-01-01

    The confinement properties of fusion plasmas are affected by magnetic and electrostatic fluctuations. The determination of the plasma confinement properties requires the measurement of several global and local quantities such as the ion and electron temperatures, the electron and neutral density profiles, the radiation emissivity profiles, the ohmic input power and the particle and heat diffusivities. The focus of this thesis is the study of the plasma confinement properties based on measurements of these quantities under different experimental conditions. The studies have been carried out on the reversed field pinch experiments EXTRAP T2 and T2R at the Alfven Laboratory, Royal Institute of Technology in Stockholm. Studies carried out in EXTRAP T2 were focused on dynamo activity and on the effect of phase alignment and locking to the wall of magnetic instabilities. These were observed with a dedicated imaging system. The experimental studies in EXTRAP T2R were focused on the measurement of the confinement properties of different configurations. To this aim, a set of diagnostics were used some of which were upgraded, such as the interferometer, while others were newly installed, such as a neutral particle energy analyser and a bolometer array. The dynamo, which is responsible for the plasma sustainment, involves resistive magnetohydrodynamic instabilities that enhance stochastic transport. Furthermore, the plasma confinement properties are in general improved in the presence of mode rotation. The possibility of reducing the stochastic transport and thereby further improving the confinement has been demonstrated in a current profile control experiment. These results indicate that long pulse operations with a resistive shell and current profile control are indeed feasible

  16. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  17. Measurements of the large-scale direct-current Earth potential and possible implications for the geomagnetic dynamo.

    Science.gov (United States)

    1985-07-05

    The magnitude of the large-scale direct-current earth potential was measured on a section of a recently laid transatlantic telecommunications cable. Analysis of the data acquired on the 4476-kilometer cable yielded a mean direct-current potential drop of less than about 0.072 +/- 0.050 millivolts per kilometer. Interpreted in terms of a generation of the potential by the earth's geodynamo, such a small value of the mean potential implies that the toroidal and poloidal magnetic fields of the dynamo are approximately equal at the core-mantle boundary.

  18. Diurnal Cycle of ITCZ Convection during the MJO Suppressed Phase in DYNAMO

    Science.gov (United States)

    Ciesielski, P. E.; Johnson, R. H.; Schubert, W. H.

    2017-12-01

    During the special observing period of the Dynamics of the MJO (DYNAMO) experiment, conducted over the Indian Ocean from 1 October to 30 November 2011, two sounding arrays - one north and one south of the equator, referred to here as the NSA and SSA, respectively - took 4-8 soundings/day. We augment this 3-h dataset with observations of radiation and rainfall to investigate the diurnal cycle of convection during the suppressed phase of the October MJO. During this 14-day period when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell embedded within a monsoonal flow. Strong rising motion was present within the ITCZ and compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (05-08 LT) and notably weakening later in the day (17-20LT). The reduction in evening subsidence over the NSA may have assisted the moistening of the low to mid-troposphere there during the pre-onset stage of the MJO. Apparent heating Q1 within the ITCZ exhibits a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles. Making use of the weak temperature gradient approximation, results suggest that direct radiative effects played a dominant role in controlling diurnal variations of vertical motion and convection within the ITCZ while non-radiative processes were more prominent over the NSA.

  19. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  20. Magnetorotational instability and dynamo action in gravito-turbulent astrophysical discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-02-01

    Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profoundly influence several important processes, such as accretion variability and outbursts, fragmentation and disc truncation, or large-scale magnetic field production. Direct numerical simulations of both instabilities are computationally challenging and remain relatively unexplored. In this paper, we aim to redress this neglect via a set of 3D vertically stratified shearing-box simulations, combining self-gravity and magnetic fields. We show that gravito-turbulence greatly weakens the zero-net-flux MRI. In the limit of efficient cooling (and thus enhanced GI), the MRI is completely suppressed, and yet strong magnetic fields are sustained by the gravito-turbulence. This turbulent `spiral wave' dynamo may have widespread application, especially in galactic discs. Finally, we present preliminary work showing that a strong net-vertical-flux revives the MRI and supports a magnetically dominated state in which the GI is secondary.

  1. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  2. A theory of the Earth's magnetic field and of sunspots, based on a self-excited dynamo incorporating the Hall effect

    Directory of Open Access Journals (Sweden)

    A. de Paor

    2001-01-01

    Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.

  3. High aspect ratio spheromak experiments

    International Nuclear Information System (INIS)

    Robertson, S.; Schmid, P.

    1987-05-01

    The Reversatron RFP (R/a = 50cm/8cm) has been operated as an ohmically heated spheromak of high aspect ratio. We find that the dynamo can drive the toroidal field upward at rates as high as 10 6 G/sec. Discharges can be initiated and ramped upward from seed fields as low as 50 G. Small toroidal bias fields of either polarity (-0.2 < F < 0.2) do not significantly affect operation. 5 refs., 3 figs

  4. New solar telescope in Big Bear: evidence for super-diffusivity and small-scale solar dynamos?

    International Nuclear Information System (INIS)

    Goode, Philip R; Abramenko, Valentyna; Yurchyshyn, Vasyl

    2012-01-01

    The 1.6 m clear aperture New Solar Telescope (NST) in Big Bear Solar Observatory (BBSO) is now providing the highest resolution solar data ever. These data have revealed surprises about the Sun on small-scales including the observation that bright points (BPs), which can be used as proxies for the intense, compact magnetic elements that are apparent in photospheric intergranular lanes. The BPs are ever more numerous on ever smaller spatial scales as though there were no limit to how small the BPs can be. Here we discuss high resolution NST data on BPs that provide support for the ideas that a turbulent regime of super-diffusivity dominates in the quiet Sun, and there are local dynamos operating near the solar surface. (comment)

  5. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  6. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  7. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Malmberg, J.-A.; Cecconello, M.; Brunsell, P.R.; Yadikin, D.; Drake, J.R.

    2003-01-01

    The EXTRAP T2R reversed-field pinch has a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<2ms) and the pulse length (∼20ms). The resonant tearing modes do not wall-lock. They rotate with angular phase velocities in the range of 20 to 600 krad/s. As a result of the rotation the radial component of the perturbations at the shell from the resonant modes is suppressed. Non-resonant (resistive-wall) kink modes are unstable and their linear growth rates have been measured. The measured growth rates follow the trend expected from theoretical estimates for a range of equilibrium parameters. Furthermore, when the resonant modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting shell RFP. The poloidal beta is around 10% for a range of current and density. (author)

  8. RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Ramishvili, Giorgi; Shergelashvili, Bidzina [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Hanslmeier, Arnold [IGAM, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Poedts, Stefaan, E-mail: teimuraz.zaqarashvili@uni-graz.at [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001, Leuven (Belgium)

    2016-07-20

    Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195 days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.

  9. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  10. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  11. Core flow inversion tested with numerical dynamo models

    Science.gov (United States)

    Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes

    2000-05-01

    We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.

  12. New insights into MHD dynamics of magnetically confined plasmas from experiments in RFX

    International Nuclear Information System (INIS)

    Martin, P.; Martini, S.; Antoni, V.

    2001-01-01

    The experimental and theoretical activity performed in the RFX experiment has allowed a deeper insight into the MHD properties of the RFP configuration. A set of successful experiments has demonstrated the possibility of influencing both the amplitude and the spectrum of the magnetic fluctuations which characterise the RFP configuration. A new regime (QSH states) where the dynamo mechanism works in a nearly laminar way and a helical core plasma is produced has been investigated. With these studies a reduction of the magnetic chaos has been obtained. The continuos rotation of wall locked resistive tearing modes has been obtained by an m=0 rotating perturbation. This perturbation induces rotation of m=1 non-linearly coupled modes. (author)

  13. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  14. Two-fluid and nonlinear effects of tearing and pressure-driven resistive modes in reversed field pinches

    International Nuclear Information System (INIS)

    Mirnov, V.V.

    2002-01-01

    Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)

  15. Finite-correlation-time effects in the kinematic dynamo problem

    International Nuclear Information System (INIS)

    Schekochihin, Alexander A.; Kulsrud, Russell M.

    2001-01-01

    Most of the theoretical results on the kinematic amplification of small-scale magnetic fluctuations by turbulence have been confined to the model of white-noise-like (δ-correlated in time) advecting turbulent velocity field. In this work, the statistics of the passive magnetic field in the diffusion-free regime are considered for the case when the advecting flow is finite-time correlated. A new method is developed that allows one to systematically construct the correlation-time expansion for statistical characteristics of the field such as its probability density function or the complete set of its moments. The expansion is valid provided the velocity correlation time is smaller than the characteristic growth time of the magnetic fluctuations. This expansion is carried out up to first order in the general case of a d-dimensional arbitrarily compressible advecting flow. The growth rates for all moments of the magnetic-field strength are derived. The effect of the first-order corrections due to the finite correlation time is to reduce these growth rates. It is shown that introducing a finite correlation time leads to the loss of the small-scale statistical universality, which was present in the limit of the δ-correlated velocity field. Namely, the shape of the velocity time-correlation profile and the large-scale spatial structure of the flow become important. The latter is a new effect, that implies, in particular, that the approximation of a locally-linear shear flow does not fully capture the effect of nonvanishing correlation time. Physical applications of this theory include the small-scale kinematic dynamo in the interstellar medium and protogalactic plasmas

  16. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  17. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    Science.gov (United States)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  18. Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.

    2017-07-01

    The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n  =  1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n  =  1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n  =  2, 3, and higher modes.

  19. Comparing Multidimensional and Continuum Models of Vocabulary Acquisition: An Empirical Examination of the Vocabulary Knowledge Scale

    Science.gov (United States)

    Stewart, Jeffrey; Batty, Aaron Olaf; Bovee, Nicholas

    2012-01-01

    Second language vocabulary acquisition has been modeled both as multidimensional in nature and as a continuum wherein the learner's knowledge of a word develops along a cline from recognition through production. In order to empirically examine and compare these models, the authors assess the degree to which the Vocabulary Knowledge Scale (VKS;…

  20. Sudden transitions and grand variations in the solar dynamo, past and future☆

    Directory of Open Access Journals (Sweden)

    De Jager Cornelis

    2012-06-01

    Full Text Available The solar dynamo is the exotic dance of the sun’s two major magnetic field components, the poloidal and the toroidal, interacting in anti-phase. On the basis of new data on the geomagnetic aa index, we improve our previous forecast of the properties of the current Schwabe cycle #24. Its maximum will occur in 2013.5 and the maximum sunspot number Rmax will then be 62 ± 12, which is within the bounds of our earlier forecasts. The subsequent analysis, based on a phase diagram, which is a diagram showing the relation between maximum sunspot numbers and minimum geomagnetic aa index values leads to the conclusion that a new Grand Episode in solar activity has started in 2008. From the study of the natural oscillations in the sunspot number time series, as found by an analysis based on suitable wavelet base functions, we predict that this Grand Episode will be of the Regular Oscillations type, which is the kind of oscillations that also occurred between 1724 and 1924. Previous expectations of a Grand (Maunder-type Minimum of solar activity cannot be supported. We stress the significance of the Hallstatt periodicity for determining the character of the forthcoming Grand Episodes. No Grand Minimum is expected to occur during the millennium that has just started.

  1. Statistical Mechanics of Turbulent Dynamos

    Science.gov (United States)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  2. A small-scale dynamo in feedback-dominated galaxies - III. Cosmological simulations

    Science.gov (United States)

    Rieder, Michael; Teyssier, Romain

    2017-12-01

    Magnetic fields are widely observed in the Universe in virtually all astrophysical objects, from individual stars to entire galaxies, even in the intergalactic medium, but their specific genesis has long been debated. Due to the development of more realistic models of galaxy formation, viable scenarios are emerging to explain cosmic magnetism, thanks to both deeper observations and more efficient and accurate computer simulations. We present here a new cosmological high-resolution zoom-in magnetohydrodynamic (MHD) simulation, using the adaptive mesh refinement technique, of a dwarf galaxy with an initially weak and uniform magnetic seed field that is amplified by a small-scale dynamo (SSD) driven by supernova-induced turbulence. As first structures form from the gravitational collapse of small density fluctuations, the frozen-in magnetic field separates from the cosmic expansion and grows through compression. In a second step, star formation sets in and establishes a strong galactic fountain, self-regulated by supernova explosions. Inside the galaxy, the interstellar medium becomes highly turbulent, dominated by strong supersonic shocks, as demonstrated by the spectral analysis of the gas kinetic energy. In this turbulent environment, the magnetic field is quickly amplified via a SSD process and is finally carried out into the circumgalactic medium by a galactic wind. This realistic cosmological simulation explains how initially weak magnetic seed fields can be amplified quickly in early, feedback-dominated galaxies, and predicts, as a consequence of the SSD process, that high-redshift magnetic fields are likely to be dominated by their small-scale components.

  3. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    Science.gov (United States)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  4. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  5. The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Inceoglu, Fadil; Arlt, Rainer [Leibniz-Institute for Astrophysics Potsdam, An der Sternwarte 16, D-14482, Potsdam (Germany); Rempel, Matthias, E-mail: finceoglu@aip.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-10-20

    We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize the nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.

  6. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  7. Magnetostrophic balance as the optimal state for turbulent magnetoconvection.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2015-01-27

    The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth's magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems.

  8. Single-Column Modeling of Convection During the CINDY2011/DYNAMO Field Campaign With the CNRM Climate Model Version 6

    Science.gov (United States)

    Abdel-Lathif, Ahmat Younous; Roehrig, Romain; Beau, Isabelle; Douville, Hervé

    2018-03-01

    A single-column model (SCM) approach is used to assess the CNRM climate model (CNRM-CM) version 6 ability to represent the properties of the apparent heat source (Q1) and moisture sink (Q2) as observed during the 3 month CINDY2011/DYNAMO field campaign, over its Northern Sounding Array (NSA). The performance of the CNRM SCM is evaluated in a constrained configuration in which the latent and sensible heat surface fluxes are prescribed, as, when forced by observed sea surface temperature, the model is strongly limited by the underestimate of the surface fluxes, most probably related to the SCM forcing itself. The model exhibits a significant cold bias in the upper troposphere, near 200 hPa, and strong wet biases close to the surface and above 700 hPa. The analysis of the Q1 and Q2 profile distributions emphasizes the properties of the convective parameterization of the CNRM-CM physics. The distribution of the Q2 profile is particularly challenging. The model strongly underestimates the frequency of occurrence of the deep moistening profiles, which likely involve misrepresentation of the shallow and congestus convection. Finally, a statistical approach is used to objectively define atmospheric regimes and construct a typical convection life cycle. A composite analysis shows that the CNRM SCM captures the general transition from bottom-heavy to mid-heavy to top-heavy convective heating. Some model errors are shown to be related to the stratiform regimes. The moistening observed during the shallow and congestus convection regimes also requires further improvements of this CNRM-CM physics.

  9. Flibe-D2 Permeation Experiment and Analysis

    International Nuclear Information System (INIS)

    Fukada, S.; Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Schuetz, S.T.; O'Brien, J.E.; Nishimura, H.; Hatano, Y.; Terai, T.; Petti, D.A.; Sze, D.-K.; Tanaka, S.

    2003-01-01

    Experiment of D 2 permeation through Ni facing with purified Flibe is being carried out under the Japan-US joint research project (JUPITER-II). The experiment is proceeding in the following phases; (i) fabrication and assembly of a dual-probe permeation apparatus, (ii) a single-probe Ni/D 2 permeation experiment without Flibe, (iii) a dual-probe Ni/D 2 permeation experiment without Flibe, (iv) Flibe chemical purification by HF/H 2 gas bubbling, (v) physical purification by Flibe transport through a porous Ni filter, (vi) Ni/Flibe/D 2 permeation experiment, and (vii) Ni/Flibe/HT permeation experiment. The present paper describes results of the single and dual Ni/D 2 permeation experiments in detail

  10. DRESDYN: A new platform for liquid metal thermohydraulic studies and measurement technique developments

    International Nuclear Information System (INIS)

    Gerbeth, Gunter; Eckert, Sven; Stefani, Frank; Gundrum, Thomas

    2013-01-01

    DRESDYN: General features. DRESDYN: DREsden Sodium facility for DYNamo and thermohydraulic studies. A large-scale new infrastructure for liquid metal experiments. Features: • New building ~ 500 m 2 ; • Total sodium inventory: 12-15 tons; • Precession driven experiment with separate strong basement and containment for Argon flooding; • Big hall for SFR related experiments, including ISI, a sodium loop, X-ray lab; • Financing is given, construction will start soon in spring 2013; • First experiments 2015 (hopefully...)

  11. Q GSM tegi konkurentidele dünamo / Aivar Hundimägi

    Index Scriptorium Estoniae

    Hundimägi, Aivar, 1975-

    2004-01-01

    Mobiilsideoperaatorile Q GSM (praegune Tele2) edu taganud turundusstrateegiatest. Lisad: Q GSMi Dynamo teenuspaketi eesmärgid; Q GSMist sai Tele2. Diagramm: 2000. aastal turule toodud Dynamo pakett tõi murrangu

  12. Little Earth Experiment: An instrument to model planetary cores.

    Science.gov (United States)

    Aujogue, Kélig; Pothérat, Alban; Bates, Ian; Debray, François; Sreenivasan, Binod

    2016-08-01

    In this paper, we present a new experimental facility, Little Earth Experiment, designed to study the hydrodynamics of liquid planetary cores. The main novelty of this apparatus is that a transparent electrically conducting electrolyte is subject to extremely high magnetic fields (up to 10 T) to produce electromagnetic effects comparable to those produced by moderate magnetic fields in planetary cores. This technique makes it possible to visualise for the first time the coupling between the principal forces in a convection-driven dynamo by means of Particle Image Velocimetry (PIV) in a geometry relevant to planets. We first present the technology that enables us to generate these forces and implement PIV in a high magnetic field environment. We then show that the magnetic field drastically changes the structure of convective plumes in a configuration relevant to the tangent cylinder region of the Earth's core.

  13. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  14. Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled

    International Nuclear Information System (INIS)

    Akbari Alashti, R.; Khorsand, M.

    2012-01-01

    Three-dimensional elastic analysis is carried out for functionally graded cylindrical shells bonded with piezoelectric layers subjected to dynamic and thermal loads. Material properties are assumed to be graded in the radial direction obeying a simple power law with constant Poisson's ratio. Two versions of differential quadrature (DQ) method coupled with the finite difference (FD) method are employed to discretize the governing differential equations in space and time domains. The convergence is studied and results of the axisymmetric loadings are verified with reported results. Effects of the grading index of material properties, thermal gradient, boundary conditions, thickness of piezoelectric layers and electric excitation on stress, displacement, electric and temperature fields are presented. Highlights: ► Dynamo-thermo-elastic analysis of an FGM shell with piezoelectric layer is carried out. ► Governing equations are solved by DQ-FD coupled. ► Effects of grading index, temperature difference and piezoelectric thickness are presented.

  15. Survalytics: An Open-Source Cloud-Integrated Experience Sampling, Survey, and Analytics and Metadata Collection Module for Android Operating System Apps.

    Science.gov (United States)

    O'Reilly-Shah, Vikas; Mackey, Sean

    2016-06-03

    We describe here Survalytics, a software module designed to address two broad areas of need. The first area is in the domain of surveys and app analytics: developers of mobile apps in both academic and commercial environments require information about their users, as well as how the apps are being used, to understand who their users are and how to optimally approach app development. The second area of need is in the field of ecological momentary assessment, also referred to as experience sampling: researchers in a wide variety of fields, spanning from the social sciences to psychology to clinical medicine, would like to be able to capture daily or even more frequent data from research subjects while in their natural environment. Survalytics is an open-source solution for the collection of survey responses as well as arbitrary analytic metadata from users of Android operating system apps. Surveys may be administered in any combination of one-time questions and ongoing questions. The module may be deployed as a stand-alone app for experience sampling purposes or as an add-on to existing apps. The module takes advantage of free-tier NoSQL cloud database management offered by the Amazon Web Services DynamoDB platform to package a secure, flexible, extensible data collection module. DynamoDB is capable of Health Insurance Portability and Accountability Act compliant storage of personal health information. The provided example app may be used without modification for a basic experience sampling project, and we provide example questions for daily collection of blood glucose data from study subjects. The module will help researchers in a wide variety of fields rapidly develop tailor-made Android apps for a variety of data collection purposes.

  16. Survalytics: An Open-Source Cloud-Integrated Experience Sampling, Survey, and Analytics and Metadata Collection Module for Android Operating System Apps

    Science.gov (United States)

    Mackey, Sean

    2016-01-01

    Background We describe here Survalytics, a software module designed to address two broad areas of need. The first area is in the domain of surveys and app analytics: developers of mobile apps in both academic and commercial environments require information about their users, as well as how the apps are being used, to understand who their users are and how to optimally approach app development. The second area of need is in the field of ecological momentary assessment, also referred to as experience sampling: researchers in a wide variety of fields, spanning from the social sciences to psychology to clinical medicine, would like to be able to capture daily or even more frequent data from research subjects while in their natural environment. Objective Survalytics is an open-source solution for the collection of survey responses as well as arbitrary analytic metadata from users of Android operating system apps. Methods Surveys may be administered in any combination of one-time questions and ongoing questions. The module may be deployed as a stand-alone app for experience sampling purposes or as an add-on to existing apps. The module takes advantage of free-tier NoSQL cloud database management offered by the Amazon Web Services DynamoDB platform to package a secure, flexible, extensible data collection module. DynamoDB is capable of Health Insurance Portability and Accountability Act compliant storage of personal health information. Results The provided example app may be used without modification for a basic experience sampling project, and we provide example questions for daily collection of blood glucose data from study subjects. Conclusions The module will help researchers in a wide variety of fields rapidly develop tailor-made Android apps for a variety of data collection purposes. PMID:27261155

  17. Использование продукции Autodesk и Dynamo в тоннелестроении

    OpenAIRE

    Мусиенко, Ю. А.

    2017-01-01

    In this article the speech about expediency of application of BIM of modeling will go to tunneling. We will review a concrete example of modeling of a tunnel with application of a linking of Revit and Dynamo. I will tell you about benefits on economic indicators and you will be pleasantly surprised.

  18. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  19. Where Do Data Go When They Die? Attaining Data Salvation Through the Establishment of a Solar Dynamo Dataverse

    Science.gov (United States)

    Munoz-Jaramillo, Andres

    2016-05-01

    The arrival of a highly interconnected digital age with practically limitless data storage capacity has brought with it a significant shift in which scientific data is stored and distributed (i.e. from being in the hands of a small group of scientists to being openly and freely distributed for anyone to use). However, the vertiginous speed at which hardware, software, and the nature of the internet changes has also sped up the rate at which data is lost due to formatting obsolescence and loss of access.This poster is meant to advertise the creation of a highly permanent data repository (within the context of Harvard's Dataverse), curated to contain datasets of high relevance for the study, and prediction of the solar dynamo, solar cycle, and long-term solar variability. This repository has many advantages over traditional data storage like the assignment of unique DOI identifiers for each database (making it easier for scientist to directly cite them), and the automatic versioning of each database so that all data are able to attain salvation.

