WorldWideScience

Sample records for vivo perfusion technique

  1. Ex-vivo machine perfusion for kidney preservation.

    Science.gov (United States)

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  2. Graft downsizing during ex vivo lung perfusion: case report and technical notes.

    Science.gov (United States)

    Nosotti, M; Rosso, L; Mendogni, P; Tosi, D; Palleschi, A; Righi, I; Froio, S; Valenza, F; Santambrogio, L

    2014-09-01

    Among patients with respiratory insufficiency awaiting lung transplantation, small adult patients have a lower opportunity of receiving size-matched pulmonary grafts, because of the shortage of donors, particularly those of small size. Reducing the size of an oversized graft is one of the methods to increase the donor pool; similarly, ex vivo lung perfusion is an emerging technique aimed toward the same purpose. We describe how we combined the 2 techniques (lobar transplantation plus contralateral nonanatomic graft reduction during ex vivo lung perfusion) to overcome graft shortage in a clinical case. For the 1st time, this case report demonstrates that surgical manipulation during ex vivo lung perfusion does not affect the functional improvement in a lung previously judged to be not suitable for transplantation. The 6-month follow-up results are similar to those of standard bilateral lung transplantation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Large-Animal Biventricular Working Heart Perfusion System with Low Priming Volume-Comparison between in vivo and ex vivo Cardiac Function.

    Science.gov (United States)

    Abicht, Jan-Michael; Mayr, Tanja Axinja Jelena; Jauch, Judith; Guethoff, Sonja; Buchholz, Stefan; Reichart, Bruno; Bauer, Andreas

    2018-01-01

    Existing large-animal, ex vivo, cardiac perfusion models are restricted in their ability to establish an ischemia/reperfusion condition as seen in cardiac surgery or transplantation. Other working heart systems only challenge one ventricle or require a substantially larger priming volume. We describe a novel biventricular cardiac perfusion system with reduced priming volume. Juvenile pig hearts were cardiopleged, explanted, and reperfused ex vivo after 150 minutes of cold ischemia. Autologous whole blood was used as perfusate (minimal priming volume 350 mL). After 15 minutes of Langendorff perfusion (LM), the system was switched into a biventricular working mode (WM) and studied for 3 hours. During reperfusion, complete unloading of both ventricles and constant-pressure coronary perfusion was achieved. During working mode perfusion, the preload and afterload pressure of both ventricles was controlled within the targeted physiologic range. Functional parameters such as left ventricular work index were reduced in ex vivo working mode (in vivo: 787 ± 186 vs. 1 h WM 498 ± 66 mm Hg·mL/g·min; p  hours while functional and blood parameters are easily accessible. Moreover, because of the minimal priming volume, the novel ex vivo cardiac perfusion circuit allows for autologous perfusion, using the limited amount of blood available from the organ donating animal. Georg Thieme Verlag KG Stuttgart · New York.

  4. Quantitative perfusion modeling in cardiac in-vivo nuclear magnetic resonance (NMR) imaging

    International Nuclear Information System (INIS)

    Carme, Sabin Charles

    2004-01-01

    A parametrical analysis of contrast agent distribution is proposed to interpret first pass MR images and to quantify the myocardial perfusion. We are concerned with the correction of spatial intensity variations in images. Furthermore, we are interested in the application of a robust NMR signal processing technique and deconvolution techniques adapted to low signal-to-noise ratio. Data sets were provided, close to clinical conditions, using in-vivo experiments applying several pharmacological stresses on ischemic pigs presenting a stenosis of the left circumflex coronary artery. The agreement and accuracy measurements between observers are respectively 57.1% and 53.1% for visual analysis, and 81.2% and 81.1% for parametric map analysis. A linear relationship between perfusion parameters and radioactive microspheres is established for low blood flows [fr

  5. Whole Ovine Ovaries as a Model for Human: Perfusion with Cryoprotectants In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Vladimir Isachenko

    2014-01-01

    Full Text Available These experiments were performed to test the perfusion of ovine as a model for human ovaries by cryoprotectants in vivo at high temperature when the permeability of capillaries is high and when blood is insensibly replaced by the solution of cryoprotectants. By our hypothetical supposition, ovaries could be saturated by cryoprotectants before their surgical removal. The objective was to examine the effectiveness of perfusion of ovine ovaries with vascular pedicle in vivo and in vitro. Arteria ovarica was cannuled and ovaries were perfused by Leibovitz L-15 medium + 100 IU/mL heparin + 5% bovine calf serum + 6% dimethyl sulfoxide + 6% ethylene glycol + 0.15 M sucrose + Indian ink in vivo and in vitro. In the first and second cycle of experiments, ovaries (n=13 and n=23 were perfused in vivo and in vitro, respectively, during 60 min with the rate of perfusion 50 mL/h (0.8 mL/min. It was established with in vivo perfusion that only about 10% of ovarian tissues were perfused due to an appearance of multiple anastomoses when the perfusion medium goes from arteria ovarica to arteria uterina without inflow into the ovaries. It was concluded that in vitro perfusion of ovine intact ovaries with vascular pedicle by freezing medium is more effective than this manipulation performed in vivo.

  6. Perfusion device for liver preservation ex vivo before transplantation: first experimental study

    Directory of Open Access Journals (Sweden)

    O. N. Reznik

    2017-01-01

    Full Text Available Introduction. Successful liver transplantation including from donors with a sudden irreversible cardiac arrest requires the use of modern hardware and technical support to maintain, select and sustain organ viability for the period from harvesting to transplantation to the recipient.Materials and methods. Hardware-software system (HSS developed by the Russian State Scientific Center for Robotics and Technical Cybernetics (RTC was used for testing of normothermic perfusion of donor’s liver ex vivo. The experiment was conducted on the isolated pig liver (Duroc breed in accordance with the ethical principles.Result. During perfusion spontaneous recovery of bile outflow through the cannula installed in the common bile duct (volume of bile released – 240 ml was observed, and the color and uniformity of the perfused liver did not differ from the normal parameters. Biochemical indicators were stabilized at the physiological values after 40 minutes of perfusion procedure.Conclusion. Isolated liver transplant was completely restored after 30 minutes of warm ischemia and was functioning well due to ex vivo perfusion procedure on the new perfusion device. The first case of the new device usage for normothermic liver ex vivo demonstrated hopeful results to be further investigated.

  7. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death.

    Science.gov (United States)

    Wagner, Cynthia E; Pope, Nicolas H; Charles, Eric J; Huerter, Mary E; Sharma, Ashish K; Salmon, Morgan D; Carter, Benjamin T; Stoler, Mark H; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2016-02-01

    Ex vivo lung perfusion has been successful in the assessment of marginal donor lungs, including donation after cardiac death (DCD) donor lungs. Ex vivo lung perfusion also represents a unique platform for targeted drug delivery. We sought to determine whether ischemia-reperfusion injury would be decreased after transplantation of DCD donor lungs subjected to prolonged cold preservation and treated with an adenosine A2A receptor agonist during ex vivo lung perfusion. Porcine DCD donor lungs were preserved at 4°C for 12 hours and underwent ex vivo lung perfusion for 4 hours. Left lungs were then transplanted and reperfused for 4 hours. Three groups (n = 4/group) were randomized according to treatment with the adenosine A2A receptor agonist ATL-1223 or the dimethyl sulfoxide vehicle: Infusion of dimethyl sulfoxide during ex vivo lung perfusion and reperfusion (DMSO), infusion of ATL-1223 during ex vivo lung perfusion and dimethyl sulfoxide during reperfusion (ATL-E), and infusion of ATL-1223 during ex vivo lung perfusion and reperfusion (ATL-E/R). Final Pao2/Fio2 ratios (arterial oxygen partial pressure/fraction of inspired oxygen) were determined from samples obtained from the left superior and inferior pulmonary veins. Final Pao2/Fio2 ratios in the ATL-E/R group (430.1 ± 26.4 mm Hg) were similar to final Pao2/Fio2 ratios in the ATL-E group (413.6 ± 18.8 mm Hg), but both treated groups had significantly higher final Pao2/Fio2 ratios compared with the dimethyl sulfoxide group (84.8 ± 17.7 mm Hg). Low oxygenation gradients during ex vivo lung perfusion did not preclude superior oxygenation capacity during reperfusion. After prolonged cold preservation, treatment of DCD donor lungs with an adenosine A2A receptor agonist during ex vivo lung perfusion enabled Pao2/Fio2 ratios greater than 400 mm Hg after transplantation in a preclinical porcine model. Pulmonary function during ex vivo lung perfusion was not predictive of outcomes after transplantation. Copyright

  8. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K

    2016-01-01

    placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes......, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  9. Actions of p-synephrine on hepatic enzyme activities linked to carbohydrate metabolism and ATP levels in vivo and in the perfused rat liver.

    Science.gov (United States)

    Maldonado, Marcos Rodrigues; Bracht, Lívia; de Sá-Nakanishi, Anacharis Babeto; Corrêa, Rúbia Carvalho Gomes; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2018-01-01

    p-Synephrine is one of the main active components of the fruit of Citrus aurantium (bitter orange). Extracts of the bitter orange and other preparations containing p-synephrine have been used worldwide to promote weight loss and for sports performance. The purpose of the study was to measure the action of p-synephrine on hepatic enzyme activities linked to carbohydrate and energy metabolism and the levels of adenine mononucleotides. Enzymes and adenine mononucleotides were measured in the isolated perfused rat liver and in vivo after oral administration of the drug (50 and 300 mg/kg) by using standard techniques. p-Synephrine increased the activity of glycogen phosphorylase in vivo and in the perfused liver. It decreased, however, the activities of pyruvate kinase and pyruvate dehydrogenase also in vivo and in the perfused liver. p-Synephrine increased the hepatic pools of adenosine diphosphate and adenosine triphosphate. Stimulation of glycogen phosphorylase is consistent with the reported increased glycogenolysis in the perfused liver and increased glycemia in rats. The decrease in the pyruvate dehydrogenase activity indicates that p-synephrine is potentially capable of inhibiting the transformation of carbohydrates into lipids. The capability of increasing the adenosine triphosphate-adenosine diphosphate pool indicates a beneficial effect of p-synephrine on the cellular energetics. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Self-normalizing multiple-echo technique for measuring the in vivo apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Perman, W.H.; Gado, M.; Sandstrom, J.C.

    1989-01-01

    This paper presents work to develop a new technique for quantitating the in vivo apparent diffusion/perfusion coefficient (ADC) by obtaining multiple data points from only two images with the capability to normalize the data from consecutive images, thus minimizing the effect of interimage variation. Two multiple-echo (six-to eight-echo) cardiac-gated images are obtained, one without and one with additional diffusion/perfusion encoding gradients placed about the 180 RF pulses of all but the first echo. Since the first echoes of both images have identical pulse sequence parameters, variations in signal intensity-between the first echoes represent image-to-image variation. The signal intensities of the subsequent echoes with additional diffusion/perfusion encoding gradients are then normalized by using the ratio of the first-echo signal intensities

  11. Ex vivo lung perfusion in clinical lung transplantation--state of the art.

    Science.gov (United States)

    Andreasson, Anders S I; Dark, John H; Fisher, Andrew J

    2014-11-01

    Ex vivo lung perfusion (EVLP) has emerged as a new technique for assessing and potentially reconditioning human donor lungs previously unacceptable for clinical transplantation with the potential to dramatically push the limits of organ acceptability. With the recent introduction of portable EVLP, a new era in lung preservation may be upon us with the opportunity to also limit organ ischaemic times and potentially improve the outcome of donor lungs already deemed acceptable for transplantation. It took over half a century for the technique to evolve from basic theory to semi-automated circuits fit for clinical use that are now rapidly being adopted in transplant centres across the globe. With this field in constant evolution and many unanswered questions remaining, our review serves as an update on the state of the art of EVLP in clinical lung transplantation. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  13. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruikang K [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97237 (United States)

    2007-12-07

    Optical micro-angiography (OMAG) is a recently developed method of imaging localized blood perfusion at capillary level resolution within microcirculatory beds. This paper reports that the OMAG is capable of directional blood perfusion mapping in vivo. This is achieved simply by translating the mirror located in the reference arm back and forth while 3D imaging is performed. The mirror which moves toward the incident beam gives the blood perfusion that flows away from the beam direction and vice versa. The approach is experimentally demonstrated by imaging of a flow phantom and then cerebro-vascular perfusion of a live mouse with cranium intact.

  14. Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation.

    Science.gov (United States)

    Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves

    2015-01-01

    Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.

  15. In vivo MR perfusion imaging of renal artery stenosis

    International Nuclear Information System (INIS)

    Powers, T.; Lorenz, C.H.; Bain, R.; Holburn, G.; Price, R.R.

    1989-01-01

    Various techniques have been developed for noninvasive evaluation of renal blood flow. More important in the assessment of potential renal ischemia may be actual perfusion of the nephron mass. MR pulse sequences have been devised that allow perfusion imaging (PI) in a dog model of renal artery stenosis. Unilateral renal artery stenosis was created in mongrel dogs and quantitation of renal blood flow was obtained with radioactive microspheres. Perfusion imaging was performed on a 1.5-T system to obtain the apparent diffusion coefficient. During initial studies, it was found that the usual gradient factor used in brain PI was too high for renal studies; a factor of < 50 was found to be optimal. Additionally, respiratory gating with acquisition at end expiration was necessary to prevent renal motion. Recent studies have shown that PI reflects the asymmetry of flow in this model

  16. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    Science.gov (United States)

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. © The Author(s) 2015.

  17. Ex vivo perfusion of human spleens maintains clearing and processing functions.

    Science.gov (United States)

    Buffet, Pierre A; Milon, Geneviève; Brousse, Valentine; Correas, Jean-Michel; Dousset, Bertrand; Couvelard, Anne; Kianmanesh, Reza; Farges, Olivier; Sauvanet, Alain; Paye, François; Ungeheuer, Marie-Noëlle; Ottone, Catherine; Khun, Huot; Fiette, Laurence; Guigon, Ghislaine; Huerre, Michel; Mercereau-Puijalon, Odile; David, Peter H

    2006-05-01

    The spleen plays a central role in the pathophysiology of several potentially severe diseases such as inherited red cell membrane disorders, hemolytic anemias, and malaria. Research on these diseases is hampered by ethical constraints that limit human spleen tissue explorations. We identified a surgical situation--left splenopancreatectomy for benign pancreas tumors--allowing spleen retrieval at no risk for patients. Ex vivo perfusion of retrieved intact spleens for 4 to 6 hours maintained a preserved parenchymal structure, vascular flow, and metabolic activity. Function preservation was assessed by testing the ability of isolated-perfused spleens to retain Plasmodium falciparum-infected erythrocytes preexposed to the antimalarial drug artesunate (Art-iRBCs). More than 95% of Art-iRBCs were cleared from the perfusate in 2 hours. At each transit through isolated-perfused spleens, parasite remnants were removed from 0.2% to 0.23% of Art-iRBCs, a proportion consistent with the 0.02% to 1% pitting rate previously established in artesunate-treated patients. Histologic analysis showed that more than 90% of Art-iRBCs were retained and processed in the red pulp, providing the first direct evidence of a zone-dependent parasite clearance by the human spleen. Human-specific physiologic or pathophysiologic mechanisms involving clearing or processing functions of the spleen can now be experimentally explored in a human tissue context.

  18. A Short Period of Ventilation without Perfusion Seems to Reduce Atelectasis without Harming the Lungs during Ex Vivo Lung Perfusion

    Directory of Open Access Journals (Sweden)

    Sandra Lindstedt

    2013-01-01

    Full Text Available To evaluate the lung function of donors after circulatory deaths (DCDs, ex vivo lung perfusion (EVLP has been shown to be a valuable method. We present modified EVLP where lung atelectasis is removed, while the lung perfusion is temporarily shut down. Twelve pigs were randomized into two groups: modified EVLP and conventional EVLP. When the lungs had reached 37°C in the EVLP circuit, lung perfusion was temporarily shut down in the modified EVLP group, and positive end-expiratory pressure (PEEP was increased to 10 cm H2O for 10 minutes. In the conventional EVLP group, PEEP was increased to 10 cm H2O for 10 minutes with unchanged lung perfusion. In the modified EVLP group, the arterial oxygen partial pressure (PaO2 was 18.5 ± 7.0 kPa before and 64.5 ± 6.0 kPa after the maneuver (P<0.001. In the conventional EVLP group, the PaO2 was 16.8 ± 3.1 kPa and 46.8 ± 2.7 kPa after the maneuver (P<0.01; P<0.01. In the modified EVLP group, the pulmonary graft weight was unchanged, while in the conventional EVLP group, the pulmonary graft weight was significantly increased. Modified EVLP with normoventilation of the lungs without ongoing lung perfusion for 10 minutes may eliminate atelectasis almost completely without harming the lungs.

  19. Ex Vivo Normothermic Perfusion Induces Donor-Derived Leukocyte Mobilization and Removal Prior to Renal Transplantation

    Directory of Open Access Journals (Sweden)

    John P. Stone

    2016-11-01

    Discussion: We demonstrate that ex vivo normothermic perfusion initiates an inflammatory cytokine storm and release of mitochondrial and genomic DNA. This is likely to be responsible for immune cell activation and mobilization into the circuit prior to transplantation. Interestingly this did not have an impact on renal function. These data therefore suggest that normothermic perfusion can be used to immunodeplete and to saturate the pro-inflammatory capacity of donor kidneys prior to transplantation.

  20. An in vivo technique for the measurement of bone blood flow in animals

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.; Lehner, C.E.; Lanphier, E.H.

    1987-01-01

    A new technique to measure the in vivo clearance of 41 Ar from the bone mineral matrix is demonstrated following fast neutron production of 41 Ar in bone via the 44 Ca(n,α) reaction at 14.1 MeV. At the end of irradiation, the 41 Ar activity is assayed with a Ge(Li) detector where sequential gamma-ray spectra are taken. Following full-energy peak integration, background and dead time correction, the activity of 41 Ar as a function of time is determined. Results indicated that the Ar washout from bone in rats using this technique was approximately 16 ml (100 ml min) -1 and in agreement with other measurement techniques. For sheep the bone perfusion in the tibia was approximately 1.9+-0.2 ml (100 ml min) -1 . (author)

  1. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...... on functional heterogeneity in human skeletal muscle will be presented....

  2. Effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, J.B. (Miami Univ., Coral Gables, FL (USA)); Evans, D.H. (Mt. Desert Island Biological Laboratory, Salsbury Cove, ME, USA)

    1981-06-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of /sup 22/Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro /sup 36/Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion.

  3. Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling

    Directory of Open Access Journals (Sweden)

    Hunter KS

    2014-03-01

    Full Text Available Kendall S Hunter,1 Todd Fjield,2 Hal Heitzmann,2 Robin Shandas,1 Malik Y Kahook3 1Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; 2Glaukos Corporation, Laguna Hills, CA, USA; 3University of Colorado Hospital Eye Center, Aurora, CO, USA Abstract: Micro-invasive glaucoma surgery with the Glaukos iStent® or iStent inject® (Glaukos Corporation, Laguna Hills, CA, USA is intended to create a bypass through the trabecular meshwork to Schlemm's canal to improve aqueous outflow through the natural physiologic pathway. While the iStent devices have been evaluated in ex vivo anterior segment models, they have not previously been evaluated in whole eye perfusion models nor characterized by computational fluid dynamics. Intraocular pressure (IOP reduction with the iStent was evaluated in an ex vivo whole human eye perfusion model. Numerical modeling, including computational fluid dynamics, was used to evaluate the flow through the stents over physiologically relevant boundary conditions. In the ex vivo model, a single iStent reduced IOP by 6.0 mmHg from baseline, and addition of a second iStent further lowered IOP by 2.9 mmHg, for a total IOP reduction of 8.9 mmHg. Computational modeling showed that simulated flow through the iStent or iStent inject is smooth and laminar at physiological flow rates. Each stent was computed to have a negligible flow resistance consistent with an expected significant decrease in IOP. The present perfusion results agree with prior clinical and laboratory studies to show that both iStent and iStent inject therapies are potentially titratable, providing clinicians with the opportunity to achieve lower target IOPs by implanting additional stents. Keywords: glaucoma, iStent, trabecular bypass, intraocular pressure, ab-interno, CFD

  4. The effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    International Nuclear Information System (INIS)

    Claiborne, J.B.; Evans, D.H.

    1981-01-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of 22 Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro 36 Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion. (Auth.)

  5. Selective cerebro-myocardial perfusion in complex congenital aortic arch pathology: a novel technique.

    Science.gov (United States)

    De Rita, Fabrizio; Lucchese, Gianluca; Barozzi, Luca; Menon, Tiziano; Faggian, Giuseppe; Mazzucco, Alessandro; Luciani, Giovanni Battista

    2011-11-01

    Simultaneous cerebro-myocardial perfusion has been described in neonatal and infant arch surgery, suggesting a reduction in cardiac morbidity. Here reported is a novel technique for selective cerebral perfusion combined with controlled and independent myocardial perfusion during surgery for complex or recurrent aortic arch lesions. From April 2008 to April 2011, 10 patients with arch pathology underwent surgery (two hypoplastic left heart syndrome [HLHS], four recurrent arch obstruction, two aortic arch hypoplasia + ventricular septal defect [VSD], one single ventricle + transposition of the great arteries + arch hypoplasia, one interrupted aortic arch type B + VSD). Median age was 63 days (6 days-36 years) and median weight 4.0 kg (1.6-52). Via midline sternotomy, an arterial cannula (6 or 8 Fr for infants) was directly inserted into the innominate artery or through a polytetrafluoroethylene (PTFE) graft (for neonates cerebro-myocardial perfusion was 39 ± 18 min (17-69). Weaning from cardiopulmonary bypass was achieved without inotropic support in three and with low dose in seven patients. One patient required veno-arterial extracorporeal membrane oxygenation. Four patients, body weight cerebro-myocardial perfusion is feasible in patients with complex or recurrent aortic arch disease, starting from premature newborn less than 2.0 kg of body weight to adults. The technique is as safe as previously reported methods of cerebro-myocardial perfusion and possibly more versatile. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Effect of nutritional status on oxidative stress in an ex vivo perfused rat liver.

    Science.gov (United States)

    Stadler, Michaela; Nuyens, Vincent; Seidel, Laurence; Albert, Adelin; Boogaerts, Jean G

    2005-11-01

    Normothermic ischemia-reperfusion is a determinant in liver injury occurring during surgical procedures, ischemic state, and multiple organ failure. The preexisting nutritional status of the liver might contribute to the extent of tissue injury and primary nonfunction. The aim of this study was to determine the role of starvation on hepatic ischemia-reperfusion injury in normal rat livers. Rats were randomly divided into two groups: one had free access to food, the other was fasted for 16 h. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Two modes of perfusion were applied in each series of rats, fed and fasting. In the ischemia-reperfusion mode, the experiment consisted of perfusion for 15 min, warm ischemia for 60 min, and reperfusion during 60 min. In the nonischemia mode, perfusion was maintained during the 135-min study period. Five rats were included in each experimental condition, yielding a total of 20 rats. Liver enzymes, potassium, glucose, lactate, free radicals, i.e., dienes and trienes, and cytochrome c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in tissue biopsies. Transaminases, lactate dehydrogenase, potassium, and free radical concentrations were systematically higher in fasting rats in both conditions, with and without ischemia. Cytochrome c was higher after reperfusion in the fasting rats. Glucose and lactate concentrations were greater in the fed group. The glycogen content decreased in both groups during the experiment but was markedly lower in the fasting rats. In fed rats, liver injury was moderate, whereas hepatocytes integrity was notably impaired both after continuous perfusion and warm ischemia in fasting animals. Reduced glycogen store in hepatocytes may explain reduced tolerance.

  7. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  8. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  9. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  10. Quantitative evaluation of muscle perfusion with CEUS and with MR

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Krix, Martin

    2007-01-01

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  11. Quantitative evaluation of muscle perfusion with CEUS and with MR

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Delorme, Stefan [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Krix, Martin [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Bracco ALTANA Pharma GmbH, Konstanz (Germany)

    2007-10-15

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  12. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  13. Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation.

    Science.gov (United States)

    Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David

    2017-12-01

    Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system.

    Science.gov (United States)

    Hosgood, Sarah A; Shah, K; Patel, M; Nicholson, M L

    2015-06-30

    Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model. Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology. Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia. Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.

  15. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  16. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model.

    Science.gov (United States)

    Hosgood, Sarah A; Moore, Tom; Kleverlaan, Theresa; Adams, Tom; Nicholson, Michael L

    2017-10-25

    Ex-vivo normothermic perfusion strategies are a promising new instrument in organ transplantation. The perfusion conditions are designed to be protective however the artificial environment can induce a local inflammatory response. The aim of this study was to determine the effect of incorporating a Cytosorb adsorber into an isolated kidney perfusion system. Porcine kidneys were subjected to 22 h of cold ischaemia then reperfused for 6 h on an ex vivo reperfusion circuit. Pairs of kidneys were randomised to either control (n = 5) or reperfusion with a Cytosorb adsorber (n = 5) integrated into the circuit. Tissue, blood and urine samples were taken for the measurement of inflammation and renal function. Baseline levels of cytokines (IL-6, TNFα, IL-8, IL-10, IL-1β, IL-1α) were similar between groups. Levels of IL-6 and IL-8 in the perfusate significantly increased during reperfusion in the control group but not in the Cytosorb group (P = 0.023, 0.049). Levels of the other cytokines were numerically lower in the Cytosorb group; however, this did not reach statistical significance. The mean renal blood flow (RBF) was significantly higher in the Cytosorb group (162 ± 53 vs. 120 ± 35 mL/min/100 g; P = 0.022). Perfusate levels of prostaglandin E2 were significantly lower in the Cytosorb group (642 ± 762 vs. 3258 ± 980 pg/mL; P = 0.0001). Levels of prostacyclin were significantly lower in the Cytosorb group at 1, 3 and 6 h of reperfusion (P = 0.008, 0.003, 0.0002). Levels of thromboxane were also significantly lower in the Cytosorb group throughout reperfusion (P = 0.005). Haemoadsorption had no effect on creatinine clearance (P = 0.109). Haemoadsorption can reduce the inflammatory response and improve renal blood flow during perfusion. Nonetheless, in this model haemoadsorption had no influence on renal function and this may relate to the broad-spectrum action of the Cytosorb adsorber that also removes potentially important anti

  17. Persufflation (or gaseous oxygen perfusion) as a method of organ preservation.

    Science.gov (United States)

    Suszynski, Thomas M; Rizzari, Michael D; Scott, William E; Tempelman, Linda A; Taylor, Michael J; Papas, Klearchos K

    2012-06-01

    Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Sidaros, Karam; Gesmar, Henrik

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom....

  19. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, I.K.; Sidaros, Karam; Gesmar, H

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom...

  20. Development and use of a new perfusion technique to study glucose metabolism of the aortic wall in normal and alloxan-diabetic rabbits

    International Nuclear Information System (INIS)

    Brown, B.J.M.

    1985-01-01

    This study investigated (1) possible alterations in glucose uptake and utilization in the perfused, normal, and diabetic vascular wall of rabbits and (2) the effects thereon of insulin and exogenous glucose concentration. Part I involved development and characterization of an in vitro perfusion technique that closely reproduced predetermined in vivo conditions of aortic blood flow, arterial blood pressure, heart rate and pulse pressure. The responsiveness of the preparation to vasoactive agents was assessed with concentrations of norepinephrine (NE) from 10 -9 to 10 -4 M. In Part II, the effects of NE-induced tension development on glucose metabolism were determined by perfusion with oxygenated physiological salt solution (PSS) containing 7 mM glucose and tracer amounts of uniformly labeled 14 C-glucose. Aortas from 8 week-diabetic rabbits were perfused under similar conditions employing a NE infusion in the presence or absence of insulin (150 uU/ml) and variable levels of glucose. Effects of NE-induced tension development include an apparent increase (39%) in glucose uptake and a twofold increase in 14 CO 2 and lactate production. Aortas from diabetic rabbits perfused with PSS containing 7 mM glucose demonstrated marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%) and labeled tissue phospholipids (70%). Insulin or elevation of exogenous glucose to 25 mM (diabetic levels) normalized glucose uptake, but had differential effects on the pattern of substrate utilization. The marked alterations of glucose metabolism in the diabetic state may contribute to the functional changes observed in diabetic blood vessels

  1. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2007-11-01

    Full Text Available Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG positron emission tomography (PET, we mapped in vivo the vascular supply and glucose metabolism in syngeneic experimental models of carcinoma and mesenchymal tumor. We found that in both tumor histotypes, regions with high vascular perfusion exhibited a significantly lower FDG uptake. This reciprocity was more conspicuous in carcinomas than in mesenchymal tumors, and regions with a high-vascular/low-FDG uptake pattern roughly overlapped with a stromal capsule and intratumoral large connectival septa. Accordingly, mesenchymal tumors exhibited a higher vascular perfusion and a lower FDG uptake than carcinomas. Thus, we provide in vivo evidence of vascular/metabolic reciprocity between epithelial and mesenchymal histotypes in tumors, suggesting a new intriguing aspect of epithelial-stromal interaction. Our results suggests that FDG-PET-based clinical analysis can underestimate the malignity or tumor extension of carcinomas exhibiting any trait of “mesenchymalization” such as desmoplasia or epithelial-mesenchymal transition.

  2. A porcine ex vivo lung perfusion model with maximal argon exposure to attenuate ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    An Martens

    2017-01-01

    Full Text Available Argon (Ar is a noble gas with known organoprotective effects in rodents and in vitro models. In a previous study we failed to find a postconditioning effect of Ar during ex vivo lung perfusion (EVLP on warm-ischemic injury in a porcine model. In this study, we further investigated a prolonged exposure to Ar to decrease cold ischemia-reperfusion injury after lung transplantation in a porcine model with EVLP assessment. Domestic pigs (n = 6/group were pre-conditioned for 6 hours with 21% O 2 and 79% N 2 (CONTR or 79% Ar (ARG. Subsequently, lungs were cold flushed and stored inflated on ice for 18 hours inflated with the same gas mixtures. Next, lungs were perfused for 4 hours on EVLP (acellular while ventilated with 12% O 2 and 88% N 2 (CONTR group or 88% Ar (ARG group. The perfusate was saturated with the same gas mixture but with the addition of CO 2 to an end-tidal CO 2 of 35-45 mmHg. The saturated perfusate was drained and lungs were perfused with whole blood for an additional 2 hours on EVLP. Evaluation at the end of EVLP did not show significant effects on physiologic parameters by prolonged exposure to Ar. Also wet-to-dry weight ratio did not improve in the ARG group. Although in other organ systems protective effects of Ar have been shown, we did not detect beneficial effects of a high concentration of Ar on cold pulmonary ischemia-reperfusion injury in a porcine lung model after prolonged exposure to Ar in this porcine model with EVLP assessment.

  3. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    Science.gov (United States)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  4. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation.

    Science.gov (United States)

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-06-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca' Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2 /FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953). © 2014 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  5. Multiple-indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions

    International Nuclear Information System (INIS)

    St-Pierre, M.V.; Schwab, A.J.; Goresky, C.A.; Lee, W.F.; Pang, K.S.

    1989-01-01

    The technique of normal and retrograde rat liver perfusion has been widely used to probe zonal differences in drug-metabolizing activities. The validity of this approach mandates the same tissue spaces being accessed by substrates during both normal and retrograde perfusions. Using the multiple-indicator dilution technique, we presently examine the extent to which retrograde perfusion alters the spaces accessible to noneliminated references. A bolus dose of 51Cr-labeled red blood cells, 125I-albumin, 14C-sucrose and 3H2O was injected into the portal (normal) or hepatic (retrograde) vein of rat livers perfused at 10 ml per min per liver. The outflow perfusate was serially collected over 220 sec to characterize the transit times and the distribution spaces of the labels. During retrograde perfusion, red blood cells, albumin and sucrose profiles peaked later and lower than during normal perfusion, whereas the water curves were similar. The transit times of red blood cells, albumin and sucrose were longer (p less than 0.005), whereas those for water did not change. Consequently, retrograde flow resulted in significantly larger sinusoidal blood volumes (45%), albumin Disse space (42%) and sucrose Disse space (25%) than during normal flow, whereas the distribution spaces for total and intracellular water remained unaltered. The distension of the vascular tree was confirmed by electron microscopy, by which occasional isolated foci of widened intercellular recesses and spaces of Disse were observed. Cellular ultrastructure was otherwise unchanged, and there was no difference found between normal and retrograde perfusion for bile flow rates, AST release, perfusion pressure, oxygen consumption and metabolic removal of ethanol, a substrate with flow-limited distribution, which equilibrates rapidly with cell water (hepatic extraction ratios were virtually identical: normal vs. retrograde, 0.50 vs. 0.48 at 6 to 7.4 mM input concentration)

  6. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model

    Directory of Open Access Journals (Sweden)

    Israel L. Medeiros

    2012-09-01

    Full Text Available OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98. The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035. The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816. The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87. The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0, and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71. CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

  7. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  8. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  9. Modelo experimental de perfusão pulmonar ex vivo em ratos: avaliação de desempenho de pulmões submetidos à administração de prostaciclina inalada versus parenteral An experimental rat model of ex vivo lung perfusion for the assessment of lungs after prostacyclin administration: inhaled versus parenteral routes

    Directory of Open Access Journals (Sweden)

    Paulo Francisco Guerreiro Cardoso

    2011-10-01

    Full Text Available OBJETIVO: Apresentar um modelo experimental de administração de prostaglandina I2 (PGI2 por via inalatória vs. parenteral e avaliar o desempenho funcional dos pulmões em um sistema de perfusão pulmonar ex vivo. MÉTODOS: Quarenta ratos Wistar foram anestesiados, ventilados, submetidos a laparotomia com ressecção do esterno e anticoagulados. O tronco da artéria pulmonar foi canulado. Todos os animais foram submetidos a ventilação mecânica. Os animais foram randomizados em quatro grupos (10 ratos/grupo: salina nebulizada (SN; salina parenteral (SP; PGI2 nebulizada (PGI2N; e PGI2 parenteral (PGI2P. A dose de PGI2 nos grupos PGI2N e PGI2P foi de 20 e 10 µg/kg, respectivamente. Os blocos cardiopulmonares foram submetidos in situ a perfusão anterógrada com solução de baixo potássio e dextrana a 4ºC via artéria pulmonar, extraídos em bloco e armazenados a 4ºC por 6 h. Os blocos foram ventilados e perfundidos em um sistema ex vivo por 50 min, sendo obtidas medidas de mecânica ventilatória, hemodinâmica e trocas gasosas. RESULTADOS: Houve redução da pressão arterial pulmonar média após a nebulização em todos os grupos (p OBJECTIVE:To present a model of prostaglandin I2 (PGI2 administration (inhaled vs. parenteral and to assess the functional performance of the lungs in an ex vivo lung perfusion system. METHODS: Forty Wistar rats were anesthetized and placed on mechanical ventilation followed by median sterno-laparotomy and anticoagulation. The main pulmonary artery was cannulated. All animals were maintained on mechanical ventilation and were randomized into four groups (10 rats/group: inhaled saline (IS; parenteral saline (PS; inhaled PGI2 (IPGI2; and parenteral PGI2 (PPGI2. The dose of PGI2 used in the IPGI2 and PPGI2 groups was 20 and 10 µg/kg, respectively. The heart-lung blocks were submitted to antegrade perfusion with a low potassium and dextran solution via the pulmonary artery, followed by en bloc extraction and

  10. Perfusion of tumor-bearing kidneys as a model for scintigraphic screening of monoclonal antibodies

    International Nuclear Information System (INIS)

    van Dijk, J.; Oosterwijk, E.; van Kroonenburgh, M.J.; Jonas, U.; Fleuren, G.J.; Pauwels, E.K.; Warnaar, S.O.

    1988-01-01

    Tumor-bearing human kidneys were used in an ex vivo perfusion model to screen monoclonal antibodies, recognizing renal cell carcinoma-associated antigens for diagnostic potential in vivo. Perfusion of tumor-bearing kidneys with /sup 99m/Tc-labeled G250 and RC38 antibody resulted in visualization of the tumor, whereas perfusion with two other monoclonal antibodies, RC2 and RC4, did not lead to tumor visualization. Uptake of radiolabel in normal kidney tissue was low for G250 and RC38 antibody. Tumor-to-kidney tissue ratios after perfusion with G250 and RC38 antibody were 2.7 and 2.2, respectively. After rinsing for 3 hr with unlabeled perfusion fluid the tumor-to-kidney tissue ratios increased to 8.6 for G250 antibody and to 2.7 for RC38 antibody. We conclude that perfusion of tumor-bearing human kidneys with radiolabeled monoclonal antibodies is a relatively simple way to evaluate renal cell carcinoma associated monoclonal antibodies as diagnostic agents in vivo

  11. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    Science.gov (United States)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  12. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  13. Hypoglycemic depression of hepatic phagocytosis in vivo and in the in situ perfused rat liver.

    Science.gov (United States)

    Kober, P M; Filkins, J P

    1981-01-01

    Depression of the phagocytic function of the reticuloendothelial system (RES) during endotoxic hypoglycemia has been implicated in the pathogenesis of endotoxin shock. The present study evaluated the in vivo effects of hypoglycemia on RES function and assessed the effects of an vivo bout of hypoglycemia on phagocytosis in the in situ perfused rat liver. Hypoglycemia was produced in male Holtzman rats using either 1 U of regular insulin (RI) (ILETIN, Lilly) or 0.75 U of long-acting insulin (LAI) (85% LENTE/15% ULTRALENTE, Lilly). RES function was quantitated by intravascular clearance of 8 mg/100 gm body weight colloidal carbon (CC). Two hr after RI and 2.5 hr after LAI, the intravascular halftimes of CC clearance were 19 +/- 2 min (N = 22) and 18 +/- 1 min (N = 19), respectively, as compared to control, 11.3 +/- 0.4 min (N = 53, P less than 0.001). The corresponding plasma glucose (PG) levels were 95 +/- 2 mg/dl in control, 14.4 +/- 0.9 for the RI group, and 17 +/- 1 for LAI. Two hr after RI, livers were perfused for 10 min in situ with 50 mg/liter CC in saline 5% rat serum. PG for control liver donors were 90 +/- 3 mg/dl, while those for hypoglycemic liver donors were 15 +/- 2. CC uptake was decreased from 22 micrograms/min/gm liver in the control (+ serum, n = 19) to 11 +/- 2 in hypoglycemia livers (N = 6); no effect of serum on hypoglycemic depression of the RES was seen. There were no differences in flow rates in the 2 groups. These results indicate that hypoglycemia directly impairs RES function and that the in vivo depression of intravascular clearance is not related to either the presence or absence of serum factors or total hepatic blood flow. Thus, the characteristic hypoglycemia of endotoxin shock may contribute to RES depression and the lethal shock syndrome.

  14. Development of an Extracorporeal Perfusion Device for Small Animal Free Flaps.

    Directory of Open Access Journals (Sweden)

    Andreas M Fichter

    Full Text Available Extracorporeal perfusion (ECP might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps.After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7.ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27% was even lower than after in vivo perfusion (49%, although not statistically significant (P = 0,083. After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%. Angiographic and histological findings confirmed these observations.Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.

  15. Evaluation of the maternal-fetal transfer of granisetron in an ex vivo placenta perfusion model.

    Science.gov (United States)

    Julius, Justin M; Tindall, Andrew; Moise, Kenneth J; Refuerzo, Jerrie S; Berens, Pamela D; Smith, Judith A

    2014-11-01

    The objective of this study was to estimate maternal-fetal transplacental passage of granisetron in an ex vivo placental perfusion model. Term human placentas (N=8) were collected immediately after delivery. A single cotyledon from each placenta was perfused granisetron concentration to mimic systemic maternal peak plasma concentrations following either IV (50ng/mL) or transdermal administration (5ng/mL). To assess drug transfer and accumulation, samples were collected from maternal and fetal compartments. In the 50ng/mL open model, the mean transport fraction was 0.21±0.08 with clearance index of 0.53±0.66. Fetal peak concentrations achieved was 5.6±6.6ng/mL with mean accumulation of 5.35±6.4ng/mL. No drug was detected in the fetal compartment with the 5ng/mL models. Transplacental passage of granisetron was inconsistent at the 50ng/mL concentration that achieved with IV dosing. However, there consistently was no detectable passage in all the placentas evaluated of the granisetron at 5ng/mL concentration that would be achieved after transdermal patch administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  17. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Microdialysis technique and interventional radiology

    International Nuclear Information System (INIS)

    An Xiao; Xiao Xiangsheng

    2007-01-01

    Basic research in interventional radiology, including transcatheter artery perfusion especially, is progressing slowly due to lack of proper method. Microdialysis technique, a kind of accurate sampling technique in vivo, may help to solve the problem. Just as its name implies, microdialysis means tiny dialysis with advantages of authenticity, exactness and less error. Furthermore it has been applied widely and should be received with great attention and popularity. (authors)

  19. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  20. First Danish experience with ex vivo lung perfusion of donor lungs before transplantation

    DEFF Research Database (Denmark)

    Henriksen, Ian Sune Iversen; Møller-Sørensen, Hasse; Møller, Christian Holdfold

    2014-01-01

    INTRODUCTION: The number of lung transplantations is limited by a general lack of donor organs. Ex vivo lung perfusion (EVLP) is a novel method to optimise and evaluate marginal donor lungs prior to transplantation. We describe our experiences with EVLP in Denmark during the first year after its...... introduction. MATERIAL AND METHODS: The study was conducted by prospective registration of donor offers and lung transplantations in Denmark from 1 May 2012 to 30 April 2013. Donor lungs without any contraindications were transplanted in the traditional manner. Taken for EVLP were donor lungs that were...... otherwise considered transplantable, but failed to meet the usual criteria due to possible contusions or because they were from donors with sepsis or unable to pass the oxygenation test. RESULTS: In the study period, seven of 33 Danish lung transplantations were made possible due to EVLP. One patient died...

