WorldWideScience

Sample records for vivo 31p-nuclear magnetic

  1. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed1[W

    Science.gov (United States)

    Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas

    2014-01-01

    Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124

  2. 31P nuclear magnetic resonance in vivo spectroscopy of the metabolic changes induced in the awake rat brain during KCN intoxication and its reversal by hydroxocobalamine.

    Science.gov (United States)

    Benabid, A L; Decorps, M; Remy, C; Le Bas, J F; Confort, S; Leviel, J L

    1987-03-01

    Radiofrequency surface coils were chronically implanted in rats, which were subsequently subjected to 31P nuclear magnetic resonance (NMR) investigations at 4.7 T. The implanted coil allowed study of the animals without need for anesthesia, which is a prerequisite for studies of normal brain metabolism. The animals may be kept in the NMR probe for several hours. During subsequent experiments, they may be placed in the same position, therefore allowing follow-up studies for periods as long as 2 months. This method has been used in the study of sublethal KCN intoxication. KCN, a cytochrome c oxidase inhibitor, induces a blockade of cell respiratory processes, which is reflected, in a dose-dependent manner, by a decrease in phosphocreatine content and pH and an increase in inorganic phosphate content, whereas ATP levels remain constant until high doses of KCN (6 mg/kg i.p.) are reached. 31P NMR allows the time course of these metabolic changes to be followed. For high KCN doses, a new peak, termed X, is observed, which is interpreted as being due to a pool of inorganic phosphate at very low pH (5.65), corresponding to a subset of cells that did not survive KCN injury. Hydroxocobalamine, a specific antidote of KCN, suppresses the metabolic changes due to 6 mg/kg of KCN.

  3. 31P nuclear magnetic resonance studies of HeLa cells.

    Science.gov (United States)

    Evans, F E; Kaplan, N O

    1977-11-01

    A survey of phosphorus compounds present in HeLa cells and their acid extracts has been carried out by (31)P nuclear magnetic resonance spectroscopy at 40 MHz. The proton decoupled (31)P spectrum of the neutralized extract had resolution adequate to enable the identification of the main phosphate compounds. The spectral intensities were converted to concentrations. The lower detection limit with extensive signal averaging was 0.02 mumol for the extract. The composition, listed in order of decreasing concentration, was: inorganic phosphate, ATP, phosphorylcholine, creatine phosphate, UTP, NAD(+), glucose 6-phosphate, beta-D-fructose 1,6-bisphosphate, alpha-D-fructose 1,6-bisphosphate, ADP, alpha-glycerophosphorylcholine, and alpha-glycerophosphorylethanolamine. UTP made up (1/5) of the total nucleotide triphosphate content. The composition was compared to the (31)P spectrum of an extract from a human astrocytoma grown in athymic mice. The signal from P-containing macromolecules such as nucleic acids was not detected in the intact HeLa cell spectrum because of broad lines. Effects of the glycolysis inhibitor iodoacetic acid could be clearly shown in spectra of both the intact cell and the extract as buildup of fructose 1,6-bisphosphate at the expense of ATP, UTP, and creatine phosphate.

  4. Effects of 2-Deoxy-D-Glucose on Metabolic Status, Proliferative Capacity and Growth Rate of FSall Tumor: Observations made by In Vivo 31P-Nuclear Magnetic Resonance Spectroscopy and Flow Cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hye Sook; Choi, Eun Kyung; Cho, Jeong Gill [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of); Lim, Tae Hwan; Lee, Tae Keun; Yi, Yun [Korea Univ. College of Medicine, Seoul (Korea, Republic of); Cho, Young Joo; Kim, Gon Sup [Asan Institute for Life Sciences, Seoul (Korea, Republic of)

    1991-06-15

    The effect of 2-deoxy-d-glucose (2-DDG) on C{sub 3}H mouse fibrosarcoma (FSall) was studied. Metabolic status, especially for energy metabolism, was studied using in vivo {sup 31}P-MRS, proliferative capacity was observed on flow cytometry (FC) and growth rate was measured after transplantation of 106 viable tumor cells in the dorsum of foot of C{sub 3}Hf/Sed mice. One gram of 2-DDG per kg of body weight was injected intraperitoneally on 12th day of implantation. Average tumor size on 12th day of implantation was 250mm{sup 3}. Growth rate of FSall tumor was measured by tumor doubling time between tumor age 5-12 days was 0.84 days with slope 0.828 and tumor doubling time between tumor age 13-28 days was 3.2 days with slope 0.218 in control group. After 2-DDG injection, tumor doubling time was elongated to 5.1 days with slope 0.136. The effect of 2-DDG studied in vivo {sup 31}P-MRS suggested that the increase of phosphomonoester (PME) and inorganic phosphate (Pi) by increasing size of tumor, slowed down after 2-DDG injection. Flow cytometry showed significantly increased S-phase and G{sub 2}+M phase fraction suggesting increased proliferative capacity of tumor cells in the presence of 2-DDG. Authors observed an interesting effect 2-DDG on FSall tumor and attempt to utilize as an adjunct for radiotherapy.

  5. /sup 31/P nuclear magnetic resonance chemical shielding tensors of L-0-serine phosphate and 3'-cytidine monophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, S.J.; Klein, M.P.

    1977-12-07

    /sup 31/P nuclear magnetic resonance chemical shielding tensors have been measured from single crystals of L-O-serine phosphate and 3'-cytidine monophosphate. The principal elements of the shielding tensors are -48, -2, and 51 ppM for serine phosphate and -68, -13, and 64 ppM for 3'-cytidine monophosphate, relative to 85% H/sub 3/PO/sub 4/. In both cases four orientations of the shielding tensor on the molecule are possible; in both instances one orientation correlates well with the P--O bond directions. This orientation of the shielding tensor places the most downfield component of the tensor in the plane containing the two longest P--O bonds and the most upfield component of the shielding tensor in the plane containing the two shortest P--O bonds. A similar orientation was reported for the /sup 31/P shielding tensor of phosphorylethanolamine and a comparison is made between the three molecules.

  6. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes.

  7. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis.

    OpenAIRE

    Thompson, J.; Torchia, D A

    1984-01-01

    High-resolution 31P nuclear magnetic resonance spectroscopy and 14C fluorography have been used to identify and quantitate intermediates of the Embden-Meyerhof pathway in intact cells and cell extracts of Streptococcus lactis. Glycolysing cells contained high levels of fructose 1,6-bisphosphate (a positive effector of pyruvate kinase) but comparatively low concentrations of other glycolytic metabolites. By contrast, starved organisms contained only high levels of 3-phosphoglycerate, 2-phospho...

  8. Real-Time Analysis of Tenofovir Release Kinetics Using Quantitative Phosphorus (31P) Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Agrahari, Vivek; Meng, Jianing; Purohit, Sudhaunshu S; Oyler, Nathan A; Youan, Bi-Botti C

    2017-10-01

    The dialysis method is classically used for drug separation before analysis, but does not provide direct and real-time drug quantification and has limitations affecting the dialysis rate. In this study, a phosphorus nuclear magnetic resonance (31P-qNMR) method is developed for the real-time quantification of therapeutic molecules in vitro. The release kinetics of model drug, tenofovir (anti-HIV microbicide), was analyzed in vaginal fluid simulant (VFS), seminal fluid simulant (SFS), and human plasma (HP) from chitosan nanofibers (size ∼100-200 nm) using the NMR (direct) method and compared with dialysis/UV-Vis (indirect) method. The assay was linear in VFS/SFS (0.20-5.0 mM), HP (0.30-5.0 mM of drug concentration range) and specific no drug 31P-qNMR chemical shift [∼15 ppm] interference with formulation/media components. Limit of detection values were 0.075/0.10/0.20 mM, whereas limit of quantification values were 0.20/0.20/0.30 mM in VFS/SFS/HP, respectively. The method was robust, precise (%RSE 31P-qNMR provides more accurate, real-time, and direct drug quantification for effective in vitro-in vivo correlation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. 31P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: Applications to head-group motion in model membranes.

    Science.gov (United States)

    Kohler, S J; Klein, M P

    1976-03-09

    31P nuclear magnetic resonance (NMR) powder spectra have been used to obtain the principal values of the chemical shielding tensors of dipalmitoyellecithin (DPL), dipalmitoylphosphatidylethanolamine, and several related organophosphate mono- and diesters. In addition, the principal values and orientation of the phosphorylethanolamine shielding tensor were determined from 31P NMR spectra of a single crystal. In all compounds studied the shielding tensors were clearly monaxial. The monoester spectra are typified by the spectrum of phosphorylethanolamine with principal values of -67, -13, and 69 ppm relative to H3PO4. The diesters have a larger total anisotrophy, as indicated by the DPL values of -81, -25, and 108 ppm. These data as well as the orientation of the phosphorylethanolamine shielding tensor are correlated with the electron density distribution as determined by the bonding pattern of the phosphate. The spectrum of a DPL-water (1:1) mixture at 52 degrees C has a shift anisotrophy of 30 ppm and displays a shape characteristic of an axial tensor. This change from the rigid lattice DPL pattern is explained in terms of motional narrowing, and the shielding tensor data are used to interpret the motion of the phospholipid head group. Simple rotation about the P-O(glycerol) bond is excluded, and a more complex motion involving rotation about both the P-O (glycerol) and glycerol C(2)-C(3) bonds is postulated.

  10. /sup 31/P nuclear magnetic resonance chemical shielding tensors of phosphorylethanolamine, lecithin, and related compounds: applications to head-group motion in model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, S.J.; Klein, M.P.

    1976-03-09

    /sup 31/P nuclear magnetic resonance (NMR) power spectra have been used to obtain the principal values of the chemical shielding tensors of dipalmitoyllecithin (DPL), dipalmitoylphosphatidylethanolamine, and several related organophosphate mono- and diesters. In addition, the principal values and orientation of the phosphorylethanolamine shielding tensor were determined from /sup 31/P NMR spectra of a single crystal. In all compounds studied the shielding tensors were clearly nonaxial. The monoester spectra are typified by the spectrum of phosphorylethanolamine with principal values of -67, -13, and 69 ppm relative to H/sub 3/PO/sub 4/. The diesters have a larger total anisotropy, as indicated by the DPL values of -81, -25, and 108 ppm. These data as well as the orientation of the phosphorylethanolamine shielding tensor are correlated with the electron density distribution as determined by the bonding pattern of the phosphate. The spectrum of a DPL--water (1:1) mixture at 52/sup 0/C has a shift anisotropy of 30 ppm and displays a shape characteristic of an axial tensor. This change from the rigid lattice DPL pattern is explained in terms of motional narrowing, and the shielding tensor data are used to interpret the motion of the phospholipid head group. Simple rotation about the P--O(glycerol) bond is excluded, and a more complex motion involving rotation about both the P--O(glycerol) and glycerol C(2)--C(3) bonds is postulated. (auth)

  11. Effect of hyperbaric oxygen on sphingomyelinase D activity of brown recluse spider (Loxosceles reclusa) venom as studied by 31P nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Merchant, M L; Hinton, J F; Geren, C R

    1997-03-01

    Hyperbaric oxygen (HBO) has been reported by some to be therapeutic for necrotic lesions induced by the venom of the brown recluse spider, Loxosceles reclusa. Others have reported no efficacy for this treatment. In this study, the effect of high pressure oxygen on an enzymatic activity of the toxin of this venom is reported. The time course for the hydrolysis of the phosphocholine ester bond of chicken egg yolk sphingomyelin, as catalyzed by brown recluse spider venom (BRSV) and venom treated with extended HBO (12 hr at 10 atmospheres), was followed by phosphorus-31 nuclear magnetic resonance spectroscopy. The venom and HBO-pretreated venom demonstrated sphingomyelinase D activity. Phospholipase C activity was not detected. The sphingomyelinase D activity of BRSV in three separate experiments was not altered by HBO. The HBO-pretreated venom, in all cases, did not exhibit an altered time course in the overall hydrolysis of the D linkage of sphingomyelin.

  12. Local anesthetics: interaction with human erythrocyte membranes as studied by {sup 1}H and {sup 31}P nuclear magnetic resonance; Anestesicos locais: interacao com membranas de eritrocitos de sangue humano, estudada por ressonancia magnetica nuclear de {sup 1}H e {sup 31}P

    Energy Technology Data Exchange (ETDEWEB)

    Fraceto, Leonardo Fernandes; Paula, Eneida de [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia. Dept. de Bioquimica]. E-mail: depaula@unicamp.br

    2004-02-01

    The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by {sup 1}H and {sup 31}P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipids acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na{sup +}-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia. (author)

  13. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1992-01-01

    The electromyogram (EMG) is often used to study human muscle fatigue, but the changes in the electromyographic signals during muscle contraction are not well understood in relation to muscle metabolism. The 31P NMR spectroscopy is a semi-quantitative non-invasive method for studying the metabolic...... changes in human muscle. The aim of this study was to develop a method by which EMG and NMR spectroscopy measurements could be performed simultaneously. All measurements were performed in a whole body 1.5 Tesla NMR scanner. A calf muscle ergometer, designed for use in a whole body NMR scanner, was used....... The subject had the left foot strapped to the ergometer. The anterior tibial EMG was recorded by bipolar surface electrodes. A surface coil was strapped to the anterior tibial muscle next to the EMG electrodes. Simultaneous measurements of surface EMG and surface coil 31P NMR spectroscopy were performed...

  14. Transport and compartmentation of phosphite in higher plant cells - kinetic and 31P nuclear magnetic resonance studies

    NARCIS (Netherlands)

    Danova-Alt, R.; Dijkema, C.; Waard, de P.; Köck, M.

    2008-01-01

    Phosphite (Phi, H(2)PO(3)(-)), being the active part of several fungicides, has been shown to influence not only the fungal metabolism but also the development of phosphate-deficient plants. However, the mechanism of phosphite effects on plants is still widely unknown. In this paper we analysed

  15. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  16. 31P Nuclear magnetic resonance and freeze-fracture electron microscopy studies on Escherichia coli. II. Lipopolysaccharide and lipopolysaccharide-phospholipid complexes

    NARCIS (Netherlands)

    Alphen, Loek van; Verkleij, A.; Burnell, E.; Lugtenberg, B.

    1980-01-01

    1. 1. Freeze-fracture electron microscopy and 31P-NMR spectroscopy on native and electrodialyzed lipopolysaccharide from Escherichia coli K12 cells, both above and below the phase transition temperature, are described. 2. 2. Freeze-fracture electron microscopy of native lipopolysaccharide shows

  17. Maintenance of high-energy brain phosphorous compounds during insulin-induced hypoglycemia in men. 31P nuclear magnetic resonance spectroscopy study

    DEFF Research Database (Denmark)

    Hilsted, Jannik; Jensen, K E; Thomsen, C

    1988-01-01

    -induced hypoglycemia, 31P NMR spectra were obtained before and after intravenous injection of insulin (0.15 IU/kg body wt) in six men. Compared with prehypoglycemic measurements, no significant changes were found in brain content of Pi, sugar phosphates, phosphocreatine, phosphodiesters, and ATP, and brain pH remained...

  18. In vivo magnetic resonance spectroscopy; In vivo magnetisk resonansspektroskopi

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Inger Johanne; Skjetne, Tore; Gribbestad, Ingrid S.; Kvistad, Kjell Arne

    2002-07-01

    Magnetic resonance tomography (MR) has become a highly useful tool for diagnostic imaging. The technology is in a process of rapid development with new and better methods emerging for the imaging of anatomic and pathologic aspects. With some additional equipment, the MR instrument may also be used for in vivo magnetic resonance spectroscopy (MRS). In vivo MRS provides biochemical information about metabolites in a given tissue volume. This type of biochemical information can be extracted from volumes the size of a sugar lump within a recording period of about five minutes. New technologies also allow extracting such information from several volumes during one recording in which the information is processed as metabolic pictures. The method has found clinical applications in several fields, including the evaluation of brain tumours and epilepsy. The use of in vivo MRS will probably increase in the years ahead, especially, perhaps, for the follow-up of various therapeutic regimens. All suppliers of MR equipment now provide in vivo MRS sets and routines for recording and data analysis have become very user-friendly. (author)

  19. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications.

    NARCIS (Netherlands)

    Graaf, M. van der

    2010-01-01

    The clinical use of in vivo magnetic resonance spectroscopy (MRS) has been limited for a long time, mainly due to its low sensitivity. However, with the advent of clinical MR systems with higher magnetic field strengths such as 3 Tesla, the development of better coils, and the design of optimized

  20. SQUID-Detected In Vivo MRI at Microtesla Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Moble, Michael; Myers, Whittier R; Lee, SeungKyun; Kelso, Nathan; Hatridge, Michael; Pines, Alexander; Clarke, John

    2005-06-01

    We use a low transition temperature (T{sub c}) Super-conducting Quantum Interference Device (SQUID) to perform in vivo magnetic resonance imaging (MRI) at magnetic fields around 100 microtesla, corresponding to proton Larmor frequencies of about 5 kHz. In such low fields, broadening of the nuclear magnetic resonance lines due to inhomogeneous magnetic fields and susceptibility variations of the sample are minimized, enabling us to obtain high quality images. To reduce environmental noise the signal is detected by a second-order gradiometer, coupled to the SQUID, and the experiment is surrounded by a 3-mm thick Al shield. To increase the signal-to-noise ratio (SNR), we prepolarize the samples in a field up to 100 mT. Three-dimensional images are acquired in less than 6 minutes with a standard spin-echo phase-encoding sequence. Using encoding gradients of {approx}100 {micro}T/m we obtain three-dimensional images of bell peppers with a resolution of 2 x 2 x 8 mm{sup 3}. Our system is ideally suited to acquiring images of small, peripheral parts of the human body such as hands and arms. In vivo images of an arm, acquired at 132 {micro}T, show 24-mm sections of the forearm with a resolution of 3 x 3 mm{sup 2} and a SNR of 10. We discuss possible applications of MRI at these low magnetic fields.

  1. Simultaneous in vivo positron emission tomography and magnetic resonance imaging

    OpenAIRE

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S.; Qi, Jinyi; Pichler, Bernd J.; Jacobs, Russell E.; Cherry, Simon R.

    2008-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution o...

  2. In vivo magnetic resonance imaging of hyperpolarized silicon particles.

    Science.gov (United States)

    Cassidy, M C; Chan, H R; Ross, B D; Bhattacharya, P K; Marcus, C M

    2013-05-01

    Silicon-based micro- and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in vivo, as well as their flexible surface chemistry, which allows drug loading, functionalization and targeting. Here, we report direct in vivo imaging of hyperpolarized (29)Si nuclei in silicon particles by magnetic resonance imaging. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization, extremely long depolarization times, insensitivity to the in vivo environment or particle tumbling, and surfaces favourable for functionalization. Potential applications to gastrointestinal, intravascular and tumour perfusion imaging at subpicomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available and biocompatible silicon particles.

  3. Tracking immune cells in vivo using magnetic resonance imaging.

    Science.gov (United States)

    Ahrens, Eric T; Bulte, Jeff W M

    2013-10-01

    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and ¹⁹F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.

  4. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  5. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  6. Bacteria tracking by in vivo magnetic resonance imaging

    Science.gov (United States)

    2013-01-01

    Background Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI. PMID:23714179

  7. Monitoring of radio frequency tissue ablation in an interventional magnetic resonance environment. Preliminary ex vivo and in vivo results.

    Science.gov (United States)

    Steiner, P; Botnar, R; Goldberg, S N; Gazelle, G S; Debatin, J F

    1997-11-01

    The authors evaluate the feasibility of monitoring radio frequency (RF) ablation in an interventional, open-configuration, 0.5-tesla magnetic resonance (MR) environment. Ex vivo and in vivo RF coagulation necrosis were induced in porcine paraspinal muscle tissue using a 300 kHz monopolar RF generator applying 5 to 20 W over 3 to 9 minutes. Images were acquired simultaneous to RF application, after RF application, and in an intermittent mode (60 seconds of RF followed by 15 seconds of MR imaging). Temperature changes were monitored based on amplitude (ex vivo) and phase alterations (in vivo) of a T1-weighted graded refocused echo (GRE) sequence enabling an update every 2.5 seconds. A standardized color-coded subtraction technique enhanced signal changes. Additionally, T2- and T1-weighted spin echo (SE) images were acquired with and without intravenous contrast. Macroscopic coagulation size was compared with lesion size seen on MR images. Although lesion diameters were related directly to applied RF power, the application mode had no significant impact on coagulation size (P > 0.05). As could be expected, MR imaging during RF ablation resulted in major image distortion. Radio frequency effects were seen on images acquired in the continuous and intermittent modes. Coagulation size seen on GRE images correlated well with macroscopy both ex vivo (r = 0.89) and in vivo (r = 0.92). Poorer correlation was found with postinterventional SE sequences (r = 0.78-0.84). Magnetic resonance monitoring of RF effects is feasible both ex vivo as well as in vivo using temperature-sensitive sequences in an open-configuration MR environment.

  8. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles.

    Science.gov (United States)

    Mariappan, Leo; Shao, Qi; Jiang, Chunlan; Yu, Kai; Ashkenazi, Shai; Bischof, John C; He, Bin

    2016-04-01

    Nanoparticles are widely used as contrast and therapeutic agents. As such, imaging modalities that can accurately estimate their distribution in-vivo are actively sought. We present here our method Magneto Acoustic Tomography (MAT), which uses magnetomotive force due to a short pulsed magnetic field to induce ultrasound in the magnetic nanoparticle labeled tissue and estimates an image of the distribution of the nanoparticles in-vivo with ultrasound imaging resolution. In this study, we image the distribution of superparamagnetic iron oxide nanoparticles (IONP) using MAT method. In-vivo imaging was performed on live, nude mice with IONP injected into LNCaP tumors grown subcutaneously within the hind limb of the mice. Our experimental results indicate that the MAT method is capable of imaging the distribution of IONPs in-vivo. Therefore, MAT could become an imaging modality for high resolution reconstruction of MNP distribution in the body. Many magnetic nanoparticles (MNPs) have been used as contrast agents in magnetic resonance imaging. In this study, the authors investigated the use of ultrasound to detect the presence of MNPs by magneto acoustic tomography. In-vivo experiments confirmed the imaging quality of this new approach, which hopefully would provide an alternative method for accurate tumor detection. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Captopril improves recovery of adenosine triphosphate during reperfusion of the ischemic isolated rat heart; a 31-phosphorus-nuclear magnetic resonance study

    NARCIS (Netherlands)

    Gilst, W.H. van; Robillard, G.T.; Dijkstra, K.; Wildevuur, C.R.H.

    1988-01-01

    The effect of captopril on energy-rich phosphates and pH during normothermic ischemic arrest, hypothermic cardioplegic arrest and subsequent reperfusion was investigated in the isolated rat heart using 31P-nuclear magnetic resonance. The hearts remained in the probe during all perfusion procedures

  10. Ac magnetic susceptibility study of in vivo nanoparticle biodistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, L; Veintemillas-Verdaguer, S; Serna, C J; Morales, M P [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Ines de la Cruz 3, Cantoblanco 28049, Madrid (Spain); MejIas, R; Barber, D F [Centro Nacional de BiotecnologIa, CNB-CSIC, Darwin 3, Cantoblanco 28049, Madrid (Spain); Lazaro, F J, E-mail: lucia@icmm.csic.es [Departamento de Ciencia y Tecnologia de Materiales y Fluidos, Universidad de Zaragoza, Maria de Luna 3, 50018, Zaragoza (Spain)

    2011-06-29

    We analysed magnetic nanoparticle biodistribution, before and after cytokine conjugation, in a mouse model by ac susceptibility measurements of the corresponding resected tissues. Mice received repeated intravenous injections of nanoparticle suspension for two weeks and they were euthanized 1 h after the last injection. In general, only 10% of the total injected nanoparticles after multiple exposures were found in tissues. The rest of the particles may probably be metabolized or excreted by the organism. Our findings indicate that the adsorption of interferon to DMSA-coated magnetic nanoparticles changes their biodistribution, reducing the presence of nanoparticles in lungs and therefore their possible toxicity. The specific targeting of the particles to tumour tissues by the use of an external magnetic field has also been studied. Magnetic nanoparticles were observed by transmission electron microscopy in the targeted tissue and quantified by ac magnetic susceptibility.

  11. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo

    Science.gov (United States)

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.

    2011-01-01

    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  12. Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kevin M; Papademetris, Xenophon; Rothman, Douglas L; Graaf, Robin A de [Yale University, Magnetic Resonance Research Center, New Haven, CT (United States)

    2006-12-21

    Static magnetic field perturbations generated by variations of magnetic susceptibility within samples reduce the quality and integrity of magnetic resonance measurements. These perturbations are difficult to predict in vivo where wide variations of internal magnetic susceptibility distributions are common. Recent developments have provided rapid computational means of estimating static field inhomogeneity within the small susceptibility limits of materials typically studied using magnetic resonance. Such a predictive mechanism could be a valuable tool for sequence simulation, field shimming and post-acquisition image correction. Here, we explore this calculation protocol and demonstrate its predictive power in estimating in vivo inhomogeneity within the human brain. Furthermore, we quantitatively explore the predictive limits of the computation. For in vivo comparison, a method of magnetic susceptibility registration using MRI and CT data is presented and utilized to carry out subject-specific inhomogeneity estimation. Using this algorithm, direct comparisons in human brain and phantoms are made between field map acquisitions and calculated inhomogeneity. Distortion correction in echo-planar images due to static field inhomogeneity is also demonstrated using the computed field maps.

  13. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.

    Science.gov (United States)

    Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor

    2016-12-01

    Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Monitoring fluoropyrimidine metabolism in solid tumors with in vivo (19)F magnetic resonance spectroscopy

    NARCIS (Netherlands)

    van Laarhoven, Hanneke W. M.; Punt, Cornelis J. A.; Kamm, Yvonne J. L.; Heerschap, Arend

    2005-01-01

    (19)Fluorine magnetic resonance spectroscopy ((19)F MRS) offers unique possibilities for monitoring the pharmacokinetics of fluoropyrimidines in vivo in tumors and normal tissue in a non-invasive way, both in animals and in patients. This method may therefore be useful for predicting response to

  15. Monitoring fluoropyrimidine metabolism in solid tumors with in vivo (19)F magnetic resonance spectroscopy.

    NARCIS (Netherlands)

    Laarhoven, H.W.M. van; Punt, C.J.A.; Kamm, Y.J.L.; Heerschap, A.

    2005-01-01

    (19)Fluorine magnetic resonance spectroscopy ((19)F MRS) offers unique possibilities for monitoring the pharmacokinetics of fluoropyrimidines in vivo in tumors and normal tissue in a non-invasive way, both in animals and in patients. This method may therefore be useful for predicting response to

  16. In Vitro and in Vivo Visualization and Trapping of Fluorescent Magnetic Microcapsules in a Bloodstream.

    Science.gov (United States)

    Voronin, Denis V; Sindeeva, Olga A; Kurochkin, Maxim A; Mayorova, Oksana; Fedosov, Ivan V; Semyachkina-Glushkovskaya, Oksana; Gorin, Dmitry A; Tuchin, Valery V; Sukhorukov, Gleb B

    2017-03-01

    Remote navigation and targeted delivery of biologically active compounds is one of the current challenges in the development of drug delivery systems. Modern methods of micro- and nanofabrication give us new opportunities to produce particles and capsules bearing cargo to deploy and possess magnetic properties to be externally navigated. In this work we explore multilayer composite magnetic microcapsules as targeted delivery systems in vitro and in vivo studies under natural conditions of living organism. Herein, we demonstrate magnetic addressing of fluorescent composite microcapsules with embedded magnetite nanoparticles in blood flow environment. First, the visualization and capture of the capsules at the defined blood flow by the magnetic field are shown in vitro in an artificial glass capillary employing a wide-field fluorescence microscope. Afterward, the capsules are visualized and successfully trapped in vivo into externally exposed rat mesentery microvessels. Histological analysis shows that capsules infiltrate small mesenteric vessels whereas large vessels preserve the blood microcirculation. The effect of the magnetic field on capsule preferential localization in bifurcation areas of vasculature, including capsule retention at the site once external magnet is switched off is discussed. The research outcome demonstrates that microcapsules can be effectively addressed in a blood flow, which makes them a promising delivery system with remote navigation by the magnetic field.

  17. 3D magnetic resonance microscopy of the ex vivo retina.

    Science.gov (United States)

    De La Garza, Bryan H; Muir, Eric R; Shih, Yen-Yu I; Duong, Timothy Q

    2012-04-01

    3D-MR microscopy at 11.7T and 20 × 20 × 57 μm resolution was performed on formalin-fixed rat eyes with: (I) no contrast agent and (II) Gadodiamide (Omniscan(®) ) added to the fixative. Group I data showed generally poor contrast among layers. Group II data showed markedly better lamina-specific contrast with the nerve fiber + ganglion cell layer and inner nuclear layer being hypointense, and the inner plexiform, outer plexiform, outer nuclear layer, and the segments being hyperintense. The signal-to-noise ratio in group II was higher than group I, consistent with Gadodiamide acting as a T(1) -contrast agent. All major retinal layers were assigned and their thicknesses quantified with corroboration by histology. MR microscopy allows nondestructive examination of valuable specimens and could have applications in disease and in vivo. Copyright © 2011 Wiley Periodicals, Inc.

  18. Numerical Model Study of In Vivo Magnetic Nanoparticle Tumor Heating.

    Science.gov (United States)

    Pearce, John A; Petryk, Alicia A; Hoopes, P Jack

    2017-12-01

    Iron oxide nanoparticles are currently under investigation as heating agents for hyperthermic treatment of tumors. Major determinants of effective heating include the biodistribution and minimum iron oxide loading required to achieve adequate heating at practically achievable magnetic field strengths. These inter-related criteria ultimately determine the practicality of this approach to tumor treatment. Further, in our experience the currently used treatment assessment criterion for hyperthermia treatment-cumulative equivalent minutes at 43 °C, CEM43 -provides an inadequate description of the expected treatment effectiveness. Couple numerical models to experimental measurements to study the relative heating effectiveness described by cell death predictions. FEM numerical models were applied to increase the understanding of a carefully calibrated series of experiments in mouse mammary adenocarcinoma. The numerical model results indicate that minimum tumor loadings between approximately 1.3 to 1.8 mg of Fe per cm3 of tumor tissue are required to achieve the experimentally observed temperatures in magnetic field strengths of 32 kA/m (rms) at 162 kHz. We show that including multiple cell death processes operating in parallel within the numerical models provides valuable perspective on the likelihood of successful treatment. We show and believe that these assessment methods are more accurate than a single assessment figure of merit based only on the comparison of thermal histories, such as the CEM method.

  19. Quantitative in vivo magnetic resonance spectroscopy using synthetic signal injection.

    Science.gov (United States)

    Marro, Kenneth I; Lee, Donghoon; Shankland, Eric G; Mathis, C Mark; Hayes, Cecil E; Friedman, Seth D; Kushmerick, Martin J

    2010-12-28

    Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.

  20. Quantitative in vivo magnetic resonance spectroscopy using synthetic signal injection.

    Directory of Open Access Journals (Sweden)

    Kenneth I Marro

    Full Text Available Accurate conversion of magnetic resonance spectra to quantitative units of concentration generally requires compensation for differences in coil loading conditions, the gains of the various receiver amplifiers, and rescaling that occurs during post-processing manipulations. This can be efficiently achieved by injecting a precalibrated, artificial reference signal, or pseudo-signal into the data. We have previously demonstrated, using in vitro measurements, that robust pseudo-signal injection can be accomplished using a second coil, called the injector coil, properly designed and oriented so that it couples inductively with the receive coil used to acquire the data. In this work, we acquired nonlocalized phosphorous magnetic resonance spectroscopy measurements from resting human tibialis anterior muscles and used pseudo-signal injection to calculate the Pi, PCr, and ATP concentrations. We compared these results to parallel estimates of concentrations obtained using the more established phantom replacement method. Our results demonstrate that pseudo-signal injection using inductive coupling provides a robust calibration factor that is immune to coil loading conditions and suitable for use in human measurements. Having benefits in terms of ease of use and quantitative accuracy, this method is feasible for clinical use. The protocol we describe could be readily translated for use in patients with mitochondrial disease, where sensitive assessment of metabolite content could improve diagnosis and treatment.

  1. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Olivier Sandre

    2017-02-01

    Full Text Available The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

  2. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, S.D.; Eng, C.; Balaban, R.S. (National Institutes of Health, Bethesda, MD (USA))

    1988-10-01

    The present study characterizes the {sup 31}P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the {sup 31}P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises {approximately}30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by {sup 23}Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content.

  3. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells

    Science.gov (United States)

    Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P.

    2009-12-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths. Detecting circulating tumour cells-a common marker for the development of metastasis-is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.

  4. In vivo liver visualizations with magnetic particle imaging based on the calibration measurement approach

    Science.gov (United States)

    Dieckhoff, J.; Kaul, M. G.; Mummert, T.; Jung, C.; Salamon, J.; Adam, G.; Knopp, T.; Ludwig, F.; Balceris, C.; Ittrich, H.

    2017-05-01

    Magnetic particle imaging (MPI) facilitates the rapid determination of 3D in vivo magnetic nanoparticle distributions. In this work, liver MPI following intravenous injections of ferucarbotran (Resovist®) was studied. The image reconstruction was based on a calibration measurement, the so called system function. The application of an enhanced system function sample reflecting the particle mobility and aggregation status of ferucarbotran resulted in significantly improved image reconstructions. The finding was supported by characterizations of different ferucarbotran compositions with the magnetorelaxometry and magnetic particle spectroscopy technique. For instance, similar results were obtained between ferucarbotran embedded in freeze-dried mannitol sugar and liver tissue harvested after a ferucarbotran injection. In addition, the combination of multiple shifted measurement patches for a joint reconstruction of the MPI data enlarged the field of view and increased the covering of liver MPI on magnetic resonance images noticeably.

  5. In Vivo Assessment of Neurotransmitters and Modulators with Magnetic Resonance Spectroscopy: Application to Schizophrenia

    Science.gov (United States)

    Wijtenburg, S. Andrea; Yang, Shaolin; Fischer, Bernard A.; Rowland, Laura M.

    2015-01-01

    In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. PMID:25614132

  6. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    Science.gov (United States)

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  7. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...... that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein......., corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...

  8. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences......A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... intracranial hypertension. The results indicate that brain water self diffusion can be measured in vivo with reasonable accuracy. The clinical examples suggest that diffusion measurements may be clinically useful adding further information about in vivo MR tissue characterization....

  9. Segmentation of brain tumor images using in vivo spectroscopy, relaxometry and diffusometry by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Martin L, M. [Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    2006-07-01

    A new methodology is developed for the segmentation of brain tumor images using information obtained by different magnetic resonance techniques such as in vivo spectroscopy, relaxometry and diffusometry. In vivo spectroscopy is used as a sort of virtual biopsy to characterize the different tissue types present in the lesion (active tumor, necrotic tissue or edema and normal or non-affected tissue). Due to the fact that in vivo spectroscopy information lacks the spatial resolution for treatment considerations, this information has to be combined or fused with images obtained by relaxometry and diffusometry with excellent spatial resolution. Some segmentation schemes are presented and discussed, using the high spatial resolution techniques individually or combined. The results show that segmentation done in this way is highly reliable for the application of future therapies such as radiosurgery or radiotherapy. (Author)

  10. In Vivo Magnetic Enrichment, Photoacoustic Diagnosis, and Photothermal Purging of Infected Blood Using Multifunctional Gold and Magnetic Nanoparticles

    Science.gov (United States)

    Galanzha, Ekaterina I.; Shashkov, Evgeny; Sarimollaoglu, Mustafa; Beenken, Karen E.; Basnakian, Alexei G.; Shirtliff, Mark E.; Kim, Jin-Woo; Smeltzer, Mark S.; Zharov, Vladimir P.

    2012-01-01

    Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic. PMID:23049814

  11. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles.

    Directory of Open Access Journals (Sweden)

    Ekaterina I Galanzha

    Full Text Available Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA detection and photothermal (PT eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs, two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic.

  12. Magnetic sentinel lymph node biopsy and localization properties of a magnetic tracer in an in vivo porcine model.

    Science.gov (United States)

    Anninga, Bauke; Ahmed, Muneer; Van Hemelrijck, Mieke; Pouw, Joost; Westbroek, David; Pinder, Sarah; Ten Haken, Bennie; Pankhurst, Quentin; Douek, Michael

    2013-08-01

    The standard for the treatment of early non-palpable breast cancers is wide local excision directed by wire-guided localization and sentinel lymph node biopsy (SLNB). This has drawbacks technically and due to reliance upon radioisotopes. We evaluated the use of a magnetic tracer for its localization capabilities and concurrent performance of SLNB using a handheld magnetometer in a porcine model as a novel alternative to the current standard. Ethical approval by the IRCAD Ethics Review Board, Strasbourg (France) was received. A magnetic tracer was injected in varying volumes (0.1-5 mL) subcutaneously into the areolar of the left and right 3rd inguinal mammary glands in 16 mini-pigs. After 4 h magnetometer counts were taken at the injection sites and in the groins. The magnetometer was used to localize any in vivo signal from the draining inguinal lymph nodes. Magnetic SLNB followed by excision of the injection site was performed. The iron content of sentinel lymph nodes (SLNs) were graded and quantified. All excised specimens were weighed and volumes were calculated. Univariate analyses were performed to evaluate correlation. Magnetic SLNB was successful in all mini-pigs. There was a significant correlation (r = 0.86; p iron content of SLNs. Grading of SLNs on both H&E and Perl's staining correlated significantly with the iron content (p = 0.001; p = 0.003) and magnetometer counts (p < 0.001; p = 0.004). The peak counts corresponded to the original magnetic tracer injection sites 4 h after injection in all cases. The mean volume and weight of excised injection site specimens was 2.9 cm(3) (SD 0.81) and 3.1 g (SD 0.85), respectively. Injection of ≥0.5 mL magnetic tracer was associated with significantly greater volume (p = 0.05) and weight of excision specimens (p = 0.01). SLNB and localization can be performed in vivo using a magnetic tracer. This could provide a viable alternative for lesion localization and concurrent SLNB in the treatment of non-palpable breast

  13. High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues

    Directory of Open Access Journals (Sweden)

    Boel Lene WT

    2010-03-01

    Full Text Available Abstract Background In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR method for ex vivo angiography and to compare the findings with computed tomography (CT. To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle. Results The optimal solution for ex vivo MR angiography (MRA was a compound containing gelatine (0.05 g/mL, the CT contrast agent barium sulphate (0.43 mol/L and the MR contrast agent gadoteric acid (2.5 mmol/L. It was possible to perform angiography on all specimens. We found that ex vivo MRA could only be performed on fresh tissue because formalin fixation makes the blood vessels permeable to the MR contrast agent. Conclusions Ex vivo MRA provides high-resolution images of fresh tissue and delineates fine structures that we were unable to visualise by CT. We found that MRA provided detailed information similar to or better than conventional CTA in its ability to visualize vessel configuration while avoiding interfering signals from adjacent bones. Interestingly, we found that vascular tissue becomes leaky when formalin-fixed, leading to increased permeability and extravascular leakage of MR contrast agent.