  20. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  1. Magnetohydrodynamics of accretion disks

    International Nuclear Information System (INIS)

    Torkelsson, U.

    1994-04-01

    The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks

  2. Results from K2K experiment

    International Nuclear Information System (INIS)

    Yanagisawa, Chiaki

    2001-01-01

    The K2K experiment is the first long baseline neutrino oscillation experiment at KEK and at Kamioka, Japan. This is a brief summary of the K2K experiment in the first year of running from June 1999 to June 2000. The major result is that for the first time in human history artificially produced neutrinos by an accelerator are detected at a long distance of 250km from the production points. A brief introduction, the detector performance and the some analysis results are presented. The analysis results are based on the data corresponding to the integrated beam intesnsity of 2.29 x 10 19 pot

  3. Large-scale perturbations of magnetohydrodynamic regimes linear and weakly nonlinear stability theory

    CERN Document Server

    Zheligovsky, Vladislav

    2011-01-01

    New developments for hydrodynamical dynamo theory have been spurred by recent evidence of self-sustained dynamo activity in laboratory experiments with liquid metals. The emphasis in the present volume is on the introduction of powerful mathematical techniques required to tackle modern multiscale analysis of continous systems and there application to a number of realistic model geometries of increasing complexity. This introductory and self-contained research monograph summarizes the theoretical state-of-the-art to which the author has made pioneering contributions.

  4. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  5. The dynomak: An advanced spheromak reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.A., E-mail: das1990@uw.edu; Jarboe, T.R.; Morgan, K.D.; Pfaff, M.; Lavine, E.S.; Kamikawa, Y.; Hughes, M.; Andrist, P.; Marklin, G.; Nelson, B.A.

    2014-04-15

    A high-β spheromak reactor concept has been formulated with an estimated overnight capital cost that is competitive with conventional power sources. This reactor concept utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt (FLiBe) blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER-developed cryogenic pumping systems were implemented in this concept from the basis of technological feasibility. A tritium breeding ratio (TBR) of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%.

  6. Fundamental Magnetofluid Physics Studies on the Swarthmore Spheromak Experiment: Reconnection and Sustainment

    International Nuclear Information System (INIS)

    Brown, M.R.

    2001-01-01

    The general goal of the Magnetofluids Laboratory at Swarthmore College is to understand how magnetofluid kinetic energy can be converted to magnetic energy as it is in the core of the earth and sun (the dynamo problem) and to understand how magnetic energy can be rapidly converted back to kinetic energy and heat as it is in solar flares (the magnetic reconnection problem). Magnetic reconnection has been studied using the Swarthmore Spheromak Experiment (SSX) which was designed and built under this Junior Faculty Grant. In SSX we generate and merge two rings of magnetized plasma called spheromaks and study their interaction. The spheromaks have many properties similar to solar flares so this work is directly relevant to basic solar physics. In addition, since the spheromak is a magnetic confinement fusion configuration, issues of formation and stability have direct impact on the fusion program

  7. Simultaneous acquisition for T2 -T2 Exchange and T1 -T2 correlation NMR experiments

    Science.gov (United States)

    Montrazi, Elton T.; Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Barsi-Andreeta, Mariane; Bonagamba, Tito J.

    2018-04-01

    The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2 -T2 Exchange and T1 -T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2 -T2 and T1 -T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.

  8. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    Science.gov (United States)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  9. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  10. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities

    Science.gov (United States)

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7–30.6), 0.6 (0.3–0.9), and 4.7 (2.1–7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches. PMID:26504832

  11. The GeoFlow experiment-spherical Rayleigh-Benard convection under the influence of an artificial central force field

    International Nuclear Information System (INIS)

    Gellert, M; Beltrame, P; Egbers, C

    2005-01-01

    Spherical Rayleigh-Benard convection under the influence of an artificial central force field produced by the so-called dielectrophoretic effect is studied as a simplified model of the flow in the outer earth core. The fluid motion there is most probably driving the earth's dynamo and the energy source for the earth's magnetic field. Studying convective flows in earth-like geometry could lead to a deeper understanding of the basics of these processes. This research is a preparatory study for the experiments on the International Space Station (ISS). A bifurcation-theoretical approach shows the existence of heteroclinic cycles between spherical modes (l, l + 1) for the non-rotating system. This behavior depends strong on the radius ratio of the spheres and will be hard to detect in the experiment. For slow rotations interactions of the azimuthal modes (m, m + 1) found in numerical simulations for supercritical states are supposed to be experimentally observable

  12. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Argus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5 to 6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/l lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  13. Laser fusion experiments at 2 TW

    International Nuclear Information System (INIS)

    Storm, E.K.; Ahlstrom, H.G.; Boyle, M.J.

    1976-01-01

    The Lawrence Livermore Laboratory Solid State Laser System, Arqus, has successfully performed laser implosion experiments at power levels exceeding 2 TW. D-T filled glass microspheres have been imploded to yield thermonuclear reaction products in excess of 5 x 10 8 per event. Neutron and α time-of-flight measurements indicate that D-T ion temperatures of approximately 5-6 keV and a density confinement time product (n tau) of approximately 1 x 10 12 were obtained in these experiments. Typically two 40J, 40 psec pulses of 1.06 μm light were focused on targets using 20 cm aperture f/1 lenses, producing intensities at the target in excess of 10 16 W/cm 2 . An extensive array of diagnostics routinely monitored the laser performance and the laser target interaction process. Measurements of absorption and asymmetry in both the scattered light distribution and the ion blow off is evidence for non-classical absorption mechanisms and density scale heights of the order of 2 μm or less. The symmetry of the thermonuclear burn region is investigated by monitoring the α-particle flux in several directions, and an experiment to image the thermonuclear burn region is in process. These experiments significantly extend our data base and our understanding of laser induced thermonuclear implosions and the basic laser plasma interaction physics from the 0.4 to 0.7 TW level of previous experiments

  14. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-01-01

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds

  15. Study on mechanical properties of the laminated composite materials with compatible heat treatments

    International Nuclear Information System (INIS)

    Pashkov, P.O.; Pektemirov, B.G.; Yaroshenko, A.P.

    1980-01-01

    Considered is the behaviour during axial extension of trilament composite materials, the mechanical properties of which are formed mainly by heat treatment. Application in the composite of the materials with compatible heat treatment is most rational. It is shown that for (ATsMg+N18K8M5T+ATsMg), (KhN78+VKS+KhH78) composites, the constituents of which are relatively plastic and tightly bound with each other, the tensile strength and uniform strain are changed additively

  16. THERMODYNAMIC LIMITS ON MAGNETODYNAMOS IN ROCKY EXOPLANETS

    International Nuclear Information System (INIS)

    Gaidos, Eric; Conrad, Clinton P.; Manga, Michael; Hernlund, John

    2010-01-01

    To ascertain whether magnetic dynamos operate in rocky exoplanets more massive or hotter than the Earth, we developed a parametric model of a differentiated rocky planet and its thermal evolution. Our model reproduces the established properties of Earth's interior and magnetic field at the present time. When applied to Venus, assuming that planet lacks plate tectonics and has a dehydrated mantle with an elevated viscosity, the model shows that the dynamo shuts down or never operated. Our model predicts that at a fixed planet mass, dynamo history is sensitive to core size, but not to the initial inventory of long-lived, heat-producing radionuclides. It predicts that rocky planets larger than 2.5 Earth masses will not develop inner cores because the temperature-pressure slope of the iron solidus becomes flatter than that of the core adiabat. Instead, iron 'snow' will condense near or at the top of these cores, and the net transfer of latent heat upward will suppress convection and a dynamo. More massive planets can have anemic dynamos due to core cooling, but only if they have mobile lids (plate tectonics). The lifetime of these dynamos is shorter with increasing planet mass but longer with higher surface temperature. Massive Venus-like planets with stagnant lids and more viscous mantles will lack dynamos altogether. We identify two alternative sources of magnetic fields on rocky planets: eddy currents induced in the hot or molten upper layers of planets on very short-period orbits, and dynamos in the ionic conducting layers of 'ocean' planets with ∼10% mass in an upper mantle of water (ice).

  17. Overview of the Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, SeungCheon [Cornell U., Phys. Dept.

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  18. Numerical studies of active current profile control in the reversed-field pinch

    International Nuclear Information System (INIS)

    Dahlin, J-E; Scheffel, J; Anderson, J K

    2007-01-01

    Quenching of the reversed-field pinch (RFP) dynamo is observed in numerical simulations using current profile control. A novel algorithm employing active feedback of the dynamo field has been utilized. The quasi-steady state achieved represents an important improvement as compared with earlier numerical work and may indicate a direction for the design of future experiments. Both earlier and the novel schemes of feedback control result in quasi-single helicity states. The energy confinement time and poloidal beta are observed to be substantially increased, as compared with the conventional RFP, in both the cases. Different techniques for experimental implementation are discussed

  19. Overview of the HIT-SI3 spheromak experiment

    Science.gov (United States)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2017-10-01

    The HIT-SI and HIT-SI3 spheromak experiments (a = 23 cm) study efficient, steady-state current drive for magnetic confinement plasmas using a novel method which is ideal for low aspect ratio, toroidal geometries. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Analysis of surface magnetic fields in HIT-SI indicates large n = 0 and 1 mode amplitudes and little energy in higher modes. Within measurement uncertainties all the n = 1 energy is imposed by the injectors, rather than being plasma-generated. The fluctuating field imposed by the injectors is sufficient to sustain the toroidal current through dynamo action whereas the plasma-generated field is not (Hossack et al., Phys. Plasmas, 2017). Ion Doppler spectroscopy shows coherent, imposed plasma motion inside r 10 cm in HIT-SI and a smaller volume of coherent motion in HIT-SI3. Coherent motion indicates the spheromak is stable and a lack of plasma-generated n = 1 energy indicates the maximum q is maintained below 1 for stability during sustainment. In HIT-SI3, the imposed mode structure is varied to test the plasma response (Hossack et al., Nucl. Fusion, 2017). Imposing n = 2, n = 3, or large, rotating n = 1 perturbations is correlated with transient plasma-generated activity. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54361.

  20. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global Cloud-Permiting Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chidong [Univ. of Miami, Coral Gables, FL (United States)

    2016-08-14

    Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuable information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.

  1. The Mu2e experiment at Fermilab

    International Nuclear Information System (INIS)

    Donghia, R.

    2017-01-01

    The Mu2e experiment searches for the neutrinoless muon to electron conversion in the field of a nucleus, which is a charged lepton flavor violating process. The goal of the experiment is to reach a single event sensitivity of 2.8×10"−"1"7, setting an upper limit on the muon conversion rate of 6.7 × 10"−"1"7. This corresponds to a four order of magnitude improvement with respect to the existing limits.

  2. Operational experience with CMS Tier-2 sites

    International Nuclear Information System (INIS)

    Gonzalez Caballero, I

    2010-01-01

    In the CMS computing model, more than one third of the computing resources are located at Tier-2 sites, which are distributed across the countries in the collaboration. These sites are the primary platform for user analyses; they host datasets that are created at Tier-1 sites, and users from all CMS institutes submit analysis jobs that run on those data through grid interfaces. They are also the primary resource for the production of large simulation samples for general use in the experiment. As a result, Tier-2 sites have an interesting mix of organized experiment-controlled activities and chaotic user-controlled activities. CMS currently operates about 40 Tier-2 sites in 22 countries, making the sites a far-flung computational and social network. We describe our operational experience with the sites, touching on our achievements, the lessons learned, and the challenges for the future.

  3. Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage

  4. Experiment prediction for LOFT nuclear experiments L5-1/L8-2

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1982-01-01

    The LOFT Experiments L5-1 and L8-2 simulated intermediate break loss-of-coolant accidents with core uncovery. This paper compares the predictions with the measured data for these experiments. The RELAP5 code was used to perform best estimate double-blind and single-blind predictions. The double-blind calculations are performed prior to the experiment and use specified nominal initial and boundary conditions. The single-blind calculations are performed after the experiment and use measured initial and boundary conditions while maintaining all other parameters constant, including the code version. Comparisons of calculated results with experimental results are discussed; the possible causes of discrepancies are explored and explained. RELAP5 calculated system pressure, mass inventory, and fuel cladding temperature agree reasonably well with the experiment results, and only slight changes are noted between the double-blind and single-blind predictions

  5. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  6. Fermilab muon g-2 experiment

    Science.gov (United States)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  7. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  8. On the Origin of Ultra High Energy Cosmic Rays II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  9. Experiments on tritium behavior in beryllium, (2)

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi; Nakata, Hirokatsu; Sugai, Hiroyuki; Tanase, Masakazu.

    1990-02-01

    Beryllium has been used as the neutron reflector of material testing reactor and as the neutron multiplier for the fusion reactor lately. To study the tritium behavior in beryllium, we conducted the experiments, i.e., tritium release by recoil or diffusion by using the hot-pressed beryllium which had been produced both tritium and helium by neutron irradiation. From our experiments, we found that (1) amount of tritium production per one cycle irradiation (lasting 22 days) of JMTR is 10 mCi/g, (2) amount of tritium per surface area of hot-pressed beryllium released by recoil is 4 μCi/cm 2 , (3) diffusion coefficient of tritium in a temperature range of 800 ∼1180degC can be expressed with the following equation; D = 8.7 x 10 4 exp(-2.9x10 5 /R/T) cm 2 /s. (author)

  10. Decommissioning of DR 2. Experiences learnt from the completion

    International Nuclear Information System (INIS)

    Strufe, N.

    2009-10-01

    The report describes experiences gathered from the decommissioning of DR 2. The experiences encompasses planning and management of the project, methods of accomplishment, and various materials categories. Additionally, the report describes the experience with specific tools used in the project

  11. The Spacelab-Mir-1 "Greenhouse-2" experiment

    Science.gov (United States)

    Bingham, G. E.; Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Bubenheim, D. L.; Yendler, B.; Sytchev, V. N.; Levinskikh, M. A.; Podolsky, I. G.

    1996-01-01

    The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.].

  12. Experiment prediction for LOFT nuclear experiments L5-1 and L8-2

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    The LOFT Experiments L5-1 and L8-2 simulated intermediate break loss-of-coolant accidents with core uncovery. This paper compares the predictions with the measured data for these experiments. The RELAP5 code was used to perform best estimate double-blind and single-blind predictions. The double-blind calculations are performed prior to the experiment and use specified nominal initial and boundary conditions. The single-blind calculations are performed after the experiment and use measured initial and boundary conditions while maintaining all other parameters constant, including the code version. Comparisons of calculated results with experimental results are discussed; the possible causes of discrepancies are explored and explained. RELAP5 calculated system pressure, mass inventory, and fuel cladding temperature agree reasonably well with the experiment results, and only slight changes are noted between the double-blind and single-blind predictions

  13. Experiment data report for Loft anticipated transient experiments 16-1, 16-2, and 16-3

    International Nuclear Information System (INIS)

    Batt, D.L.; Carpenter, J.M.

    1980-12-01

    This report presents uninterpreted experimental data from the second, third, and fourth anticipated transient experiments (Experiments L6-2, L6-1, and L6-3), conducted in the Loss-of-Fluid Test (LOFT) facility. Experiment L6-2 simulated a loss of forced primary coolant flow in a large PWR by tripping power to primary coolant pump motor generator sets, allowing the pumps to coast down under the influence of the flywheel system. Reactor scram initiated on indication of low flow in the primary coolant system (PCS). Experiment L6-1 simulated a loss of steam load in a large PWR by closing the steam flow control valve which reduced heat removal from the secondary coolant system and caused the PCS temperature and pressure to increase until reactor scram initiated on indication on high PCS pressure. Experiment L6-3 simulated an excessive load increase in a large PWR by opening the steam flow control valve at its maximum rate. PCS temperature and pressure decreased, causing the reactor to scram on indication of low PCS pressure. All experiments were complete when the plant was returned to a hot-standby condition

  14. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  15. Beam current transformer (BCT) for experiment WA1/2

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    In experiment WA1/2, a 400 GeV proton beam from the SPS was directed at a target, downstream of which a hadron line selected, in several narrow momentum bands, a beam of either pi+ and K+ or pi- and K-. These neutrino-parent particles, before entering a 292 m long decay tunnel, passed through a set of 2 BCTs of a design seen here. They measured the hadron intensity (10^10 to 10^11 particles/pulse) with a precision of the order of 1%. There were 2 of them, for enhanced precision and confidence. After the discovery of neutral currents in the Gargamelle-experiment, WA1/2 was the first follow-up, high-precision experiment (Z.Phys.C35, 443-452, 1987 and Z.Phys.C45, 361-379, 1990). See also 7706516X.

  16. Microwave Palaeointensity Experiments On Terrestrial and Martian Material

    Science.gov (United States)

    Shaw, J.; Hill, M.; Gratton, M.

    The microwave palaeointensity technique was developed in Liverpool University (Walton et al 1996) and has successfully been applied to archaeological ceramics and recent lavas (Shaw et al 1996, 1999.; Hill et al 1999,2000). These published results show that microwave analysis provides accurate palaeointensity determinations com- bined with a very high success rate. Most recently the technique has been successfully applied to Martian material (Shaw et al, 2001) to look for the existence of an internal Martian dynamo early in Martian history. New experiments have been carried out us- ing microwaves to demagnetise synthetic muti-component TRM's and new palaeoin- tensity experiments providing a comparison between microwave analysis of laboratory TRM's and conventional thermal Thellier analysis of microwave generated mTRM's. These experiments demonstrate the equivalence of microwave and thermally gener- ated TRM's. D. Walton, S Snape, T.C. Rolph, J. Shaw and J.A. Share, Application of ferromagnetic resonance heating to palaeointensity determinations.1996, Phys Earth Planet Int,94, 183-186. J. Shaw, D. Walton, S Yang, T.C.Rolph, and J.A. Share. Microwave Archaeointensities from Peruvian Ceramics. 1996, Geophys. J. Int,124,241-244 J. Shaw, S. Yang, T. C. Rolph, and F. Y. Sun. A comparison of archaeointensity results from Chinese ceramics using Microwave and conventional ThellierSs and ShawSs methods.,1999, G J Int.136, 714-718 M. Hill, and J. Shaw, 1999, Palaeointensity results for Historic Lavas from Mt. Etna using microwave demagnetisation/remagnetisation in a modified Thellier type exper- iment. G. J. Int, 139, 583-590 M. J. Hill, and J. Shaw, 2000. Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique, Geophys. J. Int., 142, 487-504. J. Shaw, M. Hill, and S. J. Openshaw, 2001, Investigating the ancient Martian magnetic field using microwaves, Earth and Planetary Science Letters 190 (2001) 103-109

  17. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  18. Description of Supercritical CO{sub 2} Compressor Experiment Loop

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoonhan; Kim, Seong Gu [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Je Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The full scope of SCIEL project is to demonstrate high efficiency with simple recuperated cycle layout or recompressing layout, which the final cycle layout will be determined by the obtained compressor performance data. As a part of SCIEL project, S-CO{sub 2} compressor experiment facility has been constructed in KAERI. In this paper, current status of S-CO{sub 2} compressor experiment loop will be reviewed. With the growing interest in developing an advanced nuclear power plant, power conversion cycle innovation has been the part of this effort to secure high economics and enhanced safety. One of the main activities of power conversion cycle innovation is the development of Supercritical CO{sub 2} Brayton cycle technology. S-CO{sub 2} Brayton cycle concept was suggested in 1960s but the development and realization of the technology has been delayed up to now. In Korea, KAIST, KAERI and POSTECH are conducting research and development of Korean S-CO{sub 2} Brayton cycle technology by erecting the Supercritical CO{sub 2} Integral Experiment Loop (SCIEL)

  19. Top-down freezing in a Fe-FeS core and Ganymede's present-day magnetic field

    Science.gov (United States)

    Rückriemen, Tina; Breuer, Doris; Spohn, Tilman

    2018-06-01

    Ganymede's core most likely possesses an active dynamo today, which produces a magnetic field at the surface of ∼ 719 nT. Thermochemical convection triggered by cooling of the core is a feasible power source for the dynamo. Experiments of different research groups indicate low pressure gradients of the melting temperatures for Fe-FeS core alloys at pressures prevailing in Ganymede's core ( < 10 GPa). This may entail that the core crystallizes from the top instead of from the bottom as is expected for Earth's core. Depending on the core sulfur concentration being more iron- or more sulfur-rich than the eutectic concentration either snowing iron crystals or a solid FeS layer can form at the top of the core. We investigate whether these two core crystallization scenarios are capable of explaining Ganymede's present magnetic activity. To do so, we set up a parametrized one-dimensional thermal evolution model. We explore a wide range of parameters by running a large set of Monte Carlo simulations. Both freezing scenarios can explain Ganymede's present-day magnetic field. Dynamos of iron snow models are rather young ( < 1 Gyr), whereas dynamos below the FeS layer can be both young and much older ( ∼ 3.8 Gyr). Successful models preferably contain less radiogenic heat sources in the mantle than the chondritic abundance and show a correlation between the reference viscosity in the mantle and the initial core sulfur concentration.

  20. Preface

    Science.gov (United States)

    Alemany, A.; Lielausis, O.; Chopart, J.-P.

    2003-09-01

    second time in the conference program after its first presentation at PAMIR 2000. All aspects of the topic were presented, including applications for microelectronics and new possibilities in power engineering regarding the thermodynamic machine to produce electricity. 5. Cristal growth. The magnetic fields are used here to stabilize the interfaces between the crystal and the solution allowing to improve the quality of the crystals as well as to grow large-size single crystals. Various configurations with various types of magnetic fields (DC, AC or travelling, etc.) were reported. 6. Dynamo effect. The last day of the conference was devoted to the dynamo effect. This was a very important session, characterizing a very high level of activity in the European countries, especially in the domain of experiment. All the existing experiments in this field, using sodium as a liquid metal, with extremely important results for some of them considering the self-generation of magnetic fields, were examined. The next generation of dynamo experiments was also discussed, involving the papers devoted to the theoretical approach including turbulence. The conference was combined with the management committee of COST (COST P6 Magnetodynamics of Liquids) and with a meeting of the COST P6 working groups. They were devoted to metallurgical applications of MHD (person-in-charge - Prof. B. Nacke from Hannover, Germany), poorly conducting fluid (person-in-charge - Dr. G. Gerbeth from Dresden, Germany) and fundamental MHD (person-in-charge - Dr. J. Leorat from Paris, France). Additionally, a special meeting dedicated the Ampere program was organized to consider the second generation of dynamo experiments in Riga (Latvia), capable to reproduce the main mechanisms of the earth dynamo (reversion of polarity, for example). In this experiment, the Coriolis and Laplace forces will be combined. The proposed facility consists of a spherical container of 2 m in diameter, filled with liquid sodium and

  1. Clinical pathways for inborn errors of metabolism: warranted and feasible

    Directory of Open Access Journals (Sweden)

    Demirdas Serwet

    2013-02-01

    Full Text Available Abstract Inborn errors of metabolism (IEMs are known for their low prevalence and multidisciplinary care mostly founded on expert opinion. Clinical pathways are multidisciplinary tools to organise care which provide a clear route to the best care and improve communication. In 2010 the Dutch Society for Children and Adults with an Inborn Error of Metabolism (VKS initiated development of clinical pathways for inborn errors of metabolism. In this letter to the editor we describe why it is warranted to develop clinical pathways for IEMs and shortly discuss the process of development for these pathways in the Netherlands.