  1. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  2. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  3. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured During ex-vivo Normothermic Kidney Perfusion

    OpenAIRE

    Hosgood, Sarah Anne; Nicholson, Michael Lennard

    2016-01-01

    BACKGROUND: The measurement of urinary biomarkers during ex-vivo normothermic kidney perfusion (EVKP) may aid in the assessment of a kidney prior to transplantation. This study measured levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and endothelin-1 (ET-1) during EVKP in a series of discarded human kidneys. METHODS: Fifty six kidneys from deceased donors were recruited into the study. Each kidney underwent 60 minutes of EVKP and was scored based ...

  4. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  5. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  6. Allgöwer-Donati Versus Vertical Mattress Suture Technique Impact on Perfusion in Ankle Fracture Surgery: A Randomized Clinical Trial Using Intraoperative Angiography.

    Science.gov (United States)

    Shannon, Steven F; Houdek, Matthew T; Wyles, Cody C; Yuan, Brandon J; Cross, William W; Cass, Joseph R; Sems, Stephen A

    2017-02-01

    The purpose of this study was to evaluate which primary wound closure technique for ankle fractures affords the most robust perfusion as measured by laser-assisted indocyanine green angiography: Allgöwer-Donati or vertical mattress. Prospective, randomized. Level 1 Academic Trauma Center. Thirty patients undergoing open reduction internal fixation for ankle fractures were prospectively randomized to Allgöwer-Donati (n = 15) or vertical mattress (n = 15) closure. Demographics were similar for both cohorts with respect to age, sex, body mass index, surgical timing, and OTA/AO fracture classification. Skin perfusion (mean incision perfusion and mean perfusion impairment) was quantified in fluorescence units with laser-assisted indocyanine green angiography along the lateral incision as well as anterior and posterior to the incision at 30 separate locations. Minimum follow-up was 3 months with a mean follow-up 4.7 months. Allgöwer-Donati enabled superior perfusion compared with the vertical mattress suture technique. Mean incision perfusion for Allgöwer-Donati was 51 (SD = 13) and for vertical mattress was 28 (SD = 10, P ankle fractures. Theoretically, this may enhance soft tissue healing and decrease the risk of wound complications. Surgeons may take this into consideration when deciding closure techniques for ankle fractures. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  7. Characterizing potential heart agents with an isolated perfused heart system

    International Nuclear Information System (INIS)

    Pendleton, D.B.; Sands, H.; Gallagher, B.M.; Camin, L.L.

    1984-01-01

    The authors have used an isolated perfused heart system for characterizing potential myocardial perfusion radiopharamaceuticals. Rabbit or guinea pig (GP) hearts are removed and perfused through the aorta with a blood-free buffer. Heart rate and ventricular pressure are monitored as indices of viability. Tc-99m-MAA is 96-100% retained in these hearts, and Tc-99m human serum albumin shows less than 5% extraction. Tl-201 is 30-40% extracted. It is known that in-vivo, Tc-99m(dmpe)/sub 2/Cl/sub 2//sup +/ is taken up by rabbit heart but not by GP or human heart. Analogous results are obtained with the isolated perfused heart model, where the complex is extracted well by the isolated rabbit heart (24%) but not by the GP heart (<5%). Values are unchanged if human, rabbit or GP blood is mixed and co-injected with the complex. Tc-99m)dmpe)/sub 3//sup +/ is also taken up by rabbit but not by GP hearts in-vivo. However, isolated perfused hearts of both species extract this complex well (45-52%). Heart uptake is diminished to <7% if the complex is pre-equilibrated with human blood. GP blood produces a moderate inhibition (in GP hearts only) and rabbit blood has no effect. This suggests that a human or GP blood factor may have a significant effect on heart uptake of this complex. Tc-99m(CN-t-butyl)/sub 6//sup +/ is taken up well by both rabbit and GP hearts in-vivo, and is extracted 100% by both isolated perfused hearts. Heart retention remains high (73-75%) in the presence of human blood

  8. First Danish experience with ex vivo lung perfusion of donor lungs before transplantation

    DEFF Research Database (Denmark)

    Henriksen, Ian Sune Iversen; Møller-Sørensen, Hasse; Møller, Christian Holdfold

    2014-01-01

    INTRODUCTION: The number of lung transplantations is limited by a general lack of donor organs. Ex vivo lung perfusion (EVLP) is a novel method to optimise and evaluate marginal donor lungs prior to transplantation. We describe our experiences with EVLP in Denmark during the first year after its...... otherwise considered transplantable, but failed to meet the usual criteria due to possible contusions or because they were from donors with sepsis or unable to pass the oxygenation test. RESULTS: In the study period, seven of 33 Danish lung transplantations were made possible due to EVLP. One patient died......% improved oxygenation. The median time to extubation, time in intensive care unit and the admission period were 1, 7 and 39 days, respectively. CONCLUSION: In the first year after the introduction of EVLP in Denmark, seven pairs of donor lungs that previously would have been rejected have been transplanted...

  9. A novel ex-vivo porcine renal xenotransplantation model using a pulsatile machine preservation system.

    Science.gov (United States)

    Guarrera, James V; Stone, Jonathan; Tulipan, Jacob; Jhang, Jeffrey; Arrington, Ben; Boykin, Jason; Markowitz, Glen; Ratner, Lloyd E

    2011-01-01

    Animal models to investigate pathophysiology and xenotransplantation require complex techniques and significant animal utilization. The aim of the study was to develop a reliable ex-vivo technique to test xenotransplant interventions. Miniature Swine being utilized for a nonsurvival study acted as donor animals. Kidneys were flushed and rapidly explanted and chilled to 4°C. Kidneys were assigned to be the control (CK) (n=3) and the mate were used as a Xenograft Kidneys (XK) (n=3). Kidneys were perfused on separate Waters RM 3 perfusion devices. Perfusion temperature was 35-37°C and pressure was 100-110/60-70 mmHg at 60 pulses per minute. CKs were reperfused with autologous blood collected at the time of organ procurement. XKs were reperfused using freshly donated whole human blood. Physical characteristics, urine output were recorded. Core needle biopsies were obtained and examined by a blinded pathologist for evidence of antibody mediated rejection. XK kidneys demonstrated homogenous reperfusion which rapidly became patchy at 5-7 minutes. XK kidneys had become complete black and thrombosed by 60-70 minutes. XK biopsies demonstrated peritubular capillaritis. CK kidneys demonstrated homogenous reperfusion and urine production. H&E stain of CKs only demonstrated nonspecific inflammation. Our ex-vivo porcine xenotransplant model shows early promise as a tool for studying Xeno- associated hyperacute rejection. This technique saves resources and animal utilization.

  10. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  11. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys.

    Science.gov (United States)

    Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2011-01-01

    The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and

  12. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  13. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results

    International Nuclear Information System (INIS)

    Kandel, Sonja; Kloeters, Christian; Meyer, Henning; Hein, Patrick; Rogalla, Patrik; Hilbig, Andreas

    2009-01-01

    The purpose of this study was to evaluate a whole-organ perfusion protocol of the pancreas in patients with primary pancreas carcinoma and to analyse perfusion differences between normal and diseased pancreatic tissue. Thirty patients with primary pancreatic malignancy were imaged on a 320-slice CT unit. Twenty-nine cancers were histologically proven. CT data acquisition was started manually after contrast-material injection (8 ml/s, 350 mg iodine/ml) and dynamic density measurements in the right ventricle. After image registration, perfusion was determined with the gradient-relationship technique and volume regions-of-interest were defined for perfusion measurements. Contrast time-density curves and perfusion maps were generated. Statistical analysis was performed using the Kolmogorov-Smirnov test for analysis of normal distribution and Kruskal-Wallis test (nonparametric ANOVA) with Bonferroni correction for multiple stacked comparisons. In all 30 patients the entire pancreas was imaged, and registration could be completed in all cases. Perfusion of pancreatic carcinomas was significantly lower than of normal pancreatic tissue (P < 0.001) and could be visualized on colored perfusion maps. The 320-slice CT allows complete dynamic visualization of the pancreas and enables calculation of whole-organ perfusion maps. Perfusion imaging carries the potential to improve detection of pancreatic cancers due to the perfusion differences. (orig.)

  14. Evaluation in dogs of a new double-dose technique for imaging changes in myocardial perfusion

    International Nuclear Information System (INIS)

    Rothendler, J.A.; Okada, R.D.; Strauss, H.W.; Chesler, D.A.; Pohost, G.M.

    1984-01-01

    Assessment of myocardial perfusion with thallium immediately before and after an intervention that alters blood flow has been difficult due to presence of residual activity from the first tracer dose at the time of the second imaging. In a canine model the authors investigated a technique using two separate thallium injections during an intervention and after its reversal. Images were obtained after each injection, and a difference image was obtained by subtracting the first from the second image to correct for tracer persisting from the first injection. Interventions on coronary blood flow included: transient occlusion, subcritical stenosis with dipyridamole infusion, and permanent occlusion. The first images showed defects corresponding to the occlusion or stenosis, while the ''difference'' images correlated with myocardial perfusion at the time of the second injection

  15. Development of a microfluidic perfusion 3D cell culture system

    Science.gov (United States)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  16. In vivo tomographic study of cerebral blood perfusion with SPECT in hemiparkinsonian monkeys

    International Nuclear Information System (INIS)

    Chen Shengdi; Xu Delong

    1994-01-01

    The authors present data on the utility of functional brain imaging with 99m Tc-ECD and SPECT in the study of MPTP induced hemiparkinsonism in monkeys. Injection of MPTP into the right common carotid artery of 10 rhesus monkeys produced hemiparkinsonism in the contralateral limbs which responded to antiparkinsonian medication. The unilateral neurotoxicity of the MPTP treated side was confirmed biochemically by marked reduction of DA contents in the nigrostriatum and histologically by selective neuronal loss in the substantia nigra. These monkeys with hemiparkinsonism were studied with SPECT using 99m Tc-ECD as perfusion marker. The results of brain scanning showed that the cerebral blood perfusion of MPTP treated side was significantly depleted 20∼90 days after MPTP intoxication, and returned to normal 8 months after perfusion. The experiment indicates that abnormal cerebral blood perfusion is involved in the course of parkinsonian pathophysiology

  17. A Technique to Perfuse Cadavers that Extends the Useful Life of Fresh Tissues: The Duke Experience

    Science.gov (United States)

    Messmer, Caroline; Kellogg, Ryan T.; Zhang, Yixin; Baiak, Andresa; Leiweke, Clinton; Marcus, Jeffrey R.; Levin, L. Scott; Zenn, Michael R.; Erdmann, Detlev

    2010-01-01

    The demand for laboratory-based teaching and training is increasing worldwide as medical training and education confront the pressures of shorter training time and rising costs. This article presents a cost-effective perfusion technique that extends the useful life of fresh tissue. Refrigerated cadavers are preserved in their natural state for up…

  18. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  19. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  20. Goal-directed-perfusion in neonatal aortic arch surgery.

    Science.gov (United States)

    Cesnjevar, Robert Anton; Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-07-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called "total body perfusion (TBP)" is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored.

  1. "Resuscitation" of marginal liver allografts for transplantation with machine perfusion technology.

    Science.gov (United States)

    Graham, Jay A; Guarrera, James V

    2014-08-01

    As the rate of medically suitable donors remains relatively static worldwide, clinicians have looked to novel methods to meet the ever-growing demand of the liver transplant waiting lists worldwide. Accordingly, the transplant community has explored many strategies to offset this deficit. Advances in technology that target the ex vivo "preservation" period may help increase the donor pool by augmenting the utilization and improving the outcomes of marginal livers. Novel ex vivo techniques such as hypothermic, normothermic, and subnormothermic machine perfusion may be useful to "resuscitate" marginal organs by reducing ischemia/reperfusion injury. Moreover, other preservation techniques such as oxygen persufflation are explored as they may also have a role in improving function of "marginal" liver allografts. Currently, marginal livers are frequently discarded or can relegate the patient to early allograft dysfunction and primary non-function. Bench to bedside advances are rapidly emerging and hold promise for expanding liver transplantation access and improving outcomes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    Science.gov (United States)

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Hepatic artery perfusion imaging

    International Nuclear Information System (INIS)

    Thrall, J.H.; Gyves, J.W.; Ziessman, H.A.; Ensminger, W.D.

    1985-01-01

    Organ and region-selective intra-arterial chemotherapy have been used for more than two decades to treat malignant neoplasms in the extremities, head and neck region, pelvis, liver, and other areas. Substantial evidence of improved response to regional chemotherapy now exists, but there are stringent requirements for successful application of the regional technique. First, the chemotherapeutic agent employed must have appropriate pharmacokinetic and pharmacodynamic properties. Second, the drug must be reliably delivered to the tumor-bearing area. This typically requires an arteriographic assessment of the vascular supply of the tumor, followed by placement of a therapeutic catheter and confirmation that the ''watershed'' perfusion distribution from the catheter truly encompasses the tumor. Optimal catheter placement also minimizes perfusion of nontarget organs. Radionuclide perfusion imaging with technetium 99m-labeled particles, either microspheres or macroaggregates of albumin, has become the method of choice for making these assessments. Catheter placement itself is considered by many to represent a type of ''therapeutic'' intervention. However, once the catheter is in the hepatic artery the radionuclide perfusion technique can be used to assess adjunctive pharmacologic maneuvers designed to further exploit the regional approach to chemotherapy. This chapter presents the technetium Tc 99m macroaggregated albumin method for assessing catheter placement and the pharmacokinetic rationale for regional chemotherapy, and discusses two promising avenues for further intervention

  4. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    Science.gov (United States)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other

  5. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in-vivo studies

    Science.gov (United States)

    Petibon, Yoann; Rakvongthai, Yothin; Fakhri, Georges El; Ouyang, Jinsong

    2017-01-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves -TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in-vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans - each containing 1/8th of the total number of events - were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard Ordered Subset Expectation Maximization (OSEM) reconstruction algorithm on one side, and the One-Step Late Maximum a Posteriori (OSL-MAP) algorithm on the other

  6. Comparison of in vivo and ex vivo imaging of the microvasculature with 2-photon fluorescence microscopy

    Science.gov (United States)

    Steinman, Joe; Koletar, Margaret; Stefanovic, Bojana; Sled, John G.

    2016-03-01

    This study evaluates 2-Photon fluorescence microscopy of in vivo and ex vivo cleared samples for visualizing cortical vasculature. Four mice brains were imaged with in vivo 2PFM. Mice were then perfused with a FITC gel and cleared in fructose. The same regions imaged in vivo were imaged ex vivo. Vessels were segmented automatically in both images using an in-house developed algorithm that accounts for the anisotropic and spatially varying PSF ex vivo. Through non-linear warping, the ex vivo image and tracing were aligned to the in vivo image. The corresponding vessels were identified through a local search algorithm. This enabled comparison of identical vessels in vivo/ex vivo. A similar process was conducted on the in vivo tracing to determine the percentage of vessels perfused. Of all the vessels identified over the four brains in vivo, 98% were present ex vivo. There was a trend towards reduced vessel diameter ex vivo by 12.7%, and the shrinkage varied between specimens (0% to 26%). Large diameter surface vessels, through a process termed 'shadowing', attenuated in vivo signal from deeper cortical vessels by 40% at 300 μm below the cortical surface, which does not occur ex vivo. In summary, though there is a mean diameter shrinkage ex vivo, ex vivo imaging has a reduced shadowing artifact. Additionally, since imaging depths are only limited by the working distance of the microscope objective, ex vivo imaging is more suitable for imaging large portions of the brain.

  7. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung.

    Science.gov (United States)

    De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R

    2007-12-01

    Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.

  8. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  9. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique

    NARCIS (Netherlands)

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO(2)) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO(2) in vivo exists. Here we

  10. Repeatability, Reproducibility and Standardisation of a Laser Doppler Imaging Technique for the Evaluation of Normal Mouse Hindlimb Perfusion

    Directory of Open Access Journals (Sweden)

    Arturo Brunetti

    2012-12-01

    Full Text Available Background. Preclinical perfusion studies are useful for the improvement of diagnosis and therapy in dermatologic, cardiovascular and rheumatic human diseases. The Laser Doppler Perfusion Imaging (LDPI technique has been used to evaluate superficial alterations of the skin microcirculation in surgically induced murine hindlimb ischemia. We assessed the reproducibility and the accuracy of LDPI acquisitions and identified several critical factors that could affect LDPI measurements in mice. Methods. Twenty mice were analysed. Statistical standardisation and a repeatability and reproducibility analysis were performed on mouse perfusion signals with respect to differences in body temperature, the presence or absence of hair, the type of anaesthesia used for LDPI measurements and the position of the mouse body. Results. We found excellent correlations among measurements made by the same operator (i.e., repeatability under the same experimental conditions and by two different operators (i.e., reproducibility. A Bland-Altman analysis showed the absence of bias in repeatability (p = 0.29 or reproducibility (p = 0.89. The limits of agreement for repeatability were –0.357 and –0.033, and for reproducibility, they were –0.270 and 0.238. Significant differences in perfusion values were observed in different experimental groups. Conclusions. Different experimental conditions must be considered as a starting point for the evaluation of new drugs and strategic therapies.

  11. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  12. A new recycling technique for human placental cotyledon perfusion: application to studies of the fetomaternal transfer of glucose, inulin, and antipyrine

    International Nuclear Information System (INIS)

    Brandes, J.M.; Tavoloni, N.; Potter, B.J.; Sarkozi, L.; Shepard, M.D.; Berk, P.D.

    1983-01-01

    A previously described technique has been modified to permit the continuously recirculating perfusion of the separate maternal and fetal circulations of an isolated cotyledon of human placenta. Viability of the perfused cotyledons was established by measurements of oxygen consumption (average, 0.18 ml/gm/hr), glucose utilization (average, 1.0 mg/gm/hr), and lactate production (less than 0.01 mumol/gm/hr), and integrity of the placental barrier by the failure of India ink, 125I-albumin, or 35S-sulfobromophthalein to cross from fetal to maternal circulation. Clearance of 3H-inulin from the fetal circuit, 0.0059 +/- 0.0005 (SE) ml/min/gm, corresponded to 2.5% of its clearance by the adult human kidney. Clearance of 14C-antipyrine was 0.013 +/- 0.003 ml/min/gm. After introduction into the fetal circuit, the observed appearance of both inulin and antipyrine in the maternal circuit closely paralleled curves predicted by a simple mathematical model. The use of a continuously recirculating perfusion system is technically feasible, and has advantages over the single-pass technique for studying transplacental transfer of metabolites with a low efficiency of extraction

  13. Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion.

    Science.gov (United States)

    Hauge, A; Nicolaysen, G

    1980-07-01

    The importance of the perfusion pattern for the oxygen transfer has been examined in isolated rabbit lungs perfused with plasma at constant volume inflow. The lungs were ventilated with constant tidal volume and constant end-expiratory pressure. Following a standardized rise in FIO2 the rate of rise in pulmonary venous PO2 (delta PO2/delta t) was measured during alternately pulsatile and non-pulsatile perfusion in normal lungs and in lungs made edematous by elevation of left atrial pressure. In normal lungs there was no difference in delta PO2/delta t when the two modes of perfusion were compared. In edematous lungs delta PO/delta t was statistically higher during pulsatile perfusion, indicating a beneficial effect of flow- and pressure pulsations, e.g. a better distribution of V/Q ratios throughout the lungs. In a separate series of expts. the advancement of a high O2 front through the airways was measured, and the two perfusion patterns compared. Since no difference was found, we suggest that the phenomenon of "cardiogenic gas mixing" in the airways in vivo is a result of a direct action of the heart on the lungs rather than arterial pulsations.

  14. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Kjaerstad, Mia Birkhoej; Mathiesen, Line

    2008-01-01

    group of compounds. Benzoic acid, caffeine, and glyphosate were chosen as model compounds because they are small molecules with large differences in physiochemical properties. Caffeine crossed the placenta by passive diffusion. The initial transfer rate of benzoic acid was more limited in the first part...... of the perfusion compared to caffeine, but reached the same steady-state level by the end of perfusion. The transfer of glyphosate was restricted throughout perfusion, with a lower permeation rate, and only around 15% glyphosate in maternal circulation crossed to the fetal circulation during the study period....

  15. Radiofrequency Ablation with a New Perfused-Cooled Electrode Using a Single Pump: An Experimental Study in Ex Vivo Bovine Liver

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Seo, Jung Wook

    2005-01-01

    The purpose of this study was to assess the efficacy of a new perfused-cooled electrode that uses a single pump for creating a large ablation zone in explanted bovine liver. This was done by comparing with the radiofrequency (RF) ablation zones that were created with a monopolar cooled electrode to the RF ablation zones that were created by the new perfused-cooled electrode. We developed a new perfused-cooled electrode that uses a single pump by modifying a 17-gauge cooled electrode (Radionics) with a 2.5-cm outer metallic sheath (15-gauge) in order to allow use of the internal cooling water (5.85 % hypertonic saline) for the infused saline. Thirty ablation zones were created in explanted bovine livers (12-min ablation cycle; pulsed technique; 2000 mA, maximum) with three different regimens: group A, RF ablation with the 17-gauge cooled electrode; group B, RF ablation with the 15-gauge cooled electrode; group C, RF ablation with the perfused-cooled electrode. T2-weighted magnetic resonance (MR) imaging was obtained immediately after RF ablation for calculating volumes of the ablation zone. Following MR imaging, the ablation zones were excised and measured for transverse diameters and vertical diameters. The transverse diameter, vertical diameter, and the calculated volumes of the ablation zones on MR imaging were compared among the groups. Ablation zones created with the perfused-cooled electrode (group C) were significantly larger than those created with the 17-gauge cooled electrode (group A) and the 15-gauge cooled electrode (group B) according to the transverse diameter and vertical diameter on the gross specimens (p 3 in group A, 28.9 ± 5.7 cm 3 in group B, and 80.0 ± 34 cm 3 in group C, respectively. A new perfused-cooled electrode using a single pump could efficiently increase the size of the ablation zone in liver compared with a monopolar cooled electrode, and this was due to its simultaneous use of internal cooling and saline infusion

  16. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  17. Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.

    Science.gov (United States)

    O'Connor, Paul M; Anderson, Warwick P; Kett, Michelle M; Evans, Roger G

    2007-01-01

    Recently, a combined probe has been developed capable of simultaneous measurement of local tissue pO2 (fluorescence oximetry) and microvascular perfusion (laser Doppler flux) within the same local region. The aim of the current study was to test the utility of these combined probes to measure pO2 and perfusion in the kidney. Studies were performed in anesthetized, artificially ventilated rabbits (n=7). Baseline measurements of renal medullary perfusion and pO2 obtained using combined probes (537 +/- 110 units & 28.7 +/- 6.l mmHg, respectively) were indistinguishable from those obtained using independent probes (435 +/- 102 units & 26.9 +/- 6.4 mmHg). Baseline measurements of renal cortical pO2 were also similar between combined (9.7 +/- 1.6 mmHg) and independent probes (9.5 +/- 2.3 mmHg). Baseline levels of cortical perfusion however, were significantly greater when measured using independent probes (1130 +/- 114 units) compared to combined probes (622 +/- 59 units; P pO2 resulting from graded stimulation of the renal nerves were not significantly different when measured using combined probes to those obtained using independent probes. We conclude that combined probes are equally suitable to independent probes for tissue pO2 and microvascular perfusion measurement in the kidney. Our results raise some concerns regarding the accuracy of these OxyLite fluorescence probes for pO2 measurement in the kidney, particularly within the renal cortex.

  18. Evaluation of a breath-motion-correction technique in reducing measurement error in hepatic CT perfusion imaging

    International Nuclear Information System (INIS)

    He Wei; Liu Jianyu; Li Xuan; Li Jianying; Liao Jingmin

    2009-01-01

    Objective: To evaluate the effect of a breath-motion-correction (BMC) technique in reducing measurement error of the time-density curve (TDC) in hepatic CT perfusion imaging. Methods: Twenty-five patients with suspected liver diseases underwent hepatic CT perfusion scans. The right branch of portal vein was selected as the anatomy of interest and performed BMC to realign image slices for the TDC according to the rule of minimizing the temporal changes of overall structures. Ten ROIs was selected on the right branch of portal vein to generate 10 TDCs each with and without BMC. The values of peak enhancement and the time-to-peak enhancement for each TDC were measured. The coefficients of variation (CV) of peak enhancement and the time-to-peak enhancement were calculated for each patient with and without BMC. Wilcoxon signed ranks test was used to evaluate the difference between the CV of the two parameters obtained with and without BMC. Independent-samples t test was used to evaluate the difference between the values of peak enhancement obtained with and without BMC. Results: The median (quartiles) of CV of peak enhancement with BMC [2.84% (2.10%, 4.57%)] was significantly lower than that without BMC [5.19% (3.90%, 7.27%)] (Z=-3.108,P<0.01). The median (quartiles) of CV of time-to-peak enhancement with BMC [2.64% (0.76%, 4.41%)] was significantly lower than that without BMC [5.23% (3.81%, 7.43%)] (Z=-3.924, P<0.01). In 8 cases, TDC demonstrated statistically significant higher peak enhancement with BMC (P<0.05). Conclusion: By applying the BMC technique we can effectively reduce measurement error for parameters of the TDC in hepatic CT perfusion imaging. (authors)

  19. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  20. Mesenchymal Stromal Cells as Anti-Inflammatory and Regenerative Mediators for Donor Kidneys During Normothermic Machine Perfusion.

    Science.gov (United States)

    Sierra-Parraga, Jesus Maria; Eijken, Marco; Hunter, James; Moers, Cyril; Leuvenink, Henri; Møller, Bjarne; Ploeg, Rutger J; Baan, Carla C; Jespersen, Bente; Hoogduijn, Martin J

    2017-08-15

    There is great demand for transplant kidneys for the treatment of end-stage kidney disease patients. To expand the donor pool, organs from older and comorbid brain death donors, so-called expanded criteria donors (ECD), as well as donation after circulatory death donors, are considered for transplantation. However, the quality of these organs may be inferior to standard donor organs. A major issue affecting graft function and survival is ischemia/reperfusion injury, which particularly affects kidneys from deceased donors. The development of hypothermic machine perfusion has been introduced in kidney transplantation as a preservation technique and has improved outcomes in ECD and marginal organs compared to static cold storage. Normothermic machine perfusion (NMP) is the most recent evolution of perfusion technology and allows assessment of the donor organ before transplantation. The possibility to control the content of the perfusion fluid offers opportunities for damage control and reparative therapies during machine perfusion. Mesenchymal stromal cells (MSC) have been demonstrated to possess potent regenerative properties via the release of paracrine effectors. The combination of NMP and MSC administration at the same time is a promising procedure in the field of transplantation. Therefore, the MePEP consortium has been created to study this novel modality of treatment in preparation for human trials. MePEP aims to assess the therapeutic effects of MSC administered ex vivo by NMP in the mechanisms of injury and repair in a porcine kidney autotransplantation model.

  1. 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods.

    Directory of Open Access Journals (Sweden)

    Joe Steinman

    Full Text Available Ex vivo 2-photon fluorescence microscopy (2PFM with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature.

  2. Myocardial perfusion scintigraphy - possibilities of diagnosing CAD

    International Nuclear Information System (INIS)

    Tsonevska, A.

    1998-01-01

    A reviewing the diagnostic methods used in the intricate process of evaluating CAD patients in a attempt to establish the role played by radionuclide methods in the diagnostic strategy is done. The perfusion cardiotropic radiopharmaceuticals used and the various methods of evaluating myocardial are discussed. Although 210 Tl-chloride is the most widely used myocardial perfusion agent, recently 99m Tc-MIBI is proposed as an alternative because of its advantages. Myocardial perfusion assessment is done by various techniques depending on the specific aim, each of them having its proper advantages and shortcomings. The inference is reached that regardless of the routine practical implementation of myocardial perfusion scintigraphy and comprehensive studies along this line in course, there are problems still not well enough clarified awaiting solution

  3. Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report.

    Science.gov (United States)

    Venkataraman, A; Blackwell, J W; Funkhouser, W K; Birchard, K R; Beamer, S E; Simmons, W T; Randell, S H; Egan, T M

    2017-09-01

    We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O 2 -ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli-the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  5. Myocardial perfusion imaging with dual energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); De Cecco, Carlo N. [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Rome (Italy); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Spandorfer, Adam; Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States)

    2016-10-15

    Highlights: • Stress dual-energy sCTMPI offers the possibility to directly detect the presence of myocardial perfusion defects. • Stress dual-energy sCTMPI allows differentiating between reversible and fixed myocardial perfusion defects. • The combination of coronary CT angiography and dual-energy sCTMPI can improve the ability of CT to detect hemodynamically relevant coronary artery disease. - Abstract: Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  6. Initial experience in perfusion MR imaging of intracranial major artery occlusion with echo-planar technique

    International Nuclear Information System (INIS)

    Tsuchiya, Kazuhiro; Mizutani, Yoshiyuki; Inaoka, Sayuki; Hachiya, Junichi

    1997-01-01

    The purpose of this study was to evaluate the usefulness of perfusion MR imaging using a single-shot echo-planar technique in occlusion of intracranial main arteries. Our patient group consisted of 16 patients with internal carotid artery occlusion (n=9), Moyamoya disease (n=4), and middle cerebral artery occlusion (n=3). We performed the echo-planar perfusion studies with a 1.5-T unit using a free-induction-decay-type echo-planar sequence. With a bolus injection of Gd-DTPA, 30 consecutive scans were obtained at 10 sections every 2 seconds. The data were analyzed in three ways: a time-intensity curves in the territory of the involved artery (n=16); semiquantitative flow map of each section representing signal changes due to passage of Gd-DTPA (n=15); and serial images at a selected section (n=7). The time intensity curves were abnormal in 13 patients. The peak of signal drop was delayed in all of them. Flow maps showed focal flow abnormalities in 11 patients, but they were apparently normal in 4 patients probably due to collateral flow. In serial images, delay in appearance and/or disappearance of Gd-DTPA was noted in 6 patients. In patients with occlusion of intracranial main arteries, MR single-shot echo-planar technique is of clinical use because it can provide information about hemodynamic changes in a short examination time, in multiple sections, and with good temporal resolution. (author)

  7. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique

    International Nuclear Information System (INIS)

    Sher, Praveen; Oliveira, Sara M; Borges, João; Mano, João F

    2015-01-01

    In this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than non-liquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing. (note)

  8. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  9. Introduction of a MR-compatible system for extracorporal perfusion of vital organs for MR-guided procedures. First-experiences

    International Nuclear Information System (INIS)

    Gaffke, Gunnar; Nagel, Stefan; Hegemann, Olaf; Speck, Ulrich; Grosse-Siestrup, Christian; Jungnickel, Kerstin; Stroszczynski, Christian

    2009-01-01

    Purpose:To represent a MRI-compatible perfusion-system for extracorporeal perfusion of vital organs which permits the realisation of realistic experiments in a MR scanner. Material and methods: We performed MR examinations of explanted porcine livers and MR-guided interventions in porcine livers. Explanted organs were hemo-perfused under physiological conditions during the experiments. MR-sequences for diagnostic and interventional examinations were used. Results:The evaluated system was MRI-compatible. The achieved image quality of the used sequences showed excellent anatomical resolution. Planned experiments can be carried out with relatively low expenditure. Diagnostic as well as interventional investigations can be carried out. The used organs showed a stable function within physiological parameters up to 4 hours. Conclusion:It is possible to perform ex vivo experiments under in vivo conditions with this system. With the used MR-compatible system MR-guided experimental interventions and thermal ablations can be carried out in explanted organs under in vivo conditions. (orig.)

  10. Intestinal perfusion in the study of intestinal absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Several techniques for studying absorption by means of intestinal perfusion have been developed. While the principle is simple, the practice is complicated by absorption of the solvent and by excretion of fluid into the lumen. To improve reliability a ''marker'' is incorporated into the system; it should behave as nearly as possible like the nutrient of interest, except that it should be unabsorbable. A great many markers, including several labelled with radionuclides, have been developed for use with numerous nutrients, and perfusion methods using double or triple tubes or occlusive balloons have been tested. The perfusion technique is too complicated for routine diagnostic use, but it offers at present the only possibility of studying the function of defined sections of the small intestine in the intact human. (author)

  11. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  12. Clinical application of sentinel lymph node mapping in colon cancer: in vivo vs. ex vivo techniques.

    Science.gov (United States)

    Oh, Seung Yeop; Kim, Do Yoon; Kim, Young Bae; Suh, Kwang Wook

    2014-09-01

    Clinical usefulness of sentinel lymph node (SLN) mapping in colorectal cancer remains controversial. The aim of this study is to evaluate the accuracy of the SLN mapping technique using serial sectioning, and to compare the results between ex vivo and in vivo techniques. From February 2011 to October 2012, 34 colon cancer patients underwent SLN mapping during surgical resection. Eleven patients were analyzed with the in vivo method, and 23 patients with the ex vivo method. Patient characteristics and results of SLN mapping were evaluated. The SLN mapping was performed in 34 patients. Mean age was 67.3 years (range, 44-81 years). Primary tumors were located in the following sites: 13 in the right colon (38.2%) and 21 in the left colon (61.8%). SLN mapping was performed successfully in 88.2% of the patients. There was no significant difference in the identification rate between the two methods (90.9% vs. 87.0%, P = 1.000). Both the mapping methods showed a low sensitivity and high rate of skip metastasis. This study showed that SLN evaluation using serial sectioning could not predict the nodal status with clinically acceptable accuracy despite the high detection rate.

  13. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable

  14. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  15. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  16. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  17. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, AL; Steenbergen, W; Morales, F; Graaff, R; de Jong, ED; Elstrodt, JM; de Mul, FFM; Rakhorst, G

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  18. Instrument-independent flux units for laser Doppler perfusion monitoring assessed in a multi-device study on the renal cortex

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; Morales, F.; Graaff, R.; de Jong, Ed; Elstrodt, J.M.; de Mul, F.F.M.; Rakhorst, G.

    2003-01-01

    To investigate the feasibility of instrument-independent perfusion units for laser Doppler flowmetry, a comparison was performed of two commercial fiberoptic laser Doppler perfusion monitors measuring the same flux situation for two different types of probes. In vivo measurements were performed on

  19. Modelo experimental de perfusão pulmonar ex vivo em ratos: avaliação histopatológica e de apoptose celular em pulmões preservados com solução de baixo potássio dextrana vs. solução histidina-triptofano-cetoglutarato An experimental rat model of ex vivo lung perfusion for the assessment of lungs regarding histopathological findings and apoptosis: low-potassium dextran vs. histidine-tryptophan-ketoglutarate

    Directory of Open Access Journals (Sweden)

    Edson Azevedo Simões

    2012-08-01

    Full Text Available OBJETIVO: Comparar os achados histopatológicos e de apoptose em pulmões de ratos preservados em soluções low-potassium dextran (LPD, baixo potássio dextrana, histidine-tryptophan-ketoglutarate (HTK, histidina-triptofano-cetoglutarato ou salina normal (SN em 6 h e 12 h de isquemia pela utilização de um modelo experimental de perfusão pulmonar ex vivo. MÉTODOS: Sessenta ratos Wistar foram anestesiados, randomizados e submetidos à perfusão anterógrada pela artéria pulmonar com uma das soluções preservadoras. Após a extração, os blocos cardiopulmonares foram preservados por 6 ou 12 h a 4ºC, sendo então reperfundidos com sangue homólogo em um sistema de perfusão ex vivo durante 60 min. Ao final da reperfusão, fragmentos do lobo médio foram extraídos e processados para histopatologia, sendo avaliados os seguintes parâmetros: congestão, edema alveolar, hemorragia alveolar, hemorragia, infiltrado inflamatório e infiltrado intersticial. O grau de apoptose foi avaliado pelo método TdT-mediated dUTP nick end labeling. RESULTADOS: A histopatologia demonstrou que todos os pulmões preservados com SN apresentaram edema alveolar após 12 h de isquemia. Não houve diferenças em relação ao grau de apoptose nos grupos estudados. CONCLUSÕES: No presente estudo, os achados histopatológicos e de apoptose foram semelhantes com o uso das soluções LPD e HTK, enquanto a presença de edema foi significativamente maior com o uso de SN.OBJECTIVE: To compare histopathological findings and the degree of apoptosis among rat lungs preserved with low-potassium dextran (LPD solution, histidine-tryptophan-ketoglutarate (HTK solution, or normal saline (NS at two ischemia periods (6 h and 12 h using an experimental rat model of ex vivo lung perfusion. METHODS: Sixty Wistar rats were anesthetized, randomized, and submitted to antegrade perfusion via pulmonary artery with one of the preservation solutions. Following en bloc extraction, the heart

  20. Effects of ethanol and hyperosmotic perfusates on albumin synthesis and release

    International Nuclear Information System (INIS)

    Rothschild, M.A.; Oratz, M.; Schreiber, S.S.; Mongelli, J.

    1986-01-01

    Sucrose and ethanol inhibit albumin synthesis; sucrose via an osmotic mechanism and ethanol during its metabolism. The present study was undertaken to compare the effects of both of these agents on albumin synthesis and secretion, and to see if ethanol inhibition could be related to an osmotic effect. Male, fed rabbits served as liver donors in all studies. There were a total of 35 studies: 13 control; 10 ethanol (39 to 52 mM); 4 cycloheximide (0.5 mM), and 8 sucrose (1%). Plasma volume was measured with 125 I-albumin (human) and extracellular volume measured with either /sup 99m/Tc diethylenetriamine pentaacetic acid or [ 14 C]sucrose. During perfusion, rabbit albumin content in the perfusate was measured immunologically every 15 to 30 min for 225 min. Interstitial albumin efflux was measured by the rate of appearance in the perfusate of 125 I-albumin given to 10 other rabbits 3 days prior to hepatic removal and perfusion. During the initial 75 min of perfusion, 74% of the in vivo equilibrated exchangeable 125 I-albumin appeared in the perfusate, and during this period the rabbit albumin that entered the perfusate was taken to represent efflux from the interstitial volume plus synthesis. Rabbit albumin appearing in the perfusate during the later period of 150 min was taken to represent mainly synthesis and was used to calculate the amount of albumin that would be synthesized in 75 min. The difference between these two values would be hepatic interstitial albumin appearing in the perfusate

  1. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    Science.gov (United States)

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  2. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  3. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  4. CT perfusion scanning of the brain in stroke and beyond

    International Nuclear Information System (INIS)

    Riedel, Christian

    2011-01-01

    CT perfusion scanning (CTP) allows for quantitative analysis of cerebral blood flow (CBF) and cerebral blood volume (CBV). Until recently, it was only possible to study brain perfusion parameters in a small stack of CT-slices close to the skull base. With the introduction of multidetector CT scanners with 64 and more detector rows it has become possible to assess perfusion of the entire brain. An optimal choice of scanning parameters like the new 'shuttle'-technique combined with a well adapted regimen for contrast administration is required to guarantee reliable perfusion measurements while still keeping the X-ray dose absorbed by the patient at a minimum. With these techniques, CTP is not only an important modality in the work-up of patients suffering from acute ischemic stroke but can also be valuable in other emergency situations such as in prolonged epileptic seizures or to monitor patients with subacute subarachnoid hemorrhage. (orig.)

  5. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  6. Isolated limb perfusion.

    Science.gov (United States)

    Gillespie, Rosalyn; Chantier, Nariane

    1994-12-08

    Growing concern over the rising incidence of malignant melanoma has brought about a need for information on this disorder and the treatment available. Isolated limb perfusion is a relatively new technique used in only a few hospitals. An increased knowledge base will lead to a better understanding of the nursing care required and to a more in-depth care plan.

  7. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  8. Estimation of bone perfusion as a function of intramedullary pressure in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.M.; Adler, G.G.; Venci, R.; Lanphier, E.H.; De Luca, P.M.

    1985-01-01

    It has been reported previously that following decompression (i.e. diving ascents) the intramedullary pressure (IMP) in bone can rise dramatically and possibly by the mechanism which can induce dysbaric osteonecrosis or the ''silent bends''. If the blood supply for the bone transverses the marrow compartment, than an increase in IMP could cause a temporary decrease in perfusion or hemostasis and hence ischemia leading to bone necrosis. To test this hypothesis, the authors measured the perfusion of bone in sheep as a function of IMP. The bone perfusion was estimated by measuring the perfusion-limited clearance of Ar-41 (Eγ=1293 keV, T/sub 1/2/=1.83 h) from the bone mineral matrix of sheep's tibia. The argon gas was formed in vivo by the fast neutron activation of Ca-44 to Ar-41 following the Ca-44(n,α) reaction. Clearance of Ar-41 was measured by time gated gamma-ray spectroscopy. These results indicate that an elevation of intramedullary pressure can decrease perfusion in bone and may cause bone necrosis

  9. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8...

  10. Intra-peritoneal administration of interleukin-1 beta induces impaired insulin release from the perfused rat pancreas

    DEFF Research Database (Denmark)

    Wogensen, L; Helqvist, S; Pociot, F

    1990-01-01

    Previous studies have demonstrated a stimulatory effect of interleukin-1 beta (IL-1 beta) on insulin and glucagon release from the perfused rat pancreas, accompanied by selective lysis of 20% of beta-cells as assessed by electronmicroscopy. However, we have not observed an inhibitory action of IL-1...... beta on insulin release from the perfused pancreas as shown for isolated islets. To test whether periodical exposure of the endocrine pancreas to circulating IL-1 beta in vivo affects insulin release from the intact perfused pancreas, rats were treated with daily intraperitoneal injections of 4...