  14. In vivo biotinylation of recombinant beta-glucosidase enables simultaneous purification and immobilization on streptavidin coated magnetic particles

    DEFF Research Database (Denmark)

    Alftrén, Johan; Ottow, Kim Ekelund; Hobley, Timothy John

    2013-01-01

    Beta-glucosidase from Bacillus licheniformis was in vivo biotinylated in Escherichia coli and subsequently immobilized directly from cell lysate on streptavidin coated magnetic particles. In vivo biotinylation was mediated by fusing the Biotin Acceptor Peptide to the C-terminal of beta-glucosidas...

  15. Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI

    Directory of Open Access Journals (Sweden)

    Phinikaridou Alkystis

    2012-06-01

    Full Text Available Abstract Background To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W, T2-weighted (T2W, magnetization transfer (MT and diffusion weighting (DW] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques. Methods Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17 by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI at 11.7 T and histology. Results MRI at 11.7 T showed that: (i magnetization transfer contrast (MTC and diffusion weighted images (DWI detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P P (ii MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC and 17.6% (DWI compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii the percent magnetization transfer rate (MTR correlated with the fibrin (r = 0.73, P = 0.003 and collagen (r = 0.9, P = 0.004 content of the thrombus. Conclusions The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.

  16. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  17. In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Daniel Mietchen

    Full Text Available BACKGROUND: Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. METHODOLOGY: Given that non-destructive techniques like (1H Magnetic Resonance (MR imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems--the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. RESULTS: In vivo MR images were acquired from autumn-collected larvae at temperatures between 0 degrees C and about -70 degrees C and at spatial resolutions down to 27 microm. These images revealed three-dimensional (3D larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. CONCLUSIONS: These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo.

  18. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve......, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...... arrest. The mean T2 of non-flowing blood was found to be 105 +/- 31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate...

  19. The Response of RIF-1 Fibrosarcomas to the Vascular-Disrupting Agent ZD6126 Assessed by In Vivo and Ex Vivo1H Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Basetti Madhu

    2006-07-01

    Full Text Available The response of radiation-induced fibrosarcoma1 (RIF-1 tumors treated with the vascular-disrupting agent (VDA ZD6126 was assessed by in vivo and ex vivo1H magnetic resonance spectroscopy (MRS methods. Tumors treated with 200 mg/kg ZD6126 showed a significant reduction in total choline (tCho in vivo 24 hours after treatment, whereas control tumors showed a significant increase in tCho. This response was investigated further within both ex vivo unprocessed tumor tissues and tumor tissue metabolite extracts. Ex vivo high-resolution magic angle spinning (HRMAS and 1H MRS of metabolite extracts revealed a significant reduction in phosphocholine and glycerophosphocholine in biopsies of ZD6126-treated tumors, confirming in vivo tCho response. ZD6126-induced reduction in choline compounds is consistent with a reduction in cell membrane turnover associated with necrosis and cell death following disruption of the tumor vasculature. In vivo tumor tissue water diffusion and lactate measurements showed no significant changes in response to ZD6126. Spin-spin relaxation times (T2 of water and metabolites also remained unchanged. Noninvasive 1H MRS measurement of tCho in vivo provides a potential biomarker of tumor response to VDAs in RIF-1 tumors.

  20. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo.

    Science.gov (United States)

    Battiston, Marco; Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C; Cercignani, Mara; Gandini Wheeler-Kingshott, Claudia A M; Samson, Rebecca S

    2018-05-01

    To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm 3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB  = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB . The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc

  1. In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles.

    Science.gov (United States)

    Price, Dominique N; Stromberg, Loreen R; Kunda, Nitesh K; Muttil, Pavan

    2017-11-09

    This brief communication evaluates the cytotoxicity and targeting capability of a dry powder chemotherapeutic. Nano-in-microparticles (NIMs) are a dry powder drug delivery vehicle containing superparamagnetic iron oxide nanoparticles (SPIONs) and either doxorubicin (w/w solids) or fluorescent nanospheres (w/v during formulation; as a drug surrogate) in a lactose matrix. In vitro cytotoxicity was evaluated in A549 adenocarcinoma cells using MTS and LDH assays to assess viability and toxicity after 48 h of NIMs exposure. In vivo magnetic-field-dependent targeting of inhaled NIMs was evaluated in a healthy mouse model. Mice were endotracheally administered fluorescently labeled NIMs either as a dry powder or a liquid aerosol in the presence of an external magnet placed over the left lung. Quantification of fluorescence and iron showed a significant increase in both fluorescence intensity and iron content to the left magnetized lung. In comparison, we observed decreased targeting of fluorescent nanospheres to the left lung from an aerosolized liquid suspension, due to the dissociation of SPIONs and nanoparticles during pulmonary administration. We conclude that dry powder NIMs maintain the therapeutic cytotoxicity of doxorubicin and can be better targeted to specific regions of the lung in the presence of a magnetic field, compared to a liquid suspension.

  2. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy.

    Science.gov (United States)

    Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J

    2014-11-01

    Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.

  3. Tailored magnetic nanoparticles for in vitro, in vivo and in situ magnetorelaxometry

    Science.gov (United States)

    Pisanic, Thomas R., II

    The development of novel methods of probing biological interactions is critical to the advancement of biomedical science. Recent progress in the synthesis and science of nanoscale structures has engendered a renaissance in the evolution of techniques aimed at the analysis of these interactions. The use of nanomaterials provides the researcher with access to the extended quantum behaviors of these materials and the ability to intimately interact with the fundamental subunits of biology. Magnetic materials on this size scale, such as magnetic nanoparticles (MNPs), also exhibit unique properties not available in larger structures and have likewise become of chief interest in the field of nanotechnology. Through exploitation of various synthesis techniques and parameters, the physicochemical and magnetic properties of magnetic nanoparticles can be exquisitely controlled. Magnetorelaxometry is the field of study concerned with the mechanisms of magnetic relaxation and the development of applications that capitalize upon these phenomena. The preferred instrument for the analysis of these magnetic properties is the superconducting quantum interference device (SQUID). This work focuses on the development and chemical modification of MNPs for use with this instrument and the demonstration of novel magnetorelaxometric applications in biomedicine. The basic chemical synthesis of magnetic nanoparticles is first developed and demonstrated, after which the SQUID system and the magnetic properties of a library of synthesis products are analyzed and evaluated for use in magnetorelaxometry. An in vitro assay for sepsis diagnostics is then developed based upon the conjugation of anti-Escherichia coli O157:H7 antibodies to magnetic nanoparticles and the magnetorelaxometric quantification of binding of these MNPs to the target pathogen in buffer, serum and blood. Next, parameters for the conjugation of insecticidic crystal proteins to MNPs are developed and optimized for an in vivo

  4. Magnetic resonance imaging assessment of mechanical interactions between human lower leg muscles in vivo.

    Science.gov (United States)

    Yaman, Alper; Ozturk, Cengizhan; Huijing, Peter A; Yucesoy, Can A

    2013-09-01

    Evidence on epimuscular myofascial force transmission (EMFT) was shown for undissected muscle in situ. We hypothesize that global length changes of gastrocnemius muscle-tendon complex in vivo will cause sizable and heterogeneous local strains within all muscles of the human lower leg. Our goal is to test this hypothesis. A method was developed and validated using high-resolution 3D magnetic resonance image sets and Demons nonrigid registration algorithm for performing large deformation analyses. Calculation of strain tensors per voxel in human muscles in vivo allowed quantifying local heterogeneous tissue deformations and volume changes. After hip and knee movement (Δ knee angle ≈ 25 deg) but without any ankle movement, local lengthening within m. gastrocnemius was shown to occur simultaneously with local shortening (maximally by +34.2% and -32.6%, respectively) at different locations. Moreover, similar local strains occur also within other muscles, despite being kept at constant muscle-tendon complex length. This is shown for synergistic m. soleus and deep flexors, as well as for antagonistic anterior crural and peroneal muscle groups: minimum peak lengthening and shortening equaled 23.3% and 25.54%, respectively despite global isometric conditions. These findings confirm our hypothesis and show that in vivo, muscles are in principle not independent mechanically.

  5. In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules

    Science.gov (United States)

    Tang, Shunsong; Du, Qijun; Liu, Tianlong; Tan, Longfei; Niu, Meng; Gao, Long; Huang, Zhongbing; Fu, Changhui; Ma, Tengchuang; Meng, Xianwei; Shao, Haibo

    2016-07-01

    Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo. Complete tumor elimination is realizing after MW irradiation at an ultralow power density (1.8 W/cm2), while neither the MW group nor the chitosan microcapsule group has significant influence on the tumor development. The applicability of the chitosan/Fe3O4@IL microcapsules as an efficient contrast agent for MR imaging is proved in vivo. Moreover, the result of in vivo systematic toxicity shows that chitosan/Fe3O4@IL microcapsules have no acute fatal toxicity. Our study presents an interesting type of multifunctional platform developed by chitosan microcapsule promising for imaging-guided MW thermotherapy.

  6. First in vivo magnetic particle imaging of lung perfusion in rats

    Science.gov (United States)

    Zhou, Xinyi Y.; Jeffris, Kenneth E.; Yu, Elaine Y.; Zheng, Bo; Goodwill, Patrick W.; Nahid, Payam; Conolly, Steven M.

    2017-05-01

    Pulmonary embolism (PE), along with the closely related condition of deep vein thrombosis, affect an estimated 600 000 patients in the US per year. Untreated, PE carries a mortality rate of 30%. Because many patients experience mild or non-specific symptoms, imaging studies are necessary for definitive diagnosis of PE. Iodinated CT pulmonary angiography is recommended for most patients, while nuclear medicine-based ventilation/perfusion (V/Q) scans are reserved for patients in whom the use of iodine is contraindicated. Magnetic particle imaging (MPI) is an emerging tracer imaging modality with high image contrast (no tissue background signal) and sensitivity to superparamagnetic iron oxide (SPIO) tracer. Importantly, unlike CT or nuclear medicine, MPI uses no ionizing radiation. Further, MPI is not derived from magnetic resonance imaging (MRI); MPI directly images SPIO tracers via their strong electronic magnetization, enabling deep imaging of anatomy including within the lungs, which is very challenging with MRI. Here, the first high-contrast in vivo MPI lung perfusion images of rats are shown using a novel lung perfusion agent, MAA-SPIOs.

  7. In vivo screening of hepatocellular carcinoma using AC susceptibility of anti-alpha fetoprotein-activated magnetic nanoparticles.

    Directory of Open Access Journals (Sweden)

    Jen-Jie Chieh

    Full Text Available With antibody-mediated magnetic nanoparticles (MNPs applied in cancer examinations, patients must pay at least twice for MNP reagents in immunomagnetic reduction (IMR of in vitro screening and magnetic resonance imaging (MRI of in vivo tests. This is because the high maintenance costs and complex analysis of MRI have limited the possibility of in vivo screening. Therefore, this study proposes novel methods for in vivo screening of tumors by examining the AC susceptibility of bound MNPs using scanning superconducting-quantum-interference-device (SQUID biosusceptometry (SSB, thereby demonstrating high portability and improved economy. The favorable agreement between in vivo tests using SSB and MRI demonstrated the feasibility of in vivo screening using SSB for hepatocellular carcinoma (HCC targeted by anti-alpha fetoprotein (AFP-mediated MNPs. The magnetic labeling was also proved by in vitro tests using SSB and biopsy assays. Therefore, patients receiving bioprobe-mediated MNPs only once can undergo in vivo screening using SSB in the future.

  8. Synthesis and surface modification of magnetic nanoparticles for in vivo biomedical applications

    Science.gov (United States)

    Sun, Conroy Ghin Chee

    Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform to serve as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to engineer the features and properties of MNPs allowing them to be tailored specifically for these biomedical applications. MNPs composed of metallic, oxide, and nanoalloy cores and a variety of protective coatings are being investigated for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed. The goal of this interdisciplinary research is to develop novel superparamagnetic nanoprobes for non-invasive cancer diagnosis and treatment. This strategy utilizes iron oxide nanoparticles coated with various biocompatible polymers, such as poly(ethylene glycol) (PEG) and chitosan, to serve as both a contrast agent for MRI and a carrier for drug delivery. In this project, we have conjugated various targeting agents, such as folic acid (FA) and chlorotoxin (CTX), to these iron oxide nanoparticles to improve their tumor specific accumulation. The folate receptor is known to be overexpressed on the surfaces of many human tumor cells, including ovarian, lung, breast, endometrial, renal, and colon cancers, while CTX binds with high affinity to gliomas, medulloblastomas, and other tumors of the neuroectodermal origin. To evaluate its effectiveness as a targeted drug carrier, methotrexate (MTX), a convention chemotherapeutic agent, was conjugated to iron oxide nanoparticles in combination with CTX. Specific tumor cell targeting of our nanoparticle system has been demonstrated through increased contrast

  9. Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields

    Science.gov (United States)

    Juchem, Christoph; Muller-Bierl, Bernd; Schick, Fritz; Logothetis, Nikos K.; Pfeuffer, Josef

    2006-12-01

    The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7 T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where

  10. In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space

    Science.gov (United States)

    Sanz, Beatriz; Calatayud, M. Pilar; de Biasi, Emilio; Lima, Enio; Mansilla, Marcelo Vasquez; Zysler, Roberto D.; Ibarra, M. Ricardo; Goya, Gerardo F.

    2016-12-01

    This work aims to demonstrate the need for in silico design via numerical simulation to produce optimal Fe3O4-based magnetic nanoparticles (MNPs) for magnetic hyperthermia by minimizing the impact of intracellular environments on heating efficiency. By including the relevant magnetic parameters, such as magnetic anisotropy and dipolar interactions, into a numerical model, the heating efficiency of as prepared colloids was preserved in the intracellular environment, providing the largest in vitro specific power absorption (SPA) values yet reported. Dipolar interactions due to intracellular agglomeration, which are included in the simulated SPA, were found to be the main cause of changes in the magnetic relaxation dynamics of MNPs under in vitro conditions. These results pave the way for the magnetism-based design of MNPs that can retain their heating efficiency in vivo, thereby improving the outcome of clinical hyperthermia experiments.

  11. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans.

    Science.gov (United States)

    Khowaja, Ameer; Choi, In-Young; Seaquist, Elizabeth R; Öz, Gülin

    2015-02-01

    Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.

  12. In vivo study of experimental pneumococcal meningitis using magnetic resonance imaging

    DEFF Research Database (Denmark)

    Brandt, C.T.; Simonsen, H.; Liptrot, Matthew George

    2008-01-01

    Background: Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study of experimental meningitis. The identification and characterisation of pathophysiological parameters that vary during the course of the disease could be used as markers for future studies of new treatment......-vivo with MRI. Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies aiming at evaluating or optimizing adjunctive treatments. © 2008 Brandt et al; licensee Bio......-rat variation as the disease progressed, but without overall differences compared to uninfected rats (P > 0.05). Areas of well-'perfused' muscle decreased with the progression of infection indicative of septicaemia (P = 0.05). Conclusion: The evolution of bacterial meningitis was successfully followed in...

  13. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  14. Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: From synthesis to first in vivo studies.

    Directory of Open Access Journals (Sweden)

    Harald Kratz

    Full Text Available Synthesis of novel magnetic multicore particles (MCP in the nano range, involves alkaline precipitation of iron(II chloride in the presence of atmospheric oxygen. This step yields green rust, which is oxidized to obtain magnetic nanoparticles, which probably consist of a magnetite/maghemite mixed-phase. Final growth and annealing at 90°C in the presence of a large excess of carboxymethyl dextran gives MCP very promising magnetic properties for magnetic particle imaging (MPI, an emerging medical imaging modality, and magnetic resonance imaging (MRI. The magnetic nanoparticles are biocompatible and thus potential candidates for future biomedical applications such as cardiovascular imaging, sentinel lymph node mapping in cancer patients, and stem cell tracking. The new MCP that we introduce here have three times higher magnetic particle spectroscopy performance at lower and middle harmonics and five times higher MPS signal strength at higher harmonics compared with Resovist®. In addition, the new MCP have also an improved in vivo MPI performance compared to Resovist®, and we here report the first in vivo MPI investigation of this new generation of magnetic nanoparticles.

  15. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer

    Science.gov (United States)

    Ruan, Jing; Ji, Jiajia; Song, Hua; Qian, Qirong; Wang, Kan; Wang, Can; Cui, Daxiang

    2012-06-01

    How to find early gastric cancer cells in vivo is a great challenge for the diagnosis and therapy of gastric cancer. This study is aimed at investigating the feasibility of using fluorescent magnetic nanoparticle (FMNP)-labeled mesenchymal stem cells (MSCs) to realize targeted imaging and hyperthermia therapy of in vivo gastric cancer. The primary cultured mouse marrow MSCs were labeled with amino-modified FMNPs then intravenously injected into mouse model with subcutaneous gastric tumor, and then, the in vivo distribution of FMNP-labeled MSCs was observed by using fluorescence imaging system and magnetic resonance imaging system. After FMNP-labeled MSCs arrived in local tumor tissues, subcutaneous tumor tissues in nude mice were treated under external alternating magnetic field. The possible mechanism of MSCs targeting gastric cancer was investigated by using a micro-multiwell chemotaxis chamber assay. Results show that MSCs were labeled with FMNPs efficiently and kept stable fluorescent signal and magnetic properties within 14 days, FMNP-labeled MSCs could target and image in vivo gastric cancer cells after being intravenously injected for 14 days, FMNP-labeled MSCs could significantly inhibit the growth of in vivo gastric cancer because of hyperthermia effects, and CCL19/CCR7 and CXCL12/CXCR4 axis loops may play key roles in the targeting of MSCs to in vivo gastric cancer. In conclusion, FMNP-labeled MSCs could target in vivo gastric cancer cells and have great potential in applications such as imaging, diagnosis, and hyperthermia therapy of early gastric cancer in the near future.

  16. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. I. Verification and quantitation of methoxydifluoroacetate.

    Science.gov (United States)

    Selinsky, B S; Perlman, M E; London, R E

    1988-05-01

    The elimination and metabolism of the fluorinated inhalation anesthetic methoxyflurane (2,2-dichloro-1,1-difluoroethyl methyl ether) in rats has been monitored using in vivo 19F nuclear magnetic resonance at 8.45 T. The elimination of methoxyflurane from rat liver as measured using a surface coil is a first order process when measured beginning 2-3 hr after the end of methoxyflurane anesthesia over a period of 12 hr. The rate constant for hepatic methoxyflurane elimination is dependent upon the duration of anesthesia, varying from 0.24 hr-1 for 15 min of anesthesia to 0.07 hr-1 for 1 hr of anesthesia. Methoxyflurane was shown to be metabolized in the liver to methoxydifluoroacetate using the surface coil method. No resonance for hepatic fluoride ion could be observed in vivo. Pure sodium methoxydifluoroacetate was synthesized in order to confirm the identity of the resonances in liver and urine. 19F NMR spectra of urine collected from anesthetized rats contain resonances for two methoxyflurane metabolites, methoxydifluoroacetate and inorganic fluoride. Studies with liver homogenates imply that fluoride is quickly cleared from the liver and eliminated from the body through the urine, explaining the inability to observe hepatic fluoride using a surface coil. The 19F NMR resonance for inorganic fluoride in urine was found to be broadened by interaction with metal ions, since the broadening could be eliminated by treatment with chelating resin.

  17. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography

    Science.gov (United States)

    Rodrigues, Harley F.; Capistrano, Gustavo; Mello, Francyelli M.; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F.

    2017-05-01

    Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal’s surface. The results indicate that temperature errors as large as 7~\\circ C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.

  18. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography.

    Science.gov (United States)

    Rodrigues, Harley F; Capistrano, Gustavo; Mello, Francyelli M; Zufelato, Nicholas; Silveira-Lacerda, Elisângela; Bakuzis, Andris F

    2017-05-21

    Non-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration. This work reports an MNH study using a sarcoma 180 murine tumor containing 3.9 mg of intratumorally injected manganese-ferrite nanoparticles. MNH was performed at low field amplitude and non-uniform field configuration. Five 30 min in vivo magnetic hyperthermia experiments were performed, monitoring the surface temperature with a fiber optical sensor and thermal camera at distinct angles with respect to the animal's surface. The results indicate that temperature errors as large as [Formula: see text]C can occur if the experiment is not properly designed. A new IRT error model is found to explain the data. More importantly, we show how to precisely monitor temperature with IRT during hyperthermia, which could positively impact heat dosimetry and clinical planning.

  19. Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Mou Chung-Yuan

    2009-09-01

    Full Text Available Abstract Background Application of superparamagnetic iron oxide nanoparticles (SPIOs as the contrast agent has improved the quality of magnetic resonance (MR imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for in vivo imaging. Methods Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs. Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS and Laser Doppler Velocimetry (LDV, respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for in vivo MR imaging. Results The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images. Conclusion We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic

  20. Ex vivo culture of circulating tumor cells using magnetic force-based coculture on a fibroblast feeder layer.

    Science.gov (United States)

    Yamamoto, Shuhei; Shimizu, Kazunori; Fei, Jiahui; Iwata, Hiroji; Okochi, Mina; Nakanishi, Hayao; Honda, Hiroyuki

    2016-11-01

    Phenotype-based analysis of circulating tumor cells (CTCs) is a promising approach to identification of new therapeutic targets and to elucidation of the biological properties. Nonetheless, ex vivo culturing of CTCs is still a technical challenge. Here, we develop a novel ex vivo culture method for CTCs using a fibroblast feeder layer and a magnetic coculture protocol. CTCs in the blood of a mouse metastasis model are labeled magnetically with magnetite nanoparticles. The labeled CTCs are isolated by a magnetic capture column and a size-selective capture filter. The isolated CTCs are positioned on a fibroblast feeder layer by the magnetic force. As a result, we observe adhesion and proliferation of the CTCs under the conditions of the fibroblast feeder layer and the magnetic force, whereas no adhesion or proliferation is observed without the feeder layer. After that, we culture the CTCs and obtain three CTC-derived cell lines. Using these cell lines, we perform phenotype-based analyses of invasiveness and drug resistance and find that the CTC-derived cell lines are more malignant than the original cells. Thus, the proposed method would be a promising approach to ex vivo culture of CTCs for phenotype-based analysis, and possibly used in cancer treatment. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Considerations on in vitro and in vivo magnetic nanoparticles hemocompatibility testing].

    Science.gov (United States)

    Ciochină, Al D; Bredeţean, O; Dimitriu, Daniela-Cristina; Iacob, Gheorghe

    2009-01-01

    The aim of this paper is to summarize few aspects and underline some difficulties that hemocompatibility testing come up. The purpose of hemocompatibility testing is to look for possible undesirable changes in the blood caused directly by a medical device, by chemicals leaching from a device or biomaterials. Undesirable effects of device materials on the blood may include alterations in coagulation parameters, thrombus formation, hemolysis, and immunological changes. For each different event the literature is rich in showing tests, not different in principle, but in testing conditions. ISO 10993-4 describes hemocompatibility tests in five different categories (thrombosis, coagulation, platelets, hematology, and immunology). Here we put together the tests that ISO 10993 and/or American Society for Testing and Materials (ASTM) suggest to evaluate hemocompatibility and we emphases on their utility for magnetic nanoparticules testing. The individual tests are not discussed in detail; they may be performed either in vivo or, preferably, in vitro. For each test we made few considerations with criticism. There is still some uncertainty with respect to what is actually required by the regulatory authorities for the hemocompatibility test, and there is still no harmony between ASTM and ISO 10993 regulations regarding some aspects to be standardised.

  2. Fabrication and Packaging of Flexible Polymeric Microantennae for in Vivo Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Elisabeth Dufour-Gergam

    2012-02-01

    Full Text Available In this paper, we detail how microantennae dedicated to Magnetic Resonance Imaging (MRI can benefit from the advantages offered by polymer substrates, especially flexibility and dielectric properties. We present a monolithic and wireless design based on the transmission lines between conductor windings on both sides of a dielectric substrate and its fabrication process. This last one requires specific plasma treatments to improve polymer/metal adhesion. We have led a comparative study on the effects of the ageing time on the wettability and the metal adhesion to Kapton and Teflon surfaces. Correlation between wettability (water contact angle and adhesion (tensile strength has been established. Then, the use of PolyDiMethylSiloxane (PDMS as biocompatible packaging material and the optimization of its thickness allows us to conserve suitable f0 and Q values in a conducting environment such as the biological tissues. These studies allow us to perform 7 Tesla in vivo MRI of the rat brain with a high spatial resolution of 100 x 100 x 200 µm3 and a Signal to Noise Ratio of 80.

  3. Development and application of magnetic resonance elastography of the normal and pathological thyroid gland in vivo.

    Science.gov (United States)

    Bahn, Mark M; Brennan, Michael D; Bahn, Rebecca S; Dean, Diana S; Kugel, Jennifer L; Ehman, Richard L

    2009-11-01

    To noninvasively assess the shear stiffness of the thyroid gland in vivo in order to determine whether magnetic resonance elastography (MRE) might hold clinical utility in the diagnosis of thyroid disease. Quantitative parametric images of thyroid stiffness in normal volunteers and patients were produced and quantitative stiffness values measured. Average gland stiffness was determined by region of interest analysis of the parametric images. This technique was used to assess stiffness of the thyroid in normal individuals (n = 12), patients with Hashimoto's thyroiditis (HT; n = 5), and patients with a solitary benign (n = 8) or malignant (n = 2) thyroid nodule. Mean shear modulus of normal thyroid glands was 1.9 +/- 0.6 kPa at 100 Hz and 1.3 +/- 0.5 kPa at 80 Hz, while that of HT glands was 2.8 +/- 0.6 kPa and 1.8 +/- 0.6 kPa at 80 Hz, respectively (P = 0.004 at 100 Hz). Elastographic parameters could not differentiate benign from malignant thyroid nodules in these small sample sizes. We developed a method for the application of MRE to the study of thyroid gland pathology. The results show that the HT gland can be differentiated from normal thyroid. The clinical utility of this imaging modality in the diagnosis and management of thyroid disease awaits further study.

  4. A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic cameras on ex vivo and in vivo NOTES surgical performance.

    Science.gov (United States)

    Chang, Victoria C; Tang, Shou-Jiang; Swain, C Paul; Bergs, Richard; Paramo, Juan; Hogg, Deborah C; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2013-08-01

    The influence of endoscopic video camera (VC) image quality on surgical performance has not been studied. Flexible endoscopes are used as substitutes for laparoscopes in natural orifice translumenal endoscopic surgery (NOTES), but their optics are originally designed for intralumenal use. Manipulable wired or wireless independent VCs might offer advantages for NOTES but are still under development. To measure the optical characteristics of 4 VC systems and to compare their impact on the performance of surgical suturing tasks. VC systems included a laparoscope (Storz 10 mm), a flexible endoscope (Olympus GIF 160), and 2 prototype deployable cameras (magnetic anchoring and guidance system [MAGS] Camera and PillCam). In a randomized fashion, the 4 systems were evaluated regarding standardized optical characteristics and surgical manipulations of previously validated ex vivo (fundamentals of laparoscopic surgery model) and in vivo (live porcine Nissen model) tasks; objective metrics (time and errors/precision) and combined surgeon (n = 2) performance were recorded. Subtle differences were detected for color tests, and field of view was variable (65°-115°). Suitable resolution was detected up to 10 cm for the laparoscope and MAGS camera but only at closer distances for the endoscope and PillCam. Compared with the laparoscope, surgical suturing performances were modestly lower for the MAGS camera and significantly lower for the endoscope (ex vivo) and PillCam (ex vivo and in vivo). This study documented distinct differences in VC systems that may be used for NOTES in terms of both optical characteristics and surgical performance. Additional work is warranted to optimize cameras for NOTES. Deployable systems may be especially well suited for this purpose.

  5. REVIEW ARTICLE: In vivo magnetic resonance imaging: insights into structure and function of the central nervous system

    Science.gov (United States)

    Natt, Oliver; Frahm, Jens

    2005-04-01

    Spatially resolved nuclear magnetic resonance (NMR) techniques provide structural, metabolic and functional insights into the central nervous system and allow for repetitive in vivo studies of both humans and animals. Complementing its prominent role in diagnostic imaging, magnetic resonance imaging (MRI) has evolved into an indispensable research tool in system-oriented neurobiology where contributions to functional genomics and translational medicine bridge the gap from molecular biology to animal models and clinical applications. This review presents an overview on some of the most relevant advances in MRI. An introduction covering the basic principles is followed by a discussion of technological improvements in instrumentation and imaging sequences including recent developments in parallel acquisition techniques. Because MRI is noninvasive in contrast to most other imaging modalities, examples focus on in vivo studies of the central nervous system in a variety of species ranging from humans to mice and insects.

  6. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (Drug Administration (FDA). Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  7. Translational Approaches for Studying Neurodevelopmental Disorders Utilizing in Vivo Proton (+H) Magnetic Resonance Spectroscopic Imaging in Rats

    Science.gov (United States)

    Ronca, April E.

    2014-01-01

    Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry

  8. In vivo quantitative magnetization transfer imaging correlates with histology during de- and remyelination in cuprizone-treated mice.

    Science.gov (United States)

    Turati, Laura; Moscatelli, Marco; Mastropietro, Alfonso; Dowell, Nicholas G; Zucca, Ileana; Erbetta, Alessandra; Cordiglieri, Chiara; Brenna, Greta; Bianchi, Beatrice; Mantegazza, Renato; Cercignani, Mara; Baggi, Fulvio; Minati, Ludovico

    2015-03-01

    The pool size ratio measured by quantitative magnetization transfer MRI is hypothesized to closely reflect myelin density, but their relationship has so far been confirmed mostly in ex vivo conditions. We investigate the correspondence between this parameter measured in vivo at 7.0 T, with Black Gold II staining for myelin fibres, and with myelin basic protein and beta-tubulin immunofluorescence in a hybrid longitudinal study of C57BL/6 and SJL/J mice treated with cuprizone, a neurotoxicant causing relatively selective myelin loss followed by spontaneous remyelination upon treatment suspension. Our results confirm that pool size ratio measurements correlate with myelin content, with the correlation coefficient depending on strain and staining method, and demonstrate the in vivo applicability of this MRI technique to experimental mouse models of multiple sclerosis. Copyright © 2015 John Wiley & Sons, Ltd.

  9. In vivo proton magnetic resonance spectroscopy of breast lesions: an update.

    Science.gov (United States)

    Tse, Gary M; Yeung, David K Y; King, Ann D; Cheung, Humairah S; Yang, Wei-Tse

    2007-09-01

    In vivo proton magnetic resonance spectroscopy ((1)H-MRS) has been demonstrated to be successful in the differentiation of benign and malignant breast lesions in a non-invasive manner by detecting increased levels of composite choline (Cho) compounds. Currently there is molecular evidence of increased Cho metabolism in breast cancer cells. In breast malignancies, (1)H-MRS achieved a high-overall sensitivity (82%). Most test cases were infiltrating duct carcinoma, but infiltrating lobular, medullary, mucinous and adenoid cystic carcinomas were also positive by (1)H-MRS. Large lesional size is a pre-requisite for (1)H-MRS testing, and technical problems account for some of the false negative results. Another potential of (1)H-MRS is to assess patients' response to neoadjuvant chemotherapy. In ductal carcinoma in situ, the results of (1)H-MRS on the limited number of cases were negative. Most of the assessed benign breast lesions including fibroadenoma, fibrocystic changes, cysts and galactoceles, papilloma, tubular adenoma and phyllodes tumours and were mostly negative by (1)H-MRS, with an overall false positive rate was about 8%. Normal breast tissue was almost always negative by (1)H-MRS, whereas, lactating breast tissue showed positivity with a slightly different spectrum on further analysis. With the clinical use of stronger field MR scanners and better coils, the sensitivity of (1)H-MRS may be further improved. With these improvements, (1)H-MRS may potentially be useful in detection of smaller malignant lesions, characterization of malignant lesions into non-invasive or invasive, and as an invaluable tool in disease progression monitoring.

  10. The Preparation of Glucan-Fe3O4 Magnetic Nanoparticles and Its In Vivo Distribution in Mice

    Directory of Open Access Journals (Sweden)

    Fengdan Jin

    2014-01-01

    Full Text Available The glucan-Fe3O4 magnetic nanoparticles were prepared by hydrothermal method. The mixture of FeCl2 and glucan was stirred vigorously for half an hour under low temperature (15°C. KOH of 1 mol/L was dropwise added, slowly, into the solution until the pH to 12. Immediately, KNO3 was added and the temperature was raised to 75°C for an hour. All the processes of Fe3O4 crystal particles generation were under nitrogen. An atomic absorption spectrometry quantitative analysis method was built to determine the in vivo distribution of the glucan-Fe3O4 magnetic nanoparticles in mice. The diameter of glucan-Fe3O4 magnetic nanoparticles was about 25 nm and they were up taken by the liver primarily after intravenous administration via the tail.

  11. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance

    OpenAIRE

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-01-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undet...

  12. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.

    Science.gov (United States)

    Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja

    2015-01-01

    Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.

  13. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Goran Bačić

    2016-08-01

    Full Text Available Free radicals, particularly reactive oxygen species (ROS, are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI and paramagnetic stable free radicals – nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.

  14. Human in-vivo brain magnetic resonance current density imaging (MRCDI)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Hanson, Lars G.; Siebner, Hartwig R

    2017-01-01

    Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic......-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings...... conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal...

  15. Initiation of Targeted Nanodrug Delivery in Vivo by a Multifunctional Magnetic Implant.

    Science.gov (United States)

    Ge, Jianhua; Zhang, Yi; Dong, Zhirui; Jia, Jianbo; Zhu, Jiannan; Miao, Xiaoyuan; Yan, Bing

    2017-06-21

    Implant-mediated targeted drug delivery without an external magnetic field is very challenging. In this work, we report targeted nanodrug delivery initiated by a Fe3O4/poly(lactic-co-glycolic acid) implant scaffold with high magnetism. The implant scaffold is biocompatible and durable. It effectively attracts nanodrugs to its surface, thus killing cancer cells. These findings provide a proof of concept for the magnetic implant-directed nanodrug targeting without the need for an external magnetic field. This approach may further facilitate more precise medical treatments.

  16. High Field In vivo13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Undersampling

    Directory of Open Access Journals (Sweden)

    Ningzhi Li

    2017-06-01

    Full Text Available In vivo13C magnetic resonance spectroscopy (MRS is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo13C-MRS is the high radio frequency (RF power necessary for heteronuclear decoupling. In the common practice of in vivo13C-MRS, alkanyl carbons are detected in the spectra range of 10–65 ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH = 125–145 Hz. Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ; the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo13C-MRS using coherent decoupling is often limited to low magnetic fields [<=4 Tesla (T] to keep the local and averaged specific absorption rate (SAR under the safety guidelines established by the International Electrotechnical Commission (IEC and the US Food and Drug Administration (FDA. Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo13C experiments of human brain at very high magnetic fields (such as 11.7T, where signal-to-noise ratio as well as spatial and temporal

  17. Windows on the human body--in vivo high-field magnetic resonance research and applications in medicine and psychology.

    Science.gov (United States)

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph S; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in "medical sensor-systems", i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.

  18. In Vivo Detection of Brain Krebs Cycle Intermediate by Hyperpolarized Magnetic Resonance

    National Research Council Canada - National Science Library

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-01-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo...

  19. In vivo measurement of tumor conductiveness with the magnetic bioimpedance method.

    Science.gov (United States)

    Smith, D G; Potter, S R; Lee, B R; Ko, H W; Drummond, W R; Telford, J K; Partin, A W

    2000-10-01

    A noninvasive electromagnetic method has been developed that can effectively measure the in-vivo conductivity difference between rat tumor lines having a low and high metastatic potential. These tumor lines are used in the study of human prostate tumor.

  20. In vivo measurement of intracellular pH in human brain during different tensions of carbon dioxide in arterial blood. A 31P-NMR study

    DEFF Research Database (Denmark)

    Jensen, K E; Thomsen, C; Henriksen, O

    1988-01-01

    The effect of changes in carbon dioxide tension in arterial blood upon intracellular pH in brain tissue was studied in seven healthy volunteers, aged 22-45 years. The pH changes were monitored by use of 31P nuclear magnetic resonance spectroscopy, performed on a whole-body 1.5 Tesla Siemens imaging...... system. The measurements were carried out during hyperventilation and with the subject breathing atmospheric air containing 5 vol. % and 7 vol. % carbon dioxide. Intracellular pH increased significantly during 15 min of hyper-ventilation and decreased significantly during 18 min respiration of air...

  1. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty...

  2. In vivo high field magnetic resonance imaging and spectroscopy of adult zebrafish

    NARCIS (Netherlands)

    Kabli, Samira

    2009-01-01

    This thesis contains the results of imaging of adult zebrafish by using different MR approaches. We present the first high resolution mMR images of adult zebrafish. To achieve high spatial resolution we used a magnetic field of 9.4T, in combination with strong magnetic field gradients (1000 mT/m)

  3. Noninvasive targeting delivery and in vivo magnetic resonance tracking method for live apoptotic cells in cerebral ischemia with functional Fe2O3 magnetic nanoparticles.