  2. New results from the T2K neutrino oscillation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oser, Scott M., E-mail: oser@phas.ubc.ca [University of British Columbia, Department of Physics and Astronomy (Canada); Collaboration: T2K Collaboration

    2013-03-15

    The T2K experiment searches for the appearance of electron neutrinos in a muon neutrino beam. The rate of this process is sensitive to the neutrino mixing parameter {theta}{sub 13}. Recent measurements that {theta}{sub 13} {ne} 0 imply that {nu}{sub {mu}} {yields} {nu}{sub e} oscillations should be observable. Using all data through May 15, 2012 the T2K experiment has detected 10 candidate {nu}{sub e} events, with an expected background for {theta}{sub 13} = 0 of 2.73{+-}0.37 events. This 3.2{sigma} excess of {nu}{sub e} events is the strongest indication to date for appearance of electron neutrinos in a neutrino oscillation experiment, and for normal mass hierarchy and {delta}{sub CP} = 0 yields 0.059 < sin{sup 2} 2{theta}{sub 13} < 0.164 at the 68 % C.L.

  3. The cylindrical GEM detector of the KLOE-2 experiment

    International Nuclear Information System (INIS)

    Bencivenni, G.; Ciambrone, P.; De Lucia, E.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.; Branchini, P.; Cicco, A. Di; Czerwinski, E.

    2017-01-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  4. Towards Commissioning the Fermilab Muon G-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, D. [Fermilab; Convery, M. E. [Fermilab; Morgan, J. P. [Fermilab; Syphers, M. J. [Northern Illinois U.; Korostelev, M. [Cockcroft Inst. Accel. Sci. Tech.; Fiedler, A. [Northern Illinois U.; Kim, S. [Cornell U.; Crnkovic, J. D. [Brookhaven; Morse, W. M. [Brookhaven

    2017-01-01

    Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.

  5. TRACY transient experiment databook. 2) ramp withdrawal experiment

    International Nuclear Information System (INIS)

    Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

    2002-03-01

    This is a databook of TRACY ''ramp withdrawal'' experiments. TRACY is a reactor to perform supercritical experiments using low-enriched uranyl nitrate aqueous solution. The excess reactivity of TRACY is 3$ at maximum, and it is inserted by feeding the solution to a core tank or by withdrawing a control rod, which is called as the transient rod, from the core. In the ramp withdrawal experiment, the supercritical experiment is initiated by withdrawing the transient rod from the core in a constant speed using a motor drive system. The data in the present databook consist of datasheets and graphs. Experimental conditions and typical values of measured parameters are tabulated in the datasheet. In the graph, power and temperature profiles are plotted. Those data are useful for the investigation of criticality accidents with fissile solutions, and for validation of criticality accident analysis codes. (author)

  6. Spheromak Physics Development

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1997-01-01

    The spheromak is a Magnetic Fusion Energy (MFE) configuration, which is a leading alternative to the tokamak. It has a simple geometry which offers an opportunity to achieve the promise of fusion energy if the physics of confinement, current drive, and pressure holding capability extrapolate favorably to a reactor. Recent changes in the US MFE program, taken in response to budget constraints and programmatic directions from Congress, include a revitalization of an experimental alternative concept effort. Detailed studies of the spheromak were consequently undertaken to examine the major physics issues which need to be resolved to advance it as a fusion plasma, the optimum configuration for an advanced experiment, and its potential as a reactor. As a result of this study, we conclude that it is important to evaluate several physics issues experimentally. Such an experiment might be appropriately be named the Sustained Spheromak Physics Experiment (SSPX). It would address several critical issues, the solution to which will provide the physics basis to enable an advanced experiment. The specific scientific goals of SSPX would be to: * Demonstrate that electron and ion temperatures of a few hundred electron volts can be achieved in a steady-state spheromak plasma sustained by a magnetic dynamo (''helicity injection''). * Relate energy confinement quantitatively to the magnetic turbulence accompanying the dynamo and use this knowledge to optimize performance. * Measure the magnetic field profiles and magnetic turbulence in the plasma and relate these to the science of the magnetic dynamo which drives the current in the plasma. * Examine experimentally the pressure holding capability (''beta limit'') of the spheromak. * Understand the initial phases of the transition of the plasma from an equilibrium supported by a magnetic-flux conserving wall to one supported by external coils

  7. Experiment data report for LOFT large-break loss-of-coolant experiment L2-5

    International Nuclear Information System (INIS)

    Bayless, P.D.; Divine, J.M.

    1982-08-01

    Selected pertinent and uninterpreted data from the third nuclear large break loss-of-coolant experiment (Experiment L2-5) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)] commercial PWR operations. Experiment L2-5 simulated a double-ended offset shear of a cold leg in the primary coolant system. The primary coolant pumps were tripped within 1 s after the break initiation, simulating a loss of site power. Consistent with the loss of power, the starting of the high- and low-pressure injection systems was delayed. The peak fuel rod cladding temperature achieved was 1078 +- 13 K. The emergency core cooling system re-covered the core and quenched the cladding. No evidence of core damage was detected

  8. TF insert experiment log book. 2nd Experiment of CS model coil

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Isono, Takaaki; Matsui, Kunihiro

    2001-12-01

    The cool down of CS model coil and TF insert was started on August 20, 2001. It took almost one month and immediately started coil charge since September 17, 2001. The charge test of TF insert and CS model coil was completed on October 19, 2001. In this campaign, total shot numbers were 88 and the size of the data file in the DAS (Data Acquisition System) was about 4 GB. This report is a database that consists of the log list and the log sheets of every shot. This is an experiment logbook for 2nd experiment of CS model coil and TF insert for charge test. (author)

  9. Technician checks the mirrors of the Starshine-2 experiment

    Science.gov (United States)

    2001-01-01

    Technician checks the mirrors of the Starshine-2 experiment KSC-01PD-1715 KENNEDY SPACE CENTER, Fla. -- A technician checks the mirrors on the Starshine-2 experiment inside a canister in the payload bay of Space Shuttle Endeavour. The deployable experiment is being carried on mission STS-108. Starshine-2's 800 aluminum mirrors were polished by more than 25,000 students from 26 countries. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews, bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello, and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff of Endeavour on mission STS-108 is scheduled for 7:41 p.m. EST.

  10. RELAP5/MOD2 post-test calculation of the OECD LOFT experiment LP-SB-2

    International Nuclear Information System (INIS)

    Perez, J.; Mendizabal, R.

    1992-04-01

    This document presents the analysis of the OECD LOFT LP-SB-2 Experiment performed by the Consejo de Seguridad Nuclear of Spain working group making use of RELAP5/MOD2 in the frame of the Spanish LOFT Project. LB-SB-2 experiment studies the effect of a delayed pump trip in a small break LOCA scenario with a 3-inch equivalent diameter break in the hot leg of a commercial PWR

  11. Analysis of LOFT loss-of-coolant experiments L2-2, L2-3, and L3-0

    International Nuclear Information System (INIS)

    Leach, L.P.; Linebarger, J.H.

    1979-01-01

    A summary of results from Loss-of-Coolant Experiments (LOCE) L2-2, L2-3, and L3-0, conducted in the Loss-of-Fluid Test (LOFT) facility, and conclusions from posttest analyses of the experimental data are presented. LOCEs L2-2 and L2-3 were nuclear large break experiments and were dominated by a core-wide fuel rod cladding rewet, which limited the maximum fuel temperature. Analytical models only conservatively predicted the measured fuel rod temperatures and will require improvements to provide best estimate predictions in this area. Analysis of a large commercial pressurized water reactor (PWR) indicates that the cladding rewet observed in LOFT is also likely to occur in a large PWR, and that, therefore, safety analysis calculations of large loss-of-coolant accidents (LOCA) are more conservative than previously thought. LOCE L3-0 was an isothermal small break (top of pressurizer) experiment and illustrated that the pressurizer fills after the primary system fluid saturates someplace other than the pressurizer itself, that the indicated pressurizer level is higher than the actual level, and that additional model development and assessment work is necessary in order to predict small LOCAs as accurately as large LOCAs

  12. CO2-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    International Nuclear Information System (INIS)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO 2 -induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO 2 , are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report

  13. R6 assessment of IPIRG-2 programme experiments

    International Nuclear Information System (INIS)

    Sharples, J.K.; France, C.C.; Budden, P.J.

    1999-01-01

    The International Piping Integrity Research Group (IPIRG) Programme was an international group programme managed by the US Nuclear Regulatory Commission (US NRC) and was aimed at developing a better understanding of the fracture behaviour of pressurised nuclear plant piping The second stage IPIRG experiments (IPIRG-2) included the development of data for the verification of fracture analyses for cracked pipes and fittings subjected to dynamic and/or cyclic load histories. This paper describes the results of work undertaken on analysing selected IPIRG-2 experiments using the UK R6 fracture assessment methodology. The level of conservatism of the R6 methodology is presented by comparing predicted applied bending moments at initiation and instability with the experimentally determined values. (author)

  14. Track reconstruction for the P2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tyukin, Alexey [JGU, Mainz (Germany); Collaboration: P2-Collaboration

    2016-07-01

    The P2 experiment at the future MESA accelerator in Mainz will measure elastically scattered electrons from a hydrogen or lead target in order to determine the parity violating asymmetry for different beam polarisations, which is created due to the weak charge of the target. The asymmetry can provide access to the Weinberg angle and the neutron skin of heavy nuclei. These quantities depend heavily on the momentum transfer Q{sup 2}, thus a reconstruction of single electron tracks in an inhomogeneous magnetic field is necessary. For this, the P2 detector will have four tracking planes of thin high voltage monolithic active pixel sensors (HV-MAPS). The scattered electrons propagate through a magnetic field and hit all four planes. In order to fit the hit positions the General Broken Lines method is used. As a fast propagator, a variation of the Runge-Kutta algorithm is applied, which solves the equation of motion in an inhomogeneous magnetic field numerically, such that the final state momentum and scattering angle can be reconstructed. The initial momentum and incident angle can vary strongly due to the thickness of the target, limiting the reconstruction quality. The average single track Q{sup 2} value of 0.006 GeV{sup 2}/c{sup 2} can be reconstructed with about 4 % uncertainty in a first analysis of the Geant4 simulation, leading to a high total precision due to large electron numbers in the experiment.

  15. IVA2 verification: Expansion phase experiment in SNR geometry

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1987-09-01

    Using the IVA2/005 computer code the SNR model explosion experiment SGI-09-1 was numerically simulated. The experiment consists of high pressure gas injection into a low pressure liquid pool with a free surface in a cylindrical geometry with internals. Bubble formation and pressure history as a function of time was predicted and compared with the experimental observation. A good agreement between theory and experiment was obtained. Numerical diffusion and its influence on the results are discussed. (orig.) [de

  16. Parameterization-based tracking for the P2 experiment

    Science.gov (United States)

    Sorokin, Iurii

    2017-08-01

    The P2 experiment in Mainz aims to determine the weak mixing angle θW at low momentum transfer by measuring the parity-violating asymmetry of elastic electronproton scattering. In order to achieve the intended precision of Δ(sin2 θW)/sin2θW = 0:13% within the planned 10 000 hours of running the experiment has to operate at the rate of 1011 detected electrons per second. Although it is not required to measure the kinematic parameters of each individual electron, every attempt is made to achieve the highest possible throughput in the track reconstruction chain. In the present work a parameterization-based track reconstruction method is described. It is a variation of track following, where the results of the computation-heavy steps, namely the propagation of a track to the further detector plane, and the fitting, are pre-calculated, and expressed in terms of parametric analytic functions. This makes the algorithm extremely fast, and well-suited for an implementation on an FPGA. The method also takes implicitly into account the actual phase space distribution of the tracks already at the stage of candidate construction. Compared to a simple algorithm, that does not use such information, this allows reducing the combinatorial background by many orders of magnitude, down to O(1) background candidate per one signal track. The method is developed specifically for the P2 experiment in Mainz, and the presented implementation is tightly coupled to the experimental conditions.

  17. PARR-2: reactor description and experiments

    International Nuclear Information System (INIS)

    Wyne, M.F.; Meghji, J.H.

    1990-12-01

    PARR-2 is a miniature neutron source reactor (MNSR) research reactor has been designed at the rate of 27 kW. Reactor assembly comprises of peaking characteristics with a self limiting flux. In this report reactor description with its assembly and instrumentation control system has been explained. The reactor engineering and physics experiments which can be performed on this reactor are explained in this report. PARR-2 is fueled with HEU fuel pins which are about 90% enriched in U-235. Specific requirements for the safety of the reactor, its building and the personnel, normal instrumentation as required in an industrial environment is sufficient. (A.B.)

  18. Laboratory Experiments to Stimulate CO2 Ocean Disposal

    International Nuclear Information System (INIS)

    Masutani, S.M.

    1997-01-01

    This Technical Progress Report summarizes activities conducted over the period 8/16/96-2/15/97 as part of this project. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation is to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO 2 ) from coal and other fossil fuel combustion systems into the atmosphere. Critical technical uncertainties of ocean disposal of CO 2 will be addressed by performing experiments that: (1) characterize size spectra and velocities of a dispersed CO 2 phase in the near-field of a discharge jet; and (2) estimate rates of mass transfer from dissolving droplets of liquid CO 2 encased in a thin hydrate shell. Experiments will be conducted in a laboratory facility that can reproduce conditions in the ocean to depths of 600 m (1,969 ft). Between 8/16/96 and 2/15/97, activities focused on modifications to the experimental apparatus and the testing of diagnostics. Following completion of these tasks, experiments will be initiated and will continue through the end of the 36 month period of performance. Major accomplishments of this reporting period were: (1) delivery, set-up, and testing of the PDPA (Phase Doppler Particle Analyzer), which will be the principal diagnostic of the continuous CO 2 jet injection tests; (2) presentation of research papers and posters at the 212th American Chemical Society National Meeting and the Third International Conference on Carbon Dioxide Removal; (3) participation in the 4th Expert Workshop on Ocean Storage of Carbon Dioxide; (4) execution of an Agreement with ABB Management, Ltd. to support and extend the activities of this grant; and (5) initiation of research collaborations with Dr. P.M. Haugen of the University of

  19. Preliminary analysis of ROSAIII experiment, (2)

    International Nuclear Information System (INIS)

    Kitaguchi, Hidemi; Suzuki, Mitsuhiro; Sobajima, Makoto; Adachi, Hiromichi; Shiba, Masayoshi.

    1978-02-01

    Loss-of-coolant accident (LOCA) experiments to be performed in ROSAIII has been examined with computer code RELAP-4J concerning the experimental conditions. From the results (1) to (3), the needs (4) to (6) are there. (1) Initial enthalpy distribution is important for simulation of break flow of an actual BWR. (2) The simulations of lower plenumn flashing and pressure transient in pressure vessel are good except when power is lacking. (3) The simulation of the cladding temperature transient is difficult because of lack of physical properties. (4) The initial pressure distribution in the facility for different core flow rates up to 72 lb/sec must be attained to analyze accurately. (5) Reverse core flow detectors and reverse jet pump flow detectors are necessary to compare flow pattern of recirculation loops between calculation and experiment. (6) Further information is necessary on physical properties of the fuels. (auth.)

  20. An analytical comparative exercise on the OECD-SETH PKL E2.2 experiment

    International Nuclear Information System (INIS)

    Reventos, F.; Freixa, J.; Batet, L.; Pretel, C.; Luebbesmeyer, D.; Spaziani, D.; Macek, J.; Lahovsky, F.; Kasahara, F.; Umminger, K.; Wegner, R.

    2008-01-01

    The 'First Workshop on Analytical Activities related to the SETH-OECD project' was held in Barcelona at the UPC's Institute of Energy Technologies (INTE), from 2nd to 3rd September 2003. The workshop gave the participants an opportunity to present the main results of the calculations performed as pre- and post-test simulations of SETH experiments. Among all the post-tests that were both presented and discussed, PKL experiment E2.2 holds special interest as it has been widely studied. Test E2.2 examined the most conservative case in terms of the maximum size that condensate slugs can reach and how far boron concentration can drop on resumption of natural circulation following a cold-side SB-LOCA. The analyses were performed by different working groups belonging to different countries and different codes were used. This paper goes deeper into the comparison of results of the different authors. Its aim is to both show and compare the results obtained by different working groups in their simulation of the experiment and to analyse the main parameters involved in order to draw conclusions on improvements that can be made in the analytical approach to such tests. All the participants managed to successfully predict the overall thermal-hydraulic system behaviour. Vessel fill-up together with slug build-up by reflux-condensation are phenomena that were correctly predicted, while simulation of natural circulation restart and transport of low-borated water slugs still need some improvement

  1. Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization

    Science.gov (United States)

    Muxworthy, Adrian R.; Bland, Phillip A.; Davison, Thomas M.; Moore, James; Collins, Gareth S.; Ciesla, Fred J.

    2017-10-01

    We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low ( 6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low-velocity collisions can generate significant matrix temperatures, as pore-space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat-sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero-porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.

  2. Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations

    Science.gov (United States)

    Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong

    2018-04-01

    Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.

  3. Formation and Dimerization of NO2 A General Chemistry Experiment

    Science.gov (United States)

    Hennis, April D.; Highberger, C. Scott; Schreiner, Serge

    1997-11-01

    We have developed a general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment can be carried out in about 45 minutes with students working in groups of two. The experiment readily provides students with data that can be manipulated with a common spreadsheet.

  4. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  5. HCDA bubble experiment, (2)

    International Nuclear Information System (INIS)

    Sakata, Kaoru; Mashiko, Hiroyuki; Oka, Yoshiaki; An, Shigehiro; Isozaki, Tadashi.

    1981-06-01

    An experiment simulating the behavior of the very large steam bubbles generated at the time of an accident of core collapse was carried out with a warm water tank, and the applicability of the theory of very small bubble disappearance known at present was examined. The bubbles generated in HCDA (hypothetical core disruptive accident) are expected to be very large, containing sodium, fuel, FP gas and so on, and play important role in the mechanism of emitting radioactive substances in the safety analysis of LMFBRs. In this experiment, the degree of subcool of the warm water pool, the initial radii of steam bubbles and the blowoff pressure of steam were taken as the parameters. The radius of the steam bubbles generated in the experiment was about 6.5 cm, and the state of disappearance was different above and below the degree of unsaturation of 10 deg C. Comparing the disappearance curve obtained by the experiment with the theory of disappearance of small bubbles, the experimental values were between inertia-controlled disappearance and heat transfer-controlled disappearance, and this result was able to be explained generally with the model taking the pressure change within steam bubbles into account. The rise of bubbles was also observed. (Kako, I.)

  6. Onsite vibrational characterization of DCMIX2/3 experiments

    Science.gov (United States)

    Ollé, Judit; Dubert, Diana; Gavaldà, Josefina; Laverón-Simavilla, Ana; Ruiz, Xavier; Shevtsova, Valentina

    2017-11-01

    The SODI-DCMIX thermodiffusion series experiments are part of the fluid research program carried out by the European Space Agency on board of the International Space Station (ISS). In particular, DCIMIX2/3 were conducted in the past inside the Microgravity Science Glovebox in the US Laboratory. Due to the physical nature of the processes implied, these kind of runs were very long and particularly delicate because the low vibratory limit requirements must be maintained for hours. This restrictive condition not always is achieved, therefore, an accurate surveillance of the acceleration levels along the different experiments is necessary, to ensure a correct interpretation of the experimental results. This work analyzes onsite vibrational environment of DCMIX2/3 covering the periods in which the experiments were going on. To do so, acceleration signals only coming from the es03 sensor, nearest to the experimental equipment and located in the Glovebox, were downloaded from the PIMS NASA website. To be as precise as possible the signals have always been treated minute by minute. To detect the transient disturbances along the experiments, several warnings were considered. First, 1 min RMS values, for the three acceleration components were evaluated, in time and in frequency domain. Additional information was obtained by plotting the power spectral densities of the signals, PSD, and their spectrogram with the aim of characterizing long periods of acceleration data. Due to great influence of low frequencies in this type of experiments, the Frequency Factor Index, FFI, was evaluated each minute. Complementary, the spectral entropy evolution was proposed as a fast new indicator of external perturbations. It has been found a good correlation between the spectrogram, temporal RMS and spectral entropy. Finally, a graphic representation of the points associated to the 1-min RMS values in one-third-octave frequency intervals which exceed the ISS limit curve requirements, was

  7. CO2 injection into fractured peridotites: a reactive percolation experiment

    Science.gov (United States)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.

    2017-12-01

    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with

  8. The Muon g-2 Experiment Overview and Status

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J. L. [Mississippi U.

    2017-12-16

    The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.

  9. Preliminary results of the Spacelab 2 superfluid helium experiment

    International Nuclear Information System (INIS)

    Mason, P.V.; Collins, D.J.; Elleman, D.D.; Jackson, H.W.; Wang, T.

    1986-01-01

    An experiment to investigate the properties of superfluid helium in a microgravity environment flew on the Shuttle on the Spacelab 2 mission in July and August of 1985. This paper summarizes the flight experiment and describes some preliminary results. The experiment comprised an investigation of long-wavelength third-sound waves in micron-thick films, a study of the motions of superfluid helium under milli-g and micro-g accelerations, and measurements of the fluctuations in temperature associated with the small motions of the bulk helium. An additional objective was to qualify and characterize a reflyable, space-compatible cryostat

  10. Group dynamics challenges: Insights from Biosphere 2 experiments

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P.

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews.