  11. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  12. Microdialysis of the interstitial water space in human skin in vivo

    DEFF Research Database (Denmark)

    Petersen, L J; Kristensen, J K; Bülow, J

    1992-01-01

    The purpose of this study was to evaluate the usefulness of a microdialysis technique for measurement of substances in the interstitial water space in intact human skin. Glucose was selected to validate the method. The cutaneous glucose concentration was measured by microdialysis and compared...... to that in venous blood. Single dialysis fibers (length 20 mm, 2,000 Da molecular weight cutoff) were glued to nylon tubings and inserted in forearm skin by means of a fine needle. Dialysis fibers were inserted in duplicate. Seven subjects were investigated after an overnight fast. Intradermal position...... of the dialysis probes was established by C-mode ultrasound scanning. The implantation trauma lasted 90-135 min as measured by laser Doppler flowmetry. Each dialysis fiber was calibrated in vivo by perfusing it with four to five different glucose concentrations. The perfusion rate was 3 microliters...

  13. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning.

    Science.gov (United States)

    Kunst, P W; Vonk Noordegraaf, A; Hoekstra, O S; Postmus, P E; de Vries, P M

    1998-11-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of radionuclide imaging. Following routine ventilation (81mKr) and perfusion scanning (99mTc-MAA), EIT measurements were performed at the third and the sixth intercostal level in 14 patients with lung cancer. A correlation (r = 0.98, p RC) was calculated for estimating the left-right division with EIT. The RC for the ventilation measurements was 94% and 96% for the perfusion measurements. The correlation analysis for reproducibility of the EIT measurements was 0.95 (p < 0.001) for the ventilation and 0.93 (p < 0.001) for the perfusion measurements. In conclusion, EIT can be regarded as a promising technique to estimate the left-right division of pulmonary perfusion and ventilation.

  14. Comparison between CT perfusion and Tc-99m ECD SPECT in the assessment of cerebrovascular reserve: a case study

    International Nuclear Information System (INIS)

    Crouch, J.; Wood, C.; Campbell, A.; McCarthy, M.; Dunne, M.; Bynevelt, M.; Lenzo, N.

    2003-01-01

    Full text: Brain perfusion is sensitively assessed by cerebral SPECT imaging utilising perfusion agents such as Tc-99m HMPAO and Tc-99m ethyl cysteinate dimer (ECD). Positron emission tomography can accurately assess and quantify brain perfusion and MRI can also be used for perfusion assessment. Both MRI and PET however are currently limited by cost and availability. A new technique utilising CT with contrast has been developed to assess and quantitate cerebral perfusion. The technique utilises arterial input information and deconvolution analysis to develop quantifiable measures of perfusion and contrast transit. The technique has been validated for acute stroke assessment and is being assessed for other possible applications. We present a case study comparison of this technique with cerebral SPECT perfusion using Tc-99m ECD in the assessment of cerebrovasular reserve. In each case, the CT and SPECT studies were performed pre- and post-acetazolamide and the SPECT study was statistically compared with a normal database utilising an automated brain perfusion statistical analysis package (NeurostatT). We discuss the correlation found between techniques, their strengths, weaknesses and possible future roles. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  16. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  17. Impairment of myocardial perfusion in children with sickle cell disease; Alteration de la perfusion myocardique chez l'enfant drepanocytaire

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, C. [Hopital Necker-Enfants-Malades, Service de Medecine Nucleaire, 75 - Paris (France); Acar, P. [Centre Hospitalier Universitaire, Hopital des Enfants, Service de Cardiologie Pediatrique, 31 - Toulouse (France); Montalembert, M. de [Hopital Necker-Enfants-Malades, Service de Pediatrie Generale, 75 - Paris (France)

    2003-10-01

    While brain, bone and spleen strokes are well documented in children with sickle cell disease (SCD), impairment of myocardial perfusion is an unknown complication. Non invasive techniques such as exercise testing and echocardiography have a low sensitivity to detect myocardial ischemia in patients with SCD. We have prospectively assessed myocardial perfusion with Tl-201 SPECT in 23 patients with SCD (10 female, 13 male, mean age 12 {+-} 5 years). Myocardial SPECT was performed after stress and 3 hours later after reinjection on a single head gamma camera equipped with a LEAP collimator (64 x 64 matrix size format, 30 projections over 180 deg C, 30 seconds per step). Left ventricular ejection fraction (LVEF) was assessed by equilibrium radionuclide angiography at rest on the same day. Myocardial perfusion was impaired in 14/23 patients: 9 reversible defects and 5 fixed defects. The left ventricular cavity was dilated in 14/23 patients. The mean LVEF was 63 {+-} 9%. There was no relationship between myocardial perfusion and left ventricular dilation or function. The frequent impairment of myocardial perfusion in children with SCD could lead to suggest a treatment with hydroxyurea, an improvement of perfusion can be noted with hydroxyurea. (author)

  18. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  19. Improved oral bioavailability of valsartan using proliposomes: design, characterization and in vivo pharmacokinetics.

    Science.gov (United States)

    Nekkanti, Vijaykumar; Venkatesan, Natarajan; Wang, Zhijun; Betageri, Guru V

    2015-01-01

    The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6 ± 2.9% with a vesicle size of 364.1 ± 14.9 nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12 h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.

  20. Compact Laser Doppler Flowmeter (LDF Fundus Camera for the Assessment of Retinal Blood Perfusion in Small Animals.

    Directory of Open Access Journals (Sweden)

    Marielle Mentek

    Full Text Available Noninvasive techniques for ocular blood perfusion assessment are of crucial importance for exploring microvascular alterations related to systemic and ocular diseases. However, few techniques adapted to rodents are available and most are invasive or not specifically focused on the optic nerve head (ONH, choroid or retinal circulation. Here we present the results obtained with a new rodent-adapted compact fundus camera based on laser Doppler flowmetry (LDF.A confocal miniature flowmeter was fixed to a specially designed 3D rotating mechanical arm and adjusted on a rodent stereotaxic table in order to accurately point the laser beam at the retinal region of interest. The linearity of the LDF measurements was assessed using a rotating Teflon wheel and a flow of microspheres in a glass capillary. In vivo reproducibility was assessed in Wistar rats with repeated measurements (inter-session and inter-day of retinal arteries and ONH blood velocity in six and ten rats, respectively. These parameters were also recorded during an acute intraocular pressure increase to 150 mmHg and after heart arrest (n = 5 rats.The perfusion measurements showed perfect linearity between LDF velocity and Teflon wheel or microsphere speed. Intraclass correlation coefficients for retinal arteries and ONH velocity (0.82 and 0.86, respectively indicated strong inter-session repeatability and stability. Inter-day reproducibility was good (0.79 and 0.7, respectively. Upon ocular blood flow cessation, the retinal artery velocity signal substantially decreased, whereas the ONH signal did not significantly vary, suggesting that it could mostly be attributed to tissue light scattering.We have demonstrated that, while not adapted for ONH blood perfusion assessment, this device allows pertinent, stable and repeatable measurements of retinal blood perfusion in rats.

  1. Avaliação e recondicionamento pulmonar ex vivo Ex vivo lung evaluation and reconditioning

    Directory of Open Access Journals (Sweden)

    Paulo Manuel Pêgo-Fernandes

    2010-12-01

    Full Text Available OBJETIVO: Apenas 15% dos pulmões doados são aproveitados para transplante. Um novo método de Perfusão Pulmonar Ex Vivo (PPEV foi desenvolvido e pode ser usado para avaliação e recondicionamento de pulmões "marginais" e rejeitados para o transplante. Esse trabalho relata nossa experiência com a avaliação funcional da PPEV. MÉTODOS: Foram estudados pulmões de 12 doadores considerados inapropriados para transplante pulmonar. Após a captação, os pulmões são perfundidos ex vivo com Steen Solution, uma solução de composição eletrolítica extracelular com alta pressão coloidosmótica. Um oxigenador de membrana ligado ao circuito recebe uma mistura gasosa (nitrogênio e dióxido de carbono e "desoxigena" o perfusato, mantendo uma concentração de gases semelhante a do sangue venoso. Os pulmões são gradualmente aquecidos, perfundidos e ventilados. A avaliação dos órgãos é feita por gasometrias e medidas como a resistência vascular pulmonar (RVP e complacência pulmonar (CP. RESULTADOS: A PaO2 (FiO2 100% passou de um valor médio de 193,3 mmHg no doador para 495,3 mmHg durante a PPEV. Após uma hora de PPEV, a RVP média era de 737,3 dinas/seg/ cm5 e a CP era de 42,2 ml/cmH2O. CONCLUSÕES: O modelo de avaliação pulmonar ex vivo pode melhorar a capacidade de oxigenação de pulmões "marginais" inicialmente rejeitados para transplante. Isso denota um grande potencial do método para aumentar a disponibilidade de pulmões para transplante e, possivelmente, reduzir o tempo de espera nas filas.OBJECTIVE: Only about 15% of the potential candidates for lung donation are considered suitable for transplantation. A new method for ex vivo lung perfusion (EVLP has been developed and can be used for evaluation and reconditioning of "marginal" and unacceptable lungs. This is a report of functional evaluation experience with ex vivo perfusion of twelve donor lungs deemed unacceptable in São Paulo, Brazil. METHODS: After harvesting, the

  2. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  3. Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle.

    Science.gov (United States)

    Jank, Bernhard J; Goverman, Jeremy; Guyette, Jacques P; Charest, Jon M; Randolph, Mark; Gaudette, Glenn R; Gershlak, Joshua R; Purschke, Martin; Javorsky, Emilia; Nazarian, Rosalynn M; Leonard, David A; Cetrulo, Curtis L; Austen, William G; Ott, Harald C

    2017-07-01

    Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be

  4. A Simplified Whole-Organ CT Perfusion Technique with Biphasic Acquisition: Preliminary Investigation of Accuracy and Protocol Feasibility in Kidneys.

    Science.gov (United States)

    Yuan, XiaoDong; Zhang, Jing; Quan, ChangBin; Tian, Yuan; Li, Hong; Ao, GuoKun

    2016-04-01

    To determine the feasibility and accuracy of a protocol for calculating whole-organ renal perfusion (renal blood flow [RBF]) and regional perfusion on the basis of biphasic computed tomography (CT), with concurrent dynamic contrast material-enhanced (DCE) CT perfusion serving as the reference standard. This prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Biphasic CT of the kidneys, including precontrast and arterial phase imaging, was integrated with a first-pass dynamic volume CT protocol and performed and analyzed in 23 patients suspected of having renal artery stenosis. The perfusion value derived from biphasic CT was calculated as CT number enhancement divided by the area under the arterial input function and compared with the DCE CT perfusion data by using the paired t test, correlation analysis, and Bland-Altman plots. Correlation analysis was made between the RBF and the extent of renal artery stenosis. All postprocessing was independently performed by two observers and then averaged as the final result. Mean ± standard deviation biphasic and DCE CT perfusion data for RBF were 425.62 mL/min ± 124.74 and 419.81 mL/min ± 121.13, respectively (P = .53), and for regional perfusion they were 271.15 mL/min per 100 mL ± 82.21 and 266.33 mL/min per 100 mL ± 74.40, respectively (P = .31). Good correlation and agreement were shown between biphasic and DCE CT perfusion for RBF (r = 0.93; ±10% variation from mean perfusion data [P < .001]) and for regional perfusion (r = 0.90; ±13% variation from mean perfusion data [P < .001]). The extent of renal artery stenosis was negatively correlated with RBF with biphasic CT perfusion (r = -0.81, P = .012). Biphasic CT perfusion is clinically feasible and provides perfusion data comparable to DCE CT perfusion data at both global and regional levels in the kidney. Online supplemental material is available for this article.

  5. Myocardial perfusion MRI with sliding-window conjugate-gradient HYPR.

    Science.gov (United States)

    Ge, Lan; Kino, Aya; Griswold, Mark; Mistretta, Charles; Carr, James C; Li, Debiao

    2009-10-01

    First-pass perfusion MRI is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. In this study we investigated the feasibility of using a method that combines sliding window and CG-HYPR methods (SW-CG-HYPR) to reduce the acquisition window for each slice while maintaining the temporal resolution of one frame per heartbeat in myocardial perfusion MRI. This method allows an increased number of slices, reduced motion artifacts, and preserves the relatively high SNR and spatial resolution of the "composite images." Results from eight volunteers demonstrate the feasibility of SW-CG-HYPR for accelerated myocardial perfusion imaging with accurate signal intensity changes of left ventricle blood pool and myocardium. Using this method the acquisition time per cardiac cycle was reduced by a factor of 4 and the number of slices was increased from 3 to 8 as compared to the conventional technique. The SNR of the myocardium at peak enhancement with SW-CG-HYPR (13.83 +/- 2.60) was significantly higher (P < 0.05) than the conventional turbo-FLASH protocol (8.40 +/- 1.62). Also, the spatial resolution of the myocardial perfection images was significantly improved. SW-CG-HYPR is a promising technique for myocardial perfusion MRI. (c) 2009 Wiley-Liss, Inc.

  6. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S [University of California, Irvine, CA (United States)

    2015-06-15

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r{sup 2} = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques.

  7. TU-G-204-01: BEST IN PHYSICS (IMAGING): Dynamic CT Myocardial Perfusion Measurement and Its Comparison to Fractional Flow Reserve

    International Nuclear Information System (INIS)

    Ziemer, B; Hubbard, L; Groves, E; Sadeghi, B; Javan, H; Lipinski, J; Molloi, S

    2015-01-01

    Purpose: To evaluate a first pass analysis (FPA) technique for CT perfusion measurement in a swine animal and its validation using fractional flow reserve (FFR) as a reference standard. Methods: Swine were placed under anesthesia and relevant physiologic parameters were continuously recorded. Intra-coronary adenosine was administered to induce maximum hyperemia. A pressure wire was advanced distal to the first diagonal branch of the left anterior descending (LAD) artery for FFR measurements and a balloon dilation catheter was inserted over the pressure wire into the proximal LAD to create varying levels of stenosis. Images were acquired with a 320-row wide volume CT scanner. Three main coronary perfusion beds were delineated in the myocardium using arteries extracted from CT angiography images using a minimum energy hypothesis. The integrated density in the perfusion bed was used to calculate perfusion using the FPA technique. The perfusion in the LAD bed over a range of stenosis severity was measured. The measured fractional perfusion was compared to FFR and linear regression was performed. Results: The measured fractional perfusion using the FPA technique (P-FPA) and FFR were related as P-FPA = 1.06FFR – 0.06 (r 2 = 0.86). The perfusion measurements were calculated with only three to five total CT volume scans, which drastically reduces the radiation dose as compared with the existing techniques requiring 15–20 volume scans. Conclusion: The measured perfusion using the first pass analysis technique showed good correlation with FFR measurements as a reference standard. The technique for perfusion measurement can potentially make a substantial reduction in radiation dose as compared with the existing techniques

  8. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  9. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    Science.gov (United States)

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Ex Vivo Experiment of Saline-Enhanced Hepatic Bipolar Radiofrequency Ablation with a Perfused Needle Electrode: Comparison with Conventional Monopolar and Simultaneous Monopolar Modes

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Kim, Se Hyung; Han, Joon Koo; Sohn, Kyu Li; Choi, Byung Ihn

    2005-01-01

    The purpose of this study was to validate the saline-enhanced bipolar radiofrequency ablation (RFA) technique using a perfused electrode to increase RF-created coagulation necrosis, to compare that technique with monopolar RFAs and to find appropriate concentrations and volumes of perfused NaCl solution for the bipolar RFA. A total of 90 ablations were performed in explanted bovine livers. In the initial experiments to determine appropriate conditions for bipolar RFA, we created five thermal ablation zones in each condition, with instillations of varied concentrations (0.9-36%) or injection rates (30 mL/hr-120 mL/hr) of NaCl solution. After placement of one or two 16-gauge open-perfused electrodes into bovine livers, the NaCl solution was instilled into the tissue through the electrode. In the second part of the study, 10 ablation zones were created using one or two perfused electrodes for each of five groups under different conditions: a conventional monopolar mode with 0.9% NaCl solution (group A) or with 6% NaCl solution (group B), a simultaneous monopolar mode with 6% NaCl solution (group C) and a bipolar mode with 6% NaCl solution (groups D and E). RF was applied to each electrode for 20 min in groups A, B, C, and E, or for 10 min in group D. During RFA, we measured the tissue temperature 15 mm from the electrode. The temperature changes during the RFA and the dimensions of the ablation zones were compared among the groups. Bipolar RFA created larger short-axis diameters of coagulation necrosis with 6% NaCl solution (35.8 ± 15 mm) than with 0.9% NaCl solution (17 ± 9.7 mm) (P 0.05): 31.0 ± 5.4 mm (group A); 28.8 ± 3.8 mm (group B); 25.5 ± 6.4 mm (group C); 32.6 ± 4.2 mm (group D); 49.4 ± 5.0 mm (group E). Bipolar RFA with instillation of 6% NaCl solution through an open perfusion system demonstrates better efficacy in creating a larger ablation zone than does conventional or simultaneous monopolar modes at the various times examined. Therefore

  11. Normothermic extracorporeal perfusion of isolated porcine liver after warm ischaemia: a preliminary report.

    Science.gov (United States)

    Bellomo, Rinaldo; Suzuki, Satoshi; Marino, Bruno; Starkey, Graeme K; Chambers, Brenton; Fink, Michael A; Wang, Bao Zhong; Houston, Shane; Eastwood, Glenn; Calzavacca, Paolo; Glassford, Neil; Skene, Alison; Jones, Daryl A; Jones, Robert

    2012-09-01

    Liver transplantation is a major life-saving procedure, and donation after cardiac death (DCD) has increased the pool of potential liver donors. However, DCD livers are at increased risk of primary graft dysfunction and biliary tract ischaemia. Normothermic extracorporeal liver perfusion (NELP) may increase the ability to protect, evaluate and, in future, transplant DCD livers. We conducted proof-of-concept experiments using a DCD model in the pig to assess the short-term (4 hours) feasibility and functional efficacy of NELP. Using extracorporeal membrane oxygenation, parenteral nutrition, separate hepatic artery and portal vein perfusion, and physiological perfusion pressures, we achieved NELP and evidence of function (bile production, paracetamol removal, maintenance of normal ammonia and lactate levels) for 4 hours in pig livers subjected to 15 and 30 minutes of cardiac arrest before explantation. Our experiments justify further investigations of the feasibility and efficacy of human DCD liver preservation by ex-vivo perfusion.

  12. The role of preservation solution on acid-base regulation during machine perfusion of kidneys.

    Science.gov (United States)

    Baicu, Simona C; Taylor, Michael J; Brockbank, Kelvin G M

    2006-01-01

    To meet the current clinical organ demand, efficient preservation methods and solutions are needed to increase the number of viable kidneys for transplantation. In the present study, the influence of perfusion solution buffering strength on renal pH dynamics and regulation mechanisms during kidney ex vivo preservation was determined. Porcine kidneys were hypothermically machine perfused for 72 h with either Unisol-UHK or Belzer-Machine Perfusion solution, Belzer-MP solution. Renal perfusate samples were periodically collected and biochemically analyzed. The UHK solution, a Hepes-based solution (35 mM), provided a more efficient control of renal pH that, in turn, resulted in minor changes in the perfusate pH relative to baseline, in response to tissue CO2 and HCO3- production. In the perfusate of Belzer-MP kidney group a wider range of pH values were recorded and a pronounced pH reduction was seen in response to significant rises in pCO2 and HCO3- concentrations. The Belzer-MP solution, containing phosphate (25 mM) as its main buffer, and only 10 mM Hepes, had a greater buffering requirement to attenuate larger pH changes.

  13. Characterization of mouse neuro-urological dynamics in a novel decerebrate arterially perfused mouse (DAPM) preparation

    OpenAIRE

    Ito, Hiroki; Drake, Marcus J.; Fry, Christopher H.; Kanai, Anthony J.; Pickering, Anthony E.

    2018-01-01

    Aim To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. Methods Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer's solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a “pithed” DAPM which has no brains...

  14. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  15. Angiotensin extraction by trout tissues in vivo and metabolism by the perfused gill

    International Nuclear Information System (INIS)

    Olson, K.R.; Kullman, D.; Narkates, A.J.; Oparil, S.

    1986-01-01

    Plasma clearance and tissue accumulation of 125I-angiotensin I, [Asp1, Ile5]ANG I, and [14C]sucrose, an inert volume reference, were measured after a bolus injection into the dorsal aorta of rainbow trout, Salmo gairdneri. Retention and metabolism of ANG I to angiotensin II (ANG II) and their constituent 1-4 peptide by the gill were examined using an isolated perfused arch preparation in which outflow from the respiratory and central filamental (venous) pathways was separated. Clearance of ANG I from plasma is multiexponential, reflecting dilution and tissue extraction. Liver, bile, gonads, corpuscles of Stannius, and white skeletal muscle accumulate more 125I than 14C; gill tissue accumulates less 125I than 14C. ANG I and II are retained by the perfused gill longer than the inert vascular marker sucrose, even though the distribution volumes of the former are less. The gill respiratory pathway converts ANG I to ANG II whereas the venous pathway metabolizes either ANG I or II to the 1-4 peptide and other metabolites. The gill respiratory pathway is in series with the systemic vasculature, has a large blood-cell contact area, and, like the mammalian lung, is ideally suited to activate ANG I. The gill venous pathway is in parallel with the systemic vasculature and removes ANG II from the circulation. During stress, elevated plasma catecholamines may reduce venous perfusion and thereby help maintain elevated circulating ANG II levels through reduced venous metabolism

  16. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  17. Dynamic MR cardiac perfusion studies in patients with acquired heart diseases

    International Nuclear Information System (INIS)

    Finelli, D.A.; Adler, L.P.; Paschal, C.B.; Haacke, E.M.

    1990-01-01

    The combination of ultrafast scanning techniques with contrast administration has opened new venues for MR imaging relating to the physiology of organ perfusion. Regional cardiac perfusion determinations lend important additional information to the morphologic and functional data provided by conventional cardiac MR imaging. The authors of this paper studied 10 patients with acquired heart diseases, including ischemic heart disease, cardiomyopathy, ventricular hypertrophy, and cardiac tumor, using conventional spin-echo imaging, cine gradient-echo imaging, and dynamic Gd-DTPA--enhanced perfusion imaging with an ultrafast, inversion-recovery, Turbo-fast low-angle shot sequence. This technique enables analysis of the first pass and early biodistribution phases following contrast administration, information that has been correlated with cardiac catheterization, single photo emission CT (SPECT), and administration emission tomographic (PET) data

  18. A Newly Developed Perfused Umbrella Electrode for Radiofrequency Ablation: An Ex Vivo Evaluation Study in Bovine Liver

    International Nuclear Information System (INIS)

    Bruners, Philipp; Pfeffer, Jochen; Kazim, Rana M.; Guenther, Rolf W.; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2007-01-01

    The purpose of this study was to evaluate the effectiveness of a newly developed perfused monopolar radiofrequency (RF) probe with an umbrella-shaped array. A perfused umbrella-shaped monopolar RF probe based on a LeVeen electrode (Boston Scientific Corp., Natick, MA, USA) with a 3-cm array diameter was developed. Five different configurations of this electrode were tested: (a) perfusion channel/endhole, (b) perfusion channel/endhole + sideholes, (c) 1 cm insulation removed at the tip, (d) 1 cm insulation removed at the tip + perfusion channel/endhole, and (e) 1 cm insulation removed at the tip + perfusion channel/endhole + sideholes. An unmodified LeVeen electrode served as a reference standard. RF ablations were performed in freshly excised bovine liver using a commercial monopolar RF system with a 200-W generator (RF 3000; Boston Scientific Corp.). Each electrode was tested 10 times applying the vendor's recommended ablation protocol combined with the preinjection of 2 ml 0.9% saline. Volumes and shapes of the lesions were compared. Lesions generated with the original LeVeen electrode showed a mean volume of 12.74 ± 0.52 cm 3 . Removing parts of the insulation led to larger coagulation volumes (22.65 ± 2.12 cm 3 ). Depending on the configuration, saline preinjection resulted in a further increase in coagulation volume (25.22 ± 3.37 to 31.28 ± 2.32 cm 3 ). Besides lesion volume, the shape of the ablation zone was influenced by the configuration of the electrode used. We conclude that saline preinjection in combination with increasing the active tip length of the umbrella-shaped LeVeen RF probe allows the reliable ablation of larger volumes in comparison to the originally configured electrode

  19. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Shi, Wei, E-mail: sw740104@hotmail.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shen, Dan Dan, E-mail: 1021121084@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Zhou, Xue Jun, E-mail: 56516400@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China)

    2017-02-15

    Purpose: Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Materials and methods: Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51 ± 11 years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K{sup trans}) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman’s correlation coefficients and Bland-Altman plots were obtained for PS, K{sup trans} and CD105-MVD. P < 0.05 was considered statistically significant. Results: Tumor PS and K{sup trans} values were correlated with CD105-MVD (r = 0.644, P < 0.001; r = 0.683, P < 0.001). In addition, PS was correlated with K{sup trans} in glioblastoma (r = 0.931, P < 0.001). Finally, Bland-Altman plots showed no significant differences between PS and K{sup trans} (P = 0.063). Conclusion: PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature.

  20. Optimized isolation enables Ex vivo analysis of microglia from various central nervous system regions

    NARCIS (Netherlands)

    De Haas, Alexander H.; Boddeke, Hendricus W. G. M.; Brouwer, Nieske; Biber, Knut

    2007-01-01

    Ex vivo analysis is an accurate and convenient way to study in vivo microglia phenotype and function. However, current microglia isolation protocols for ex vivo analysis show many differences in isolation steps (perfusion, removal of meninges and blood vessels, mechanical dissociation, enzymatic

  1. Magnetic resonance cardiac perfusion imaging-a clinical perspective

    International Nuclear Information System (INIS)

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Joerg

    2006-01-01

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the ''ischemic cascade'', a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging. (orig.)

  2. Magnetic resonance cardiac perfusion imaging-a clinical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hunold, Peter; Schlosser, Thomas; Barkhausen, Joerg [University Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2006-08-15

    Coronary artery disease (CAD) with its clinical appearance of stable or unstable angina and acute myocardial infarction is the leading cause of death in developed countries. In view of increasing costs and the rising number of CAD patients, there has been a major interest in reliable non-invasive imaging techniques to identify CAD in an early (i.e. asymptomatic) stage. Since myocardial perfusion deficits appear very early in the ''ischemic cascade'', a major breakthrough would be the non-invasive quantification of myocardial perfusion before functional impairment might be detected. Therefore, there is growing interest in other, target-organ-specific parameters, such as relative and absolute myocardial perfusion imaging. Magnetic resonance (MR) imaging has been proven to offer attractive concepts in this respect. However, some important difficulties have not been resolved so far, which still causes uncertainty and prevents the broad application of MR perfusion imaging in a clinical setting. This review explores recent technical developments in MR hardware, software and contrast agents, as well as their impact on the current and future clinical status of MR imaging of first-pass myocardial perfusion imaging. (orig.)

  3. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E; Hedegaard, Morten

    2007-01-01

    The transplacental passage of monomethylphtalate (mMP) and mono (2-ethylhexyl) phthalate (mEHP) was studied using an ex vivo placental perfusion model with simultaneous perfusion of fetal and maternal circulation in a single cotyledon. Umbilical cord blood and placental tissue collected both before...... plasma samples. mMP and possibly other short-chained phthalate monoesters in maternal blood can cross the placenta by slow transfer, whereas the results indicate no placental transfer of mEHP. Further studies are recommended....

  4. Extended normothermic extracorporeal perfusion of isolated human liver after warm ischaemia: a preliminary report.

    Science.gov (United States)

    Bellomo, Rinaldo; Marino, Bruno; Starkey, Graeme; Fink, Michael; Wang, Bao Zhong; Eastwood, Glenn M; Peck, Leah; Young, Helen; Houston, Shane; Skene, Alison; Opdam, Helen; Jones, Robert

    2014-09-01

    Donation after circulatory death (DCD) livers are at markedly increased risk of primary graft dysfunction and biliary tract ischaemia. Normothermic extracorporeal liver perfusion (NELP) may increase the ability to transplant DCD livers and may allow their use for artificial extracorporeal liver support of patients with fulminant liver failure. We conducted two proof-of-concept experiments using human livers after DCD to assess the feasibility and functional efficacy of NELP over an extended period. We applied extracorporeal membrane oxygenation, parenteral nutrition, separate hepatic artery and portal vein perfusion and physiological perfusion pressures to two livers obtained after DCD. We achieved NELP and evidence of liver function (bile production, paracetamol removal and maintenance of normal lactate levels) in both livers; one for 24 hours and the other for 43 hours. Histological examination showed areas of patchy ischaemia but preserved biliary ducts and canaliculi. Our experiments justify further investigations of the feasibility and efficacy of extended DCD liver preservation by ex-vivo perfusion.

  5. Respiratory control in the glucose perfused heart. A /sup 31/P NMR and NADH fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Katz, L A; Koretsky, A P; Balaban, R S

    1987-09-14

    The phosphate metabolites, adenosine diphosphate (ADP), inorganic phosphate (P/sub i/), and adenosine triphosphate (ATP), are potentially important regulators of mitochondrial respiration in vivo. However, previous studies on the heart in vivo and in vitro have not consistently demonstrated an appropriate correlation between the concentration of these phosphate metabolites and moderate changes in work and respiration. Recently, mitochondrial NAD(P)H levels have been proposed as a potential regulator of cardiac respiration during alterations in work output. In order to understand better the mechanism of respiratory control under these conditions, we investigated the relationship between the phosphate metabolites, the NAD(P)H levels, and oxygen consumption (Q/sub O(sub 2)/) in the isovolumic perfused rat heart during alterations in work output with pacing. ATP, creatine phosphate (CrP), P/sub i/ and intracellular pH were measured using /sup 31/P NMR. Mitochondrial NAD(P)H levels were monitored using spectrofluorometric techniques. 33 refs.; 3 figs.; 2 tabs.

  6. On in-vivo skin topography metrology and replication techniques

    International Nuclear Information System (INIS)

    Rosen, B-G; Blunt, L; Thomas, T R

    2005-01-01

    Human skin metrology is an area of growing interest for many disciplines both in research and for commercial purposes. Changes in the skin topography are an early stage diagnosis tool not only for diseases but also give indication of the response to medical and cosmetic treatment. This paper focuses on the evaluation of in vivo and in vitro methodologies for accurate measurements of skin and outlines the quantitative characterisation of the skin topography. The study shows the applicability of in-vivo skin topography characterisation and also the advantages and limitations compared to conventional replication techniques. Finally, aspects of stripe projection methodology and 3D characterisation are discussed as a background to the proposed methodology in this paper

  7. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahe, Guillaume; Durand, Sylvain; Abraham, Pierre

    2013-03-01

    In the biomedical field, laser Doppler flowmetry (LDF) and laser speckle contrast imaging (LSCI) are two optical techniques aiming at monitoring - non-invasively - the microvascular blood perfusion. LDF has been used for nearly 40 years whereas LSCI is a recent technique that overcomes some drawbacks of LDF. Both LDF and LSCI give perfusion assessments in arbitrary units. However, the possible relationship existing between perfusions given by LDF and by LSCI over large blood flow values has not been completely studied yet. We therefore herein evaluate the relationship between the LDF and LSCI perfusion values across a broad range of skin blood flows. For this purpose, LDF and LSCI data were acquired simultaneously on the forearm of 12 healthy subjects, at rest, during different durations of vascular occlusion and during reactive hyperemia. For the range of skin blood flows studied, the power function fits the data better than the linear function: powers for individual subjects go from 1.2 to 1.7 and the power is close to 1.3 when all the subjects are studied together. We thus suggest distinguishing perfusion values given by the two optical systems.

  8. CT perfusion technique for assessment of early kidney allograft dysfunction: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Helck, A.; Notohamiprodjo, M.; Schoen, F.; Nikolaou, K.; Clevert, D.A.; Reiser, M.; Becker, C. [Ludwig-Maximilians-University of Munich, Department of Clinical Radiology, University Hospitals Grosshadern, Munich (Germany); Wessely, M.; Schoenermarck, U.; Fischereder, M. [Ludwig-Maximilians-University of Munich, Department of Internal Medicine IV, Nephrology, University Hospitals Grosshadern, Munich (Germany); Klotz, E. [Siemens Healthcare, Computed Tomography, Forchheim (Germany)

    2013-09-15

    To assess the benefit of quantitative computed tomography (CT) perfusion for differentiating acute tubular necrosis (ATN) and acute rejection (AR) in kidney allografts. Twenty-two patients with acute kidney allograft dysfunction caused by either AR (n = 6) or ATN (n = 16) were retrospectively included in the study. All patients initially underwent a multiphase CT angiography (CTA) protocol (12 phases, one phase every 3.5 s) covering the whole graft to exclude acute postoperative complications. Multiphase CT dataset and dedicated software were used to calculate renal blood flow. Renal biopsy or clinical course of disease served as the standard of reference. Mean effective radiation dose and mean amount of contrast media were calculated. Renal blood flow values were significantly lower (P = 0.001) in allografts undergoing AR (48.3 {+-} 21 ml/100 ml/min) compared with those with ATN (77.5 {+-} 21 ml/100 ml/min). No significant difference (P = 0.71) was observed regarding creatinine level with 5.65 {+-} 3.1 mg/dl in AR and 5.3 {+-} 1.9 mg/dl in ATN. The mean effective radiation dose of the CT perfusion protocol was 13.6 {+-} 5.2 mSv; the mean amount of contrast media applied was 34.5 {+-} 5.1 ml. All examinations were performed without complications. CT perfusion of kidney allografts may help to differentiate between ATN and rejection. (orig.)

  9. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C. [University of Sheffield (United Kingdom); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, KobeUniversity Graduate School of Medicine, Kobe, Hyogo (Japan); Schiebler, Mark [UW-Madison School of Medicine and Public Health, Madison, WI (United States); Wild, Jim M., E-mail: j.m.wild@sheffield.ac.uk [University of Sheffield (United Kingdom)

    2017-01-15

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  10. Pulmonary MR angiography and perfusion imaging—A review of methods and applications

    International Nuclear Information System (INIS)

    Johns, Christopher S.; Swift, Andrew J.; Hughes, Paul J.C.; Ohno, Yoshiharu; Schiebler, Mark; Wild, Jim M.

    2017-01-01

    Highlights: • This article represents an overview of the methodology and clinical applications of pulmonary MRA and perfusion imaging. • Both contrast enhanced and non-contrast enhanced metholodology for MRA and perfusion are covered. • The current clinical uses and future directions of MRA and MR perfusion are discussed. - Abstract: The pulmonary vasculature and its role in perfusion and gas exchange is an important consideration in many conditions of the lung and heart. Currently the mainstay of imaging of the vasculature and perfusion of the lungs lies with CT and nuclear medicine perfusion scans, both of which require ionizing radiation exposure. Improvements in MRI techniques have increased the use of MRI in pulmonary vascular imaging. Here we review MRI methods for imaging the pulmonary vasculature and pulmonary perfusion, both using contrast enhanced and non-contrast enhanced methodology. In many centres pulmonary MR angiography and dynamic contrast enhanced perfusion MRI are now well established in the routine workflow of patients particularly with pulmonary hypertension and thromboembolic disease. However, these imaging modalities offer exciting new directions for future research and clinical use in other respiratory diseases where consideration of pulmonary perfusion and gas exchange can provide insight in to pathophysiology.

  11. Non-viral ex vivo hepatic gene transfer by in situ lipofection of liver and intraperitoneal transplantation of hepatocytes.

    Science.gov (United States)

    Rangarajan, P N; Vatsala, P G; Ashok, M S; Srinivas, V K; Habibullah, C M; Padmanaban, G

    1997-04-29

    Perfusion of liver with plasmid DNA-lipofectin complexes via the portal vein results in efficient accumulation of the vector in hepatocytes. Such hepatocytes, when administered intraperitoneally into a hepatectomized rat, repopulate the liver and express the transgene efficiently. This procedure obviates the need for large-scale hepatocyte culture for ex vivo gene transfer. Further, intraperitoneal transplantation is a simple and cost-effective strategy of introducing genetically modified hepatocytes into liver. Thus, in situ lipofection of liver and intraperitoneal transfer of hepatocytes can be developed into a novel method of non-viral ex vivo gene transfer technique that has applications in the treatment of metabolic disorders of liver and hepatic gene therapy.

  12. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2005-05-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 μm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes.

  13. Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood.

    Science.gov (United States)

    Ahrens, Hellen E; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2015-07-01

    Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a (51)Chromium release assay and by ex vivo kidney perfusions with human blood. Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation.

  14. Accuracy and feasibility of dynamic contrast-enhanced 3D MR imaging in the assessment of lung perfusion: comparison with Tc-99 MAA perfusion scintigraphy

    International Nuclear Information System (INIS)

    Yilmaz, E.; Akkoclu, A.; Degirmenci, B.; Cooper, R.A.; Sengun, B.; Gulcu, A.; Osma, E.; Ucan, E.S.

    2005-01-01

    AIM: The aim of this study was to correlate findings of perfusion magnetic resonance imaging (MRI) and perfusion scintigraphy in cases where there was a suspicion of abnormal pulmonary vasculature, and to evaluate the usefulness of MRI in the detection of perfusion deficits of the lung. METHODS: In all, 17 patients with suspected abnormality of the pulmonary vasculature underwent dynamic contrast-enhanced MRI. T1-weighted 3D fast-field echo pulse sequences were obtained (TR/TE 3.3/1.58 ms; flip angle 30 deg ; slice thickness 12 to 15 mm). The dynamic study was acquired in the coronal plane following administration of 0.1 mmol/kg gadopentetate dimeglumine. A total of 8 to 10 sections repeated 20 to 25 times at intervals of 1 s were performed. Perfusion lung scintigraphy was carried out a maximum of 48 h before the MR examination in all cases. Two radiologists, who were blinded to the clinical data and results of other imaging methods, reviewed all coronal sections. MR perfusion images were independently assessed in terms of segmental or lobar perfusion defects in the 85 lobes of the 17 individuals, and the findings were compared with the results of scintigraphy. RESULTS: Of the 17 patients, 8 were found to have pulmonary emboli, 2 chronic obstructive pulmonary disease with emphysema, 2 bullous emphysema, 2 Takayasu arteritis and 1 had a hypoplastic pulmonary artery. Pulmonary perfusion was completely normal in 2 cases. In 35 lobes, perfusion defects were detected using both methods, in 4 with MR alone and in 9 only with scintigraphy. There was good agreement between MRI and scintigraphy findings (kappa=0.695). CONCLUSION: Pulmonary perfusion MRI is a new alternative to scintigraphy in the evaluation of pulmonary perfusion for various lung disorders. In addition, this technique allows measurement and quantification of pulmonary perfusion abnormalities

  15. Optimization of perfusion studies using Atropine

    International Nuclear Information System (INIS)

    Alvarado, A.N.; Valle, V.M.; Montoya, M.J.; Eskenazi, E.S.; Montiel, M.L.; Cueto, C.C.

    2002-01-01

    The studies of myocardial perfusion require an adequate stress; exercise or pharmacological. Every day, more pharmacological studies are performed, specially in some group of patients (women, AMI, etc). There some drugs that are used for this purpose, as adenosine and dobutamine. However, their cost and the lack of availability and infrastructure in our country do not allow there routinely use. We performed dipyridamol as a pharmacological stress, however in some patients there is a doubt regarding if the pharmacological effect was adequate. Atropine is a drug that is frequently used for different purpose and it is well know its tachycardic response. We present and alternative technique, using dipyridamol-atropine as a protocol of stress perfusion study. Our goal was to correlate the standard dipyridamol -thallium perfusion study and the dipyridamol -atropine-perfusion in patients with chronic coronary disease. We evaluated 6 patients (5 males) with stable angina and chronic coronary disease. A standard dipyridamol-thallium study was performed in all of them. Dipyridamole was administered intravenously at a rate of 0.14 mg/kg/min over 6 min for a total of 0.84 mg/kg body weight. Blood pressure, heart rate, EKG and symptoms were monitored before, during and after the pharmacological infusion. Two minutes after the infusion was completed, the radiotracer was injected intravenously. In the next 6 months, without any modification of the clinical situation (symptoms and therapy) a new dipyridamol study was performed, using 1 mg of atropine after the administration of dipyridamol. There were no differences in the collateral effects and we observed and average increase of 30% in the heart rate in relation with the study using dipyridamol alone. The addition of atropine to the standard dipyridamol perfusion study is safe, cheaper and improved the detection of perfusion defects in patients with coronary artery disease

  16. Quantification of MRI measured myocardial perfusion reserve in healthy humans: A comparison with positron emission tomography

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Hove, J.D.; Kofoed, K.F.

    2008-01-01

    Purpose: To validate a noninvasive quantitative MRI technique, the K-i perfusion method, for myocardial perfusion in humans using N-13-ammonia PET as a reference method. Materials and Methods: Ten healthy males (64 +/- 8 years) were examined with combined PET and MRI perfusion imaging at rest and...