    Science.gov (United States)

    Saito, Atsushi; Mekawy, Moataz M; Sumiyoshi, Akira; Riera, Jorge J; Shimizu, Hiroaki; Kawashima, Ryuta; Tominaga, Teiji

    2016-03-11

    Apoptotic neuronal death is known as programmed cell death. Inhibition of this progression might contribute to a new treatment strategy. However, methods for in vivo detection of live apoptotic cells are in need to be developed and established. The purpose of this study is to develop a new method for in vivo brain imaging for live apoptotic lesions using magnetic resonance imaging (MRI). We focused on the specific accumulation of our recently developed functional magnetic nanoparticles (FMNPs) into apoptotic cells using a rat cerebral ischemia model. Sulphorhodamine B, fluorescent dye was linked to valylalanylaspartic acid fluoromethyl ketone as a pan-caspase inhibitor to form SR-FLIVO. SR-FLIVO was bound with FMNPs to develop SR-FLIVO-FMNP probe. Ischemic rat brains were scanned by 7T MRI before and after intravenous injection of SR-FLIVO-FMNP and the distribution was evaluated by subtraction images of T2* colored mapping. SR-FLIVO, intracellular FMNPs, and T2* reduction area were histologically analyzed. The distribution of SR-FLIVO-FMNP was evaluated by subtracting the T2* signal images and was significantly correlated with the histological findings by TUNEL staining. Our experimental results revealed several findings where our newly developed probe SR-FLIVO-FMNP was intravenously administered into ischemic rats and FLIVO expression was tracked and found in apoptotic cells in rat brains after cerebral ischemia. A remarkable T2* reduction within the ischemic lesion was recorded using MRI based SR-FLIVO-FMNP probe as a contrasting agent due to the specific probe accumulation in apoptotic cells whereas, no observation of T2* reduction within the non-ischemic lesion due to no probe accumulation in non-apoptotic cells. Histological analysis based on the correlation between FLIVO and TUNEL staining showed that almost all FLIVO-positive cells were positive for TUNEL staining. These findings suggest the possibility for establishment of in vivo targeting delivery

  4. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer

    Directory of Open Access Journals (Sweden)

    Ni Jian

    2011-05-01

    Full Text Available Abstract Background Gastric cancer is 2th most common cancer in China, and is still the second most common cause of cancer-related death in the world. How to recognize early gastric cancer cells is still a great challenge for early diagnosis and therapy of patients with gastric cancer. This study is aimed to develop one kind of multifunctional nanoprobes for in vivo targeted magnetofluorescent imaging of gastric cancer. Methods BRCAA1 monoclonal antibody was prepared, was used as first antibody to stain 50 pairs of specimens of gastric cancer and control normal gastric mucous tissues, and conjugated with fluorescent magnetic nanoparticles with 50 nm in diameter, the resultant BRCAA1-conjugated fluorescent magnetic nanoprobes were characterized by transmission electron microscopy and photoluminescence spectrometry, as-prepared nanoprobes were incubated with gastric cancer MGC803 cells, and were injected into mice model loaded with gastric cancer of 5 mm in diameter via tail vein, and then were imaged by fluorescence optical imaging and magnetic resonance imaging, their biodistribution was investigated. The tissue slices were observed by fluorescent microscopy, and the important organs such as heart, lung, kidney, brain and liver were analyzed by hematoxylin and eosin (HE stain method. Results BRCAA1 monoclonal antibody was successfully prepared, BRCAA1 protein exhibited over-expression in 64% gastric cancer tissues, no expression in control normal gastric mucous tissues, there exists statistical difference between two groups (P in vivo gastric cancer tissues loaded by mice, and could be used to image gastric cancer tissues by fluorescent imaging and magnetic resonance imaging, and mainly distributed in local gastric cancer tissues within 12 h post-injection. HE stain analysis showed that no obvious damages were observed in important organs. Conclusions The high-performance BRCAA1 monoclonal antibody-conjugated fluorescent magnetic nanoparticles

  5. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Science.gov (United States)

    Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Bo; Zhang, Hui; Chen, Jin; Zhai, Chuanxin; Yang, Deren; Jiang, Biao; Wu, Yulian

    2009-09-01

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet β-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into β-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  6. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang Hai; Xie Qiuping; Kang Muxing; Zhang Bo; Wu Yulian [Department of Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Zhang Hui; Chen Jin; Zhai Chuanxin; Yang Deren [State Key Lab of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang Biao, E-mail: wuyulian@medmail.com.c, E-mail: yulianwu2003@yahoo.c [Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2009-09-09

    Superparamagnetic iron oxide nanoparticles (SPIO) are emerging as a novel probe for noninvasive cell tracking with magnetic resonance imaging (MRI) and have potential wide usage in medical research. In this study, we have developed a method using high-temperature hydrolysis of chelate metal alkoxide complexes to synthesize polyvinylpyrrolidone coated iron oxide nanoparticles (PVP-SPIO), as a biocompatible magnetic agent that can efficiently label mice islet {beta}-cells. The size, crystal structure and magnetic properties of the as-synthesized nanoparticles have been characterized. The newly synthesized PVP-SPIO with high stability, crystallinity and saturation magnetization can be efficiently internalized into {beta}-cells, without affecting viability and function. The imaging of 100 PVP-SPIO-labeled mice islets in the syngeneic renal subcapsular model of transplantation under a clinical 3.0 T MR imager showed high spatial resolution in vivo. These results indicated the great potential application of the PVP-SPIO as an MRI contrast agent for monitoring transplanted islet grafts in the clinical management of diabetes in the near future.

  7. Theranostic Hyaluronic Acid-Iron Micellar Nanoparticles for Magnetic-Field-Enhanced in vivo Cancer Chemotherapy.

    Science.gov (United States)

    Wang, Guohao; Gao, Shi; Tian, Rui; Miller-Kleinhenz, Jasmine; Qin, Zainen; Liu, Tianji; Li, Lu; Zhang, Fan; Ma, Qingjie; Zhu, Lei

    2018-01-08

    The delivery of therapeutic cancer agents using nanomaterials has recently attracted much attention. Although encouraging progress with chemotherapeutics has been made, tumor treatment response remains unsatisfactory. To address this concern, we constructed a new micellar nanocomplex by covalently conjugating hyaluronic acid (HA) with an iron oxide nanoparticle (IONP). When an external magnetic field was applied to the tumor area, HA-IONP specifically accumulated in the tumor, due to the strong IONP magnetism. In addition, HA was shown to bind to cluster determinant 44 (CD44), which is overexpressed on tumor cells. With combined magnetic, CD44, and enhanced permeability retention (EPR) targeting, the efficient delivery of HA-IONP to the tumor is expected to enhance cancer treatment efficiency. After encapsulation of the chemotherapy drug homocamptothecin (HCPT), the theranostic potency of HA-IONP/HCPT (HIH) was investigated both in vitro and in vivo. The improved tumor homing behavior of HIH was observed by magnetic resonance imaging (MRI) when an external magnetic field was used. Moreover, HIH showed remarkable tumor ablation efficiency, with magnetic targeting after 3 mg kg -1 intravenous administration (equivalent dose of free HCPT), and the tumors almost disappeared after treatment. No obvious systemic toxicity was detected. This excellent biocompatibility and tumor targetability suggests that HIH is a promising theranostic nanocomplex with great translational potency. Application of the HA-IONP platform could also be extended to delivery of other hydrophobic chemotherapy drugs or phototherapy agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers.

    Science.gov (United States)

    Voulgari, Efstathia; Bakandritsos, Aristides; Galtsidis, Sotiris; Zoumpourlis, Vassilis; Burke, Benjamin P; Clemente, Gonçalo S; Cawthorne, Christopher; Archibald, Stephen J; Tuček, Jiři; Zbořil, Radek; Kantarelou, Vasiliki; Karydas, Andreas Germanos; Avgoustakis, Konstantinos

    2016-12-10

    The development of anticancer drug delivery systems which retain or enhance the cytotoxic properties of the drug to tumorous tissues, while reducing toxicity to other organs is of key importance. We investigated different poly(methacrylic acid)-g-poly(ethyleneglycol methacrylate) polymers as in situ coating agents for magnetite nanocrystallites. The obtained magnetic nano-assemblies were in turn thoroughly characterized for their structural, colloidal and physicochemical properties (drug loading capacity/release, magnetic field triggered drug release, cell uptake and localization) in order to select the best performing system. With the focus on in vivo validation of such magnetic drug delivery systems for first time, we selected cisplatin as the drug, since it is a potent anticancer agent which exhibits serious side effects due to lack of selectivity. In addition, cisplatin would offer facile determination of the metal content in the animal tissues for biodistribution studies. Alongside post-mortem Pt determination in the tissues, the biodistribution of the drug nanocarriers was also monitored in real time with PET-CT (positron emission tomography/computed tomography) with and without the presence of magnetic field gradients; using a novel chelator-free method, the nanoparticles were radiolabeled with 68Ga without having to alter their structure with chemical modifications for conjugation of radiochelators. The ability to be radiolabeled in such a straightforward but very robust way, along with their measured high MRI response, renders them attractive for dual imaging, which is an important functionality for translational investigations. Their anticancer properties were evaluated in vitro and in vivo, in a cisplatin resistant HT-29 human colon adenocarcinoma model, with and without the presence of magnetic field gradients. Enhanced anticancer efficacy and reduced toxicity was recorded for the cisplatin-loaded nanocarriers in comparison to the free cisplatin

  9. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation.

    Directory of Open Access Journals (Sweden)

    Qiusha Tang

    Full Text Available A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN was developed. For this strategy, Magnetic Albumin Nanospheres (MAN, composed of superparamagnetic iron oxide nanoparticles (SPIONs and bovine serum albumin (BSA, were covalently conjugated with folic acid (FA ligands to enhance the targeting capability of the particles to folate receptor (FR over-expressing tumours. Subsequently, a near-infrared (NIR fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells. Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels.

  10. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    Science.gov (United States)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  11. Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo (1)H functional magnetic resonance spectroscopy.

    Science.gov (United States)

    Stanley, Jeffrey A; Burgess, Ashley; Khatib, Dalal; Ramaseshan, Karthik; Arshad, Muzamil; Wu, Helen; Diwadkar, Vaibhav A

    2017-06-01

    fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy ((1)H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of (1)H MRS is sensitive to. The novel application of (1)H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Low-field nuclear magnetic resonance for the in vivo study of water content in trees

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Jacob, E-mail: jlyoder@lanl.gov [Inorganic, Isotope and Actinide Chemistry, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, Michael W.; Espy, Michelle A. [Applied Modern Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sevanto, Sanna [Earth Systems Observations, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-09-15

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging have long been used to study water content in plants. Approaches have been primarily based on systems using large magnetic fields (∼1 T) to obtain NMR signals with good signal-to-noise. This is because the NMR signal scales approximately with the magnetic field strength squared. However, there are also limits to this approach in terms of realistic physiological configuration or those imposed by the size and cost of the magnet. Here we have taken a different approach – keeping the magnetic field low to produce a very light and inexpensive system, suitable for bulk water measurements on trees less than 5 cm in diameter, which could easily be duplicated to measure on many trees or from multiple parts of the same tree. Using this system we have shown sensitivity to water content in trees and their cuttings and observed a diurnal signal variation in tree water content in a greenhouse. We also demonstrate that, with calibration and modeling of the thermal polarization, the system is reliable under significant temperature variation.

  13. A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging

    Science.gov (United States)

    Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant

    2008-03-01

    Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which

  14. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Petersen, Bent O

    2010-01-01

    In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR...... spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high...

  15. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    Science.gov (United States)

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  16. Folate receptor mediated in vivo targeted delivery of human serum albumin coated manganese ferrite magnetic nanoparticles to cancer cells

    Science.gov (United States)

    Zaidan, A.; Ilhami, F.; Fahmi, M. Z.; Purwanto, B.; Kharisma, R. Z.

    2017-05-01

    Manganese ferrite nanoparticles (MnFe2O4) have received increasing attention due to their remarkable magnetic properties and have been used for various biomedical applications. They have potential applications in magnetic resonance imaging and hyperthermia for cancer. Both novel applications require a delivery system that will allow nanoparticle to move easily and localization of nanoparticle to the target tissue. In our work, we developed human serum albumin coated manganese ferrite magnetic nanoparticles (HSA-MF NPs). The nanoparticles were prepared using solvothermal method and modified with folic acid for targeted delivery. Structure and morphology of manganese ferrite nanoparticle were characterized by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM). The size of folic acid conjugated HSA-MF NPs (HSA-MF-FA NPs) were studied by dynamic light scattering (DLS). In the in vivo study, we used benzopyrene-induced cancer in mice. We successfully delivered HSA-MF-FA NPs through intravenous tail injection after induction of the tumour. We found that 54% of initial HSA-MF-FA NPs which previously injected localize in the target tissue. While obtained p-value from independent T-test is 0.013 which shows that there is a difference between the control group (HSA-MF NPs) and the treated group (HSA-MF-FA NPs)

  17. In vitro and in vivo assessment of magnetically actuated biomaterials and prospects in tendon healing.

    Science.gov (United States)

    Santos, Lívia; Silva, Marta; Gonçalves, Ana I; Pesqueira, Tamagno; Rodrigues, Márcia T; Gomes, Manuela E

    2016-05-01

    To expand our understanding on the effect of magnetically actuated biomaterials in stem cells, inflammation and fibrous tissue growth. Magnetic biomaterials were obtained by doping iron oxide particles into starch poly-ϵ-caprolactone (SPCL) to create two formulations, magSPCL-1.8 and 3.6. Stem cell behavior was assessed in vitro and the inflammatory response, subcutaneously in Wistar rats. Metabolic activity and proliferation increased significantly overtime in SPCL and magSPCL-1.8. Electromagnetic fields attenuated the presence of mast cells and macrophages in tissues surrounding SPCL and magSPCL-1.8, between weeks 1 and 9. Macrophage reduction was more pronounced for magSPCL-1.8, which could explain why this material prevented growth of fibrous tissue overtime. Magnetically actuated biomaterials have potential to modulate inflammation and the growth of fibrous tissue.

  18. MoS2-Gd Chelate Magnetic Nanomaterials with Core-Shell Structure Used as Contrast Agents in in Vivo Magnetic Resonance Imaging.

    Science.gov (United States)

    Anbazhagan, Rajeshkumar; Su, Yu-An; Tsai, Hsieh-Chih; Jeng, Ru-Jong

    2016-01-27

    Despite their frequent usages as contrast agents for in vivo MRI imaging, paramagnetic molecules continue to suffer from low resolution, physicochemical instability, and high toxicity. Herein, we present a molybdenum disulfide and gadolinium complex, as an alternative core-shell magnetic nanomaterial that exhibits enhanced paramagnetic property; 4.5-times longer water proton spin-lattice relaxation time (T1) when compared to commercial gadolinium contrast agents; as well as lowered toxicity, extended blood circulation time, increased stability, and desirable excretion characteristic. Transmission electron microscopy (TEM) revealed smooth core-shell nanoparticles 100 nm in size with a shell width of approximately 10 nm. These findings suggest that the synthesized nanomaterial possesses high potential as a positive contrast agent for the enhancement of MRI imaging.

  19. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy.

    Science.gov (United States)

    Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Mateescu, Gheorghe; Chen, Wei

    2017-11-01

    Quantitative assessment of cerebral glucose consumption rate (CMR glc ) and tricarboxylic acid cycle flux (V TCA ) is crucial for understanding neuroenergetics under physiopathological conditions. In this study, we report a novel in vivo Deuterium ( 2 H) MRS (DMRS) approach for simultaneously measuring and quantifying CMR glc and V TCA in rat brains at 16.4 Tesla. Following a brief infusion of deuterated glucose, dynamic changes of isotope-labeled glucose, glutamate/glutamine (Glx) and water contents in the brain can be robustly monitored from their well-resolved 2 H resonances. Dynamic DMRS glucose and Glx data were employed to determine CMR glc and V TCA concurrently. To test the sensitivity of this method in response to altered glucose metabolism, two brain conditions with different anesthetics were investigated. Increased CMR glc (0.46 vs. 0.28 µmol/g/min) and V TCA (0.96 vs. 0.6 µmol/g/min) were found in rats under morphine as compared to deeper anesthesia using 2% isoflurane. This study demonstrates the feasibility and new utility of the in vivo DMRS approach to assess cerebral glucose metabolic rates at high/ultrahigh field. It provides an alternative MRS tool for in vivo study of metabolic coupling relationship between aerobic and anaerobic glucose metabolisms in brain under physiopathological states.

  20. Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery

    DEFF Research Database (Denmark)

    Linemann, Thomas; Thomsen, Louiza Bohn; du Jardin, Kristian Gaarn

    2013-01-01

    The aim of the present study was to evaluate the transfection potential of chitosan-coated, green-fluorescent magnetic nanoparticles (MNPs) (chi-MNPs) after encapsulation inside polyethylglycol (PEG)ylated liposomes that produced lipid-encapsulated chitosan-coated MNPs (lip-MNPs), and also...

  1. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis

    NARCIS (Netherlands)

    Neves, A.R.; Ramos, A.; Nunes, M.C.; Kleerebezem, M.; Hugenholtz, J.; Vos, de W.M.; Almeida, J.; Santos, H.

    1999-01-01

    The metabolism of glucose by nongrowing cells of L. lactis strain MG5267 was studied under controlled conditions of pH, temperature, and gas atmosphere (anaerobic and aerobic) using a circulating system coupled to nuclear magnetic resonance (NMR) detection that allowed a noninvasive determination of

  2. Reproducibility of in-vivo diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    McGill Laura-Ann

    2012-12-01

    Full Text Available Abstract Background Myocardial disarray is an important histological feature of hypertrophic cardiomyopathy (HCM which has been studied post-mortem, but its in-vivo prevalence and extent is unknown. Cardiac Diffusion Tensor Imaging (cDTI provides information on mean intravoxel myocyte orientation and potentially myocardial disarray. Recent technical advances have improved in-vivo cDTI, and the aim of this study was to assess the interstudy reproducibility of quantitative in-vivo cDTI in patients with HCM. Methods and results A stimulated-echo single-shot-EPI sequence with zonal excitation and parallel imaging was implemented. Ten patients with HCM were each scanned on 2 different days. For each scan 3 short axis mid-ventricular slices were acquired with cDTI at end systole. Fractional anisotropy (FA, mean diffusivity (MD, and helix angle (HA maps were created using a cDTI post-processing platform developed in-house. The mean ± SD global FA was 0.613 ± 0.044, MD was 0.750 ± 0.154 × 10-3 mm2/s and HA was epicardium −34.3 ± 7.6°, mesocardium 3.5 ± 6.9° and endocardium 38.9 ± 8.1°. Comparison of initial and repeat studies showed global interstudy reproducibility for FA (SD = ± 0.045, Coefficient of Variation (CoV = 7.2%, MD (SD = ± 0.135 × 10-3 mm2/s, CoV = 18.6% and HA (epicardium SD = ± 4.8°; mesocardium SD = ± 3.4°; endocardium SD = ± 2.9°. Reproducibility of FA was superior to MD (p = 0.003. Global MD was significantly higher in the septum than the reference lateral wall (0.784 ± 0.188 vs 0.750 ± 0.154 x10-3 mm2/s, p  Conclusions To the best of our knowledge, this is the first study to assess the interstudy reproducibility of DTI in the human HCM heart in-vivo and the largest cDTI study in HCM to date. Our results show good reproducibility of FA, MD and HA which indicates that current technology yields robust in-vivo measurements that have potential clinical value. The

  3. Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology

    Science.gov (United States)

    Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph. S.; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried

    2010-01-01

    Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given. PMID:22219684

  4. The neuroprotective agent CNTF decreases neuronal metabolites in the rat striatum: an in vivo multimodal magnetic resonance imaging study

    Science.gov (United States)

    Carrillo-de Sauvage, Maria-Angeles; Flament, Julien; Bramoulle, Yann; Ben Haim, Lucile; Guillermier, Martine; Berniard, Aurélie; Aurégan, Gwennaëlle; Houitte, Diane; Brouillet, Emmanuel; Bonvento, Gilles; Hantraye, Philippe; Valette, Julien; Escartin, Carole

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is neuroprotective against multiple pathologic conditions including metabolic impairment, but the mechanisms are still unclear. To delineate CNTF effects on brain energy homeostasis, we performed a multimodal imaging study, combining in vivo proton magnetic resonance spectroscopy, high-performance liquid chromatography analysis, and in situ glutamate imaging by chemical exchange saturation transfer. Unexpectedly, we found that CNTF expression through lentiviral gene transfer in the rat striatum significantly decreased the levels of neuronal metabolites (N-acetyl-aspartate, N-acetyl-aspartyl-glutamate, and glutamate). This preclinical study shows that CNTF remodels brain metabolism, and suggests that decreased levels of neuronal metabolites may occur in the absence of neuronal dysfunction. PMID:25833344

  5. Is it Possible to Extract Brain Metabolic Pathways Information from In Vivo H Nuclear Magnetic Resonance Spectroscopy Data?

    CERN Document Server

    de Lara, Alejandro Chinea Manrique

    2010-01-01

    In vivo H nuclear magnetic resonance (NMR) spectroscopy is an important tool for performing non-invasive quantitative assessments of brain tumour glucose metabolism. Brain tumours are considered as fast-growth tumours because of their high rate of proliferation. In addition, tumour cells exhibit profound genetic, biochemical and histological differences with respect to the original non-transformed cellular types. Therefore, there is a strong interest from the clinical investigator point of view in understanding the role of brain metabolites in normal and pathological conditions and especially on the development of early tumour detection techniques. Unfortunately, current diagnosis techniques ignore the dynamic aspects of these signals. It is largely believed that temporal variations of NMR Spectra are noisy or just simply do not carry enough information to be exploited by any reliable diagnosis procedure. Thus, current diagnosis procedures are mainly based on empirical observations extracted from single avera...

  6. Windows on the Human Body – in Vivo High-Field Magnetic Resonance Research and Applications in Medicine and Psychology

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2010-06-01

    Full Text Available Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI and spectroscopy (MRS, which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.

  7. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  8. Assessment of Isocitrate Dehydrogenase mutational status in cerebral gliomas by in vivo Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Tietze, Anna; Oettingen, Gorm von; Sangill, Ryan

    Background: The identification of mutations in the Isocitrate Dehydrogenase (IDH) gene in gliomas has considerable prognostic value, as patients with IDH-mutated tumors have a better overall survival than those without [1]. The IDH mutational status is therefore an important marker in the clinics...... and has the potential to open up for more personalized treatment approaches. It is usually assessed by immunohistochemistry or polymerase chain reaction (PCR) in tumor tissue obtained by surgical biopsies. IDH-mutated tumor cells accumulate 2-hydroxyglutarate (2-HG) that is present in very low...... concentrations in normal tissue or in gliomas with wildtype IDH. It has recently been shown that 2-HG is detectable non-invasively by clinical Magnetic Resonance Spectroscopy (MRS) [2]. The aim of our study is to establish 2-HG MRS in patients suspected for cerebral gliomas on a clinical Magnetic Resonance (MR...

  9. First in vivo traumatic brain injury imaging via magnetic particle imaging

    Science.gov (United States)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  10. In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism

    OpenAIRE

    Bernardi, Silvia; Anagnostou, Evdokia; Shen, Jun; Kolevzon, Alexander; Buxbaum, Joseph D.; Hollander, Eric; Hof, Patrick R.; Fan, Jin

    2010-01-01

    Attentional dysfunction is one of the most consistent findings in individuals with autism spectrum disorders (ASD). However, the significance of such findings for the pathophysiology of autism is unclear. In this study, we investigated cellular neurochemistry with proton magnetic resonance spectroscopy imaging (1H-MRS) in brain regions associated with networks subserving alerting, orienting, and executive control of attention in patients with ASD. Concentrations of cerebral N-acetyl-aspartate...

  11. In Vivo Contact Areas of Tibiotalar Joint Measured with Magnetic Resonance Imaging

    OpenAIRE

    Sakamoto, Makoto; Nodaguchi, Yosei; Tanabe, Yuji; Sasagawa, Keisuke; Kubota, Yosuke; Yoshida,Hidenori; Kobayashi, Koichi

    2010-01-01

    In vivo contact areas of tibiotalar joints in 20 healthy subjects were studied using a loading device within a closed-MRI system. Cartilage-enhanced, sagittal images were obtained at 10°of dorsiflexion, and 0°and 10°of plantarflexion under 200 N ankle-loaded conditions. For ankle-unloaded conditions, the ankle was positioned at 10°of dorsiflexion, and 0°, 10°, 30°, and 50°of plantarflexion. This study highlights the differences in tibiotalar joint contact area between different ankle flexion ...

  12. In Vivo Detection of c-MET Expression in a Rat Hepatocarcinogenesis Model Using Molecularly Targeted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Rheal A. Towner

    2007-01-01

    Full Text Available The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO–anti-c-MET molecularly targeted magnetic resonance imaging (MRI contrast agent. SPIO–anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T2 values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3 cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO–anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  13. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    Science.gov (United States)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  14. Quantitative magnetic resonance temperature mapping for real-time monitoring of radiofrequency ablation of the liver: an ex vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Seror, Olivier [ERT CNRS/Universite Victor Segalen Bordeaux 2, Laboratoire d' Imagerie Moleculaire et Fonctionnelle, Bordeaux (France); Assistance Publique-Hopitaux de Paris/CHU Paris XIII, Service de Radiologie Hopital Jean Verdier, Bondy (France); Universite Paris 13, UPRES EA 3409, UFR SMBH, Bobigny (France); Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W [ERT CNRS/Universite Victor Segalen Bordeaux 2, Laboratoire d' Imagerie Moleculaire et Fonctionnelle, Bordeaux (France); Trillaud, Herve [ERT CNRS/Universite Victor Segalen Bordeaux 2, Laboratoire d' Imagerie Moleculaire et Fonctionnelle, Bordeaux (France); Hopital Saint-Andre, CHU Bordeaux, Service de Radiologie, Bordeaux (France)

    2006-10-15

    We evaluated the feasibility and accuracy of real-time magnetic resonance (MR) thermometry for monitoring radiofrequency (RF) ablation in the liver. Continuous MR temperature mapping was used to monitor bipolar RF ablations performed in ex vivo livers with and without flow using two parallel electrodes. Macroscopic inspection of ablation zones was compared with thermal dose maps (TDm) and T1-weighted inversion recovery turbo spin echo (IR-TSE) images for their size and shape and the influence of flow. Pearson's correlation (r), Bland and Altman tests and kappa ({chi}K) tests were performed. The mean differences in ablation zone size between macroscopic and TDm and IR-TSE measurements were +4 mm and -2 mm, respectively. TDm was well correlated with macroscopy (r=0.77 versus r=0.44 for IR-TSE). TDm was found to be more precise for shape recognition ({chi}K=0.73 versus {chi}K=0.55 for IR-TSE) and for detection of an intact ring of liver due to the cooling effect of flow which was impossible with IR-TSE. Simultaneous monitoring of RF ablation by MR thermometry is feasible and reliable for predicting the shape of ablation zones and the impact of the heat-sink effect of flow. Further studies are needed to confirm these results in vivo. (orig.)

  15. In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice.

    Directory of Open Access Journals (Sweden)

    Dominik von Elverfeldt

    Full Text Available BACKGROUND: Early and non-invasive detection of platelets on micro atherothrombosis provides a means to identify unstable plaque and thereby allowing prophylactic treatment towards prevention of stroke or myocardial infarction. Molecular magnetic resonance imaging (mMRI of activated platelets as early markers of plaque rupture using targeted contrast agents is a promising strategy. In this study, we aim to specifically image activated platelets in murine atherothrombosis by in vivo mMRI, using a dedicated animal model of plaque rupture. METHODS: An antibody targeting ligand-induced binding sites (LIBS on the glycoprotein IIb/IIIa-receptor of activated platelets was conjugated to microparticles of iron oxide (MPIO to form the LIBS-MPIO contrast agent causing a signal-extinction in T2*-weighted MRI. ApoE(-/- mice (60 weeks-old were fed a high fat diet for 5 weeks. Using a small needle, the surface of their carotid plaques was scratched under blood flow to induce atherothrombosis. In vivo 9.4 Tesla MRI was performed before and repetitively after intravenous injection of either LIBS-MPIO versus non-targeted-MPIO. RESULTS: LIBS-MPIO injected animals showed a significant signal extinction (p<0.05 in MRI, corresponding to the site of plaque rupture and atherothrombosis in histology. The signal attenuation was effective for atherothrombosis occupying ≥ 2% of the vascular lumen. Histology further confirmed significant binding of LIBS-MPIO compared to control-MPIO on the thrombus developing on the surface of ruptured plaques (p<0.01. CONCLUSION: in vivo mMRI detected activated platelets on mechanically ruptured atherosclerotic plaques in ApoE(-/- mice with a high sensititvity. This imaging technology represents a unique opportunity for noninvasive detection of atherothrombosis and the identification of unstable atherosclerotic plaques with the ultimate promise to prevent strokes and myocardial infarctions.

  16. In vivo targeted molecular magnetic resonance imaging of free radicals in diabetic cardiomyopathy within mice.

    Science.gov (United States)

    Towner, R A; Smith, N; Saunders, D; Carrizales, J; Lupu, F; Silasi-Mansat, R; Ehrenshaft, M; Mason, R P

    2015-01-01

    Free radicals contribute to the pathogenesis of diabetic cardiomyopathy. We present a method for in vivo observation of free radical events within murine diabetic cardiomyopathy. This study reports on in vivo imaging of protein/lipid radicals using molecular MRI (mMRI) and immuno-spin trapping (IST) in diabetic cardiac muscle. To detect free radicals in diabetic cardiomyopathy, streptozotocin (STZ)-exposed mice were given 5,5-dimethyl-pyrroline-N-oxide (DMPO) and administered an anti-DMPO probe (biotin-anti-DMPO antibody-albumin-Gd-DTPA). For controls, non-diabetic mice were given DMPO (non-disease control), and administered an anti-DMPO probe; or diabetic mice were given DMPO but administered a non-specific IgG contrast agent instead of the anti-DMPO probe. DMPO administration started at 7 weeks following STZ treatment for 5 days, and the anti-DMPO probe was administered at 8 weeks for MRI detection. MRI was used to detect a significant increase (p radicals in cardiac tissue than non-diabetic mice.

  17. In Vivo 3T Magnetic Resonance Imaging Using a Biologically Specific Contrast Agent for Prostate Cancer: A Nude Mouse Model

    Directory of Open Access Journals (Sweden)

    Christopher Brian Abraham

    2017-01-01

    Full Text Available We characterized in vivo a functional superparamagnetic iron-oxide magnetic resonance contrast agent that shortens the T2 relaxation time in magnetic resonance imaging (MRI of prostate cancer xenografts. The agent was developed by conjugating Molday ION™ carboxyl-6 (MIC6, with a deimmunized mouse monoclonal antibody (muJ591 targeting prostate-specific membrane antigen (PSMA. This functional contrast agent could be used as a noninvasive method to detect prostate cancer cells that are PSMA positive and more readily differentiate them from surrounding tissues for treatment. The functional contrast agent was injected intravenously into mice and its effect was compared to both MIC6 (without conjugated antibody and phosphate-buffered saline (PBS injection controls. MR imaging was performed on a clinical 3T MRI scanner using a multiecho spin echo (MESE sequence to obtain T2 relaxation time values. Inductively coupled plasma atomic emission spectroscopy was used to confirm an increase in elemental iron in injected mice tumours relative to controls. Histological examination of H&E stained tissues showed normal morphology of the tissues collected.

  18. In vitro and in vivo comparison of a tailored magnetic particle imaging blood pool tracer with Resovist

    Science.gov (United States)

    Kaul, Michael Gerhard; Mummert, Tobias; Jung, Caroline; Salamon, Johannes; Khandhar, Amit P.; Ferguson, R. Matthew; Kemp, Scott J.; Ittrich, Harald; Krishnan, Kannan M.; Adam, Gerhard; Knopp, Tobias

    2017-05-01

    Optimizing tracers for individual imaging techniques is an active field of research. The purpose of this study was to perform in vitro and in vivo magnetic particle imaging (MPI) measurements using a new monodisperse and size-optimized tracer, LS-008, and to compare it with the performance of Resovist, the standard MPI tracer. Magnetic particle spectroscopy (MPS) and in vitro MPI measurements were performed in concerns of concentration and amount of tracer in a phantom. In vivo studies were carried out in healthy FVB mice. The first group (n  =  3) received 60 µl LS-008 (87 mM) and the second (n  =  3) diluted Resovist of the same concentration and volume. Tracer injections were performed with a syringe pump during a dynamic MPI scan. For anatomic referencing MRI was applied beforehand of the MPI measurements. Summing up MPS examinations and in vitro MPI experiments, LS-008 showed better sensitivity and spatial resolution than Resovist. In vivo both tracers can visualize the propagation of the bolus through the inferior vena cava. MPI with LS-008 did show less temporal fluctuation artifacts and the pulsation of blood due to respiratory and cardiac cycle was detectable. With LS-008 the aorta was distinguishable from the caval vein while with Resovist this failed. A liver vessel and a vessel structure leading cranially could only be observed with LS-008 and not with Resovist. Beside these structural advantages both tracers showed very different blood half-life. For LS-008 we found 88 min. Resovist did show a fast liver accumulation and a half-life of 13 min. Only with LS-008 the perfusion fraction in liver and kidney was measureable. MPI for angiography can be significantly improved by applying more effective tracers. LS-008 shows a clear improvement concerning the delineation while resolving a larger number of vessels in comparison to Resovist. Therefore, in aspects of quality and quantity LS-008 is clearly favorable for angiographic and

  19. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome. A magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Jensen, K E; Nielsen, H; Thomsen, C

    1989-01-01

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow-...... not differ from patients with polycythemia vera....

  20. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats

    NARCIS (Netherlands)

    Janssens, Sharon; Ciapaite, Jolita; Wolters, Justina C.; van Riel, Natal A.; Nicolay, Klaas; Prompers, Jeanine J.

    2017-01-01

    We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or

  1. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome. A magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Jensen, K E; Nielsen, H; Thomsen, C

    1989-01-01

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow...

  2. In vivo phosphorus 31 magnetic resonance spectroscopy of rat hind limb skeletal muscle during sepsis.

    Science.gov (United States)

    Jacobs, D O; Maris, J; Fried, R; Settle, R G; Rolandelli, R R; Koruda, M J; Chance, B; Rombeau, J L

    1988-11-01

    High-energy phosphate metabolism in skeletal muscle is altered during sepsis, although the chronology of events is uncertain. Phosphorus 31 magnetic resonance spectroscopy was used to measure changes in muscle energy stores of the left hind limb musculature of adult male rats during sepsis. Following control scans, cecal ligation and puncture were performed and scanning was repeated 6, 24, and 48 hours after surgery. The ratios of phosphocreatine (PCr) to inorganic phosphate (Pi), a measure of energy stores, and adenosine triphosphate (ATP) to Pi ratio, a measure of the energy available for immediate use, were determined from peak heights. Intracellular pH was calculated using the distance between Pi and PCr peaks. In surviving animals, a 40% decrease in PCr/Pi ratio (+/- SEM) was observed by 24 hours (22.3 +/- 3.0 at time 0 vs 13.3 +/- 2.8 at 24 hours), whereas energy availability (beta-ATP/Pi) was statistically unchanged (18.2 +/- 2.2 at time 0 vs 15.2 +/- 1.2 at 48 hours). Intracellular pH did not change. Both PCr/Pi and ATP/Pi ratios were inversely correlated with time. In this model of documented peritonitis, skeletal muscle energy metabolism is rapidly altered following severe infection, and these changes can be detected using 31P magnetic resonance spectroscopy.

  3. In Vivo Coating of Bacterial Magnetic Nanoparticles by Magnetosome Expression of Spider Silk-Inspired Peptides.

    Science.gov (United States)

    Mickoleit, Frank; Borkner, Christian B; Toro-Nahuelpan, Mauricio; Herold, Heike M; Maier, Denis S; Plitzko, Jürgen M; Scheibel, Thomas; Schüler, Dirk

    2018-02-05

    Magnetosomes are natural magnetic nanoparticles with exceptional properties that are synthesized in magnetotactic bacteria by a highly regulated biomineralization process. Their usability in many applications could be further improved by encapsulation in biocompatible polymers. In this study, we explored the production of spider silk-inspired peptides on magnetosomes of the alphaproteobacterium Magnetospirillum gryphiswaldense. Genetic fusion of different silk sequence-like variants to abundant magnetosome membrane proteins enhanced magnetite biomineralization and caused the formation of a proteinaceous capsule, which increased the colloidal stability of isolated particles. Furthermore, we show that spider silk peptides fused to a magnetosome membrane protein can be used as seeds for silk fibril growth on the magnetosome surface. In summary, we demonstrate that the combination of two different biogenic materials generates a genetically encoded hybrid composite with engineerable new properties and enhanced potential for various applications.

  4. Time-dependent biodistribution, clearance and biocompatibility of magnetic fibrin nanoparticles: an in vivo study.

    Science.gov (United States)

    Prabu, Periyathambi; Vedakumari, Weslen S; Sastry, Thotapalli P

    2015-06-07

    Recently, bioretention and toxicity of injected nanoparticles in the body has drawn much attention in biomedical research. In the present study, 5 mg Fe per kg body weight of magnetic fibrin nanoparticles (MFNPs) were injected into mice intravenously and investigated for their blood clearance profile, biodistribution, haematology and pathology studies for a time period of 28 days. Moderately long circulation of MFNPs in blood was observed with probable degradation and excretion into the bloodstream via monoatomic iron forms. Inductively coupled plasma optical emission spectrometry (ICP-OES) and Prussian blue staining results showed increased accumulation of MFNPs in the liver, followed by spleen and other organs. Body weight, spleen/thymus indexes, haematology, serum biochemistry and histopathology studies demonstrated that MFNPs were biocompatible. These results suggest the feasibility of using MFNPs for drug delivery and imaging applications.

  5. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico)); Rivera, F. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Babinski, E. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico)); Berlanga, E. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Madrazo, M. (Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico)); Franco-Bourland, R. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico)); Grijalva, I. (Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  6. In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex.

    Science.gov (United States)

    Trampel, Robert; Bazin, Pierre-Louis; Pine, Kerrin; Weiskopf, Nikolaus

    2017-09-20

    The human neocortex is organized radially into six layers which differ in their myelination and the density and arrangement of neuronal cells. This cortical cyto- and myeloarchitecture plays a central role in the anatomical and functional neuroanatomy but is primarily accessible through invasive histology only. To overcome this limitation, several non-invasive MRI approaches have been, and are being, developed to resolve the anatomical cortical layers. As a result, recent studies on large populations and structure-function relationships at the laminar level became possible. Early proof-of-concept studies targeted conspicuous laminar structures such as the stria of Gennari in the primary visual cortex. Recent work characterized the laminar structure outside the visual cortex, investigated the relationship between laminar structure and function, and demonstrated layer-specific maturation effects. This paper reviews the methods and in-vivo MRI studies on the anatomical layers in the human cortex based on conventional and quantitative MRI (excluding diffusion imaging). A focus is on the related challenges, promises and potential future developments. The rapid development of MRI scanners, motion correction techniques, analysis methods and biophysical modeling promise to overcome the challenges of spatial resolution, precision and specificity of systematic imaging of cortical laminae. Copyright © 2017. Published by Elsevier Inc.