  11. Group dynamics challenges: Insights from Biosphere 2 experiments.

    Science.gov (United States)

    Nelson, Mark; Gray, Kathelin; Allen, John P

    2015-07-01

    Successfully managing group dynamics of small, physically isolated groups is vital for long duration space exploration/habitation and for terrestrial CELSS (Controlled Environmental Life Support System) facilities with human participants. Biosphere 2 had important differences and shares some key commonalities with both Antarctic and space environments. There were a multitude of stress factors during the first two year closure experiment as well as mitigating factors. A helpful tool used at Biosphere 2 was the work of W.R. Bion who identified two competing modalities of behavior in small groups. Task-oriented groups are governed by conscious acceptance of goals, reality-thinking in relation to time and resources, and intelligent management of challenges. The opposing unconscious mode, the "basic-assumption" ("group animal") group, manifests through Dependency/Kill the Leader, Fight/Flight and Pairing. These unconscious dynamics undermine and can defeat the task group's goal. The biospherians experienced some dynamics seen in other isolated teams: factions developing reflecting personal chemistry and disagreements on overall mission procedures. These conflicts were exacerbated by external power struggles which enlisted support of those inside. Nevertheless, the crew evolved a coherent, creative life style to deal with some of the deprivations of isolation. The experience of the first two year closure of Biosphere 2 vividly illustrates both vicissitudes and management of group dynamics. The crew overrode inevitable frictions to creatively manage both operational and research demands and opportunities of the facility, thus staying 'on task' in Bion's group dynamics terminology. The understanding that Biosphere 2 was their life support system may also have helped the mission to succeed. Insights from the Biosphere 2 experience can help space and remote missions cope successfully with the inherent challenges of small, isolated crews. Copyright © 2015 The Committee on

  12. Appendix S-NH-1 and S-NH-2 of the experiment operating specification for the semiscale MOD-2C small break LOCA without HPI experiment series

    International Nuclear Information System (INIS)

    Owca, W.A.

    1985-10-01

    This document is Appendix S-NH--1 and S-NH-2 of the Experiment Operating Specification (EOS) for the Small Break LOCA without high pressure injection (HPI) series. It contains detailed information on the S-NH-1 and S-NH-2 experiment operation and facility configuration necessary to meet the series objectives stated in the main EOS body. 14 refs., 17 figs

  13. (3,2)D GFT-NMR experiments for fast data collection from proteins

    International Nuclear Information System (INIS)

    Xia Youlin; Zhu Guang; Veeraraghavan, Sudha; Gao Xiaolian

    2004-01-01

    High throughput structure determination of proteins will contribute to the success of proteomics investigations. The G-Matrix Fourier Transformation NMR (GFT-NMR) method significantly shortens experimental time by reducing the number of the dimensions of data acquisition for isotopically labeled proteins (Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc.125, 1385). We demonstrate herein a suite of ten 3D → 2D or (3,2)D GFT-NMR experiments using 13 C/ 15 N-labeled ubiquitin. These experiments were completed within 18 hours, representing a 4- to 18-fold reduction in data acquisition time compared to the corresponding conventional 3D experiments. A subset of the GFT-NMR experiments, (3,2)D HNCO, HNCACB, HN(CO)CACB, and 2D 1 H- 15 N HSQC, which are necessary for backbone assignments, were carried out within 6 hours. To facilitate the analysis of the GFT-NMR spectra, we developed automated procedures for viewing and analyzing the GFT-NMR spectra. Our overall strategy allows (3,2)D GFT-NMR experiments to be readily performed and analyzed. Nevertheless, the increase in spectral overlap and the reduction in signal sensitivity in these fast NMR experiments presently limit their application to relatively small proteins

  14. EDGE2D Simulations of JET 13C Migration Experiments

    International Nuclear Information System (INIS)

    Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.

    2004-01-01

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified

  15. Chemistry in water reactors: operating experience and new developments. 2 volumes

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings of the International conference on chemistry in water reactors (Operating experience and new developments), Volume 1, are divided into 8 sessions bearing on: (session 1) Primary coolant activity, corrosion products (5 conferences), (session 2) Dose reduction (4 conferences), (session 3) New developments (4 conferences), poster session: Primary coolant chemistry (16 posters), (session 4) Decontamination (5 conferences), poster session (2 posters), (session 5) BWR-Operating experience (3 conferences), (session 6) BWR-Modelling of operating experience (4 conferences), (session 7) BWR-Basic studies (4 conferences), (session 8) BWR-New technologies (3 conferences)

  16. SEEK-2 (Sporadic-E Experiment over Kyushu 2 − Project Outline, and Significance

    Directory of Open Access Journals (Sweden)

    R. Pfaff

    2005-10-01

    Full Text Available SEEK-2 (Sporadic-E Experiment over Kyushu 2 is an observation campaign to study the spatial structure of the field-aligned irregularity (FAI and sporadic-E(Es-layer by means of two sounding rockets and a ground-based observation network with radars and optical instruments. The experiment was successfully conducted on 3 August 2002, with successive launches of two sounding rockets from the Uchinoura Space Center (USC of the Japan Aerospace Exploration Agency (JAXA. The timing of the experiment was carefully selected, while intense quasi-periodic (QP echoes were observed with two radars in Tanegashima. The main Es-layer, with its double-layered structure, was observed at altitudes of 103–105 km, the presence of which was well accounted for by the ion accumulation due to neutral-wind shear. Several minor peaks were detected in the electron density profiles at altitudes of up to 130 km. The intensity of the electric field was 5–10 mV/m and showed intense fluctuations below 110 km. Wave-like variation of the electric field was seen above 110 km. From radar experiments, we found that QP echoes appeared around 105 km, which agreed well with the main Es-layer height. The QP echoes propagated to the west-northwest, with frontal structures elongated from north-northeast to south-southwest. Radar observations conduced throughout the SEEK-2 period, on the other hand, showed that frontal structures of the QP echoes were most frequently propagated to the southeast. This result was consistent with the direction of gravity-wave propagation observed with the OH imager during the same period. The rocket beacon experiment with the Es-layers revealed the spatial structure of the plasma densities. On the basis of these results and those from SEEK-1 in 1996, we examined the structures of the nighttime mid-latitude E-region. We concluded that the QP echoes reflect the horizontal structures of the main Es-layers. The source of the structures was not clearly

  17. Magnetostrophic Rotating Magnetoconvection

    Science.gov (United States)

    King, Eric; Aurnou, Jonathan

    2016-11-01

    Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.

  18. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  19. The new South Pole air shower experiment - SPASE-2

    CERN Document Server

    Dickinson, J E; Gaisser, T K; Gill, J R; Hart, S P; Hinton, J A; Lloyd-Evans, J; Martello, D; Miller, T C; Ogden, P A; Patel, M; Rochester, K; Spiczak, G M; Stanev, T; Watson, A A

    2000-01-01

    This paper describes a new coincidence experiment designed to improve understanding of the composition of the primary cosmic-ray beam around the knee of the spectrum. The experiment consists of an air shower array on the surface (SPASE-2), which works in coincidence with an array of air-Cherenkov detectors (VULCAN), and the Antarctic Muon and Neutrino Detector Array (AMANDA) deep in the ice. The experiment must cover the energy range from approx 10 sup 1 sup 4 to approx 3x10 sup 1 sup 6 eV to overlap with direct measurements at lower energy and encompass the regions of the knee and beyond in the cosmic ray spectrum.

  20. CO{sub 2}-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO{sub 2}-induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO{sub 2}, are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report.

  1. Magnetic spiral arms in galaxy haloes

    Science.gov (United States)

    Henriksen, R. N.

    2017-08-01

    We seek the conditions for a steady mean field galactic dynamo. The parameter set is reduced to those appearing in the α2 and α/ω dynamo, namely velocity amplitudes, and the ratio of sub-scale helicity to diffusivity. The parameters can be allowed to vary on conical spirals. We analyse the mean field dynamo equations in terms of scale invariant logarithmic spiral modes and special exact solutions. Compatible scale invariant gravitational spiral arms are introduced and illustrated in an appendix, but the detailed dynamical interaction with the magnetic field is left for another work. As a result of planar magnetic spirals `lifting' into the halo, multiple sign changes in average rotation measures forming a regular pattern on each side of the galactic minor axis, are predicted. Such changes have recently been detected in the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES) survey.

  2. Analysis of the reflood experiment by RELAP5/MOD2 code

    International Nuclear Information System (INIS)

    Prosek, A.; Stritar, A.

    1990-01-01

    The analysis of the reflood experiment on the test rig Achilles has been performed. The analysis has been done by the RELAP5/MOD2 code after the results of the experiment had been released. The experiment has been analyze in several other laboratories around the world. Our results are comparable to other analyses and are in the range of RELAP5/MOD2 capabilities. Two analyses have been done: the core only and the complete system. Computed clad temperatures in the first case are higher than measured, in the second case they are somewhat lower. (author)

  3. Experiences on operation, maintenance and utilization in JRR-2

    International Nuclear Information System (INIS)

    1994-08-01

    The Japan Research Reactor No.2 (JRR-2) is a high performance 10 MW multi purpose research reactor, heavy water moderated and cooled enriched uranium fuel used. Since the first criticality was attained in October, 1960, JRR-2 has been operated to satisfy the utilization demands, such as irradiation of fuel and materials, neutron beam experiments, radio isotope production and B.N.C.T (Boron Neutron Capture Therapy). During the operation, various kinds of troubles mainly caused by the old design concept had been occurred at the JRR-2 systems and components. Those troubles were solved with adequate countermeasures of timely repairs and large scale modifications with newest techniques. The works above were completely carried out by the staff of JRR-2 and related divisions. As a result, JRR-2 became one of the oldest research reactors which are still under operation in the world. Since JRR-2 has been utilized for more than 30 years, the operation mode was changed from 12 days-one cycle to 3 days-one cycle in April, 1994, taking into consideration aging of the reactor systems. In this paper, the experiences of JRR-2 for more than 30 years such as operation, maintenance, repair, modifications and utilization on JRR-2 are described. (author)

  4. Cl@ssi 2.0: experience in Emilia Romagna

    Directory of Open Access Journals (Sweden)

    Elena Pacetti

    2013-06-01

    Full Text Available This article presents some of the results of the Ministerial Initiative Cl@ssi 2.0 in the Emilia Romagna Region. Having described the reference field in which the scaffolding action of the research group of the University of Bologna, coordinated by Prof. Luigi Guerra, is positioned, the paper presents the coaching model through which the design and documentation of the teaching practices adopted in schools was supported. Analysing the experiences of the ER classes, we have identified eight project themes, subsequently modelled on two levels: the didactic modelling of the experiences (construction of interpretation hypotheses; and the construction of a themes/models map (checking/adapting the hypotheses, experimentation through which each school was able to describe and publish processes, products, etc. which characterised their specific project experience. The paper concludes with a series of general reflections on the three years' work.

  5. Challenges in elevated CO2 experiments on forests

    DEFF Research Database (Denmark)

    Calfapietra, Carlo; Ainsworth, Elizabeth A.; Beier, Claus

    2010-01-01

    Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scienti...

  6. Report on series 2B reflood experiment

    International Nuclear Information System (INIS)

    Murao, Yoshio; Iguchi, Tadashi; Sudoh, Takashi; Sudo, Yukio; Sugimoto, Jun

    1976-12-01

    Series 2B reflood experiment was carried out from April to May 1975, as follows: 1) injection of coolant water from the downcomer at a constant head into the test section having a flow resistance simulator of the primary loop, 2) under an atmospheric pressure, 3) in constant power density, 4) with heater rod temperature up to 600 0 C. The objectives are to examine quantitatively system effect and to check performance of the reflood test rig. The effect of the coolant injection mode, relation between oscillatory phenomena and core thermo-hydrodynamics, and technological problems of the test rig were observed. (auth.)

  7. Lifetime, turnover time, and fast magnetic field regeneration in random flows

    International Nuclear Information System (INIS)

    Tanner, S. E. M.

    2007-01-01

    The fast dynamo is thought to be relevant in the regeneration of magnetic fields in astrophysics where the value of the magnetic Reynolds number (Rm) is immense. The fast dynamo picture is one in which chaotic flows provide a mechanism for the stretching of magnetic field lines. Furthermore, a cascade of energy down to small scales results in intermittent regions of a small-scale, intense magnetic field. Given this scenario it is natural to invoke the use of kinematic random flows in order to understand field regeneration mechanisms better. Here a family of random flows is used to study the effects that L, the lifetime of the cell, and τ, the turnover time of the cell, may have on magnetic field regeneration. Defining the parameter Γ=L/τ, it has been varied according to Γ>1, Γ<1, Γ∼O(1). In the kinematic regime, dynamo growth rates and Lyapunov exponents are examined at varying values of Rm. The possibility of fast dynamo action is considered. In the nonlinear regime, magnetic and kinetic energies are examined. Results indicate that there does appear to be a relationship between Γ and dynamo efficiency. In particular, the most efficient dynamos seem to operate at lower values of Γ

  8. MHD computation of feedback of resistive-shell instabilities in the reversed field pinch

    International Nuclear Information System (INIS)

    Zita, E.J.; Prager, S.C.

    1992-05-01

    MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes

  9. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    Science.gov (United States)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  10. Results from a tethered rocket experiment (Charge-2)

    Science.gov (United States)

    Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.

    A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

  11. T2KLAr: a liquid Argon TPC for the T2K neutrino experiment

    International Nuclear Information System (INIS)

    Meregaglia, Anselmo

    2006-01-01

    A 2km LAr detector would be an important asset for the T2K experiment, especially because of its role in reducing the systematics. It would also be an important milestone for this technique paving the way for future applications. Its main features are explained in this talk

  12. T2KLAr: a liquid Argon TPC for the T2K neutrino experiment

    Science.gov (United States)

    Meregaglia, Anselmo

    2006-05-01

    A 2km LAr detector would be an important asset for the T2K experiment, especially because of its role in reducing the systematics. It would also be an important milestone for this technique paving the way for future applications. Its main features are explained in this talk.

  13. GNF2 Operating Experience

    International Nuclear Information System (INIS)

    Schardt, John

    2007-01-01

    GNF's latest generation fuel product, GNF2, is designed to deliver improved nuclear efficiency, higher bundle and cycle energy capability, and more operational flexibility. But along with high performance, our customers face a growing need for absolute fuel reliability. This is driven by a general sense in the industry that LWR fuel reliability has plateaued. Too many plants are operating with fuel leakers, and the impact on plant operations and operator focus is unacceptable. The industry has responded by implementing an INPO-coordinated program aimed at achieving leaker-free reliability by 2010. One focus area of the program is the relationship between fuel performance (i.e., duty) and reliability. The industry recognizes that the right balance between performance and problem-free fuel reliability is critical. In the development of GNF2, GNF understood the requirement for a balanced solution and utilized a product development and introduction strategy that specifically addressed reliability: evolutionary design features supported by an extensive experience base; thoroughly tested components; and defense-in-depth mitigation of all identified failure mechanisms. The final proof test that the balance has been achieved is the application of the design, initially through lead use assemblies (LUAs), in a variety of plants that reflect the diversity of the BWR fleet. Regular detailed surveillance of these bundles provides the verification that the proper balance between performance and reliability has been achieved. GNF currently has GNF2 lead use assemblies operating in five plants. Included are plants that have implemented extended power up-rates, plants on one and two-year operating cycles, and plants with and without NobleChem TM and zinc injection. The leading plant has undergone three pool-side inspections outages to date. This paper reviews the actions taken to insure GNF2's reliability, and the lead use assembly surveillance data accumulated to date to validate

  14. Utilisation of factorial experiments for the UV/H2O2 process in a ...

    African Journals Online (AJOL)

    Phenol oxidative degradation kinetics were not significantly influenced by pH or hardness of the solution to be treated, as is predicted by factorial experiments. On the other hand, initial H2O2 concentration, initial phenol concentration and temperature significantly influenced the efficiency of the process. Optimal values were ...

  15. Ytarget optimization for E93050 experiment. Pt. 1. Q2 = 1 GeV2

    International Nuclear Information System (INIS)

    Jaminion, S.; Fonvieille, H.

    1998-01-01

    The Espace y tg optimization that has been performed for experiment E93050 at Q 2 = 1 GeV 2 is summarized. The method and results are presented. The optic Y tensor elements obtained can be used for first pass analysis, although a more refined analysis may need further optimized optic elements. (author)

  16. Neutrino Oscillation Experiments with J-PARC: T2K, T2K-II and Hyper-Kamiokande

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The T2K experiment started the operation in 2010, and advances neutrino physics with the discovery of electron neutrino appearance in the muon neutrino beam and precision measurements of neutrino oscillation parameters. In 2016, the measurements of anti-neutrino oscillation directly constrain CP violation in neutrino oscillation. In this colloquium, we introduce many physics results from T2K including the most recent one of the CP violation. By utilizing the J-PARC neutrino beam, the upgrade of the T2K experiment (naming T2K-II) is planned and Hyper-Kamiokande is proposed to explore neutrino physics further. In T2K-II, the beam power of J-PARC will be upgraded to 1.3 MW around 2020. Hyper-Kamiokande is the larger Water Cherenkov detector of 520 k...

  17. Post-test analysis of the W-2 SLSF experiment

    International Nuclear Information System (INIS)

    Smith, D.E.; Pitner, A.L.

    1983-01-01

    The W-2 SLSF experiment was an instrumented in-reactor test performed to characterize the failure response of full-length preconditioned LMFBR prototypical fuel pins to slow transient overpower (TOP) conditions. Although the test results were expected to confirm analytical predictions of upper-level failure and fuel expulsion, an axial midplane failure was experienced. Preliminary interpretations of the cause and implications of midplane failure have been revised. Extensive analyses were conducted in order to understand the unexpected behavior of the experiment. The results of the analyses and their interpretations are presented

  18. Beam Extinction Monitoring in the Mu2e Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Bartoszek, Larry [Technicare; Gaponenko, Andrei [Fermilab; Kasper, Peter [Fermilab

    2015-06-01

    The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. The precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.

  19. Verification experiment of EPR paradox by (d, 2He) reaction

    International Nuclear Information System (INIS)

    Sakai, Hideyuki

    2003-01-01

    FBR paradox which was brought forward by Einstein, Podolsky and Rosen is expressed by Bell's inequality of spin correlation theoretically. In principle it is possible to verify the inequality by measuring spin correlation between two particles having spin 1/2 from a decay of 1 S 0 experimentally. Most of the past experiments to verify the inequality, however, have been performed by using photons. On the other hand, only one experiment by using hadron system was carried out by Lamehi and Mitting, where the [ 1 S 0 ] state was produced by proton-proton scattering at first, and then the spin orientations after the scattering were measured. Unfortunately, there exit some sources of ambiguity to reach definite conclusion from their result because the experiment was done at rather high energy of 13.5 MeV. In the experiment planned by the present author it is designed to overcome the experimental difficulties, which Lamehi and Mitting encountered, by (1) generating high purity singlet [ 1 S 0 ] state of two protons by (d, 2 He) type nuclear reaction at intermediate energy range, and by (2) developing high performance spin-correlation polarimeter which can analyze spins of two protons simultaneously to minimize the systematic errors. The excitation energy of 2 He corresponding to the proton-proton relative energy can be experimentally controlled. An idea singlet is realized by choosing the state with sufficiently small relative energy. It is planned to measure the spin correlation function by using SMART (Swinger and Magnetic Analyzer with Rotator and Twister) at RIKEN Accelerator Research Facility. Einstein POLarimeter (EPOL) to be installed on the second focal plane of SMART is under development, with which high precision measurements of spin orientations of two high energy protons simultaneously coming into limited space from 2 He decay are made selecting the subject events from very many background events. Monte Carlo simulation predicts the possibility to verify the

  20. LOFT/L2-3, Loss of Fluid Test, 2. NRC L2 Large Break LOCA Experiment

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This experiment was the second of the NRC L2 Series of nuclear large Break LOCA experiments, and was conducted on 12 May 1979. It simulated a 100% cold leg break with a maximum heat generation of 39 kW/m

  1. Numerical simulation in plasma physics

    International Nuclear Information System (INIS)

    Samarskii, A.A.

    1980-01-01

    Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)

  2. Best estimate prediction for LOFT nuclear experiment L3-2

    International Nuclear Information System (INIS)

    Kee, E.J.; Shinko, M.S.; Grush, W.H.; Condie, K.G.

    1980-02-01

    Comprehensive analyses using both the RELAP4 and the RELAP5 computer codes were performed to predict the LOFT transient thermal-hydraulic response for nuclear Loss-of-Coolant Experiment L3-2 to be performed in the Loss-of-Fluid Test (LOFT) facility. The LOFT experiment will simulate a small break in one of the cold legs of a large four-loop pressurized water reactor and will be conducted with the LOFT reactor operating at 50 MW. The break in LOCE L3-2 is sized to cause the break flow to be approximately equal to the high-pressure injection system flow at an intermediate pressure of approximately 7.6 MPa

  3. Using an Online Vocabulary Memorization Tool versus Traditional Vocabulary Exercises

    Directory of Open Access Journals (Sweden)

    Arif Bakla

    2017-10-01

    Full Text Available This study was conducted to reveal what Memrise, an online vocabulary study tool, can offer to upper-intermediate EFL learners compared to traditional vocabulary exercises in L2 vocabulary learning. Two groups of upper-intermediate learners (N=80 were randomly assigned to the experimental group and the control group and were given the Vocabulary Knowledge Scale, VKS for short, as the pre-test and post-test. The participants in both groups were exposed to the target vocabulary items in the same reading text. While those in the experimental group created list of target vocabulary items collaboratively in Memrise and then studied the sets individually, the learners in the control group did traditional vocabulary exercises. The results of the post-tests indicated that there was a significant difference between the control group and the experimental group in favor of the experimental group. The researchers discuss possible pedagogical implications of this significant finding for EFL vocabulary instruction.

  4. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  5. Calculations of the SNL experiments Sup1 and Sup2 with CONTAIN 2

    International Nuclear Information System (INIS)

    Jacobs, G.; Noebel, R.; Wendlandt, T.

    2000-01-01

    Post-test calculations using the CONTAIN code were performed for the SNL melt dispersal/DCH tests SUP-1 und SUP-2, resulting in a workable input model for future applications to high-temperature melt dispersal experiments as well as for prototypes with tight annular reactor cavity geometries. (orig.) [de

  6. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    International Nuclear Information System (INIS)

    Shih, Y.H.; Rubin, M.H.; Sergienko, A.V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences

  7. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  8. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)

    2016-01-15

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.

  9. IceProd 2 Usage Experience

    Science.gov (United States)

    Delventhal, D.; Schultz, D.; Diaz Velez, J. C.

    2017-10-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and data driven analysis. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd has recently been rewritten to increase its scaling capabilities, handle user analysis workflows together with simulation production, and facilitate the integration with 3rd party scheduling tools. IceProd 2, the second generation of IceProd, has been running in production for several months now. We share our experience setting up the system and things we’ve learned along the way.