  17. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  18. In vivo dosimetry for total body irradiation: five‐year results and technique comparison

    Science.gov (United States)

    Warry, Alison J.; Eaton, David J.; Collis, Christopher H.; Rosenberg, Ivan

    2014-01-01

    The aim of this work is to establish if the new CT‐based total body irradiation (TBI) planning techniques used at University College London Hospital (UCLH) and Royal Free Hospital (RFH) are comparable to the previous technique at the Middlesex Hospital (MXH) by analyzing predicted and measured diode results. TBI aims to deliver a homogeneous dose to the entire body, typically using extended SSD fields with beam modulation to limit doses to organs at risk. In vivo dosimetry is used to verify the accuracy of delivered doses. In 2005, when the Middlesex Hospital was decommissioned and merged with UCLH, both UCLH and the RFH introduced updated CT‐planned TBI techniques, based on the old MXH technique. More CT slices and in vivo measurement points were used by both; UCLH introduced a beam modulation technique using MLC segments, while RFH updated to a combination of lead compensators and bolus. Semiconductor diodes were used to measure entrance and exit doses in several anatomical locations along the entire body. Diode results from both centers for over five years of treatments were analyzed and compared to the previous MXH technique for accuracy and precision of delivered doses. The most stable location was the field center with standard deviations of 4.1% (MXH), 3.7% (UCLH), and 1.7% (RFH). The least stable position was the ankles. Mean variation with fraction number was within 1.5% for all three techniques. In vivo dosimetry can be used to verify complex modulated CT‐planned TBI, and demonstrate improvements and limitations in techniques. The results show that the new UCLH technique is no worse than the previous MXH one and comparable to the current RFH technique. PACS numbers: 87.55.Qr, 87.56.N‐ PMID:25207423

  19. Parametric imaging of tumor perfusion and neovascular morphology using ultrasound

    Science.gov (United States)

    Hoyt, Kenneth

    2015-03-01

    A new image processing strategy is detailed for the simultaneous measurement of tumor perfusion and neovascular morphology parameters from a sequence of dynamic contrast-enhanced ultrasound (DCE-US) images. A technique for locally mapping tumor perfusion parameters using skeletonized neovascular data is also introduced. Simulated images were used to test the neovascular skeletonization technique and variance (error) of relevant parametric estimates. Preliminary DCE-US image datasets were collected in 6 female patients diagnosed with invasive breast cancer and using a Philips iU22 ultrasound system equipped with a L9-3 MHz transducer and Definity contrast agent. Simulation data demonstrates that neovascular morphology parametric estimation is reproducible albeit measurement error can occur at a lower signal-to-noise ratio (SNR). Experimental results indicate the feasibility of our approach to performing both tumor perfusion and neovascular morphology measurements from DCE-US images. Future work will expand on our initial clinical findings and also extent our image processing strategy to 3-dimensional space to allow whole tumor characterization.

  20. Impairment of myocardial perfusion in children with sickle cell disease

    International Nuclear Information System (INIS)

    Maunoury, C.; Acar, P.; Montalembert, M. de

    2003-01-01

    While brain, bone and spleen strokes are well documented in children with sickle cell disease (SCD), impairment of myocardial perfusion is an unknown complication. Non invasive techniques such as exercise testing and echocardiography have a low sensitivity to detect myocardial ischemia in patients with SCD. We have prospectively assessed myocardial perfusion with Tl-201 SPECT in 23 patients with SCD (10 female, 13 male, mean age 12 ± 5 years). Myocardial SPECT was performed after stress and 3 hours later after reinjection on a single head gamma camera equipped with a LEAP collimator (64 x 64 matrix size format, 30 projections over 180 deg C, 30 seconds per step). Left ventricular ejection fraction (LVEF) was assessed by equilibrium radionuclide angiography at rest on the same day. Myocardial perfusion was impaired in 14/23 patients: 9 reversible defects and 5 fixed defects. The left ventricular cavity was dilated in 14/23 patients. The mean LVEF was 63 ± 9%. There was no relationship between myocardial perfusion and left ventricular dilation or function. The frequent impairment of myocardial perfusion in children with SCD could lead to suggest a treatment with hydroxyurea, an improvement of perfusion can be noted with hydroxyurea. (author)

  1. Whole-brain perfusion CT using a toggling table technique to predict final infarct volume in acute ischemic stroke.

    Science.gov (United States)

    Schrader, I; Wilk, D; Jansen, O; Riedel, C

    2013-09-01

    To evaluate how accurately final infarct volume in acute ischemic stroke can be predicted with perfusion CT (PCT) using a 64-MDCT unit and the toggling table technique. Retrospective analysis of 89 patients with acute ischemic stroke who underwent CCT, CT angiography (CTA) and PCT using the "toggling table" technique within the first three hours after symptom onset. In patients with successful thrombolytic therapy (n = 48) and in those without effective thrombolytic therapy (n = 41), the infarct volume and the volume of the penumbra on PCT were compared to the infarct size on follow-up images (CT or MRI) performed within 8 days. The feasibility of complete infarct volume prediction by 8 cm cranio-caudal coverage was evaluated. The correlation between the volume of hypoperfusion on PCT defined by cerebral blood volume reduction and final infarct volume was strongest in patients with successful thrombolytic therapy with underestimation of the definite infarct volume by 8.5 ml on average. The CBV map had the greatest prognostic value. In patients without successful thrombolytic therapy, the final infarct volume was overestimated by 12.1 ml compared to the MTT map on PCT. All infarcts were detected completely. There were no false-positive or false-negative results. Using PCT and the "toggling table" technique in acute stroke patients is helpful for the rapid and accurate quantification of the minimal final infarct and is therefore a prognostic parameter which has to be evaluated in further studies to assess its impact on therapeutic decision. ▶ Using PCT and the “toggling table technique” allows accurate quantification of the infarct core and penumbra. ▶ It is possible to record dynamic perfusion parameters quickly and easily of almost the entire supratentorial brain volume on a 64-slice MDCT unit. ▶ The technique allows identification of those patients who could profit from thrombolytic therapy outside the established time intervals. © Georg Thieme Verlag

  2. Glucose phosphorylation is not rate limiting for accumulation of glycogen from glucose in perfused livers from fasted rats

    International Nuclear Information System (INIS)

    Youn, J.H.; Ader, M.; Bergman, R.N.

    1989-01-01

    Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway

  3. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased

  4. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  5. Quantitative evaluation of myocardial perfusion and heart function using a non-invasive double isotope technique

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, W H; Doll, J; Georgi, P [Deutsches Krebsforschungszentrum, Heidelberg (Germany, F.R.). Inst. fuer Nuklearmedizin; Tillmanns, H [Heidelberg Univ. (Germany, F.R.). Innere Medizin 3

    1976-11-01

    This paper describes a non-invasive double nuclide technique for the simultaneous measurement of minimal cardiac transit times (MTT) and regional 'myocardial appearance times' (MAT) using gamma camera and computer. MAT is defined as the time lag between the appearance of an indicator with myocardial affinity in the aortic root and its extraction in the myocardial cells. The extraction can be identified as an increase of the ratio between the count rates of the two nuclides e.g. /sup 201/Tl-chloride and sup(113m)In DTPA. The clinical evaluation of this method allows the following conclusions: 1) MAT, determined over several circumscript myocardial regions permits the qualitative diagnosis of a coronary artery disease with high confidence. 2) Indices of nutritive myocardial blood flow (INF), derived by MAT using several representative areas of myocardium, show a definite correlation to the degree of coronary artery disease. In addition to the localization of infarction and the determination of infarct size, the technique described promises a quantitative evaluation of the regional myocardial perfusion. Simultaneously measured MTT help to assess segmental cardiac performance.

  6. Myocardial perfusion studies in coronary diseases; Estudios de Perfusion Miocardica en la Enfermedad Coronaria

    Energy Technology Data Exchange (ETDEWEB)

    Mut, Fernando [Universidad de la Republica, Montevideo (Uruguay)

    1994-12-31

    For detecting in precocious form a coronary disease is necessary to apply a diagnostic techniques. The main considerations to be indicated in the present work are: physiological considerations, myocardial perfusion studies with radiotracers such as Talio 201, 99mTc, MIBI, 99mTc-Teboroxima, 99mTc-Fosfinas, instrumentation for obtain good images,proceedings protocols, studies interpretation, standards, SPECT, anomalies standards, coronary diseases.

  7. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    Science.gov (United States)

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  8. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning

    NARCIS (Netherlands)

    Kunst, P. W.; Vonk Noordegraaf, A.; Hoekstra, O. S.; Postmus, P. E.; de Vries, P. M.

    1998-01-01

    Electrical impedance tomography (EIT) is a technique that makes it possible to measure ventilation and pulmonary perfusion in a volume that approximates to a 2D plane. The possibility of using EIT for measuring the left-right division of ventilation and perfusion was compared with that of

  9. Serial assessment of myocardial thallium perfusion and fatty acid utilization in spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sago, Masayoshi; Nishimura, Tsunehiko

    1989-01-01

    To evaluate the advantage of free fatty acid imaging on the detection of hypertrophied myocardium, we compared sequentially myocardial thallium and BMIPP (15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid) distribution in spontaneously hypertensive rat (SHR) using dual tracer autoradiography and in vivo pin-hole imaging. Autoradiography and pin-hole imaging showed uniform myocardial distribution of BMIPP and thallium within less than 27 weeks age SHR. In 40 weeks age SHR, thallium myocardial distribution showed uniform, however, BMIPP had focal decrease. Quantitative analysis of pin-hole images showed that myocardial BMIPP and thallium uptake ratio decreased according to the ages of SHR. Our data suggest that hypertension is associated with uniform myocardial perfusion and focal alternation in the substrate used for the performance of myocardial work. Based on the above autoradiographic and in vivo pin-hole imagings, I-123 BMIPP imaging may have a potential for early detection on hypertrophic myocardium compared to thallium perfusion in clinically hypertensive patients. (author)

  10. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.

    Science.gov (United States)

    Hazarika, Surovi; Farber, Charles R; Dokun, Ayotunde O; Pitsillides, Achillieas N; Wang, Tao; Lye, R John; Annex, Brian H

    2013-04-30

    MicroRNAs are key regulators of gene expression in response to injury, but there is limited knowledge of their role in ischemia-induced angiogenesis, such as in peripheral arterial disease. Here, we used an unbiased strategy and took advantage of different phenotypic outcomes that follow surgically induced hindlimb ischemia between inbred mouse strains to identify key microRNAs involved in perfusion recovery from hindlimb ischemia. From comparative microRNA profiling between inbred mouse strains that display profound differences in their extent of perfusion recovery after hindlimb ischemia, we found that the mouse strain with higher levels of microRNA-93 (miR-93) in hindlimb muscle before ischemia and the greater ability to upregulate miR-93 in response to ischemia had better perfusion recovery. In vitro, overexpression of miR-93 attenuated hypoxia-induced apoptosis in both endothelial and skeletal muscle cells and enhanced proliferation in both cell types. In addition, miR-93 overexpression enhanced endothelial cell tube formation. In vivo, miR-93 overexpression enhanced capillary density and perfusion recovery from hindlimb ischemia, and antagomirs to miR-93 attenuated perfusion recovery. Both in vitro and in vivo modulation of miR-93 resulted in alterations in the expression of >1 cell cycle pathway gene in 2 different cell types. Our data indicate that miR-93 enhances perfusion recovery from hindlimb ischemia by modulation of multiple genes that coordinate the functional pathways of cell proliferation and apoptosis. Thus, miR-93 is a strong potential target for pharmacological modulation to promote angiogenesis in ischemic tissue.

  11. Hot spots on Tc-99m MAA perfusion lung scan

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee

    2001-01-01

    A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings. A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities. Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear borders. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan

  12. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  13. NMR study of damage on isolated perfused rat heart exposed to ischemia and hypoxia

    International Nuclear Information System (INIS)

    Luo Xuechun; Yan Yongbin; Zhang Riqing; Fan Lili

    2001-01-01

    Myocardial ischemia is the most common and primary cause of myocardium damage. Numerous conventional techniques and methods have been developed for ischemia and reperfusion studies. However, because of damage to the heart sample, most of these techniques can not be used to continuously monitor the full dynamic course of the myocardial metabolic pathway. The nuclear magnetic resonance (NMR) surface coil technique, which overcomes the limitations of conventional instrumentation, can be used to quantitatively study every stage of the perfused heart (especially after perfusion stoppage) continuously, dynamically, and without damage under normal or designed physiological conditions at the molecular level. In this paper, 31 P-NMR was used to study the effects of ischemia and hypoxia on isolated perfused hearts. The results show that complete hypoxia caused more severe functional damage to the myocardial cells than complete ischemia

  14. Residual DNA double strand breaks in perfused but not in unperfused areas determine different radiosensitivity of tumours

    International Nuclear Information System (INIS)

    Menegakis, Apostolos; Eicheler, Wolfgang; Yaromina, Ala; Thames, Howard D.; Krause, Mechthild; Baumann, Michael

    2011-01-01

    Purpose: Micromilieu-dependent quantification of γH2AX after irradiation in vivo and correlation with local tumour control. Materials and methods: Local tumour control was evaluated after irradiation of FaDu and SKX xenografts with ambient single doses. γH2AX foci were quantified in perfused and unperfused regions after different irradiation doses and at different time points. Results: The TCD 50 of FaDu was 2-times higher compared to SKX (28.0 Gy [95% C.I. 24.6; 31.3 Gy] for FaDu; 14.9 Gy [10.9; 18.9] for SKX, p < 0.001). The induction of foci did not differ between the tumour models. Residual foci were twice higher in perfused SKX regions compared to FaDu, no difference was observed in the non-perfused region between both tumour models. The number of residual foci increased with a 2-times higher slope in perfused SKX-regions compared to FaDu, while no difference was detected in unperfused regions. Already within the perfused regions, this slope decreased with distance from perfused vessels. Conclusion: The dose-response of residual γH2AX foci is highly dependent on tumour cell oxygenation in well perfused areas. This dependence decreases further away from tumour vessels. Only γH2AX evaluation in perfused tumour areas can distinguish between the different radiocurability of the two tumour models.

  15. Effects of steroids and sex reversal on intestinal absorption of L-[14C]leucine in vivo, in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Habibi, H.R.; Ince, B.W.

    1983-01-01

    The effects of steroids (17 alpha-methyltestosterone (MT), 17 beta-oestradiol (E2)), and of sex reversal (XX male) on intestinal absorption and accumulation of L-[ 14 C]leucine (5 mM), were investigated in unanaesthetized rainbow trout (Salmo gairdneri), using an in vivo gut perfusion technique. Each steroid was luminally perfused through the gut at a concentration of 50 micrograms/ml perfusate, during five separate perfusions carried out on the same fish at 30-min intervals (perfusion periods 1 to 5), for a total of 120 min at 14 degrees. Experiments were also conducted on masculinized, genetically female trout (XX male) with steroid-free perfusate. MT treatment significantly increased the intestinal absorption of radioleucine during periods 1 and 2, whilst E2 was without effect. Neither MT nor E2 influenced intestinal accumulation (mid- and hindgut) of radioleucine, and accumulation of 14 C-solutes in skeletal muscle. Sex reversal, however, whilst having no effect on leucine absorption, nevertheless significantly increased intestinal accumulation of radioleucine, and accumulation of 14 C-solutes in skeletal muscle. The effects observed in the present study are in agreement with previous work in trout using everted gut sac preparations. It is suggested that the growth-promoting effects of anabolic-androgenic steroids in fish may be partly explained by their action on gastrointestinal function

  16. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents1

    Science.gov (United States)

    Galiè, Mirco; D'Onofrio, Mirko; Montani, Maura; Amici, Augusto; Calderan, Laura; Marzola, Pasquina; Benati, Donatella; Merigo, Flavia; Marchini, Cristina; Sbarbati, Andrea

    2005-01-01

    Abstract Contrast-enhanced ultrasound (CEUS) is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 µm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes. PMID:15967105

  17. Experimental flow and perfusion measurement in an animal model with magnetic resonance tomography

    International Nuclear Information System (INIS)

    Schoenberg, S.O.; Bock, M.; Just, A.

    2001-01-01

    Aim. Validation of non-invasive methods for morphologic and functional imaging of the kidney under physiologic and pathophysiologic conditions. Material and Methods. In chronically instrumented animals (foxhounds) comparative measurements of renal flow and perfusion were performed. Magnetic resonance imaging techniques were compared to data obtained from implanted flow probes and total kidney weight post mortem. In the MR system, different degrees of renal artery stenosis could be induced by means of an implanted inflatable cuff. The degree of stenosis was verified with high-resolution 3D contrast-enhanced MR angiography (3D-CE-MRA) using an intravascular contrast agent. Results. The MR-data agreed well with the invasively obtained results. Artifacts resulting from the implanted flow probes and other devices could be kept to a minimum due to appropriate selection of the probe materials and measurement strategies. Stenoses could be reproduced reliably and quantified from the induced morphologic and functional changes. Conclusion. Morphologic and functional MR techniques are well suited for non-invasive in vivo assessment of renal blood flow physiology. (orig.) [de

  18. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  19. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    Science.gov (United States)

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  20. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  1. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    Science.gov (United States)

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  2. MicroRNA-146a Regulates Perfusion Recovery in Response to Arterial Occlusion via Arteriogenesis

    Directory of Open Access Journals (Sweden)

    Joshua L. Heuslein

    2018-01-01

    Full Text Available The growth of endogenous collateral arteries that bypass arterial occlusion(s, or arteriogenesis, is a fundamental shear stress-induced adaptation with implications for treating peripheral arterial disease. MicroRNAs (miRs are key regulators of gene expression in response to injury and have strong therapeutic potential. In a previous study, we identified miR-146a as a candidate regulator of vascular remodeling. Here, we tested whether miR-146a regulates in vitro angiogenic endothelial cell (EC behaviors, as well as perfusion recovery, arteriogenesis, and angiogenesis in response to femoral arterial ligation (FAL in vivo. We found miR-146a inhibition impaired EC tube formation and migration in vitro. Following FAL, Balb/c mice were treated with a single, intramuscular injection of anti-miR-146a or scramble locked nucleic acid (LNA oligonucleotides directly into the non-ischemic gracilis muscles. Serial laser Doppler imaging demonstrated that anti-miR-146a treated mice exhibited significantly greater perfusion recovery (a 16% increase compared mice treated with scramble LNA. Moreover, anti-miR-146a treated mice exhibited a 22% increase in collateral artery diameter compared to controls, while there was no significant effect on in vivo angiogenesis or muscle regeneration. Despite exerting no beneficial effects on angiogenesis, the inhibition of mechanosensitive miR-146a enhances perfusion recovery after FAL via enhanced arteriogenesis.

  3. First Danish experience with ex vivo lung perfusion of donor lungs before transplantation.

    Science.gov (United States)

    Henriksen, Ian Sune Iversen; Møller-Sørensen, Hasse; Møller, Christian Holdfold; Zemtsovski, Mikhail; Nilsson, Jens Christian; Seidelin, Casper Tobias; Perch, Michael; Iversen, Martin; Steinbrüchel, Daniel

    2014-03-01

    The number of lung transplantations is limited by a general lack of donor organs. Ex vivo lung perfusion (EVLP) is a novel method to optimise and evaluate marginal donor lungs prior to transplantation. We describe our experiences with EVLP in Denmark during the first year after its introduction. The study was conducted by prospective registration of donor offers and lung transplantations in Denmark from 1 May 2012 to 30 April 2013. Donor lungs without any contraindications were transplanted in the traditional manner. Taken for EVLP were donor lungs that were otherwise considered transplantable, but failed to meet the usual criteria due to possible contusions or because they were from donors with sepsis or unable to pass the oxygenation test. In the study period, seven of 33 Danish lung transplantations were made possible due to EVLP. One patient died of non-EVLP-related causes, but all other recipients were alive with normal graft function at the end of our registration period. All lungs showed an improved PaO2/FiO2 ratio from a median 23.1 kPa (8.8-38.9) within the donor to 58.8 kPa (34.9-76.5) (FiO2 = 1.0) after EVLP, which corresponds to a 155% improved oxygenation. The median time to extubation, time in intensive care unit and the admission period were 1, 7 and 39 days, respectively. In the first year after the introduction of EVLP in Denmark, seven pairs of donor lungs that previously would have been rejected have been transplanted as a result of their improved function. EVLP seems to be a safe way to increase the use of marginal donor lungs. no funding was granted for the present paper. not relevant.

  4. Double tracer autoradiographic method for sequential evaluation of regional cerebral perfusion

    International Nuclear Information System (INIS)

    Matsuda, H.; Tsuji, S.; Oba, H.; Kinuya, K.; Terada, H.; Sumiya, H.; Shiba, K.; Mori, H.; Hisada, K.; Maeda, T.

    1989-01-01

    A new double tracer autoradiographic method for the sequential evaluation of altered regional cerebral perfusion in the same animal is presented. This method is based on the sequential injection of two tracers, 99m Tc-hexamethylpropyleneamine oxime and N-isopropyl-( 125 I)p-iodoamphetamine. This method is validated in the assessment of brovincamine effects on regional cerebral perfusion in an experimental model of chronic brain ischemia in the rat. The drug enhanced perfusion recovery in low-flow areas, selectively in surrounding areas of infarction. The results suggest that this technique is of potential use in the study of neuropharmacological effects applied during the experiment

  5. Effects of steroids and sex reversal on intestinal absorption of L-(/sup 14/C)leucine in vivo, in rainbow trout, Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, H.R.; Ince, B.W.

    1983-12-01

    The effects of steroids (17 alpha-methyltestosterone (MT), 17 beta-oestradiol (E2)), and of sex reversal (XX male) on intestinal absorption and accumulation of L-(/sup 14/C)leucine (5 mM), were investigated in unanaesthetized rainbow trout (Salmo gairdneri), using an in vivo gut perfusion technique. Each steroid was luminally perfused through the gut at a concentration of 50 micrograms/ml perfusate, during five separate perfusions carried out on the same fish at 30-min intervals (perfusion periods 1 to 5), for a total of 120 min at 14 degrees. Experiments were also conducted on masculinized, genetically female trout (XX male) with steroid-free perfusate. MT treatment significantly increased the intestinal absorption of radioleucine during periods 1 and 2, whilst E2 was without effect. Neither MT nor E2 influenced intestinal accumulation (mid- and hindgut) of radioleucine, and accumulation of /sup 14/C-solutes in skeletal muscle. Sex reversal, however, whilst having no effect on leucine absorption, nevertheless significantly increased intestinal accumulation of radioleucine, and accumulation of /sup 14/C-solutes in skeletal muscle. The effects observed in the present study are in agreement with previous work in trout using everted gut sac preparations. It is suggested that the growth-promoting effects of anabolic-androgenic steroids in fish may be partly explained by their action on gastrointestinal function.

  6. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Michallek, Florian; Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite - Universitaetsmedizin Berlin, Medical School, Department of Radiology, Berlin (Germany)

    2014-01-15

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  7. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    International Nuclear Information System (INIS)

    Michallek, Florian; Dewey, Marc

    2014-01-01

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  8. Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke.

    Science.gov (United States)

    Ludewig, Peter; Gdaniec, Nadine; Sedlacik, Jan; Forkert, Nils D; Szwargulski, Patryk; Graeser, Matthias; Adam, Gerhard; Kaul, Michael G; Krishnan, Kannan M; Ferguson, R Matthew; Khandhar, Amit P; Walczak, Piotr; Fiehler, Jens; Thomalla, Götz; Gerloff, Christian; Knopp, Tobias; Magnus, Tim

    2017-10-24

    The fast and accurate assessment of cerebral perfusion is fundamental for the diagnosis and successful treatment of stroke patients. Magnetic particle imaging (MPI) is a new radiation-free tomographic imaging method with a superior temporal resolution, compared to other conventional imaging methods. In addition, MPI scanners can be built as prehospital mobile devices, which require less complex infrastructure than computed tomography (CT) and magnetic resonance imaging (MRI). With these advantages, MPI could accelerate the stroke diagnosis and treatment, thereby improving outcomes. Our objective was to investigate the capabilities of MPI to detect perfusion deficits in a murine model of ischemic stroke. Cerebral ischemia was induced by inserting of a microfilament in the internal carotid artery in C57BL/6 mice, thereby blocking the blood flow into the medial cerebral artery. After the injection of a contrast agent (superparamagnetic iron oxide nanoparticles) specifically tailored for MPI, cerebral perfusion and vascular anatomy were assessed by the MPI scanner within seconds. To validate and compare our MPI data, we performed perfusion imaging with a small animal MRI scanner. MPI detected the perfusion deficits in the ischemic brain, which were comparable to those with MRI but in real-time. For the first time, we showed that MPI could be used as a diagnostic tool for relevant diseases in vivo, such as an ischemic stroke. Due to its shorter image acquisition times and increased temporal resolution compared to that of MRI or CT, we expect that MPI offers the potential to improve stroke imaging and treatment.

  9. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  10. Production and delivery of polarized Xenon-129 for in vivo MRS/MRI.

    Science.gov (United States)

    Rosen, Matthew S.; Chupp, Timothy E.; Coulter, Kevin P.; Welsh, Robert C.; Swanson, Scott

    1998-05-01

    Laser polarized ^129Xe can be used as an entirely new magnetic tracer, and is a powerful enhancement to currently existing MRI techniques. Inert laser polarized ^129Xe is inhaled and transported via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent distribution patterns of ^129Xe signal intensity directly reflect local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues. We have developed a uniquely constructed laser polarized ^129Xe production and delivery system that is used in both our in vitro and in vivo imaging experiments with rats. This reliable, effective, and relatively simple production method for large volumes of laser polarized ^129Xe is the key to all other areas of research involving use of laser polarized gases.

  11. Scintigraphic and MR perfusion imaging in preoperative evaluation for lung volume reduction surgery. Pilot study results

    International Nuclear Information System (INIS)

    Johkoh, Takeshi; Mueller, N.L.; Kavanagh, P.V

    2000-01-01

    To compare MR perfusion imaging with perfusion scintigraphy in the evaluation of patients with pulmonary emphysema being considered for lung volume reduction surgery. Six patients with pulmonary emphysema and two normal individuals were evaluated by MR perfusion imaging, perfusion scintigraphy, and selective bilateral pulmonary angiography. MR images were obtained with an enhanced fast gradient recalled echo with three-dimensional Fourier transformation technique (efgre 3D) (6.3/1.3; flip angle, 30 deg C; field of view, 45-48 cm; matrix, 256 x 160). The presence or absence of perfusion defects in each segment was evaluated by two independent observers. Using angiography as the gold standard, the sensitivity, specificity, and accuracy of MR perfusion imaging in detecting focal perfusion abnormalities were 90%, 87%, and 89%, respectively, while those of perfusion scintigraphy were 71%, 76%, and 71%, respectively. The diagnostic accuracy of MR perfusion imaging was significantly higher than that of scintigraphy (p<0.001, McNemar test). There was good agreement between two observers for MR perfusion imaging (kappa statistic, 0.66) and only moderate agreement for perfusion scintigraphy (kappa statistic, 0.51). MR perfusion imaging is superior to perfusion scintigraphy in the evaluation of pulmonary parenchymal perfusion in patients with pulmonary emphysema. (author)

  12. MRI for the assessment of organ perfusion in patients with chronic kidney disease.

    Science.gov (United States)

    Odudu, Aghogho; Francis, Susan T; McIntyre, Christopher W

    2012-11-01

    Recent data have highlighted the importance of quantitative measures of organ perfusion and functional reserve. Magnetic resonance imaging allows the assessment of markers of perfusion without the use of contrast media. Techniques such as arterial spin labelling (ASL) and blood oxygen level-dependent (BOLD) imaging have been available for some time, but advances in the technology and concerns over the safety of contrast media in renal disease have spurred renewed interest and development. ASL measures perfusion, whereas BOLD imaging provides a marker of blood oxygenation, arising from the compound effect of a number of measures including perfusion, blood volume and oxygen consumption; thus, the techniques are complementary rather than analogous. They were initially confined to brain imaging as inherently low signal, susceptibility effects and motion limited their use in thoracic and abdominal organs. Advances in technology have led to robust sequences that can quantify clinically relevant changes and correlate well with reference standards. Novel approaches are likely to accelerate translation into clinical practice. The noninvasive and repeatable nature of ASL and BOLD imaging makes it likely that they will be increasingly used in clinical research. Using a developmental framework, we suggest that the application of these techniques to thoracic and abdominal organs requires validation before they are suitable for generalized clinical use. The demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media.

  13. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats.

    Science.gov (United States)

    Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon

    2018-04-01

    The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (PE until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (PE and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Provenzale, James M.; Kudo, Kohsuke; Sasaki, Makoto; Wintermark, Max

    2012-01-01

    The five questions answered in this article revolve around the different parameters resulting from perfusion imaging processing, and this clarifies the frequently confusing terminology used to describe these parameters. More specifically, the article discusses the different imaging techniques and main mathematical models behind perfusion imaging, reviews the perfusion attributes of brain tissue, and proposes a standardized parameter terminology to facilitate understanding and avoid common misinterpretations. (orig.)

  15. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States); Hospital Universitario y Politecnico la Fe, Department of Radiology, Neuroradiology Division, Valencia (Spain); Universidad Autonoma de Barcelona, Department of Medicine, Barcelona (Spain); Provenzale, James M. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Emory University School of Medicine, Departments of Radiology, Oncology and Biomedical Engineering, Atlanta, GA (United States); Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Division of Ultra-high Field MRI, Institute for Biomedical Sciences, Morioka (Japan); Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States); University of Virginia Medical Center, Department of Radiology, Neuroradiology Division, 1215 Lee Street-New Hospital, 1st Floor, Room 1011, PO Box 800170, Charlottesville, VA (United States)

    2012-09-15

    The five questions answered in this article revolve around the different parameters resulting from perfusion imaging processing, and this clarifies the frequently confusing terminology used to describe these parameters. More specifically, the article discusses the different imaging techniques and main mathematical models behind perfusion imaging, reviews the perfusion attributes of brain tissue, and proposes a standardized parameter terminology to facilitate understanding and avoid common misinterpretations. (orig.)

  16. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole

    2017-01-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention...... of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings...

  17. Intralipid minimizes hepatocytes injury after anoxia-reoxygenation in an ex vivo rat liver model.

    Science.gov (United States)

    Stadler, Michaela; Nuyens, Vincent; Boogaerts, Jean G

    2007-01-01

    Ischemia-reperfusion injury is a determinant in liver injury occurring during surgical procedures, ischemic states, and multiple organ failure. The pre-existing nutritional status of the liver, i.e., fasting, might contribute to the extent of tissue injury. This study investigated whether Intralipid, a solution containing soybean oil, egg phospholipids, and glycerol, could protect ex vivo perfused livers of fasting rats from anoxia-reoxygenation injury. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Isolated livers were perfused with glucose 5.5 and 15 mM, and two different concentrations of Intralipid, i.e., 0.5:100 and 1:100 (v/v) Intralipid 10%:medium (n = 5 in each group). The experiment consisted of perfusion for 15 min, warm anoxia for 60 min, and reoxygenation during 60 min. Hepatic enzymes, potassium, glucose, lactate, bilirubin, dienes, trienes, and cytochrome-c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in biopsies. Intralipid attenuated transaminases, lactate dehydrogenase, potassium, diene, and triene release in the perfusate (dose-dependant) during the reoxygenation phase when compared with glucose-treated groups. The concentration of cytochrome-c in the medium was the highest in the 5.5-mM glucose group. The glycogen content was low in all livers at the start of the experiment. Intralipid presents, under the present experimental conditions, a better protective effect than glucose in anoxia-reoxygenation injury of the rat liver.

  18. Improvement of myocardial perfusion status in response to indian vedic breathing

    International Nuclear Information System (INIS)

    Anand, Y.N.I.; Muthu, G.S.

    2004-01-01

    Introduction: Yoga is the buzz word all over the world today. Amidst their busy schedule, people tend to ignore their personal health. Management of various disorders, especially those involving interventions, surgical or radiological, is very expensive. The Indian Vedic Exercises, of which Pranaayaama is one, emphasize on prevention of the diseases in order to keep the individual in good health. It is equally applicable to those who have already suffered from various disorders and in whom both improvement and/or avoidance of further deterioration are required. However, no Objective assessment of the disease status in response to these exercises has been reported so far. Objectives: This pilot study has been undertaken on patients with reversible myocardial perfusion defects to Objectively monitor the improvements in the myocardial perfusion in response to a breathing exercise, Pranayama, a breathing technique prescribed in the Indian Vedic Sciences. Methods: Two patients who were found to have reversible myocardial perfusion defects were taken up in this study. These defects were diagnosed from the myocardial perfusion SPECT done in stressed (on Tread Mill) and resting states with 99m Technetium labeled MIBI.These patients were taught the pranayama technique which is done for about 30 minutes every day. At the end of four months from the commencement of this technique, the myocardial perfusion SPECT studies were repeated. Details of the exercise in the form of a CD are available on request. Results: Overall good improvements were observed in all the quantitative parameters in the TMT and SPECT studies in the studies done after the pranayama procedures in both the patients. Perfusion defects seen in the stress images of the initial studies have almost completely reversed in the stress images of the later study. Patients are asymptomatic and are leading a comfortable life. Conclusion: This is only a study of two cases to Objectively evaluate the effects of pranayama

  19. Nuclear medicine and coronary artery disease: evaluation of tracers of myocardial perfusion and vulnerable atherosclerotic plaque

    International Nuclear Information System (INIS)

    Broisat, A.

    2005-04-01

    Coronary artery disease is one of the primary cause of mortality worldwide. Nuclear medicine is the major imaging technique for diagnosis and following of this disease. perfusion: nowadays, major radioactive agents used in clinical practice are myocardial perfusion tracers. The reference tracer is thallium-201. However, 201 Tl presents some drawbacks. 99m Tcn-noet has been proposed for its replacement. This study shows that in contrast with previous studies realized in vitro on cardio myocytes, verapamil, an l-type calcium channel inhibitor, does not inhibit myocardial fixation of 99m Tcn-noet in vivo in dog. This data is in agreement with the hypothesis of a non specific endothelial fixation of this tracer. Moreover, this study shows that as a pure tracer of myocardial perfusion, 99m Tcn-noet can also be used to assess myocardial viability on a model of myocardial chronic infarction in rat. atherosclerosis: disruption of vulnerable atherosclerotic plaques is the main event leading to coronary accidents. The second part of this study concerns the evaluation of new potential tracers of the vulnerable atherosclerotic plaque in an experimental model of rabbit with an inheritable hypercholesterolemia. The four tracers evaluated (b2702(r), b2702-I, b2702-Tc and Tc-raft-b2702) are synthetic peptides comprising the residues 75-84 of hla-b2702, a molecule known to link vcam-1, an adhesion molecule expressed in vulnerable atherosclerotic plaque. The autoradiography studies show that all tracers accumulate within atherosclerotic plaque expressing vcam- and that. i-b2702 shows the best plaque/control fixation ratio. (author)

  20. Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Vorkamp, Katrin; Mathiesen, Line

    2010-01-01

    high concern due to critical windows in fetal development. METHODS: A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored...... should be included in risk assessment of PBDE exposure of women of child-bearing age....

  1. Whole body perfusion for hybrid aortic arch repair: evolution of selective regional perfusion with a modified extracorporeal circuit.

    Science.gov (United States)

    Fernandes, Philip; Walsh, Graham; Walsh, Stephanie; O'Neil, Michael; Gelinas, Jill; Chu, Michael W A

    2017-04-01

    Patients undergoing hybrid aortic arch reconstruction require careful protection of vital organs. We believe that whole body perfusion with tailored dual circuitry may help to achieve optimal patient outcomes. Our circuit has evolved from a secondary circuit utilizing a cardioplegia delivery device for lower body perfusion to a dual-oxygenator circuit. This allows individually controlled regional perfusion with ease of switching from secondary to primary circuit for total body flow. The re-design allows for separate flow and temperature regulation with two oxygenators in parallel. All patients underwent a single-stage operation for simultaneous treatment of arch and descending aortic pathology via a sternotomy, using a hybrid frozen elephant trunk technique. We report six consecutive patients undergoing hybrid arch and frozen elephant trunk reconstruction using a dual-oxygenator circuit. Five patients underwent elective surgery and one was emergent. One patient had an acute dissection while three underwent concomitant procedures, including a Ross procedure and two valve-sparing root reconstructions. Three cases were redo sternotomies. The mean pump time was 358 ± 131 min, the aortic cross clamp time 243 ± 135 min, the cardioplegia volume of 33,208 ml ± 16,173, cerebral ischemia 0 min, lower body ischemia 76 ± 34 min and the average lower body perfusion time was 142 min. Two patients did not require any donor blood products. The median intensive care unit (ICU) and hospital lengths of stay (LOS) were two days and 10 days, respectively. The average peak serum lactate on CPB was 7.47 mmol/L and, at admission to the ICU, it was 3.37 mmol/L. Renal and respiratory failure developed in the salvage acute type A dissection patient. No other complications occurred in this series. Whole body perfusion as delivered through individually controlled dual-oxygenator circuitry allows maximum flexibility for hybrid aortic arch reconstruction. A modified circuit perfusion

  2. Usefulness of perfusion MR imaging in hyperacute ischemic stroke

    International Nuclear Information System (INIS)

    Park, Ji Hoon; Kim, Jae Hyoung; Shin, Tae Min; Lee, Eun Ja; Chung, Sung Hoon; Choi, Nack Cheon; Lim, Byeong Hoon; Kim, In One

    1998-01-01

    Perfusion MR imaging is a new technique for the assessment of acute ischemic stroke. The aim of this study was to evaluate the usefulness of this imaging in hyperacute ischemic stroke in comparison with conventional CT and MR imaging. Eight patients presenting the symptoms of acute ischemic stroke due to middle cerebral artery occlusion were included in this study. Within 2 hours of initial CT scan and 6 hours after the onset of stroke, perfusion MR imaging was performed in all patients using a single-section dynamic contrast-enhanced T2*-weighted imager in conjunction with conventional routine MR imaging and MR angiography. Cerebral blood volume (CBV) maps were then obtained from dynamic MR imaging data by using numerical integration techniques. The findings of CBV maps were compared with those of initial and follow-up CT or MR images. The findings of CBV maps were obviously abnormal in all patients, as compared with normal or focal subtle abnormal findings seen on initial CT and MR images. CBV in the occluded arterial territory was lower in all eight patients;two had focal regions of increased CBV within the affected territory, indicating reperfusion hyperemia. In all patients, regions of abnormal CBV were eventually converted to infarctions on follow-up images. Perfusion MR imaging was useful for the evaluation of hemodynamic change occurring during cerebral perfusion in hyperacute ischemic stroke, and prediction of the final extent of infarction. These results suggest that pertusion MR imaging can play an important role in the diagnosis and management of hyperacute ischemic stroke.=20

  3. Vessel encoded arterial spin labeling with cerebral perfusion: preliminary study

    International Nuclear Information System (INIS)

    Wu Bing; Xiao Jiangxi; Xie Cheng; Wang Xiaoying; Jiang Xuexiang; Wong, E.C.; Wang Jing; Guo Jia; Zhang Beiru; Zhang Jue; Fang Jing

    2008-01-01

    Objective: To evaluate a noninvasive vessel encoded imaging for selective mapping of the flow territories of the left and fight internal carotid arteries and vertebral-basilar arteries. Methods: Seven volunteers [(33.5 ± 4.1) years; 3 men, 4 women] and 6 patients [(55.2 ± 3.2) years; 2 men, 4 women] were given written informed consent approved by the institutional review board before participating in the study. A pseudo-continuous tagging pulse train is modified to encode all vessels of interest. The selectivity of this method was demonstrated. Regional perfusion imaging was developed on the same arterial spin labeling sequence. Perfusion-weighted images of the selectively labeled cerebral arteries were obtained by subtraction of the labeled from control images. The CBF values of hemisphere, white matter, and gray matter of volunteers were calculated. The vessel territories on patients were compared with DSA. The low perfusion areas were compared with high signal areas on T 2 -FLAIR. Results: High SNR maps of left carotid, right carotid, and basilar territories were generated in 8 minutes of scan time. Cerebral blood flow values measured with regional perfusion imaging in the complete hemisphere (32.6 ± 4.3) ml·min -1 · 100 g -1 , white matter (10.8 ± 0.9) ml·min -1 ·100 g -1 , and gray matter (55.6±2.9) ml·min -1 · 100 g -1 were in agreement with data in the literature. Vessel encoded imaging in patients had a good agreement with DSA. The low perfusion areas were larger than high signal areas on T 2 -FLAIR. Conclusion: We present a new method capable of evaluating both quantitatively and qualitatively the individual brain- feeding arteries in vivo. (authors)

  4. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae

    2005-01-01

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 ± 8.5%, range:3 ∼ 35%) and mild to moderate severity (-71 ± 42.7%, range:-217 ∼ -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome

  5. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae [Donga University College of Medicine, Busan (Korea, Republic of)

    2005-02-15

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 {+-} 8.5%, range:3 {approx} 35%) and mild to moderate severity (-71 {+-} 42.7%, range:-217 {approx} -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

  6. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    Science.gov (United States)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  7. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    Science.gov (United States)

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. Copyright © 2016 the American Physiological Society.

  8. Comparison between perfusion and balloon techniques for performing anorectal manometry in children with intestinal constipation Comparação das técnicas de balão e de perfusão para a realização de manometria anorretal em crianças portadoras de constipação intestinal

    Directory of Open Access Journals (Sweden)

    Geraldo Magela Nogueira Marques

    2008-10-01

    Full Text Available INTRODUCTION: Two anorectal manometry techniques have commonly been utilized: the perfusion technique and the balloon technique. PURPOSE: To compare both techniques in children with intestinal constipation who had not undergone surgical treatment for its correction. METHODS: Thirty-nine children aged between four and fourteen years underwent anorectal manometry using both techniques at random. Resting pressure, pressure response to voluntary contraction, coughing and perianal stimulation, maximum pressure on the anal canal pressure curve, and presence of rectosphincteric reflex were registered and submitted to statistics. Vectorgraphy of the sphincter muscle complex was obtained by perfusion technique. RESULTS: The statistical comparison between the techniques revealed statistically significant differences in resting pressure (p=0.041, pressure response to voluntary contraction (p=0.026 and maximum pressure within the pressure curve (p=0.010. The rectosphincteric reflex was demonstrated in 21 patients by both techniques. CONCLUSIONS: The perfusion technique presented greater sensitivity in the following parameters: resting pressure, pressure response to voluntary contraction and maximum pressure within the pressure curve. The methods studied are equivalent regarding the measurement of pressure responses to coughing and perianal stimulation and the investigation of rectosphincteric reflex.INTRODUÇÃO: A manometria anorretal tem sido aceita como uma técnica objetiva de estudar a função do complexo muscular esfincteriano. Duas técnicas para o mesmo exame têm sido utilizadas: por perfusão e por balão. OBJETIVO: Comparar as técnicas entre as crianças portadoras de constipação intestinal que não foram submetidas a tratamento cirúrgico como forma de tratamento. MÉTODOS: Trinta e nove crianças com idades entre quarto e quatorze anos foram submetidas à Manometria anorretal utilizando-se ambas as técnicas de forma randomizada. Analizou

  9. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  10. Neurotensin releases norepinephrine differentially from perfused hypothalamus of sated and fasted rat

    International Nuclear Information System (INIS)

    Lee, T.F.; Rezvani, A.H.; Hepler, J.R.; Myers, R.D.