  7. Haptic characterization of human skin in vivo in response to shower gels using a magnetic levitation device.

    Science.gov (United States)

    Yardley, R; Fan, A; Masters, J; Mascaro, S

    2016-02-01

    Skin products such as shower gels have a direct impact on skin health and wellness. Although qualitative haptic characterization through explicit, verbal measures in consumer studies are often sufficient for general comparison on consumer perceived skin feel, a quantitative approach is desired to characterize minute changes in skin condition in response to various skin products. Prior research has sought to characterize the haptic properties of human skin in vitro and in vivo, but very few studies have compared the haptic effects of commercial skin products having relatively similar formulations. In addition, related studies have typically utilized simple, low-precision devices and fixtures. The purpose of this study was to use a precision magnetic levitation haptic device to characterize the frictional properties of human skin in vivo before, during, and after treatment with commercially available shower gels, to capture the entire cycle of consumer experience on skin feel. A hybrid force-position control algorithm was used to control a precision magnetic levitation haptic device with silicone tactor to stroke the human skin (on the volar forearm) in vivo. Position and force data were collected from 32 human subjects using eight different commercially available shower gels, while stroking the skin before, during, and after treatment. The data were analyzed to produce coefficients of friction and viscous damping constant, which were used as metrics for comparing the effects of each shower gel type. Other factors investigated include skin test location, order, and subject age and gender. Results showed significant differences between the effects of eight various shower gels, especially after accounting for variance between subjects. Most notably, Shower Gel four with high level of petrolatum, along with Shower Gels five and six with low levels of castoryl maleate (a skin lipid analog), as well as Shower Gel two with high levels of vegetable oils yielded higher skin

  8. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    Directory of Open Access Journals (Sweden)

    Sai Ho Yeung

    2015-09-01

    Full Text Available Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC stimulation, magnetic stimulation (MS and transcutaneous electrical nerve stimulation (TENS are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  9. In vivo determination of cerebral hemodynamics and bioenergetics using spin-echo magnetic resonance imaging

    Science.gov (United States)

    Oja, Joni Marcus Eric

    1999-08-01

    It is well known that the transverse relaxation time, T 2, is dependent on the oxygenation state of blood. Two biophysical mechanisms have been proposed to explain this interdependency. In the diffusion model, oxygenation effects are accounted for by water diffusion through field gradients inside and outside, of the erythrocytes, whereas in the exchange model, the oxygenation effect is thought to be due to the exchange of water between erythrocytes and plasma. Careful in vitro studies with blood have shown that the exchange model fits best to the obtained data in preference to the diffusion model. During brain activation, local increases in blood flow exceed the oxygen demand, resulting in less deoxygenated blood in the capillary and venous compartments. Due to this, blood is less paramagnetic in these activated brain regions, lengthening T2, which in turn increases the signal intensities of the corresponding voxels in the MR image. Thus the measured blood-oxygen-level-dependent (BOLD) image contrast is a complex function of many physiological parameters, such as tissue morphometry, blood volume, blood flow, oxygenation and oxygen metabolism. All of these parameters contribute to the tissue magnetization influencing the transverse relaxation rate. Until now, no exact equations have been available which would relate these hemodynamic variables to a single MRI observable parameter, namely T 2, in a manner in which absolute units can be used. A fundamental theory was developed to explain measured spin-echo BOLD effects, and it was tested in animals and humans. In animal studies, blood oxygenation was altered by regulating arterial oxygen or carbon dioxide tension. This resulted in changes in blood volume, flow and blood magnetization, which in turn was reflected in T2. Using analytical expressions derived from the theory, the transverse relaxation rate was related to the oxygen saturation and extraction and quantification of microvascular cerebral blood volume was

  10. In vivo USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Ghanouni Pejman

    2012-06-01

    Full Text Available Abstract Background Minocycline has proven anti-nociceptive effects, but the mechanism by which minocycline delays the development of allodynia and hyperalgesia after peripheral nerve injury remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury in vivo and, in turn, results in altered pain thresholds. Results Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague–Dawley rats. Animals with SNI and uninjured animals were then injected with/without USPIOs (300 μmol/kg IV and with/without minocycline (50 mg/kg IP. Bilateral sciatic nerves were scanned with a volume coil in a 7 T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p  Conclusion Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline to retards the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective in

  11. In vivo testing of a magnetically suspended centrifugal pump designed for long-term use.

    Science.gov (United States)

    Yamada, T; Nishimura, K; Akamatsu, T; Tsukiya, T; Park, C H; Kono, S; Matsuda, K; Ban, T

    1997-10-01

    The life of currently-available centrifugal pumps is limited to no more than three days. As a magnetically suspended centrifugal pump (MSCP) contains no shaft or seal, it could be expected to have a longer life expectancy. The MSCP was evaluated in a chronic animal model using eight adult sheep. Left ventricular assist with the MSCP was instituted between the left atrium and the descending aorta. The flow rates ranged from 2.5 to 6.0 L/min. The duration of the experiments ranged from 14 to 60 days. No mechanical failure occurred. The plasma free hemoglobin levels remained within an acceptable range (3-19 mg/dL). No reduction in the counts of red blood cells or platelets was observed. Thrombus formation within the MSCP was recognized in one pump. The main reason for termination was thromboembolism derived from the circuits. Three types of regulation methods (constant rotational speed, constant motor current, and controlled motor current) were also investigated. Regulation by a constant motor current mode altered the pressure-flow (P-Q) characteristics, and thereby, a steadier pump flow was obtained compared with regulation in the constant rotational speed mode. Moreover, the controlled motor current mode can change the P-Q relationship. These results demonstrate that the MSCP is a promising device for long-term use.

  12. Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver.

    Science.gov (United States)

    Allegretti, G; Saccomandi, P; Giurazza, F; Caponero, M A; Frauenfelder, G; Di Matteo, F M; Beomonte Zobel, B; Silvestri, S; Schena, E

    2015-07-01

    Laser Ablation (LA) is a minimally-invasive procedure for tumor treatment. LA outcomes depend on the heat distribution inside tissues and require accurate temperature measurement during the procedure. Magnetic resonance imaging (MRI) allows a non-invasive and three-dimensional thermometry of the organ undergoing LA. In this study, the temperature distribution within two swine pancreases and three swine livers undergoing LA (Nd:YAG, power: 2 W, treatment time: 4 min) was monitored by a 1.5-T MR scanner, utilizing two T1-weighted sequences (IRTF and SRTF). The signal intensity in four regions of interest, placed at different distances from the laser applicator, was related to temperature variations monitored in the same regions by twelve fiber Bragg grating sensors. The relationship between the signal intensity and temperature increase was calculated to obtain the calibration curve and to evaluate accuracy, sensibility and precision of each sequence. This is the first study of MR-based thermometry during LA on pancreas. More specifically, the IRTF sequence provides the highest temperature sensitivity in both liver (1.8 ± 0.2 °C(-1)) and pancreas (1.8 ± 0.5 °C(-1)) and the lowest precision and accuracy. SRTF sequence on pancreas presents the highest accuracy and precision (MODSFRT = -0.1 °C and LOASFRT = [-2.3; 2.1] °C). Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. The application of in vivo diffusion weighted magnetic resonance imaging on intracranial disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ebisu, Toshihiko; Naruse, Shoji; Horikawa, Yoshiharu (Kyoto Prefectural Univ. of Medicine (Japan)) (and others)

    1991-07-01

    Diffusion weighted magnetic resonance (MR) images were obtained by using motion-probing gradient (MPG) pulses in one or three orthogonal directions in the following subjects: (1) phantom models; (2) Wistar rats with experimentally induced brain edema; (3) normal volunteers, and patients with brain tumor, brain edema or cerebral infarction. A one direction method was capable of defining diffusion anisotropy of myelinated axonal fibers in white matter. A three orthogonal gradients method was useful for demonstrating the difference in the diffusion coefficients in various diseases due to its larger total gradient strength. Faster diffusion was detected in white matter parallel to the direction of MPG; and slower diffusion was detected perpendicular to the direction of MPG because the myelin sheath restricted water diffusion. Brain tumor and vasogenic edema were shown as faster diffusion, while cytotoxic edema, cerebral ischemia, and infarction (at the subacute or early chronic stage) were shown as slower diffusion. Thus, diffusion weighted MR imaging seemed to be a useful approach to qualitative and dynamic analyses of intracranial diseases. (N.K.).

  14. Highly specific determination of IDH status using edited in vivo magnetic resonance spectroscopy.

    Science.gov (United States)

    Branzoli, Francesca; Di Stefano, Anna Luisa; Capelle, Laurent; Ottolenghi, Chris; Valabrègue, Romain; Deelchand, Dinesh K; Bielle, Franck; Villa, Chiara; Baussart, Bertrand; Lehéricy, Stéphane; Sanson, Marc; Marjanska, Malgorzata

    2017-11-06

    Mutations in the isocitrate dehydrogenase (IDH) enzyme affects 40% of gliomas and represent a major diagnostic and prognostic marker. The goals of this study were to evaluate the performance of noninvasive magnetic resonance spectroscopy (MRS) methods to determine the IDH status of patients with brain gliomas through detection of the oncometabolite 2-hydroxyglutarate (2HG), and to compare performance of these methods with DNA sequencing and tissue 2HG analysis. Twenty-four subjects with suspected diagnosis of low grade glioma were included prospectively in the study. For all subjects, MRS data were acquired at 3 T using two MRS methods, edited MRS using MEGA-PRESS sequence and a PRESS sequence optimized for 2HG detection, using a volume of interest larger than 6 mL. IDH mutational status was determined by combination of automated immunohistochemical analysis (IHC) and Sanger sequencing. 2HG levels in tissue samples measured by gas chromatography-mass spectrometry (GC-MS) were compared to those estimated by MRS. Edited MRS provided 100% specificity and 100% sensitivity in the detection of 2HG. The 2HG levels estimated by this technique were in line with those derived from tissue samples. Optimized PRESS provided lower performance, in agreement with previous findings. Our results suggest that edited MRS is one of the most reliable tools to predict IDH mutation noninvasively, showing high sensitivity and specificity for 2HG detection. Integrating edited MRS in clinical practice may be highly beneficial for noninvasive diagnosis of glioma, prognostic assessment, and treatment planning.

  15. Cellular Magnetic Resonance Imaging: In Vivo Imaging of Melanoma Cells in Lymph Nodes of Mice

    Directory of Open Access Journals (Sweden)

    Paula J Foster

    2008-03-01

    Full Text Available Metastasis is responsible for most deaths due to malignant melanoma. The clinical significance of micrometastases in the lymph is a hotly debated topic, but an improved understanding of the lymphatic spread of cancer remains important for improving cancer survival. Cellular magnetic resonance imaging (MRI is a newly emerging field of imaging research that is expected to have a large impact on cancer research. In this study, we demonstrate the cellular MRI technology required to reliably image the lymphatic system in mice and to detect iron-labeled metastatic melanoma cells within the mouse lymph nodes. Melanoma cells were implanted directly into the inguinal lymph nodes in mice, and micro-MRI was performed using a customized 1.5-T clinical MRI system. We show cell detection of as few as 100 iron-labeled cells within the lymph node, with injections of larger cell numbers producing increasingly obvious regions of signal void. In addition, we show that cellular MRI allows monitoring of the fate of these cells over time as they develop into intranodal tumors. This technology will allow noninvasive investigations of cellular events in cancer metastasis within an entire animal and will facilitate progress in understanding the mechanisms of metastasis within the lymphatic system.

  16. Cellular Magnetic Resonance Imaging: In Vivo Imaging of Melanoma Cells in Lymph Nodes of Mice1

    Science.gov (United States)

    Foster, Paula J; Dunn, Elizabeth A; Karl, Kristina E; Snir, Jonatan A; Nycz, Colleen M; Harvey, Alfred J; Pettis, Ron J

    2008-01-01

    Metastasis is responsible for most deaths due to malignant melanoma. The clinical significance of micrometastases in the lymph is a hotly debated topic, but an improved understanding of the lymphatic spread of cancer remains important for improving cancer survival. Cellular magnetic resonance imaging (MRI) is a newly emerging field of imaging research that is expected to have a large impact on cancer research. In this study, we demonstrate the cellular MRI technology required to reliably image the lymphatic system in mice and to detect iron-labeled metastatic melanoma cells within the mouse lymph nodes. Melanoma cells were implanted directly into the inguinal lymph nodes in mice, and micro-MRI was performed using a customized 1.5-T clinical MRI system. We show cell detection of as few as 100 iron-labeled cells within the lymph node, with injections of larger cell numbers producing increasingly obvious regions of signal void. In addition, we show that cellular MRI allows monitoring of the fate of these cells over time as they develop into intranodal tumors. This technology will allow noninvasive investigations of cellular events in cancer metastasis within an entire animal and will facilitate progress in understanding the mechanisms of metastasis within the lymphatic system. PMID:18320065

  17. Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice.

    Science.gov (United States)

    Foster, Paula J; Dunn, Elizabeth A; Karl, Kristina E; Snir, Jonatan A; Nycz, Colleen M; Harvey, Alfred J; Pettis, Ron J

    2008-03-01

    Metastasis is responsible for most deaths due to malignant melanoma. The clinical significance of micrometastases in the lymph is a hotly debated topic, but an improved understanding of the lymphatic spread of cancer remains important for improving cancer survival. Cellular magnetic resonance imaging (MRI) is a newly emerging field of imaging research that is expected to have a large impact on cancer research. In this study, we demonstrate the cellular MRI technology required to reliably image the lymphatic system in mice and to detect iron-labeled metastatic melanoma cells within the mouse lymph nodes. Melanoma cells were implanted directly into the inguinal lymph nodes in mice, and micro-MRI was performed using a customized 1.5-T clinical MRI system. We show cell detection of as few as 100 iron-labeled cells within the lymph node, with injections of larger cell numbers producing increasingly obvious regions of signal void. In addition, we show that cellular MRI allows monitoring of the fate of these cells over time as they develop into intranodal tumors. This technology will allow noninvasive investigations of cellular events in cancer metastasis within an entire animal and will facilitate progress in understanding the mechanisms of metastasis within the lymphatic system.

  18. The temporal sequence of gut peptide CNS interactions tracked in vivo by magnetic resonance imaging.

    Science.gov (United States)

    Kuo, Yu-Ting; Parkinson, James R C; Chaudhri, Owais B; Herlihy, Amy H; So, Po-Wah; Dhillo, Waljit S; Small, Caroline J; Bloom, Stephen R; Bell, Jimmy D

    2007-11-07

    Hormonal satiety signals secreted by the gut play a pivotal role in the physiological control of appetite. However, therapeutic exploitation of the gut-brain axis requires greater insight into the interaction of gut hormones with CNS circuits of appetite control. Using the manganese ion (Mn2+) as an activity-dependent magnetic resonance imaging (MRI) contrast agent, we showed an increase in signal intensity (SI) in key appetite-regulatory regions of the hypothalamus, including the arcuate, paraventricular, and ventromedial nuclei, after peripheral injection of the orexigenic peptide ghrelin. Conversely, administration of the anorexigenic hormone peptide YY(3-36) caused a reduction in SI. In both cases, the changes in SI recorded in the hypothalamic arcuate nucleus preceded the effect of these peptides on food intake. Intravenous Mn2+ itself did not significantly alter ghrelin-mediated expression of the immediate early gene product c-Fos, nor did it cause abnormalities of behavior or metabolic parameters. We conclude that manganese-enhanced MRI constitutes a powerful tool for the future investigation of the effects of drugs, hormones, and environmental influences on neuronal activity.

  19. In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D

    2017-08-01

    Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. EMMPRIN-Targeted Magnetic Nanoparticles for In Vivo Visualization and Regression of Acute Myocardial Infarction.

    Science.gov (United States)

    Cuadrado, Irene; Piedras, Maria Jose Garcia Miguel; Herruzo, Irene; Turpin, Maria Del Carmen; Castejón, Borja; Reventun, Paula; Martin, Ana; Saura, Marta; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of extracellular matrix (ECM) degradation may represent a mechanism for cardiac protection against ischemia. Extracellular matrix metalloproteinase inducer (EMMPRIN) is highly expressed in response to acute myocardial infarction (AMI), and induces activation of several matrix metalloproteinases (MMPs), including gelatinases MMP-2 and MMP-9. We targeted EMMPRIN with paramagnetic/fluorescent micellar nanoparticles conjugated with the EMMPRIN binding peptide AP-9 (NAP9), or an AP-9 scrambled peptide as a negative control (NAPSC). We found that NAP9 binds to endogenous EMMPRIN in cultured HL1 myocytes and in mouse hearts subjected to ischemia/reperfusion (IR). Injection of NAP9 at the time of or one day after IR, was enough to reduce progression of myocardial cell death when compared to CONTROL and NAPSC injected mice (infarct size in NAP9 injected mice: 32%±6.59 vs 46%±9.04 or NAPSC injected mice: 48%±7.64). In the same way, cardiac parameters were recovered to almost healthy levels (LVEF NAP9 63% ± 7.24 vs CONTROL 42% ± 4.74 or NAPSC 39% ± 6.44), whereas ECM degradation was also reduced as shown by inhibition of MMP-2 and MMP-9 activation. Cardiac magnetic resonance (CMR) scans have shown a signal enhancement in the left ventricle of NAP9 injected mice with respect to non-injected, and to mice injected with NAPSC. A positive correlation between CMR enhancement and Evans-Blue/TTC staining of infarct size was calculated (R:0.65). Taken together, these results point to EMMPRIN targeted nanoparticles as a new approach to the mitigation of ischemic/reperfusion injury.

  1. High-resolution numerical simulation of Left Ventricular Hemodynamics Guided by in-vivo Cardiac Magnetic Resonance Data

    Science.gov (United States)

    Le, Trung; Sotiropoulos, Fotis; Mirabella, Lucia; Chaffins, Brandon; Santhanakrishnan, Arvind; Oshinski, John; Yoganathan, Ajit; University of Minnesota Collaboration; Georgia Institute of Technology Collaboration

    2012-11-01

    We study the fluid dynamics within a patient-specific left ventricle (LV) during diastole using both numerical simulations and in-vivo data. The kinematics of the LV is reconstructed from high-resolution Magnetic Resonance Imaging (MRI) data acquired on a healthy volunteer, using image segmentation and a surface registration process. The flow velocity is acquired using phase-contrast MRI at the mitral orifice and at an additional parallel plane inside the ventricle. Numerical simulations are carried out using the CURVIB method (Ge et al., JCP, 2007) with the MRI reconstructed LV wall motion imposed as boundary condition. The numerical simulations show the highly dynamic environment of the flow field. The mitral vortex ring is formed during early diastolic filling and breaks down into small scale structures. The simulated hemodynamics are compared with phase-contrast MRI measurements and previous simulations in which the LV wall motion was obtained from a lumped parameter model (Le and Sotiropoulos, Eur. J. Mechanics B - Fluids, 2012). We acknowlege NIH Grant RO1-HL-07262 and the Minnesota Supercomputing Institute support.

  2. In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia.

    Science.gov (United States)

    Puhl, Matthew D; Mintzopoulos, Dionyssios; Jensen, J Eric; Gillis, Timothy E; Konopaske, Glenn T; Kaufman, Marc J; Coyle, Joseph T

    2015-01-01

    Decreased availability of the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is thought to promote NMDAR hypofunction and contribute to the pathophysiology of schizophrenia, including neuroanatomical abnormalities, such as cortical atrophy and ventricular enlargement, and neurochemical abnormalities, such as aberrant glutamate and γ-aminobutyric acid (GABA) signaling. It is thought that these abnormalities directly relate to the negative symptoms and cognitive impairments that are hallmarks of the disorder. Because of the genetic complexity of schizophrenia, animal models of the disorder are extremely valuable for the study of genetically predisposing factors. Our laboratory developed a transgenic mouse model lacking serine racemase (SR), the synthetic enzyme of d-serine, polymorphisms of which are associated with schizophrenia. Null mutants (SR-/-) exhibit NMDAR hypofunction and cognitive impairments. We used 9.4 T magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to compare in vivo brain structure and neurochemistry in wildtype (WT) and SR-/- mice. Mice were anesthetized with isoflurane for MRI and MRS scans. Compared to WT controls, SR-/- mice exhibited 23% larger ventricular volumes (pcomparable to those previously reported in humans with schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The Development and Application of Magnetic Resonance Elastography of the Normal and Pathological Thyroid Gland in vivo

    Science.gov (United States)

    Bahn, Mark M.; Brennan, Michael D.; Bahn, Rebecca S.; Dean, Diana S.; Kugel, Jennifer L.; Ehman, Richard L.

    2010-01-01

    Purpose To non-invasively assess the shear stiffness of the thyroid gland in vivo in order to determine whether Magnetic Resonance Elastography (MRE) might hold clinical utility in the diagnosis of thyroid disease. Materials and Methods Quantitative parametric images of thyroid stiffness in normal volunteers and patients were produced and quantitative stiffness values measured. Average gland stiffness was determined by region of interest analysis of the parametric images. This technique was used to assess stiffness of the thyroid in normal individuals (n=12), patients with Hashimoto's thyroiditis (HT; n=5), and patients with a solitary benign (n=8) or malignant (n=2) thyroid nodule. Results Mean shear modulus of normal thyroid glands was 1.9 ± 0.6 kPa at 100 Hz and 1.3 ± 0.5 kPa at 80 Hz, while that of HT glands was 2.8 ± 0.6 kPa and 1.8 ± 0.6 kPa at 80 Hz, respectively (p=0.004 at 100 Hz). Elastographic parameters could not differentiate benign from malignant thyroid nodules in these small sample sizes. Conclusion We have developed a method for the application of MRE to the study of thyroid gland pathology. Results show that the HT gland can be differentiated from normal thyroid. The clinical utility of this imaging modality in the diagnosis and management of thyroid disease awaits further study. PMID:19856448

  4. In vivo characterization of brain morphometric and metabolic endophenotypes in three inbred strains of mice using magnetic resonance techniques.

    Science.gov (United States)

    Penet, Marie-France; Laigle, Christophe; Fur, Yann Le; Confort-Gouny, Sylviane; Heurteaux, Catherine; Cozzone, Patrick J; Viola, Angèle

    2006-09-01

    C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.

  5. Interactions between Pyruvate and Lactate Metabolism in Propionibacterium freudenreichii subsp. shermanii: In Vivo 13C Nuclear Magnetic Resonance Studies

    Science.gov (United States)

    Deborde, Catherine; Boyaval, Patrick

    2000-01-01

    In vivo 13C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 μmol · min−1 · g−1 (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 μmol · min−1 · g−1 when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO2, succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most. PMID:10788375

  6. Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp. shermanii: in vivo (13)C nuclear magnetic resonance studies.

    Science.gov (United States)

    Deborde, C; Boyaval, P

    2000-05-01

    In vivo (13)C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 micromol. min(-1). g(-1) (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 micromol. min(-1). g(-1) when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO(2), succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most.

  7. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    Science.gov (United States)

    Cheng, Tian; Mishkovsky, Mor; Junk, Matthias J N; Münnemann, Kerstin; Comment, Arnaud

    2016-07-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1-(13) C]2-methylpropan-2-ol (tert-butanol) solution free of persistent radicals by using spin-labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized (13) C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin-labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  9. WE-G-303-03: Advances in in Vivo Magnetic NanoparticleSensing

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J. [Dartmouth-Hitchcock Medical Center (United States)

    2015-06-15

    Objectives: Understand the physical bases of gold nanoparticle applications for radiosensitization and x-ray fluorescence imaging Understand the parameters that define gold nanoparticle-mediated radiosensitization in biological systems Understand the potential of magnetic nanoparticle characterization of the microenvironment Understand the various strategies for radiolabeling of nanoparticles and their applications S.C. and S.K. acknowledge support from MD Anderson Cancer Center, NIH (R01CA155446 and P30CA16672) and DoD (W81XWH-12-1-0198); J.W. acknowledges support from NIH (U54CA151662-01); W.C. acknowledges support from the University of Wisconsin-Madison, NIH (R01CA169365, P30CA014520, and T32CA009206), DoD (W81XWH-11-1-0644 and W81XWH-11-1-0648), and ACS (125246-RSG-13-099-01-CCE)

  10. 31P NMR first spectral moment study of the partial magnetic orientation of phospholipid membranes.

    Science.gov (United States)

    Picard, F; Paquet, M J; Levesque, J; Bélanger, A; Auger, M

    1999-01-01

    Structural data can be obtained on proteins inserted in magnetically oriented phospholipid membranes such as bicelles, which are most often made of a mixture of long and short chain phosphatidylcholine. Possible shapes for these magnetically oriented membranes have been postulated in the literature, such as discoidal structures with a thickness of one bilayer and with the short acyl chain phosphatidylcholine on the edges. In the present paper, a geometrical study of these oriented structures is done to determine the validity of this model. The method used is based on the determination of the first spectral moment of solid-state (31)P nuclear magnetic resonance spectra. From this first moment, an order parameter is defined that allows a quantitative analysis of partially oriented spectra. The validity of this method is demonstrated in the present study for oriented samples made of DMPC, DMPC:DHPC, DMPC:DHPC:gramicidin A and adriamycin:cardiolipin. PMID:10423434

  11. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Spray David C

    2011-02-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs have been used to label and visualize various cell types with magnetic resonance imaging (MRI. In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide alone or with poly-L-lysine (PLL or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol

  12. In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents.

    Science.gov (United States)

    Liang, Sayuan; Louchami, Karim; Kolster, Hauke; Jacobsen, Anna; Zhang, Ying; Thimm, Julian; Sener, Abdullah; Thiem, Joachim; Malaisse, Willy; Dresselaers, Tom; Himmelreich, Uwe

    2016-11-01

    The assessment of the β-cell mass in experimental models of diabetes and ultimately in patients is a hallmark to understand the relationship between reduced β-cell mass/function and the onset of diabetes. It has been shown before that the GLUT-2 transporter is highly expressed in both β-cells and hepatocytes and that D-mannoheptulose (DMH) has high uptake specificity for the GLUT-2 transporter. As 19-fluorine MRI has emerged as a new alternative method for MRI cell tracking because it provides potential non-invasive localization and quantification of labeled cells, the purpose of this project is to validate β-cell and pancreatic islet imaging by using fluorinated, GLUT-2 targeting mannoheptulose derivatives ( 19 FMH) both in vivo and ex vivo. In this study, we confirmed that, similar to DMH, 19 FMHs inhibit insulin secretion and increase the blood glucose level in mice temporarily (approximately two hours). We were able to assess the distribution of 19 FMHs in vivo with a temporal resolution of about 20 minutes, which showed a quick removal of 19 FMH from the circulation (within two hours). Ex vivo MR spectroscopy confirmed a preferential uptake of 19 FMH in tissue with high expression of the GLUT-2 transporter, such as liver, endocrine pancreas and kidney. No indication of further metabolism was found. In summary, 19 FMHs are potentially suitable for visualizing and tracking of GLUT-2 expressed cells. However, current bottlenecks of this technique related to the quick clearance of the compound and relative low sensitivity of 19 F MRI need to be overcome. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten

    2010-01-01

    In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Different early effect of irradiation in brain and small cell lung cancer examined by in vivo 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kristjansen, P E; Pedersen, A G; Quistorff, B

    1992-01-01

    Early effects of irradiation were evaluated by non-invasive in vivo 31P-magnetic resonance spectroscopy (31P-MRS) of two small cell lung cancer (SCLC) tumor lines CPH SCCL 54A and 54B, in nude mice. The tumors were originally derived from the same patient and have similar morphology and growth......-MRS. No effect was observed in brain at any dose level. In contrast, 40 Gy induced a statistically significant reduction in ATP/Pi ratio during the 12-h post-irradiation period. This effect was more pronounced in 54A than in 54B. Some reduction was observed following 10 Gy, whereas 2.5 Gy induced no changes...... in ATP/Pi. The differential effect on tumors and brain might be relevant for monitoring irradiation effects by in vivo 31P-MRS in patients with brain metastases....

  15. High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7 mT) following murine tail-vein injection

    Science.gov (United States)

    Coffey, Aaron M.; Feldman, Matthew A.; Shchepin, Roman V.; Barskiy, Danila A.; Truong, Milton L.; Pham, Wellington; Chekmenev, Eduard Y.

    2017-08-01

    High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80 cm-gap) 48.7 mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52 MHz resonance frequency over the torso of a tumor-bearing mouse every 2 s. Hyperpolarized 13C NMR signals with linewidths of ∼3 Hz (corresponding to ∼6 ppm) were recorded in vitro (2 mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7 mT and at 4.7 T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7 mT compared to that at 4.7 T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7 mT compared to those observed in high-field (≥3 T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.

  16. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals.

    Science.gov (United States)

    Naressi, A; Couturier, C; Castang, I; de Beer, R; Graveron-Demilly, D

    2001-07-01

    This article describes a Java-based graphical user interface for the magnetic resonance user interface (MRUI) quantitation package. This package allows MR spectroscopists to easily perform time-domain analysis of in vivo/medical MR spectroscopy data. We have found that the Java programming language is very well suited for developing highly interactive graphical software applications such as the MRUI system. We also have established that MR quantitation algorithms, programmed in the past in other languages, can easily be embedded into the Java-based MRUI by using the Java native interface (JNI).

  17. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy

    National Research Council Canada - National Science Library

    Ferreira, Pedro F; Kilner, Philip J; McGill, Laura-Ann; Nielles-Vallespin, Sonia; Scott, Andrew D; Ho, Siew Y; McCarthy, Karen P; Haba, Margarita M; Ismail, Tevfik F; Gatehouse, Peter D; de Silva, Ranil; Lyon, Alexander R; Prasad, Sanjay K; Firmin, David N; Pennell, Dudley J

    2014-01-01

    ... orientation and mobility in hypertrophic cardiomyopathy (HCM). We performed cDTI in vivo at 3 Tesla at end-systole and late diastole in 11 healthy controls and 11 patients with HCM, as well as late gadolinium enhancement (LGE...

  18. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: Effect of a neurotrophic treatment on cortical lesion development

    NARCIS (Netherlands)

    Gispen, W.H.; Duckers, H.J.; Muller, H.J.; Verhaagen, J.; Nicolay, K.

    1997-01-01

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short tau inversion recovery magnetic resonance imaging were used to assess the effect of a

  19. Non-invasive 3d magnetic resonance thermal mapping: determination of the lesion size during laser-therapy in ex vivo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Viard, R. [Lille 2 University, INSERM U703, EA 1049, Lille cedex (France); USTL, LAGIS CNRS UMR 8146, Villeneuve d' Ascq (France); Piron, B.; Rousseau, J. [Lille 2 University, INSERM U703, EA 1049, Lille cedex (France); Steiner, A. [University Hospital, Nuclear Medicine, Lille (France); Wassmer, B. [Osyris SA, Hellemmes (France); Mordon, S. [Lille University Hospital, INSERM (French National Institute of Health and Medical Research) IFR 114, Lille (France)

    2008-04-15

    Developments in open magnetic resonance imaging (MRI) magnets have made possible the use of reproducible thermosensitive sequences to determine temperature distribution inside biological tissue. This study aimed to compare MR thermal mapping during laser-induced interstitial thermal therapy (LITT) with macroscopically observed thermal lesions in order to estimate the 3D size of the coagulative necrosis. Laser irradiation was performed ex vivo with a 980-nm laser in pig liver in an open low-magnetic field (0.2 T) scanner. Laser light was transmitted through a 1,040/600 {mu}m (outer/core diameter) bare-tipped silica fiber. Laser energy was applied in a pulsed mode (10 s laser-on, 10 s laser-off) for 12 min, power 6 W, energy 2,160 J. Gradient-echo images acquired during laser irradiation were used for real-time temperature mapping by the MR-T1 method. The method was then validated by a comparison between calculated 60 C isotherm and macroscopic lesion size. Temperature accuracy was 2.2 C, temporal resolution was 20 s. and spatial resolution was 2.5 x 2.5 x 2.5 mm{sup 3} (0.8% of the mean volume of coagulative necrosis). The mean lesion volume was 1830 mm{sup 3} {+-} 189 (standard error), {sigma} (standard deviation) = 499 and range (min = 1281; max = 2591) mm{sup 3}. Volumes calculated from MRI isotherms were correlated (correlation coefficient r {sup 2} = 0.70) significantly (P = 0.08) to lesion size determined from macroscopic measurements. Using fast gradient-echo sequence, laser monitoring is achieved efficiently with fast temperature mapping. T1-weighted images appear promising in monitoring lesion size evolution in future low magnetic field in vivo studies. (orig.)

  20. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.

    Directory of Open Access Journals (Sweden)

    Silvia Panseri

    Full Text Available In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.

  1. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  2. Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo.

    Science.gov (United States)

    Tang, Qiu-Sha; Chen, Dao-Zhen; Xue, Wen-Qun; Xiang, Jing-Ying; Gong, Yong-Chi; Zhang, Li; Guo, Cai-Qin

    2011-01-01

    The purpose of this study was to develop intraperitoneal hyperthermic therapy based on magnetic fluid hyperthermia, nanoparticle-wrapped cisplatin chemotherapy, and magnetic particles of albumin. In addition, to combine the multiple-killing effects of hyperthermal targeting therapy, chemotherapy, and radiotherapy, the albumin-nanoparticle surfaces were linked with radionuclide (188)Re-labeled folic acid ligand ((188)Re-folate-CDDP/HSA). Human serum albumin was labeled with (188)Re using the pre-tin method. Reaction time and optimal conditions of labeling were investigated. The particles were intravenously injected into mice, which were sacrificed at different time points. Radioactivity per gram of tissue of percent injected dose (% ID/g) was measured in vital organs. The biodistribution of (188)Re-folate-CDDP/HAS magnetic nanoparticles was assessed. Optimal conditions for (188)Re-labeled folate-conjugated albumin combined with cisplatin magnetic nanoparticles were: 0.1 mL of sodium gluconate solution (0.3 mol/L), 0.1 mL of concentrated hydrochloric acid with dissolved stannous chloride (10 mg/mL), 0.04 mL of acetic acid buffer solution (pH 5, 0.2 mol/L), 30 mg of folate-conjugated albumin combined with cisplatin magnetic nanoparticles, and (188)ReO(4) eluent (0.1 mL). The rate of (188)Re-folate-CDDP-HSA magnetic nanoparticle formation exceeded 90%, and radiochemical purity exceeded 95%. The overall labeling rate was 83% in calf serum at 37°C. The major uptake tissues were the liver, kidney, intestine, and tumor after the (188)Re-folate-CDDP/HSA magnetic nanoparticles were injected into nude mice. Uptake of (188)Re-folate-CDDP/HSA magnetic nanoparticles increased gradually after injection, peaked at 8 hours with a value of 8.83 ± 1.71, and slowly decreased over 24 hours in vivo. These results indicate that (188)Re-folate-CDDP/HSA magnetic nanoparticles can be used in radionuclide-targeted cancer therapy. Surface-modified albumin nanoparticles with folic acid

  3. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  4. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model.

    Science.gov (United States)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael

    2017-08-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma

  5. Dose-dependent influence of short-term intermittent ethanol intoxication on cerebral neurochemical changes in rats detected by ex vivo proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Lee, Do-Wan; Nam, Yoon-Ki; Kim, Tai-Kyung; Kim, Jae-Hwa; Kim, Sang-Young; Min, Jung-Whan; Lee, Jung-Hoon; Kim, Hwi-Yool; Kim, Dai-Jin; Choe, Bo-Young

    2014-03-14

    The aim of this study was to quantitatively assess the effects of short-term intermittent ethanol intoxication on cerebral metabolite changes among sham controls (CNTL), low-dose ethanol (LDE)-exposed, and high-dose ethanol (HDE)-exposed rats, which were determined with ex vivo high-resolution spectra. Eight-week-old male Wistar rats were divided into three groups. Twenty rats in the LDE (n=10) and the HDE (n=10) groups received ethanol doses of 1.5 and 2.5 g/kg, respectively, through oral gavage every 8h for 4days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz ¹H nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the three groups). Normalized total N-acetylaspartate (tNAA: NAA+NAAG [N-acetylaspartyl-glutamate]), GABA, and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The six pairs of normalized metabolite levels were positively (+) or negatively (-) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and aspartate (Asp) (+), myo-Inositol (mIns) and Asp (-), mIns and alanine (+), mIns and taurine (+), and mIns and tNAA (-). Our results suggested that short-term intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo(1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose-dependent influence of short-term intermittent ethanol intoxication in the frontal cortex. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Haeyun; Lee, Chaedong [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Nam, Gi-Eun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Quan, Bo [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of); Choi, Hyuck Jae [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Center (Korea, Republic of); Yoo, Jung Sun [Seoul National University, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Smart Humanity Convergence Center (Korea, Republic of); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Seoul National University, Program in Nano Science and Technology, Graduate School of Convergence Science and Technology (Korea, Republic of)

    2016-02-15

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core–shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals (∼11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core–shell nanoparticles (∼54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core–shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex{sup ®} with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  7. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting.

    Science.gov (United States)

    Mojica Pisciotti, M L; Lima, E; Vasquez Mansilla, M; Tognoli, V E; Troiani, H E; Pasa, A A; Creczynski-Pasa, T B; Silva, A H; Gurman, P; Colombo, L; Goya, G F; Lamagna, A; Zysler, R D

    2014-05-01

    In this research work, DEXTRAN- and polyethylene glycol (PEG)-coated iron-oxide superparamagnetic nanoparticles were synthetized and their cytotoxicity and biodistribution assessed. Well-crystalline hydrophobic Fe3 O4 SPIONs were formed by a thermal decomposition process with d = 18 nm and σ = 2 nm; finally, the character of SPIONs was changed to hydrophilic by a post-synthesis procedure with the functionalization of the SPIONs with PEG or DEXTRAN. The nanoparticles present high saturation magnetization and superparamagnetic behavior at room temperature, and the hydrodynamic diameters of DEXTRAN- and PEG-coated SPIONs were measured as 170 and 120 nm, respectively. PEG- and DEXTRAN-coated SPIONs have a Specific Power Absorption SPA of 320 and 400 W/g, respectively, in an ac magnetic field with amplitude of 13 kA/m and frequency of 256 kHz. In vitro studies using VERO and MDCK cell lineages were performed to study the cytotoxicity and cell uptake of the SPIONs. For both cell lineages, PEG- and DEXTRAN-coated nanoparticles presented high cell viability for concentrations as high as 200 μg/mL. In vivo studies were conducted using BALB/c mice inoculating the SPIONs intravenously and exposing them to the presence of an external magnet located over the tumour. It was observed that the amount of PEG-coated SPIONs in the tumor increased by up to 160% when using the external permanent magnetic as opposed to those animals that were not exposed to the external magnetic field. Copyright © 2014 Wiley Periodicals, Inc.