  10. Experience running a distributed Tier-2 in Spain for the ATLAS experiment

    International Nuclear Information System (INIS)

    March, L; Hoz, S Gonzales de la; Kaci, M; Fassi, F; Fernandez, A; Lamas, A; Salt, J; Sanchez, J; Peso, J del; Fernandez, P; Munoz, L; Pardo, J; Espinal, X; Garitaonandia, H; Mir, M L; Nadal, J; Pacheco, A; Shuskov, S

    2008-01-01

    The main role of the Tier-2s is to provide computing resources for production of physics simulated events and distributed data analysis. The Spanish ATLAS Tier-2 is geographically distributed among three HEP institutes: IFAE (Barcelona), IFIC (Valencia) and UAM (Madrid). Currently it has a computing power of 430 kSI2K CPU, a disk storage capacity of 87 TB and a network bandwidth, connecting the three sites and the nearest Tier-1 (PIC), of 1 Gb/s. These resources will be increased according to the ATLAS Computing Model with time in parallel to those of all ATLAS Tier-2s. Since 2002, it has been participating into the different Data Challenge exercises. Currently, it is achieving around 1.5% of the whole ATLAS collaboration production in the framework of the Computing System Commissioning exercise. A distributed data management is also arising as an important issue in the daily activities of the Tier-2. The distribution in three sites has shown to be useful due to an increasing service redundancy, a faster solution of problems, the share of computing expertise and know-how. Experience gained running the distributed Tier-2 in order to be ready at the LHC start-up will be presented

  11. Large scale commissioning and operational experience with tier-2 to tier-2 data transfer links in CMS

    International Nuclear Information System (INIS)

    Letts, J; Magini, N

    2011-01-01

    Tier-2 to Tier-2 data transfers have been identified as a necessary extension of the CMS computing model. The Debugging Data Transfers (DDT) Task Force in CMS was charged with commissioning Tier-2 to Tier-2 PhEDEx transfer links beginning in late 2009, originally to serve the needs of physics analysis groups for the transfer of their results between the storage elements of the Tier-2 sites associated with the groups. PhEDEx is the data transfer middleware of the CMS experiment. For analysis jobs using CRAB, the CMS Remote Analysis Builder, the challenges of remote stage out of job output at the end of the analysis jobs led to the introduction of a local fallback stage out, and will eventually require the asynchronous transfer of user data over essentially all of the Tier-2 to Tier-2 network using the same PhEDEx infrastructure. In addition, direct file sharing of physics and Monte Carlo simulated data between Tier-2 sites can relieve the operational load of the Tier-1 sites in the original CMS Computing Model, and already represents an important component of CMS PhEDEx data transfer volume. The experience, challenges and methods used to debug and commission the thousands of data transfers links between CMS Tier-2 sites world-wide are explained and summarized. The resulting operational experience with Tier-2 to Tier-2 transfers is also presented.

  12. Lower hybrid heating experiment in JFT-2 tokamak

    International Nuclear Information System (INIS)

    Uchara, K.; Nagashima, T.

    1982-01-01

    Lower hybrid heating experiments in JFT-2 are reviewed. Good maintenance and controlling of the coupling structure are very important in the injection of RF power before heating experiments. Accessibility of waves and the existence of the mode conversion region are necessary for ion heating in the main plasma. Parametric instabilities which may bring undesirable power deposition are suppressed by enough electron heating in the boundary region. Optimizing the Nsub(z) spectrum and the improvement of the plasma confinement may lead the electron heating in the high density region. Current generation by use of quasi-linear Landau damping is confirmed and is suggested to bring the improvement of plasma confinement. High power and long pulse klystrons may be expected to open a frontier toward a stational reactor plasma in tokamaks. (author)

  13. Experiments and model for the viscosity of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Li, Zhixin; Liu, Feng

    2014-01-01

    Highlights: • The viscosities of the carbonated AMP-PZ aqueous solutions were measured. • The experiments were modeled satisfactorily by using the Weiland equation. • The influence of the mass fractions of amines on the viscosity was illustrated. • The temperature and CO 2 loading dependences of the viscosity were demonstrated. -- Abstract: The viscosities (η) of carbonated 2-amino-2-methyl-1-propanol (AMP)-piperazine (PZ) aqueous solutions were measured by using a NDJ-1 rotational viscometer, with temperatures ranging from 298.15 K to 323.15 K. The total mass fraction of amines ranged from 0.3 to 0.4. The mass fraction of PZ ranged from 0.05 to 0.10. The Weiland equation was used to correlate the viscosities of both CO 2 -unloaded and CO 2 -loaded aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fractions of amines and CO 2 loading (α) on the viscosities of carbonated aqueous solutions were demonstrated on the basis of experiments and calculations

  14. Experiência N.2” – uma deriva avant lettre?

    Directory of Open Access Journals (Sweden)

    Giorgio Zimann Gislon

    2012-02-01

    Full Text Available http://dx.doi.org/10.5007/2176-8552.2012n13p51 Flávio de Carvalho realizou a Experiência N.2, que depois relatou em livro dividido em dois capítulos chamados: “A experiência” e “Análise”, em 1931. Ela consistiu em sair às ruas de São Paulo, no meio de uma procissão de Corpus Christi, de chapéu na cabeça. Anos mais tarde, em Paris, um grupo de jovens pensadores e revolucionários de inspiração marxista participou de algumas atividades que lembram a experiência de Flávio de Carvalho. Uma delas era sair de casa e seguir a primeira pessoa que usasse determinado adereço, ou, uma peça de roupa de tal cor. Esse grupo francês, chamado de Situacionista, teve uma revista em que Guy Debord, um dos seus principais integrantes, escreveu, inclusive, a teoria desse tipo de atividade, a teoria da deriva. Aqui se busca demonstrar os pontos de contatos entre a deriva situacionista e a Experiência N.2 de Flávio de Carvalho: psicologia da rua, experiência, acaso e jogo.

  15. Complete (γ,2e) experiments at 0.1 eV above threshold

    International Nuclear Information System (INIS)

    Rond, F.; Mazeau, J.; Huetz, A.

    1999-01-01

    Here we report on a new experiment which has been designed to perform (γ,2e) experiments extremely close to threshold, in an energy range which is inaccessible to conventional electron analysers. The angular and energy resolutions of this new technique are illustrated by measuring electrons issued from resonant single ionization of argon. First results on double ionization of argon for the 3p 4 3 P e J=2 final state of Ar ++ are also presented. The contribution of an indirect process producing 20 meV Auger electrons, which was suspected from previous experiments, is clearly observed in addition to the direct process. (orig.)

  16. Photophoretic strength on chondrules. 2. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Loesche, Christoph; Teiser, Jens; Wurm, Gerhard; Hesse, Alexander [Faculty of Physics, University of Duisburg-Essen, Lotharstrasse 1, D-47057 Duisburg (Germany); Friedrich, Jon M. [Department of Chemistry, Fordham University, Bronx, NY 10458 (United States); Bischoff, Addi, E-mail: christoph.loesche@uni-due.de [Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany)

    2014-09-01

    Photophoretic motion can transport illuminated particles in protoplanetary disks. In a previous paper, we focused on the modeling of steady state photophoretic forces based on the compositions derived from tomography and heat transfer. Here, we present microgravity experiments which deviate significantly from the steady state calculations of the first paper. The experiments on average show a significantly smaller force than predicted with a large variation in absolute photophoretic force and in the direction of motion with respect to the illumination. Time-dependent modeling of photophoretic forces for heat-up and rotation shows that the variations in strength and direction observed can be well explained by the particle reorientation in the limited experiment time of a drop tower experiment. In protoplanetary disks, random rotation subsides due to gas friction on short timescales and the results of our earlier paper hold. Rotation has a significant influence in short duration laboratory studies. Observing particle motion and rotation under the influence of photophoresis can be considered as a basic laboratory analog experiment to Yarkovsky and YORP effects.

  17. Field-aligned current signatures in the near-tail region. 2. Coupling between the region 1 and region 2 systems

    International Nuclear Information System (INIS)

    Ohtani, S.; Kokubun, S.; Nakamura, R.; Elphic, R.C.; Russell, C.T.; Baker, D.N.

    1990-01-01

    The development of the substorm-associated current system in the near-tail region is examined in the light of both experiment and theory. First, the March 28, 1979, event is examined intensively by using ground magnetometer data and satellite magnetic field and energetic particle data. The comparison of field-aligned current signatures at geosynchronous altitude and in the near-tail region indicates that the development of the region 1 system is not merely the enhancement in current intensity of the pre-existing system. This finding is consistent with the so-called current wedge model, in which the tail current is converted into a pair of field-aligned currents with the region 1 polarity at substorm onsets. Detailed inspection, however, suggests that the region 2 system is as important as the region 1 system. Statistical properties of the azimuthal magnetic component at synchronous orbit indicate that the deviation during disturbed periods is larger than expected from the enhancement of the region 1 current. These individual and statistical studies suggest that the region 2 system tends to develop in the synchronous region and that the coupling between the region 1 and the region 2 systems is important. The current closure in the magnetosphere is discussed from a viewpoint of the macroscopic behavior of plasma. It is suggested that the dawnside and the duskside region 2 currents are closed in the magnetosphere by the curvature current during the growth phase and by the magnetic gradient current during the expansion phase. The field-aligned currents of the region 1 and the region 2 systems are closed in the ionosphere by the Pedersen current. Consequently, the energy is dissipated as the Joule heating and this energy must be supplied from the magnetosphere. Therefore, the counter part of the Pedersen current, which closes the region 1 and the region 2 currents in magnetosphere, must be the dynamo current

  18. NRU analysis support experiments performed in ZED-2

    International Nuclear Information System (INIS)

    Arbique, G.M.; French, P.M.

    1985-09-01

    A series of measurements have been performed in ZED-2 to investigate voiding in a simulated NRU loop site containing uniform and non-uniform UO 2 fuel strings. The objective of the measurements was to provide experimental data to validate NRU reactor physics codes. Using a simulated NRU loop site containing various UO 2 fuel strings, in a simulated NRU lattice in ZED-2, measurements were made of: a) reactivity effects, as measured by critical height changes, associated with the loop site and its contents, b) detailed and macroscopic flux shapes at the loop site and throughout the lattice, respectively, and c) Westcott spectral parameters. The report describes and presents the results of the experiments and is the second of a two part set of reports on this series of measurements. 6 refs

  19. Status of 2XIIB plasma confinement experiments

    International Nuclear Information System (INIS)

    Coensgen, F.J.; Clauser, J.F.; Correll, D.L.

    1976-01-01

    This report describes the status of 2XIIB neutral beam injection experiments with stabilizing plasma. The stream suppresses ion-cyclotron fluctuations and permits density to 5 x 10 13 cm -3 . The ion energy is 13 keV, and electron temperature reaches 140 eV. Plasma confinement increases with ion energy and n tau reaches 7 x 10 10 cm -3 .s at 13 keV. The n tau energy scaling is consistent with electron drag and ion-ion scattering losses. Buildup on a streaming plasma in a steady-state magnetic field is described

  20. The Muon $g$-$2$ Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, Wesley [Kentucky U.

    2017-12-29

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory (BNL) and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model value of $a_\\mu$. The new measurement will accumulate 21 times the BNL statistics using upgraded magnet, detector, and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent improvements in our understanding of the QCD contributions to the muon $g$-$2$, could provide a discrepancy from the standard model greater than 7$\\sigma$ if the central value is the same as that measured by the BNL experiment, which would be a clear indication of new physics.

  1. Overview of HL-2A experiment results

    International Nuclear Information System (INIS)

    Yang, Q.W.; Yong Liu; Ding, X.T.

    2007-01-01

    Recent experiment results from the HL-2A tokamak are presented in this paper. Supersonic molecular beam injection (SMBI) with liquid nitrogen temperature propellant is used. Low temperature SMBI can form hydrogen clusters that penetrate into the plasma more deeply and efficiently. Particle diffusion coefficient and convection velocity (D = 0.5-1.5 m 2 s -1 and V conv -1 , respectively) are obtained at the plasma periphery using modulated SMBI. Multi-probe measurements reveal the m = 0-1, n = 0 symmetries of directly measured low frequency (7-9 kHz) electric potential and field are simultaneously observed for the first time. Impurity transport is determined with the laser blow-off system and transport code. A disruption predictor has been derived based on MHD activity observations and statistical analysis. Sawtooth characteristics during ECRH are investigated and coupling between m = 1 and m/n = 2/1 modes is studied. Detachment features of HL-2A divertor are numerically and experimentally studied using the code SOLPS5.0 and measured data. The long divertor legs and thin divertor throats in HL-2A pose MHD shaping problems resulting in momentum losses even at low densities and strongly enhanced main chamber losses

  2. Application of the TRAC-PD2 code to the simulation of the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1985-01-01

    A comparison between the TRAC -PD2 code calculations and results from the CANON experiment is presented. The CANON experiment simulates the loss of coolant accident through the depressurization of a horizontal tube containing water at different temperatures. The experiment consist of the instantaneous rupture at one end of the tubing and the corresponding pressure and void fraction measurements during the transient. The comparison shows that the TRAC-PD2 code predicts satisfactorily the pressure and void fraction evolution in the CANON experiment. (F.C.) [pt

  3. ATLAS Strip Detector: Operational Experience and Run1-> Run2 Transition

    CERN Document Server

    Nagai, Koichi; The ATLAS collaboration

    2014-01-01

    Large hadron collider was operated very successfully during the Run1 and provided a lot of opportunities of physics studies. It currently has a consolidation work toward to the operation at $\\sqrt{s}=14 \\mathrm{TeV}$ in Run2. The ATLAS experiment has achieved excellent performance in Run1 operation, delivering remarkable physics results. The SemiConductor Tracker contributed to the precise measurement of momentum of charged particles. This paper describes the operation experience of the SemiConductor Tracker in Run1 and the preparation toward to the Run2 operation during the LS1.

  4. Core-concrete interactions using molten UO2 with zirconium on a basaltic basemat: The SURC-2 experiment

    International Nuclear Information System (INIS)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A.; Blose, R.E.

    1992-08-01

    An inductively heated experiment, SURC-2, using prototypic U0 2 -ZrO 2 materials was executed as part of the Integral Core-Concrete Interactions Experiments Program. The purpose of this experimental program was to measure and assess the variety of source terms produced during core debris/concrete interactions. These source terms include thermal energy released to both the reactor basemat and the containment environment, as well as flammable gas, condensable vapor and toxic or radioactive aerosols generated during the course of a severe reactor accident. The SURC-2 experiment eroded a total of 35 cm of basaltic concrete during 160 minutes of sustained interaction using 203.9 kg of prototypic U0 2 -ZrO 2 core debris material that included 18 kg of Zr metal and 3.4 kg of fission product simulants. The meltpool temperature ranged from 2400--1900 degrees C during the first 50 minutes of the test followed by steady temperatures of 1750--1800 degrees C during the middle portion of the test and increased temperatures of 1800--1900 degrees C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 15 cm with an additional 7 cm during the middle part of the test and 13 cm of ablation during the final 50 minutes. Comprehensive gas flowrates, gas compositions, and aerosol release rates were also measured during the SURC-2 test. When combined with the SURC-1 results, SURC-2 forms a complete data base for prototypic U0 2 -ZrO 2 core debris interactions with concrete

  5. Recent results of the NA48/2 experiment

    CERN Document Server

    Raggi, Mauro

    2009-01-01

    NA48/2 collected the wolrd largest sample of K± --+ 7r±7ro'Y decays. Direct Emission (DE) and Interference (INT) fractions with respect to the internal bremsstrahlung (IB) have been measured in the range 0 < T; < 80 MeV: FracnE(O < T; < 80 MeV) = (3.32 ± 0.15sta ± 0.14sys) X 10-2 Frac1NT(O < T; < 80 MeV) = -(2.35 ± 0.35sta ± 0.39sys) X 10-2 where T; is the kinetic energy of the charged pion in the kaon rest frame. A sample of 7253 K± --+ 7r±e+ e- decay candidates has been collected by the NA48/2 experiment. The branching ratio in the full kinematic range was measured to be BR = (3.11 ± 0.12) · 10-1. For both decays CP violating asymmetry has been studied.

  6. Searches for the Violation of Pauli Exclusion Principle at LNGS in VIP(-2) experiment

    CERN Document Server

    Shi, H; Bertolucci, S; Berucci, C; Bragadireanu, A M; Cargnelli, M; Clozza, A; Curceanu, C; De Paolis, L; Di Matteo, S; d'Uffizi, A; Egger, J P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Marton, J; Laubenstein, M; Milotti, E; Pietreanu, D; Piscicchia, K; Ponta, T; Vidal, A.Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Sperandio, L; Vazquez Doce, O; Widmann, E; Zmeskal, J

    2016-01-01

    The VIP (Violation of Pauli exclusion principle) experiment and its follow-up experiment VIP-2 at the Laboratori Nazionali del Gran Sasso (LNGS) search for X-rays from Cu atomic states that are prohibited by the Pauli Exclusion Principle (PEP). The candidate events, if they exist, will originate from the transition of a $2p$ orbit electron to the ground state which is already occupied by two electrons. The present limit on the probability for PEP violation for electron is 4.7 $\\times10^{-29}$ set by the VIP experiment. With upgraded detectors for high precision X-ray spectroscopy, the VIP-2 experiment will improve the sensitivity by two orders of magnitude.

  7. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows ... rotating body in the Universe. We also mention a list ... verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, ...

  8. Analysis of LOFT (L1-2) experiment by code RELAP-4J

    International Nuclear Information System (INIS)

    Tasaka, Kanji; Soda, Kunihisa; Shiba, Masayoshi; Kaminaga, Humito

    1977-04-01

    An analysis of the results in LOFT L1-2 LOCE (Loss of Coolant Experiment) was made by the computer code RELAP-4J. The L1-2 experiment is a simple isothermal blowdown test with a core simulator and no ECC activation. It provides the basis for future LOCE with a nuclear core and ECC activation. The results of the analysis lead to the following conclusions. (1) The calculated system pressure transient agrees well with experiment. Primary controlling factors for the calculation are (a) flow resistances of the steam generator simulator, pump simulator and discharge nozzle in the broken loop, (b) mixture level in the downcomer and inlet volume of the operating loop steam generator, and (c) stored heat of the downcomer structure. (2) The pressurizer pressure decreases rapidly, compared with experiment, possibly because the flow resistance in the surge line is smaller than the actual one. Further experiment and analysis are necessary in this respect. (3) The calculated density transient in the cold leg agrees well with experiment. Agreement is not good in the hot leg, however. The discrepancy is possibly caused by the non-homogeneous flow of coolant in the hot leg due to low flow rate. (4) Effect of the pump characteristics on analytical result is insignificant in the isothermal test. However, in the future nuclear test, the effect will be significant because of large steam generation in the core, so measurement of the pump characteristics and improvement of the pump model are necessary. (auth.)

  9. Science and Technology Review September 2005

    International Nuclear Information System (INIS)

    Aufderheide III, M B

    2005-01-01

    This month's issue has the following articles: (1) The Pursuit of Fusion Energy--Commentary by William H. Goldstein; (2) A Dynamo of a Plasma--The self-organizing magnetized plasmas in a Livermore fusion energy experiment are akin to solar flares and galactic jets; (3) How One Equation Changed the World--A three-page paper by Albert Einstein revolutionized physics by linking mass and energy; (4) Recycled Equations Help Verify Livermore Codes--New analytic solutions for imploding spherical shells give scientists additional tools for verifying codes; and (5) Dust That.s Worth Keeping--Scientists have solved the mystery of an astronomical spectral feature in interplanetary dust particles

  10. Preparation of UO2 fragments for fuel-debris experiments

    International Nuclear Information System (INIS)

    Tinkle, M.C.; Kircher, J.A.; Zinn, R.M.; Eash, D.T.

    1982-01-01

    A unique process was developed for preparing multi-kilogram quantities of > 90% dense fragments of enriched and depleted UO 2 sized 20 mm to 0.038 mm for fuel debris experiments. Precipitates of UO 4 . xH 2 O were treated to obtain UO 2 powders that would yield large cohesive green pieces when isostatically pressed to 206 MPa. The pressed pieces were crushed into fragments that were about 30% oversized, and heated to 1800 0 C for 24 h in H 2 . Oversizing compensates for shrinkage during densification. Effort was dramatically reduced by working on a large scale and by presizing the green UO 2 instead of directly crushing densified pellets

  11. The Effects of L2 Experience on L3 Perception

    Science.gov (United States)

    Onishi, Hiromi

    2016-01-01

    This study examines the influence of experience with a second language (L2) on the perception of phonological contrasts in a third language (L3). This study contributes to L3 phonology by examining the influence of L2 phonological perception abilities on the perception of an L3 at the beginner level. Participants were native speakers of Korean…

  12. Y2K experiences in the nuclear material control area

    International Nuclear Information System (INIS)

    Yagi, T.; Suzuki, T.

    1999-01-01

    Though the Y2K problem was treated by each organization, it became systematic in Japan when Advanced Information and Telecommunication Society Promotion Head-quarters was established recognizing the importance and urgency of the issue. The summary of the action and some experiences concerning Y2K issues in the nuclear materials control area are presented

  13. The application of the TRAC-PD2 code in the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1991-09-01

    The TRAC code (Transient Reactor Analysis Code), developed in the Los Alamos National Laboratory, is used to accident analysis in light water reactor. The TRAC-PD2 version, used in this paper, has a refined dynamic flow model for two fluids, which is based on the conservation equations of mass, momentum and energy for liquid and vapor, allowing then a mechanical and thermal unbalance between phases. This paper presents a comparison of the TRAC-PD2 code with the CANON experiment, which simulates a Loss of Coolant Accident (LOCA) by depressurizing a horizontal tube filled with water at different temperatures. The experiment consists in a instantaneous rupture in one of the tube's edge, taking measures of pressure and void fraction during the transient. The TRAC-PD2 code results are in a good agreement with the pressure and void fraction evolution obtained in the CANON experiment. (author)

  14. Mechanical energy release in CABRI-2 experiments with Viggen-4 fuel pins

    International Nuclear Information System (INIS)

    Wolff, J.