    1987-01-01

    The central injection of neurotensin (NT) has been reported to attenuate the intake of food in the fasted animal. To determine whether endogenous norepinephrine (NE) is involved in the satiating effect of NT, the in vivo activity of NE in circumscribed sites in the hypothalamus of the unanesthetized rat was examined. Bilateral guide tubes for push-pull perfusion were implanted stereotaxically to rest permanently above one of several intended sites of perfusion, which included the paraventricular nucleus (PVN), ventromedial nucleus (VMN), and the lateral hypothalamic (LH) area. After endogenous stores of NE at a specific hypothalamic locus were radiolabeled by microinjection of 0.02-0.5 μCi of [ 3 H]NE, an artificial cerebrospinal fluid was perfused at the site at a rate of 20 μl/min over successive intervals of 5.0 min. When 0.05 or 0.1 μg/μl NT was added to the perfusate, the peptide served either to enhance or educe the local release of NE at 50% of the sites of perfusion. In these experiments, the circumscribed effect of NT on the characteristics of catecholamine efflux depended entirely on the state of hunger or satiety of the rat. That is, when NT was perfused in the fully satiated rat, NE release was augmented within the PVn or VMN; conversely, NE release was inhibited in the LH. in the animal fasted for 18-22 h, NT exerted an opposite effect on the activity of NE within the same anatomical loci in that the efflux of NE was enhanced in the LH but attenuated or unaffected in the PVN or VMN. Taken together, these observations provide experimental support for the view-point that NT could act as a neuromodulator of the activity of hypothalamic noradrenergic neurons that are thought to play a functional role in the regulation of food intake

  11. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  12. Myocardial perfusion studies in coronary diseases

    International Nuclear Information System (INIS)

    Mut, Fernando

    1994-01-01

    For detecting in precocious form a coronary disease is necessary to apply a diagnostic techniques. The main considerations to be indicated in the present work are: physiological considerations, myocardial perfusion studies with radiotracers such as Talio 201, 99mTc, MIBI, 99mTc-Teboroxima, 99mTc-Fosfinas, instrumentation for obtain good images,proceedings protocols, studies interpretation, standards, SPECT, anomalies standards, coronary diseases

  13. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  14. Perfusion magnetic resonance imaging provides additional information as compared to anatomical imaging for decision-making in vestibular schwannoma

    International Nuclear Information System (INIS)

    Kleijwegt, M.C.; Mey, A.G.L. van der; Wiggers-deBruine, F.T.; Malessy, M.J.A; Osch, M.J.P. van

    2016-01-01

    •DSC/ASL-MRI can be acquired in growing VS with sufficient image quality.•In most patients DSC and ASL techniques provide similar qualitative scores.•These techniques can be of importance in future decision-making. DSC/ASL-MRI can be acquired in growing VS with sufficient image quality. In most patients DSC and ASL techniques provide similar qualitative scores. These techniques can be of importance in future decision-making. The added value of perfusion MRI for decision-making in vestibular schwannoma (VS) patients is unknown. MRI offers two perfusion methods: the first employing contrast agent (dynamic susceptibility contrast (DSC)-MRI) that provides information on cerebral blood volume (CBV) and cerebral blood flow (CBF), the second by magnetic labeling of blood (arterial spin labeling (ASL)-MRI), providing CBF-images. The goal of the current study is to investigate whether DSC and ASL perfusion MRI provides complimentary information to current anatomical imaging in treatment selection process of VS. Nine patients with growing VS with extrameatal diameter >9 mm were included (>2 mm/year and 20% volume expansion/year) and one patient with 23 mm extrameatal VS without growth. DSC and ASL perfusion MRI were obtained on 3 T MRI. Perfusion in VS was scored as hyperintense, hypointense or isointense compared to the contralateral region. Seven patients showed hyperintense signal on DSC and ASL sequences. Three patients showed iso- or hypointense signal on at least one perfusion map (1 patient hypointense on both DSC-MRI and ASL; 1 patient isointense on DSC-CBF; 1 patient isointense on ASL). All patients showed enhancement on post-contrast T1 anatomical scan. Perfusion MR provides additional information compared to anatomical imaging for decision-making in VS

  15. Nuclear medicine and coronary artery disease: evaluation of tracers of myocardial perfusion and vulnerable atherosclerotic plaque; Medecine nucleaire et maladie coronarienne: evaluation de traceurs de la perfusion myocardique et de la plaque d'atherome vulnerable

    Energy Technology Data Exchange (ETDEWEB)

    Broisat, A

    2005-04-15

    Coronary artery disease is one of the primary cause of mortality worldwide. Nuclear medicine is the major imaging technique for diagnosis and following of this disease. perfusion: nowadays, major radioactive agents used in clinical practice are myocardial perfusion tracers. The reference tracer is thallium-201. However, {sup 201}Tl presents some drawbacks. {sup 99m}Tcn-noet has been proposed for its replacement. This study shows that in contrast with previous studies realized in vitro on cardio myocytes, verapamil, an l-type calcium channel inhibitor, does not inhibit myocardial fixation of {sup 99m}Tcn-noet in vivo in dog. This data is in agreement with the hypothesis of a non specific endothelial fixation of this tracer. Moreover, this study shows that as a pure tracer of myocardial perfusion, {sup 99m}Tcn-noet can also be used to assess myocardial viability on a model of myocardial chronic infarction in rat. atherosclerosis: disruption of vulnerable atherosclerotic plaques is the main event leading to coronary accidents. The second part of this study concerns the evaluation of new potential tracers of the vulnerable atherosclerotic plaque in an experimental model of rabbit with an inheritable hypercholesterolemia. The four tracers evaluated (b2702(r), b2702-I, b2702-Tc and Tc-raft-b2702) are synthetic peptides comprising the residues 75-84 of hla-b2702, a molecule known to link vcam-1, an adhesion molecule expressed in vulnerable atherosclerotic plaque. The autoradiography studies show that all tracers accumulate within atherosclerotic plaque expressing vcam- and that. i-b2702 shows the best plaque/control fixation ratio. (author)

  16. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience

    International Nuclear Information System (INIS)

    Federau, C.; Becce, F.; Maeder, P.; Meuli, R.; Sumer, S.; Wintermark, M.; O'Brien, K.

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging is an MRI perfusion technique that uses a diffusion-weighted sequence with multiple b values and a bi-compartmental signal model to measure the so-called pseudo-diffusion of blood caused by its passage through the microvascular network. The goal of the current study was to assess the feasibility of IVIM perfusion fraction imaging in patients with acute stroke. Images were collected in 17 patients with acute stroke. Exclusion criteria were onset of symptoms to imaging >5 days, hemorrhagic transformation, infratentorial lesions, small lesions 2 . Image quality was assessed by two radiologists, and quantitative analysis was performed in regions of interest placed in the stroke area, defined by thresholding the apparent diffusion coefficient maps, as well as in the contralateral region. IVIM perfusion fraction maps showed an area of decreased perfusion fraction f in the region of decreased apparent diffusion coefficient. Quantitative analysis showed a statistically significant decrease in both IVIM perfusion fraction f (0.026 ± 0.019 vs. 0.056 ± 0.025, p = 2.2 . 10 -6 ) and diffusion coefficient D compared with the contralateral side (3.9 ± 0.79 . 10 -4 vs. 7.5 ± 0.86 . 10 -4 mm 2 /s, p = 1.3 . 10 -20 ). IVIM perfusion fraction imaging is feasible in acute stroke. IVIM perfusion fraction is significantly reduced in the visible infarct. Further studies should evaluate the potential for IVIM to predict clinical outcome and treatment response. (orig.)

  17. Quantification de la perfusion rénale par échographie de contraste, une étude pilote

    OpenAIRE

    Schneider, A.

    2013-01-01

    Mise en perspective Le rein est un organe vital dont la fonction dépend en grande partie d'une perfusion tissulaire adéquate. Les techniques actuellement utilisées pour étudier la microcirculation rénale sont soit invasives soit très dispendieuses. L'échographie de contraste est une nouvelle technologie, non invasive, facile à réaliser au lit du malade et pour laquelle certaines techniques récemment présentées semblent permettre de quantifier la perfusion d'un organe. Une telle technique p...

  18. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results

    International Nuclear Information System (INIS)

    Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S.

    2013-01-01

    Aim: To assess the feasibility of an unenhanced, flow-sensitive, alternating inversion recovery-balanced steady-state free precession (FAIR TrueFISP) arterial spin labelling (ASL) magnetic resonance imaging (MRI) technique for quantification of breast cancer perfusion. Materials and methods: Eighteen untreated breast tumour patients (mean age 53 ± 17 years, range 30–68 years) and four healthy controls (mean age 51 ± 14 years, range 33–68 years) were enrolled in this study and were imaged using a clinical 1.5 T MRI machine. Perfusion measurements were performed using a coronal single-section ASL FAIR TrueFISP technique in addition to a routine breast MRI examination. T1 relaxation time of normal breast parenchyma was determined in four healthy volunteers using the variable flip angle approach. The definitive diagnosis was obtained at histology after biopsy or surgery and was available for all patients. Results: ASL perfusion was successfully acquired in 13 of 18 tumour patients and in all healthy controls. The mean ASL perfusion of invasive ductal carcinoma tissue was significantly higher (88.2 ± 39.5 ml/100 g/min) compared to ASL perfusion of normal breast parenchyma (24.9 ± 12.7 ml/100 g/min; p < 0.05) and invasive lobular carcinoma (30.5 ± 4.3 ml/100 g/min; p < 0.05). No significant difference was found between the mean ASL perfusion of normal breast parenchyma and invasive lobular carcinoma tissue (p = 0.97). Conclusion: ASL MRI enables quantification of breast cancer perfusion without the use of contrast material. However, its impact on diagnosis and therapy management of breast tumours has to be evaluated in larger patient studies

  19. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  20. Magnetic resonance myocardial perfusion imaging-First experience at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, B. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: bernhard.klumpp@med.uni-tuebingen.de; Hoevelborn, T. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Cardiology, Otfried-Mueller-Str. 10, 72076 Tuebingen (Germany)], E-mail: tobias.hoevelborn@gmx.de; Fenchel, M. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: michael.fenchel@med.uni-tuebingen.de; Stauder, N.I. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: norbert.stauder@stgag.ch; Kramer, U. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: ulrich.kramer@med.uni-tuebingen.de; May, A. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Cardiology, Otfried-Mueller-Str. 10, 72076 Tuebingen (Germany)], E-mail: andreas.may@med.uni-tuebingen.de; Gawaz, M.P. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Cardiology, Otfried-Mueller-Str. 10, 72076 Tuebingen (Germany)], E-mail: meinrad.gawaz@med.uni-tuebingen.de; Claussen, C.D. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: claus.claussen@med.uni-tuebingen.de; Miller, S. [Eberhard-Karls-University Tuebingen, University Hospital Tuebingen, Department of Diagnostic Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)], E-mail: stephan.miller@med.uni-tuebingen.de

    2009-01-15

    Objective: MR myocardial perfusion imaging (MRMPI) is an established technique for the evaluation of the hemodynamical relevance of coronary artery disease. Perfusion imaging at 3.0 T provides certain advantages compared to 1.5 T. Aim of this study was to evaluate myocardial MR perfusion imaging at 3.0 T. Materials and methods: Twelve patients with stable Angina pectoris and known or suspected coronary artery disease were examined at 3.0 T. Myocardial perfusion was assessed using a saturation recovery gradient echo 2D sequence (TR 1.9 ms, TE 1.0 ms, FA 12 deg.) with 0.05 mmol Gd-DTPA per kg body weight at stress during injection of 140 {mu}g adenosine/kg body weight/min and at rest in short axis orientation. Perfusion analysis was based on a least square fit of the signal/time curve (peak signal intensity, slope). Perfusion series were assessed by two independent observers. Reference for the presence of relevant coronary artery stenoses was invasive coronary angiography. Two experienced observers evaluated the coronary angiograms in biplane projections for the presence and grade of stenoses. Results were compared with the MR perfusion analysis. Results: All MR examinations could be safely performed and yielded high image quality. In eight patients stress-induced hypoperfusion was detected (stenosis >70% in coronary angiography). In four patients myocardial hypoperfusion was ruled out (stenosis <70%). The myocardial perfusion reserve index was significantly reduced in hypoperfused myocardium with 1.9 {+-} 1.6 compared to 2.5 {+-} 1.6 in regularly perfused myocardium (p < 0.05). In coronary angiography, eight patients were found to suffer from coronary artery disease, whereas in four patients coronary artery disease was ruled out. Conclusion: Our initial results show that MRMPI at 3.0 T provides reliably high-image quality and diagnostic accuracy.

  1. The utility of first-pass perfusion CT in hyperacute ischemic stroke: early experience

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Lee, Myeong Sub; Kim, Myung Soon; Hong, In Soo; Lee, Young Han; Lee, Ji Yong; Whang, Kum

    2003-01-01

    To evaluate the findings of first-pass perfusion CT in hyperacute stroke patients and to determine the relationship between a perfusion map and final infarct outcome. Thirty-five patients admitted with ischemic stroke within six hours of the onset of symptoms underwent conventional cerebral CT immediately followed by first-pass perfusion CT. Nineteen underwent follow-up CT or MRI, and three types of dynamic perfusion map-cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) - were evaluated by two radiologists. In these 19 patients, initial perfusion maps correlated with final infarct size, determined during follow-up studies. In all 35 patients, major large vessel perfusion abnormalities [middle cerebral artery - MCA MCA and anterior cerebral artery - ACA (n=2); posterior cerebral artery - PCA (n=8)] were detected. On first-pass perfusion maps depicting CBF and MTT, all lesions were detected, and CBF and delayed MTT values were recorded. CBV maps showed variable findings. In all 19 patients who were followed up, the final infarct size of perfusion abnormalities was less than that depicted on CBF and MTT maps, and similar to or much greater than that seen on CBV maps. First-pass perfusion CT scanning is a practical, rapid and advanced imaging technique. In hyperacute stroke patients, it provides important and reliable hemodynamic information as to which brain tissue is salvageable by thrombolytic therapy, and predicts outcome of such treatment

  2. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  3. A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer

    International Nuclear Information System (INIS)

    Hintze, C.; Stemmer, A.; Bock, M.

    2010-01-01

    Assessment of lung cancer perfusion is impaired by respiratory motion. Imaging times for contrast agent wash-out studies often exceed breath hold capabilities, and respiration triggering reduces temporal resolution. Temporally resolved volume acquisition of entire tumors is required to assess heterogeneity. Therefore, we developed and evaluated an MR measurement technique that exceeds a single breath hold, and provides a variable temporal resolution during acquisition while suspending breath-dependent motion. 20 patients with suspected lung cancer were subjected to perfusion studies using a spoiled 3D gradient echo sequence after bolus injection of 0.07 mmol/kg body weight of Gd-DTPA. 10 acquisitions in expiratory breath hold were followed by 50 navigator-triggered acquisitions under free breathing. Post-processing allowed for co-registration of the 3D data sets. An ROI-based visualization of the signal-time curves was performed. In all cases motion-suspended, time-resolved volume data sets (40 x 33 x 10 cm 3 , voxel size: 2.1 x 2.1 x 5.0 mm 3 ) were generated with a variable, initially high temporal resolution (2.25 sec) that was synchronized with the breath pattern and covered up to 8(1)/(2) min. In 7 / 20 cases a remaining offset could be reduced by rigid co-registration. The tumors showed fast wash-in, followed by rapid signal decay (8 / 20) or a plateau. The feasibility of a perfusion study with hybrid breath hold and navigator-triggered time-resolved 3D MRI which combines high initial temporal resolution during breath hold with a long wash-out period under free breathing was demonstrated. (orig.)

  4. Improving perfusion quantification in arterial spin labeling for delayed arrival times by using optimized acquisition schemes

    International Nuclear Information System (INIS)

    Kramme, Johanna; Diehl, Volker; Madai, Vince I.; Sobesky, Jan; Guenther, Matthias

    2015-01-01

    The improvement in Arterial Spin Labeling (ASL) perfusion quantification, especially for delayed bolus arrival times (BAT), with an acquisition redistribution scheme mitigating the T1 decay of the label in multi-TI ASL measurements is investigated. A multi inflow time (TI) 3D-GRASE sequence is presented which adapts the distribution of acquisitions accordingly, by keeping the scan time constant. The MR sequence increases the number of averages at long TIs and decreases their number at short TIs and thus compensating the T1 decay of the label. The improvement of perfusion quantification is evaluated in simulations as well as in-vivo in healthy volunteers and patients with prolonged BATs due to age or steno-occlusive disease. The improvement in perfusion quantification depends on BAT. At healthy BATs the differences are small, but become larger for longer BATs typically found in certain diseases. The relative error of perfusion is improved up to 30% at BATs > 1500 ms in comparison to the standard acquisition scheme. This adapted acquisition scheme improves the perfusion measurement in comparison to standard multi-TI ASL implementations. It provides relevant benefit in clinical conditions that cause prolonged BATs and is therefore of high clinical relevance for neuroimaging of steno-occlusive diseases.

  5. Comprehensive Assessment of Coronary Artery Disease by Using First-Pass Analysis Dynamic CT Perfusion: Validation in a Swine Model.

    Science.gov (United States)

    Hubbard, Logan; Lipinski, Jerry; Ziemer, Benjamin; Malkasian, Shant; Sadeghi, Bahman; Javan, Hanna; Groves, Elliott M; Dertli, Brian; Molloi, Sabee

    2018-01-01

    Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (P FPA and P MSM ) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (P MICRO ), as follows: P FPA_COMBINED = 1.02 P MICRO_COMBINED + 0.11 (r = 0.96) and P MSM_COMBINED = 0.28 P MICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.

  6. Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury.

    OpenAIRE

    Phang, I; Zoumprouli, A; Papadopoulos, MC; Saadoun, S

    2016-01-01

    OBJECTIVE: There is lack of monitoring from the injury site to guide management of patients with acute traumatic spinal cord injury. Here we describe a bedside microdialysis monitoring technique for optimizing spinal cord perfusion and drug delivery at the injury site. METHODS: 14 patients were recruited within 72 hours of severe spinal cord injury. We inserted intradurally at the injury site a pressure probe, to monitor continuously spinal cord perfusion pressure, and a microdialysis cathete...

  7. Ex vivo confocal microscopy: an emerging technique in dermatology

    Science.gov (United States)

    Perrot, Jean Luc; Labeille, Bruno; Cambazard, Frédéric; Rubegni, Pietro

    2018-01-01

    This review aims to give an overview of the current available applications of ex vivo confocal microscopy (EVCM) in dermatology. EVCM is a relatively new imaging technique that allows microscopic examination of freshly excised unfixed tissue. It enables a rapid examination of the skin sample directly in the surgery room and thus represents an alternative to the intraoperative micrographic control of the surgical margins of cutaneous tumors by standard microscopic examination on cryopreserved sections during Mohs surgery. Although this technique has mainly been developed for the margin’s control of basal cell carcinoma, many other skin tumors have been studied, including melanoma. Use of EVCM is continuing to evolve, and many possible applications are under investigation, such as the study of nails and hair diseases and the diagnosis of skin infections. PMID:29785327

  8. Perfusion dyssynchrony analysis

    NARCIS (Netherlands)

    Chiribiri, A.; Villa, A.D.M.; Sammut, E.; Breeuwer, M.; Nagel, E.

    2015-01-01

    AIMS: We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS:

  9. Spectral Editing Technique for the in Vitroand in VivoDetection of Taurine

    Science.gov (United States)

    Hardy, D. L.; Norwood, T. J.

    1998-07-01

    In vivo1H NMR spectroscopy has proven to be a useful noninvasive tool for the investigation of numerous metabolic and physiological states. Taurine is potentially a useful indicator in neonate development and is involved in a number of physiological processes. However, it could not previously be observed in thein vivo1H spectrum because of overlap with adjacent resonances. We have developed a spectral editing technique based upon double quantum filtration which allows the taurine resonances to be resolved from adjacent peaks. The experiment is demonstrated both on perchloric acid rodent brain extract and on rodent brain homogenate.

  10. Nuclear medicine and coronary artery disease: evaluation of tracers of myocardial perfusion and vulnerable atherosclerotic plaque; Medecine nucleaire et maladie coronarienne: evaluation de traceurs de la perfusion myocardique et de la plaque d'atherome vulnerable

    Energy Technology Data Exchange (ETDEWEB)

    Broisat, A

    2005-04-15

    Coronary artery disease is one of the primary cause of mortality worldwide. Nuclear medicine is the major imaging technique for diagnosis and following of this disease. perfusion: nowadays, major radioactive agents used in clinical practice are myocardial perfusion tracers. The reference tracer is thallium-201. However, {sup 201}Tl presents some drawbacks. {sup 99m}Tcn-noet has been proposed for its replacement. This study shows that in contrast with previous studies realized in vitro on cardio myocytes, verapamil, an l-type calcium channel inhibitor, does not inhibit myocardial fixation of {sup 99m}Tcn-noet in vivo in dog. This data is in agreement with the hypothesis of a non specific endothelial fixation of this tracer. Moreover, this study shows that as a pure tracer of myocardial perfusion, {sup 99m}Tcn-noet can also be used to assess myocardial viability on a model of myocardial chronic infarction in rat. atherosclerosis: disruption of vulnerable atherosclerotic plaques is the main event leading to coronary accidents. The second part of this study concerns the evaluation of new potential tracers of the vulnerable atherosclerotic plaque in an experimental model of rabbit with an inheritable hypercholesterolemia. The four tracers evaluated (b2702(r), b2702-I, b2702-Tc and Tc-raft-b2702) are synthetic peptides comprising the residues 75-84 of hla-b2702, a molecule known to link vcam-1, an adhesion molecule expressed in vulnerable atherosclerotic plaque. The autoradiography studies show that all tracers accumulate within atherosclerotic plaque expressing vcam- and that. i-b2702 shows the best plaque/control fixation ratio. (author)

  11. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion

    DEFF Research Database (Denmark)

    Degett, Thea Helene; Andersen, Helene Schou; Gögenur, Ismail

    2016-01-01

    PURPOSE: Anastomotic leakage following gastrointestinal surgery remains a frequent and serious complication associated with a high morbidity and mortality. Indocyanine green fluorescence angiography (ICG-FA) is a newly developed technique to measure perfusion intraoperatively. The aim of this paper...... included in the review if they assessed anastomotic perfusion intraoperatively with ICG-FA in order to predict anastomotic leakage in humans. RESULTS: Of 790 screened papers 14 studies were included in this review. Ten studies (n = 916) involved patients with colorectal anastomoses and four studies (n...

  12. Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model.

    Science.gov (United States)

    Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B

    2011-02-01

    The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P values in the expected physiologic range (microsphere perfusion values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.

  13. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  14. Dynamic (4D) CT perfusion offers simultaneous functional and anatomical insights into pulmonary embolism resolution

    Energy Technology Data Exchange (ETDEWEB)

    Mirsadraee, Saeed, E-mail: saeed.mirsadraee@ed.ac.uk [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Reid, John H.; Connell, Martin [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); MacNee, William; Hirani, Nikhil [The Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom); Murchison, John T. [Department of Radiology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA (United Kingdom); Beek, Edwin J. van [Clinical Research Imaging Centre, Queen' s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ (United Kingdom)

    2016-10-15

    Objective: Resolution and long-term functional effects of pulmonary emboli are unpredictable. This study was carried out to assess persisting vascular bed perfusion abnormalities and resolution of arterial thrombus in patients with recent pulmonary embolism (PE). Methods and materials: 26 Patients were prospectively evaluated by dynamic (4D) contrast enhanced CT perfusion dynamic pulmonary CT perfusion. Intermittent volume imaging was performed every 1.5–1.7 s during breath-hold and perfusion values were calculated by maximum-slope technique. Thrombus load (modified Miller score; MMS) and ventricular diameter were determined. Perfusion maps were visually scored and correlated with residual endoluminal filling defects. Results: The mean initial thrombus load was 13.1 ± 4.6 MMS (3–16), and 1.2 ± 2.1 MMS (0–8) at follow up. From the 24 CTPs with diagnostic quality perfusion studies, normal perfusion was observed in 7 (29%), and mildly-severely abnormal in 17 (71%). In 15 patients with no residual thrombus on follow up CTPA, normal perfusion was observed in 6, and abnormal perfusion in 9. Perfusion was abnormal in all patients with residual thrombus on follow up CTPA. Pulmonary perfusion changes were classified as reduced (n = 4), delayed (systemic circulation pattern; n = 5), and absent (no-flow; n = 5). The right ventricle was dilated in 12/25 (48%) at presentation, and normal in all 26 follow up scans. Weak correlation was found between initial ventricular dilatation and perfusion abnormality at follow up (r = 0.15). Conclusions: Most patients had substantial perfusion abnormality at 3–6 months post PE. Abnormal perfusion patterns were frequently observed in patients and in regions with no corresponding evidence of residual thrombus on CTPA. Some defects exhibit delayed, presumed systemic, enhancement (which we have termed ‘stunned’ lung). CT perfusion provides combined anatomical and functional information about PE resolution.

  15. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  16. Measurement of histamine release from human lung tissue ex vivo by microdialysis technique

    DEFF Research Database (Denmark)

    Nissen, Dan; Petersen, Lars Jelstrup; Nolte, H

    1998-01-01

    OBJECTIVE AND DESIGN: Currently no method is available for measurement of mediator release from intact human lung. In this study, a microdialysis technique was used to measure histamine release from mast cells in human lung tissue ex vivo. MATERIAL: Microdialysis fibers of 216 microm were inserted...... responses were observed but data could be reproduced within individual donors. Monocyte chemoattractant protein-1, a potent basophil secretagogue, did not induce histamine release in lung tissue which indicated mast cells to be the histamine source. Substance P did not release histamine in the lung tissue....... CONCLUSIONS: The microdialysis technique allowed measurements of histamine release from mast cells in intact lung ex vivo. The method may prove useful since a number of experiments can be performed in a few hours in intact lung tissue without any dispersion or enzymatic treatment....

  17. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  18. Feasibility of perfusion CT technique integrated into conventional {sup 18}FDG/PET-CT studies in lung cancer patients: clinical staging and functional information in a single study

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, Davide; Capraro, Cristina; Sironi, Sandro [University of Milano-Bicocca, School of Medicine, Milan (Italy); University of Milano-Bicocca, Department of Diagnostic Radiology, H.S. Gerardo Monza, Via Pergolesi 11, Monza, Milan (Italy); Guerra, Luca [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); De Ponti, Elena [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Medical Physics, Monza (Italy); Messa, Cristina [University of Milano-Bicocca, School of Medicine, Milan (Italy); San Gerardo Hospital, Department of Nuclear Medicine and PET Unit - Molecular Bioimaging Centre, Monza (Italy); Tecnomed Foundation, University of Milano-Bicocca, Institute for Bioimaging and Molecular Physiology, National Research Council, Milan (Italy)

    2013-02-15

    To assess the additional functional vascular information and the relationship between perfusion measurements and glucose metabolism (SUVmax) obtained by including a perfusion CT study in a whole-body contrast-enhanced PET/CT protocol in primary lung cancer lesions. Enrolled in this prospective study were 34 consecutive patients with a biopsy-proven diagnosis of lung cancer who were referred for contrast-enhanced PET/CT staging. This prospective study was approved by our institutional review board, and informed consent was obtained from all patients. Perfusion CT was performed with the following parameters: 80 kV, 200 mAs, 30 scans during intravenous injection of 50 ml contrast agent, flow rate 5 ml/s. Another bolus of contrast medium (3.5 ml/s, 80 ml, 60-s delay) was administered to ensure a full diagnostic contrast-enhanced CT scan for clinical staging. The perfusion CT data were used to calculate a range of tumour vascularity parameters (blood flow, blood volume and mean transit time), and tumour FDG uptake (SUVmax) was used as a metabolic indicator. Quantitative and functional parameters were compared and in relation to location, histology and tumour size. The nonparametric Kruskal-Wallis rank sum test was used for statistical analysis. A cut-off value of 3 cm was used according to the TNM classification to discriminate between T1 and T2 tumours (i.e. T1b vs. T2a). There were significant perfusion differences (lower blood volumes and higher mean transit time) between tumours with diameter >30 mm and tumours with diameter <30 mm (p < 0.05; blood volume 5.6 vs. 7.1 ml/100 g, mean transit time 8.6 vs. 3.9 s, respectively). Also there was a trend for blood flow to be lower in larger lesions (p < 0.053; blood flow 153.1 vs. 98.3 ml/100 g tissue/min). Significant inverse correlations (linear regression) were found between blood volume and SUVmax in tumours with diameter >30 mm in diameter. Perfusion CT combined with PET/CT is feasible technique that may provide

  19. Radiosynthesis and preclinical evaluation of [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one as a novel myocardial perfusion imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Bhusari, Arun M.; Degani, Mariam S. [Institute of Chemical Technology, Mumbai (India). Dept. of Pharmaceutical Sciences and Technology; Lakshminarayanan, N.; Pawar, Yogita P.; Moghe, Surendra H.; Rajan, M.G.R. [Bhabha Atomic Research Centre, Mumbai (India). Radiation Medicine Center

    2017-07-01

    Recently we developed [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one as a novel {sup 18}F myocardial perfusion imaging radiotracer. It was synthesized in good radiochemical yield (>90%). The total time from radiosynthesis to its purification was less than 40 min, with excellent radiochemical purity (≥99%). It showed good stability over a period of 5 h at room temperature. The partition coefficient (log P) of radiotracer was found to be 2.70, suggesting the lipophilic nature of radiotracer. Ex vivo biodistribution study of radiotracer in normal Wistar rats for 30 min post-injection, demonstrated a good heart uptake (>1.3% ID/g) and favorable pharmacokinetics. Additionally, the radiotracer showed significant excretion (>11% ID) by liver, which is indicative of its rapid clearance. Further, in vivo biodistribution study of radiotracer in New Zealand White rabbit provided the clear PET/CT images of cardiomyocytes and myocardial perfusion. All these experimental findings suggest that [{sup 18}F] 4-(2-fluoroethoxy)-2H-chromen-2-one could be used as a potential hit for myocardial perfusion imaging.

  20. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias).

    Science.gov (United States)

    Wood, Chris M; Liew, Hon Jung; De Boeck, Gudrun; Walsh, Patrick J

    2013-01-01

    The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L(-1) urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L(-1) with osmotic compensation by 175 mmol L(-1) mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L(-1)) to those of urea (175 mmol L(-1)), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.

  1. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias

    Directory of Open Access Journals (Sweden)

    Chris M. Wood

    2013-02-01

    Full Text Available The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1 to those of urea (175 mmol L−1, urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.

  2. TU-E-201-02: Eye Lens Dosimetry From CT Perfusion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. [Toshiba America Medical Systems (United States)

    2015-06-15

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  3. TU-E-201-02: Eye Lens Dosimetry From CT Perfusion Studies

    International Nuclear Information System (INIS)

    Zhang, D.

    2015-01-01

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  4. A novel combination technique of cold crystalloid perfusion but not cold storage facilitates transplantation of canine hearts donated after circulatory death.

    Science.gov (United States)

    Rosenfeldt, Franklin; Ou, Ruchong; Salamonsen, Robert; Marasco, Silvana; Zimmet, Adam; Byrne, Joshua; Cosic, Filip; Saxena, Pankaj; Esmore, Donald

    2016-11-01

    Donation after circulatory death (DCD) represents a potential new source of hearts to increase the donor pool. We showed previously that DCD hearts in Greyhound dogs could be resuscitated and preserved by continuous cold crystalloid perfusion but not by cold static storage and could demonstrate excellent contractile and metabolic function on an in vitro system. In the current study, we demonstrate that resuscitated DCD hearts are transplantable. Donor Greyhound dogs (n = 12) were divided into perfusion (n = 8) and cold static storage (n = 4) groups. General anesthesia was induced and ventilation ceased for 30 minutes to achieve circulatory death. Donor cardiectomy was performed, and for 4 hours the heart was preserved by controlled reperfusion, followed by continuous cold perfusion with an oxygenated crystalloid perfusate or by static cold storage, after which orthotopic heart transplantation was performed. Recovery was assessed over 4 hours by hemodynamic monitoring. During cold perfusion, hearts showed continuous oxygen consumption and low lactate levels, indicating aerobic metabolism. The 8 dogs in the perfusion group were weaned off bypass, and 4 hours after bypass produced cardiac output of 4.73 ± 0.51 liters/min, left ventricular power of 7.63 ± 1.32 J/s, right ventricular power of 1.40 ± 0.43 J/s, and left ventricular fractional area shortening of 39.1% ± 5.2%, all comparable to pre-transplant values. In the cold storage group, 3 of 4 animals could not be weaned from cardiopulmonary bypass, and the fourth exhibited low-level function. Cold crystalloid perfusion, but not cold static storage, can resuscitate and preserve the DCD donor heart in a canine model of heart transplantation, thus rendering it transplantable. Controlled reperfusion and cold crystalloid perfusion have potential for clinical application in DCD transplantation. Copyright © 2016. Published by Elsevier Inc.

  5. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  6. Diffusion and perfusion imaging of bone marrow

    International Nuclear Information System (INIS)

    Biffar, Andreas; Dietrich, Olaf; Sourbron, Steven; Duerr, Hans-Roland; Reiser, Maximilian F.; Baur-Melnyk, Andrea

    2010-01-01

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  7. In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Shakushi, Yukina; Sasaki, Miku; Koike, Yuta; Osawa, Misa; Takeda, Atsushi

    2017-02-17

    Artificial cerebrospinal fluid (ACSF), i.e., brain extracellular medium, which includes Ca 2+ and Mg 2+ , but not other divalent cations such as Zn 2+ , has been used for in vitro and in vivo experiments. The present study deals with the physiological significance of extracellular Zn 2+ in ACSF. Spontaneous presynaptic activity is suppressed in the stratum lucidum of brain slices from young rats bathed in ACSF containing 10 nM ZnCl 2 , indicating that extracellular Zn 2+ modifies hippocampal presynaptic activity. To examine the in vivo action of 10 nM ZnCl 2 on long-term potentiation (LTP), the recording region was perfused using a recording electrode attached to a microdialysis probe. The magnitude of LTP was not modified in young rats by perfusion with ACSF containing 10 nM ZnCl 2 , compared to perfusion with ACSF without Zn 2+ , but attenuated by perfusion with ACSF containing 100 nM ZnCl 2 . Interestingly, the magnitude of LTP was not modified in aged rats even by perfusion with ACSF containing 100 nM ZnCl 2 , but enhanced by perfusion with ACSF containing 10 mM CaEDTA, an extracellular Zn 2+ chelator. The present study indicates that the basal levels of extracellular Zn 2+ , which are in the range of low nanomolar concentrations, are critical for synaptic activity and perhaps increased age-dependently.

  8. 'Motion frozen' quantification and display of myocardial perfusion gated SPECT

    International Nuclear Information System (INIS)

    Slomka, P.J.; Hurwitz, G.A.; Baddredine, M.; Baranowski, J.; Aladl, U.E.

    2002-01-01

    Aim: Gated SPECT imaging incorporates both functional and perfusion information of the left ventricle (LV). However perfusion data is confounded by the effect of ventricular motion. Most existing quantification paradigms simply add all gated frames and then proceed to extract the perfusion information from static images, discarding the effects of cardiac motion. In an attempt to improve the reliability and accuracy of cardiac SPECT quantification we propose to eliminate the LV motion prior to the perfusion quantification via automated image warping algorithm. Methods: A pilot series of 14 male and 11 female gated stress SPECT images acquired with 8 time bins have been co-registered to the coordinates of the 3D normal templates. Subsequently the LV endo and epi-cardial 3D points (300-500) were identified on end-systolic (ES) and end-diastolic (ED) frames, defining the ES-ED motion vectors. The nonlinear image warping algorithm (thin-plate-spline) was then applied to warp end-systolic frame was onto the end-diastolic frames using the corresponding ES-ED motion vectors. The remaining 6 intermediate frames were also transformed to the ED coordinates using fractions of the motion vectors. Such warped images were then summed to provide the LV perfusion image in the ED phase but with counts from the full cycle. Results: The identification of the ED/ES corresponding points was successful in all cases. The corrected displacement between ED and ES images was up to 25 mm. The summed images had the appearance of the ED frames but have been much less noisy since all the counts have been used. The spatial resolution of such images appeared higher than that of summed gated images, especially in the female scans. These 'motion frozen' images could be displayed and quantified as regular non-gated tomograms including polar map paradigm. Conclusions: This image processing technique may improve the effective image resolution of summed gated myocardial perfusion images used for

  9. Nuclear magnetic resonance of perfused tissue

    International Nuclear Information System (INIS)

    Harpen, M.D.; Allison, R.C.

    1986-01-01

    The effect of perfusion on the NMR signal observed in NMR imaging is studied in a phantom and in two isolated perfused canine lungs. It is observed that perfusion in tissue has little effect on longitudinal relaxation times. Transverse relaxation rates are observed to correlate linearly with rates of perfusion, in accordance with a model presented. (author)

  10. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  11. Myocardial perfusion magnetic resonance imaging using sliding-window conjugate-gradient HYPR methods in canine with stenotic coronary arteries.

    Science.gov (United States)

    Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao

    2010-01-01

    First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.

  12. Aid in the detection of myocardial perfusion abnormality utilizing SPECT atlas and images registration: preliminary results

    International Nuclear Information System (INIS)

    Padua, Rodrigo Donizete Santana de; Oliveira, Lucas Ferrari de; Marques, Paulo Mazzoncini de Azevedo; Groote, Jean-Jacques Georges Soares de; Castro, Adelson Antonio de; Ana, Lauro Wichert; Simoes, Marcus Vinicius

    2008-01-01

    To develop an atlas of myocardial perfusion scintigraphy and evaluating its applicability in computer-aided detection of myocardial perfusion defects in patients with ischemic heart disease. The atlas was created with rest-stress myocardial perfusion scintigraphic images of 20 patients of both genders with low probability of coronary artery disease and considered as normal by two experienced observers. Techniques of image registration and mathematical operations on images were utilized for obtaining template images depicting mean myocardial uptake and standard deviation for each gender and physiological condition. Myocardial perfusion scintigraphy images of one male and one female patient were aligned with the corresponding atlas template image, and voxels with myocardial uptake rates two standard deviations below the mean voxel value of the respective region in the atlas template image were highlighted on the tomographic sections and confirmed as perfusion defects by both observe. The present study demonstrated the creation of an atlas of myocardial perfusion scintigraphy with promising results of this tool as an aid in the detection of myocardial perfusion defects. However, further prospective validation with a more representative sample is recommended. (author)

  13. Aid in the detection of myocardial perfusion abnormality utilizing SPECT atlas and images registration: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Padua, Rodrigo Donizete Santana de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Div. de Cardiologia]. E-mail: rodrigo_dsp@hcrp.fmrp.usp.br; Oliveira, Lucas Ferrari de [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Fisica e Matematica. Dept. de Tecnologia da Informacao; Marques, Paulo Mazzoncini de Azevedo [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Groote, Jean-Jacques Georges Soares de [Instituto de Ensino Superior COC, Ribeirao Preto, SP (Brazil). Lab. of Artifical Intelligence and Applications; Castro, Adelson Antonio de [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina; Ana, Lauro Wichert [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Centro de Ciencias das Imagens e Fisica Medica; Simoes, Marcus Vinicius [Universidade de Sao Paulo (USP), Ribeirao Preto, SP, (Brazil). Faculdade de Medicina. Divisao de Cardiologia

    2008-11-15

    To develop an atlas of myocardial perfusion scintigraphy and evaluating its applicability in computer-aided detection of myocardial perfusion defects in patients with ischemic heart disease. The atlas was created with rest-stress myocardial perfusion scintigraphic images of 20 patients of both genders with low probability of coronary artery disease and considered as normal by two experienced observers. Techniques of image registration and mathematical operations on images were utilized for obtaining template images depicting mean myocardial uptake and standard deviation for each gender and physiological condition. Myocardial perfusion scintigraphy images of one male and one female patient were aligned with the corresponding atlas template image, and voxels with myocardial uptake rates two standard deviations below the mean voxel value of the respective region in the atlas template image were highlighted on the tomographic sections and confirmed as perfusion defects by both observe. The present study demonstrated the creation of an atlas of myocardial perfusion scintigraphy with promising results of this tool as an aid in the detection of myocardial perfusion defects. However, further prospective validation with a more representative sample is recommended. (author)

  14. Brain perfusion imaging with iodinated amines

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Traditional nuclear medicine brain study using 99m Tc pertechnetate, glucoheptonate or diethlenetriaminepentacetic acid (DTPA) and planar imaging has experienced a significant decline in the past 10 years. This is mainly due to the introduction of X-ray CT and more recently the nuclear magnetic resonance (NMR) imaging, by which detailed morphology of the brain, including the detection of breakdown of the blood-brain barrier, can be obtained. The nuclear medicine brain imaging is only prescribed as a complementary test when X-ray CT is negative or equivocal and clinical suspicion remains. The attention of nuclear medicine brain imaging has been shifted from the detection of the breakdown of the blood-brain barrier to the study of brain function-perfusion, metabolism, and receptor binding, etc. The functional brain imaging provides diagnostic information usually unattainable by other radiological techniques. In this article, the iodinated amines as brain perfusion imaging agents are reviewed. Potential clinical application of these agents is discussed

  15. Machine Perfusion of Porcine Livers with Oxygen-Carrying Solution Results in Reprogramming of Dynamic Inflammation Networks

    Directory of Open Access Journals (Sweden)

    David Sadowsky

    2016-11-01

    Full Text Available Background: Ex vivo machine perfusion (MP can better preserve organs for transplantation. We have recently reported on the first application of a MP protocol in which liver allografts were fully oxygenated, under dual pressures and subnormothermic conditions, with a new hemoglobin-based oxygen carrier solution specifically developed for ex vivo utilization. In those studies, MP improved organ function post-operatively and reduced inflammation in porcine livers. Herein, we sought to refine our knowledge regarding the impact of MP by defining dynamic networks of inflammation in both tissue and perfusate. Methods: Porcine liver allografts were preserved either with MP (n = 6 or with cold static preservation (CSP; n = 6, then transplanted orthotopically after 9 h of preservation. Fourteen inflammatory mediators were measured in both tissue and perfusate during liver preservation at multiple time points, and analyzed using Dynamic Bayesian Network (DyBN inference to define feedback interactions, as well as Dynamic Network Analysis (DyNA to define the time-dependent development of inflammation networks.Results: Network analyses of tissue and perfusate suggested an NLRP3 inflammasome-regulated response in both treatment groups, driven by the pro-inflammatory cytokine interleukin (IL-18 and the anti-inflammatory mediator IL-1 receptor antagonist (IL-1RA. Both DyBN and DyNA suggested a reduced role of IL-18 and increased role of IL-1RA with MP, along with increased liver damage with CSP. DyNA also suggested divergent progression of responses over the 9 h preservation time, with CSP leading to a stable pattern of IL-18-induced liver damage and MP leading to a resolution of the pro-inflammatory response. These results were consistent with prior clinical, biochemical, and histological findings after liver transplantation. Conclusion: Our results suggest that analysis of dynamic inflammation networks in the setting of liver preservation may identify novel

  16. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application.