  8. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection

    Energy Technology Data Exchange (ETDEWEB)

    Al Faraj, Achraf, E-mail: aalfaraj@ksu.edu.sa [College of Applied Medical Sciences, King Saud University, Molecular and Cellular Imaging Lab, Department of Radiological Sciences (Saudi Arabia)

    2013-07-15

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of different diseases, which make them attractive vehicles to deliver contrast agents or drugs for diagnostic or therapeutic purposes. In this study, the effect of polyethylene glycol functionalization of magnetic iron oxide nanoparticles and their further surface modification with carboxylic groups on bone marrow-derived M1 and M2 macrophages phenotype, labeling efficiency, uptake mechanism, biocompatibility, and their in vivo MR detection was assessed. An enhanced labeling efficiency was observed for carboxylic surface-modified superparamagnetic iron oxide (SPIO) compared to PEGylated SPIO and to a higher extent to plain SPIO along with a higher uptake by M2 subsets. Magnetic nanoparticles were found located in the periphery of the vesicles dispersed in the cytoplasm in TEM. Investigation of the labeling mechanism by inhibiting different uptake pathways revealed that endocytosis via scavenger receptor A, a process known to be clathrin mediated, plays a central role in the cellular uptake kinetics of both macrophages subpopulations. Biocompatibility evaluation showed no variation in cell viability and mitochondrial membrane potential with a low release of ROS. Flow cytometry and measurement of iNOS and Arginase 1 activity as marker of M1 and M2 macrophages polarization confirmed that magnetic labeling of macrophages subsets did not affect their polarization. In addition, no variation was observed in the biodistribution of magnetic iron oxide-labeled M1 and M2 macrophages subsets when monitored using noninvasive magnetic resonance imaging with a better detection for the enhanced SPIO-PEG-COOH-labeled cells.

  9. Ex vivo

    Science.gov (United States)

    Matsuda, Kant M; Lopes-Calcas, Ana; Honke, Michael L; O'Brien-Moran, Zoe; Buist, Richard; West, Michael; Martin, Melanie

    2017-07-01

    To advance magnetic resonance imaging (MRI) technologies further for in vivo tissue characterization with histopathologic validation, we investigated the feasibility of ex vivo tissue imaging of a surgically removed human brain tumor as a comprehensive approach for radiology-pathology correlation in histoanatomically identical fashion in a rare case of pigmented ganglioglioma with complex paramagnetic properties. Pieces of surgically removed ganglioglioma, containing melanin and hemosiderin pigments, were imaged with a small bore 7-T MRI scanner to obtain T1-, T2-, and T2*-weighted image and diffusion tensor imaging (DTI). Corresponding histopathological slides were prepared for routine hematoxylin and eosin stain and special stains for melanin and iron/hemosiderin to correlate with MRI signal characteristics. Furthermore, mean diffusivity (MD) maps were generated from DTI data and correlated with cellularity using image analysis. While the presence of melanin was difficult to interpret in in vivo MRI with certainty due to concomitant hemosiderin pigments and calcium depositions, ex vivo tissue imaging clearly demonstrated pieces of tissue exhibiting the characteristic MR signal pattern for melanin with pathologic confirmation in a histoanatomically identical location. There was also concordant correlation between MD and cellularity. Although it is still in an initial phase of development, ex vivo tissue imaging is a promising approach, which offers radiology-pathology correlation in a straightforward and comprehensive manner.

  10. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  11. Magnetic

    National Research Council Canada - National Science Library

    Essam Aboud; Nabil El-Masry; Atef Qaddah; Faisal Alqahtani; Mohammed R.H. Moufti

    2015-01-01

    .... A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth...

  12. In vivo three-dimensional magnetic resonance imaging of rat knee osteoarthritis model induced using meniscal transection

    Directory of Open Access Journals (Sweden)

    Yi-Xiang J. Wang

    2015-07-01

    Conclusion: MRI offers in vivo information on the pathogenesis change of rat knee OA induced with menisectomy. It can serve as a supplement technique to histology, as it is particularly useful for longitudinal follow-up of OA model development.

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  16. Folic acid-conjugated Fe{sub 3}O{sub 4} magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.L.; Zheng, S.W. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Deng, S.M.; Guo, L. [The First Affiliated Hospital of Soochow University, Suzhou 215011 (China); Hu, R.L. [Department of Thoracic Surgery, Hangzhou First People' s Hospital, Hangzhou 310006 (China); Gao, B.; Huang, M.; Cheng, L.F. [College of Medicine, Soochow University, SIP, Suzhou 215123 (China); Liu, G.H. [Respiration Department, Suzhou Municipal Hospital (East-Section), Suzhou 215001 (China); Wang, Y.Q. [Key Laboratory of Environmental Materials and Engineering of Jiangsu Province, Yangzhou University, Yangzhou 225002 (China)

    2014-07-01

    The folic acid (FA)-conjugated Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs) were synthesized by co-precipitation of Fe{sup 3+} and Fe{sup 2+} solution followed by surface modification with carboxymethyl dextran (CMD) to form carboxymethyl group terminated MNPs, then FA was conjugated with the carboxyl group functionalized MNPs. The morphology and properties of obtained nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV–visible spectra (UV–vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The FA-conjugated MNPs exhibited relatively high saturation magnetization and fast magneto-temperature response which could be applied to hyperthermia therapy. To determine the accurate targeting effect of FA, we chose FA-conjugated MNPs as MRI contrast enhancement agent for detection of KB cells with folate receptor over-expression in vitro and in vivo. The results show that these magnetic nanoparticles appear to be the promising materials for local hyperthermia and MRI.

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  1. Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

    Science.gov (United States)

    Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan

    2016-03-01

    Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. EX-VIVO MAGNETIC-RESONANCE-IMAGING OF PRETRANSPLANT HUMAN DONOR LIVER - CLINICAL-EXPERIENCE IN 66 CASES

    NARCIS (Netherlands)

    WOLF, RFE; MOOYAART, EL; KAMMAN, RL; DEKETH, HP; THIJN, CJP; SLOOFF, MJH

    Magnetic resonance imaging (MRI) was performed on 66 cold-stored human donor livers. Spin echo images were obtained with a clinical whole body MRI system. Various parenchymal and vascular abnormalities were found. An unexpected finding was the abundant presence of intrahepatic air. Although the

  3. Cardiac function and lipid distribution in rats fed a high-fat diet: in vivo magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Nagarajan, Vijayasarathi; Gopalan, Venkatesh; Kaneko, Manami; Angeli, Veronique; Gluckman, Peter; Richards, Arthur Mark; Kuchel, Philip W; Velan, S Sendhil

    2013-06-01

    Obesity is a major risk factor in the development of cardiovascular disease, type 2 diabetes, and its pathophysiological precondition insulin resistance. Very little is known about the metabolic changes that occur in the myocardium and consequent changes in cardiac function that are associated with high-fat accumulation. Therefore, cardiac function and metabolism were evaluated in control rats and those fed a high-fat diet, using magnetic resonance imaging, magnetic resonance spectroscopy, mRNA analysis, histology, and plasma biochemistry. Analysis of blood plasma from rats fed the high-fat diet showed that they were insulin resistant (P biochemistry, magnetic resonance imaging, and mRNA analysis confirmed that rats on the high-fat diet had moderate diabetes along with mild cardiac hypertrophy. The magnetic resonance spectroscopy results showed the extramyocellular lipid signal only in the spectra from high-fat diet rats, which was absent in the control diet rats. The intramyocellular lipids in high-fat diet rats was higher (8.7%) compared with rats on the control diet (6.1%). This was confirmed by electron microscope and light microscopy studies. Our results indicate that lipid accumulation in the myocardium might be an early indication of the cardiovascular pathophysiology associated with type 2 diabetes.

  4. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  5. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole

    2017-01-01

    hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist...

  6. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development

    Energy Technology Data Exchange (ETDEWEB)

    Gispen, W.H. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Nicolay, K. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Verhaagen, J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands); Muller, H.J. [Department of in vivo NMR, Bijvoet Center, Utrecht University Utrecht (Netherlands); Duckers, H.J. [Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Medical Faculty, Utrecht University Utrecht (Netherlands)

    1997-02-14

    Proton magnetic resonance imaging enables non-invasive monitoring of lesion formation in multiple sclerosis and has an important role in assessing the potential effects of therapy. T2-weighted and short {tau} inversion recovery magnetic resonance imaging were used to assess the effect of a neurotrophic adrenocorticotrophic hormone{sub 4-9} analogue [H-Met(O{sub 2})-Glu-His-Phe-d-Lys-Phe-OH] on the volume of lesions in the brains of rats suffering from chronic experimental allergic encephalomyelitis, an animal equivalent of multiple sclerosis. Lesion volume was monitored during a five-month period. Magnetic resonance imaging indicated that treatment with the adrenocorticotrophic hormone{sub 4-9} analogue significantly reduced the lesion volume by 84 and 85% 10 and 20 weeks after lesion induction, respectively. Furthermore, peptide treatment significantly reduced chronic experimental allergic encephalomyelitis-related neurological symptoms during the chronic phase of the disease (week 3 until week 20 after lesion induction). Both functional and morphological recovery were considerably advanced by peptide treatment. Twenty weeks after lesion induction rats with chronic experimental allergic encephalomyelitis were killed for histological analysis, to correlate magnetic resonance imaging findings with morphological changes. The regions of abnormally high signal intensities on T2-weighted magnetic resonance images coincided with areas of demyelination and concomitant widespread inflammatory infiltration, oedema formation and enlarged ventricles.The improved neurological status and the 84% reduction in the lesion volume in the cerebrum of rats chronic experimental allergic encephalomyelitis point to the potential value of trophic peptides in the development of strategies for limiting the damage caused by central demyelinating lesions in syndromes such as multiple sclerosis. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Synthesis of Lipophilic Core-Shell Fe3O4@SiO2@Au Nanoparticles and Polymeric Entrapment into Nanomicelles: A Novel Nanosystem for in Vivo Active Targeting and Magnetic Resonance-Photoacoustic Dual Imaging.

    Science.gov (United States)

    Monaco, Ilaria; Arena, Francesca; Biffi, Stefania; Locatelli, Erica; Bortot, Barbara; La Cava, Francesca; Marini, Giada Maria; Severini, Giovanni Maria; Terreno, Enzo; Comes Franchini, Mauro

    2017-05-17

    In this work, iron/silica/gold core-shell nanoparticles (Fe3O4@SiO2@Au NPs) characterized by magnetic and optical properties have been synthesized to obtain a promising theranostic platform. To improve their biocompatibility, the obtained multilayer nanoparticles have been entrapped in polymeric micelles, decorated with folic acid moieties, and tested in vivo for photoacoustic and magnetic resonance imaging detection of ovarian cancer.

  8. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  9. Different energy metabolism in two human small cell lung cancer subpopulations examined by 31P magnetic resonance spectroscopy and biochemical analysis in vivo and in vitro

    DEFF Research Database (Denmark)

    Kristjansen, P E; Spang-Thomsen, M; Quistorff, B

    1991-01-01

    Two human small cell lung cancer tumor lines, maintained as solid tumor xenografts on nude mice and as in vitro cell cultures, were studied by in vivo 31P magnetic resonance spectroscopy and by biochemical analysis of extracts of solid tumors and cell cultures. The tumor lines CPH SCCL 54A and CPH...... SCCL 54B are subpopulations from the same tumor. In solid tumors (n = 125), the ATP/Pi ratio was greater in 54A than in 54B. This was due to a higher ATP level in 54A, whereas there was no difference in Pi, ADP, and AMP. A decrease in ATP/Pi during growth was caused by a decline in ATP, whereas Pi...... originated from the stroma. A difference in ATP content between 54A and 54B was also found in cell cultures; hence, the metabolic difference is an intrinsic quality of the malignant cells and is not caused by the host system....

  10. The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo.

    Science.gov (United States)

    Cabana, Laura; Bourgognon, Maxime; Wang, Julie T-W; Protti, Andrea; Klippstein, Rebecca; de Rosales, Rafael T M; Shah, Ajay M; Fontcuberta, Josep; Tobías-Rossell, Ester; Sosabowski, Jane K; Al-Jamal, Khuloud T; Tobias, Gerard

    2016-06-01

    Carbon nanotubes (CNTs) have been advocated as promising nanocarriers in the biomedical field. Their high surface area and needle-like shape make these systems especially attractive for diagnostic and therapeutic applications. Biocompatibility, cell internalization, biodistribution, and pharmacokinetic profile have all been reported to be length dependent. In this study, further insights are gotten on the role that the length of CNTs plays when developing novel contrast agents for magnetic resonance imaging (MRI). Two samples of CNTs with different length distribution have been decorated with radio-labeled iron oxide nanoparticles. Despite characterization of the prepared hybrids reveals a similar degree of loading and size of the nanoparticles for both samples, the use of short CNTs is found to enhance the MRI properties of the developed contrast agents both in vitro and in vivo compared to their long counterparts. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In-Vivo proton magnetic resonance spectroscopy of 2-Hydroxyglutarate in isocitrate dehydrogenase-mutated gliomas: A technical review for neuroradiologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon Jin; Kim, Sung Jin [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, Hyeong Hun; Heo, Hwon [Dept. of Biomedical Sciences, Seoul National University, Seoul (Korea, Republic of)

    2016-09-15

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, were view previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas.

  12. In-Vivo Proton Magnetic Resonance Spectroscopy of 2-Hydroxyglutarate in Isocitrate Dehydrogenase-Mutated Gliomas: A Technical Review for Neuroradiologists

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonjin [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University, Seoul 03087 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080 (Korea, Republic of); Kim, Sungjin [Department of Radiology, Seoul National University Hospital, Seoul 03080 (Korea, Republic of); Lee, Hyeong Hun; Heo, Hwon [Department of Biomedical Sciences, Seoul National University, Seoul 03087 (Korea, Republic of)

    2016-11-01

    The diagnostic and prognostic potential of an onco-metabolite, 2-hydroxyglutarate (2HG) as a proton magnetic resonance spectroscopy (1H-MRS) detectable biomarker of the isocitrate dehydrogenase (IDH)-mutated (IDH-MT) gliomas has drawn attention of neuroradiologists recently. However, due to severe spectral overlap with background signals, quantification of 2HG can be very challenging. In this technical review for neuroradiologists, first, the biochemistry of 2HG and its significance in the diagnosis of IDH-MT gliomas are summarized. Secondly, various 1H-MRS methods used in the previous studies are outlined. Finally, wereview previous in vivo studies, and discuss the current status of 1H-MRS in the diagnosis of IDH-MT gliomas.

  13. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Isoda, Haruo; Takeda, Hiroyasu; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi [Hamamatsu University School of Medicine, Department of Radiology, Hamamatsu, Shizuoka (Japan); Ohkura, Yasuhide; Kosugi, Takashi [Renaissance of Technology Corporation, Hamamatsu, Shizuoka (Japan); Hirano, Masaya [GE Healthcare Japan, Tokyo (Japan); Hiramatsu, Hisaya; Namba, Hiroki [Hamamatsu University School of Medicine, Department of Neurosurgery, Hamamatsu, Shizuoka (Japan); Alley, Marcus T.; Bammer, Roland; Pelc, Norbert J. [Stanford University School of Medicine, Department of Radiology, Radiological Sciences Laboratory, Stanford, CA (United States)

    2010-10-15

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall. (orig.)

  14. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Progress in identifying new therapies for multiple sclerosis (MS can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging "hot-spot" 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions.

  15. In vivo MR imaging of intraarterially delivered magnetically labeled mesenchymal stem cells in a canine stroke model.

    Directory of Open Access Journals (Sweden)

    Shan-Shan Lu

    Full Text Available BACKGROUND: This study aimed to evaluate the feasibility of intraarterial (IA delivery and in vivo MR imaging of superparamagnetic iron oxide (SPIO-labeled mesenchymal stem cells (MSCs in a canine stroke model. METHODOLOGY: MSCs harvested from beagles' bone marrow were labeled with home-synthesized SPIO. Adult beagle dogs (n = 12 were subjected to left proximal middle cerebral artery (MCA occlusion by autologous thrombus, followed by two-hour left internal carotid artery (ICA occlusion with 5 French vertebral catheter. One week later, dogs were classified as three groups before transplantation: group A: complete MCA recanalization, group B: incomplete MCA recanalization, group C: no MCA recanalization. 3×10(6 labeled-MSCs were delivered through left ICA. Series in vivo MRI images were obtained before cell grafting, one and 24 hours after transplantation and weekly thereafter until four weeks. MRI findings were compared with histological studies at the time point of 24 hours and four weeks. PRINCIPAL FINDINGS: Home-synthesized SPIO was useful to label MSCs without cell viability compromise. MSCs scattered widely in the left cerebral hemisphere in group A, while fewer grafted cells were observed in group B and no cell was detected in group C at one hour after transplantation. A larger infarction on the day of cell transplantation was associated with more grafted cells in the brain. Grafted MSCs could be tracked effectively by MRI within four weeks and were found in peri-infarction area by Prussian blue staining. CONCLUSION: It is feasible of IA MSCs transplantation in a canine stroke model. Both the ipsilateral MCA condition and infarction volume before transplantation may affect the amount of grafted cells in target brain. In vivo MR imaging is useful for tracking IA delivered MSCs after SPIO labeling.

  16. In vivo serial MR imaging of magnetically labeled endothelial progenitor cells homing to the endothelium injured artery in mice.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available BACKGROUND: Emerging evidence of histopathological analyses suggests that endothelial progenitor cells (EPCs play an important role in vascular diseases. Neointimal hyperplasia can be reduced by intravenous transfusion of EPCs after vascular injury in mice. Therefore, it would be advantageous to develop an in vivo technique that can explore the temporal and spatial migration of EPCs homing to the damaged endothelium noninvasively. METHODOLOGY/PRINCIPAL FINDINGS: The left carotid common artery (LCCA was injured by removal of endothelium with a flexible wire in Kunming mice. EPCs were collected by in vitro culture of spleen-derived mouse mononuclear cells (MNCs. EPCs labeling was carried out in vitro using Fe₂O₃-poly-L-lysine (Fe₂O₃-PLL. In vivo serial MR imaging was performed to follow-up the injured artery at different time points after intravenous transfusion of EPCs. Vessel wall areas of injured artery were computed on T₂WI. Larger MR signal voids of vessel wall on T₂WI was revealed in all 6 mice of the labeled EPC transfusion group 15 days after LCCA injury, and it was found only in 1 mouse in the unlabeled EPC transfusion group (p = 0.015. Quantitative analyses of vessel wall areas on T₂WI showed that the vessel wall areas of labeled EPC transfusion group were less than those of unlabeled EPC transfusion group and control group fifteen days after artery injury (p<0.05. Histopathological analyses confirmed accumulation and distribution of transfused EPCs at the injury site of LCCA. CONCLUSIONS/SIGNIFICANCE: These data indicate that MR imaging might be used as an in vivo method for the tracking of EPCs homing to the endothelium injured artery.

  17. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    OpenAIRE

    Cheng Tian; Mishkovsky Mor; Junk Matthias J N; Münnemann Kerstin; Comment Arnaud

    2016-01-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1 (13) C]2 methylpropan 2 ol (tert butanol) solution free of...

  18. In Vivo Dual-Modality Fluorescence and Magnetic Resonance Imaging-Guided Lymph Node Mapping with Good Biocompatibility Manganese Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yonghua Zhan

    2017-12-01

    Full Text Available Multifunctional manganese oxide nanoparticles (NPs with impressive enhanced T1 contrast ability show great promise in biomedical diagnosis. Herein, we developed a dual-modality imaging agent system based on polyethylene glycol (PEG-coated manganese oxide NPs conjugated with organic dye (Cy7.5, which functions as a fluorescence imaging (FI agent as well as a magnetic resonance imaging (MRI imaging agent. The formed Mn3O4@PEG-Cy7.5 NPs with the size of ~10 nm exhibit good colloidal stability in different physiological media. Serial FI and MRI studies that non-invasively assessed the bio-distribution pattern and the feasibility for in vivo dual-modality imaging-guided lymph node mapping have been investigated. In addition, histological and biochemical analyses exhibited low toxicity even at a dose of 20 mg/kg in vivo. Since Mn3O4@PEG-Cy7.5 NPs exhibited desirable properties as imaging agents and good biocompatibility, this work offers a robust, safe, and accurate diagnostic platform based on manganese oxide NPs for tumor metastasis diagnosis.

  19. In-vivo monitoring of acute DSS-Colitis using Colonoscopy, high resolution Ultrasound and bench-top Magnetic Resonance Imaging in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Walldorf, J.; Hermann, M.; Pohl, S.; Zipprich, A. [Martin Luther University Halle-Wittenberg, Department of Internal Medicine I, Halle (Germany); Porzner, M.; Seufferlein, T. [University of Ulm, Department of Internal Medicine I, Ulm (Germany); Metz, H.; Maeder, K. [Martin Luther University, Institut of Pharmacy, Halle-Wittenberg (Germany); Christ, B. [University of Leipzig, Department of Surgery II, Leipzig (Germany)

    2015-10-15

    The aim of this study was to establish and evaluate (colour Doppler-) high-resolution-ultrasound (hrUS) and bench-top magnetic resonance imaging (btMRI) as new methods to monitor experimental colitis. hrUS, btMRI and endoscopy were performed in mice without colitis (n = 15), in mice with acute colitis (n = 14) and in mice with acute colitis and simultaneous treatment with infliximab (n = 19). Determination of colon wall thickness using hrUS (32 MHz) and measurement of the cross-sectional colonic areas by btMRI allowed discrimination between the treatment groups (mean a vs. b vs. c - btMRI: 922 vs. 2051 vs. 1472 pixel, hrUS: 0.26 vs. 0.45 vs. 0.31 mm). btMRI, endoscopy, hrUS and colour Doppler-hrUS correlated to histological scoring (p < 0.05), while endoscopy and btMRI correlated to post-mortem colon length (p < 0.05). The innovative in vivo techniques btMRI and hrUS are safe and technically feasible. They differentiate between distinct grades of colitis in an experimental setting, and correlate with established post-mortem parameters. In addition to endoscopic procedures, these techniques provide information regarding colon wall thickness and perfusion. Depending on the availability of these techniques, their application increases the value of in vivo monitoring in experimental acute colitis in small rodents. (orig.)

  20. Pace of macrophage recruitment during different stages of soft tissue infection: Semi-quantitative evaluation by in vivo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Seong; Sohn, Jin Young [University of Ulsan College of Medicine, Asan Medical Center, Laboratory for Molecular and Functional Imaging, Department of Radiology and Research Institute of Radiology, Seoul (Korea); Jung, Hyun-Don; Kim, Sang-Tae [University of Ulsan College of Medicine, Asan Institute for Life Sciences, Seoul (Korea); Lee, Kyoung Geun [Korea University College of Life Sciences and Biotechnology, Division of Biotechnology, Seoul (Korea); Kang, Hee Jung [Hallym University College of Medicine, Department of Laboratory Medicine, Anyang (Korea)

    2008-10-15

    We describe the pace of recruitment of iron-oxide-labeled macrophages to the site of different stages of infection by in vivo magnetic resonance (MR) imaging. Peritoneal macrophages were labeled with superparamagnetic iron oxide ex vivo and administered through the tail vein 6 (acute) or 48 (subacute) h after bacterial inoculation. The legs of the mice were imaged sequentially on a 4.7-T MR unit before and 3, 6, 12, 18, 24, 48 and 72 h after macrophage administration. The band-shaped lower signal intensity zone around the abscess on T2*-weighted GRE images became more obvious due to recruited macrophages up until 24 h after injection in the subacute and 48 h after injection in the acute group, indicating that the relative SI of the abscess wall decreased more rapidly and the pace of recruitment of macrophages was faster in the subacute than in the acute group. Chemokine antibody arrays of mouse sera detected increased concentration of granulocyte-colony-stimulating factor and tissue inhibitor of metalloproteinase-1 beginning at 12 h and increased interleukin-13 at 18 h. Monocyte chemoattractant protein-1 and macrophage-colony-stimulating factor began to increase at 96 h after infection. This difference in pace of recruitment may result from the release of chemokines. (orig.)

  1. Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Mukund Seshadri

    2007-02-01

    Full Text Available The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA were investigated in vivo using intravital microscopy (IVM and magnetic resonance imaging (MRI. Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p. and correlated with induction of tumor necrosis factor-α (TNF-α, endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ~ 4-fold increase in longitudinal relaxation rates (ΔR1, indicative of increased contrast agent accumulation within the tumor. Dualimmunostained tumor sections (CD31/TdT revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1 and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome.

  2. Organosilane and Polyethylene Glycol Functionalized Magnetic Mesoporous Silica Nanoparticles as Carriers for CpG Immunotherapy In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Hengrui Zheng

    Full Text Available Cytosine-guanine (CpG containing oligodeoxynucleotides (ODN have significant clinical potential as immunotherapeutics. However, limitations exist due to their transient biological stability in vivo, lack of specificity for target cells, and poor cellular uptake. To address these issues, we prepared amine magnetic mesoporous silica nanoparticles (M-MSN-A then further modified with polyethylene glycol (PEG for use as CpG delivery vectors. The PEG modified M-MSN-A (M-MSN-P had notable CpG ODN loading capacity, negligible cytotoxicity, and were easily internalized into cells where they released the loaded CpG into the cytoplasm. As a result, such complexes were effective in activating macrophages and inhibiting tumor cells when combined with chemotherapeutics in vitro. Furthermore, these complexes had excellent immuno-stimulating activity in vivo, compared to the free CpG therapeutics. We report here a highly effective MSNs-based delivery system with great potential as a therapeutic CpG formulation in cancer immunotherapy.

  3. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  4. {sup 31}P magnetic resonance spectroscopy to measure in vivo cardiac energetics in normal myocardium and hypertrophic cardiomyopathy: Experiences at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Shivu, Ganesh Nallur [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: drgani23@gmail.com; Abozguia, Khalid; Phan, Thanh Trung; Ahmed, Ibrar [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom); Henning, Anke [Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092, Zurich CH ETZ F97 (Switzerland); Frenneaux, Michael [Department of Cardiovascular Medicine, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2010-02-15

    Background: {sup 31}P magnetic resonance spectroscopy (MRS) allows measurement of in vivo high-energy phosphate kinetics in the myocardium. While traditionally {sup 31}P cardiac spectroscopy is performed at 1.5 T, cardiac MRS at higher field strength can theoretically increase signal to noise ratio (SNR) and spectral resolution therefore improving sensitivity and specificity of the cardiac spectra. The reproducibility and feasibility of performing cardiac spectroscopy at 3 T is presented here in this study in healthy volunteers and patients with hypertrophic cardiomyopathy. Methods: Cardiac spectroscopy was performed using a Phillips 3T Achieva scanner in 37 healthy volunteers and 26 patients with hypertrophic cardiomyopathy (HCM) to test the feasibility of the protocol. To test the reproducibility a single volunteer was scanned eight times on separate occasions. A single voxel {sup 31}P MRS was performed using Image Selected In vivo Spectroscopy (ISIS) volume localization. Results: The mean phosphocreatine/adenosine triphosphate (PCr/ATP) ratio of the eight measurements performed on one individual was 2.11 {+-} 0.25. Bland Altman plots showed a variance of 12% in the measurement of PCr/ATP ratios. The PCr/ATP ratio was significantly reduced in HCM patients compared to controls, 1.42 {+-} 0.51 and 2.11 {+-} 0.57, respectively, P < 0.0001. (All results are expressed as mean {+-} standard deviation). Conclusions: Here we demonstrate that cardiac {sup 31}P MRS at 3 T is a reliable method of measuring in vivo high-energy phosphate kinetics in the myocardium for clinical studies and diagnostics. Based on our data an impairment of cardiac energetic state in patients with hypertrophic cardiomyopathy is indisputable.

  5. Fast glomerular quantification of whole ex vivo mouse kidneys using Magnetic Resonance Imaging at 9.4 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Caldera, Jorge; Kraemer, Philipp; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Geraci, Stefania; Gretz, Norbert [Heidelberg Univ., Mannheim (Germany). Medical Research Centre; Cullen-McEwen, Luise; Bertram, John F. [Monash Univ., Melbourne, VIC (Australia). Development and Stem Cells Program and Dept. of Anatomy and Developmental Biology

    2016-05-01

    A method to measure total glomerular number (N{sub glom}) in whole mouse kidneys using MRI is presented. The method relies on efficient acquisition times. A 9.4 T preclinical MRI system with a surface cryogenic coil and a 3D gradient echo sequence were used to image nine whole ex vivo BALB/c mouse kidneys labelled with cationized-ferritin (CF). A novel method to segment the glomeruli was developed. The quantification of glomeruli was achieved by identifying and fitting the probability distribution of glomeruli thus reducing variations due to noise. For validation, N{sub glom} of the same kidneys were also obtained using the gold standard: design-based stereology. Excellent agreement was found between the MRI and stereological measurements of N{sub glom}, with values differing by less than 4%: (mean ± SD) MRI = 15 606 ± 1 178; stereology = 16 273 ± 1 523. Using a robust segmentation method and a reliable quantification method, it was possible to acquire N{sub glom} with a scanning time of 33 minutes and 20 seconds. This was more than 8 times faster than previously presented MRI-based methods. Thus, an efficient approach to measure N{sub glom} ex vivo in health and disease is provided.

  6. High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo.

    Science.gov (United States)

    Tymofiyeva, Olga; Boldt, Julian; Rottner, Kurt; Schmid, Florian; Richter, Ernst-Juergen; Jakob, Peter M

    2009-12-01

    The purpose of the study was to assess the feasibility of MRI of three-dimensional visualization and quantification of carious lesions, as well as measurement of the distance between the lesion and dental pulp in vivo. High-resolution 3D MRI was performed to measure seven carious lesions in vivo using gelatinous gadolinium-based oral contrast medium in combination with an intraoral radio frequency receiver coil on a clinical 1.5 T MRI scanner. Extension of the carious lesion in three spatial dimensions and the minimum distance between the lesion and dental pulp were quantified. When possible, the result was compared to an X-ray projection and an impression of the lesion taken using a plastic impression material before and after dental treatment. Carious lesions, including pit and fissure, approximal lesions, and occult dentin caries, could be visualized due to the MRI signal rise in the porous affected dentin. The minimum distance between the carious lesion and dental pulp could be determined in all cases. The results presented demonstrate the feasibility of high-resolution dental MRI to three-dimensionally visualize and quantify carious lesions, including approximal and occult caries lesions, and measure the minimum distance to the dental pulp.

  7. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  8. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  9. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  10. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  11. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our...... and after chemotherapy. The spectra showed considerable changes during chemotherapy. It is concluded that 31P spectroscopy using surface coils is of limited value for tumour characterization, but may add useful information in monitoring the effect of chemotherapy....

  12. Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study.

    Science.gov (United States)

    Chen, Bixia; Schoemberg, Tobias; Kraff, Oliver; Dammann, Philipp; Bitz, Andreas K; Schlamann, Marc; Quick, Harald H; Ladd, Mark E; Sure, Ulrich; Wrede, Karsten H

    2016-06-01

    This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T2-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI.

  13. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  14. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  15. Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy.

    Science.gov (United States)

    Duarte, João M N; Do, Kim Q; Gruetter, Rolf

    2014-07-01

    Alterations to brain homeostasis during development are reflected in the neurochemical profile determined noninvasively by (1)H magnetic resonance spectroscopy. We determined longitudinal biochemical modifications in the cortex, hippocampus, and striatum of C57BL/6 mice aged between 3 and 24 months . The regional neurochemical profile evolution indicated that aging induces general modifications of neurotransmission processes (reduced GABA and glutamate), primary energy metabolism (altered glucose, alanine, and lactate) and turnover of lipid membranes (modification of choline-containing compounds and phosphorylethanolamine), which are all probably involved in the frequently observed age-related cognitive decline. Interestingly, the neurochemical profile was different in male and female mice, particularly in the levels of taurine that may be under the control of estrogen receptors. These neurochemical profiles constitute the basal concentrations in cortex, hippocampus, and striatum of healthy aging male and female mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Copper phthalocyanine labelled magnetic microcapsules: preparation, and binding properties in vitro and in vivo for mutagens having planar molecular structure.

    Science.gov (United States)

    Povey, A C; O'Neill, I K

    1990-11-01

    Copper phthalocyanine tetrasulphonic acid (CPTS) functions were introduced into magnetic semi-permeable polyethyleneimine (PEI) microcapsules in order to create a recoverable scavenging system for trapping and biomonitoring, within the gastrointestinal cavity, of mutagens having a planar molecular structure. Stable ionic CPTS and covalent (thionylated CPTS, TCPTS) adducts to the microcapsule PEI were produced and shown to trap benzo[a]pyrene (B[a]P) in vitro in relation to the porphyrin/B[a]P ratio employed. 3-hydroxy B[a]P and B[a]P 3,6-dione from a crude B[a]P metabolite mixture, and a set of planar mutagens from crude opium/morphine pyrolysate mixtures could also be recovered in 7-86% yields after shaking with modified microcapsules followed by methanol/ammonia (50:1) desorption. Tetraols derived from B[a]P 7,8-diol-9,10 epoxide could also be recovered. Modified microcapsules were recovered magnetically from faeces of rats treated with [14C]B[a]P, and 45-51% of trapped radioactivity could be directly desorbed for HPLC assay compared with 30% for unmodified microscapsules. The relative extent of trapping by unmodified or CPTS- or TCPTS-modified microcapsules was different for various substrates, and it appears that the copper phthalocyanine tetrasulphonic acid moiety competes with another unidentified absorption/desorption structure in the microcapsules. These results show that selective and reversible trapping of carcinogens/mutagens having planar molecular structure can be achieved within the gastrointestinal tract.

  17. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways.

    Science.gov (United States)

    Selinsky, B S; Perlman, M E; London, R E

    1988-05-01

    Methoxyflurane (2,2-dichloro-1,1-difluoro-ethyl methyl ether) is believed to be metabolized via two convergent metabolic pathways. The relative flux through these two metabolic pathways has been investigated using a combination of in vivo surface coil NMR techniques and in vitro analyses of urinary metabolites. Analysis of the measured concentrations of inorganic fluoride, oxalate, and methoxydifluoroacetate in the urine of methoxyflurane-treated rats for 4 days after anesthesia indicates that the anesthetic is metabolized primarily via dechlorination to yield methoxydifluoroacetate. The methoxydifluoroacetate is largely excreted without further metabolism, although a small percentage of this metabolite is broken down to yield fluoride and oxalate, as determined by urine analysis of rats dosed with synthetic methoxydifluoroacetate. At early times after methoxyflurane exposure, the relative concentrations of methoxyflurane metabolites indicate that a significant fraction of the metabolic flux occurs via a different pathway, presumably demethylation, to yield dichloroacetate as an intermediate. Direct analysis of dichloroacetate in the urine using water-suppressed proton NMR indicates that the level of this metabolite is below the detection threshold of the method. Measurements made on the urine of rats dosed directly with dichloroacetate indicate that this compound is quickly metabolized, and dichloroacetate levels in urine are again found to be below the detection threshold. These results demonstrate the quantitative importance of the dechlorination pathway in the metabolism of methoxyflurane in rats.

  18. Fast computation of full density matrix of multispin systems for spatially localized in vivo magnetic resonance spectroscopy.

    Science.gov (United States)

    Zhang, Yan; An, Li; Shen, Jun

    2017-08-01

    Numerical simulations of three-dimensionally localized MRS spectra have been very time consuming for multispin systems because the current state-of-the-art method requires computation of a large ensemble of spins pixel-by-pixel in three dimensional space. This paper describes a highly accelerated technique for computing spatially localized MRS spectra using the full solution to the Liouville-von Neumann equation. The time evolution of spatially localized multispin density matrix as the full solution to the Liouville-von Neumann equation was analyzed. A new technique based on one dimensional spatial projection of the full density matrix was proposed. This method was implemented using a computer program written in Java language. The MRS spectra calculated using the new method were found to be identical to conventional three-dimensional simulation for the same digitization of the voxel while the new method reduced computation time by orders of magnitude and led to not only improved speed but also accuracy. Applications of the new method to phantom studies of multispin systems and quantification of in vivo MRS spectra of brain were demonstrated. The dramatically enhanced computational efficiency makes accurate simulation of localized MRS spectra highly accessible for calculating basis sets for spectral quantification and for optimizing pulse sequences. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. Diffusion tensor cardiovascular magnetic resonance with a spiral trajectory: An in vivo comparison of echo planar and spiral stimulated echo sequences.

    Science.gov (United States)

    Gorodezky, Margarita; Scott, Andrew D; Ferreira, Pedro F; Nielles-Vallespin, Sonia; Pennell, Dudley J; Firmin, David N

    2017-12-19

    Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique. A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo. There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNR EPI  = 8.0 ± 2.2, SNR spiral  = 12.0 ± 2.7; diastasis: SNR EPI  = 8.1 ± 1.6, SNR spiral  = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAG EPI  = -0.79 ± 0.07 °/%; HAG spiral  = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAG EPI  = -0.63 ± 0.05 °/%; HAG spiral  = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MD EPI  = 0.99 ± 0.06 × 10 -3 mm 2 /s, MD spiral  = 1.00 ± 0.09 × 10 -3 mm 2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2A EPI  = 61 ± 10 °; E2A spiral  = 63 ± 10 °; P = 0.77; diastasis: E2A EPI  = 18 ± 11 °; E2A spiral  = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FA EPI  = 0.49 ± 0.03, FA spiral  = 0.41 ± 0.04; P parameters were largely similar between the two sequences. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in

  20. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    Science.gov (United States)

    Pamuk, Uluç; Karakuzu, Agah; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2016-10-01

    Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess muscle fiber direction local tissue deformations within the human medial gastrocnemius (GM) muscle. Healthy female subjects (n=5, age=27±1 years) were positioned prone within the MR scanner in a relaxed state with the ankle angle fixed at 90°. The knee was brought to flexion (140.8±3.0°) (undeformed state). Sets of 3D high resolution MR, and DT images were acquired. This protocol was repeated at extended knee joint position (177.0±1.0°) (deformed state). Tractography and Demons nonrigid registration algorithm was utilized to calculate local deformations along muscle fascicles. Undeformed state images were also transformed by a synthetic rigid body motion to calculate strain errors. Mean strain errors were significantly smaller then mean fiber direction strains (lengthening: 0.2±0.1% vs. 8.7±8.5%; shortening: 3.3±0.9% vs. 7.5±4.6%). Shortening and lengthening (up to 23.3% and 116.7%, respectively) occurs simultaneously along individual fascicles despite imposed GM lengthening. Along-fiber shear strains confirm the presence of much shearing between fascicles. Mean fiber direction strains of different tracts also show non-uniform distribution. Inhomogeneity of fiber strain indicates epimuscular myofascial force transmission. We conclude that MR and DT imaging analyses combined provide a powerful tool for quantifying deformation along human muscle fibers in vivo. This can help substantially achieving a better understanding of normal and pathological muscle function and mechanisms of treatment techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging.