    1993-07-01

    The results of mechanical energy release evaluations in CABRI-2 experiments with Viggen-4 fuel pins (12 atom % burnup) are described. In general the experience gained by the CABRI-1 experiments is confirmed. Those physical phenomena are enhanced which are influenced by the release of fission products. Especially the late blow-out of pressurized fission gases from the lower test pin plenum led to large flow variations. The corresponding mechanical power releases are low

  15. Verification experiment of EPR paradox by (d, {sup 2}He) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hideyuki [Tokyo Univ., Graudate School of Science, Tokyo (Japan)

    2003-01-01

    FBR paradox which was brought forward by Einstein, Podolsky and Rosen is expressed by Bell's inequality of spin correlation theoretically. In principle it is possible to verify the inequality by measuring spin correlation between two particles having spin 1/2 from a decay of {sup 1}S{sub 0} experimentally. Most of the past experiments to verify the inequality, however, have been performed by using photons. On the other hand, only one experiment by using hadron system was carried out by Lamehi and Mitting, where the [{sup 1}S{sub 0}] state was produced by proton-proton scattering at first, and then the spin orientations after the scattering were measured. Unfortunately, there exit some sources of ambiguity to reach definite conclusion from their result because the experiment was done at rather high energy of 13.5 MeV. In the experiment planned by the present author it is designed to overcome the experimental difficulties, which Lamehi and Mitting encountered, by (1) generating high purity singlet [{sup 1}S{sub 0}] state of two protons by (d, {sup 2}He) type nuclear reaction at intermediate energy range, and by (2) developing high performance spin-correlation polarimeter which can analyze spins of two protons simultaneously to minimize the systematic errors. The excitation energy of {sup 2}He corresponding to the proton-proton relative energy can be experimentally controlled. An idea singlet is realized by choosing the state with sufficiently small relative energy. It is planned to measure the spin correlation function by using SMART (Swinger and Magnetic Analyzer with Rotator and Twister) at RIKEN Accelerator Research Facility. Einstein POLarimeter (EPOL) to be installed on the second focal plane of SMART is under development, with which high precision measurements of spin orientations of two high energy protons simultaneously coming into limited space from {sup 2}He decay are made selecting the subject events from very many background events. Monte Carlo

  16. Emotional Experience of Caam2 in Teaching: Power and Interpretation of Teachers’ Work

    Directory of Open Access Journals (Sweden)

    Kwok Kuen Tsang

    2016-09-01

    Full Text Available The study explores the social psychological process of teachers’ emotional experiences. Twenty-one secondary schoolteachers in Hong Kong were interviewed. The findings show that the teachers generally felt caam2 (a Cantonese adjective that covers a range of meanings like gloomy, dreadful, tragic, pitiful, pathetic and miserable in teaching. The social psychological process of the emotional experience of caam2 involves how teachers interpret the significance of their actual work in attaining the teaching goal of making a difference. If they interpret their work as incapable of fulfilling the goal, they will experience negative emotions in teaching. The findings also suggest that the interpretation is affected by teachers’ power which is unequally distributed according to teachers’ teaching experience and managerial roles.

  17. Emotional Experience of Caam(2) in Teaching: Power and Interpretation of Teachers' Work.

    Science.gov (United States)

    Tsang, Kwok K; Kwong, Tsun L

    2016-01-01

    The study explores the social psychological process of teachers' emotional experiences. Twenty-one secondary schoolteachers in Hong Kong were interviewed. The findings show that the teachers generally felt caam(2) (a Cantonese adjective that covers a range of meanings like gloomy, dreadful, tragic, pitiful, pathetic, and miserable) in teaching. The social psychological process of the emotional experience of caam(2) involves how teachers interpret the significance of their actual work in attaining the teaching goal of making a difference. If they interpret their work as incapable of fulfilling the goal, they will experience negative emotions in teaching. The findings also suggest that the interpretation is affected by teachers' power which is unequally distributed according to teachers' teaching experience and managerial roles.

  18. Understanding Experiences of Diabetes Medications Among African Americans Living With Type 2 Diabetes.

    Science.gov (United States)

    Bockwoldt, Denise; Staffileno, Beth A; Coke, Lola; Hamilton, Rebekah; Fogg, Lou; Calvin, Donna; Quinn, Lauretta

    2017-07-01

    African American (AA) adults are disproportionally affected by type 2 diabetes and are diagnosed at an earlier age, but are less adherent to diabetes medications compared with the general population. This qualitative study sought to describe the experiences of taking diabetes medications among midlife AA men and women with type 2 diabetes and to identify factors that influence these experiences. Fifteen AAs completed semistructured interviews. Using the Roy adaptation model, thematic analysis coded for both adaptive and ineffective experiences. Adaptive experiences included self-confidence in one's ability to control diabetes, a belief in the value of diabetes medication, assuming responsibility for one's health, developing a routine for taking medication, and positive relationships with the care team. Ineffective experiences for medication taking included: feeling powerless over diabetes, self-blame, and fear. One's self-concept as a person with diabetes, as well as assuming the role of "medication taker," were prominent themes.

  19. Development of a dynamic model to evaluate economic recovery following a nuclear attack. Volume 2. Model equations (appendices C and D). Final report

    International Nuclear Information System (INIS)

    Peterson, D.W.; Silverman, W.S.; Weil, H.B.; Willard, S.

    1980-11-01

    A highly-robust, dynamic simulation model of the US economy has been constructed to evaluate the likely economic response after various nuclear attacks or other severe disruptions, under various policies and assumptions. The model consists of a large system of nonlinear, recursive, time-difference equations. The solution-interval of the model is adjustable, with a maximum value of three weeks. The model represents the economy in thirteen sectors. Each sector contains a detailed representation of production, distribution, supply constraints, finance, employment, pricing, and wages. Also included are a full input-output representation of the interconnections among the sectors, and the psychological responses of corporate planners, consumers, and the labor force. The model's equations are formulated to remain consistent and realistic for all values of the variables, including the most extreme conditions. Therefore, the model can realistically simulate any degree or time sequence of nuclear attacks, pre-attack surges, mobilization, or policy shifts. Simulation experiments with the model suggest that the economy is highly vulnerable to nuclear attack, and that recovery requires extensive preparation, including psychological readiness, technology maintenance, special financial policies, and (if possible) maintenance of foreign trade. Civil defense policies must be adaptive (contingent on the nature of the damage) and must strive for balance among sectors, rather than maximum survival. The simulation model itself consists of an interrelated set of mathematical equations, written in the computer language DYNAMO. Two appendices to the report are presented in this volume. Appendix C gives a brief introduction to the conventions and notations of the DYNAMO language. The equations, definitions, and variables of the model are listed in Appendix D. For the convenience of the reader, these two appendices are bound separately

  20. Annual report for fiscal 1995, Kamaishi in-situ experiments (phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kazuhiro; Araki, Ryusuke; Koide, Kaoru; Sawada, Atsushi; Shimizu, Isao; Fujita, Asao; Yoshida, Eiichi [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1996-04-01

    The Kamaishi in-situ experiments (Phase 2) have strived to ascertain geological characteristics of the deep underground and the various phenomenon occurring therein and to improve technologies and methodologies required for such studies since fiscal 1993. Fiscal 1995 is the third year of Phase 2. The in-situ experiments are conducted at the northern most end of the Kamaishi mine in order to minimize the effect of the already excavated drifts totaling approximately 140 km long. The studies are conducted in Kurihashi granodiorite of Early Cretaceous widely distributed in this area. Major activities performed in this fiscal year are summarized below: (1) TASK 1 (Characterization of the deep underground geological environment). (2) TASK 2 (Study of excavation disturbance in fractured rock). (3) TASK 3 (Study of groundwater flow and solute transport in crystalline rock). (4) TASK 4 (Study of engineered barrier). (5) TASK 5 (Study of earthquakes). (J.P.N.)

  1. MESSAGE 2 space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight R. rubrum cultures returned...

  2. MHD control experiments in the Extrap T2R Reversed Field Pinch

    Science.gov (United States)

    Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.

    2004-11-01

    We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.

  3. Improving MJO Prediction and Simulation Using AGCM Coupled Ocean Model with Refined Vertical Resolution

    Science.gov (United States)

    Tu, Chia-Ying; Tseng, Wan-Ling; Kuo, Pei-Hsuan; Lan, Yung-Yao; Tsuang, Ben-Jei; Hsu, Huang-Hsiung

    2017-04-01

    Precipitation in Taiwan area is significantly influenced by MJO (Madden-Julian Oscillation) in the boreal winter. This study is therefore conducted by toggling the MJO prediction and simulation with a unique model structure. The one-dimensional TKE (Turbulence Kinetic Energy) type ocean model SIT (Snow, Ice, Thermocline) with refined vertical resolution near surface is able to resolve cool skin, as well as diurnal warm layer. SIT can simulate accurate SST and hence give precise air-sea interaction. By coupling SIT with ECHAM5 (MPI-Meteorology), CAM5 (NCAR) and HiRAM (GFDL), the MJO simulations in 20-yrs climate integrations conducted by three SIT-coupled AGCMs are significant improved comparing to those driven by prescribed SST. The horizontal resolutions in ECHAM5, CAM5 and HiRAM are 2-deg., 1-deg and 0.5-deg., respectively. This suggests that the improvement of MJO simulation by coupling SIT is AGCM-resolution independent. This study further utilizes HiRAM coupled SIT to evaluate its MJO forecast skill. HiRAM has been recognized as one of the best model for seasonal forecasts of hurricane/typhoon activity (Zhao et al., 2009; Chen & Lin, 2011; 2013), but was not as successful in MJO forecast. The preliminary result of the HiRAM-SIT experiment during DYNAMO period shows improved success in MJO forecast. These improvements of MJO prediction and simulation in both hindcast experiments and climate integrations are mainly from better-simulated SST diurnal cycle and diurnal amplitude, which is contributed by the refined vertical resolution near ocean surface in SIT. Keywords: MJO Predictability, DYNAMO

  4. The Soudan 2 proton decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1989-01-01

    The Soudan 2 proton decay experiment is now 1/4 complete and assembled at the bottom of the Soudan iron mine in northern Minnesota, USA. When completed, it will be an 100 ton, fine grained, iron calorimeter. It is comprised of 256 identical modules. The cavity is 14 /times/ 72 /times/ 11 /times/ m (w /times/ 1 /times/ h) large enough to accommodate a 3300 ton detector of similar design. The detector samples track positions every 15, 10, and 2mm along the three spatial coordinations. Thus, the detector will have excellent tracking capabilities for the low energy charged particles and electromagnetic showers expected from nucleon decay candidates and neutrino background events. In addition, for such events the energy of particles observed is sufficiently low that they will stop inside the detector. The measurement of the ionization deposited as a function of track length allows the determination of track and will yield some information on the particle type. In addition to the dE/dx measurements the Soudan 2 detector has several advantages over previous nucleon decay detectors. The honeycomb geometry has very isotropic detection compared with other tracking detectors. The thin steel and local triggering system produces a low trigger threshold giving excellent efficiency for multiparticle decay nodes or ones with missing energy due to neutrinos. 8 figs

  5. Strategic B2B customer experience management: the importance of outcomes-based measures

    OpenAIRE

    Zolkiewski, Judy; Story, Victoria; Burton, Jamie; Chan, Paul; Gomes, Andre; Hunter-Jones, Philippa; O’Malley, Lisa; Peters, Linda D.; Raddats, Chris; Robinson, William

    2017-01-01

    Purpose\\ud \\ud The purpose of this paper is to critique the adequacy of efforts to capture the complexities of customer experience in a business-to-business (B2B) context using input–output measures. The paper introduces a strategic customer experience management framework to capture the complexity of B2B service interactions and discusses the value of outcomes-based measurement.\\ud Design/methodology/approach\\ud \\ud This is a theoretical paper that reviews extant literature related to B2B cu...

  6. Comparison of 2D and 3D Experiments for IVR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Su Hyeon; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The integrity of reactor vessel is one of the prime concern in a severe accident condition. When the InVessel core melts Retention by External Reactor Vessel Cooling (IVR-ERVC) strategy is adopted as the design concept, the local heat load imposed on the reactor vessel should be identified in order to confirm the integrity of the reactor vessel. There are several studies simulating the natural convection of the oxide pool experimentally. In them, modified Ra (Ra') substitutes conventional Ra in order to represents decay heat of the core melts, due to the self-exothermic condition of the oxide pool. Difficulties in those experiments were the realization of the homogeneous self-exothermic volumetric heat sources. For this reason, the experiments using semicircular facility were also carried out instead of those of hemisphere facility [5-8]. The mean and local Nu of the lower head and the top plate were measured and correlations of the mean Nu were developed in existing studies. However, the comparisons between 2D and 3D results and phenomenological analyses have not been sufficiently performed. In this study we measured and compared the mean and local Nu using 2D and 3D Mass Transfer Experimental Rig for Oxide Pool (MassTER-OP). The experiments were carried out using cupric acid copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system based on the analogy between heat and mass transfer system. The Pr was 2,014 and Ra'H were varied from 7.15X10{sup 12} to 3.05X10{sup 15}.

  7. Preliminary results of the XR2-1 experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Helmick, P.H.; Humphries, L.

    1996-01-01

    The XR2-1 (Ex-Reactor) experiment, investigating metallic core-melt relocation in boiling water reactor geometry, was performed on October 12, 1995, following two previous simpler XR1-series tests in August and November of 1993. The XR2-1 test made use of a highly detailed replication of the lower region of the BWR core, including the control blade and channel box structures, fuel rods, fuel canister nosepieces, control blade velocity limiter, and fuel support pieces, in order to investigate a key core melt progression uncertainty for BWR Station Blackout type accidents. The purpose of this experiment program is to examine the behavior of downward-draining molten metallic core materials in a severe reactor accident in a dry BWR core, and to determine conditions under which the molten materials drain out of the core region, or freeze to form blockages in the lower portion of the core. In the event that the draining metallic materials do not form stable blockages in the lower core region, and instead erode the lower core structures such as the lower core plate, then the subsequent core melt progression processes may proceed quite differently than was observed in the TMI-2 accident, with correspondingly different impact on vessel loading and vessel release behavior. The results of the Ex-Reactor tests are preliminary. All of the tests conducted have shown a significant degree of channel box destruction induced by the draining control blade materials. The XR2-1 test further showed that the draining zircaloy melt causes significant disruption of the fuel rod geometry. All of the tests have shown tendencies to form interim blockages as the melts temporarily freeze, but that these blockages re-melt, assisted by eutectic interactions, resulting in the sudden draining of accumulated metallic melt pools

  8. Feedback stabilization experiments using l = 2 equilibrium windings in Scyllac

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Freese, K.B.; Handy, L.E.; Kristal, R.; Miller, G.; Quinn, W.E.

    1977-01-01

    The confinement time in the Scyllac Sector Feedback Experiment has been extended with a pre-programmed equilibrium compensation force. This force was produced by driving a current with a flexible waveform in an additional set of l = 2 windings

  9. Analysis of MISTRAL experiments with JENDL-3.2

    International Nuclear Information System (INIS)

    Umano, Takuya; Yamamoto, Toru; Kanda, Ryoji; Sasagawa, Masaru; Kan, Taro; Ishii, Kazuya; Ando, Yoshihira; Tatsumi, Masahiro

    2003-01-01

    NUPEC and CEA have launched and extensive experimental program called MISTRAL to study highly moderated MOX cores for the advanced LWRs. The analyses using the SRAC system and the MVP code with the JENDL-3.2 library are in progress on the experiments of the MISTRAL program and also the EPICURE program that was carried out by CEA before the MISTRAL program. Various comparisons have been made between the calculation results and the measurement values. (author)

  10. Feasibility of Autonomous Monitoring of CO2 Leakage in Aquifers: Results From Controlled Laboratory Experiments

    Science.gov (United States)

    Versteeg, R.; Leger, E.; Dafflon, B.

    2016-12-01

    Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments

  11. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  12. The muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, W. [Kentucky U.

    2016-11-15

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model prediction of $a_\\mu$. The new measurement will accumulate 21 times those statistics using upgraded detection and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent and ongoing improvements in the evaluation of the QCD contributions to the $a_\\mu$, could provide a 7.5$\\sigma$ discrepancy from the standard model if the current difference between experiment and theory is confirmed, a possible indication of new physics.

  13. Application of 2-D Simulations to Z-Pinch Experiment Design and Analysis

    International Nuclear Information System (INIS)

    Peterson, D.L.; Bowers, R.L.; Matuska, W.; Chandler, G.A.; Deeney, C.; Derzon, M.S.; Matzen, M.K.; Mock, R.C.; Nash, T.J.; Sanford, T.W.L.; Spielman, R.B.; Struve, K.W.

    1998-01-01

    The successful 2-D simulations of z-pinch experiments (reproducing such features as the measured experimental current drive, radiation pulse shape, peak power and total radiated energy) can lead to a better understanding of the underlying physics in z-pinch implosions and to the opportunity to use such simulations in the analysis of experimental data and in the design of new experiments. Such use has been made with LANL simulations of experiments on the Sandia Saturn and Z accelerators. Applications have included ''vacuum'' and ''dynamic'' hohlraum experiments; variations in mass, radius and length; and ''nested'' array configurations. Notable examples include the explanation of the power/length results in reduced length pinches and the prediction of the current best power and pulsewidth nested array experiment. Examples of circumstances where the simulation results do not match the experiments will be given along with a discussion of opportunities for improved simulation results

  14. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    Science.gov (United States)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  15. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments.

    Science.gov (United States)

    Felker, A; Mosimann, C

    2016-01-01

    Spatiotemporal transgene regulation by transgenic DNA recombinases is a central tool for reverse genetics in multicellular organisms, with excellent applications for misexpression and lineage tracing experiments. One of the most widespread technologies for this purpose is Cre recombinase-controlled lox site recombination that is attracting increasing interest in the zebrafish field. Tol2-mediated zebrafish transgenesis provides a stable platform to integrate lox cassette transgenes, while the amenability of the zebrafish embryo to drug treatments makes the model an ideal candidate for tamoxifen-inducible CreERT2 experiments. In addition, advanced transgenesis technologies such as phiC31 or CRISPR-Cas9-based knock-ins are even further promoting zebrafish transgenesis for Cre/lox applications. In this chapter, we will first introduce the basics of Cre/lox methodology, CreERT2 regulation by tamoxifen, as well as the utility of Tol2 and other contemporary transgenesis techniques for Cre/lox experiments. We will then outline in detail practical experimental steps for efficient transgenesis toward the creation of single-insertion transgenes and will introduce protocols for 4-hydroxytamoxifen-mediated CreERT2 induction to perform spatiotemporal lox transgene regulation experiments in zebrafish embryos. Last, we will discuss advanced experimental applications of Cre/lox beyond traditional lineage tracing approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin

  17. Data preprocessor and compactor for the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Dawson, J.W.; May, E.N.; Solomey, N.

    1984-01-01

    This paper describes a prototype preprocessor data-compaction system for the Soudan 2 proton decay search experiment. The Soudan 2 experiment will have more than three million potential data words per event to examine, while less than one percent of these data words will have valid data for typical events. In an effort to reduce the amount of data to be stored and analyzed, a data preprocessor was developed which scans the data words. If a data word is valid (ADC count above a preset threshold), that data word is passed to the host computer for experiment monitoring and storage on magnetic tape. To obtain fast data compression, a hardware comparator is used. The hardware comparator places valid data into a FIFO (first in first out stack) where the host computer can acquire the data through CAMAC. The comparator and FIFO are controlled by a microprocessor (8086 CPU), and the microprocessor is programmed for decision-making and communication between the compactor, CAMAC, the host computer and a local terminal

  18. Data preprocessor and compactor for the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Dawson, J.W.; May, E.N.; Solomey, N.

    1985-01-01

    This paper describes a prototype preprocessor data-compaction system for the Soudan 2 proton decay search experiment. The Soudan 2 experiment will have more than three million potential data words per event to examine, while less than one percent of these data words will have valid data for typical events. In an effort to reduce the amount of data to be stored and analyzed, a data preprocessor was developed which scans the data words. If a data word is valid (ADC count above a preset threshold), that data word is passed to the host computer for experiment monitoring and storage on magnetic tape. To obtain fast data compression, a hardware comparator is used. The hardware comparator places valid data into a FIFO (first in first out stack) where the host computer can acquire the data through CAMAC. The comparator and FIFO are controlled by a microprocessor (8086 CPU), and the microprocessor is programmed for decisionmaking and communication between the compactor, CAMAC, the host computer and a local terminal

  19. IMPULSE Highlights for recent experiments at the Advanced Photon Source (2/9-2/18 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-18

    This report is a presentation, with slides noting, Over 40 experiments were completed during this run using X-ray imaging on the IMPULSE system at Sector 32 IDB; Summary of new experiments: Idealized sphere compaction – Capture progression of dynamic densification through an idealized system on 0.500 mm borosilicate glass spheres (Slide 1); Detonator and EBW Imaging Experiments on IMPULSE – First time HE was intentionally detonated at APS (Slide 2); Spall and high strain rate crack nucleation/propagation in PMMA – PCI data is providing new and unique insights for model validation (Slide 3); Fiber composite for armor applications was studied under ballistic impact of Dyneema (Collaboration with Army Research Laboratory) (Slide 4). Summary of on-going experiments; Crack propagation in vitreous carbon – observed crack motion and caustic; Jet formation experiments on large grain cerium to examine phase dependent strength; Ballistic impact of Comp-B and TNT to examine thermo-mechanical response in-situ with various penetrator geometries to vary shear concentration. Other efforts: IMPULSE system moved and installed in Sector 35 (DCS). This includes the 4-frame X-ray detection system, 4- channel PDV, and other gun diagnostics; New remotely operated mobile IMPULSE structure in fabrication – to be delivered to APS in April; 4 Mini-VISAR Systems and 4-channel PDV installed in DCS instrumentation room with all associated diagnostics.

  20. Thermospheric neutral wind profile in moonlit midnight by Lithium release experiments in Japan

    Science.gov (United States)

    Yamamoto, M. Y.; Watanabe, S.; Abe, T.; Kakinami, Y.; Habu, H.; Yamamoto, M.

    2015-12-01

    Neutral wind profiles were observed in lower thermosphere at about between 90 km and 130 km altitude by using resonance scattering light of moonlit Lithium (Li) vapor released from sounding rockets in midnight (with almost full-moon condition) in 2013 in Japan. As a target of the Daytime Dynamo campaign, Li release experiment was operated at Wallops Flight Facility (WFF) of NASA, U.S.A. in July, 2013 (Pfaff et al., 2015, this meeting), while the same kind of rocket-ground observation campaign in midnight was carried out by using S-520-27/S-310-42 sounding rockets in Uchinoura Space Center (USC) of JAXA, Kagoshima, Japan, also in July 2013.Since imaging signal-to-noise (S/N) condition of the experiment was so severe, we conducted to apply airborne observation for imaging the faint moonlit Li tracers so as to reduce the illuminating intensity of the background skies as an order of magnitude. Two independent methods for calculating the wind profile were applied to the Lithium emission image sequences successfully obtained by the airborne imaging by special Li imagers aboard the airplanes in order to derive precise information of Li tracers motion under the condition of single observation site on a moving aircraft along its flight path at about 12 km altitude in lower stratosphere. Slight attitude-feedback motion of the aircraft's 3-axes attitude changes (rolling, yawing and pitching) was considered for obtaining precise coordinates on each snapshot. Another approach is giving a simple mathematic function for wind profile to resolve the shape displacement of the imaged Li tracers. As a result, a wind profile in moonlit thermosphere was calculated in a range up to about 150 m/s with some fluctuated parts possibly disturbed by wind shears. In the same experiment, another sounding rocket S-310-42 with a TMA canister was also launched from USC/JAXA at about 1 hour before the rocket with carrying the Lithium canisters, thus, we can derive the other 2 profiles determined by

  1. Concept definition for space station technology development experiments. Experiment definition, task 2

    Science.gov (United States)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  2. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  3. Superthin disintegration of 2s-level in light hydrogenlike atoms: theory and experiment

    International Nuclear Information System (INIS)

    Karshenbojm, S.G.; Kolachevskij, N.N.; Ivanov, V.G.; Fischer, M.; Fendel, P.; Hensch, T.W.