    Science.gov (United States)

    Sandberg, M; Zhang, Q; Styf, J; Gerdle, B; Lindberg, L-G

    2005-04-01

    To evaluate a specially developed photoplethysmographic (PPG) technique, using green and near-infrared light sources, for simultaneous non-invasive monitoring of skin and muscle perfusion. Evaluation was based on assessments of changes in blood perfusion to various provocations, such as post-exercise hyperaemia and hyperaemia following the application of liniment. The deep penetrating feature of PPG was investigated by measurement of optical radiation inside the muscle. Simultaneous measurements using ultrasound Doppler and the new PPG application were performed to elucidate differences between the two methods. Specific problems related to the influence of skin temperature on blood flow were highlightened, as well. Following static and dynamic contractions an immediate increase in muscle perfusion was shown, without increase in skin perfusion. Liniment application to the skin induced a rapid increase in skin perfusion, but not in muscle. Both similarities and differences in blood flow measured by Ultrasound Doppler and PPG were demonstrated. The radiant power measured inside the muscle, by use of an optical fibre, showed that the near-infrared light penetrates down to the vascular depth inside the muscle. The results of this study indicate the potentiality of the method for non-invasive measurement of local muscle perfusion, although some considerations still have to be accounted for, such as influence of temperature on blood perfusion.

  17. Cerebral perfution studies; Estudios de Perfusion Cerebral

    Energy Technology Data Exchange (ETDEWEB)

    Mut, Fernando [Universidad de la Republica, Montevideo (Uruguay). Centro de Medicina Nuclear

    1994-12-31

    For detecting in precocious form a coronary disease is necessary to aply a diagnostic techniques. The main considerations to be indicated in the present work are: physiological considerations, myocardial perfusion studies with radiotracers such as Talio 201, 99mTc, MIBI, 99mTc-Teboroxima, 99mTc-Fosfinas, instrumentation for obtain good images, proceedings protocols, studies interpretation, standards, SPECT, anomalies standards, coronary diseases.

  18. Evaluation of myocardial involvement in Duchenne's progressive muscular dystrophy with thallium-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Kawai, Naoki; Sotobata, Iwao; Okada, Mitsuhiro

    1985-01-01

    Myocardial involvement in progressive muscular dystrophy of the Duchenne type was evaluated in 19 patients using thallium-201 myocardial perfusion imaging. A qualitative analysis was performed from five projection images by three experienced physicians. Distinct perfusion defects were shown in 13 patients, especially in the LV posterolateral or posterior wall (11 patients). There was no significant relationship between the presence of perfusion defects and the skeletal muscle involvements or thoracic deformities assessed by transmission computed tomography. Extensive perfusion defects were shown in 2 patients who died of congestive heart failure 1 to 2 years after the scintigraphic study. Progression of the myocardial scintigraphic abnormalities were considered to be minimal in 7 of 9 patients who underwent two serial scintigraphic studies over 2 to 3 years. It was concluded that thallium myocardial perfusion imaging is a useful clinical technique to assess myocardial involvement in Duchenne's progressive muscular dystrophy. (author)

  19. Magnetic resonance imaging of pulmonary perfusion. Technical requirements and diagnostic impact; MRT der Lungenperfusion. Technische Voraussetzungen und diagnostischer Stellenwert

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Buesing, K.; Schoenberg, S.O.; Fink, C. [Klinikum Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Mannheim (Germany); Ingrisch, M.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Campus Grosshadern, Muenchen (Germany)

    2009-08-15

    With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI. (orig.) [German] Mit der Verfuegbarkeit leistungsfaehiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstaerkte 3D-Gradientenechosequenzen, wie sie fuer zeitaufgeloeste MR-Angiographien verwendet werden, fuer die Bildgebung der Lungenperfusion etabliert. Hiermit ist es moeglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und raeumlicher Aufloesung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Uebereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Uebersichtsartikel beschreibt die technische Durchfuehrung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion. (orig.)

  20. A localized in vivo detection method for lactate using zero quantum coherence techniques

    NARCIS (Netherlands)

    van Dijk, J. E.; Bosman, D. K.; Chamuleau, R. A.; Bovee, W. M.

    1991-01-01

    A method is described to selectively measure lactate in vivo using proton zero quantum coherence techniques. The signal from lipids is eliminated. A surface coil and additionally slice selective localization are used. The resulting spectra demonstrate the good performance of the method

  1. Stenosis differentially affects subendocardial and subepicardial arterioles in vivo.

    Science.gov (United States)

    Merkus, D; Vergroesen, I; Hiramatsu, O; Tachibana, H; Nakamoto, H; Toyota, E; Goto, M; Ogasawara, Y; Spaan, J A; Kajiya, F

    2001-04-01

    The presence of a coronary stenosis results primarily in subendocardial ischemia. Apart from the decrease in coronary perfusion pressure, a stenosis also decreases coronary flow pulsations. Applying a coronary perfusion system, we compared the autoregulatory response of subendocardial (n = 10) and subepicardial (n = 12) arterioles (production with N(G)-monomethyl-L-arginine abrogated the effect of the stenosis on flow. We conclude that the decrease in pressure caused by a stenosis in vivo results in a larger decrease in diameter of the subendocardial arterioles than in the subepicardial arterioles, and furthermore stenosis selectively decreases the dilatory response of subendocardial arterioles. These two findings expand our understanding of subendocardial vulnerability to ischemia.

  2. In vivo evaluation of potential Tc-99m brain perfusion agents using brain uptake index determination and biodistribution

    International Nuclear Information System (INIS)

    Rajeckas, A.J.; Watson, A.D.; Subramanyam, V.; Williams, S.J.; Belonga, B.Q.; de Nemours, E.I.D.

    1985-01-01

    In order to evaluate the pharmacological properties of various Tc-99m complexes as potential brain perfusion agents, the authors have employed both biodistribution techniques as well as modified Oldendorf procedure for the determination of the brain uptake index (BUI). A typical BUI determination involves the coinjection of 1 microcurie each of I-125 iodoantipyrine and the Tc-99m complex into the left carotid artery of a pentabarbitol anesthetized rat. The animal is sacrificed at 10 seconds; the right and left hemispheres of the brain are removed and counted for each isotope in a gamma well counter. Biodistribution studies are performed using tail-vein injections in unanesthetized rats. In the evaluation of a series of Tc-99m N/sub 2/S/sub 2/ (diamine dithiol) complexes, they have observed that compounds with a low BUI (less than 50) also have a low brain concentration (less than 1% ID) at 30 seconds post injection

  3. [Myocardial perfusion scintigraphy - short form of the German guideline].

    Science.gov (United States)

    Lindner, O; Burchert, W; Hacker, M; Schaefer, W; Schmidt, M; Schober, O; Schwaiger, M; vom Dahl, J; Zimmermann, R; Schäfers, M

    2013-01-01

    This guideline is a short summary of the guideline for myocardial perfusion scintigraphy published by the Association of the Scientific Medical Societies in Ger-many (AWMF). The purpose of this guideline is to provide practical assistance for indication and examination procedures as well as image analysis and to present the state-of-the-art of myocardial-perfusion-scintigraphy. After a short introduction on the fundamentals of imaging, precise and detailed information is given on the indications, patient preparation, stress testing, radiopharmaceuticals, examination protocols and techniques, radiation exposure, data reconstruction as well as information on visual and quantitative image analysis and interpretation. In addition possible pitfalls, artefacts and key elements of reporting are described.

  4. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  5. Renal hemodynamic changes with aging: a preliminary study using CT perfusion in the healthy elderly.

    Science.gov (United States)

    Zhao, Hong; Gong, Jingshan; Wang, Yan; Zhang, Zuoquan; Qin, Peixin

    2010-01-01

    To investigate renal blood flow perfusion parameter changes associated with aging using multislice spiral computed tomography (CT). This prospective study was approved by the institute's ethics committee for clinical study and written informed consent was obtained from all subjects. Forty-two consecutive patients who underwent abdominal CT without obvious renal abnormality at plain scanning were enrolled in this study. The renal perfusion scan was carried out using 16-slice spiral CT. The Pearson correlation coefficient was used to examine the correlation between perfusion parameter changes with aging. In both the cortex and medulla, blood flow (BF) and blood volume (BV) were negatively correlated with age, while time-to-peak (TTP) value and mean transit time (MTT) showed a positive correlation with age. Changes in BF, TTP, and MTT were found to have a statistically significant correlation with age in both the cortex and medulla, while the correlation between BV and age showed no statistical significance. It is feasible to assess renal hemodynamics changes with aging in the elderly using the current clinically available CT perfusion imaging technology in vivo. It may be helpful in the management of aged patients to familiarize with the renal hemodynamics changes in clinical work-up. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bair, H.J.; Platsch, G.; Wolf, F. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Nuclear Medicine; Guenter, E.; Becker, D. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Internal Medicine 1; Rupprecht, H.; Neumayer, H.H. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Internal Medicine 4

    1997-08-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [Deutsch] Ziel der Studie war es, das

  7. Assmentment of myocardial perfusion by magnetic resonance imaging: on the way to clinical application

    International Nuclear Information System (INIS)

    Fischer, S.E.; Lorenz, C.H.

    1997-01-01

    Magnetic resonance imaging detects the flow of contrast - enhanced blood and even allows the quantitative assessment of myocardial perfusion. The clinical application of this method is being held back by the difficulties in image evaluation and the limitation of standard techniques to the acquisition of a single slice per heart beat cycle. Recent developments in scanner hardware as well as in image acquisition techniques open up the possibility of assessing myocardial perfusion over the entire heart with a spatial resolution in the range of 2 mm. As an example of such a new scanning strategy, a segmented gradient-echo recalled echo planar imaging sequence with preceding saturation is discussed and results in a patient with an infarction are presented. The clinical use of perfusion assessment covering the entire heart for the diagnosis of coronary artery disease is enhanced by the flexibility of magnetic resonance imaging for the assessment of functional cardiac parameters. (orig.) [de

  8. Uptake and degradation of cytoplasmic RNA by lysosomes in the perfused rat liver

    International Nuclear Information System (INIS)

    Heydrick, S.J.; Lardeux, B.; Mortimore, G.E.

    1987-01-01

    The release of [ 14 C]cytidine has been shown previously to be a valid marker for RNA degradation in rat hepatocytes. The breakdown of RNA measured with this marker in perfused livers prelabeled in vivo with [6- 14 C]orotic acid was found to be regulated acutely by perfusate amino acids over a wide range, from 0.29 to 3.48%/h. This regulation paralleled that of lysosomal proteolysis. Chloroquine inhibited RNA degradation 60-70%. In subsequent cell fractionation studies labelled cytidine was released; the distribution of this release paralleled that of a lysosomal marker enzyme. The release plateaued after two hours, defining a distinct lysosomal pool of RNA. The lysosomal location of the RNA pool was confirmed in experiments where a 22% increase in the apparent pool size was obtained by lowering the homogenate pH from 7.0 to 5.5. The pool size correlated linearly with the rate of RNA degradation measured during perfusion, giving a turnover constant in reasonable agreement with values reported for autophagy. These results indicate that cytoplasmic RNA degradation occurs primarily in the lysosome and is regulated under these conditions by the amino acid control of lysosomal sequestration of cytoplasm

  9. sup(99m)Tc particle perfusion/sup(99m)Tc aerosol ventilation imaging using a subtraction technique in suspected pulmonary embolism

    International Nuclear Information System (INIS)

    Poeyhoenen, L.; Turjanmaa, V.; Virjo, A.

    1985-01-01

    It is generally acknowledged that ventilation-perfusion mismatch is diagnostic of pulmonary embolism. Lung ventilation imaging with radioactive gases is a good method for the detection of pulmonary embolism, but it is not in widespread use because of the limited availability of sup(81m)Kr gas and the poor physical properties of 133 Xe. Aerosols have been proposed, instead of gases for use in lung ventilation imaging. As perfusion and ventilation distributions may change very rapidly, the two imaging procedures should be done in rapid succession. The cheapest way to perform the combined perfusion-ventilation (Q/V) imaging is to use sup(99m)Tc-labelled macroaggregates and aerosols. In our method the perfusion imaging was done first, immediately followed by the ventilation imaging with sup(99m)Tc-labelled aerosols. A computer program was used to subtract the contribution of the perfusion from the combined Q/V image so that the pure ventilation image alone was obtained. The method was tested in 41 patients with suspected pulmonary embolism. (orig.)

  10. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique.

    Science.gov (United States)

    Onuki, Yoshinori; Jacobs, Igor; Artemov, Dmitri; Kato, Yoshinori

    2010-09-01

    A direct evaluation of the in vivo release profile of drugs from carriers is a clinical demand in drug delivery systems, because drug release characterized in vitro correlates poorly with in vivo release. The purpose of this study is to demonstrate the in vivo applicability of the dual MR contrast technique as a useful tool for noninvasive monitoring of the stability and the release profile of drug carriers, by visualizing in vivo release of the encapsulated surrogate MR contrast agent from carriers and its subsequent intratumoral distribution profile. The important aspect of this technique is that it incorporates both positive and negative contrast agents within a single carrier. GdDTPA, superparamagnetic iron oxide nanoparticles, and 5-fluorouracil were encapsulated in nano- and microspheres composed of poly(D,L-lactide-co-glycolide), which was used as a model carrier. In vivo studies were performed with orthotopic xenograft of human breast cancer. The MR-based technique demonstrated here has enabled visualization of the delivery of carriers, and release and intratumoral distribution of the encapsulated positive contrast agent. This study demonstrated proof-of-principle results for the noninvasive monitoring of in vivo release and distribution profiles of MR contrast agents, and thus, this technique will make a great contribution to the field. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Effect of phenobarbital pretreatment on benzene biotransformation in the rat. Pt. 2. 9. 000 g supernatant and isolated perfused liver versus living rat

    Energy Technology Data Exchange (ETDEWEB)

    Gut, I.; Hatle, K.; Zizkova, L.

    1981-03-01

    Factors responsible for different quantitative effect of phenobarbital (PB) pretreatment on benzene metabolism to phenol in vivo and in vitro were studied in male Wistar rats. A more than 4-fold increase of benzene metabolism was observed with 9,000 g supernatant of liver homogenate, 2.8- to 4-fold increase with isolated perfused liver; phenol formation in vivo after oral benzene was increased by PB 2-fold, but only shortly following benzene administration and the enhancement rapidly diminished to 1.15-fold increase in the total excreted phenol. Benzene concentrations in 9,000 g supernatant incubations were 2 mM, those with isolated perfused livers were up to 4 mM, but those in blood in vivo were below 0.3 mM; the effect of PB induction in vivo disappeared along with decreasing benzene and increasing phenol blood concentrations which surpassed benzene 2-3 h after oral benzene administration. The effect of benzene concentration on the manifestation of PB induction is also supported by almost a 2-fold increased phenol formation in PB rats over controls in vivo after repeated administration of benzene. The elimination of radioactive metabolites of orally administered benzene-/sup 14/C, in urine was markedly inhibited by intraperitoneal administration of phenol, but not by pyrocatechol, resorcinol or hydroquinol suggesting that phenol might inhibit benzene metabolism in vivo especially when its concentration exceeds that of benzene.

  12. Ex Vivo Produced Oral Mucosa Equivalent by Using the Direct Explant Cell Culture Technique

    Directory of Open Access Journals (Sweden)

    Kamile Öztürk

    2012-09-01

    Full Text Available Objective: The aim of this study is the histological and immunohistochemical evaluation of ex vivo produced oral mucosal equivalents using keratinocytes cultured by direct explant technique.Material and Methods: Oral mucosa tissue samples were obtained from the keratinized gingival tissues of 14 healthy human subjects. Human oral mucosa keratinocytes from an oral mucosa biopsy specimen were dissociated by the explant technique. Once a sufficient population of keratinocytes was reached, they were seeded onto the type IV collagen coated “AlloDerm” and taken for histological and immunohistochemical examinations at 11 days postseeding of the keratinocytes on the cadaveric human dermal matrix.Results: Histopathologically and immunohistochemically, 12 out of 14 successful ex vivo produced oral mucosa equivalents (EVPOME that consisted of a stratified epidermis on a dermal matrix have been developed with keratinocytes cultured by the explant technique.Conclusion: The technical handling involved in the direct explant method at the beginning of the process has fewer steps than the enzymatic method and use of the direct explant technique protocol for culturing of human oral mucosa keratinocyte may be more adequate for EVPOME production.

  13. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  14. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1986-01-01

    The development and clinical application of a number of nuclear techniques for studying body composition is described. These techniques include delayed neutron activation for the analysis of calcium, phsophorus, sodium and chlorine and prompt-gamma activation for the measurement of nitrogen and cadmium. In addition, the measurement of in vivo iron by nuclear resonance scattering and lead by x-ray fluorescence is described. (author)

  15. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  16. Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia.

    Directory of Open Access Journals (Sweden)

    Cyril Francioli

    Full Text Available Damaged lung grafts obtained after circulatory death (DCD lungs and warm ischemia may be at high risk of reperfusion injury after transplantation. Such lungs could be pharmacologically reconditioned using ex-vivo lung perfusion (EVLP. Since acute inflammation related to the activation of nuclear factor kappaB (NF-κB is instrumental in lung reperfusion injury, we hypothesized that DCD lungs might be treated during EVLP by pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB. Rat lungs exposed to 1h warm ischemia and 2 h cold ischemia were subjected to EVLP during 4h, in absence (CTRL group, N = 6 or in presence of PDTC (2.5g/L, PDTC group, N = 6. Static pulmonary compliance (SPC, peak airway pressure (PAWP, pulmonary vascular resistance (PVR, and oxygenation capacity were determined during EVLP. After EVLP, we measured the weight gain of the heart-lung block (edema, and the concentration of LDH (cell damage, proteins (permeability edema and of the cytokines IL-6, TNF-α and CINC-1 in bronchoalveolar lavage (BAL, and we evaluated NF-κB activation by the degree of phosphorylation and degradation of its inhibitor IκBα in lung tissue. In CTRL, we found significant NF-κB activation, lung edema, and a massive release of LDH, proteins and cytokines. SPC significantly decreased, PAWP and PVR increased, while oxygenation tended to decrease. Treatment with PDTC during EVLP inhibited NF-κB activation, did not influence LDH release, but markedly reduced lung edema and protein concentration in BAL, suppressed TNFα and IL-6 release, and abrogated the changes in SPC, PAWP and PVR, with unchanged oxygenation. In conclusion, suppression of innate immune activation during EVLP using the NF-κB inhibitor PDTC promotes significant improvement of damaged rat DCD lungs. Future studies will determine if such rehabilitated lungs are suitable for in vivo transplantation.

  17. A feed forward neural network for classification of bull's-eye myocardial perfusion images

    International Nuclear Information System (INIS)

    Hamilton, D.; Riley, P.J.; Miola, U.J.; Amro, A.A.

    1995-01-01

    Identification of hypoperfused areas in myocardial perfusion single-photon emission tomography studies can be aided by bull's-eye representation of raw counts, lesion extent and lesion severity, the latter two being produced by comparison of the raw bull's-eye data with a normal data base. An artificial intelligence technique which is presently becoming widely popular and which is particularly suitable for pattern recognition is that of artificial neural network. We have studied the ability of feed forward neural networks to extract patterns from bull's-eye data by assessing their capability to predict lesion presence without direct comparison with a normal data base. Studies were undertaken on both simulation data and on real stress-rest data obtained from 410 male patients undergoing routine thallium-201 myocardial perfusion scintigraphy. The ability of trained neural networks to predict lesion presence was quantified by calculating the areas under receiver operating characteristic curves. Figures as high as 0.96 for non-preclassified patient data were obtained, corresponding to an accuracy of 92%. The results demonstrate that neural networks can accurately classify patterns from bull's-eye myocardial perfusion images and detect the presence of hypoperfused areas without the need for comparison with a normal data base. Preliminary work suggests that this technique could be used to study perfusion patterns in the myocardium and their correlation with clinical parameters. (orig.)

  18. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    Science.gov (United States)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  19. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  20. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  1. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    Science.gov (United States)

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  2. In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Østergaard Christian

    2008-01-01

    Full Text Available Abstract Background Magnetic Resonance Imaging (MRI methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies. Methods Rats infected intracisternally with S. pneumoniae (n = 29 or saline (n = 13 were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI was used to evaluate blood-brain-barrier (BBB permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured. Results MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P Changes in brain water distribution, assessed by ADC, and categorization of brain 'perfusion' by cortex ΔSI(bolus were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05. Areas of well-'perfused' muscle decreased with the progression of infection indicative of septicaemia (P = 0.05. Conclusion The evolution of bacterial meningitis was successfully followed in-vivo with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments

  3. Topics: in vivo measurement of thyroidal iodine content by x-ray fluorescent technique

    International Nuclear Information System (INIS)

    Imamura, Keiko

    1979-01-01

    Thyroidal iodine content gives useful informations in the fields of physiology, clinical medicine, health physics etc. Iodine content has been determined mainly for resected thyroids. Recently, x-ray fluorescent analysis has been extended as the in vivo technique first in the clinical medicine. Exciting sources used for the analysis of the thyroid are Am-241 or x-ray tube. Am-241 has a half-life of 438 years and emits #betta#-ray of 60 keV. Thyroid can be imaged by fluorescent scan utilizing strong (10 - 15 Ci) Am-241 source. Examination time is about 15 min and the radiation dose to the gland is about 15 - 60 mrad. Iodine content is determined by static fluorescent technique equipped with weaker source of less than 1 Ci. Thyroidal iodine content in normal subjects were analysed by this technique and the results were in good accordance with those obtained by in vitro analysis. Difference in the thyroidal iodine content between the Japanese population and other countries is not clear. Application to the pathological cases has provided many findings about the iodine content and its distribution which could not be obtained by in vitro analysis. This in vivo technique can be safely performed for infants and for pregnancies, and the relatively compact size of this apparatus could be widely used in the study of health physics and environmental problems. (author)

  4. Calibration techniques for the in vivo measurement of alpha-emitting actinides

    International Nuclear Information System (INIS)

    Fleming, R.R.

    1976-01-01

    Reliable interpretation of in vivo measurements for alpha-emitting actinides deposited in the lungs is largely dependent on three factors: correction of observed count rates for background contributions; correction for photon absorption in the body; and accurate calibration of the counting system. Terrestrial and cosmic radiation contributions can be minimized by extensive shielding and good pulse-shape discrimination. Techniques are available to minimize errors inherent in the calibration of an in vivo counting system. Minimum amounts of alpha-emitting actinides detectable in the lungs are primarily affected by the accuracy of two factors: predicted body background due to 137 Cs and 40 K, and estimated photon absorption in chest-wall tissue. A matched pair of 12.5-cm-dia phoswich detectors, purchased from the Harshaw Chemical Company, are used to measure low-energy photons emitted by the radioactive actinides

  5. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  6. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results.

    Science.gov (United States)

    Lanzman, Rotem S; Wittsack, Hans-Jörg; Martirosian, Petros; Zgoura, Panagiota; Bilk, Philip; Kröpil, Patric; Schick, Fritz; Voiculescu, Adina; Blondin, Dirk

    2010-06-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 +/- 34.4, 296.5 +/- 44.1, and 181.9 +/- 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients.

  7. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results

    International Nuclear Information System (INIS)

    Lanzman, Rotem S.; Wittsack, Hans-Joerg; Bilk, Philip; Kroepil, Patric; Blondin, Dirk; Martirosian, Petros; Schick, Fritz; Zgoura, Panagiota; Voiculescu, Adina

    2010-01-01

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 ± 34.4, 296.5 ± 44.1, and 181.9 ± 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients. (orig.)

  8. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Dournes, Gael; Verdier, Damien; Montaudon, Michel; Laurent, Francois; Lederlin, Mathieu [Hopital Haut-Leveque, CHU Bordeaux, Department of Medical Imaging, Pessac (France); University Bordeaux Segalen, Bordeaux Cedex (France); Bullier, Eric; Riviere, Annalisa [Hopital Haut-Leveque, CHU Bordeaux, Department of Nuclear Medicine, Pessac (France); Dromer, Claire [Hopital Haut-Leveque, CHU Bordeaux, Department of Respiratory Diseases, Pessac (France); Picard, Francois [Hopital Haut-Leveque, CHU Bordeaux, Department of Cardiology, Pessac (France); Billes, Marc-Alain [Hopital Haut-Leveque, CHU Bordeaux, Department of Cardiac Surgery, Pessac (France); Corneloup, Olivier [Hopital Haut-Leveque, CHU Bordeaux, Department of Medical Imaging, Pessac (France)

    2014-01-15

    To evaluate the diagnostic accuracy of dual-energy computed tomography (DECT) perfusion and angiography versus ventilation/perfusion (V/Q) scintigraphy in chronic thromboembolic pulmonary hypertension (CTEPH), and to assess the per-segment concordance rate of DECT and scintigraphy. Forty consecutive patients with proven pulmonary hypertension underwent V/Q scintigraphy and DECT perfusion and angiography. Each imaging technique was assessed for the location of segmental defects. Diagnosis of CTEPH was established when at least one segmental perfusion defect was detected by scintigraphy. Diagnostic accuracy of DECT perfusion and angiography was assessed and compared with scintigraphy. In CTEPH patients, the per-segment concordance between scintigraphy and DECT perfusion/angiography was calculated. Fourteen patients were diagnosed with CTEPH and 26 with other aetiologies. DECT perfusion and angiography correctly identified all CTEPH patients with sensitivity/specificity values of 1/0.92 and 1/0.93, respectively. At a segmental level, DECT perfusion showed moderate agreement (κ = 0.44) with scintigraphy. Agreement between CT angiography and scintigraphy ranged from fair (κ = 0.31) to slight (κ = 0.09) depending on whether completely or partially occlusive patterns were considered, respectively. Both DECT perfusion and angiography show satisfactory performance for the diagnosis of CTEPH. DECT perfusion is more accurate than angiography at identifying the segmental location of abnormalities. (orig.)

  9. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy

    International Nuclear Information System (INIS)

    Dournes, Gael; Verdier, Damien; Montaudon, Michel; Laurent, Francois; Lederlin, Mathieu; Bullier, Eric; Riviere, Annalisa; Dromer, Claire; Picard, Francois; Billes, Marc-Alain; Corneloup, Olivier

    2014-01-01

    To evaluate the diagnostic accuracy of dual-energy computed tomography (DECT) perfusion and angiography versus ventilation/perfusion (V/Q) scintigraphy in chronic thromboembolic pulmonary hypertension (CTEPH), and to assess the per-segment concordance rate of DECT and scintigraphy. Forty consecutive patients with proven pulmonary hypertension underwent V/Q scintigraphy and DECT perfusion and angiography. Each imaging technique was assessed for the location of segmental defects. Diagnosis of CTEPH was established when at least one segmental perfusion defect was detected by scintigraphy. Diagnostic accuracy of DECT perfusion and angiography was assessed and compared with scintigraphy. In CTEPH patients, the per-segment concordance between scintigraphy and DECT perfusion/angiography was calculated. Fourteen patients were diagnosed with CTEPH and 26 with other aetiologies. DECT perfusion and angiography correctly identified all CTEPH patients with sensitivity/specificity values of 1/0.92 and 1/0.93, respectively. At a segmental level, DECT perfusion showed moderate agreement (κ = 0.44) with scintigraphy. Agreement between CT angiography and scintigraphy ranged from fair (κ = 0.31) to slight (κ = 0.09) depending on whether completely or partially occlusive patterns were considered, respectively. Both DECT perfusion and angiography show satisfactory performance for the diagnosis of CTEPH. DECT perfusion is more accurate than angiography at identifying the segmental location of abnormalities. (orig.)

  10. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  11. Hepatic arterial perfusion increases in the early stage of severe acute pancreatitis patients: Evaluation by perfusion computed tomography

    International Nuclear Information System (INIS)

    Koyasu, Sho; Isoda, Hiroyoshi; Tsuji, Yoshihisa; Yamamoto, Hiroshi; Matsueda, Kazuhiro; Watanabe, Yuji; Chiba, Tsutomu; Togashi, Kaori

    2012-01-01

    Purpose: Although hepatic perfusion abnormalities have been reported in patients with acute pancreatitis, hepatic perfusion with severe acute pancreatitis (SAP) has not been quantitatively evaluated in humans. Therefore, we investigated hepatic perfusion in patients with SAP using perfusion CT. Materials and methods: Hepatic perfusion CT was performed in 67 patients with SAP within 3 days after symptom onset. The patients were diagnosed as having SAP according to the Atlanta criteria. Fifteen cases were established as a control group. Perfusion CT was obtained for 54 s beginning with a bolus injection of 40 ml of contrast agent (600–630 mgI/kg) at a flow rate of 4 ml/s. Perfusion data were analyzed by the dual-input maximum slope method to obtain hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP). Finally, we compared HAP and HPP in SAP patients with those in the control group, respectively. Results: Average HAP was significantly higher in SAP patients than in the control group (75.1 ± 38.0 vs. 38.2 ± 9.0 ml/min/100 ml; p < 0.001). There was no significant difference in average HPP between SAP patients and the control group (206.7 ± 54.9 vs. 204.4 ± 38.5 ml/min/100 ml; p = 0.92). Conclusion: Using quantitative analysis on perfusion CT, we first demonstrated an increase of HAP in the right hepatic lobe in SAP patients.

  12. Visceral Perfusion Scintigraphy with {sup 131}I-Labelled Albumin Macroaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, H.; Yamada, H.; Kitani, K.; Nagatani, M.; Takeda, T.; Migita, T.; Iio, M; Kameda, H. [University of Tokyo, Tokyo (Japan)

    1969-05-15

    of.arterial-portal and portal-systemic shunts was confirmed later at laparotomy and autopsy. The scanning technique to diagnose the presence of a hepatic shunt in liver cirrhosis is further evaluated in this paper. Visceral perfusion scanning was introduced to study the role of ihe celiac, mesenteric and portal perfusion to visceral organs with various disorders. A predominant increase in celiac blood was found to supply the spleen in idiopathic non-cirrhotic portal hypertension and the neoplastic lesion of the liver. Celiac perfusion scanning was also found useful for the diagnosis of liver cystosis and the presence of the visceral A-V shunt. Partition of the blood supply to the liver through two afferent vessels (hepatic artery and the portal vein) is supposedly modified in various hepatic disorders. Pathological changes in the celiac arteriogram in liver cirrhosis and liver neoplasm have already been reported to show increased redistribution through the hepatic artery. The characteristics of the celiac arteriogram in idiopathic portal hypertension in Japan (non-- cirrhotic portal hypertension with splenomegaly) have recently been reported by one of the authors. To obtain more detailed information about the blood distribution of the liver and the spleen, perfusion, scanning was carried out after the selective introduction of I-131 macroaggregared albumin (MAA) in the celiac artery, superior mesenteric artery or portal vein. (author)

  13. New possibilities in the diagnosis of ischemia. CT-FFR and CT-Perfusion; Neue Moeglichkeiten der Ischaemiediagnostik. CT-FFR und CT-Perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, Lukas [Herz- und Gefaessklinik, Bad Neustadt an der Saale (Germany). Abt. fuer Radiologie; Krieghoff, Christian [Herzzentrum Leipzig (Germany); Gutberlet, Matthias [Herzzentrum Leipzig (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Leipzig Univ. (Germany). Kardiologische Bildgebung

    2017-12-15

    Coronary CT-angiography (CCTA) plays an increasing role in the primary diagnostics of coronary artery disease (CAD) according to the present guidelines but also in clinical reality. The sensitivity and negative predictive value of CCTA is very high, but the specificity could still be improved. Newer techniques to assess myocardial ischemia like CT-FFR and CT-Perfusion may help to achieve that goal.

  14. Influence of nifedipine on left ventricular perfusion and function in patients with unstable angina: Evaluation with radionuclide techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wall, E.E. van der; Kerkkamp, H.J.; Simoons, M.L.; Rijk, P.P. van; Reiber, J.H.C.; Bom, N.; Lubsen, J.C.; Lie, K.I.

    1986-04-01

    In 1981, a large, double-blind, randomized trial was started in The Netherlands to evaluate the therapeutic effects of nifedipine and/or metoprolol in patients with unstable angina. This study has been called the Holland Interuniversity Nifedipine/metoprolol Trial (HINT) and required several hundred patients to establish potential therapeutic effects. From December 1982 to January 1984 the effects of nifedipine on left ventricular (LV) performance in a subgroup of 52 HINT patients were studied using radionuclide techniques. All patients (23 on nifedipine, 29 controls) underwent thallium-201 scintigraphy or radionuclide angiography just before and 48 h after the start of experimental medication. The radionuclide angiographic studies were also performed at 1 and 4 h after treatment. Nifedipine did not influence the incidence of disapperance of perfusion defects on the 48-h thallium images. No significant differences in overall LV ejections fraction (EF) were seen at any time between nifedipine-treated patients and controls. However, paired observations in 37 patients showed improvement of LVEF after 48 h in 8 patients on nifedipine and in only 1 control patient. Scintigraphic measurements on admission were not related to clinical outcome after 48 h. Concomitant administration of metoprolol did not influence LVEF in either group. It is concluded that nifedipine improves LVEF after 48 h in a subset of patients with unstable angina without affecting myocardial perfusion. This finding indicates that nifedipine has a predominant effect on afterload reduction in patients with unstable angina. Also, early scintigraphic measurements had no significant predictive value for subsequent cardiac events.

  15. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  16. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  17. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...... that reversible or partly reversible perfusion defects at a preoperative MPS have a high chance of normalized myocardial perfusion assessed by MPS 6 months after operation. Normal perfusion is obtained almost exclusively in territories with reversible ischaemia. Symptoms improved in nearly all patients and LVEF...

  18. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  19. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI - initial results

    International Nuclear Information System (INIS)

    Fink, C.; Buhmann, R.; Plathow, C.; Puderbach, M.; Kauczor, H.U.; Risse, F.; Ley, S.; Meyer, F.J.

    2004-01-01

    Purpose: to assess the use of time-resolved parallel 3D MRI for a quantitative analysis of pulmonary perfusion in patients with cardiopulmonary disease. Materials and methods: eight patients with pulmonary embolism or pulmonary hypertension were examined with a time-resolved 3D gradient echo pulse sequence with parallel imaging techniques (FLASH 3D, TE/TR: 0.8/1.9 ms; flip angle: 40 ; GRAPPA). A quantitative perfusion analysis based on indicator dilution theory was performed using a dedicated software. Results: patients with pulmonary embolism or chronic thromboembolic pulmonary hypertension revealed characteristic wedge-shaped perfusion defects at perfusion MRI. They were characterized by a decreased pulmonary blood flow (PBF) and pulmonary blood volume (PBV) and increased mean transit time (MTT). Patients with primary pulmonary hypertension or eisenmenger syndrome showed a more homogeneous perfusion pattern. The mean MTT of all patients was 3.3 - 4.7 s. The mean PBF and PBV showed a broader interindividual variation (PBF: 104-322 ml/100 ml/min; PBV: 8 - 21 ml/100 ml). Conclusion: time-resolved parallel 3D MRI allows at least a semi-quantitative assessment of lung perfusion. Future studies will have to assess the clinical value of this quantitative information for the diagnosis and management of cardiopulmonary disease. (orig.) [de

  20. Thyroid perfusion imaging as a diagnostic tool in Graves' disease. Arterial spin labeling magnetic resonance imaging vs. colour-coded Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, K. [University Hospital of Duesseldorf (Germany). Dept. of Metabolic Diseases; Leibniz Center for Diabetes Research, Duesseldorf (Germany). Inst. for Clinical Diabetology; University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Schraml, C.; Schwenzer, N.F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology; Rietig, R.; Balletshofer, B. [University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Martirosian, P.; Haering, H.U.; Schick, F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; Claussen, C.D. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology

    2012-12-15

    Purpose: Though increased thyroid perfusion assessed by colour-coded Doppler ultrasound (CDUS) is characteristic of Graves' disease (GD), sometimes perfusion assessment by CDUS is not possible. In these cases, arterial spin labelling (ASL), a novel magnetic resonance imaging (MRI) technique allowing non-invasive thyroid perfusion quantification, may have additional diagnostic value. We aimed to evaluate the potential of ASL-MRI for assessment of increased blood perfusion in patients with GD compared to CDUS. Materials and Methods: Thyroid perfusion was measured by CDUS (volume flow rate calculated from pulsed wave Doppler signals and vessel diameter) and ASL-MRI at 1.5 T in 7 patients with GD and 10 healthy controls. Results: In patients with GD, average perfusion in both thyroid lobes was markedly increased compared to controls. Both techniques applied for volume related perfusion as well as absolute volume flow in thyroid feeding vessels provided similar results (all p = 0.0008). Using a cut-off value of 22 ml/min for the volume flow rate assessed by CDUS in the four feeding vessels allowed discrimination between patients with GD and controls in all cases. After adjusting thyroid perfusion for the differences in organ volume, both CDUS and ASL revealed also complete discrimination between health and disease. Conclusion: Thyroid perfusion measurement by ASL-MRI reliably discriminate GD from normal thyroid glands. In patients in whom thyroid arteries cannot be depicted by CDUS for technical or anatomical reasons, ASL-MRI may have additional diagnostic value. (orig.)

  1. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Imabayashi, Etsuko; Kuji, Ichiei; Seto, Akira; Ito, Kimiteru; Kikuta, Daisuke; Yamada, Minoru; Shimano, Yasumasa; Sato, Noriko

    2010-01-01

    Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT. After linear spatial normalization of brain perfusion SPECT using 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD) to a Talairach space, high-dimension-warping was done using an original 99m Tc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99m Tc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  2. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    Directory of Open Access Journals (Sweden)

    Matsuda Hiroshi

    2010-08-01

    Full Text Available Abstract Background Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM to SPECT. Methods After linear spatial normalization of brain perfusion SPECT using 99mTc-ethyl cysteinate dimer (99mTc-ECD to a Talairach space, high-dimension-warping was done using an original 99mTc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2 between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. Results SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99mTc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. Conclusions The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  3. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neon......Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...

  4. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  5. Fast Spectral Velocity Estimation Using Adaptive Techniques: In-Vivo Results

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Udesen, Jesper

    2007-01-01

    Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window(OW) is very sbort. In this paper two adaptive techniques are tested and compared to the averaged perlodogram (Welch) for blood velocity estimation. The Blood Power...... the blood process over slow-time and averaging over depth to find the power spectral density estimate. In this paper, the two adaptive methods are explained, and performance Is assessed in controlled steady How experiments and in-vivo measurements. The three methods were tested on a circulating How rig...... with a blood mimicking fluid flowing in the tube. The scanning section is submerged in water to allow ultrasound data acquisition. Data was recorded using a BK8804 linear array transducer and the RASMUS ultrasound scanner. The controlled experiments showed that the OW could be significantly reduced when...

  6. Variation in Perfusion Strategies for Neonatal and Infant Aortic Arch Repair: Contemporary Practice in the STS Congenital Heart Surgery Database.