    Science.gov (United States)

    Sardans, Jordi; Peñuelas, Josep; Lope-Piedrafita, Silvia

    2010-08-24

    Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (rhow) images and spin-spin relaxation time (T2) maps. Rhow images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.

  2. Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo.

    Science.gov (United States)

    Carey, Robert E; Zheng, Liying; Aiyangar, Ameet K; Harner, Christopher D; Zhang, Xudong

    2014-04-01

    In this paper, we present a new methodology for subject-specific finite element modeling of the tibiofemoral joint based on in vivo computed tomography (CT), magnetic resonance imaging (MRI), and dynamic stereo-radiography (DSX) data. We implemented and compared two techniques to incorporate in vivo skeletal kinematics as boundary conditions: one used MRI-measured tibiofemoral kinematics in a nonweight-bearing supine position and allowed five degrees of freedom (excluding flexion-extension) at the joint in response to an axially applied force; the other used DSX-measured tibiofemoral kinematics in a weight-bearing standing position and permitted only axial translation in response to the same force. Verification and comparison of the model predictions employed data from a meniscus transplantation study subject with a meniscectomized and an intact knee. The model-predicted cartilage-cartilage contact areas were examined against "benchmarks" from a novel in situ contact area analysis (ISCAA) in which the intersection volume between nondeformed femoral and tibial cartilage was characterized to determine the contact. The results showed that the DSX-based model predicted contact areas in close alignment with the benchmarks, and outperformed the MRI-based model: the contact centroid predicted by the former was on average 85% closer to the benchmark location. The DSX-based FE model predictions also indicated that the (lateral) meniscectomy increased the contact area in the lateral compartment and increased the maximum contact pressure and maximum compressive stress in both compartments. We discuss the importance of accurate, task-specific skeletal kinematics in subject-specific FE modeling, along with the effects of simplifying assumptions and limitations.

  3. In vivo mitochondrial function in HIV-infected persons treated with contemporary anti-retroviral therapy: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Brendan A I Payne

    Full Text Available Modern anti-retroviral therapy is highly effective at suppressing viral replication and restoring immune function in HIV-infected persons. However, such individuals show reduced physiological performance and increased frailty compared with age-matched uninfected persons. Contemporary anti-retroviral therapy is thought to be largely free from neuromuscular complications, whereas several anti-retroviral drugs previously in common usage have been associated with mitochondrial toxicity. It has recently been established that patients with prior exposure to such drugs exhibit irreversible cellular and molecular mitochondrial defects. However the functional significance of such damage remains unknown. Here we use phosphorus magnetic resonance spectroscopy ((31P-MRS to measure in vivo muscle mitochondrial oxidative function, in patients treated with contemporary anti-retroviral therapy, and compare with biopsy findings (cytochrome c oxidase (COX histochemistry. We show that dynamic oxidative function (post-exertional ATP (adenosine triphosphate resynthesis was largely maintained in the face of mild to moderate COX defects (affecting up to ∼10% of fibers: τ½ ADP (half-life of adenosine diphosphate clearance, HIV-infected 22.1±9.9 s, HIV-uninfected 18.8±4.4 s, p = 0.09. In contrast, HIV-infected patients had a significant derangement of resting state ATP metabolism compared with controls: ADP/ATP ratio, HIV-infected 1.24±0.08×10(-3, HIV-uninfected 1.16±0.05×10(-3, p = 0.001. These observations are broadly reassuring in that they suggest that in vivo mitochondrial function in patients on contemporary anti-retroviral therapy is largely maintained at the whole organ level, despite histochemical (COX defects within individual cells. Basal energy requirements may nevertheless be increased.

  4. Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study

    Science.gov (United States)

    Sahara, Naruhiko; Perez, Pablo D.; Lin, Wen-Lang; Dickson, Dennis W.; Ren, Yan; Zeng, Huadong; Lewis, Jada; Febo, Marcelo

    2016-01-01

    Elevated expression of human hyperphosphorylated tau is associated with neuronal loss and white matter (WM) pathology in Alzheimer’s disease (AD) and related neurodegenerative disorders. Using in vivo diffusion tensor magnetic resonance imaging (DT-MRI) at 11.1 Tesla we measured age-related alterations in WM diffusion anisotropy indices in a mouse model of human tauopathy (rTg4510) and nontransgenic (nonTg) control mice at the age of 2.5, 4.5, and 8 months. Similar to previous DT-MRI studies in AD subjects, 8-month-old rTg4510 mice showed lower fractional anisotropy (FA) values in WM structures than nonTg. The low WM FA in rTg4510 mice was observed in the genu and splenium of the corpus callosum, anterior commissure, fimbria, and internal capsule and was associated with a higher radial diffusivity than nonTg. Interestingly, rTg4510 mice showed lower estimates for the mode of anisotropy than controls at 2.5 months suggesting that changes in this diffusivity metric are detectable at an early stage preceding severe tauopathy. Immunogold electron microscopy partly supports our diffusion tensor imaging findings. At the age of 4 months, rTg4510 mice show axonal tau inclusions and unmyelinated processes. At later ages (12 months and 14 months) we observed inclusions in myelin sheath, axons, and unmyelinated processes, and a “disorganized” pattern of myelinated fiber arrangement with enlarged inter-axonal spaces in rTg4510 but not in nonTg mice. Our data support a role for the progression of tau pathology in reduced WM integrity measured by DT-MRI. Further in vivo DT-MRI studies in the rTg4510 mouse should help better discern the detailed mechanisms of reduced FA and anisotropy mode, and the specific role of tau during neurodegeneration. PMID:24411290

  5. Folate conjugated Mn{sub 3}O{sub 4}@SiO{sub 2} nanoparticles for targeted magnetic resonance imaging in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xinyi [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhou, Zhiguo, E-mail: zgzhou@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Wang, Li; Tang, Caizhi; Yang, Hong [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Yang, Shiping, E-mail: shipingy@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); The Education Ministry Key Lab of Pesticide and Chemical Biology, South China Agricultural University, Guangzhou 510641 (China)

    2014-09-15

    Graphical abstract: The Mn{sub 3}O{sub 4}@SiO{sub 2}(PEG)–FA has been used as a T{sub 1}-MRI probe for in vivo. - Highlights: • The PEG and FA modified Mn{sub 3}O{sub 4}@SiO{sub 2} nanoparticles (Mn{sub 3}O{sub 4}@SiO{sub 2}–FA) were prepared. • Mn{sub 3}O{sub 4}@SiO{sub 2}–FA exhibited the good colloidal stability in the simulated biological medium. • Mn{sub 3}O{sub 4}@SiO{sub 2}–FA showed the targeting ability to HeLa cells overexpressed the FA receptor. • The T{sub 1}-weighted magnetic resonance (MR) imaging demonstrated the targeting ability of Mn{sub 3}O{sub 4}@SiO{sub 2}–FA in vivo tumor. - Abstract: The monodisperse silica-coated manganese oxide nanoparticles (Mn{sub 3}O{sub 4}@SiO{sub 2} NPs) were synthesized via the high temperature pyrolysis approach and were aminated through silanization. The amine-functionalized Mn{sub 3}O{sub 4} NPs enabled the covalent conjugation of hydrophilic methoxypoly(ethylene glycol) (PEG) and the targeting ligand of folate (FA) onto their surface. The formed PEG and FA modified Mn{sub 3}O{sub 4} NPs (Mn{sub 3}O{sub 4}@SiO{sub 2}(PEG)–FA) exhibited the good colloidal stability in the simulated biological medium and the targeting ability to HeLa cells overexpressed the FA receptor. The T{sub 1}-weighted magnetic resonance (MR) imaging and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Mn{sub 3}O{sub 4}@SiO{sub 2}(PEG)–FA NPs further demonstrated their targeting ability in tumor.

  6. In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience.

    Science.gov (United States)

    Chmelik, Marek; Považan, Michal; Krššák, Martin; Gruber, Stephan; Tkačov, Martin; Trattnig, Siegfried; Bogner, Wolfgang

    2014-04-01

    Phosphorus ((31) P) MRS is a powerful tool for the non-invasive investigation of human liver metabolism. Four in vivo (31) P localization approaches (single voxel image selected in vivo spectroscopy (3D-ISIS), slab selective 1D-ISIS, 2D chemical shift imaging (CSI), and 3D-CSI) with different voxel volumes and acquisition times were demonstrated in nine healthy volunteers. Localization techniques provided comparable signal-to-noise ratios normalized for voxel volume and acquisition time differences, Cramer-Rao lower bounds (8.7 ± 3.3%1D-ISIS , 7.6 ± 2.5%3D-ISIS , 8.6 ± 4.2%2D-CSI , 10.3 ± 2.7%3D-CSI ), and linewidths (50 ± 24 Hz1D-ISIS , 34 ± 10 Hz3D-ISIS , 33 ± 10 Hz2D-CSI , 34 ± 11 Hz3D-CSI ). Longitudinal (T1 ) relaxation times of human liver metabolites at 7 T were assessed by 1D-ISIS inversion recovery in the same volunteers (n = 9). T1 relaxation times of hepatic (31) P metabolites at 7 T were the following: phosphorylethanolamine - 4.41 ± 1.55 s; phosphorylcholine - 3.74 ± 1.31 s; inorganic phosphate - 0.70 ± 0.33 s; glycerol 3-phosphorylethanolamine - 6.19 ± 0.91 s; glycerol 3-phosphorylcholine - 5.94 ± 0.73 s; γ-adenosine triphosphate (ATP) - 0.50 ± 0.08 s; α-ATP - 0.46 ± 0.07 s; β-ATP - 0.56 ± 0.07 s. The improved spectral resolution at 7 T enabled separation of resonances in the phosphomonoester and phosphodiester spectral region as well as nicotinamide adenine dinucleotide and uridine diphosphoglucose signals. An additional resonance at 2.06 ppm previously assigned to phosphoenolpyruvate or phosphatidylcholine is also detectable. These are the first (31) P metabolite relaxation time measurements at 7 T in human liver, and they will help in the exploration of new, exciting questions in metabolic research with 7 T MR. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results

    DEFF Research Database (Denmark)

    Thomsen, C

    1996-01-01

    This project was initiated with the introduction of magnetic resonance (MR) in Denmark in order to evaluate the possibilities of this technique as a diagnostic aid in non-focal liver and splenic diseases. The signal intensities in the MR image are sensitive to the longitudinal relaxation (T1), th...... contribute to the diagnosis of non-focal liver diseases by estimation of liver fat and liver iron and by assessment of portal vein blood flow. Increased T1 relaxation time is a sign of a disease process in the liver rather than specific for any liver disease......), the transverse relaxation (T2), flow and chemical shift. All these parameters may be quantified by developing specific pulse sequences sensitive to the parameter in question. Previous studies had indicated that relaxation time measurements might be of value in the diagnosis of liver cirrhosis...... be quantified either by using the fast component of the T2 signal decay or by using the decreased signal in spin-echo and gradient echo images. Patients with leukemias and myeloproliferative disorders had prolonged T1 relaxation times in the spleen, but a considerable overlap was found between this group...

  8. Retinal metabolic changes in an experimental model of optic nerve transection by ex vivo 1H magnetic resonance spectroscopy.

    Science.gov (United States)

    Li, Shuang; Huang, Mingming; Wang, Xinghua; Wang, Xuxia; Chen, Fei; Lei, Hao; Jiang, Fagang

    2011-12-01

    This study aims to investigate the retinal metabolic processes in a rat axotomy model. Retinal metabolic changes in optic nerve transection (ONT) rat model were analyzed by (1)H magnetic resonance spectroscopy ((1)H-MRS). Retinal ganglion cells (RGCs) densities were assessed from retinal whole mounts. The retina was stained immunohistochemically with glial fibrillary acidic protein (GFAP). The results showed that the retina in ONT rats had significantly decreased concentrations of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA), taurine (Tau), creatine (Cr) and increased concentrations of alanine (Ala) compared with control. Examination of glutamate (Glu), glutamine (Gln) and Glx (Glu + Gln) concentrations disclosed no significant differences. The mean density of RGCs reduced from 2,249 ± 87 cells/mm(2) in control group to 320 ± 56 cells/mm(2) in ONT group. GFAP immunoreactivity was markedly higher in ONT group than that in control group. The retinal metabolism after ONT was associated with neurotransmitter recycling/production perturbation, as well as other metabolic disequilibrium.

  9. 13C-engineered carbon quantum dots for in vivo magnetic resonance and fluorescence dual-response.

    Science.gov (United States)

    Xu, Yang; Li, Yu-Hao; Wang, Yue; Cui, Jian-Lin; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2014-10-21

    (13)C-engineered carbon quantum dots ((13)C-QDs) were used as magnetic resonance (MR) and fluorescence dual-response probe. The enhanced (13)C-MR signal was observed at 171 ppm from carboxylic and carboxyl carbons in (13)C-QDs with 160-fold improvement on signal-to-noise ratio even when no hyperpolarization was applied, whereas the intrinsic fluorescence of C-QDs was still maintained. The stable MR and fluorescence dual-response was successfully used for long-term observation of zebrafish embryonic development. Cross-validation between MR and fluorescence confirmed the distribution of (13)C-QD in zebrafish. (13)C-MR provides specific information about the presence, magnitude, and progression of (13)C-QDs by defining MR intensity, whereas fluorescence reveals the location of (13)C-QDs with its high sensitivity. (13)C-MR and fluorescence was simultaneously observed within (13)C-QDs, and this work may expand the applications of isotope-engineered nanomaterials.

  10. Direct visualization of Parkinson's disease by in vivo human brain imaging using 7.0T magnetic resonance imaging.

    Science.gov (United States)

    Cho, Zang-Hee; Oh, Se-Hong; Kim, Jong-Min; Park, Sung-Yeon; Kwon, Dae-Hyuk; Jeong, Hye-Jin; Kim, Young-Bo; Chi, Je-Geun; Park, Chan-Woong; Huston, John; Lee, Kendall H; Jeon, Beom S

    2011-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder resulting from progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. Therefore, imaging of the SN has been regarded to hold greatest potential for use in the diagnosis of PD. At the 7.0T magnetic resonance imaging (MRI), it is now possible to delineate clearly the shapes and boundaries of the SN. We scanned eight early and two advanced PD patients, along with nine age-matched control subjects, using a 7.0T MRI in an attempt to directly visualize the SN and quantify the differences in shape and boundaries of SN between PD subjects in comparison with the normal control subjects. In the normal controls, the boundaries between the SN and crus cerebri appear smooth, and clean "arch" shapes that stretch ventrally from posterior to anterior. In contrast, these smooth and clean arch-like boundaries were lost in PD subjects. The measured correlation analyses show that, in PD patients, there is age-dependent correlation and substantially stronger UPDRS motor score-dependent correlation. These results suggest that, by using 7.0T MRI, it appears possible to use these visible and distinctive changes in morphology as a diagnostic marker of PD. Copyright © 2011 Movement Disorder Society.

  11. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders.

    Science.gov (United States)

    Xu, Haiyun; Zhang, Handi; Zhang, Jie; Huang, Qingjun; Shen, Zhiwei; Wu, Renhua

    2016-12-01

    Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Synthesis and biodistribution of novel magnetic-poly(HEMA-APH) nanopolymer radiolabeled with iodine-131 and investigation its fate in vivo for cancer therapy

    Science.gov (United States)

    Avcıbaşı, Uğur; Avcıbaşı, Nesibe; Akalın, Hilmi Arkut; Ediz, Melis; Demiroğlu, Hasan; Gümüşer, Fikriye Gül; Özçalışkan, Emir; Türkcan, Ceren; Uygun, Deniz Aktaş; Akgöl, Sinan

    2013-10-01

    Herein, we investigated the biological uptake, distribution, and radiopharmaceutical potential of a novel molecule based on 2-hydroxyethyl methacrylate (HEMA) and anilinephtalein (APH) in the metabolism of Albino Wistar rats. In order to achieve this, we synthesized APH using organic synthesis methods and copolymerized APH with HEMA using a common polymerization method, surfactant-free emulsion polymerization. In the presence of Fe3O4 particles, we obtained a new generation magnetic-nano-scale polymer, magnetic-poly(HEMA-APH). This new molecule was chemically identified and approved by several characterization methods using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, electron spin resonance, atomic force microscope, and Zeta particle-size analysis. To evaluate the biological activity in live metabolism and anti-cancer potential of mag-poly(HEMA-APH), molecule was radioiodinated by a widely used labeling technique, iodogen method, with a gamma diffuser radionuclide, 131I. Thin-layer radiochromatography experiments demonstrated that 131I binded to nanopolymer with the labeling yield of 90 %. Lipophilicity and stability experiments were conducted to determine the condition of cold and labeled mag-poly(HEMA-APH) in rat blood and lipid medium. Results demonstrated that radioiodinated molecule stayed as an intact complex in rat metabolism for 24 h and experimental lipophilicity was determined as 0.12 ± 0.02. In vivo results obtained by imaging and biological distribution experiments indicated that mag-poly(HEMA-APH) labeled with 131I [131I-mag-poly(HEMA-APH)] highly incorporated into tissues of the uterus, the ovarian, the prostate, and the lungs in rat metabolism. Based on these results, it may be evaluated that novel mag-poly(HEMA-APH) molecule labeled with 131I is a compound which has a significant potential for being used as an anti-cancer agent. Certain results can only be obtained whether this

  13. Down syndrome with and without dementia: an in vivo proton Magnetic Resonance Spectroscopy study with implications for Alzheimer's disease.

    Science.gov (United States)

    Lamar, Melissa; Foy, Catherine M L; Beacher, Felix; Daly, Eileen; Poppe, Michaela; Archer, Nicola; Prasher, Vee; Murphy, Kieran C; Morris, Robin G; Simmons, Andrew; Lovestone, Simon; Murphy, Declan G M

    2011-07-01

    It is poorly understood why people with Down syndrome (DS) are at extremely high-risk of developing Alzheimer's disease (AD) compared to the general population. One explanation may be related to their extra copy of risk factors modulated by chromosome 21. Myo-inositol (mI), whose transporter gene is located on chromosome 21, has been associated with dementia in the non-DS population; however, nobody has contrasted brain mI in DS with (DS+) and without (DS-) dementia to other non-DS groups. Our primary aim was to compare the hippocampal concentration of mI ([mI]) and other brain metabolites such as N-acetylaspartate (NAA; a proxy measure of neuronal density and mitochondrial function) in DS+, DS-, and age-matched healthy controls using proton Magnetic Resonance Spectroscopy (((1))H-MRS). We compared hippocampal [mI] and other metabolites in 35 individuals with genetically-confirmed DS [DS+ (n=17, age=53±6) and DS- (n=18, age=47±8)] to age-matched healthy controls (n=13, age=51±10) adjusting for proportion of the MRS voxel occupied by cerebrospinal spinal fluid, and gray/white matter. DS+ had a significantly higher [mI] than both DS- and healthy controls. In contrast neither DS+ nor DS- differed significantly from controls in [NAA] (although NAA in DS+ was significantly lower than DS-). Our secondary aim of comparing brain metabolites in DS+ and DS- to Alzheimer's disease (AD; n=39; age=77±5) revealed that the DS+ group had significantly elevated [mI] compared to AD or DS-. [mI] may modify risk for dementia in this vulnerable population. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging.

    Directory of Open Access Journals (Sweden)

    Gen Yan

    Full Text Available We developed a novel magnetic resonance imaging (MRI technique based on chemical exchange saturation transfer (CEST for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood-brain barrier (BBB disruption.All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0 and other metabolites (glutamine, myoinositol, creatinine, and choline were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution.The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz. The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection.The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA.

  15. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  16. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  18. Non-invasive tracking of human haemopoietic CD34{sup +} stem cells in vivo in immunodeficient mice by using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Markus; Jacobs, Volker R.; Timmer, Sebastian; Kiechle, Marion [Technische Universitaet Muenchen, Department of Gynaecology, Klinikum rechts der Isar, Munich (Germany); Oostendorp, Robert A.J.; Hippauf, Sandra; Bekker-Ruz, Viktoria [Technische Universitaet Muenchen, Department of Oncology, Klinikum rechts der Isar, Munich (Germany); Kremer, Markus [Technische Universitaet Muenchen, Department of Pathology, Klinikum rechts der Isar, Munich (Germany); Baurecht, Hansjoerg [Technische Universitaet Muenchen, Department of Statistics, Klinikum rechts der Isar, Institute for Medical Statistics and Epidemiology, Munich (Germany); Ludwig, Georg; Rummeny, Ernst J. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido [Technische Universitaet Muenchen, Department of Neuropathology, Munich (Germany); Beer, Ambros J. [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany)

    2010-09-15

    To assess migration of CD34{sup +} human stem cells to the bone marrow of athymic mice by using magnetic resonance (MR) imaging and Resovist, a contrast agent containing superparamagnetic iron oxide (SPIO) particles. All animal and human procedures were approved by our institution's ethics committee, and women had given consent to donate umbilical cord blood (UCB). Balb/c-AnN Foxn1{sup nu}/Crl mice received intravenous injection of 1 x 10{sup 6} (n = 3), 5 x 10{sup 6} (n = 3) or 1 x 10{sup 7} (n = 3) human Resovist-labelled CD34{sup +} cells; control mice received Resovist (n = 3). MR imaging was performed before, 2 and 24 h after transplantation. Signal intensities of liver, muscle and bone marrow were measured and analysed by ANOVA and post hoc Student's t tests. MR imaging data were verified by histological and immunological detection of both human cell surface markers and carboxydextran-coating of the contrast agent. CD34{sup +} cells were efficiently labelled by Resovist without impairment of functionality. Twenty-four hours after administration of labelled cells, MR imaging revealed a significant signal decline in the bone marrow, and histological and immunological analyses confirmed the presence of transplanted human CD34{sup +} cells. Intravenously administered Resovist-labelled CD34{sup +} cells home to bone marrow of mice. Homing can be tracked in vivo by using clinical 1.5-T MR imaging technology. (orig.)

  19. Glioma morphology and tumor-induced vascular alterations revealed in 7 rodent glioma models by in vivo magnetic resonance imaging and angiography

    Science.gov (United States)

    Doblas, Sabrina; He, Ting; Saunders, Debbie; Pearson, Jamie; Hoyle, Jessica; Smith, Nataliya; Lerner, Megan; Towner, Rheal A.

    2010-01-01

    Purpose To evaluate the added value of non-contrast-enhanced magnetic resonance angiography (MRA) to conventional MR imaging for a detailed characterization of different rodent glioma models. Materials and Methods Intracerebral tumor cell implantation and chemical induction methods were implemented to obtain rat C6, 9L/LacZ, F98, RG2 and ENU-induced glioma models, a human U87 MG tumor model as well as a mouse GL261 glioma model. MR assessments were regularly conducted on a 7 Tesla Bruker BioSpin system. The tumor border sharpness and growth characteristics of each glioma model were assessed from T2-weighted images. Neovascularization and vascular alterations inherent to each model were characterized by assessing absolute blood volumes, vessel density, length and diameter using Mathematica and Amira software. Results 9L/LacZ and ENU gliomas both presented flaws that hinder their use as reliable brain tumor models. C6 gliomas were slightly invasive and induced moderate vascular alterations, whereas GL261 tumors dramatically altered the brain vessels in the glioma region. F98, RG2 and U87 are infiltrative models which produced dramatic vascular alterations. Conclusion MRI and MRA provided crucial in vivo information to identify a distinctive “fingerprint” for each of our 7 rodent glioma models. PMID:20677250

  20. Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome.

    Science.gov (United States)

    Murphy, Clodagh M; Deeley, Q; Daly, E M; Ecker, C; O'Brien, F M; Hallahan, B; Loth, E; Toal, F; Reed, S; Hales, S; Robertson, D M; Craig, M C; Mullins, D; Barker, G J; Lavender, T; Johnston, P; Murphy, K C; Murphy, D G

    2012-02-01

    It has been proposed that people with autism spectrum disorder (ASD) have abnormal morphometry and development of the amygdala and hippocampus (AH). However, previous reports are inconsistent, perhaps because they included people of different ASD diagnoses, ages, and health. We compared, using magnetic resonance imaging, the in vivo anatomy of the AH in 32 healthy individuals with Asperger syndrome (12-47 years) and 32 healthy controls who did not differ significantly in age or IQ. We measured bulk (gray + white matter) volume of the AH using manual tracing (MEASURE). We first compared the volume of AH between individuals with Asperger syndrome and controls and then investigated age-related differences. We compared differences in anatomy before, and after, correcting for whole brain size. There was no significant between group differences in whole brain volume. However, individuals with Asperger syndrome had a significantly larger raw bulk volume of total (PAsperger syndrome, had a significant age-related increase in volume (r = 0.486, PAsperger syndrome have significant differences from controls in bulk volume and aging of the amygdala. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.

  1. Melanin-manganese nanoparticles with ultrahigh efficient clearance in vivo for tumor-targeting T1magnetic resonance imaging contrast agent.

    Science.gov (United States)

    Xu, Wen; Sun, Jinghua; Li, Liping; Peng, Xiaoyang; Zhang, Ruiping; Wang, Binquan

    2017-12-19

    Endogenous biomaterials in organisms, with native biocompatibility and biodegradability, appear more advantageous in the development of nanoscale diagnostic and therapeutic systems for future clinical translation. Herein, a novel tumor-targeting Magnetic Resonance Imaging (MRI) contrast agent was developed based on Mn 2+ -chelating ultrasmall water-soluble melanin nanoparticles (MNP-PEG-Mn). The nanoparticles, with a size of about 5.6 nm, presented high chelation stability and showed negligible cytotoxicity as estimated by MTT assay. Moreover, the r 1 longitudinal relaxivity (20.56 mM -1 s -1 ) of MNP-PEG-Mn was much higher than that of Gadodiamide (6.00 mM -1 s -1 ), which is a clinically approved MRI contrast agent. In vivo MRI experiments revealed excellent tumor-targeting specificity after tumor-bearing mice were intravenously injected with MNP-PEG-Mn. Additionally, MNP-PEG-Mn could be excreted via renal and hepatobiliary pathways with negligible toxicity to body tissues. These preliminary results indicated the clinically translatable potential of MNP-PEG-Mn as a T 1 MRI contrast agent for tumor-targeted imaging.

  2. Non-invasive tracking of human haemopoietic CD34(+) stem cells in vivo in immunodeficient mice by using magnetic resonance imaging.

    Science.gov (United States)

    Niemeyer, Markus; Oostendorp, Robert A J; Kremer, Markus; Hippauf, Sandra; Jacobs, Volker R; Baurecht, Hansjörg; Ludwig, Georg; Piontek, Guido; Bekker-Ruz, Viktoria; Timmer, Sebastian; Rummeny, Ernst J; Kiechle, Marion; Beer, Ambros J

    2010-09-01

    To assess migration of CD34(+) human stem cells to the bone marrow of athymic mice by using magnetic resonance (MR) imaging and Resovist, a contrast agent containing superparamagnetic iron oxide (SPIO) particles. All animal and human procedures were approved by our institution's ethics committee, and women had given consent to donate umbilical cord blood (UCB). Balb/c-AnN Foxn1(nu)/Crl mice received intravenous injection of 1 x 10(6) (n=3), 5 x 10(6) (n=3) or 1 x 10(7) (n=3) human Resovist-labelled CD34(+) cells; control mice received Resovist (n=3). MR imaging was performed before, 2 and 24 h after transplantation. Signal intensities of liver, muscle and bone marrow were measured and analysed by ANOVA and post hoc Student's t tests. MR imaging data were verified by histological and immunological detection of both human cell surface markers and carboxydextrancoating of the contrast agent. CD34(+) cells were efficiently labelled by Resovist without impairment of functionality. Twenty-four hours after administration of labelled cells, MR imaging revealed a significant signal decline in the bone marrow, and histological and immunological analyses confirmed the presence of transplanted human CD34(+) cells. Intravenously administered Resovist-labelled CD34(+) cells home to bone marrow of mice. Homing can be tracked in vivo by using clinical 1.5-T MR imaging technology.

  3. Magnetically-actuated drug delivery device (MADDD) for minimally invasive treatment of prostate cancer: An in vivo animal pilot study.

    Science.gov (United States)

    Struss, Werner J; Tan, Zheng; Zachkani, Payam; Moskalev, Igor; Jackson, John K; Shademani, Ali; D'Costa, Ninadh M; Raven, Peter A; Frees, Sebastian; Chavez-Munoz, Claudia; Chiao, Mu; So, Alan I

    2017-05-01

    The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneously (SC) or intravenously (IV) and the fourth cohort was treated using the magnetically-actuated docetaxel delivery device (MADDD), dispensing 1.5 μg of docetaxel per 30 min treatment session. Treatment in all three therapeutic arms (SC, IV, and MADDD) was administered once weekly for 6 weeks. Treatment efficacy was measured once a week according to tumor volume using ultrasound. In addition, calipers were used to assess tumor volume. Animals implanted with the device demonstrated no signs of distress or discomfort, neither local nor systemic symptoms of inflammation and infection. Using an independent sample t-test, the tumor growth rate of the treated tumors was significant when compared to the control. Post hoc Tukey HSD test results showed that the mean tumor growth rate of our device cohort was significantly lower than SC and control cohorts. Moreover, IV cohort showed slight reduction in mean tumor growth rates than the ones from the device cohort, however, there was no statistical significance in tumor growth rate between these two cohorts. Furthermore, immunohistochemistry demonstrated an increased cellular apoptosis in the MADDD treated tumors and a decreased proliferation when compared to the other cohorts. In addition, IV cohort showed increased treatment side effects (weight

  4. Synthesis and biodistribution of novel magnetic-poly(HEMA-APH) nanopolymer radiolabeled with iodine-131 and investigation its fate in vivo for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Avc Latin-Small-Letter-Dotless-I bas Latin-Small-Letter-Dotless-I , Ugur, E-mail: uguravcibasi@yahoo.com [Celal Bayar University, Department of Chemistry, Faculty of Arts and Science (Turkey); Avc Latin-Small-Letter-Dotless-I bas Latin-Small-Letter-Dotless-I , Nesibe [Ege University, Ege Higher Vocational School (Turkey); Akal Latin-Small-Letter-Dotless-I n, Hilmi Arkut; Ediz, Melis; Demiroglu, Hasan [Celal Bayar University, Department of Chemistry, Faculty of Arts and Science (Turkey); Guemueser, Fikriye Guel [Celal Bayar University, Department of Nuclear Medicine, Faculty of Medicine (Turkey); Oezcal Latin-Small-Letter-Dotless-I skan, Emir; Tuerkcan, Ceren [Ege University, Department of Biochemistry, Faculty of Science (Turkey); Uygun, Deniz Aktas [Adnan Menderes University, Department of Chemistry, Faculty of Arts and Science (Turkey); Akgoel, Sinan [Ege University, Department of Biochemistry, Faculty of Science (Turkey)

    2013-10-15

    Herein, we investigated the biological uptake, distribution, and radiopharmaceutical potential of a novel molecule based on 2-hydroxyethyl methacrylate (HEMA) and anilinephtalein (APH) in the metabolism of Albino Wistar rats. In order to achieve this, we synthesized APH using organic synthesis methods and copolymerized APH with HEMA using a common polymerization method, surfactant-free emulsion polymerization. In the presence of Fe{sub 3}O{sub 4} particles, we obtained a new generation magnetic-nano-scale polymer, magnetic-poly(HEMA-APH). This new molecule was chemically identified and approved by several characterization methods using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, electron spin resonance, atomic force microscope, and Zeta particle-size analysis. To evaluate the biological activity in live metabolism and anti-cancer potential of mag-poly(HEMA-APH), molecule was radioiodinated by a widely used labeling technique, iodogen method, with a gamma diffuser radionuclide, {sup 131}I. Thin-layer radiochromatography experiments demonstrated that {sup 131}I binded to nanopolymer with the labeling yield of 90 %. Lipophilicity and stability experiments were conducted to determine the condition of cold and labeled mag-poly(HEMA-APH) in rat blood and lipid medium. Results demonstrated that radioiodinated molecule stayed as an intact complex in rat metabolism for 24 h and experimental lipophilicity was determined as 0.12 {+-} 0.02. In vivo results obtained by imaging and biological distribution experiments indicated that mag-poly(HEMA-APH) labeled with {sup 131}I [{sup 131}I-mag-poly(HEMA-APH)] highly incorporated into tissues of the uterus, the ovarian, the prostate, and the lungs in rat metabolism. Based on these results, it may be evaluated that novel mag-poly(HEMA-APH) molecule labeled with {sup 131}I is a compound which has a significant potential for being used as an anti-cancer agent. Certain

  5. In-vivo metabolic characterization of healthy prostate and orthotopic prostate cancer in rats using proton magnetic resonance spectroscopy at 4.7 T.

    Science.gov (United States)

    Walker, Paul; Provent, Peggy; Tizon, Xavier; Créhange, Gilles; Duchamp, Olivier; Brunotte, François; Genne, Philippe

    2013-02-01

    To assist the development of new anti-cancer drugs, it is important to identify biomarkers of treatment efficacy in the preclinical phases of drug development. In order to improve the predictivity of preclinical experiments, more realistic animal models are needed, for example, tumors xenografted directly on the prostate gland of rodents. To characterize the in-vivo metabolism of healthy rat prostate and of an orthotopic human prostate cancer model using proton magnetic resonance spectroscopy (MRS). The highly metastatic and hormone-independent PC3-MM2 human prostate cancer model was implanted into the ventral prostate lobe of three Nude rats. Healthy Nude (n = 6) and Sprague-Dawley (n = 6) rats were also studied for interspecies comparison of normal prostate metabolism. Magnetic resonance imaging and short echo-time (TE 11.2 ms) single voxel PRESS spectroscopy were performed on dorsal (DP) and ventral (VP) prostate as well as tumor at 4.7 T. The metabolic content and volume of dorsal and ventral lobes were characterized as a function of species and age. Slightly lower total creatine (tCr)/water (11.3 ± 2.6 vs. 15.3 ± 3.0, NS), but significantly higher Inositol (Ins)/water (18.9 ± 1.9 vs. 6.6 ± 3.3, P < 0.003) and total choline (tCho)/water (15.0 ± 2.1 vs. 5.6 ± 1.1, P < 0.00007) were observed within healthy DP lobes with respect to VP lobes. No significant variation in metabolic content was seen in healthy DP and VP lobes of Nude rats as a function of age, and no species dependence was observed in their metabolic content. For the orthotopic PC3-MM2 tumor, implanted in VP, the tCr/water ratio was significantly lower (3.1 ± 0.9) than neighboring DP (12.8 ± 1.8, P < 0.00003) and healthy VP (15.3 ± 3.0, P < 0.00006). For Ins, the metabolite ratio in PC3-MM2 was close to that of healthy VP (4.3 ± 2.8 vs. 6.6 ± 3.3, p = NS), but much lower than in neighboring DP (19.1 ± 1.3, P < 0.00005). A similar trend was also observed for tCho, where metabolite ratios in

  6. Functionalized superparamagnetic iron oxide nanoparticles provide highly efficient iron-labeling in macrophages for magnetic resonance-based detection in vivo.

    Science.gov (United States)

    Sharkey, Jack; Starkey Lewis, Philip J; Barrow, Michael; Alwahsh, Salamah M; Noble, June; Livingstone, Eilidh; Lennen, Ross J; Jansen, Maurits A; Carrion, Jaime Garcia; Liptrott, Neill; Forbes, Shareen; Adams, Dave J; Chadwick, Amy E; Forbes, Stuart J; Murray, Patricia; Rosseinsky, Matthew J; Goldring, Christopher E; Park, B Kevin

    2017-04-01

    Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Investigation of lithium distribution in the rat brain ex vivo using lithium-7 magnetic resonance spectroscopy and imaging at 17.2 T.

    Science.gov (United States)

    Stout, Jacques; Hanak, Anne-Sophie; Chevillard, Lucie; Djemaï, Boucif; Risède, Patricia; Giacomini, Eric; Poupon, Joël; Barrière, David André; Bellivier, Frank; Mégarbane, Bruno; Boumezbeur, Fawzi

    2017-11-01

    Lithium is the first-line mood stabilizer for the treatment of patients with bipolar disorder. However, its mechanisms of action and transport across the blood-brain barrier remain poorly understood. The contribution of lithium-7 magnetic resonance imaging (7 Li MRI) to investigate brain lithium distribution remains limited because of the modest sensitivity of the lithium nucleus and the expected low brain concentrations in humans and animal models. Therefore, we decided to image lithium distribution in the rat brain ex vivo using a turbo-spin-echo imaging sequence at 17.2 T. The estimation of lithium concentrations was performed using a phantom replacement approach accounting for B1 inhomogeneities and differential T1 and T2 weighting. Our MRI-derived lithium concentrations were validated by comparison with inductively coupled plasma-mass spectrometry (ICP-MS) measurements ([Li]MRI  = 1.18[Li]MS , R = 0.95). Overall, a sensitivity of 0.03 mmol/L was achieved for a spatial resolution of 16 μL. Lithium distribution was uneven throughout the brain (normalized lithium content ranged from 0.4 to 1.4) and was mostly symmetrical, with consistently lower concentrations in the metencephalon (cerebellum and brainstem) and higher concentrations in the cortex. Interestingly, low lithium concentrations were also observed close to the lateral ventricles. The average brain-to-plasma lithium ratio was 0.34 ± 0.04, ranging from 0.29 to 0.39. Brain lithium concentrations were reasonably correlated with plasma lithium concentrations, with Pearson correlation factors ranging from 0.63 to 0.90. Copyright © 2017 John Wiley & Sons, Ltd.