    2006-01-01

    Peculiar combination of superthin disintegrations in hydrogen and in D 21 = 8f hfs (2s)-f hfs (1s) similar light two-particle atoms depends slightly on nucleus structure and thus enables to compare theory with experiment sensitive to the high order quantum-electrodynamic corrections. Paper presents new theoretical and experimental results. The calculations deal with hydrogen, deuterium and helium-3 ion. The experiments were performed for 2s level superthin disintegration in hydrogen and deuterium the error of which dominates in D 21 difference. Theory and experiment are in line, and their accuracy is comparable with the accuracy of verifications of the quantum-and-electrodynamic theory of superthin disintegration in lepton atoms (muonium and positronium) [ru

  4. SARNET2 benchmark on air ingress experiments QUENCH-10, -16

    International Nuclear Information System (INIS)

    Fernandez-Moguel, Leticia; Bals, Christine; Beuzet, Emilie; Bratfisch, Christian; Coindreau, Olivia; Hózer, Zoltan; Stuckert, Juri; Vasiliev, Alexander; Vryashkova, Petya

    2014-01-01

    Highlights: • Two similar QUENCH air ingress experiments were analysed with eight different codes. • Eight institutions have participated in the study. • Differences in the code were mostly small to moderate during the pre-oxidation. • Differences in the code were larger during the air phase. • Study has proven that there are physical processes that should be further studied. - Abstract: The QUENCH-10 (Q-10) and QUENCH-16 (Q-16) experiments were chosen as a SARNET2 code benchmark (SARNET2-COOL-D5.4) exercise to assess the status of modelling air ingress sequences and to compare the capabilities of the various codes used for accident analyses, specifically ATHLET-CD (GRS and RUB), ICARE-CATHARE (IRSN), MAAP (EDF), MELCOR (INRNE and PSI), SOCRAT (IBRAE), and RELAP/SCDAPSim (PSI). Both experiments addressed air ingress into an overheated core following earlier partial oxidation in steam. Q-10 was performed with extensive preoxidation, moderate/high air flow rate and high temperatures at onset of reflood (max T pct = 2200 K), while Q-16 was performed with limited preoxidation, low air flow rate and relative low temperatures at reflood initiation (max T pct = 1870 K). Variables relating to the major signatures (thermal response, hydrogen generation, oxide layer development, oxygen and nitrogen consumption and reflood behaviour) were compared globally and/or at selected locations. In each simulation, the same input models and assumptions are used for both experiments, differing only in respect of the boundary conditions. However, some slight idealisations were made to the assumed boundary conditions in order to avoid ambiguities in the code-to-code comparisons; in this way, it was possible to focus more easily on the key phenomena and hence make the results of the exercise more transparent. Remarks are made concerning the capability of physical modelling within the codes, description of the experiment facility and test conduct as specified in the code input

  5. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    International Nuclear Information System (INIS)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa; Bando, Masaru.

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  6. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  7. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  8. Core-concrete interactions using molten UO sub 2 with zirconium on a basaltic basemat: The SURC-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Blose, R.E. (Ktech Corp., Albuquerque, NM (United States))

    1992-08-01

    An inductively heated experiment, SURC-2, using prototypic U0{sub 2}-ZrO{sub 2} materials was executed as part of the Integral Core-Concrete Interactions Experiments Program. The purpose of this experimental program was to measure and assess the variety of source terms produced during core debris/concrete interactions. These source terms include thermal energy released to both the reactor basemat and the containment environment, as well as flammable gas, condensable vapor and toxic or radioactive aerosols generated during the course of a severe reactor accident. The SURC-2 experiment eroded a total of 35 cm of basaltic concrete during 160 minutes of sustained interaction using 203.9 kg of prototypic U0{sub 2}-ZrO{sub 2} core debris material that included 18 kg of Zr metal and 3.4 kg of fission product simulants. The meltpool temperature ranged from 2400--1900{degrees}C during the first 50 minutes of the test followed by steady temperatures of 1750--1800{degrees}C during the middle portion of the test and increased temperatures of 1800--1900{degrees}C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 15 cm with an additional 7 cm during the middle part of the test and 13 cm of ablation during the final 50 minutes. Comprehensive gas flowrates, gas compositions, and aerosol release rates were also measured during the SURC-2 test. When combined with the SURC-1 results, SURC-2 forms a complete data base for prototypic U0{sub 2}-ZrO{sub 2} core debris interactions with concrete.

  9. Recent advances in the HL-2A tokamak experiments

    International Nuclear Information System (INIS)

    Liu, Y.; Ding, X.T.; Yang, Q.W.; Yan, L.W.; Liu, D.Q.; Xuan, W.M.; Chen, L.Y.; Song, X.M.; Cao, Z.; Zhang, J.H.; Mao, W.C.; Zhou, C.P.; Li, X.D.; Wang, S.J.; Yan, J.C.; Bu, M.N.; Chen, Y.H.; Cui, C.H.; Cui, Z.Y.; Deng, Z.C.; Hong, W.Y.; Hu, H.T.; Huang, Y.; Kang, Z.H.; Li, B.; Li, W.; Li, F.Z.; Li, G.S.; Li, H.J.; Li, Q.; Li, Y.G.; Li, Z.J.; Liu, Yi; Liu, Z.T.; Luo, C.W.; Mao, X.H.; Pan, Y.D.; Rao, J.; Shao, K.; Song, X.Y.; Wang, M.; Wang, M.X.; Wang, Q.M.; Xiao, Z.G.; Xie, Y.F.; Yao, L.H.; Yao, L.Y.; Zheng, Y.J.; Zhong, G.W.; Zhou, Y.; Pan, C.H.

    2005-01-01

    Two experiment campaigns were conducted on the HL-2A tokamak in 2003 and 2004 after the first plasma was obtained at the end of 2002. Progresses in many aspects have been made, especially in the divertor discharge and feedback control of plasma configuration. Up to now, the following operation parameters have been achieved: I p = 320 kA, B t = 2.2 T and discharge duration T d = 1580 ms. With the feedback control of plasma current and horizontal position, an excellent repeatability of the discharge has been achieved. The tokamak has been operated at both limiter configuration and single null (SN) divertor configuration. The HL-2A SN divertor configuration is simulated with the MHD equilibrium code SWEQU. When the divertor configuration is formed, the impurity radiation in the main plasma decreases remarkably

  10. Mu2e, a coherent μ → e conversion experiment at Fermilab

    International Nuclear Information System (INIS)

    Brown, D. N.

    2012-01-01

    We describe a proposed experiment to search for Charged Lepton Flavor Violation (CLFV) using stopped muons at Fermilab. A primary Proton beam will strike a gold target, producing pions which decay to muons. Low-momentum negative muons will be collected, selected, and transported by a custom arrangement of solenoidal magnets and collimators. Muons will stop in thin foil targets, creating muonic atoms with significant nuclear overlap. Mu2e will search for the coherent conversion of nuclear bound muons to electrons, with an experimental signature of a single mono-energetic electron. Conversion electrons will be detected and measured in a low-mass straw tracker and a crystal calorimeter. Mu2e will have a sensitivity four orders of magnitude better than the most sensitive published result for μ → e conversion, and will have complementary physics reach to LHC experiments and μ → eγ decay experiments such as MEG.

  11. Transforming patient experience: health web science meets medicine 2.0.

    Science.gov (United States)

    McHattie, Lynn-Sayers; Cumming, Grant; French, Tara

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London.

  12. Transforming Patient Experience: Health Web Science Meets Medicine 2.0

    Science.gov (United States)

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London. PMID:25075246

  13. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  14. Modeling of N2 and O optical emissions for ionosphere HF powerful heating experiments

    Science.gov (United States)

    Sergienko, T.; Gustavsson, B.

    Analyses of experiments of F region ionosphere modification by HF powerful radio waves show that optical observations are very useful tools for diagnosing of the interaction of the probing radio wave with the ionospheric plasma Hitherto the emissions usually measured in the heating experiment have been the 630 0 nm and the 557 7 nm lines of atomic oxygen Other emissions for instance O 844 8 nm and N2 427 8 nm have been measured episodically in only a few experiments although the very rich optical spectrum of molecular nitrogen potentially involves important information about ionospheric plasma in the heated region This study addresses the modeling of optical emissions from the O and the N2 triplet states first positive second positive Vegard-Kaplan infrared afterglow and Wu-Benesch band systems excited under a condition of the ionosphere heating experiment The auroral triplet state population distribution model was modified for the ionosphere heating conditions by using the different electron distribution functions suggested by Mishin et al 2000 2003 and Gustavsson at al 2004 2005 Modeling results are discussed from the point of view of efficiency of measurements of the N2 emissions in future experiments

  15. HL-2A experiment and ITER-related activity at SWIP

    International Nuclear Information System (INIS)

    Duan Xuru

    2007-01-01

    In this overview the recent progress on HL-2A tokamak experiment and ITER-related activity at SWIP is summarized. Experiment on HL-2A is one of the important research activities at SWIP. In the last two years, some new hardware had been developed, these include four sets of ECRH system with a total power up to 2 MW, new diagnostics such as 8-channel laser interferometer. The studied subjects were focused on plasma auxiliary heating, fuelling, transport, edge plasma physics and turbulence, etc. Progress in these fields has been obtained. For example, the toroidal symmetry of the geodesic acoustic mode (GAM), the oscillating branch of zonal flows has been demonstrated for the first time using a novel 3-step Langmuir Probe, and the poloidal and radial structure of the low frequency electric potential and field were simultaneously observed. During ECRH experiments under different discharge conditions, the MHD instability excited by high energetic electrons was investigated. Besides, non-local heat transport due to SMBI during ECRH was studied. Another important fusion activity at SWIP is the ITER relevant technology. The R and D of four ITER procurements (first wall and shielding blanket, magnet gravity support, gas injection and glow discharge cleaning system, neutron flux measurement) has been undertaken. Progress has been made, e.g. the technology for manufacturing high purity (>99%) ITER specified Be plate and CuCrZr alloy is obtained, their major mechanical and physical properties were measured. For ITER-TBM, a structural material named as CLF-1, a type of reduced activation ferritic/martenstic steel, was developed. Besides, some progress in fusion reactor design and related technology was achieved. (authors)

  16. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  17. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  18. Simulation Experiment Description Markup Language (SED-ML) Level 1 Version 2.

    Science.gov (United States)

    Bergmann, Frank T; Cooper, Jonathan; Le Novère, Nicolas; Nickerson, David; Waltemath, Dagmar

    2015-09-04

    The number, size and complexity of computational models of biological systems are growing at an ever increasing pace. It is imperative to build on existing studies by reusing and adapting existing models and parts thereof. The description of the structure of models is not sufficient to enable the reproduction of simulation results. One also needs to describe the procedures the models are subjected to, as recommended by the Minimum Information About a Simulation Experiment (MIASE) guidelines. This document presents Level 1 Version 2 of the Simulation Experiment Description Markup Language (SED-ML), a computer-readable format for encoding simulation and analysis experiments to apply to computational models. SED-ML files are encoded in the Extensible Markup Language (XML) and can be used in conjunction with any XML-based model encoding format, such as CellML or SBML. A SED-ML file includes details of which models to use, how to modify them prior to executing a simulation, which simulation and analysis procedures to apply, which results to extract and how to present them. Level 1 Version 2 extends the format by allowing the encoding of repeated and chained procedures.

  19. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  20. Phase Equilibria of a S- and C-Poor Lunar Core

    Science.gov (United States)

    Righter, K.; Pando, K.; Go, B. M.; Danielson, L. R.; Habermann, M.

    2016-01-01

    The composition of the lunar core can have a large impact on its thermal evolution, possible early dynamo creation, and physical state. Geochemical measurements have placed better constraints on the S and C content of the lunar mantle. In this study we have carried out phase equilibrium studies of geochemically plausible S- and C-poor lunar core compositions in the Fe-Ni-S-C system, and apply them to the early history of the Moon. We chose two bulk core compositions, with differing S and C content based on geochemical analyses of S and C trapped melts in Apollo samples, and on the partitioning of S and C between metal and silicate. This approach allowed calculation of core S and C contents - 90% Fe, 9% Ni, 0.5% C, and 0.375% S by weight; a second composition contained 1% each of S and C. Experiments were carried out from 1473K to 1973K and 1 GPa to 5 GPa, in piston cylinder and multi- anvil apparatuses. Combination of the thermal model of with our results, shows that a solid inner core (and therefore initiation of a dynamo) may have been possible in the earliest history of the Moon (approximately 4.2 Ga ago), in agreement with. Thus a volatile poor lunar core may explain the thermal and magnetic history of the Moon.

  1. The earth's magnetic field

    International Nuclear Information System (INIS)

    Merrill, R.T.

    1983-01-01

    After a historical introduction in Chapter 1, the more traditional aspects of geomagnetism relating to the present field and historical observations are presented in Chapter 2. The various methods and techniques and theoretical background of palaeomagnetism are given in Chapter 3. Chapters 4, 5 and 6 present the results of palaeomagnetic and archaeomagnetic studies in three topics. Chapter 4 relates to studies of the geomagnetic field roughly back to about 50,000 years ago. Chapter 5 is about reversals of the geomagnetic field and Chapter 6 presents studies of the field for times older than 50,000 years and on the geological time scale of millions or hundreds of millions of years. Chapters 7, 8 and 9 provide insight into dynamo theory. Chapter 7 is essentially a non-mathematical attempt to explain the physical basis of dynamo theories to palaeomagnetists. This is followed in Chapter 8 by a more advanced theoretical treatment. Chapter 9 explains theoretical aspects of secular variation and the origin of reversals of the geomagnetic field. Chapter 10 is our attempt to relate theory to experiment and vice versa. The final two chapters consider the magnetic fields of the moon, sun, planets and meteorites, in an attempt to determine the necessary and sufficient conditions for magnetic field generation in large solar system bodies. (author)

  2. Contribution of a Liquid Argon TPC to T2K Neutrino Experiment

    Science.gov (United States)

    Meregaglia, A.; Rubbia, A.

    2006-08-01

    A 2 km LAr detector would be an important asset for the T2K experiment. Different physics scenarios are considered and for each one the role of a LAr TPC in enhancing the ultimate sensitivity on theta 13 is studied. The large sample of neutrino interactions in the GeV region would provide crucial information for the study of different types of reactions and of nuclear effects, whereas the inner target would give a direct measurement of the cross sections ratio between Water and Argon. Such a detector would also be an important milestone for the LAr TPC technique providing an extremely valuable experience for future large LAr detectors.

  3. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  4. Modelling of 28-element UO2 flux-map critical experiments in ZED-2 using WIMS9A/PANTHER

    International Nuclear Information System (INIS)

    Sissaoui, M.T.; Kozier, K.S.; Labrie, J.P.

    2011-01-01

    The accuracy of WIMS9A/PANTHER in modelling D 2 O-moderated, and H 2 O- or air-cooled, doubly heterogeneous lattices of fuel clusters has been demonstrated using 28-element UO 2 flux-map critical experiments in the ZED-2 facility. Presented here are the predicted k eff values, coolant void reactivity biases, and the radial and axial flux shapes.

  5. The Muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Chapelain, Antoine [Cornell U., Phys. Dept.

    2017-01-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  6. Subcriticality determination of low-enriched UO2 lattices in water by exponential experiment

    International Nuclear Information System (INIS)

    Suzaki, Takenori

    1991-01-01

    To determine the static k (effective neutron multiplication factor) ranging from the critical to an extremely subcritical states, the exponential experiments were performed using various sizes of light-water moderated and reflected low-enriched UO 2 lattice cores. For comparison, the pulsed neutron source experiments were also carried out. In the manner of the Gozani's bracketing method applied to the pulsed source experiment, a formula to obtain k from the measured spatial-decay constant was derived on the basis of diffusion theory. Parameters in the formulas needed to obtain k from the respective experiments were evaluated by 4-group neutron diffusion calculations. The results of the exponential experiments agreed well with those of the pulsed source experiments, the 4-group diffusion calculations and the 137-group Monte Carlo calculations. Therefore, the present data-processing method developed for the exponential experiment was demonstrated to be valid. Besides, through the examination on the parameters used in the data processing, it was found that the dependence of parameter value upon k is weak in the exponential experiment compared with that in the pulsed source experiment. This indicates the superiority of the exponential experiment over the pulsed source experiment for the subcriticality determination of a wide range. (author)

  7. SOUDAN 2 nuclear decay experiment. Progress report

    International Nuclear Information System (INIS)

    Minnesota; Argonne; Oxford; Rutherford; Tufts Collaboration.

    1984-01-01

    Construction of the experiment cavern on the 27th level of the SOUDAN iron mine in northern Minnesota began early this year and will be complete early in 1985. The first 1200 tons of the detector itself is also under construction in the US and UK; installation will begin in mid 1985. Physics exploitation will begin early in 1986 and the first 1200 ton module will be complete early in 1987. The detector may be expanded to between 3 and 5 such modules in the cavern. The detector is an iron tracking calorimeter (rho = 2) consisting of stacks of corrugated steel sheets each 1.2 mm thick. The corrugations form hexagonal channels 1 m long and 16 mm in diameter. A uniform electric field along these channels is provided by the voltage grading arising from the constant standing current in the Hytrel tubes (rho = 2 x 10 12 Ω cm) that line each channel. The tubes are insulated from the steel by sheets of mylar. Ionization in the gas in the tubes drifts in the uniform field to the end of the tube where it is amplified linearly and detected by a matrix of anode wires and cathode strips. The electronics registers both the drift time and the pulse height of all signals

  8. Current profile modification experiments in EXTRAP T2R

    Science.gov (United States)

    Cecconello, M.; Malmberg, J.-A.; Spizzo, G.; Chapman, B. E.; Gravestjin, R. M.; Franz, P.; Piovesan, P.; Martin, P.; Drake, J. R.

    2004-01-01

    Pulsed poloidal current drive (PPCD) experiments have been conducted in the resistive shell EXTRAP T2R reversed-field pinch experiment. During the current profile modification phase, the fluctuation level of the m = 1 internally resonant tearing modes decreases, and the velocity of these modes increases. The m = 0 modes are not affected during PPCD, although termination occurs with a burst in the m = 0 amplitude. The PPCD phase is characterized by an increase in the central electron temperature (up to 380 eV) and in the soft x-ray signal. Spectroscopic observations confirm an increase in the central electron temperature. During PPCD, the plasma poloidal beta increases to 14%, and the estimated energy confinement time doubles, reaching 380 µs. The reduction in the fluctuation level and the corresponding increase in the energy confinement time are qualitatively consistent with a reduction in parallel transport along stochastic magnetic field lines.

  9. ONKALO POSE experiment. Phase 1 and 2: execution and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Siren, T. [Posiva Oy, Helsinki (Finland); Hakala, M. [KMS-Hakala Oy, Nokia (Finland); Kantia, P. [Geofcon Oy, Rovaniemi (Finland)

    2014-02-15

    Posiva has conducted in the ONKALO rock characterisation facility during 2010 - 2011 an in situ experiment named POSE (Posiva's Olkiluoto Spalling Experiment). The POSE experiment had three objectives: to establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, to establish the state of in situ stress at the -345 m depth level, and to act as a Prediction-Outcome (P-O) exercise. The POSE experiment consisted of drilling with full-face boring machine two near fullscale deposition holes, diameter 1.52 m (compared to 1.75 m for the actual deposition holes), to a depth of 7.2 m, leaving a 0.9 m pillar between the holes. The holes were planned to be located in such way that maximum excavation-induced stresses could act in the pillar and damage could then take place. Boring of the two holes in 2010 was called Phase 1 (Pillar test). This was followed in 2011 by Phase 2 (Pillar heating test) where four heaters with a length of 7.5 m heated the test area to increase the stresses around the experimental holes. In the heating phase the other hole was back-filled with sand. The test was extensively monitored during the execution using temperature monitoring, strain gauge monitoring, video monitoring, microseismic monitoring and pressure monitoring. In addition, the holes were after the test measured using ground penetration radar (GPR) and 3D photogrammetry for detailed modelling. The outcomes from the test showed that no damage, except for three opened/sheared fractures, was noticed during the boring of the holes (Phase 1). Surface damage was, though, induced by heating (Phase 2). The damage was well localized around the holes and controlled by the foliation (mica rich layers) and rock type contacts which were known to be relatively weak. Surface type failures were not observed in the gneiss, but it was noticed in limited areas in the pegmatite-granite. The depths of the damaged areas due to heating were less than 100 mm. The depths and sizes of the

  10. ONKALO POSE experiment. Phase 1 and 2: execution and monitoring

    International Nuclear Information System (INIS)

    Johansson, E.; Siren, T.; Hakala, M.; Kantia, P.

    2014-02-01

    Posiva has conducted in the ONKALO rock characterisation facility during 2010 - 2011 an in situ experiment named POSE (Posiva's Olkiluoto Spalling Experiment). The POSE experiment had three objectives: to establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, to establish the state of in situ stress at the -345 m depth level, and to act as a Prediction-Outcome (P-O) exercise. The POSE experiment consisted of drilling with full-face boring machine two near fullscale deposition holes, diameter 1.52 m (compared to 1.75 m for the actual deposition holes), to a depth of 7.2 m, leaving a 0.9 m pillar between the holes. The holes were planned to be located in such way that maximum excavation-induced stresses could act in the pillar and damage could then take place. Boring of the two holes in 2010 was called Phase 1 (Pillar test). This was followed in 2011 by Phase 2 (Pillar heating test) where four heaters with a length of 7.5 m heated the test area to increase the stresses around the experimental holes. In the heating phase the other hole was back-filled with sand. The test was extensively monitored during the execution using temperature monitoring, strain gauge monitoring, video monitoring, microseismic monitoring and pressure monitoring. In addition, the holes were after the test measured using ground penetration radar (GPR) and 3D photogrammetry for detailed modelling. The outcomes from the test showed that no damage, except for three opened/sheared fractures, was noticed during the boring of the holes (Phase 1). Surface damage was, though, induced by heating (Phase 2). The damage was well localized around the holes and controlled by the foliation (mica rich layers) and rock type contacts which were known to be relatively weak. Surface type failures were not observed in the gneiss, but it was noticed in limited areas in the pegmatite-granite. The depths of the damaged areas due to heating were less than 100 mm. The depths and sizes of the

  11. Recent results from the K2.neutrino oscillation experiment

    CERN Document Server

    Sakuda, M

    2001-01-01

    We report the latest results of the oscillation search in the nu /sub mu / disappearance mode from data taken from June, 1999, to June, 2000, with the K2K experiment. We observed 27 fully-contained events in the 22.5 kton fiducial volume of Super-Kamiokande (SK), while the corresponding expected number of events is estimated to be 40.3/sub -4.6//sup +4.7/ in the case of no oscillations.