    Science.gov (United States)

    Meyer, David B; Jacobs, Jeffrey P; Hill, Kevin; Wallace, Amelia S; Bateson, Brian; Jacobs, Marshall L

    2016-09-01

    Regional cerebral perfusion (RCP) is used as an adjunct or alternative to deep hypothermic circulatory arrest (DHCA) for neonates and infants undergoing aortic arch repair. Clinical studies have not demonstrated clear superiority of either strategy, and multicenter data regarding current use of these strategies are lacking. We sought to describe the variability in contemporary practice patterns for use of these techniques. The Society of Thoracic Surgeons Congenital Heart Surgery Database (2010-2013) was queried to identify neonates and infants whose index operation involved aortic arch repair with cardiopulmonary bypass. Perfusion strategy was classified as isolated DHCA, RCP (with less than or equal to ten minutes of DHCA), or mixed (RCP with more than ten minutes of DHCA). Data were analyzed for the entire cohort and stratified by operation subgroups. Overall, 4,523 patients (105 centers) were identified; median age seven days (interquartile range: 5.0-13.0). The most prevalent perfusion strategy was RCP (43%). Deep hypothermic circulatory arrest and mixed perfusion accounted for 32% and 16% of cases, respectively. In all, 59% of operations involved some period of RCP. Regional cerebral perfusion was the most prevalent perfusion strategy for each operation subgroup. Neither age nor weight was associated with perfusion strategy, but reoperations were less likely to use RCP (31% vs 45%, P RCP and DHCA in the RCP group was longer than the DHCA time in the DHCA group (45 vs 36 minutes, P neonates and infants. In contemporary practice, RCP is the most prevalent perfusion strategy for these procedures. Use of DHCA is also common. Further investigation is warranted to ascertain possible relative merits of the various perfusion techniques. © The Author(s) 2016.

  7. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?

    Science.gov (United States)

    Gaberel, Thomas; Gakuba, Clement; Goulay, Romain; Martinez De Lizarrondo, Sara; Hanouz, Jean-Luc; Emery, Evelyne; Touze, Emmanuel; Vivien, Denis; Gauberti, Maxime

    2014-10-01

    The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI. We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke. We were able to reliably evaluate the glymphatic system function using MRI. Moreover, we provided evidence that the glymphatic system was severely impaired after SAH and in the acute phase of ischemic stroke, but was not altered after carotid ligature or in case of intracerebral hemorrhage. Notably, this alteration in glymphatic perfusion reduced brain clearance rate of low-molecular-weight compounds. Interestingly, glymphatic perfusion after SAH can be improved by intracerebroventricular injection of tissue-type plasminogen activator. Moreover, spontaneous arterial recanalization was associated with restoration of the glymphatic function after embolic ischemic stroke. SAH and acute ischemic stroke significantly impair the glymphatic system perfusion. In these contexts, injection of tissue-type plasminogen activator either intracerebroventricularly to clear perivascular spaces (for SAH) or intravenously to restore arterial patency (for ischemic stroke) may improve glymphatic function. © 2014 American Heart Association, Inc.

  8. Novel diffuse optics system for continuous tissue viability monitoring: extended recovery in vivo testing in a porcine flap model

    Science.gov (United States)

    Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.

  9. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level

    International Nuclear Information System (INIS)

    Simko, V.; Kelley, R.E.

    1988-01-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the 14 C-triolein marker remained proportional to the load up to 2359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with 14 C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition

  10. Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model

    Directory of Open Access Journals (Sweden)

    Yalong Dang

    2017-08-01

    Full Text Available Objective The trabecular meshwork (TM is the primary substrate of outflow resistance in glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might be a viable therapeutic approach. Decellularized TM scaffolds have previously been produced by ablating cells with suicide gene therapy or saponin, which risks incomplete cell removal or dissolution of the extracellular matrix, respectively. We hypothesized that improved trabecular meshwork cell ablation would result from freeze-thaw cycles compared to chemical treatment. Materials and Methods We obtained 24 porcine eyes from a local abattoir, dissected and mounted them in an anterior segment perfusion within two hours of sacrifice. Intraocular pressure (IOP was recorded continuously by a pressure transducer system. After 72 h of IOP stabilization, eight eyes were assigned to freeze-thaw (F ablation (−80 °C × 2, to 0.02% saponin (S treatment, or the control group (C, respectively. The TM was transduced with an eGFP expressing feline immunodeficiency viral (FIV vector and tracked via fluorescent microscopy to confirm ablation. Following treatment, the eyes were perfused with standard tissue culture media for 180 h. TM histology was assessed by hematoxylin and eosin staining. TM viability was evaluated by a calcein AM/propidium iodide (PI assay. The TM extracellular matrix was stained with Picro Sirius Red. We measured IOP and modeled it with a linear mixed effects model using a B-spline function of time with five degrees of freedom. Results F and S experienced a similar IOP reduction of 30% from baseline (P = 0.64. IOP reduction of about 30% occurred in F within 24 h and in S within 48 h. Live visualization of eGFP demonstrated that F conferred a complete ablation of all TM cells and only a partial ablation in S. Histological analysis and Picro Sirius staining confirmed that no TM cells survived in F while the extracellular matrix remained. The viability assay showed

  11. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Detre, John A. E-mail: detre@mail.med.upenn.edu; Alsop, David C

    1999-05-01

    Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times

  12. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques.

    Directory of Open Access Journals (Sweden)

    Emi Kamimura

    Full Text Available The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D images of teeth captured by a digital impression technique to a conventional impression technique in vivo.Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE. A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE. Stereolithography (STL data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D laboratory scanner (D810, 3shape. The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test.The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm than when using a conventional impression technique (0.023 ± 0.01 mm.The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.

  13. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques

    Science.gov (United States)

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    Purpose The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Materials and methods Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). Results The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). Conclusion The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator. PMID:28636642

  14. Evaluation of myocardial involvement in Duchenne progressive muscular dystrophy with thallium-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Kawai, Naoki; Yamamoto, Shuhei; Okada, Mitsuhiro

    1983-01-01

    Myocardial involvement in progressive muscular dystrophy of the Duchenne type was evaluated in 19 patients using thallium-201 myocardial perfusion imaging. The qualitative analysis was performed in anterior, 3 left anterior oblique and left lateral projection images by three experienced physicians. Distinct perfusion defects were shown in 13 patients, especially in LV posterolateral or posterior walls (11 patients). There was no significant relationship between the presence of perfusion defects and the skeletal muscle changes or thoracic deformities assessed by transmission computed tomography. Slightly increased thallium-201 activity in RV free wall and lungs was shown in nine and one patient, respectively. The extensive perfusion defects were shown in 2 patients who died of congestive heart failure 1 to 2 years after the scintigraphic study. The myocardial scintigraphic changes were considered to be minimal in 7 of 9 patients who underwent two serial scintigraphic studies in 2 to 3 years. It was concluded that the thallium myocardial perfusion imaging was a useful clinical technique to evaluate the cardiomyopathy in Duchenne progressive muscular dystrophy. (author)

  15. Evaluation of myocardial involvement in Duchenne progressive muscular dystrophy with thallium-201 myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Naoki; Yamamoto, Shuhei; Okada, Mitsuhiro (Nagoya Univ. (Japan). Faculty of Medicine)

    1983-12-01

    Myocardial involvement in progressive muscular dystrophy of the Duchenne type was evaluated in 19 patients using thallium-201 myocardial perfusion imaging. The qualitative analysis was performed in anterior, 3 left anterior oblique and left lateral projection images by three experienced physicians. Distinct perfusion defects were shown in 13 patients, especially in LV posterolateral or posterior walls (11 patients). There was no significant relationship between the presence of perfusion defects and the skeletal muscle changes or thoracic deformities assessed by transmission computed tomography. Slightly increased thallium-201 activity in RV free wall and lungs was shown in nine and one patient, respectively. The extensive perfusion defects were shown in 2 patients who died of congestive heart failure 1 to 2 years after the scintigraphic study. The myocardial scintigraphic changes were considered to be minimal in 7 of 9 patients who underwent two serial scintigraphic studies in 2 to 3 years. It was concluded that the thallium myocardial perfusion imaging was a useful clinical technique to evaluate the cardiomyopathy in Duchenne progressive muscular dystrophy.

  16. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  17. Validation of a technique of measurement in vivo of 131I in thyroids

    International Nuclear Information System (INIS)

    Villella, A.M.; Puerta Yepes, N.; Gossio, S.; Papadopulos, S.

    2010-01-01

    The Total Body Counter (TBC) Laboratory of the Nuclear Regulatory Authority, following the institutional initiative of quality assurance in its measurement techniques, has been involved in an accreditation process based on the ISO/IEC 17205:2005 norm. In vivo measurement of 131 I in thyroid has been selected as the first technique in this process, and it is described in this paper. The TBC Laboratory uses for this technique a gamma spectrometry system with a NaI(Tl) detector, calibrated with a neck simulator of the IRD and a certified plane source of 131 I with thyroid form. It has been carried out a validation plan that has permitted the characterization of the 131 I measurement technique, and its uncertainty evaluation. Measurement parameters that affect the uncertainty are discussed and recommendations for the technique optimization are proposed. (authors) [es

  18. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  19. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  20. Decreased Lung Perfusion After Breast/Chest Wall Irradiation: Quantitative Results From a Prospective Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Adam L., E-mail: adamliss68@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kapadia, Nirav S. [Department of Radiation Oncology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (United States); McShan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Rogers, Virginia E. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Moran, Jean M.; Brock, Kristy K.; Schipper, Matt J.; Jagsi, Reshma [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Flaherty, Kevin R. [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States); Frey, Kirk A. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2017-02-01

    Purpose: To quantify lung perfusion changes after breast/chest wall radiation therapy (RT) using pre- and post-RT single photon emission computed tomography/computed tomography (SPECT/CT) attenuation-corrected perfusion scans; and correlate decreased perfusion with adjuvant RT dose for breast cancer in a prospective clinical trial. Methods and Materials: As part of an institutional review board–approved trial studying the impact of RT technique on lung function in node-positive breast cancer, patients received breast/chest wall and regional nodal irradiation including superior internal mammary node RT to 50 to 52.2 Gy with a boost to the tumor bed/mastectomy scar. All patients underwent quantitative SPECT/CT lung perfusion scanning before RT and 1 year after RT. The SPECT/CT scans were co-registered, and the ratio of decreased perfusion after RT relative to the pre-RT perfusion scan was calculated to allow for direct comparison of SPECT/CT perfusion changes with delivered RT dose. The average ratio of decreased perfusion was calculated in 10-Gy dose increments from 0 to 60 Gy. Results: Fifty patients had complete lung SPECT/CT perfusion data available. No patient developed symptoms consistent with pulmonary toxicity. Nearly all patients demonstrated decreased perfusion in the left lung according to voxel-based analyses. The average ratio of lung perfusion deficits increased for each 10-Gy increment in radiation dose to the lung, with the largest changes in regions of lung that received 50 to 60 Gy (ratio 0.72 [95% confidence interval 0.64-0.79], P<.001) compared with the 0- to 10-Gy region. For each increase in 10 Gy to the left lung, the lung perfusion ratio decreased by 0.06 (P<.001). Conclusions: In the assessment of 50 patients with node-positive breast cancer treated with RT in a prospective clinical trial, decreased lung perfusion by SPECT/CT was demonstrated. Our study allowed for quantification of lung perfusion defects in a prospective cohort of

  1. Development and implementation of In-vivo dosimetry with OSL in special techniques (IMRT, TBI, TSE); Desarrollo e implementacion de dosimetria In-vivo con OSL en tecnicas especiales (IMRT, TBI, TSE)

    Energy Technology Data Exchange (ETDEWEB)

    Bourel, V., E-mail: vbourel@favaloro.edu.ar [Universidad Favaloro, Buenos Aires (Argentina)

    2015-10-15

    Full text: Special techniques of radiation treatments generally require a quality control very thorough because in general tend to be high-risk techniques of complications due to imparting high doses in a small volume or involve a very large volume of the patient are the techniques of total body irradiation either photons or electrons. In these techniques a moderate error in the given dose can mean a very significant variation in tumor control probability (Tcp) or the likelihood of complications in normal tissues has happened in known published accidents and can be deduced from the typical sigmoid curve of response vs. dose. The technique In-vivo dosimetry has proved useful a final tool to detect any possible error in the chain of procedures to which is subjected prior to radiation treatment. This chain of procedures includes initial imaging, treatment planning involving the calibration of the equipment s, location and immobilization of the patient. The In-vivo dosimetry involves a measurement of the dose delivered to the patient in the treatment conditions to detect a possible deviation between the prescribed and the delivered dose. The experience so far has been done mainly with semiconductor elements (diodes) or thermoluminescent dosimetry. The advent of the optically stimulated luminescence dosimeters (OSLD), particularly in the nano Dots form, is a very appropriate tool for its size, ease of handling, accurate and fast reading. With these dosimeters has been developed and implemented the In-vivo dosimetry in three techniques in which the accuracy of the dose delivered is extremely important. These techniques are the treatment of intensity modulated radiation therapy (IMRT) that seeks to impart a very high dose in the tumor tissues protecting organs in risk around the target and the techniques of total body irradiation with photons, whose function is to generate immune suppression in patients before being transplanted, or with electrons for the treatment of

  2. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  3. Correlation of Perfusion MRI and 18F-FDG PET Imaging Biomarkers for Monitoring Regorafenib Therapy in Experimental Colon Carcinomas with Immunohistochemical Validation

    Science.gov (United States)

    Eschbach, Ralf S.; Fendler, Wolfgang P.; Kazmierczak, Philipp M.; Hacker, Marcus; Rominger, Axel; Carlsen, Janette; Hirner-Eppeneder, Heidrun; Schuster, Jessica; Moser, Matthias; Havla, Lukas; Schneider, Moritz J.; Ingrisch, Michael; Spaeth, Lukas; Reiser, Maximilian F.; Nikolaou, Konstantin; Cyran, Clemens C.

    2015-01-01

    Objectives To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG)-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group) female athymic nude rats (Hsd:RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight) using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min), plasma volume (PV, %) and endothelial permeability-surface area product (PS, mL/100 mL/min) were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB) was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31) and cell proliferation (Ki-67). Results Regorafenib significantly (pregorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F-FDG-PET validated by immunohistochemistry. PMID:25668193

  4. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  5. Clinical significance of ventilation/perfusion scans in collagen disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenzo; Kobayashi, Takeshi [Tokyo Metropolitan Hiro-o Hospital (Japan); Kamata, Noriko; Inokuma, Shigeko; Terada, Hitoshi; Yokoyama, Yoshiaki; Abe, Katsumi; Mochizuki, Takao

    2000-12-01

    The purpose of this study was to detect disturbances in pulmonary circulation in collagen disease patients by means of a non-invasive technique. Ventilation/perfusion scans with {sup 133}Xe gas and {sup 99m}Tc-macroaggregated albumin (MAA) were performed in 109 patients with various collagen diseases. Functional images of V, Vol, Q and V/Q ratio were obtained at total lung capacity. Wash-out time was calculated from the wash-out curve. Whole body scans were performed in 65 patients to evaluate intra-pulmonary shunts. Increased V/Q areas were observed in 74 patients (67.9%), suggesting some impairment of pulmonary perfusion. Decreased perfusion, probably due to vasculitis or intravascular microcoagulation, was observed often, even in patients without pulmonary fibrosis. Shunt ratios over 10% were observed in 8 of the 65 patients (12.3%), indicating formation of PA-PV shunts secondary to peripheral vascular impairment. Wash-out time was prolonged in 37 patients (33.9%), shortened in 18 (16.5%), and within the normal range in 54 (49.6%). The prolonged and normal wash-out times in the patients with pulmonary fibrosis may represent obstructive changes in the small airways superimposed on the fibrosis. Ventilation/perfusion scans are a very useful tool for evaluating collagen lung diseases, and they might contribute to treatment decisions for the patients. (author)

  6. External carotid compression: a novel technique to improve cerebral perfusion during selective antegrade cerebral perfusion for aortic arch surgery.

    Science.gov (United States)

    Grocott, Hilary P; Ambrose, Emma; Moon, Mike

    2016-10-01

    Selective antegrade cerebral perfusion (SACP) involving cannulation of either the axillary or innominate artery is a commonly used technique for maintaining cerebral blood flow (CBF) during the use of hypothermic cardiac arrest (HCA) for operations on the aortic arch. Nevertheless, asymmetrical CBF with hypoperfusion of the left cerebral hemisphere is a common occurrence during SACP. The purpose of this report is to describe an adjunctive maneuver to improve left hemispheric CBF during SACP by applying extrinsic compression to the left carotid artery. A 77-yr-old male patient with a history of aortic valve replacement presented for emergent surgical repair of an acute type A aortic dissection of a previously known ascending aortic aneurysm. His intraoperative course included cannulation of the right axillary artery, which was used as the aortic inflow during cardiopulmonary bypass and also allowed for subsequent SACP during HCA. After the onset of HCA, the innominate artery was clamped at its origin to allow for SACP. Shortly thereafter, however, the left-sided cerebral oxygen saturation (SrO2) began to decrease. Augmenting the PaO2, PaCO2 and both SACP pressure and flow failed to increase left hemispheric SrO2. Following the use of ultrasound guidance to confirm the absence of atherosclerotic disease in the carotid artery, external pressure was applied partially compressing the artery. With the carotid compression, the left cerebral saturation abruptly increased, suggesting pressurization of the left cerebral hemispheric circulation and augmentation of CBF. Direct ultrasound visualization and cautious partial compression of the left carotid artery may address asymmetrical CBF that occurs with SACP during HCA for aortic arch surgery. This strategy may lead to improved symmetry of CBF and corresponding cerebral oximetry measurements during aortic arch surgery.

  7. Computer simulations and the use of radiolabelled sulphur colloid to measure the efficiency of the mononuclear phagocyte system

    International Nuclear Information System (INIS)

    Saad, A.H.; Rutishauser, S.C.B.; Williams, A.R.

    1985-01-01

    Techniques are described whereby the clearance of the radiolabelled blood borne colloid can be continuously and reproducibly measured non-invasively from the same animal in vivo or from the isolated perfused intact liver in vitro. Using these techniques, the rate of removal of radiolabelled sulphur colloid by the mononuclear phagocytes in vivo and in vitro was shown to be biexponential. The pattern of clearance of colloid and the factors contributing to this were analysed with the aid of a computer program which mimicked the in vitro liver perfusion. (Auth.)

  8. Myocardial perfusion imaging with thalium 201 during and after exercise in patients with coronary heart

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, P B; Villacorta, E V; Monzon, O P; Torres, Jr, J F; Guzman, S V

    1977-07-01

    A unique, non-invasive technique for the evaluation of the regional myocardial perfusion of patients with coronary heart disease has been developed. This entails the use of radionuclide, like thallium (Tl-201), which concentrates in the normal myocardium, leaving areas of ischemia or scarring or ''cold'' perfusion defects. Myocardial perfusion imaging in conjunction with graded exercise testing significantly increases the positivity of the stress test alone among patients with classic angina from 80% to 95%. It gives invaluable information as to the site and extent of the lesion and its reversibility. Among the patients with ECG Q waves indicative of previous infarction, image defects were detected in 93.7%; reversible ischemia co-existing with the infarction was also demonstrated.

  9. FROG INTESTINAL PERFUSION TO EVALUATE DRUG PERMEABILITY: APPLICATION TO P-gp AND CYP3A4 SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Neelima eYerasi

    2015-07-01

    Full Text Available AbstractTo evaluate the reliability of using in situ frog intestinal perfusion technique for permeability assessment of carrier transported drugs which are also substrates for CYP enzymes. Single Pass Intestinal Perfusion (SPIP studies were performed in frogs of the species Rana tigrina using established method for rats with some modifications after inducing anesthesia. Effective permeability coefficient (Peff of losartan and midazolam was calculated in the presence and absence of inhibitors using the parallel-tube model. Peff of losartan when perfused alone was found to be 0.427 ± 0.27×10-4cm/s and when it was co-perfused with inhibitors, significant change in Peff was observed. Peff of midazolam when perfused alone was found to be 2.03 ± 0.07 × 10-4cm/s and when it was co-perfused with inhibitors, no significant change in Peff was observed. Comparison of Peff calculated in frog with that of other available models and also humans suggested that the Peff values are comparable and reflected well with human intestinal permeability. It is possible to determine the Peff value for compounds which are dual substrates of P-gp and CYP3A4 using in situ frog intestinal perfusion technique. The calculated Peff values correlated well with reported Peff values of probe drugs. comparison of the Peff value of losartan obtained with that of reported human’s Peff and Caco 2 cell data, and comparison of the Peff value of midazolam with that of reported rat’s Peff, we could conclude that SPIP from model can be reliably used in preclinical studies for permeability estimation. This model may represent a valuable alternative to the low speed and high cost of conventional animal models (typically rodents for the assessment of intestinal permeability.

  10. Exploring in vivo models to characterize peripheral microcirculation – a pilot study

    Directory of Open Access Journals (Sweden)

    Henrique Silva

    2013-06-01

    Full Text Available In recent years cutaneous circulation has emerged as an interesting window through which to study microcirculatory function and dysfunction mechanisms. Non-invasive technologies, including Laser Doppler Flowmetry (LDF, transcutaneous gasimetry and Transepidermal Water Loss (TEWL, helped to consider cutaneous circulation as a useful translational model in vascular disease. In this study we attempted to evaluate the response profile from a group of healthy young individuals (n=8, of both genders (24,5 ± 0,8 years old to three perfusion-conditioning maneuvers in the lower limb - A: leg elevation while seated; B: leg elevation during dorsal decubitus; C: supra-systolic occlusion with a tourniquet-cuff. Measurement techniques included LDF, transcutaneous (tc pO2 and pCO2 partial pressures, by gasimetry and TEWL by evaporimetry. Descriptive and nonparametric statistics were applied and a 95% confidence level adopted. tcpO2 and tcpCO2 changed significantly during the maneuvers. A reciprocal evolution profile was registered in LDF and TEWL in A and C which might suggest that under the present experimental conditions local perfusion might influence the epidermal “barrier” function. The proposed models seem to be appropriate to characterize the peripheral microcirculation in vivo, justifying further development studies.

  11. Quantitative assessment of the brain perfusion using the short-lived isotope 195m-Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    The possibilities of quantitatively assessing the brain perfusion on the basis of a modified transit time theory, using the favourable properties of the ultrashort-lived isotope 195m-Au, are shown. The intravascular deposition of the isotope 195m-Au enables quantitative brain perfusion studies based on both the dorsal and lateral projection. The 195m-Au isotope has a half-life of 30 sec and is able to be eluated from the 195m-Hg 195m-Au generator (Byk-Mallinckrodt). The quantification of brain perfusion (in terms of ml/min/100 g) is based on a recently published theory for non-diffusing radio-indicators, using a first-pass technique. This method of quantification corresponds to a modification of the transit time theory from Maier and Zierler (1) and accounts for the influences of dispersion and recirculation of an intravenously injected non-diffused tracer bolus (2, 3). The energy spectrum of the eluate from the generator shows two lines of high intensity at 262 keV and 68 keV. The low-energy peak is suited for the lateral view, i.e. brain perfusion studies of one hemisphere, without a significant 'look-through-effect'. The high-energy peak is successfully used for dorsal projections of brain perfusion studies. An examination takes less time than one minute and can be repeated after three minutes. Dynamic brain perfusion studies enable parametric images of the quantitative regional brain perfusion distribution, or the reciprocal mean transit times, to be obtained by calculation. Infarcted areas are able to be visualized with high sensitivity. Quantitative perfusion patterns during activation of the visual centre are detectable. The advantages of this method are discussed. (orig.) [de

  12. Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    DEFF Research Database (Denmark)

    Minarik, David; Senneby, Martin; Wollmer, Per

    2015-01-01

    Background The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method...

  13. INTRAVENOUS REGIONAL ANTIBIOTIC PERFUSION THERAPY AS AN ADJUNCTIVE TREATMENT FOR DIGITAL LESIONS IN SEABIRDS.

    Science.gov (United States)

    Fiorello, Christine V

    2017-03-01

    Foot infections are a common problem among seabirds in wildlife rehabilitation. Pododermatitis and digital infections are often challenging to treat because of the presence of suboptimal substrates, abnormal weight-bearing due to injuries, and suboptimal nutritional or health status. Seabirds represent the majority of animals requiring rehabilitation after oil spills, and foot problems are a common reason for euthanasia among these birds. Antibiotic intravenous regional perfusion therapy is frequently used in humans and other species to treat infections of the distal extremities, but it has not been evaluated in seabirds. During the 2015 Refugio oil spill response, four birds with foot lesions (pododermatitis, osteomyelitis, or both) were treated with ampicillin/sulbactam administered intravenously to the affected limb(s) in addition to systemic antibiotics and anti-inflammatories. Three of the birds, all brown pelicans ( Pelecanus occidentalis ) recovered rapidly and were released. Two of these birds had acute pododermatitis and were treated once with intravenous regional perfusion. They were released approximately 3 wk after the perfusion therapy. The third pelican had osteomyelitis of a digit. It was treated twice with intravenous regional perfusion and was released about 1 mo after the initial perfusion therapy. The fourth bird, a Pacific loon ( Gavia pacifica ), was treated once with perfusion therapy but did not respond to treatment and was euthanatized. No serious adverse effects were observed. This technique should be explored further in avian species.

  14. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    Foetal exposures to environmental and medicinal products have impact on the growth of the foetus (e.g. cigarette smoke) and development of organs (e.g. methylmercury and Thalidomide). Perfusion studies of the human term placenta enable investigation of placental transport of chemical substances...... between the mother and foetus. Dual perfusion of a single cotyledon in the human placenta can contribute to a better understanding of the placental barrier, transport rate and mechanisms of different substances and placental metabolism. The perfusion system has recently been established in Copenhagen...

  15. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold

    Directory of Open Access Journals (Sweden)

    G Bouet

    2015-05-01

    Full Text Available An engineered three dimensional (3D in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a “proof-of-concept” for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  16. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    Science.gov (United States)

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  17. The Groningen hypothermic liver perfusion pump : Functional evaluation of a new machine perfusion system

    NARCIS (Netherlands)

    van der Plaats, A.; Maathuis, M. H. J.; Hart, N. A. 't; Bellekom, A. A.; Hofker, H. S.; van der Houwen, E. B.; Verkerke, G. J.; Leuvenink, H. G. D.; Verdonck, P.; Ploeg, R. J.; Rakhorst, G.

    2006-01-01

    To improve preservation of donor livers, we have developed a portable hypothermic machine perfusion (HMP) system as an alternative for static cold storage. A prototype of the system was built and evaluated on functionality. Evaluation criteria included 24 h of adequate pressure controlled perfusion,

  18. Autonomic Function Impairment and Brain Perfusion Deficit in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wei-Che Lin

    2017-06-01

    Full Text Available IntroductionAutonomic disorders have been recognized as important Parkinson’s disease (PD components. Some vulnerable structures are related to the central autonomic network and have also been linked to autonomic function alterations. The aims of the study are to evaluate the severity of the autonomic dysfunction and the cortical hypoperfusion using arterial spin labeling (ASL MRI. And then, possible relationships of significant between-group differences in perfusion pattern to clinical variables and autonomic functions were examined to determine the pharmaceutical effects of dopaminergic treatment on cerebral blood flow (CBF in patients with PD.MethodsBrain ASL MRI was carried out in 20 patients with PD (6 men and 14 women, mean age: 63.3 ± 6.4 years and 22 sex- and age-matched healthy volunteers to assess whole-brain CBF and the effects of dopaminergic therapy on perfusion. All subjects underwent a standardized evaluation of cardiovagal and adrenergic function including a deep breathing, Valsalva maneuver, and 5-min head-up tilt test. Perfusion MRI data were acquired on a 3.0 T scanner with a pulsed continuous ASL technique. The CBF, autonomic parameters, and clinical data were analyzed after adjusting for age and sex.ResultsPatients exhibited a decline in autonomic function (rapid heart rate in response to deep breathing, low baroreflex sensitivity, high systolic and diastolic pressure, and altered tilting test response, widespread low CBF, and robust response to dopaminergic therapy. Lower perfusion in the middle frontal gyrus was associated with increased clinical disease severity (Unified Parkinson’s Disease Rating Scale I score, P < 0.001. Lower perfusion in autonomic control areas, such as the frontal lobe and insula, were significantly associated with autonomic impairment (P < 0.001.ConclusionsOur study indicates that PD is a progressive neurodegenerative disorder that changes the perfusion of central nervous system

  19. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  20. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Dowdle, S.C.; Human, D.G.; Mann, M.D. (Univ. of Cape Town (South Africa))

    1990-08-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis.

  1. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    International Nuclear Information System (INIS)

    Dowdle, S.C.; Human, D.G.; Mann, M.D.

    1990-01-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis

  2. A new strategy and system for the ex vivo ovary perfusion and cryopreservation: An innovation.

    Science.gov (United States)

    Ali Mohamed, Mohamed Shehata

    2017-06-01

    Children and young adults, who suffer from cancer, receive gonadotoxic therapy, which destroys their fertile abilities after survival. Ovarian cryopreservation and transplantation provide the promising solution to this problem, where the ovary can be removed before the gonadotoxic therapy and reimplanted after patient's survival, where the ovary is to be cryopreserved during the period of the therapy. However, cryopreservation of the whole ovary is still facing great obstacles, namely the ischemic reperfusion injury and the defective cryopreservation related to the defective ability to universally deliver the cryopreservation/warming solutions through the ovarian vascular bed. Meanwhile, the currently applied technique of ovarian tissue cryopreservation provides limited follicular recovery because many follicles are lost until the development of revascularization post-transplantation. To solve the problems, an innovative system has been developed to insure immediate and universal delivery of the cryopreservation/warming solutions to the graft, in addition to keeping the graft under continuous perfusion before and after cryopreservation, minimizing any chance for microthrombi formation or ischemia-reperfusion. This innovative system can be applied in the following surgical and clinical interventions: 1) Allogeneic ovarian transplantation; 2) Preservation of fertility after systemic chemotherapy or bone marrow transplantation in young females, where the ovaries could be removed before the therapy and exposed to the adequate cryopreservation provided by the system till re-implantation after the patient's survival; 3) The system is also suitable for the corresponding applications on the testicles.

  3. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  4. The dream of a one-stop-shop : Meta-analysis on myocardial perfusion CT

    NARCIS (Netherlands)

    Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A. M.; Schoepf, U. Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn

    2015-01-01

    Purpose: To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography

  5. Computed tomography perfusion imaging denoising using Gaussian process regression

    International Nuclear Information System (INIS)

    Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna

    2012-01-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)

  6. Novel in vivo techniques to visualize kidney anatomy and function.

    Science.gov (United States)

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.

  7. Nova técnica: operação de Norwood com perfusão regional cerebral e coronariana New technique: Norwood operation with regional cerebral and coronary perfusion

    Directory of Open Access Journals (Sweden)

    Gláucio Furlanetto

    2009-12-01

    Full Text Available OBJETIVO: Avaliar o resultado imediato da operação de Norwood modificado com nova técnica de perfusão regional cerebral (PRCeA anterógrada associado a perfusão regional coronariana (PRCoR retrógrada em substituição à parada circulatória total com hipotermia profunda em crianças portadoras da Síndrome da Hipoplasia do Coração Esquerdo (SHCE com aorta ascendente extremamente hipoplásica (AH. MÉTODOS: No período de dezembro de 2006 a fevereiro de 2008, a operação de Norwood modificado com tubo entre o ventrículo direito e as artérias pulmonares ou shunt tipo Sano foi realizada em oito crianças portadoras de SHCE e aorta ascendente com diâmetro inferior a 3 mm, (quatro do sexo masculino e quatro do sexo feminino com idade média de 9,2 dias (variando de 1 a 29 dias e peso médio de 3,3 kg (variando de 2,7 a 3,8 kg. Utilizada CEC e hipotermia a 25ºC com duas cânulas venosas e anastomose de um enxerto de politetrafluoretileno com a artéria inominada utilizado como linha arterial e para PRCeA. A PRCoR foi realizada por meio de um desvio na linha arterial e colocação de um cateter na aorta ascendente. Foram analisados o resultado cirúrgico imediato e a presença de alterações neurológicas nesse período. RESULTADOS: O resultado cirúrgico imediato revelou mortalidade de 25% e ausência de comprometimento neurológico ao exame clínico. CONCLUSÃO: A operação de Norwood modificado pode ser realizada com PRCeA e PRCoR em crianças com SHCE e AH com resultado cirúrgico imediato satisfatório e ausência de complicações neurológicas.OBJECTIVE: To assess the immediate result of the modified Norwood procedure with new technique of anterograde regional cerebral perfusion (ARCeP and retrograde regional coronary perfusion (RRCoP in substitution of profound hypothermia and circulatory arrest in children with hypoplastic left heart syndrome (HLHS with extremely hypoplastic ascending aorta (HA. METHODS: In the period of

  8. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  9. The clinical application value of myocardial perfusion imaging in evaluating coronary artery myocardial bridge patients with symptoms

    International Nuclear Information System (INIS)

    Wang Yuetao; Fu Ning; Ding Xuemei; Lu Cunzhi; Zhu Feng; Wang Guanmin; Huang Yijie; Wang Linguang

    2008-01-01

    Objective: Myocardial bridge is a common inborn coronary artery anomaly, myocardial bridge may be associated with myocardial ischemia. Only a few patients with coronary artery myocardial bridge were evaluated with nuclear medicine techniques. The aim of this study was to investigate the role of nuclear cardiology with myocardial perfusion technique in symptomatic myocardial bridge patients. Methods Nineteen myocardial bridge patients with the symptoms of chest pain and chest distress were analyzed retrospectively. 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion images (both exercise and rest) were performed in all. Imaging results were compared with the results of movement electrocardiogram (ECG) and coronary arteriography. The t test or χ 2 test was used to statistically analyze the data with Stata 7.0 software. Results: Of the 19 patients, 18 patients had myocardial bridge locating at the left anterior descending artery, 1 patient at the left anterior descending and left circumflex artery, the mean angiographic systolic occlusion within the myocardial bridge was (65.4 ± 22.1)%. Of these 19 patients, Exercise-rest 99 Tc m -MIBI myocardial perfusion imaging defined positive myocardial ischemia in 10 and negative in 9 patients. Of the 10 patients with 99 Tc m -MIBI myocardial perfusion imaging defined myocardial ischemia, 8 had reversible radioactive defect of partial anterior wall and (or) apex, 1 had reversible defect of post lateral wall and post septal wall, and 1 had reversible defect of inferior wall. The positive predictive value of myocardial perfusion imaging was 52.6% (10/19), which was higher than movement ECG [21.1% (4/19), χ 2 = 4.07, P 99 Tc m -MIBI myocardial periusion imaging defined myocardial ischemia. Six cases with Grade II stenosis, two were 99 Tc m -MIBI myocardial perfusion imaging defined myocardial ischemia. Eight cases with Grade III stenosis, seven were 99 Tc m -MIBI myocardial perfusion imaging defined myocardial

  10. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  11. Resting cardiointegram: correlation with stress thallium perfusion studies

    International Nuclear Information System (INIS)

    Gould, L.A.; Betzu, R.; Judge, D.; Lee, J.; Taddeo, M.; Yang, D.

    1988-01-01

    The cardiointegram is a noninvasive technique for the analysis of the electrical signals of the heart obtained by a transformation of the voltage versus time format by a series of integrations. The stress thallium perfusion study is a widely used test for the detection of coronary artery disease. In order to evaluate the correlation between the resting cardiointegram and the stress thallium 201 perfusion study, 20 patients with normal resting electrocardiograms underwent stress thallium tests and resting cardiointegrams. The cardiointegram was determined on two resting complexes of leads I, II, V4, V5, and V6 and called abnormal if five of ten complexes deviated outside a normalized template. There was concordance of the cardiointegram and the thallium study in 16 of 20 patients (80%). The sensitivity for the detection of coronary artery disease was 71%, and the specificity was 80%. The overall accuracy was 74%. Thus in patients with normal electrocardiograms, the cardiointegram is a useful noninvasive test for the detection of coronary artery disease

  12. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  13. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  14. [Portal perfusion with right gastroepiploic vein flow in liver transplant].

    Science.gov (United States)

    Mendoza-Sánchez, Federico; Javier-Haro, Francisco; Mendoza-Medina, Diego Federico; González-Ojeda, Alejandro; Cortés-Lares, José Antonio; Fuentes-Orozco, Clotilde

    Liver transplantation in patients with liver cirrhosis, portal vein thrombosis, and cavernous transformation of the portal vein, is a complex procedure with high possibility of liver graft dysfunction. It is performed in 2-19% of all liver transplants, and has a significantly high mortality rate in the post-operative period. Other procedures to maintain portal perfusion have been described, however there are no reports of liver graft perfusion using right gastroepiploic vein. A 20 year-old female diagnosed with cryptogenic cirrhosis, with a Child-Pugh score of 7 points (class "B"), and MELD score of 14 points, with thrombosis and cavernous transformation of the portal vein, severe portal hypertension, splenomegaly, a history of upper gastrointestinal bleeding due to oesophageal varices, and left renal agenesis. The preoperative evaluation for liver transplantation was completed, and the right gastroepiploic vein of 1-cm diameter was observed draining to the infrahepatic inferior vena cava and right suprarenal vein. An orthotopic liver transplantation was performed from a non-living donor (deceased on January 30, 2005) using the Piggy-Back technique. Portal vein perfusion was maintained using the right gastroepiploic vein, and the outcome was satisfactory. The patient was discharged 13 days after surgery. Liver transplantation was performed satisfactorily, obtaining an acceptable outcome. In this case, the portal perfusion had adequate blood flow through the right gastroepiploic vein. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Contribution of quantitative perfusion pulmonary scintiscanning with particles to the study of the regional pulmonary blood flow distribution

    International Nuclear Information System (INIS)

    Barreto, S.S.M.

    1988-01-01

    The quantitative perfusion pulmonary scintiscanning with macro aggregates was studied by digital images of perfusion, obtained in scintiscanning chamber coupled to the data processing system. The study was developed in four phases, in the Nuclear Medicine Service of Porto Alegre Clinical Hospital. In each phase, it was studied groups with different ages and different clinical aspects (normal and cardiopathic persons), and they were submitted to several diagnostic techniques. The macro aggregates used was the human albumin and was labelled with technetium 99. A comparative evaluation of this method with others diagnostic techniques was also presented. (C.G.C)

  16. In vivo imaging of brain ischemia using an oxygen-dependent degradative fusion protein probe.

    Directory of Open Access Journals (Sweden)

    Youshi Fujita

    Full Text Available Within the ischemic penumbra, blood flow is sufficiently reduced that it results in hypoxia severe enough to arrest physiological function. Nevertheless, it has been shown that cells present within this region can be rescued and resuscitated by restoring perfusion and through other protective therapies. Thus, the early detection of the ischemic penumbra can be exploited to improve outcomes after focal ischemia. Hypoxia-inducible factor (HIF-1 is a transcription factor induced by a reduction in molecular oxygen levels. Although the role of HIF-1 in the ischemic penumbra remains unknown, there is a strong correlation between areas with HIF-1 activity and the ischemic penumbra. We recently developed a near-infrared fluorescently labeled-fusion protein, POH-N, with an oxygen-dependent degradation property identical to the alpha subunit of HIF-1. Here, we conduct in vivo imaging of HIF-active regions using POH-N in ischemic brains after transient focal cerebral ischemia induced using the intraluminal middle cerebral artery occlusion technique in mice. The results demonstrate that POH-N enables the in vivo monitoring and ex vivo detection of HIF-1-active regions after ischemic brain injury and suggest its potential in imaging and drug delivery to HIF-1-active areas in ischemic brains.

  17. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  18. In vivo kinetics of intestinal absorption of riboflavin in rats

    International Nuclear Information System (INIS)

    Feder, S.; Daniel, H.; Rehner, G.

    1991-01-01

    To investigate absorption kinetics of riboflavin under in vivo conditions, with blood and lymph circulation intact, the small intestine of anesthetized rats was perfused with [ 14 C]riboflavin in a concentration range between 0.31 and 10.00 mumol/L. Apart from the uptake of riboflavin from the perfusate, passage of the vitamin into the portal (vena portae) and peripheral (vena femoralis) blood was determined. The absorption proved to be a dual process: at low substrate concentrations (less than 2 mumol/L) a saturable component predominated; at higher concentrations simple diffusion was found to be the prevailing uptake mechanism. The apparent transport constant of the saturable component was calculated to be 0.38 mumol/L. [ 14 C]flavin concentrations in the portal and peripheral blood were estimated as a function of the riboflavin concentration of the perfusion media. The dual character of the absorption was reflected by the portal blood flavin levels. Due to the high retaining and equalizing capacity of the liver, the [ 14 C]flavin level of the peripheral blood was relatively low and obeyed saturation kinetics. Constants of elimination, determined by pharmacokinetic calculations, were different for the two blood compartments but independent of the concentration of riboflavin in the perfusion media

  19. Assessment of drug disposition in the perfused rat brain by statistical moment analysis

    International Nuclear Information System (INIS)

    Sakane, T.; Nakatsu, M.; Yamamoto, A.; Hashida, M.; Sezaki, H.; Yamashita, S.; Nadai, T.