  8. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents.

    Science.gov (United States)

    Lutz, Jean-François; Stiller, Sabrina; Hoth, Ann; Kaufner, Lutz; Pison, Ulrich; Cartier, Régis

    2006-11-01

    A well-defined copolymer poly(oligo(ethylene glycol) methacrylate-co-methacrylic acid) P(OEGMA-co-MAA) was studied as a novel water-soluble biocompatible coating for superparamagnetic iron oxide nanoparticles. This copolymer was prepared via a two-step procedure: a well-defined precursor poly(oligo(ethylene glycol) methacrylate-co-tert-butyl methacrylate), P(OEGMA-co-tBMA) (M(n) = 17300 g mol(-1); M(w)/M(n) = 1.22), was first synthesized by atom-transfer radical polymerization in the presence of the catalyst system copper(I) chloride/2,2'-bipyridyl and subsequently selectively hydrolyzed in acidic conditions. The resulting P(OEGMA-co-MAA) was directly utilized as a polymeric stabilizer in the nanoparticle synthesis. Four batches of ultrasmall PEGylated magnetite nanoparticles (i.e., with an average diameter below 30 nm) were prepared via aqueous coprecipitation of iron salts in the presence of variable amounts of P(OEGMA-co-MAA). The diameter of the nanoparticles could be easily tuned in the range 10-25 nm by varying the initial copolymer concentration. Moreover, the formed PEGylated ferrofluids exhibited a long-term colloidal stability in physiological buffer and could therefore be studied in vivo by magnetic resonance (MR) imaging. Intravenous injection into rats showed no detectable signal in the liver within the first 2 h. Maximum liver accumulation was found after 6 h, suggesting a prolongated circulation of the nanoparticles in the bloodstream as compared to conventional MR imaging contrast agents.

  9. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    Science.gov (United States)

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁ measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂ was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴ T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.

  11. In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience.

    Science.gov (United States)

    Yoneyama, Taku; Sun, Jie; Hippe, Daniel S; Balu, Niranjan; Xu, Dongxiang; Kerwin, William S; Hatsukami, Thomas S; Yuan, Chun

    2016-01-01

    Automatic in vivo segmentation of multicontrast (multisequence) carotid magnetic resonance for plaque composition has been proposed as a substitute for manual review to save time and reduce inter-reader variability in large-scale or multicenter studies. Using serial images from a prospective longitudinal study, we sought to compare a semi-automatic approach versus expert human reading in analyzing carotid atherosclerosis progression. Baseline and 6-month follow-up multicontrast carotid images from 59 asymptomatic subjects with 16-79 % carotid stenosis were reviewed by both trained radiologists with 2-4 years of specialized experience in carotid plaque characterization with MRI and a previously reported automatic atherosclerotic plaque segmentation algorithm, referred to as morphology-enhanced probabilistic plaque segmentation (MEPPS). Agreement on measurements from individual time points, as well as on compositional changes, was assessed using the intraclass correlation coefficient (ICC). There was good agreement between manual and MEPPS reviews on individual time points for calcification (CA) (area: ICC; 0.85-0.91; volume: ICC; 0.92-0.95) and lipid-rich necrotic core (LRNC) (area: ICC; 0.78-0.82; volume: ICC; 0.84-0.86). For compositional changes, agreement was good for CA volume change (ICC; 0.78) and moderate for LRNC volume change (ICC; 0.49). Factors associated with LRNC progression as detected by MEPPS review included intraplaque hemorrhage (positive association) and reduction in low-density lipoprotein cholesterol (negative association), which were consistent with previous findings from manual review. Automatic classifier for plaque composition produced results similar to expert manual review in a prospective serial MRI study of carotid atherosclerosis progression. Such automatic classification tools may be beneficial in large-scale multicenter studies by reducing image analysis time and avoiding bias between human reviewers.

  12. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    Science.gov (United States)

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    Science.gov (United States)

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the

  14. A pharmacokinetic and pharmacodynamic study In vivo of human HT29 tumours using {sup 19}F and {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.R. [CRC Biomedical Magnetic Resonance Research Unit, Department of Cell and Molecular Sciences, St. George' s Hospital Medical School, Cranmer Terrace, London (United Kingdom); Judson, I.R. [CRC Centre for Cancer Therapeutics, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom); Leach, M.O. [CRC Clinical Magnetic Resonance Research Group, Institute of Cancer Research and Royal Marsden NHS Trust, Sutton, Surrey (United Kingdom); Rodrigues, L.M.; Ojugo, A.S.E. [CRC Biomedical Magnetic Resonance Research Unit, Department of Cell and Molecular Sciences, St. George' s Hospital Medical School, Cranmer Terrace, London (United Kingdom); Seymour, M.T. [University of Leeds, Cancer Medicine Research Unit, Cookridge Hospital, Leeds (United Kingdom); McSheehy, P.M.J. [CRC Biomedical Magnetic Resonance Research Unit, Department of Cell and Molecular Sciences, St. George' s Hospital Medical School, Cranmer Terrace, London (United Kingdom)

    1997-12-01

    {sup 19}F-MRS (magnetic resonance spectroscopy) was used to study the pharmacokinetics of 5-fluorouracil (5-FU) in human (HT29) tumour xenografts, with and without pretreatment of the mice using either thymidine (40 min) or interferon-{alpha} (2 and 24 h). A 200 mg/kg i.p. bolus dose of 5-FU was eliminated from control tumours with a t{sub 1/2} of 25.4 {+-} 2 min (mean {+-} SEM, n = 11), while both thymidine (500 mg/kg) and interferon (50 000 IU/mouse) significantly increased t{sub 1/2} to 36.5 {+-} 6.1 (n = 5) and 48.1 {+-} 13.6 min (n = 4), respectively (P = 0.04, Gabriel's ANOVA). Thymidine increased 5-FU anabolism to cytotoxic 5-fluoronucleotides, and decreased the amount of tumour catabolites; the latter probably recirculated from liver since isolated HT29 cells did not catabolise 5-FU. These in vivo observations were confirmed by {sup 19}F-MRS quantification of tumour extracts. Interferon did not significantly affect 5-FU metabolism in the tumour or liver, nor the 5-FU t{sub 1/2} in liver. Treatment of tumours with 5-FU or interferon had no effect on tumour growth, whereas the combination strongly inhibited growth. {sup 31}P-MRS of HT29 tumours showed that 2 and 24 h after i.p. injections of interferon there was a significant increase in the pH{sub int} of 0.3 {+-} 0.04 units (P = 0.002), while pH{sub ext} and the tumour NTP/Pi ratio were unchanged. The large increase in the negative pH gradient (-{delta} pH) across the tumour plasma membrane caused by interferon suggests the {delta} pH may be a factor in tumour retention of 5-FU, as recently shown in isolated tumour cells. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. IN VIVO

    Science.gov (United States)

    Jamila, Nargis; Khan, Naeem; Khan, Amir Atlas; Khan, Imran; Khan, Sadiq Noor; Zakaria, Zainal Amiruddin; Khairuddean, Melati; Osman, Hasnah; Kim, Kyong Su

    2017-01-01

    Garcinia hombroniana , known as "manggis hutan" (jungle mangosteen) in Malaysia, is distributed in tropical Asia, Borneo, Thailand, Andaman, Nicobar Islands, Vietnam and India. In Malaysia, its ripened crimson sour fruit rind is used as a seasoning agent in curries and culinary dishes. Its roots and leaves decoction is used against skin infections and after child birth. This study aimed to evaluate in vivo hepatoprotective and in vitro cytotoxic activities of 20% methanolic ethyl acetate (MEA) G. hombroniana bark extract. In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl 4 )/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl 4 . Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1 H, 13 C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract. In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (pIR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents. From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.

  16. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Sharma, Himanshu; Sharma, Divya S

    Children/adolescent's orodental structures are different in anatomy and physiology from that of adults, therefore require special attention for bleaching with oxidative materials. Hydroxyl radical (OH(.)) generation from bleaching agents has been considered directly related to both its clinical efficacy and hazardous effect on orodental structures. Nonetheless bleaching agents, indirectly releasing hydrogen peroxide (H2O2), are considered safer yet clinically efficient. Apart from OH(.), perhydroxyl radicals (HO2(.)) too, were detected in bleaching chemistry but not yet in dentistry. Therefore, the study aims to detect the OH(.) and HO2(.) from bleaching agents with their relative integral value (RIV) using (31)P nuclear magnetic resonance ((31)PNMR) spectroscope. Radicals were generated with UV light in 30% H2O2, 35% carbamide peroxide (CP), sodium perborate tetrahydrate (SPT) and; neutral and alkaline 30% H2O2. Radicals were spin-trapped with DIPPMPO in NMR tubes for each test agents as a function of time (0, 1, 2, 3min) at their original pH. Peaks were detected for OH(.) and HO2(.) on NMR spectrograph. RIV were read and compared for individual radicals detected. Only OH(.) were detected from acidic and neutral bleaching agent (30% acidic and neutral H2O2, 35%CP); both HO2(.) and OH(.) from 30% alkaline H2O2; while only HO2(.) from more alkaline SPT. RIV for OH(.) was maximum at 1min irradiation of acidic 30%H2O2 and 35%CP and minimum at 1min irradiation of neutral 30%H2O2. RIV for HO2(.)was maximum at 0min irradiation of alkaline 30%H2O2 and minimum at 2min irradiation of SPT. The bleaching agents having pH- neutral and acidic were always associated with OH(.); weak alkaline with both OH(.) and HO2(.); and strong alkaline with HO2(.) only. It is recommended to check the pH of the bleaching agents and if found acidic, should be made alkaline to minimize oxidative damage to enamel itself and then to pulp/periodontal tissues. H2O2: hydrogen peroxide CP: carbamide

  17. Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS).

    Science.gov (United States)

    Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi

    2017-12-01

    Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.

  18. In Vivo Targeting of Cutaneous Melanoma Using an Melanoma Stimulating Hormone-Engineered Human Protein Cage with Fluorophore and Magnetic Resonance Imaging Tracers

    Czech Academy of Sciences Publication Activity Database

    Vannucci, Luca; Falvo, E.; Failla, C. M.; Carbo, M.; Fornara, M.; Canese, R.; Cecchetti, S.; Rajsiglová, Lenka; Stakheev, Dmitry; Křižan, Jiří; Boffi, A.; Carpinelli, G.; Morea, V.; Ceci, P.

    2015-01-01

    Roč. 11, č. 1 (2015), s. 81-92 ISSN 1550-7033 Institutional support: RVO:61388971 Keywords : Protein-Based Nanoparticles * Ferritin * In Vivo Melanoma-Targeting Subject RIV: EC - Immunology Impact factor: 3.929, year: 2015

  19. A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos.

    Science.gov (United States)

    Kivrak Pfiffner, Fatma; Waschkies, Conny; Tian, Yinghua; Woloszyk, Anna; Calcagni, Maurizio; Giovanoli, Pietro; Rudin, Markus; Buschmann, Johanna

    2015-04-01

    Adequate vascularization in biomaterials is essential for tissue regeneration and repair. Current models do not allow easy analysis of vascularization of implants in vivo, leaving it a highly desirable goal. A tool that allows monitoring of perfusion capacity of such biomaterials noninvasively in a cheap, efficient, and reliable in vivo model would hence add great benefit to research in this field. We established, for the first time, an in vivo magnetic resonance imaging (MRI) method to quantify the perfusion capacity of a model biomaterial, DegraPol(®) foam scaffold, placed on the embryonic avian chorioallantoic membrane (CAM) in ovo. Perfusion capacity was assessed through changes in the longitudinal relaxation rate before and after injection of a paramagnetic MRI contrast agent, Gd-DOTA (Dotarem(®); Guerbet S.A.). Relaxation rate changes were compared in three different regions of the scaffold, that is, at the interface to the CAM, in the middle and on the surface of the scaffold (p<0.05). The highest relaxation rate changes, and hence perfusion capacities, were measured in the interface region where the scaffold was attached to the CAM, whereas the surface of the scaffold showed the lowest relaxation rate changes. A strong positive correlation was obtained between relaxation rate changes and histologically determined vessel density (R(2) = 0.983), which corroborates our MRI findings. As a proof-of-principle, we measured the perfusion capacity in different scaffold materials, silk fibroin either with or without human dental pulp stem cells. For these, three to four times larger perfusion capacities were obtained compared to DegraPol; demonstrating that our method is sensitive to reveal such differences. In summary, we present a novel in vivo method for analyzing the perfusion capacity in three-dimensional-biomaterials grown on the CAM, enabling the determination of the perfusion capacity of a large variety of bioengineered materials.

  20. Correlation between 31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain.

    Science.gov (United States)

    Burri, R; Lazeyras, F; Aue, W P; Straehl, P; Bigler, P; Althaus, U; Herschkowitz, N

    1988-01-01

    Phosphomonoesters were measured in the developing rat brain by in vivo and in vitro 31P nuclear magnetic resonance (NMR) spectroscopy and by classical biochemical methods. In vitro NMR showed that the main component of the phosphomonoester peak is phosphorylethanolamine. Phosphomonoesters measured by in vivo NMR decreased during development at the same rate as the biochemically estimated phosphorylethanolamine. Phosphorylethanolamine, a precursor of the membrane lipid phosphatidylethanolamine, decreased during development parallel to an increase of the lipid phosphatidylethanolamine, which was measured biochemically. These studies show that 31P NMR can be used to monitor brain development in vivo.

  1. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Scharff, A.M.; Egsgaard, H.; Hansen, P.E.

    2003-01-01

    indicate that ammonium is located in the bacteroids. The observed N-15-labeled amino acids, glutamine/glutamate and asparagine (Asn), apparently reside in a different compartment, presumably the plant cytoplasm, because no changes in the expected in vivo N-15 chemical shifts were observed. Extensive N-15...... the physiological state of the metabolically active nodules. The nodules were extracted after the NMR studies and analyzed for total soluble amino acid pools and N-15 labeling of individual amino acids by liquid chromatography-mass spectrometry. A substantial pool of free ammonium was observed by N-15 NMR...... labeling of Asn was observed by liquid chromatography-mass spectrometry, which is consistent with the generally accepted role of Asn as the end product of primary N assimilation in pea nodules. However, the Asn N-15 amino signal was absent in in vivo N-15 NMR spectra, which could be because...

  2. In vivo 31P magnetic resonance spectroscopy and 1H magnetic resonance imaging of human bladder carcinoma on nude mice: effects of tumour growth and treatment with cis-dichloro-diamine platinum

    DEFF Research Database (Denmark)

    De Certaines, J D; Albrectsen, J; Larsen, V A

    1992-01-01

    In vivo 31P NMR spectroscopy and 1H NMR imaging were used to examine the bladder T24B carcinoma in nude mice during untreated growth and in response to chemotherapy by Cis-dichloro-diammine-platinum (CDDP) at a dose of 8 mg/kg i.p. Untreated growth was associated with an increase of inorganic pho...

  3. In vivo 31P magnetic resonance spectroscopy and 1H magnetic resonance imaging of human bladder carcinoma on nude mice: effects of tumour growth and treatment with cis-dichloro-diamine platinum

    DEFF Research Database (Denmark)

    De Certaines, J D; Albrectsen, J; Larsen, V A

    1993-01-01

    In vivo 31P NMR spectroscopy and 1H NMR imaging were used to examine the bladder T24B carcinoma in nude mice during untreated growth and in response to chemotherapy by Cis-dichloro-diammine-platinum (CDDP) at a dose of 8 mg/kg i.p. Untreated growth was associated with an increase of inorganic...

  4. Intratumoral pharmacokinetic analysis by 19F-magnetic resonance spectroscopy and cytostatic in vivo activity of gemcitabine (dFdC) in two small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Kristjansen, P E; Quistorff, B; Spang-Thomsen, M

    1993-01-01

    BACKGROUND: Gemcitabine, 2'2'difluoro-deoxycytidine (dFdC), has shown activity in several preclinical models, and presently the compound is being clinically evaluated in patients with lung cancer and other solid tumors. DESIGN: The cytostatic in vivo activity of dFdC was tested in the two human.......p. every third day, four times were applied. RESULTS AND CONCLUSION: Significant activity of gemcitabine was demonstrated in both SCLC tumor lines. The tumor line 54A is the most sensitive to radiotherapy, doxorubicin, and nitrosoureas; but in this case the 54B tumors were more sensitive to gemcitabine...

  5. Monitoring of the insecticide trichlorfon by phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talebpour, Zahra [Department of Chemistry, Faculty of Science, Alzahra University, Vanak, Tehran (Iran, Islamic Republic of); Ghassempour, Alireza [Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Faculty of Science, Chemistry Research Center, Evin, Tehran (Iran, Islamic Republic of)]. E-mail: aghassempour@scientist.com; Zendehzaban, Mehdi [Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Faculty of Science, Chemistry Research Center, Evin, Tehran (Iran, Islamic Republic of); Bijanzadeh, Hamid Reza [Faculty of Science, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mirjalili, Mohammad Hossein [Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Faculty of Science, Chemistry Research Center, Evin, Tehran (Iran, Islamic Republic of)

    2006-08-25

    Trichlorfon is an organophosphorus insecticide, which is extensively being used for protection of fruit crops. Trichlorfon is a thermal labile compound, which cannot be easily determined by gas chromatography (GC) and has no suitable group for sensitive detection by high performance liquid chromatography (HPLC). In this study, a {sup 31}P nuclear magnetic resonance ({sup 31}P NMR) has been described for monitoring of trichlorfon without any separation step. The quantitative works of {sup 31}P NMR spectroscopy has been performed in the presence of an internal standard (hexamethylphosphoramide). Limit of detection (LOD) for this method has been found to be 55 mg L{sup -1}, without any sample preparation, and the linear working range was 150-5500 mg L{sup -1}. Relative standard deviation (R.S.D.%) of the method for three replicates within and between days was obtained {<=}9%. The average recovery efficiency was approximately 99-112%. This method was applied for monitoring trichlorfon in a commercial insecticide sample and tomato sample.

  6. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Bock, D; Kahlau, R; Pötzschner, B; Körber, T; Wagner, E; Rössler, E A

    2014-03-07

    Various (2)H and (31)P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d3 (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rössler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (α1-process), the second reorienting isotropically (α2-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP α2-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional (31)P NMR spectra prove exchange within the broadly distributed α2-process. As demonstrated by (2)H NMR, the PS matrix reflects the faster α2-process of TPP by performing a spatially highly hindered motion on the same timescale.

  7. SU-F-I-67: Neurometabolic Effect Induced by Repeated Exposure to Dizocilpine On Prefrontal Cortex of Schizophrenic Animal Model Using In Vivo Proton Magnetic Resonance Spectroscopy at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, C-H; Lim, S-I [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Asan Institute for Life Sciences, Asan Medical Center, Seoul (Korea, Republic of); Song, K-H; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Woo, D-C [Asan Institute for Life Sciences, Asan Medical Center, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Repeated exposure of dizocilpine (MK-801) can provide a pathophysiological model for progressive development of schizophrenia. In vivo proton magnetic resonance spectroscopy ({sup 1}H MRS) was widely used for non-invasive measurement of neurometabolites, and assessment of disease-induced neurometabolic alterations. The purpose of this study was to investigate neurometabolic alteration in prefrontal cortex (PFC) with respect to progression (from first-episode to chronic stage) of schizophrenia by using in vivo {sup 1}H MRS. Methods: We used high-field {sup 1}H MRS to investigate the neurometabolic alteration in the PFC region of the rats (N = 13) by comparing before and after 6 day of MK-801 (0.5 mg/kg) treatment. A point-resolved spectroscopy (PRESS) sequence was used to obtain spectra in a 22.5 µL of volume of interest carefully located in PFC region with parameters like follow; repetition time, 5000ms; echo time (TE), 13.4 ms; averages = 256. Another experiment group (N = 11) were conducted behavior test by recording the behavior for 20 min. Results: All the rats showed hyperlocomotion, stereotyped behaviors before initiation of MRS. Significantly increased level (N = 7, p < 0.05) of N-acetylasrparate (NAA), glutamate (Glu), taurine and decreased level (N = 6, p < 0.05) of NAA, Glu and phosphocreatine were observed between baseline and day 6. Both metabolic alterations are consistent with results of first-episode and chronic schizophrenia respectively. Conclusion: From our findings, the repeated MK-801 model could be a pathophysiological model which can provide an insight into the transition from first-episode to chronic stage. This is first time to investigate effects of repeated MK-801 using high-field in vivo 1H MRS. We expect our findings can contribute to combining previous diverging results into one pathophysiological interpretation, which can postulate the origin of diverging results to the progression of schizophrenia.

  8. Quantification of plaque lipids in the aortic root of ApoE-deficient mice by 3D DIXON magnetic resonance imaging in an ex vivo model

    Energy Technology Data Exchange (ETDEWEB)

    Dietel, Barbara; Kuehn, Constanze; Achenbach, Stephan [University Hospital of Erlangen-Nuremberg, Department of Cardiology and Angiology, Erlangen (Germany); Budinsky, Lubos [Campus Science Support Facilities (CSF), Vienna Biocenter (VBC), Vienna (Austria); Uder, Michael [University Hospital of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Hess, Andreas [University of Erlangen-Nuremberg, Department of Experimental and Clinical Pharmacology and Toxicology, Erlangen (Germany)

    2014-10-31

    To establish a dedicated protocol for the three-dimensional (3D) quantification of plaque lipids in apolipoprotein E-deficient (apoE{sup -/-}) mice using ex vivo MRI. ApoE{sup -/-} mice were fed a high-fat diet (n = 10) or normal food (n = 10) for 3 months. Subsequently, a 3D FLASH MRI sequence was used to view the anatomy of the aortic root in the isolated hearts, where a 3D double-echo two-excitation pulse sequence (DIXON sequence) was used to selectively image plaque lipids. The vessel wall, lumen and plaque lipid volumes were quantified by MRI and histology for correlation analysis. DIXON MRI allowed visualisation and accurate quantification of plaque lipids. When comparing the vessel wall, lumen and plaque lipid sizes in the aortic root, Bland-Altman and linear regression analysis revealed a close correlation between MRI results and the histological data both on a slice-by-slice basis and of the volumetric measurements (vessel wall: r{sup 2} = 0.775, p < 0.001; vessel lumen: r{sup 2} = 0.875; p = 0.002; plaque lipid: r{sup 2} = 0.819, p = 0.003). The combination of 3D FLASH and DIXON-sequence MRI permits an accurate ex vivo assessment of the investigated plaque parameters in the aortic root of mice, particularly the lipid content. (orig.)

  9. Regional brain metabolite abnormalities in inherited prion disease and asymptomatic gene carriers demonstrated in vivo by quantitative proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D.; Cordery, R.J.; Godbolt, A.; Rossor, M.N. [University College London, Dementia Research Group, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom); Imperial College of Science, Technology and Medicine, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, London (United Kingdom); MacManus, D.G. [University College London, NMR Research Unit, Department of Clinical Neurology, Institute of Neurology, London (United Kingdom); Collinge, J. [University College London, MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, London (United Kingdom)

    2006-06-15

    Inherited prion diseases are caused by mutations in the gene which codes for prion protein (PrP), leading to proliferation of abnormal PrP isomers in the brain and neurodegeneration; they include Gerstmann-Straeussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). We studied two patients with symptomatic inherited prion disease (P102L) and two pre-symptomatic P102L gene carriers using quantitative magnetic resonance spectroscopy (MRS). Short echo time spectra were acquired from the thalamus, caudate region and frontal white matter, metabolite levels and ratios were measured and z-scores calculated for individual patients relative to age-matched normal controls. MRS data were compared with structural magnetic resonance imaging. One fCJD case had generalised atrophy and showed increased levels of myo-inositol (MI) in the thalamus (z=3.7). The other had decreased levels of N-acetylaspartate (z=4) and diffuse signal abnormality in the frontal white matter. Both asymptomatic gene carriers had normal imaging, but increased frontal white matter MI (z=4.3, 4.1), and one also had increased MI in the caudate (z=5.3). Isolated MI abnormalities in asymptomatic gene carriers are a novel finding and may reflect early glial proliferation, prior to significant neuronal damage. MRS provides potential non-invasive surrogate markers of early disease and progression in inherited prion disease. (orig.)

  10. Experimental ex-vivo validation of PMMA-based bone cements loaded with magnetic nanoparticles enabling hyperthermia of metastatic bone tumors

    Science.gov (United States)

    Harabech, Mariem; Kiselovs, Normunds Rungevics; Maenhoudt, Wim; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-05-01

    Percutaneous vertebroplasty comprises the injection of Polymethylmethacrylate (PMMA) bone cement into vertebrae and can be used for the treatment of compression fractures of vertebrae. Metastatic bone tumors can cause such compression fractures but are not treated when injecting PMMA-based bone cement. Hyperthermia of tumors can on the other hand be attained by placing magnetic nanoparticles (MNPs) in an alternating magnetic field (AMF). Loading the PMMA-based bone cement with MNPs could both serve vertebra stabilization and metastatic bone tumor hyperthermia when subjecting this PMMA-MNP to an AMF. A dedicated pancake coil is designed with a self-inductance of 10 μH in series with a capacitance of 0.1 μF that acts as resonant inductor-capacitor circuit to generate the AMF. The thermal rise is appraised in beef vertebra placed at 10 cm from the AMF generating circuit using optical temperatures sensors, i.e. in the center of the PMMA-MNP bone cement, which is located in the vicinity of metastatic bone tumors in clinical applications; and in the spine, which needs to be safeguarded to high temperature exposures. Results show a temperature rise of about 7 °C in PMMA-MNP whereas the temperature rise in the spine remains limited to 1 °C. Moreover, multicycles heating of PMMA-MNP is experimentally verified, validating the technical feasibility of having PMMA-MNP as basic component for percutaneous vertebroplasty combined with hyperthermia treatment of metastatic bone tumors.

  11. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy.

    Science.gov (United States)

    Mosafer, Jafar; Abnous, Khalil; Tafaghodi, Mohsen; Mokhtarzadeh, Ahad; Ramezani, Mohammad

    2017-04-01

    A superparamagnetic iron oxide nanoparticles (SPIONs)/doxorubicin (Dox) co-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeted with AS1411 aptamer (Apt) against murine C26 colon carcinoma cells is successfully developed via a modified multiple emulsion solvent evaporation method for theranostic purposes. The mean size of SPIO/Dox-NPs (NPs) was 130nm with a narrow particle size distribution and Dox loading of 3.0%. The SPIO loading of 16.0% and acceptable magnetic properties are obtained and analyzed using thermogravimetric and vibration simple magnetometer analysis, respectively. The best release profile from NPs was observed in PBS at pH 7.4, in which very low burst release was observed. Nucleolin is a targeting ligand to facilitate anti-tumor delivery of AS1411-targeted NPs. The Apt conjugation to NPs (Apt-NPs) enhanced cellular uptake of Dox in C26 cancer cells. Apt-NPs enhance the cytotoxicity effect of Dox followed by a significantly higher tumor inhibition and prolonged animal survival in mice bearing C26 colon carcinoma xenografts. Furthermore, Apt-NPs enhance the contrast of magnetic resonance images in tumor site. Altogether, these Apt-NPs could be considered as a powerful tumor-targeted delivery system for their potential as dual therapeutic and diagnostic applications in cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Reproducibility of in vivo magnetic resonance imaging T1 rho and T2 relaxation time measurements of hip cartilage at 3.0T in healthy volunteers.

    Science.gov (United States)

    Nemeth, Angeline; Di Marco, Lucy; Boutitie, Florent; Sdika, Michael; Grenier, Denis; Rabilloud, Muriel; Beuf, Olivier; Pialat, Jean-Baptiste

    2017-06-26

    To assess the T1 ρ and T2 values in the hip cartilage of healthy volunteers and to evaluate the reproducibility of these measurements. The right hip joint of 30 asymptomatic volunteers was explored with 3T magnetic resonance imaging (MRI). Quantitative 3D T1 ρ- and T2 -maps sequences were repeated twice with a 30-minute delay (immediate reproducibility). The same protocol was repeated 14 days later (short-term reproducibility). Immediate and short-term reproducibility were estimated using coefficients of variation and correlation concordance coefficients (CCC). The precisions of the measurements were estimated by the ratio of the standard deviations. A mixed linear model was used to analyze the effect of patient's characteristics on T1 ρ and T2 values. Immediate reproducibility was significantly better than short-term reproducibility for T1 ρ (CCC of 0.75 versus 0.55; P = 0.007) and T2 (CCC 0.65 versus 0.32; P measurements were estimated between 5.5% and 9.1%. Median T1 ρ values were 6.0 msec higher in women than in men (P = 0.006), with no significant influence of age, body mass index (BMI), or sports activity. Median T2 values were not significantly different between men and women (0.4 msec lower in women; P = 0.76). There was no significant influence of age, BMI, or sports activity. T1 ρ and T2 values were lower in lateral regions than in medial regions (4.9 msec and 2.5 msec lower respectively; P < 0.0001). Immediate reproducibility of T1 ρ and T2 values is better than short-term, with limited effect of 30 minutes decubitus. T1 ρ values are significantly higher in women. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  13. One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging.

    Science.gov (United States)

    Liu, Chien-Liang; Peng, Yung-Kang; Chou, Shang-Wei; Tseng, Wei-Hsuan; Tseng, Yu-Jui; Chen, Hsieh-Chih; Hsiao, Jong-Kai; Chou, Pi-Tai

    2014-10-15

    The room-temperature, aqueous-phase synthesis of iron-oxide nanoparticles (IO NPs) with glutathione (GSH) is reported. The simple, one-step reduction involves GSH as a capping agent and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent; GSH is an anti-oxidant that is abundant in the human body while THPC is commonly used in the synthesis of noble-metal clusters. Due to their low magnetization and good water-dispersibility, the resulting GSH-IO NPs, which are 3.72 ± 0.12 nm in diameter, exhibit a low r2 relaxivity (8.28 mm(-1) s(-1)) and r2/r1 ratio (2.28)--both of which are critical for T1 contrast agents. This, together with the excellent biocompatibility, makes these NPs an ideal candidate to be a T1 contrast agent. Its capability in cellular imaging is illustrated by the high signal intensity in the T1-weighted magnetic resonance imaging (MRI) of treated HeLa cells. Surprisingly, the GSH-IO NPs escape ingestion by the hepatic reticuloendothelial system, enabling strong vascular enhancement at the internal carotid artery and superior sagittal sinus, where detection of the thrombus is critical for diagnosing a stroke. Moreover, serial T1- and T2-weighted time-dependent MR images are resolved for a rat's kidneys, unveiling detailed cortical-medullary anatomy and renal physiological functions. The newly developed GSH-IO NPs thus open a new dimension in efforts towards high-performance, long-circulating MRI contrast agents that have biotargeting potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Medical applications of magnetic nanoparticles.

    Science.gov (United States)

    Alexiou, C; Jurgons, R; Seliger, C; Iro, H

    2006-01-01

    In recent years biomedical research indicated, that magnetic nanoparticles can be a promising tool for several applications in vitro and in vivo. In medicine many approaches were investigated for diagnosis and therapy and offered a great variety of applications. Magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted delivery of therapeutics or magnetically induced hyperthermia are approaches of particular clinical relevance. For medical use, especially for in vivo application it is of great importance that these particles do not have any toxic effects or incompatibility with biological organism. Investigations on applicable particles induced a variability of micro- and nanostructures with different materials, sizes, and specific surface chemistry.

  15. Investigation of the neuroprotective effects of bee-venom acupuncture in a mouse model of Parkinson's disease by using immunohistochemistry and In-vivo 1H magnetic resonance spectroscopy at 9.4 T

    Science.gov (United States)

    Yoon, Moon-Hyun; Lee, Do-Wan; Kim, Hyun-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2013-01-01

    Neuroprotective therapeutics slows down the degeneration process in animal models of Parkinson's disease (PD). The neuronal survival in PD animal models is often measured by using immunohistochemistry. However, dynamic changes in the pathology of the brain cannot be explored with this technique. Application of in-vivo 1H magnetic resonance spectroscopy (1H MRS) can cover this shortcoming, as these techniques are non-invasive and can be repeated over time in the same animal. Thus, the sensitivity of both techniques to measure changes in the PD pathology was explored in an experiment studying the neuroprotective effects of the vigilance enhancer bee-venom (BV) in a mouse model of PD. The mice were pre-treated with 0.02-ml BV administered to the acupuncture point GB34 (Yangneungcheon) once every 3 days for 2 weeks. Three groups were classified as control, MPTP-intoxicated PD model and BV-treated mice. Outer volume suppression combined with the ultra-short echo-time STEAM (TE = 2.2 ms, TM = 20 ms, TR = 5000 ms) was used for localized in-vivo 1H MRS. Based on the 1H MRS spectral analysis, substantial changes of the neurochemical profiles were evaluated in the three investigated groups. In particular, the glutamate complex (Glx)/creatine (Cr) ratio (7.72 ± 1.25) in the PD group was significantly increased compared to that in the control group (3.93 ± 2.21, P = 0.001). Compared to the baseline values, the Glx/Cr ratio of the BV-treated group was significantly decreased 2 weeks after MPTP intoxication (one-way ANOVA, p acupuncture in a mouse model of PD could be quantified by using immunohistochemistry and 1H MRS.

  16. Quantification of myocardium at risk in myocardial perfusion SPECT by co-registration and fusion with delayed contrast-enhanced magnetic resonance imaging--an experimental ex vivo study.

    Science.gov (United States)

    Ugander, Martin; Soneson, Helen; Engblom, Henrik; van der Pals, Jesper; Erlinge, David; Heiberg, Einar; Arheden, Håkan

    2012-01-01

    Myocardial perfusion single-photon emission computed tomography (MPS) can be used to assess myocardium at risk in occlusive coronary ischaemia. The aim was to develop a method to quantify myocardium at risk as perfusion defect size on ex vivo MPS using co-registration and fusion with ex vivo magnetic resonance imaging (MRI). Pigs (n = 19) were injected 99mTc-tetrofosmin prior to concluding 40 min of coronary artery occlusion, followed by reperfusion and MRI contrast injection. The excised heart was imaged with T1-weighted MRI and MPS, and images were co-registered using freely available software (Segment v1.8, http://segment.heiberg.se). The left ventricle was semi-automatically delineated in MRI and copied to MPS. The threshold for a MPS perfusion defect was defined as the mean counts in the MPS image at the MRI-determined border between remote myocardium and air. The threshold was measured using count maxima set to the 100th-95th percentile of counts within the myocardium. The count maximum that gave the lowest threshold variability (SD) was considered the most robust. A count maximum using the 100th percentile yielded a threshold of (mean ± SD) 55 ± 6·2%. This method showed the lowest SD compared to 99th-95th percentile count maxima (6·6-7·2%). We describe a method for objective quantification of myocardium at risk as perfusion defect size on MPS using knowledge of the anatomy of the myocardium from co-registered MRI. This enables simultaneous quantification of myocardium at risk by MPS and infarct size by MRI for the evaluation of treatments for myocardial infarction. © 2011 The Authors. Clinical Physiology and Functional Imaging © 2011 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  17. Comparison of Fenestra VC Contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion.

    Science.gov (United States)

    Choukèr, Alexander; Lizak, Martin; Schimel, Daniel; Helmberger, Thomas; Ward, Jerrold M; Despres, Daryl; Kaufmann, Ines; Bruns, Christiane; Löhe, Florian; Ohta, Akio; Sitkovsky, Michael V; Klaunberg, Brenda; Thiel, Manfred

    2008-02-01

    Comparison of intravenous Fenestra VC-enhanced computed tomography (CT) with gadopentetate dimeglumine and Ferucarbotran contrast-enhanced magnetic resonance imaging (MRI) for the in vivo imaging of hepatic ischemia/reperfusion injury (IRI) in a murine model. After induction of hepatic IRI by left liver lobe (LLL) ischemia (30, 45, and 75 minutes) and reperfusion (4 hours and 24 hours), a total of 130 mice were imaged either by Fenestra VC-enhanced 3-D CT or by dynamic, T1-weighed gadopentetate dimeglumine or static, T2*-weighed Ferucarbotran 2-D MRI (4.7 T). Detection of liver tissue damage as a consequence of IRI was not possible by CT or MRI without the use of contrast media. (1) Mice subjected to liver IRI (45 minutes of ischemia) and injected with Fenestra VC showed a distinct liver enhancement of the viable liver tissue or a nonenhancement of the necrotic tissue. The Fenestra VC CT-unenhanced liver volume increased as a function of time of ischemia and reperfusion. The unenhanced liver volume also correlated positively with serum liver enzyme activities and damage scores from liver histology. (2) The signal intensities (SI) between normal liver tissue and livers subjected to 30 minutes of ischemia were not different on dynamic gadopentetate dimeglumine-enhanced magnetic resonance images. More severe IRI as induced by 45 or 75 minutes of ischemia was characterized by (a) early hyperenhancement of regions in the LLL with rapid increase of SI higher than that observed in the undamaged liver within the first few minutes and (b) delayed hyperenhancement in the later course after gadopentetate dimeglumine injection, respectively. (3) Ferucarbotran MRI detected signs of IRI after only 30 minutes of liver ischemia and hence detected IRI earlier than Fenestra VC or gadopentetate dimeglumine. With longer duration of ischemia, Ferucarbotran SI increased in the LLL, but viable and necrotic tissues were not clearly distinguishable. MicroCT with Fenestra VC enhancement and

  18. In vivo proton magnetic resonance spectroscopy (1H-MRS) evaluation of the metabolite concentration of optic radiation in primary open angle glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Sidek, Sabrilhakim [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Kuala Lumpur (Malaysia); Universiti Teknologi MARA, Medical Imaging Unit, Faculty of Medicine, Sg Buloh, Selangor (Malaysia); Ramli, Norlisah; Rahmat, Kartini; Kuo, Tan Li [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Kuala Lumpur (Malaysia); Ramli, Norlina Mohd; Abdulrahman, Fadzlina [University of Malaya, Department of Ophthalmology, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2016-12-15

    To compare the metabolite concentration of optic radiation in glaucoma patients with that of healthy subjects using Proton Magnetic Resonance Spectroscopy (1H-MRS). 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 x 20 x 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA. The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05). Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients. (orig.)