  12. Norwegian fjords as potential sites for CO{sub 2} experiments. A preliminary feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Golmen, Lars G.; Soerensen, Jan; Haugan, Peter; Bakke, Torgeir; Bjerknes, Vilhelm

    1997-12-31

    Large-scale deposition of CO{sub 2} will probably take place deep in the open oceans. But small-scale experiments on plume dynamics and chemical or biological impacts are more conveniently performed in Norwegian fjords. This report describes a feasibility study treating the physical, biological and legal constraints upon such experiments. Several small and large fjord basins with depths exceeding 500 m exist in western Norway. The report gives guidelines to what further steps should be taken to establish an in-situ CO{sub 2} experiment in a fjord. Twenty-six different basins have been identified in terms of maximum depths, municipal adherence etc. Deep water hydrographic conditions vary relatively little from one fjord to another. Data on the dynamical states and on deep water biology are in general lacking and a baseline study on selected fjords should be performed prior to the final selection. User conflicts and legal aspects must be considered and a complete EIA study will probably be required before any CO{sub 2} experiment can be started in a fjord. 60 refs., 13 figs.

  13. MELCOR simulation of steam condensation effect on hydrogen behavior in THAI HM-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongnyeon; Lee, Jung-Jae; Cho, Yong-Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    In this study, MELCOR simulation was carried out for THAI HM-2 experiment of OECD. As a results, stratification of hydrogen cloud was reasonably captured in MELCOR simulation. Furthermore, the pressure from simulation results in cases where mass transfer coefficient of MELCOR condensation model was modified was good agreement with the experimental results. Containment Filtered Ventilation System (CFVS) has been introduced as facility to prevent containment failure during severe accident. However, possibility of hydrogen risk has been issued due to inflow of hydrogen, condensation and removal of steam and complicated inner structure in CFVS. Preferentially benchmark work for THAI HM-2 experiment of OECD was decided to validate the methodology before detailed assessment of hydrogen risk in CFVS. The objectives of THAI HM-2 experiment were evaluation of hydrogen behavior, verification of numerical analysis tools and so on. In this paper, therefore, MELCOR simulation was carried out in comparison with the experiment results. Additionally, steam condensation effect was considered for detailed simulation. Hydrogen concentration from MELCOR results was underestimated in comparison to the experimental results.

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun's memory about its past magnetic fields.We show that flux-transport dynamo models can explain many key features of solar cycles. Then we ...

  15. The physics of reversed-field pinch profile sustainment

    International Nuclear Information System (INIS)

    Moses, R.W.

    1985-01-01

    A description of the Reversed-Field Pinch (RFP) is given. There is experimental evidence that indicates that an RFP dynamo effect sustains field reversal in steady state. Three sustainment mechanisms are reviewed: the MHD model, the tangled discharge model, and the kinetic dynamo model. The relationship of these models to each another is discussed briefly

  16. Validation of the code ETOBOX/BOXER for UO2 LWR lattices based on the experiments TRX, BAPL-UO2 and other critical experiments

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1985-07-01

    The EIR codes system for LWR arrays is based on cross sections taken out of ENDF/B-4 and ENDF/B-5 by the code ETOBOX. The calculation method for the arrays (code BOXER) and the cross sections as well were applied to the CSEWG benchmark experiments TRX-1 to 4 and BAPL-UO/sub 2/-1 to 3. The results are compared to the measured values and to some calculations of other institutions as well. This demonstrates that the deviations of the parameters calculated by BOXER are typical for the cross sections used. A large number of critical experiments were calculated using the measured material bucklings in order to bring to light possible trends in the calculation of the multiplication factor k/sub eff/. First it came out that the error bounds of B/sub m//sup 2/ evalu-ated in the measurements are often optimistic. Two-dimensional calculations improved the results of the cell calculations. With a mean scattering of 4 to 5 mk in the normal arrays, the multiplication factors calculated by BOXER are satisfactory. However one has to take into account a slight trend of k/sub eff/ to grow with the moderator to fuel ratio and the enrichment. (author)

  17. Offline Software for the Mu2e Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kutschke, Robert K. [Fermilab

    2012-01-01

    The Mu2e experiment at Fermilab is in the midst of its R&D and approval processes. To aid and inform this process, a small team has developed an end-to-end Geant4-based simulation package and has developed reconstruction code that is already at the stage of an advanced prototype. Having these tools available at an early stage allows design options and tradeoffs to be studied using high level physics quantities. A key to the success of this effort has been, as much as possible, to acquire software and customize it, rather than to build it in-house.

  18. Atmospheric solar tides and their electrodynamic effects

    International Nuclear Information System (INIS)

    Forbes, J.M.; Lindzen, R.S.

    1977-01-01

    In this final part of a three-part study, the polarization electric field generated by E-region dynamo action is considered, and its consistency with presently available experimental measurements is established. This serves as an independent check on some of the results and conclusions described in Parts I and II (Forbes and Lindzen, J. Atmos. Terr. Phys.; 38:897,911 (1976)). Incoherent scatter measurements of ionospheric drifts are reviewed from the point of view of determining the origin of the polarization electric field in the quiet-time ionosphere, and are compared with the theoretical dynamo electric fields which drive the current systems in Parts I and II. The analysis indicates that the polarization fields originating from E-region dynamo action are consistent with daytime F-region drift measurements, but are in poor agreement at night. This supports previous suggestions that electric fields generated by the plasmaspheric and F-region dynamos are short-circuited by the high E-region conductivity during the day, but contribite strongly to the night-time electric field. (author)

  19. Power supply for magnetic coils in thermonuclear devices

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Tamura, Sanae; Kishimoto, Hiroshi.

    1981-01-01

    Purpose: To decrease the load fluctuations in an external power supply, as well as to increase the operation efficiency capacity of thermonuclear devices. Constitution: Electrical power with the same frequency as that of a dynamo generator is supplied by a power supply-driving power source including a frequency converter and the like to DC converters for driving plasma-exciting and -controlling coils. At the same time, the electrical power from the frequency converter is supplied to the dynamo generator with flywheel to add accumulate energies to the EC converters. Accordingly, the energy for the great power pulses in a short time comprises the sum of the energy supplied from the dynamo generator with flywheel and the energy supplied continuously from the outside to eliminate the need of providing a stand-by period for the re-acceleration of the dynamo generator with flywheel even if the scale of the thermonuclear device is enlarged and energy consumed in one cycle is increased, whereby the decrease in the operation efficiency can be prevented and the capacity of the flywheel can be reduced. (Yoshino, Y.)

  20. Mass Enhancement of Nearly Trivalent Compound EuCo2Si2: Studied by the de Haas-van Alphen Experiments and Energy Band Calculations

    International Nuclear Information System (INIS)

    Ōnuki, Yoshichika; Hedo, Masato; Nakama, Takao; Nakamura, Ai; Aoki, Dai; Boukahil, Mounir; Haga, Yoshinori; Takeuchi, Tetsuya; Harima, Hisatomo

    2015-01-01

    We succeeded in growing single crystals of EuCo 2 Si 2 by the Bridgman method, and carried out the de Haas-van Alphen (dHvA) experiments. EuCo 2 Si 2 was previously studied from a viewpoint of the trivalent electronic state on the basis of the magnetic susceptibility and X-ray absorption experiments, whereas most of the other Eu compounds order magnetically, with the divalent electronic state. The detected dHvA branches in the present experiments are found to be explained by the results of the full potential linearized augmented plane wave energy band calculations on the basis of a local density approximation (LDA) for YCo 2 Si 2 (LDA) and EuCo 2 Si 2 (LDA + U), revealing the trivalent electronic state. The detected cyclotron effective masses are moderately large, ranging from 1.2 to 2.9 m 0

  1. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    Science.gov (United States)

    Lin, Ying-Ting; Trims Collaboration

    2017-09-01

    The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment examines the branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). Measuring this branching ratio helps to validate the current molecular final-state theory applied in neutrino mass experiments such as KATRIN and Project 8. TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question. We will give an update on the apparatus, simulation software, and analysis tools, including efforts to improve the resolution of our detectors and to characterize the stability and uniformity of our field sources. We will also share our commissioning results and prospects for physics data. The TRIMS experiment is supported by U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  2. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR ε ERIDANI

    International Nuclear Information System (INIS)

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-01-01

    The active K2 dwarf ε Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in ε Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 ± 0.03 years and 12.7 ± 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Böhm-Vitense. Finally, based on the observed properties of ε Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  3. Out-of-Time Beam Extinction in the MU2E Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, E. J. [Fermilab; Werkema, S. [Fermilab

    2015-06-01

    The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches 250 ns FW long, separated by 1.7 $\\mu$ sec, with no out-of-time protons at the $10^{10}$ fractional level. Satisfying this "extinction" requirement is very challenging. The formation of the bunches is expected to result in an extinction on the order of $10^5$. The remaining extinction will be accomplished by a system of resonant magnets and collimators, configured such that only in-time beam is delivered to the experiment. Our simulations show that the total extinction achievable by the system is on the order of $10^{12}$, with an efficiency for transmitting in-time beam of 99.6%.

  4. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  5. Pressurized-thermal-shock experiments: PTSE-1 results and PTSE-2 plans

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Wanner, R.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1985-01-01

    The first pressurized-thermal-shock experiment (PTSE-1) was performed with a vessel with a 1-m-long flaw in a plug of specially tempered steel having the composition of SA-508 forging steel. The second experiment (PTSE-2) will have a similar arrangement, but the material in which the flaw will be implanted is being prepared to have low tearing resistance. Special tempering of a 2 1/4 Cr - 1 Mo steel plate has been shown to induce a low Charpy impact energy in the upper-shelf temperature range. The purpose of PTSE-2 is to investigate the fracture behavior of low-upper-shelf material in a vessel under the combined loading of concurrent pressure and thermal shock. The primary objective of the experimental plan is to induce a rapidly propagating cleavage fracture under conditions that are likely to induce a ductile tearing instability at the time of arrest of the cleavage fracture. The secondary objective of the test is to extend the range of the investigation of warm prestressing. 11 figs

  6. Inelastic collisions of OH (2Pi) with H2: Comparison between theory and experiment including rotational, fine structure, and Λ-doublet transitions

    International Nuclear Information System (INIS)

    Schinke, R.; Andresen, P.

    1984-01-01

    Detailed cross section calculations for inelastic collisions of OH ( 2 Pi) in the ground state j = 3/2, Omega-bar = 3/2 with H 2 are presented using an ab initio potential energy surface without adjustable parameters. The OH molecular wave function is described within the intermediate coupling case. The results are compared with recent experiments. The agreement is satisfactory for the final rotational state distributions within both the Omega-bar = 3/2 and the Omega-bar = 1/2 ladder. Also the relative magnitude of Omega-bar = 1/2 and 3/2 cross sections is in good accord with experiment and thus indicates that the difference potential V/sub A/'-V/sub A/'' is realistically described by the ab initio calculation. The dynamical calculations yield prefential excitation of one Λ-doublet state. The extent of this preference increases with j and is larger for Omega-bar = 3/2 in qualitative but not quantitative agreement with experiment. Possible interpretations in terms of the potential energy surfaces are briefly discussed

  7. Distributed Analysis Experience using Ganga on an ATLAS Tier2 infrastructure

    International Nuclear Information System (INIS)

    Fassi, F.; Cabrera, S.; Vives, R.; Fernandez, A.; Gonzalez de la Hoz, S.; Sanchez, J.; March, L.; Salt, J.; Kaci, M.; Lamas, A.; Amoros, G.

    2007-01-01

    The ATLAS detector will explore the high-energy frontier of Particle Physics collecting the proton-proton collisions delivered by the LHC (Large Hadron Collider). Starting in spring 2008, the LHC will produce more than 10 Peta bytes of data per year. The adapted tiered hierarchy for computing model at the LHC is: Tier-0 (CERN), Tiers-1 and Tiers-2 centres distributed around the word. The ATLAS Distributed Analysis (DA) system has the goal of enabling physicists to perform Grid-based analysis on distributed data using distributed computing resources. IFIC Tier-2 facility is participating in several aspects of DA. In support of the ATLAS DA activities a prototype is being tested, deployed and integrated. The analysis data processing applications are based on the Athena framework. GANGA, developed by LHCb and ATLAS experiments, allows simple switching between testing on a local batch system and large-scale processing on the Grid, hiding Grid complexities. GANGA deals with providing physicists an integrated environment for job preparation, bookkeeping and archiving, job splitting and merging. The experience with the deployment, configuration and operation of the DA prototype will be presented. Experiences gained of using DA system and GANGA in the Top physics analysis will be described. (Author)

  8. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  9. TREAT experiment M2 post-test examination

    International Nuclear Information System (INIS)

    Holland, J.W.; Teske, G.M.; Florek, J.C.

    1986-01-01

    Transient Reactor Test (TREAT) Facility experiment M2 was performed to evaluate the transient behavior of metal-alloy fuel under accident conditions to investigate the inherent safety features of the fuel in integral fast reactor (IFR) system designs. Objectives were to obtain early information on the key fuel behavior characteristics at transient overpower (TOP) conditions in metal-fueled fast reactors; namely, margin to cladding breach and extent of axial self-extrusion of fuel within intact cladding. The onset of cladding breaching depends on fuel/cladding eutectic formation, as well as cladding pressurization and melting. Driving forces for fuel extrusion are fission gas, liquid sodium, and volatile fission products trapped within the fuel matrix. The post-test examination provided data essential for correctly modeling fuel behavior in accident codes

  10. The Aladin2 experiment: status and perspectives

    International Nuclear Information System (INIS)

    Bimonte, Giuseppe; Born, Detlef; Calloni, Enrico; Esposito, Giampiero; Il'ichev, Evgeni; Rosa, Luigi; Scaldaferri, Ornella; Tafuri, Francesco; Vaglio, Ruggero; Huebner, Uve

    2006-01-01

    Aladin2 is an experiment devoted to the first measurement of variations of Casimir energy in a rigid cavity. The main scientific motivation relies on the possibility of the first demonstration of a phase transition influenced by vacuum fluctuations. The principle of the measurement, based on the behaviour of the critical field for an in-cavity superconducting film, will be only briefly recalled, being discussed in detail in a different paper of the same conference (G Bimonte et al 2006 J. Phys. A: Math. Gen. 39 6161). In this paper, after an introduction to the long-term motivations, the experimental apparatus and the results of the first measurement of sensitivity will be presented in detail, particularly in comparison with the expected signal. Last, the most important steps towards the final measurement will be discussed

  11. Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments

    Science.gov (United States)

    Karpechko, A.; Manzini, E.; Kornblueh, L.

    2017-12-01

    The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.

  12. LHCb siliicon detectors: the Run 1 to Run 2 transition and first experience of Run 2

    CERN Document Server

    Rinnert, Kurt

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large- area silicon-strip detector located upstream of a dipole magnet (TT), and three stations of silicon- strip detectors (IT) and straw drift tubes placed downstream (OT). The operational transition of the silicon detectors VELO, TT and IT from LHC Run 1 to Run 2 and first Run 2 experiences will be presented. During the long shutdown of the LHC the silicon detectors have been maintained in a safe state and operated regularly to validate changes in the control infrastructure, new operational procedures, updates to the alarm systems and monitoring software. In addition, there have been some infrastructure related challenges due to maintenance performed in the vicinity of the silicon detectors that will be discussed. The LHCb silicon dete...

  13. History of CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Degens, E T

    1979-01-01

    Upon arrival on earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, and biosphere. This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO/sub 2/ which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development. This article discusses environmental parameters that control the CO/sub 2/ system, past and present. Mantle and crustal evolution is the dynamo recharging the CO/sub 2/ in sea and air; the present rate of CO/sub 2/ release from the magma is 0.05 x 10/sup 15/ g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO/sub 2/ in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO/sub 2/ content in the atmosphere has remained fairly uniform since early Precambrian time; CO/sub 2/ should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO/sub 2/ into our atmosphere may have serious consequences for climate, environment and society in the years to come.

  14. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Crnkovic, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morse, W. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-19

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the stored muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.

  15. Numerical simulation of 2D ablation profile in CCI-2 experiment by moving particle semi-implicit method

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Penghui, E-mail: phchai@vis.t.u-tokyo.ac.jp; Kondo, Masahiro; Erkan, Nejdet; Okamoto, Koji

    2016-05-15

    Highlights: • Multiphysics models were developed based on Moving Particle Semi-implicit method. • Mixing process, chemical reaction can be simulated in MCCI calculation. • CCI-2 experiment was simulated to validate the models. • Simulation and experimental results for sidewall ablation agree well. • Simulation results confirm the rapid erosion phenomenon observed in the experiment. - Abstract: Numerous experiments have been performed to explore the mechanisms of molten core-concrete interaction (MCCI) phenomena since the 1980s. However, previous experimental results show that uncertainties pertaining to several aspects such as the mixing process and crust behavior remain. To explore the mechanism governing such aspects, as well as to predict MCCI behavior in real severe accident events, a number of simulation codes have been developed for process calculations. However, uncertainties exist among the codes because of the use of different empirical models. In this study, a new computational code is developed using multiphysics models to simulate MCCI phenomena based on the moving particle semi-implicit (MPS) method. Momentum and energy equations are used to solve the velocity and temperature fields, and multiphysics models are developed on the basis of the basic MPS method. The CCI-2 experiment is simulated by applying the developed code. With respect to sidewall ablation, good agreement is observed between the simulation and experimental results. However, axial ablation is slower in the simulation, which is probably due to the underestimation of the enhancement effect of heat transfer provided by the moving bubbles at the bottom. In addition, the simulation results confirm the rapid erosion phenomenon observed in the experiment, which in the numerical simulation is explained by solutal convection provided by the liquid concrete at the corium/concrete interface. The results of the comparison of different model combinations show the effect of each

  16. Magnetic properties of Proxima Centauri b analogues

    Science.gov (United States)

    Zuluaga, Jorge I.; Bustamante, Sebastian

    2018-03-01

    The discovery of a planet around the closest star to our Sun, Proxima Centauri, represents a quantum leap in the testability of exoplanetary models. Unlike any other discovered exoplanet, models of Proxima b could be contrasted against near future telescopic observations and far future in-situ measurements. In this paper we aim at predicting the planetary radius and the magnetic properties (dynamo lifetime and magnetic dipole moment) of Proxima b analogues (solid planets with masses of ∼ 1 - 3M⊕ , rotation periods of several days and habitable conditions). For this purpose we build a grid of planetary models with a wide range of compositions and masses. For each point in the grid we run the planetary evolution model developed in Zuluaga et al. (2013). Our model assumes small orbital eccentricity, negligible tidal heating and earth-like radiogenic mantle elements abundances. We devise a statistical methodology to estimate the posterior distribution of the desired planetary properties assuming simple lprior distributions for the orbital inclination and bulk composition. Our model predicts that Proxima b would have a mass 1.3 ≤Mp ≤ 2.3M⊕ and a radius Rp =1.4-0.2+0.3R⊕ . In our simulations, most Proxima b analogues develop intrinsic dynamos that last for ≥4 Gyr (the estimated age of the host star). If alive, the dynamo of Proxima b have a dipole moment ℳdip >0.32÷2.9×2.3ℳdip , ⊕ . These results are not restricted to Proxima b but they also apply to earth-like planets having similar observed properties.

  17. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  18. PyCPR - a python-based implementation of the Conjugate Peak Refinement (CPR) algorithm for finding transition state structures.

    Science.gov (United States)

    Gisdon, Florian J; Culka, Martin; Ullmann, G Matthias

    2016-10-01

    Conjugate peak refinement (CPR) is a powerful and robust method to search transition states on a molecular potential energy surface. Nevertheless, the method was to the best of our knowledge so far only implemented in CHARMM. In this paper, we present PyCPR, a new Python-based implementation of the CPR algorithm within the pDynamo framework. We provide a detailed description of the theory underlying our implementation and discuss the different parts of the implementation. The method is applied to two different problems. First, we illustrate the method by analyzing the gauche to anti-periplanar transition of butane using a semiempirical QM method. Second, we reanalyze the mechanism of a glycyl-radical enzyme, namely of 4-hydroxyphenylacetate decarboxylase (HPD) using QM/MM calculations. In the end, we suggest a strategy how to use our implementation of the CPR algorithm. The integration of PyCPR into the framework pDynamo allows the combination of CPR with the large variety of methods implemented in pDynamo. PyCPR can be used in combination with quantum mechanical and molecular mechanical methods (and hybrid methods) implemented directly in pDynamo, but also in combination with external programs such as ORCA using pDynamo as interface. PyCPR is distributed as free, open source software and can be downloaded from http://www.bisb.uni-bayreuth.de/index.php?page=downloads . Graphical Abstract PyCPR is a search tool for finding saddle points on the potential energy landscape of a molecular system.

  19. BACCHUS 2: an in situ backfill hydration experiment for model validation

    International Nuclear Information System (INIS)

    Volckaert, G.; Bernier, F.; Alonso, E.; Gens, A.

    1995-01-01

    The BACCHUS 2 experiment is an in situ backfill hydration test performed in the HADES underground research facility situated in the plastic Boom clay layer at 220 m depth. The experiment aims at the optimization and demonstration of an installation procedure for a clay based backfill material. The instrumentation has been optimized in such a way that the results of the experiments can be used for the validation of hydro-mechanical codes such a NOSAT developed at the University of Catalunya Spain (UPC). The experimental set-up consists in a bottom flange and a central filter around which the backfill material was applied. The backfill material consist of a mixture of high density clay pellets and clay powder. The experimental set-up and its instrumentation are described in detail. The results of the hydro-mechanical characterization of the backfill material is summarized. (authors). 8 refs., 16 figs., 1 tab

  20. Review of results from the Mark 2 experiment at SLC

    International Nuclear Information System (INIS)

    Coupal, D.P.

    1990-07-01

    This paper reviews results on Z degree physics from the 1989 run of the Mark 2 experiment at the SLAC Linear Collider. Based on about 20 nb -1 we present results on the mass, width and branching ratios of the Z degree boson, the number of light neutrino species, properties of hadronic decays and searches for new particles. 16 refs., 9 figs