    1991-01-01

    Drug disposition in the brain was investigated by statistical moment analysis using an improved in situ brain perfusion technique. The right cerebral hemisphere of the rat was perfused in situ. The drug and inulin were injected into the right internal carotid artery as a rapid bolus and the venous outflow curve at the posterior facial vein was obtained. The infusion rate was adjusted to minimize the flow of perfusion fluid into the left hemisphere. The obtained disposition parameters were characteristics and considered to reflect the physicochemical properties of each drug. Antipyrine showed a small degree of initial uptake. Therefore, its apparent distribution volume (Vi) and apparent intrinsic clearance (CLint,i) were small. Diazepam showed large degrees of both influx and efflux and, thus, a large Vi. Water showed parameters intermediate between those of antipyrine and those of diazepam. Imipramine, desipramine, and propranolol showed a large CLint,i compared with those of the other drugs. The extraction ratio of propranolol significantly decreased with increasing concentrations of unlabeled propranolol in the perfusion fluid. These findings may be explained partly by the tissue binding of these drugs. In conclusion, the present method is useful for studying drug disposition in the brain

  20. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    Science.gov (United States)

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  1. The influence of probe fiber distance on laser Doppler perfusion monitoring measurements

    NARCIS (Netherlands)

    Morales, F; Graaff, R; Smit, AJ; Gush, R; Rakhorst, G

    2003-01-01

    Laser Doppler perfusion monitoring (LDPM) is a noninvasive technique for monitoring skin microcirculation. The aim of this article was to investigate the influence of fiber separation on clinical LDPM measurements. A dual-channel LDPM system was used in combination with a probe that consists of two

  2. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin [University Hospital Tuebingen, Tuebingen (Germany)

    2010-10-15

    We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D Perfusion-CT. Phantom measurements were performed on a 128-slice single source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans

  3. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  4. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  5. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  6. Placental transport of large molecules –a study using human ex vivo placental perfusion

    DEFF Research Database (Denmark)

    Mathiesen, Line

    2011-01-01

    be used as a negative control when adding a small amount to the fetal reservoir. To be able to detect any trace of dextran in the maternal reservoir in case of a leakage, the dextran is labeled with FITC and analyzed by fluorescence measurement (Paper I). Inter-laboratory comparisons have confirmed...... within two hours of perfusion with a fetal flow rate of 3 mL/min. Negative controls are added to ensure that substance transfer is not due to leakage, e.g. high molecular weight substances that only pass the placental barrier with bulk flow through a leakage in the fetal system. Dextran (40kD) can...

  7. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon

  8. Applications of nuclear techniques for in vivo body composition studies at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Vaswani, A.N.; Wielopolski, L.

    1981-01-01

    A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)

  9. Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model.

    Science.gov (United States)

    Liu, Qingxi; Zhang, Zijiang; Liu, Yupeng; Cui, Zhanfeng; Zhang, Tongcun; Li, Zhaohui; Ma, Wenjian

    2018-03-01

    Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.

  10. Comparison with myocardial perfusion MRI and myocardial perfusion SPECT in the diagnostic performance of coronary artery disease. A meta-analysis

    International Nuclear Information System (INIS)

    Iwata, Kunihiro; Kubota, Makoto; Ogasawara, Katsuhiko

    2008-01-01

    We compared the diagnostic abilities of stress myocardial perfusion MRI (myocardial perfusion MRI) and myocardial perfusion single photon emission computed tomography (SPECT), using a meta-analysis method. We investigated the diagnostic abilities of MRI and SPECT in similar subject groups in reports written in English or Japanese. The reports to be used for analysis were selected according to a ''screening standard,'' which was established in advance. After consolidating the data from the selected reports, we compared the integrated odds ratio, the point estimation values of sensibility/specificity, and the summary receiver operating characteristic (ROC) curve. For the analysis, six reports were selected (subjects: 153, coronary-artery target sites: 447). Meta-analysis revealed that the diagnostic ability of myocardial perfusion MRI was superior to that of myocardial perfusion SPECT regarding each of the parameters. This is considered to be supportive evidence of the usefulness of myocardial perfusion MRI. (author)

  11. Monitoring system for isolated limb perfusion based on a portable gamma camera

    International Nuclear Information System (INIS)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J.; Vidal-Sicart, S.; Pons, F.; Roe, N.; Rull, R.; Pavon, N.; Pavia, J.

    2009-01-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-α) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-α and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is ±1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-α and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-α and melphalan has been indicated. (orig.)

  12. Monitoring system for isolated limb perfusion based on a portable gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Orero, A.; Muxi, A.; Rubi, S.; Duch, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Vidal-Sicart, S.; Pons, F. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); Red Tematica de Investigacion Cooperativa en Cancer (RTICC), Barcelona (Spain); Roe, N. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Rull, R. [Servei de Cirurgia, Hospital Clinic, Barcelona (Spain); Pavon, N. [Inst. de Fisica Corpuscular, CSIC - UV, Valencia (Spain); Pavia, J. [Servei de Medicina Nuclear, Hospital Clinic, Barcelona (Spain); Inst. d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona (Spain); CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2009-07-01

    Background: The treatment of malignant melanoma or sarcomas on a limb using extremity perfusion with tumour necrosis factor (TNF-{alpha}) and melphalan can result in a high degree of systemic toxicity if there is any leakage from the isolated blood territory of the limb into the systemic vascular territory. Leakage is currently controlled by using radiotracers and heavy external probes in a procedure that requires continuous manual calculations. The aim of this work was to develop a light, easily transportable system to monitor limb perfusion leakage by controlling systemic blood pool radioactivity with a portable gamma camera adapted for intraoperative use as an external probe, and to initiate its application in the treatment of MM patients. Methods: A special collimator was built for maximal sensitivity. Software for acquisition and data processing in real time was developed. After testing the adequacy of the system, it was used to monitor limb perfusion leakage in 16 patients with malignant melanoma to be treated with perfusion of TNF-{alpha} and melphalan. Results: The field of view of the detector system was 13.8 cm, which is appropriate for the monitoring, since the area to be controlled was the precordial zone. The sensitivity of the system was 257 cps/MBq. When the percentage of leakage reaches 10% the associated absolute error is {+-}1%. After a mean follow-up period of 12 months, no patients have shown any significant or lasting side-effects. Partial or complete remission of lesions was seen in 9 out of 16 patients (56%) after HILP with TNF-{alpha} and melphalan. Conclusion: The detector system together with specially developed software provides a suitable automatic continuous monitoring system of any leakage that may occur during limb perfusion. This technique has been successfully implemented in patients for whom perfusion with TNF-{alpha} and melphalan has been indicated. (orig.)

  13. Determination of damage and In vivo DNA repairing through the unicellular in gel electrophoresis technique

    International Nuclear Information System (INIS)

    Mendiola C, M.T.; Morales R, P.

    1997-01-01

    The experimental conditions were standardized for the unicellular in gel electrophoresis technique setting up (EUG) at the Cellular Radiobiology laboratory. Preliminary experiments were realized with human cells and mouse which were exposed to ionizing radiation or hydroxide peroxide (H 2 O 2 ) to induce DNA damage and to verify the technique performance. It was analysed the In vivo repairing kinetics of induced damage by gamma radiation in mouse leukocytes which were exposed to 137 Cs source and taking samples of peripheric blood of the tail of each mouse at different exposure times and processing them for EUG. In function of the cells proportion with damage in each time it was determined the existence of fast repairing mechanism at the first 15 minutes followed by a slight increase in the damage and a late repairing stage between 30 and 90 minutes. It was analysed this behavior and the potentiality of this In vivo system. (Author)

  14. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

    Science.gov (United States)

    Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali

    2016-11-01

    Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also

  15. Whole brain CT perfusion deficits using 320-detector-row CT scanner in TIA patients are associated with ABCD2 score.

    Science.gov (United States)

    Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping

    2014-01-01

    Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.

  16. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  17. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  18. In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Brandt, Christian T; Simonsen, Helle; Liptrot, Matthew; Søgaard, Lise V; Lundgren, Jens D; Østergaard, Christian; Frimodt-Møller, Niels; Rowland, Ian J

    2008-01-01

    Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment strategies. Rats infected intracisternally with S. pneumoniae (n = 29) or saline (n = 13) were randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. T1W, T2W, quantitative diffusion, and post contrast T1W images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF were measured. MR images and dMRI revealed the development of a highly significant increase in BBB permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease severity was closely related to ventricle expansion (P = 0.024). Changes in brain water distribution, assessed by ADC, and categorization of brain 'perfusion' by cortex ΔSI (bolus) were subject to increased inter-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-'perfused' muscle decreased with the progression of infection indicative of septicaemia (P = 0.05). The evolution of bacterial meningitis was successfully followed in-vivo with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments

  19. Deleterious Effects of Intra-arterial Administration of Particulate Steroids on Microvascular Perfusion in a Mouse Model.

    Science.gov (United States)

    Laemmel, Elisabeth; Segal, Nicolas; Mirshahi, Massoud; Azzazene, Dalel; Le Marchand, Sylvie; Wybier, Marc; Vicaut, Eric; Laredo, Jean-Denis

    2016-06-01

    Purpose To determine the in vivo effects of several particulate steroids on microvascular perfusion by using intravital microscopy in a mice model and to investigate the in vitro interactions between these particulate steroids and red blood cells (RBCs). Materials and Methods The study was conducted in agreement with the guidelines of the National Committee of Ethic Reflection on Animal Experimentation. By using intravital microscopy of mouse cremaster muscle, the in vivo effects of several particulate steroids on microvascular perfusion were assessed. Four to five mice were allocated to each of the following treatment groups: saline solution, dexamethasone sodium phosphate, a nonparticulate steroid, and the particulate steroids cortivazol, methylprednisolone, triamcinolone, and prednisolone. By using in vitro blood microcinematography and electron microscopy, the interactions between these steroids and human RBCs were studied. All results were analyzed by using nonparametric tests. Results With prednisolone, methylprednisolone, or triamcinolone, blood flow was rapidly and completely stopped in all the arterioles and venules (median RBC velocity in first-order arterioles, 5 minutes after administration was zero for these three groups) compared with a limited effect in mice treated with saline, dexamethasone, and cortivazol (20.3, 21.3, and 27.5 mm/sec, respectively; P effect was associated with a large decrease in the functional capillary density (4.21, 0, and 0 capillaries per millimeter for methylprednisolone, triamcinolone, or prednisolone, respectively, vs 21.0, 21.4, and 19.1 capillaries per millimeter in mice treated with saline, dexamethasone, and cortivazol, respectively; P steroids. Conclusion Several particulate steroids have an immediate and massive effect on microvascular perfusion because of formation of RBC aggregates associated with the transformation of RBCs into spiculated RBCs. (©) RSNA, 2016 Online supplemental material is available for this

  20. Regional cortical hyper perfusion on perfusion CT during postical motor deficit: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-08-15

    Postictal neurologic deficit is a well-known complication mimicking the manifestation of a stroke. We present a case of a patient with clinical evidence of Todd's paralysis correlating with reversible postictal parenchymal changes on perfusion CT and magnetic resonance (MR) imaging. In this case, perfusion CT and MR imaging were helpful in the differential diagnosis of stroke-mimicking conditions.

  1. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  2. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    International Nuclear Information System (INIS)

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-01-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow

  3. Skin perfusion measurement: the normal range, the effects of ambient temperature and its clinical application

    International Nuclear Information System (INIS)

    Henry, R.E.; Malone, J.M.; Daly, M.J.; Hughes, J.H.; Moore, W.S.

    1982-01-01

    Quantitation of skin perfusion provides objective criteria to determine the optimal amputation level in ischemic limb disease, to assess the maturation of pedicle flaps in reconstructive surgery, and to select appropriate treatment for chronic skin ulcers. A technique for measurement of skin perfusion using intradermal (ID) Xe-133 and a gamma camera/minicomputer system was previously reported. An update of this procedure is now reported, the normal range for the lower extremity in men, observations on the effects of ambient temperature, and an experience using the procedure to determine amputation level

  4. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  5. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    International Nuclear Information System (INIS)

    Choi, Ju Youl; Sun, Joo Sung; Kim, Sun Yong; Kim, Ji Hyung; Suh, Jung Ho; Cho, Kyung Gi; Kim, Jang Sung

    2000-01-01

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  6. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  7. Perfusion-weighted MR imaging of uterine leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Hiroyasu; Munechika, Hirotsugu [Showa Univ., Tokyo (Japan). School of Medicine

    2001-06-01

    Serial images of uterine leiomyoma in gradient-echo, echo-planar, magnetic resonance imaging were taken to draw a {delta}R2{sup *} curve after intravenous bolus injection of Gd-DTPA. The {delta}R2{sup *} integral was calculated from a {delta}R2{sup *} curve to have relative perfusion of uterine leiomyoma. We then, evaluated the amount of perfusion correlated with MR findings, size and number of leiomyoma or the clinical symptoms and established that perfusion was correlated positively with the findings of T2 weighted images and clinical symptoms but not with other MR findings or size and number of leiomyoma. In conclusion, we presumed that the clinical symptoms could be reduced by decreasing of an amount of perfusion of uterine leiomyoma in some means. However, it remained uncertain why severe clinical symptoms were associated with a high amount of perfusion in uterine leiomyomas. (author)

  8. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Science.gov (United States)

    Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin

    2010-01-01

    Objective We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. Materials and Methods An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D-Perfusion-CT. Phantom measurements were performed on a 128-slice single-source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Results Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Conclusion Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans. PMID:20808699

  9. Testing the biocompatibility of a glutathione-containing intra-ocular irrigation solution by using an isolated perfused bovine retina organ culture model - an alternative to animal testing.

    Science.gov (United States)

    Januschowski, Kai; Zhour, Ahmad; Lee, Albert; Maddani, Ramin; Mueller, Sebastien; Spitzer, Martin S; Schnichels, Sven; Schultheiss, Maximilian; Doycheva, Deshka; Bartz-Schmidt, Karl-Ulrich; Szurman, Peter

    2012-03-01

    The effects of a glutathione-containing intra-ocular irrigation solution, BSS Plus©, on retinal function and on the survival of ganglion cells in whole-mount retinal explants were studied. Evidence is provided that the perfused ex vivo bovine retina can serve as an alternative to in vivo animal testing. Isolated bovine retinas were prepared and perfused with an oxygen-saturated standard irrigation solution, and an electroretinogram was recorded to assess retinal function. After stable b-waves were detected, the isolated retinas were perfused with BSS Plus for 45 minutes. To investigate the effects of BSS Plus on photoreceptor function, 1mM aspartate was added to the irrigation solution in order to obtain a-waves, and the ERG trace was monitored for 75 minutes. For histological analysis, isolated whole retinal mounts were stored for 24 hours at 4°C, in the dark. The percentages of cell death in the retinal ganglion cell layer and in the outer and inner nuclear layers were estimated by using an ethidium homodimer-1 stain and the TUNEL assay. General swelling of the retina was examined with high-resolution optical coherence tomography. During perfusion with BSS Plus, no significant changes in a-wave and b-wave amplitudes were recorded. Retinas stored for 24 hours in BSS Plus showed a statistically significant smaller percentage (52.6%, standard deviation [SD] = 16.1%) of cell death in the retinal ganglion cell layer compared to the control group (69.6%, SD = 3.9, p = 0.0031). BSS Plus did not seem to affect short-term retinal function, and had a beneficial effect on the survival of retinal ganglion cells. This method for analysing the isolated perfused retina represents a valuable alternative for testing substances for their retinal biocompatibility and toxicity. 2012 FRAME.

  10. Processing of pulse oximeter data using discrete wavelet analysis.

    Science.gov (United States)

    Lee, Seungjoon; Ibey, Bennett L; Xu, Weijian; Wilson, Mark A; Ericson, M Nance; Coté, Gerard L

    2005-07-01

    A wavelet-based signal processing technique was employed to improve an implantable blood perfusion monitoring system. Data was acquired from both in vitro and in vivo sources: a perfusion model and the proximal jejunum of an adult pig. Results showed that wavelet analysis could isolate perfusion signals from raw, periodic, in vitro data as well as fast Fourier transform (FFT) methods. However, for the quasi-periodic in vivo data segments, wavelet analysis provided more consistent results than the FFT analysis for data segments of 50, 10, and 5 s in length. Wavelet analysis has thus been shown to require less data points for quasi-periodic data than FFT analysis making it a good choice for an indwelling perfusion monitor where power consumption and reaction time are paramount.

  11. Regional myocardial perfusion of cardioplegic solutions

    International Nuclear Information System (INIS)

    Eugene, J.; Lyons, K.P.; Ott, R.A.; Gelezunas, V.L.; Chang, C.W.; Kowall, M.G.; Haiduc, N.J.

    1987-01-01

    We compared the regional myocardial perfusion of blood cardioplegic solution (BCP) and crystalloid cardioplegic solution (CCP) in 14 mongrel dogs. Cardiopulmonary bypass was established at 28 degrees C, and a hydraulic occluder was placed around the proximal left anterior descending (LAD) coronary artery. In group 1 (N = 7) collateral coronary arteries were ligated; in group 2 (N = 7) collateral coronary arteries were left in situ. After the aorta was clamped, BCP and CCP were alternately perfused at 200 ml/min. The occluder was inflated to produce moderate, severe, and critical LAD stenosis, and regional perfusion was measured by xenon-133 washout with the Silicon Avalanche Radiation Detector. BCP infusion produced a consistently higher aortic pressure, but CCP flow was better than BCP flow under all conditions, particularly without coronary collaterals. Regional myocardial perfusion of CCP is superior to BCP

  12. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  13. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  14. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  15. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  16. Synergistic antitumor activity of histamine plus melphalan in isolated limb perfusion: preclinical studies.

    Science.gov (United States)

    Brunstein, Flavia; Hoving, Saske; Seynhaeve, Ann L B; van Tiel, Sandra T; Guetens, Gunther; de Bruijn, Ernst A; Eggermont, Alexander M M; ten Hagen, Timo L M

    2004-11-03

    We have previously shown how tumor response of isolated limb perfusion (ILP) with melphalan was improved when tumor necrosis factor alpha (TNF-alpha) was added. Taking into account that other vasoactive drugs could also improve tumor response to ILP, we evaluated histamine (Hi) as an alternative to TNF-alpha. We used a rat ILP model to assess the combined effects of Hi and melphalan (n = 6) on tumor regression, melphalan uptake (n = 6), and tissue histology (n = 2) compared with Hi or melphalan alone. We also evaluated the growth of BN-175 tumor cells as well as apoptosis, necrosis, cell morphology, and paracellular permeability of human umbilical vein endothelial cells (HUVECs) after Hi treatment alone and in combination with melphalan. The antitumor effect of the combination of Hi and melphalan in vivo was synergistic, and Hi-dependent reduction in tumor volume was blocked by H1 and H2 receptor inhibitors. Tumor regression was observed in 66% of the animals treated with Hi and melphalan, compared with 17% after treatment with Hi or melphalan alone. Tumor melphalan uptake increased and vascular integrity in the surrounding tissue was reduced after ILP treatment with Hi and melphalan compared with melphalan alone. In vitro results paralleled in vivo results. BN-175 tumor cells were more sensitive to the cytotoxicity of combined treatment than HUVECs, and Hi treatment increased the permeability of HUVECs. Hi in combination with melphalan in ILP improved response to that of melphalan alone through direct and indirect mechanisms. These results warrant further evaluation in the clinical ILP setting and, importantly, in organ perfusion.

  17. Assessment of relationship between regional perfusion and ventricular function in patients with severely depressed ejection fraction

    International Nuclear Information System (INIS)

    Teresinska, A.; Konieczna, S.; Szumilak, B.; Gosiewska-Marcinkowska, E.; Potocka, J.

    1998-01-01

    Patients with low ventricular (LV) ejection fraction (EF) and with regional or global LV dysfunction, considered for myocardial revascularization, are often submitted to myocardial perfusion study to ptrove perfusion preserved and to approximate viability. The aim of this work is to evaluate, to what extent SPECT with Tc-99m-MIBI (SPECT-MIBI) additionally differentiatesa and enlarges the information on LV contractility achieved from radioisotopic ventriculography (RNV). Seventy-three patients with EF=0.11-0.35 (mean: 0.26 ± 0.06, calculated from RNV) were studied. Planar gated RNV and SPECT-MIBI were performed within 2 months (mean: 15 ± 14 days). RNV, after in vivo red cells labeling with Tc-99m, was recorded in rest in LAO45 and RAO30 views. Global EF and contractility of 5 regions (anterior, posterior, lateral walls, septum and apex) were evaluated. Assessment was performed by means of LV in 'cine' mode,m ED and ES outlines and amplitude-phase images. Regional contractility abnormalities were classified as dyskinesis, akinesis and hypokinesis. SPECT-MIBI was performed in rest and stress. Perfusion abnormalities in 5 above mentioned regions was classified as large (more intense than 50% of myocardial maximum) or small persistent defects (DEFpers), large or small partially reversible defects (DEFpart-rev), large or small completely reversible defects (DEFrev). Hypokinesis was detected in 23-35 regions (65%) , dyskinesis - in 63 (17%), akinesis - in 37 (10%), normokinesis - in 27 (7%). In dyskinetic regions, there existed large DEFpers (79%) or large DEFpart-rev (21%). In akinetic regions, there also existed large DEFpers (68%) or large DEFpart-rev (32%). In hypokinetic regions, there were no perfusion defects (31% of regions), small DEFpers, DEFrev and DEFpart-rev (42%) and also large DEFpers (27%). In most of normokinetic regions, different types of perfusion defects were observed (large DEFpers existed in 26% of regions). In summary: In dyskinetic and akinetic

  18. Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET).

    Science.gov (United States)

    Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B

    2012-12-27

    We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.

  19. Percutaneous Isolated Hepatic Perfusion for the Treatment of Unresectable Liver Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Burgmans, Mark C., E-mail: m.c.burgmans@lumc.nl [Leiden University Medical Centre, Department of Radiology (Netherlands); Leede, Eleonora M. de, E-mail: e.m.de-leede@lumc.nl [Leiden University Medical Centre, Department of Surgery (Netherlands); Martini, Christian H., E-mail: c.h.martini@lumc.nl [Leiden University Medical Centre, Department of Anesthesiology (Netherlands); Kapiteijn, Ellen, E-mail: h.w.kapiteijn@lumc.nl [Leiden University Medical Centre, Department of Medical Oncology (Netherlands); Vahrmeijer, Alexander L., E-mail: a.l.vahrmeijer@lumc.nl [Leiden University Medical Centre, Department of Surgery (Netherlands); Erkel, Arian R. van, E-mail: a.r.van-erkel@lumc.nl [Leiden University Medical Centre, Department of Radiology (Netherlands)

    2016-06-15

    Liver malignancies are a major burden of disease worldwide. The long-term prognosis for patients with unresectable tumors remains poor, despite advances in systemic chemotherapy, targeted agents, and minimally invasive therapies such as ablation, chemoembolization, and radioembolization. Thus, the demand for new and better treatments for malignant liver tumors remains high. Surgical isolated hepatic perfusion (IHP) has been shown to be effective in patients with various hepatic malignancies, but is complex, associated with high complication rates and not repeatable. Percutaneous isolated liver perfusion (PHP) is a novel minimally invasive, repeatable, and safer alternative to IHP. PHP is rapidly gaining interest and the number of procedures performed in Europe now exceeds 200. This review discusses the indications, technique and patient management of PHP and provides an overview of the available data.

  20. Percutaneous Isolated Hepatic Perfusion for the Treatment of Unresectable Liver Malignancies

    International Nuclear Information System (INIS)

    Burgmans, Mark C.; Leede, Eleonora M. de; Martini, Christian H.; Kapiteijn, Ellen; Vahrmeijer, Alexander L.; Erkel, Arian R. van

    2016-01-01

    Liver malignancies are a major burden of disease worldwide. The long-term prognosis for patients with unresectable tumors remains poor, despite advances in systemic chemotherapy, targeted agents, and minimally invasive therapies such as ablation, chemoembolization, and radioembolization. Thus, the demand for new and better treatments for malignant liver tumors remains high. Surgical isolated hepatic perfusion (IHP) has been shown to be effective in patients with various hepatic malignancies, but is complex, associated with high complication rates and not repeatable. Percutaneous isolated liver perfusion (PHP) is a novel minimally invasive, repeatable, and safer alternative to IHP. PHP is rapidly gaining interest and the number of procedures performed in Europe now exceeds 200. This review discusses the indications, technique and patient management of PHP and provides an overview of the available data.

  1. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    Science.gov (United States)

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  2. High-resolution MRI for the quantitative evaluation of subendocardial and subepicardial perfusion under pharmalogical stress and at rest

    International Nuclear Information System (INIS)

    Ritter, C.O.; Savio, K. del; Brackertz, A.; Beer, M.; Hahn, D.; Koestler, H.

    2007-01-01

    Purpose: MR stress perfusion imaging of the heart allows the quantification of myocardial perfusion and the evaluation of myocardial perfusion reserve (MPR) and the ratio of subendocardial to subepicardial perfusion at rest and under adenosine stress. The aim of this study was to evaluate a high-resolution GRAPPA sequence for quantitative MR first pass perfusion imaging in healthy volunteers. Materials and Methods: First pass stress and rest perfusion studies were performed on 10 healthy volunteers using a 1.5 T MR scanner with a multislice SR-TrueFISP first pass perfusion sequence with a GRAPPA algorithm (acceleration factor 3) in prebolus technique and an image resolution of 1.8 x 1.8 mm. For the comparison group, we examined 12 different healthy volunteers with a standard first pass perfusion SR-TrueFISP sequence using a resolution of 2.7 x 3.3 mm. Myocardial contours were manually delineated followed by an automatic division of the myocardium into two rings with an equal thickness for the subendo- and subepicardial layer. Eight sectors per slice were evaluated using contamination and baseline correction. Results: Using the GRAPPA sequence, the ratio of subendo- to subepimyocardial perfusion was 1.18 ± 0.32 for the examination at rest. Under pharmacologically induced stress, the ratio was 1.08 ± 0.27. For the standard sequence the ratio was 1.15 ± 0.28 at rest and 1.11 ± 0.33 under stress. For the high resolution sequence higher mean values for the subendo- to subepimyocardial ratio were obtained with comparable standard deviations. The difference between the sequences was not significant. Conclusion: The evaluation of subendomyocardial and subepimyocardial perfusion is feasible with a high-resolution first pass perfusion sequence. The use of a higher resolution to avoid systematic error leads to increased image noise. However, no relevant reduction in the quantitative perfusion values under stress and at rest was able to be depicted. (orig.)

  3. Validation of polyethylene glycol 3350 as a poorly absorbable marker for intestinal perfusion studies.

    Science.gov (United States)

    Schiller, L R; Santa Ana, C A; Porter, J; Fordtran, J S

    1997-01-01

    Polyethylene glycol (PEG) has been used as a poorly absorbable marker in intestinal perfusion studies, but there is controversy about the absorbability of PEG, particularly when glucose-sodium cotransport is occurring. Total intestinal perfusion studies were done in five normal humans using three solutions containing 1 g/liter PEG 3350 and designed to produce low rates of water absorption, high rates of water absorption, or high rates of glucose-sodium cotransport. Water absorption rates were calculated by traditional nonabsorbable marker equations and by a novel balance technique in which absorption was taken as the difference between the volumes of solution infused and recovered during steady-state conditions. Effluent PEG recovery was 99 +/- 4%, 109 +/- 2%, and 104 +/- 6% of the amount infused with each solution. Water absorption rates measured by use of PEG concentrations were similar to those calculated by the balance technique (r = 0.99). The complete recovery of PEG confirms the poor absorbability of PEG 3350, and the excellent agreement between techniques validates PEG as a poorly absorbed marker, even when glucose-sodium cotransport is occurring.

  4. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty.

    Science.gov (United States)

    Pollock, James; Ho, Sa V; Farid, Suzanne S

    2013-01-01

    This article evaluates the current and future potential of batch and continuous cell culture technologies via a case study based on the commercial manufacture of monoclonal antibodies. The case study compares fed-batch culture to two perfusion technologies: spin-filter perfusion and an emerging perfusion technology utilizing alternating tangential flow (ATF) perfusion. The operational, economic, and environmental feasibility of whole bioprocesses based on these systems was evaluated using a prototype dynamic decision-support tool built at UCL encompassing process economics, discrete-event simulation and uncertainty analysis, and combined with a multi-attribute decision-making technique so as to enable a holistic assessment. The strategies were compared across a range of scales and titres so as to visualize how their ranking changes in different industry scenarios. The deterministic analysis indicated that the ATF perfusion strategy has the potential to offer cost of goods savings of 20% when compared to conventional fed-batch manufacturing processes when a fivefold increase in maximum viable cell densities was assumed. Savings were also seen when the ATF cell density dropped to a threefold increase over the fed-batch strategy for most combinations of titres and production scales. In contrast, the fed-batch strategy performed better in terms of environmental sustainability with a lower water and consumable usage profile. The impact of uncertainty and failure rates on the feasibility of the strategies was explored using Monte Carlo simulation. The risk analysis results demonstrated the enhanced robustness of the fed-batch process but also highlighted that the ATF process was still the most cost-effective option even under uncertainty. The multi-attribute decision-making analysis provided insight into the limited use of spin-filter perfusion strategies in industry. The resulting sensitivity spider plots enabled identification of the critical ratio of weightings of

  5. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  6. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  7. Pulmonary artery perfusion versus no perfusion during cardiopulmonary bypass for open heart surgery in adults

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Grønlykke, Lars; Risom, Emilie C

    2018-01-01

    BACKGROUND: Available evidence has been inconclusive on whether pulmonary artery perfusion during cardiopulmonary bypass (CPB) is associated with decreased or increased mortality, pulmonary events, and serious adverse events (SAEs) after open heart surgery. To our knowledge, no previous systematic...... handsearched retrieved study reports and scanned citations of included studies and relevant reviews to ensure that no relevant trials were missed. We searched for ongoing trials and unpublished trials in the World Health Organization International Clinical Trials Registry Platform (ICTRP) and at clinicaltrials......). We used GRADE principles to assess the quality of evidence. MAIN RESULTS: We included in this review four RCTs (210 participants) reporting relevant outcomes. Investigators randomly assigned participants to pulmonary artery perfusion with blood versus no perfusion during CPB. Only one trial included...

  8. Perfluorocarbon-perfused 23 gauge three-dimensional vitrectomy for complicated diabetic tractional retinal detachment

    Science.gov (United States)

    Velez-Montoya, Raul; Guerrero-Naranjo, Jose Luis; Garcia-Aguirre, Gerardo; Morales-Cantón, Virgilio; Fromow-Guerra, Jans; Quiroz-Mercado, Hugo

    2011-01-01

    Background Perfluorocarbon liquid (PCL)-perfused vitrectomy has been shown in previous studies to be feasible, safe, and to have advantages in managing complicated cases of tractional retinal detachment. The present study had the objectives of describing the anatomical results and measuring surgical time and PCL consumption when combining PCL-perfused techniques with modern vitrectomy equipment. Methods A prospective, interventional consecutive case series was investigated. We enrolled patients with diabetic tractional retinal detachment, complicated by proliferative vitreoretinopathy and poor vision. A 23 gauge PCL-perfused vitrectomy was done with three-dimensional settings. During the procedure, we assessed the degree of surgical bleeding, visualization quality, and difficulty of membrane dissections. Visual acuity, intraocular pressure, and anatomical success were assessed at one and 3 months of follow-up. Results Twelve patients were enrolled in this study. There were no statistical significant changes in intraocular pressure and visual acuity throughout the follow-up period. Surgery was performed in a hemorrhage-free environment in almost all cases, with good visualization and low technical difficulty. The mean complete surgical time was 94.92 ± 25.03 minutes. The mean effective vitrectomy time was 22.50 ± 19.04 minutes and the mean PCL consumption was 25.08 ± 9.76 mL, with a speed of 1.11 mL/minute. Anatomical success was 67% at 3 months. Conclusion Although the technique proved to have some advantages in managing complicated cases of diabetic tractional retinal detachment, there was a high consumption of PCL. A redesign of the entire system is needed in order to decrease the amount of PCL needed for the technique. PMID:22267907

  9. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    Science.gov (United States)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  10. Thallium-201 exercise myocardial imaging to evaluate myocardial perfusion after coronary artery bypass surgery

    International Nuclear Information System (INIS)

    Hirzel, H.O.; Nuesch, K.; Sialer, G.; Horst, W.; Krayenbuehl, H.P.

    1980-01-01

    To assess the usefulness of thallium-201 exercise scintigraphy in evaluating myocardial perfusion after coronary artery bypass surgery, imaging was performed after submaximal bicycle ergometry and at rest in 54 patients before and within 24 +- 10 (SD) weeks after operation. Scintigraphy identified 8 out of 20 patients who were symptom free after operation and showed normal exercise electrocardiograms as still having exercise-induced ischaemia and thus as having not truly benefited from the surgical intervention. In contrast, improvement in perfusion was documented in 17 out of 31 patients despite further complaints of chest pain and persistence of a pathological exercise electrocardiogram in 6 of them. Bypass graft patency rate paralleled the scintigraphic findings in the 35 patients who were restudied arteriographically. It was concluded that thallium-201 exercise scintigraphy is a useful technique to document changes in regional perfusion after surgery and is definitely superior to the clinical evaluation of patients including the exercise electrocardiogram. (author)

  11. Value of chest X-ray combined with perfusion scan versus ventilation/perfusion scan in acute pulmonary embolism

    NARCIS (Netherlands)

    de Groot, M. R.; Turkstra, F.; van Marwijk Kooy, M.; Oostdijk, A. H.; van Beek, E. J.; Büller, H. R.

    2000-01-01

    The main purpose of ventilation scanning, as adjunct to perfusion lung scintigraphy, in acute pulmonary embolism is to allow for the classification of segmental perfusion defects as mismatched, which is generally accepted as proof for the presence of pulmonary embolism. We examined whether this

  12. Rest/exercise thallium myocardial perfusion imaging: a new and rapid technique to evaluate coronary artery disease

    International Nuclear Information System (INIS)

    Segall, G.M.; Zipkin, R.E.; Stanford Univ., CA

    1993-01-01

    Twenty-six patients underwent conventional exercise/4-h redistribution thallium myocardial perfusion imaging as well as rest/exercise imaging on different days. For the rest/exercise study, patients were inmaged 10 min after receiving 1 mCi thallium at rest. The resting study was immediately followed by symptom-limited treadmill exercise. Patients were injected with 2 mCi thallium at peak exercise and imaged 10 min later. The entire rest/exercise study was completed in 2 h. There was a high degree of correlation between the two studies. Of the 130 segments analysed, 84 were normal and 46 were abnormal by exercise/redistribution imaging whereas 88 were normal and 42 were abnormal by rest/exercise imaging. Among the 14 patients who had coronary arteriography, both exercise/redistribution and rest/exercise imaging correctly identified 23/35 segments as abnormal (sensitivity [pi003] 66% and 34/35 segments as normal (specificity=97%). Furthermore, abnormal segments were more likely to be reversible on the rest/exercise study. The results suggest that the accuracy of rest/exercise thallium imaging is equal to conventional exercise/redistribution imaging in the evaluation of coronary artery disease. The significant time economy and possible improvement in assessing myocardial viability are important potential advantages of this new technique. (Author)

  13. Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multi-parametric functional-NMR approach

    International Nuclear Information System (INIS)

    Baligand, C.; Wary, C.; Menard, J.C.; Giacomini, E.; Carlier, P.G.; Baligand, C.; Wary, C.; Menard, J.C.; Hogrel, J.Y.; Carlier, P.G.; Hogrel, J.Y.

    2011-01-01

    A totally noninvasive set-up was developed for comprehensive NMR evaluation of mouse skeletal muscle function in vivo. Dynamic pulsed arterial spin labeling-NMRI perfusion and blood oxygenation level-dependent (BOLD) signal measurements were interleaved with 31 P NMRS to measure both vascular response and oxidative capacities during stimulated exercise and subsequent recovery. Force output was recorded with a dedicated ergometer. Twelve exercise bouts were performed. The perfusion, BOLD signal, pH and force-time integral were obtained from mouse legs for each exercise. All reached a steady state after the second exercise, justifying the pointwise summation of the last 10 exercises to compensate for the limited 31 P signal. In this way, a high temporal resolution of 2.5 s was achieved to provide a time constant for phosphocreatine (PCr) recovery (tPCr). The higher signal-to-noise ratio improved the precision of τ(PCr) measurement [coefficient of variation (CV)1/416.5% vs CV1/449.2% for a single exercise at a resolution of 30 s]. Inter-animal summation confirmed that τ(PCr) was stable at steady state, but shorter (89.3W8.6 s) than after the first exercise (148 s, p≤0.05). This novel experimental approach provides an assessment of muscle vascular response simultaneously to energetic function in vivo. Its pertinence was illustrated by observing the establishment of a metabolic steady state. This comprehensive tool offers new perspectives for the study of muscle pathology in mice models. (authors)

  14. Functional and perfusion magnetic resonance imaging at 3 tesla

    International Nuclear Information System (INIS)

    Klarhoefer, M.

    2001-03-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flow velocity measurements in the human finger showed that the use of a strong, small-bore gradient system permits short echo times that reduce flow artefacts and allows high spatial resolution in order to keep systematic errors due to partial volume effects small. With regard to the perfusion investigations an inversion recovery snapshot-FLASH sequence was implemented, which allowed the acquisition of T1 parameter maps of the human brain within a few seconds. The accuracy of this method was demonstrated in test objects. The perfusion investigations with FAIR showed good qualitative results, whereas the quantitative analysis did not yield reproducible findings. A reason for the poor results could be the low signal-to-noise ratio (SNR) of the FAIR images or an incomplete global inversion of the magnetization due to the transmission characteristics of the radio-frequency coil. The BASE sequence that did not require a global inversion yielded quantitative perfusion

  15. [MRI methods for pulmonary ventilation and perfusion imaging].

    Science.gov (United States)

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  16. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  17. Inducing Hepatitis C Virus Resistance After Pig Liver Transplantation-A Proof of Concept of Liver Graft Modification Using Warm Ex Vivo Perfusion.

    Science.gov (United States)

    Goldaracena, N; Spetzler, V N; Echeverri, J; Kaths, J M; Cherepanov, V; Persson, R; Hodges, M R; Janssen, H L A; Selzner, N; Grant, D R; Feld, J J; Selzner, M

    2017-04-01

    Normothermic ex vivo liver perfusion (NEVLP) offers the potential to optimize graft function prior to liver transplantation (LT). Hepatitis C virus (HCV) is dependent on the presence of miRNA(microRNA)-122. Miravirsen, a locked-nucleic acid oligonucleotide, sequesters miR-122 and inhibits HCV replication. The aim of this study was to assess the efficacy of delivering miravirsen during NEVLP to inhibit miR-122 function in a pig LT model. Pig livers were treated with miravirsen during NEVLP or cold storage (CS). Miravirsen absorption, miR-122 sequestration, and miR-122 target gene derepression were determined before and after LT. The effect of miravirsen treatment on HCV infection of hepatoma cells was also assessed. NEVLP improved miravirsen uptake versus CS. Significant miR-122 sequestration and miR-122 target gene derepression were seen with NEVLP but not with CS. In vitro data confirmed miravirsen suppression of HCV replication after established infection and prevented HCV infection with pretreatment of cells, analogous to the pretreatment of grafts in the transplant setting. In conclusion, miravirsen delivery during NEVLP is a potential strategy to prevent HCV reinfection after LT. This is the first large-animal study to provide "proof of concept" for using NEVLP to modify and optimize liver grafts for transplantation. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    International Nuclear Information System (INIS)

    Murase, Kenya; Nanjo, Takafumi; Ii, Satoshi; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-01-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation x 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current

  19. Normothermic perfusion: a new paradigm for organ preservation.

    Science.gov (United States)

    Brockmann, Jens; Reddy, Srikanth; Coussios, Constantin; Pigott, David; Guirriero, Dino; Hughes, David; Morovat, Alireza; Roy, Debabrata; Winter, Lucy; Friend, Peter J

    2009-07-01

    Transplantation of organs retrieved after cardiac arrest could increase the donor organ supply. However, the combination of warm ischemia and cold preservation is highly detrimental to the reperfused organ. Our objective was to maintain physiological temperature and organ function during preservation and thereby alleviate this injury and allow successful transplantation. We have developed a liver perfusion device that maintains physiological temperature with provision of oxygen and nutrition. Reperfusion experiments suggested that this allows recovery of ischemic damage. In a pig liver transplant model, we compared the outcome following either conventional cold preservation or warm preservation. Preservation periods of 5 and 20 hours and durations of warm ischemia of 40 and 60 minutes were tested. After 20 hours preservation without warm ischemia, post-transplant survival was improved (27%-86%, P = 0.026), with corresponding differences in transaminase levels and histological analysis. With the addition of 40 minutes warm ischemia, the differences were even more marked (cold vs. warm groups 0% vs. 83%, P = 0.001). However, with 60 minutes warm ischemia and 20 hours preservation, there were no survivors. Analysis of hemodynamic and liver function data during perfusion showed several factors to be predictive of posttransplant survival, including bile production, base excess, portal vein flow, and hepatocellular enzymes. Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.

  20. Gray matter perfusion correlates with disease severity in ALS.

    Science.gov (United States)

    Rule, Randall R; Schuff, Norbert; Miller, Robert G; Weiner, Michael W

    2010-03-09

    The goal of this study is to determine if regional brain perfusion, as measured by arterial spin labeling (ASL) MRI, is correlated with clinical measures of amyotrophic lateral sclerosis (ALS) disease severity. The presence of such a relationship would indicate a possible role for ASL perfusion as a marker of disease severity and upper motor neuron involvement in ALS. Disease severity was assessed in 16 subjects with ALS (age 54 +/- 11) using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) and the pulmonary function measure, forced vital capacity (FVC). Upper motor neuron involvement was assessed by testing rapid tapping of the fingers and feet. Magnetic resonance perfusion images were coregistered with structural T1-weighted MRI, corrected for partial volume effects using the structural images and normalized to a study-specific atlas. Correlations between perfusion and ALS disease severity were analyzed, using statistical parametric mapping, and including age as a factor. Analyses were adjusted for multiple clusters. ALS severity, as measured by the ALSFRS and FVC, was correlated with gray matter perfusion. This correlation was predominantly observed in the hemisphere contralateral to the more affected limbs. ALSFRS scores correlated with perfusion in the contralateral frontal and p