  19. In vivo assessment of putative functional placental tissue volume in placental intrauterine growth restriction (IUGR) in human fetuses using diffusion tensor magnetic resonance imaging.

    Science.gov (United States)

    Javor, D; Nasel, C; Schweim, T; Dekan, S; Chalubinski, K; Prayer, D

    2013-08-01

    Intrauterine growth restriction (IUGR) is a diagnostic challenge, since ultrasound fetal biometry (UFB) provides only a 50% detection rate for IUGR. This may be attributable to the fact that UFB does not allow a direct evaluation of functional placental tissue. We hypothesized that direct assessment, using magnetic resonance diffusion tensor imaging (DT-MRI), can provide better detection of IUGR by reliably distinguishing between normal and non-functional placental tissue. Patients with normal placenta function (n = 21) and suspected IUGR (n = 14) according to UFB were examined. DT-MRI-based properties of areas of the placenta that were judged to represent normal functional tissue, in normal pregnancies, were used to perform volumetry of the putative functional placental tissue (PFPT) in a control- and an IUGR-group. Fractional anisotropy (FRC), as well as maximum and mean diffusivity were also calculated. PFPT volumetry showed a significant reduction of functional placental tissue in the IUGR group of up to 33%. Analysis of global PFPT, maximum diffusivity, mean diffusivity, and FRC also showed a significant difference. PFPT volume is dramatically reduced in IUGR. Several DT-MRI parameters suggest an additional placental micro-architecture disturbance in IUGR. PFPT volumetry appears to be a promising tool for improving the detection of IUGR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study.

    Science.gov (United States)

    Lube, Juliane; Cotofana, Sebastian; Bechmann, Ingo; Milani, Thomas L; Özkurtul, Orkun; Sakai, Tatsuo; Steinke, Hanno; Hammer, Niels

    2016-01-01

    Muscle volumes are of crucial interest when attempting to analyze individual physical performance and disease- or age-related alterations in muscle morphology. However, very little reference data are available in the literature on pelvis and lower extremity muscle volumes originating from healthy and young individuals. Furthermore, it is of interest if representative muscle volumes, covering large anatomical regions, can be obtained using magnetic resonance imaging (MRI) in a setting similar to the clinical routine. Our objective was therefore to provide encompassing, bilateral, 3-T MRI-based datasets on muscle volumes of the pelvis and the lower limb muscles. T1-weighted 3-T MRI records were obtained bilaterally from six young and healthy participants. Three-dimensional volumes were compiled from 28 muscles and muscle groups of each participant before the muscle volumes were computed. Muscle volumes were obtained from 28 muscles and muscle groups of the pelvis and lower extremity. Volumes were larger in male than in female participants. Volumes of the dominant and non-dominant sides were similar in both genders. The obtained results were in line with volumetric data obtained from smaller anatomical areas, thus extending the available datasets. This study provides an encompassing and feasible approach to obtain data on the muscle volumes of pelvic and limb muscles of healthy, young, and physically active individuals. The respective data form a basis to determine effects of therapeutic approaches, progression of diseases, or technical applications like automated segmentation algorithms applied to different populations.

  1. Synthesis, characterization and biological evaluation of a well dispersed suspension of gallium-68-labeled magnetic nanosheets of graphene oxide for in vivo coincidence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef; Feizi, Shahzad [Nuclear Science and Technology Research Institute, Karaj (Iran, Islamic Republic of). Radiation Application Research School; Rahighi, Reza [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Physics; Tayyebi, Ahmad [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Engineering

    2017-03-01

    Graphene oxide (GO) nanosheets were hybridized with Fe{sub 3}O{sub 4} nanoparticles (NPs) to form magnetic GO (MGO) and were further labeled by [{sup 68}Ga]GaCl{sub 3} as a potential drug delivery system. Paper chromatography, Fourier transform infra red (FTIR) spectroscopy, low-angle X-ray diffraction (XRD), CHN and atomic force microscopy (AFM) were utilized to characterize the trinary composite ([{sup 68}Ga] rate at MGO). Biological evaluations of the prepared nanocomposite were performed in normal Sprague Dawley rats and it was found to be a possible host for theranostic radiopharmaceuticals. The results showed that the grafting of Fe{sub 3}O{sub 4} NPs on nanocomposite reduced the unwanted liver and spleen uptakes and increased the ratio of kidney/liver uptake from 0.037 to 1.07, leading to the fast removal of radioactive agent and less imposed radiation to patients. The high level of hydrogen bonding caused by the presence of functional groups is responsible for this effect. Considering the accumulation of the tracer in vital organs of rat (especially brain), efficient iron oxide grafting, fast wash-out, the short half-life gallium-68 and less imposed radiation doses to patients, this nanocomposite could be a suitable candidate for positron emission tomography (PET) studies and imaging applications.

  2. Comparison of the clinical state and its changes in patients with Duchenne and Becker muscular dystrophy with results of in vivo {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Grosmanova, A. [Dept. of Neuropediatrics, Thomayer`s Hospital, Prague (Czech Republic); Horska, A. [MR Unit, Inst. for Clinical and Experimental Medicine, Prague (Czech Republic); Urban, P. [Dept. of Analytical Chemistry, Prague Inst. of Chemical Technology (Czech Republic)

    1993-12-01

    A total of 14 boys with the Duchenne and Becker forms of muscular dystrophy (DMD, BMD) were examined using {sup 31}P magnetic resonance (MR) spectroscopy; 12 boys were examined repeatedly. The results were correlated with clinical findings (including those of genetic tests) and with data obtained from examinations of an age-matched control group. Evaluation of results using principal component analysis revealed maximum variability in the following ratios: phosphocreatine/inorganic phosphate (PCr/Pi), phosphocreatine/phosphodiesters (PCr/PDe) and phosphocreatine/phosphomonoesters (PCr/PMe). A decrease in PCr/Pi correlates with weakness of the hip girdle and of the lower part of the shoulder girdle in DMD/BMD patients. The values of all ratios in the group of patients with the DMD phenotype differ significantly from results obtained in the group with the BMD phenotype. Continuous follow-up of patients using {sup 31}P MR spectroscopy revealed a marked decrease in PCr/Pi in DMD/BMD patients at an age that could be expected in subjects with a typical clinical course of DMD/BMD. An attempt to manage a concomitant disease with prednisone and carnitene was followed by an increase in PCr/Pi in 3 cases. A rise in the PCr/Pi ratio signalled clinical improvement in the patients. A decrease in PCr/Pi was found after controlled physical training, a finding consistent with data obtained from clinical observations describing an adverse effect of physical stress on the dystrophic process. (orig.)

  3. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Li, Xiaolong; Yi, Zhigao; Xue, Zhenluan; Zeng, Songjun; Liu, Hongrong

    2017-06-01

    Development of high-quality upconversion nanoparticles (UCNPs) with combination of the merits of multiple molecular imaging techniques, such as, upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and magnetic resonance (MR) imaging, could significantly improve the accuracy of biological diagnosis. In this work, multifunctional BaYbF5: Gd/Er (50:2mol%) UCNPs were synthesized via a solvothermal method using oleic acid (OA) as surface ligands (denoted as OA-UCNPs). The OA-UCNPs were further treated by diluted HCl to form ligand-free UCNPs (LF-UCNPs) for later bioimaging applications. The cytotoxicity assay in HeLa cells shows low cell toxicity of these LF-UCNPs. Owing to the efficient UCL of BaYbF5: Gd/Er, the LF-UCNPs were successfully used as luminescent bioprobe in UCL bioimaging. And, X-ray CT imaging reveals that BaYbF5: Gd/Er UCNPs can act as potential contrast agents for detection of the liver and spleen in the live mice owing to the high-Z elements (e.g., Ba, Yb, and Gd) in host matrix. Moreover, with the addition of Gd, the as-designed UCNPs exhibit additional positive contrast enhancement in T1-weighted MR imaging. These findings demonstrate that BaYbF5: Gd/Er UCNPs are potential candidates for tri-modal imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Koops, Andreas; Ittrich, Harald; Priest, Andrew; Stork, Alexander; Adam, Gerhard; Weber, Christoph [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Petri, Susan [University Medical Center Hamburg-Eppendorf, Department of Pathology, Hamburg (Germany); Lockemann, Ute [University Medical Center Hamburg-Eppendorf, Department of Forensic Medicine, Hamburg (Germany)

    2007-01-15

    The purpose was to analyze magnetic resonance (MR) plaque imaging at 3.0 Tesla and 1.5 Tesla in correlation with histopathology. MR imaging (MRI) of the abdominal aorta and femoral artery was performed on seven corpses using T1-weighted, T2-weighted, and PD-weighted sequences at 3.0 and 1.5 Tesla. Cross-sectional images at the branching of the inferior mesenteric artery and the profunda femoris were rated with respect to image quality. Corresponding cross sections of the imaged vessels were obtained at autopsy. The atherosclerotic plaques in the histological slides and MR images were classified according to the American Heart Association (AHA) and analyzed for differences. MRI at 3.0 Tesla offered superior depiction of arterial wall composition in all contrast weightings, rated best for T2-weighted images. Comparing for field strength, the highest differences were observed in T1-weighted and T2-weighted techniques (both P{<=}0.001), with still significant differences in PD-weighted sequence (P{<=}0.005). The majority of plaques were histologically classified as calcified plaques. In up to 21% of the cases, MRI at both field strengths detected signal loss characteristic of calcification although calcified plaque was absent in histology. MRI at 3.0 Tesla offers superior plaque imaging quality compared with 1.5 Tesla, but further work is necessary to determine whether this translates in superior diagnostic accuracy. (orig.)

  5. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo.

    Science.gov (United States)

    Li, Jingjing; Wu, Chen; Hou, Pingfu; Zhang, Min; Xu, Kai

    2018-04-15

    Magnetic resonance imaging (MRI) contrast agents have become a necessary part for clinical practice to improve the sensitivity for the diagnosis of small lesions and injuries. Among them, manganese oxide nanoparticle (MnO NPs)-based MRI contrast agent attracts more and more attention because of their better performance in the detection of brain disease and positive enhancement in T 1 -weighted image. However, the relatively low r 1 relaxivity and complex synthetic route hampered their wider applications. In this work, we proposed a one-pot approach to prepare hydrophilic MnO NPs via a polyol-like method with poly (ethylene glycol) (PEG) as both a solvent and surfactant. The obtained PEG-MnO NPs displayed a high T 1 relaxivity and a low r 2 /r 1 ratio (12.942s -1 mM -1 and 4.66) at 3.0T, which was three times that of the clinical used contrast agent, Magnevist (Gd-DTPA). Additionally, when exposed to the simulated body fluid (SBF), acidic environment or glutathione, PEG-MnO NPs kept stable, favoring their further biological applications. Then, to explore their use for the molecular magnetic resonance imaging of 786-0 renal carcinoma, amino group modified AS1411 aptamer as the targeting molecule was introduced to conjugate with PEG-MnO NPs via covalent coupling reaction. The fabricated nanoprobe, AS1411-PEG-MnO, could clearly visualize 786-0 renal carcinoma cells with MRI in vitro. Furthermore, compared with PEG-MnO NPs, AS1411-PEG-MnO nanoprobe presented a prolonged retention in 786-0 renal carcinoma tumor in vivo. The intravenously injected nanoprobes were eventually excreted from the body through the renal clearance route. These results indicated the potential promising of PEG-MnO NPs as an alternative contrast agent in MRI scanning. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Bolbos, Radu I; Ma, C Benjamin; Link, Thomas M; Majumdar, Sharmila; Li, Xiaojuan

    2008-11-01

    The aims of this study were to evaluate the spatial distribution of cartilage structure in controls and patients, and to quantitatively assess the cartilage overlying bone marrow edema-like lesion (BMEL) and within defined cartilage compartments in knees with anterior cruciate ligament (ACL) tears using T1rho mapping technique at 3 T magnetic resonance imaging. The knee joints of 15 healthy controls (4 women, 11 men, mean age = 30.1 year) and 16 patients with ACL tear (5 women, 11 men, mean age = 32.5 years) who showed BMEL was studied using a 3 T GE MR scanner and a quadrature knee coil. The imaging protocol included sequences for cartilage morphology and 3D quantitative T1rho mapping. Lateral femoral condyle and medial femoral condyles compartments were partitioned into anterior and posterior nonweight-bearing (ant-nwb and postnwb) portions and weight-bearing (wb) portions in all subjects. In patients only, cartilage overlying BMEL and surrounding cartilage portions were also defined. T1rho values were quantified in cartilage overlying BMEL and surrounding compartments and in each defined compartment of the ACL-injured knees, and compared with controls. Significantly elevated T1rho values were found in the femoral nonweight-bearing (nwb) portions when compared with weight-bearing (wb) portions both in patients and controls. Significantly increased T1rho values were found in cartilage overlying BMEL when compared with surrounding cartilage at the lateral tibia (LT), but no difference was found in the lateral femoral condyle. T1rho mapping technique provides tools to quantitatively evaluate the cartilage matrix overlying BMEL in patients with ACL injuries. Cartilage abnormalities are already present following initial ACL injuries over the lateral tibia. Quantitative MRI can allow critical evaluation of medical and surgical treatments for ligament and degenerative conditions of the knee.

  7. Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: An in vivo 1H magnetic resonance spectroscopic (1H-MRS) study.

    Science.gov (United States)

    Woo, Chul-Woong; Lee, Byong Sop; Kim, Sang Tae; Kim, Ki-Soo

    2010-04-01

    Increased levels of lactate are observed by (1)H magnetic resonance spectroscopy ((1)H-MRS) in rat brains after stroke. However, it is not known whether the changes in lactate levels are predictive of the degree of neuronal damage. To investigate the correlation between changes in lactate and lipid levels measured by (1)H-MRS and neuronal cell damage in the rat brain. A middle cerebral artery occlusion (MCAO) model was used to evaluate focal ischemia in rats (n=36). After MCAO for 90 min T2-weighted images (T2WIs), diffusion-weighted images (DWIs), and (1)H-MRS data were obtained from brains immediately, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours, 3 days, and 7 days after reperfusion. Infarct volumes were measured in T2WIs obtained 4 weeks after reperfusion. The degree of neuronal damage was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining in three rats from each group at the same time as brain images were collected. Creatine (Cr)-normalized lactate + lipid levels ([Lac+Lip]/Cr) were negatively correlated with Cr-normalized N-acetyl-L-aspartate levels (NAA/Cr) and positively correlated with TUNEL-positive cell numbers up to 24 hours after reperfusion. (Lac+Lip)/Cr at 6 hours and 9 hours was significantly correlated with NAA/Cr at 7 days, but there was no significant correlation between (Lac+Lip)/Cr during the first 24 hours and infarct volume at 4 weeks. Up to 24 hours after reperfusion, (Lac+Lip)/Cr was strongly negatively correlated with NAA/Cr, and was a good predictor of neuronal damage at 7 days; however, it was not predictive of final infarct volume at 4 weeks.

  8. The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer's disease and vascular dementia: a proton magnetic resonance spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, A.D. [Department of Imaging, Charing Cross Hospital and Dementia Research Group, University College London, Fulham Palace Road, W6 8RF, London (United Kingdom); Rai, G.S. [Department of Care of Older People, Whittington Hospital, Highgate Hill, London (United Kingdom)

    2003-08-01

    Previous magnetic resonance spectroscopy (MRS) studies have shown increased myo-inositol (MI) and decreased N-acetyl aspartate (NAA) levels in the parieto-occipital lobes of patients with Alzheimer's disease (AD) compared to those with other dementias and normal subjects. This study aimed to establish the quantitative relationship between metabolite ratios and degree of cognitive impairment in patients with mild to moderate AD and sub-cortical ischaemic vascular dementia (SIVD). Forty-four older people with clinical dementia were recruited from a memory clinic and followed up for 2.0-3.5 years; 20 cases were finally classified as probable AD, 18 as SIVD and 6 as mixed type. Mini Mental State Examination (MMSE) and short echo time single voxel automated MRS from the mesial parieto-occipital lobes were performed at the time of initial referral. Spearman rank correlation coefficients were calculated for MMSE scores and measured metabolite ratios MI/Cr, NAA/Cr, Cho/Cr and NAA/MI. The AD group showed a significant correlation between MMSE and NAA/MI (r=0.54, P=0.014) and NAA/Cr (r=0.48, P=0.033), and a negative, non-significant association with MI/Cr (r=-0.41, P=0.072). MI/Cr was negatively correlated with NAA/Cr (r=-0.51, P=0.021). Neither Cho/Cr ratios nor age correlated with cognitive function. The SIVD group showed no correlation between any of the measured metabolite ratios and MMSE score. This study reinforces the specific association between reduced NAA and increased MI levels in the parieto-occipital region and cognitive impairment in AD. MRS may have a role in evaluating disease progression and therapeutic monitoring in AD, as new treatments become available. (orig.)

  9. In vivo

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  10. Delayed injection of polypyrrole doped with iodine particle suspension after spinal cord injury in rats improves functional recovery and decreased tissue damage evaluated by 3.0 Tesla in vivo magnetic resonance imaging.

    Science.gov (United States)

    Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli

    2017-04-01

    Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r(2)=0.449, p<.05) and between FA and preserved tissue (r(2)=0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r(2)=0.367, p<.05) and between ADC and preserved tissue (r(2)=0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The effect of gingko biloba extract on energy metabolic status in C3H mouse fibrosarcoma: evaluated by in vivo {sup 31}P magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sung Whan; Kim, Won Dong; Ahn, Yong Chan; Park, Charn Il [Seoul National University, College of Medicine, Seoul (Korea, Republic of); Lim, Tae Hwan; Lee, Tae Kuen [Ulsan University, Seoul (Korea, Republic of)

    2002-06-15

    Gingko biloba extract (GBE), a natural product extracted from Gingko leaves, is known to increase the radiosensitivity of tumors. This radiosensitization probably arises from the increase in the peripheral blood flow by decreasing the blood viscosity and relaxing the vasospasm. The influence of a GBE on the metabolic status in fibrosarcoma II (FSall) of a C3H mouse was investigated using {sup 31}P magnetic resonance spectroscopy (MRS). Eighteen C3H mice with fibrosarcoma II (from 100 mm{sup 3} to 130 mm{sup 3}) were prepared for this experiment. The mice were divided into 2 groups; one (9 mice) without a priming dose, and the other (9 mice) with a priming dose of GBE. The GBE priming dose (100 mg/kg) was administered by an intraperitoneal (i.p.) injection 24 hours prior to the measurement. First {sup 31}P MRS spectra were measured in the mice from each group as a baseline and test dose of GBE (100 mg/kg) was then administered to each group. One hour later, the {sup 31}P MRS spectra were measured again to evaluate the change in the energy metabolic status. In the group without the priming dose, the mean pH, PCr/Pi, PME/ATP, Pi/ATP, PCr/(Pi + PME) values 1 hour after the test dose were not changed significantly compared to the values at the baseline. However, in the group with the priming dose, the mean PCr/Pi, Pi/ATP, PCr/(Pi + PME) values 1 hour after the test dose changed from the baseline values of 0.49, 0.77, 0.17 to 0.74, 0.57, 0.28 respectively. According to the paired t-test, the differences were statistically significant. The above findings suggest that the metabolic status is significantly improved after administering GBE if the priming dose is given 24 hours earlier. This shows that the radiosensitizing effect of GBE is based on the increase of tumor blood flow and the improvement in the metabolic status.

  12. Correlations between in vivo (1)H MRS and ex vivo (1)H HRMAS metabolite measurements in adult human gliomas.

    NARCIS (Netherlands)

    Opstad, K.S.; Wright, A.J.; Bell, B.A.; Griffiths, J.R.; Howe, F.A.

    2010-01-01

    PURPOSE: To assess how accurately ex vivo high-resolution magic angle spinning (HRMAS) proton magnetic resonance spectroscopy ((1)H MRS) from small biopsy tissues relate to in vivo (1)H MRS (from larger tumor volumes) in human astrocytomas. MATERIALS AND METHODS: In vivo (PRESS, TE = 30 msec) and ex

  13. Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.

    Science.gov (United States)

    Ishii, Daizo; Enmi, Jun-Ichiro; Moriwaki, Takeshi; Ishibashi-Ueda, Hastue; Kobayashi, Mari; Iwana, Shinichi; Iida, Hidehiro; Satow, Tetsu; Takahashi, Jun C; Kurisu, Kaoru; Nakayama, Yasuhide

    2016-09-01

    Biotubes, i.e., in vivo tissue-engineered connective tubular tissues, are known to be effective as vascular replacement grafts with a diameter greater than several millimeters. However, the performance of biotubes with smaller diameters is less clear. In this study, MicroBiotubes with diameters magnetic resonance angiography (MRA). MicroBiotube molds, containing seven stainless wires (diameter 0.5 mm) covered with silicone tubes (outer diameter 0.6 mm) per mold, were embedded into the dorsal subcutaneous pouches of rats. After 2 months, the molds were harvested with the surrounding capsular tissues to obtain seven MicroBiotubes (internal diameter 0.59 ± 0.015 mm, burst pressure 4190 ± 1117 mmHg). Ten-mm-long MicroBiotubes were allogenically implanted into the femoral arteries of rats by end-to-end anastomosis. Cross-sectional OCT imaging demonstrated the patency of the MicroBiotubes immediately after implantation. In a 1-month follow-up MRA, high patency (83.3 %, n = 6) was observed without stenosis, aneurysmal dilation, or elongation. Native-like vascular structure was reconstructed with completely endothelialized luminal surfaces, mesh-like elastin fiber networks, regular circumferential orientation of collagen fibers, and α-SMA-positive cells. Although the long-term patency of MicroBiotubes still needs to be confirmed, they may be useful as an alternative ultra-small-caliber vascular substitute.

  14. In vivo

    Science.gov (United States)

    Freudenblum, Julia; Iglesias, José A; Hermann, Martin; Walsen, Tanja; Wilfinger, Armin; Meyer, Dirk; Kimmel, Robin A

    2018-02-08

    The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering. © 2018. Published by The Company of Biologists Ltd.

  15. In Vivo

    Science.gov (United States)

    Lau, Melissa; Li, Jianli; Cline, Hollis T

    2017-01-01

    The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis.

  16. New quantitative and multi-modal approach for in-vivo studies of small animals: coupling of the {beta}-microprobe with magnetic techniques and development of voxelized rat and mouse phantoms; Nouvelle approche multimodale et quantitative pour les etudes in vivo chez le petit animal: couplage de la {beta}-MicroProbe aux techniques magnetiques et developpement de fantomes de rat et de souris voxelises

    Energy Technology Data Exchange (ETDEWEB)

    Desbree, A

    2005-09-15

    For the last 15 years, animal models that mimic human disorders have become ubiquitous participants to understand biological mechanisms and human disorders and to evaluate new therapeutic approaches. The necessity to study these models in the course of time has stimulated the development of instruments dedicated to in vivo small animal studies. To further understand physiopathological processes, the current challenge is to couple simultaneously several of these methods. Given this context, the combination of the magnetic and radioactive techniques remains an exciting challenge since it is still limited by strict technical constraints. Therefore we propose to couple the magnetic techniques with the radiosensitive Beta-Microprobe, developed in the IPB group and which shown to be an elegant alternative to PET measurements. In this context, the thesis was dedicated to the study of the coupling feasibility from a physical point of view, by simulation and experimental characterizations. Then, the determination of a biological protocol was carried out on the basis of pharmacokinetic studies. The experiments have shown the possibility to use the probe for radioactive measurements under intense magnetic field simultaneously to anatomical images acquisitions. Simultaneously, we have sought to improve the quantification of the radioactive signal using a voxelized phantom of a rat brain. Finally, the emergence of transgenic models led us to reproduce pharmacokinetic studies for the mouse and to develop voxelized mouse phantoms. (author)

  17. MAGNETIC MICROSPHERES AS A TARGETED DRUG DELIVERY SYSTEM : A REVIEW

    OpenAIRE

    TARUN PATEL; SHAILESH SONI; BHAUMIK THAKAR; VIKRAM PANDYA; PRAFUL BHARADIA

    2012-01-01

    The in-vivo targeting of tumors with magnetic microspheres is currently realized through the applicationof external non-uniform magnetic fields generated by rare-earth permanent magnets or electromagnets.This technique can be applied to magnetically targeted cancer therapy, magnetic embolization therapywith magnetic particles that contain anticancer agent, such as chemotherapeutic drugs or therapeuticradioisotopes. Drug targeting is one way of local or regional antitumor treatment. Magnetical...

  18. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  19. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kahlau, R; Bock, D; Schmidtke, B; Rössler, E A

    2014-01-28

    Dielectric spectroscopy as well as (2)H and (31)P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d3) in the full concentration (cTPP) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: Tg 1(cTPP) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower Tg 2(cTPP) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α2-process), the other (α1-process) displays time constants identical with those of the slow PS matrix. Upon heating the α1-fraction of TPP decreases until above some temperature Tc only a single α2-population exists. Inversely, below Tc a fraction of the TPP molecules is trapped by the PS matrix. At low cTPP the α2-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α2-relaxation resembles a secondary process. Yet, (31)P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high cTPP the super-Arrhenius temperature dependence of τ2(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.

  20. Structural studies of A-form sodium deoxyribonucleic acid: phosphorus-31 nuclear magnetic resonance of oriented fibers.

    Science.gov (United States)

    Nall, B T; Rothwell, W P; Waugh, J S; Rupprecht, A

    1981-03-31

    A highly oriented sample of A-form sodium deoxyribonucleic acid (DNA) has been investigated by using proton-enhanced 31P nuclear magnetic resonance (NMR). Proton-decoupled spectra taken with different angles between the magnetic field direction and the fiber direction are compared to theoretical spectra which are calculated by assuming the following: (1) the orientation of the phosphate groups in the fiber is given by the A-form DNA coordinates suggested by Arnott & Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Commun. 47, 1504-1509]; (2) the DNA phosphate groups may be considered stationary on the NMR time scale; (3) the relevant features of the spectra are determined solely by chemical shift anisotropy of the phosphorus atoms. The experimental and calculated spectra are in excellent agreement and support the validity of the above assumptions contrary to conclusions drawn in another investigation [Shindo, H., Wooton, J. B., Pheiffer, B. H., & Zimmerman, S. B. (1980) Biochemistry 19, 518-526]. In particular, we find no evidence to support the notion of a highly irregular phosphodiester backbone. Comparison of observed and simulated spectra allows the determination of the orientation of the 31P chemical shielding tensor relative to the bonding framework of the phosphodiester group. The orientation agrees with that expected from NMR studies of phosphodiester model compounds [Kohler, S. J., & Klein, M. P. (1976) Biochemistry 15, 967-973; Herzfeld, J., Griffin, R. G., & Haberkorn, R. A. (1978) Biochemistry 17, 2711-2718] and X-ray diffraction of oriented fibers [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Commun. 47, 1504-1509].

  1. In vivo and ex vivo proton MR spectroscopy of primary and secondary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, Roger M.; Stanwell, Peter; Stretch, Jonathan R.; Scolyer, Richard A.; Thompson, John F.; Mountford, Carolyn E.; Lean, Cynthia L

    2005-03-01

    In vivo magnetic resonance (MR) spectroscopy at 1.5T was performed on a large polypoid cutaneous melanoma, and two enlarged lymph nodes containing metastatic melanoma, from three patients. Spectra were acquired in vivo from voxels wholly within the primary tumour or secondary lymph node and were thus uncontaminated by signals from adjacent tissue. Tissue biopsies taken after resection of primary tumours and secondary lymph nodes were examined by 8.5T magnetic resonance spectroscopy (MRS) and the results compared with the in vivo spectra, and with spectra from normal skin and a benign skin lesion. There was good agreement between the dominant features of 1.5T spectra acquired in vivo and 8.5T spectra acquired from resected tissue. However, less intense resonances observed at 8.5T in malignant biopsy tissue were not consistently observed at 1.5T in vivo. In vivo spectra from primary and metastatic melanoma showed high levels of choline metabolites. An intense lactate resonance was also present in the in vivo spectrum of primary melanoma. All 8.5T spectra of biopsies from primary and secondary melanoma showed high levels of choline metabolites and lactate, and additional resonances consistent with elevated levels of taurine, alanine, lysine, and glutamate/glutamine relative to normal and benign tissue. Elevated levels of choline, lactate, taurine, and amino acids appear to be clinically useful markers for identifying the pathology of primary and metastatic melanoma.

  2. [Modern toxicology of magnetic nanomaterials].

    Science.gov (United States)

    Cywińska, Monika A; Grudziński, Ireneusz P

    2012-01-01

    Current advances in nanobiotechnology have led to the development of new field of nanomedicine, which includes many applications of nano(bio)materials for both diagnostic and therapeutic purposes (theranostics). Major expectations and challenges are on bioengineered magnetic nanoparticles when their come to delivering drug compounds, especially to targeting anticancer drugs to specific molecular endpoints in cancer therapy. The unique physicochemical properties of these nanoparticles offer great promise in modern cancer nanomedicine to provide new technological breakthroughs, such as guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cancer cell tracking and molecular magnetic resonance imaging. Along with the expanding interest in bio-engineered magnetic nanoproducts their potential toxicity has become one of the major concerns. To date, a number of recent scientific evidences suggest that certain properties of magnetic nanoparticles (e.g., enhanced reactive area, ability to cross cell membranes, resistance to biodegradation) may amplify their cytotoxic potential relative to bulk non-nanoscale counterparts. In other words, safety assessment developed for ordinary magnetic materials may be of limited use in determining the health and environmental risks of the novel bio-engineered magnetic nanoproducts. In the present paper we discuss the main directions of research conducted to assess the toxicity of magnetic nanocompounds in experimental in vitro and in vivo models, pointing to the key issues concerning the toxicological analysis of magnetic nanomaterials. In addition new research directions of nanotoxicological studies elucidating the importance of developing alternative methods for testing magnetic nano(bio)products are also presented.

  3. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  4. Magnetic Spinner

    Science.gov (United States)

    Ouseph, P. J.

    2006-01-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays…

  5. [Investigation on the migration and biologic effects of nano FeOx powders under the exposure of extremely low frequency altering electric magnetic field in human heptoma-bearing nude mice in vivo].

    Science.gov (United States)

    Ju, Hui-Xiang; Dai, Zhen-Yu; Sun, Ming-Zhong

    2011-08-01

    To investigate the mechanism and biologic effects of 37 nm magnetic nano FeOx powders (MNPs) on human hepatoma-bearing nude mice. 37 nm MNPs were prepared by coprecipitation methods and then injected into human hepatoma (Bel-7402) bearing-nude mice through the tail vein. After injection of MNPs, the mice were first exposed under static magnetic field and then treated under extremely low frequency altering-electric magnetic field directing to the tumor area. The migration and trafficking of MNPs were determined by MMR. Tumor growth was monitored with calipers every 5 days and tumor volume was calculated on the basis of three-dimensioned measurements. The apoptosis of tumor cells was analyzed by flow cytometry analysis. The expressions of apoptosis-associated proteins Bcl-2, Bax and HSP27 were determined using western-blot analysis. Static magnetic field could direct the migration and trafficking of MNPs to the tumor site with a higher ratio of 98.9%. Extremely Low Frequency Electric-Magnetic Field (EMF) treatment could inhibit the proliferation of tumor cells and prolong the survive time of tumor-bearing mice injected with MNPs. In addition, the survival time of tumor-bearing mice and percentages of prohibition on tumor cell growth were 27.4+/-0.7 days and 37.5+/-0.8% (F = 0.005, P is less than to 0.05), respectively. The results of flow cytometry analyses showed that about 18.1+/-0.6% (F = 0.030, P is less than to 0.05) of tumor cells were induced into early apoptosis. Furthermore, expressions of apoptosis-associated proteins Bcl-2 and Bax were significantly induced by MNPs under EMF treatment. The ratio of Bcl/Bax in both MNPs and EMF treatment group was 0.07+/-0.01, which was much lower than that of control group (0.23+/-0.02) (F = 0.016, P is less than to 0.05). Heat shock protein-27 (Hsp-27) was not significantly induced in different treatment groups. Injection of MNPs with EMF exposure on human hepatoma-bearing nude mice could significantly prolong the

  6. Biohazard Detoxification Method Utilizing Magnetic Particles

    Science.gov (United States)

    2007-05-01

    making these biodegradable spheres suitable as a potential platform for the design of magnetically- guided drug delivery and other in vivo biomagnetic ...superparamagnetism can be explained as follows. Due to small particle size, anisotropy energy is less than the thermal agitation energy of the ions ...so magnetized direction is no longer fixed in an easy magnetized direction, and the movement of the ions is random. Consequently, the sample would

  7. On the cooperative nature of the β-process in neat and binary glasses: a dielectric and nuclear magnetic resonance spectroscopy study.

    Science.gov (United States)

    Bock, D; Kahlau, R; Micko, B; Pötzschner, B; Schneider, G J; Rössler, E A

    2013-08-14

    By means of dielectric as well as (2)H and (31)P nuclear magnetic resonance spectroscopy (NMR) the component dynamics of the binary glass tripropyl phosphate (TPP)/polystyrene (PS/PS-d3) is selectively investigated for concentrations distributed over the full range. We study the secondary (β-) relaxation below T(g), which is found in all investigated samples containing TPP, but not in neat polystyrene. The dielectric spectrum of the β-process is described by an asymmetric distribution of activation energies, essentially not changing in the entire concentration regime; its most probable value is E/k ≅ 24 T(g). Persistence of the β-process is confirmed by (31)P NMR Hahn-echo and spin-lattice relaxation experiments on TPP, which identify the nature of the β-process as being highly spatially hindered as found for other (neat) glasses studied previously, or re-investigated within this work. The corresponding (2)H NMR experiments on PS-d3 confirm the absence of a β-process in neat PS-d3, but reveal a clear signature of a β-process in the mixture, i.e., polystyrene monomers perform essentially the same type of secondary relaxation as the TPP molecules. Yet, there are indications that some fractions of PS-d3 as well as TPP molecules become immobilized in the mixture in contrast to the case of neat glasses. We conclude that in a binary glass the β-process introduced by one component induces a highly similar motion in the second component, and this may be taken as an indication of its cooperative nature.

  8. Nanomaterials for In Vivo Imaging.

    Science.gov (United States)

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  9. Towards a versatile platform based on magnetic nanoparticles for in ...

    Indian Academy of Sciences (India)

    Magnetic nanoparticles have attracted wide attention because of their usefulness as contrast agents for magnetic resonance imaging (MRI) or colloidal mediators for cancer magnetic hyperthermia. This paper examines these in vivo applications through an understanding of the problems involved and the current and future ...

  10. Towards a versatile platform based on magnetic nanoparticles for in ...

    Indian Academy of Sciences (India)

    Abstract. Magnetic nanoparticles have attracted wide attention because of their usefulness as contrast agents for magnetic resonance imaging (MRI) or colloidal mediators for cancer magnetic hyperthermia. This paper examines these in vivo applications through an understanding of the problems involved and the current ...

  11. Oxidative Conversion of a Europium(II)-Based T1 Agent into a Europium(III)-Based paraCEST Agent that can be Detected In Vivo by Magnetic Resonance Imaging.

    Science.gov (United States)

    Funk, Alexander M; Clavijo Jordan, Veronica; Sherry, A Dean; Ratnakar, S James; Kovacs, Zoltan

    2016-04-11

    The Eu(II) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) tetra(glycinate) has a higher reduction potential than most Eu(II) chelates reported to date. The reduced Eu(II) form acts as an efficient water proton T1 relaxation reagent, while the Eu(III) form acts as a water-based chemical exchange saturation transfer (CEST) agent. The complex has extremely fast water exchange rate. Oxidation to the corresponding Eu(III) complex yields a well-defined signal from the paraCEST agent. The time course of oxidation was studied in vitro and in vivo by T1-weighted and CEST imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.

    Science.gov (United States)

    Wu, Zuhe; Zhuo, Zihang; Cai, Dongyang; Wu, Jian'an; Wang, Jie; Tang, Jintian

    2015-01-01

    Induction heating devices using the induction coil and magnetic nanoparticles (MNPs) are the way that the magnetic hyperthermia is heading. To facilitate the induction heating of in vivo magnetic nanoparticles in hyperthermia experiments on large animals. An induction heating device using a planar coil was designed with a magnetic field frequency of 328 kHz. The coil's magnetic field distribution and the device's induction heating performance on different concentrations of magnetic nanoparticles were measured. The alternating magnetic field produced in the axis position 165 mm away from the coil center is 40 Gs in amplitude; magnetic nanoparticles with a concentration higher than 80 mg. mL-1 can be heated up rapidly. Our results demonstrate that the device can be applied not only to in vitro and in small animal experiments of magnetic hyperthermia using MNPs, but also in large animal experiments.

  13. Superconducting Magnets

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Starting from the beam requirements for accelerator magnets, we will outline the main issues and the physical limitations for producing strong and pure magnetic fields with superconductors. The seminar will mainly focus on the magnets for the accelerator, and give some hints on the magnets for the experiments. Prerequisite knowledge: Basic knowledge of Maxwell equations, and linear optics for particle accelerators (FODO cell, beta functions).

  14. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  15. Optical spectroscopy combined with high-resolution magnetic resonance imaging for digestive wall assessment: endoluminal bimodal probe conception and characterization in vitro, on organic sample and in vivo on a rabbit

    Science.gov (United States)

    Ramgolam, Anoop; Sablong, Raphaël; Lafarge, Lionel; Saint-Jalmes, Hervé; Beuf, Olivier

    2011-11-01

    Colorectal cancer is a major health issue worldwide. Conventional white light endoscopy (WLE) coupled to histology is considered as the gold standard today and is the most widespread technique used for colorectal cancer diagnosis. However, during the early stages, colorectal cancer is very often characterized by flat adenomas which develop just underneath the mucosal surface. The use of WLE, which is heavily based on the detection of morphological changes, becomes quite delicate due to subtle or quasi-invisible morphological changes of the colonic lining. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where high spatial resolution MRI is combined with autofluorescence and reflectance spectroscopy in a bimodal endoluminal probe to extract morphological data and biochemical information, respectively. The design and conception of the endoluminal probe are detailed and the promising preliminary results obtained in vitro (home-built phantom containing eosin and rhodamine B), on an organic sample (the kiwi fruit) and in vivo on a rabbit are presented and discussed.

  16. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study.

    Science.gov (United States)

    Woo, Hyunsik; Han, Joon Koo; Kim, Jung Hoon; Hong, Sung-Tae; Uddin, Md Hafiz; Jang, Ja-June

    2017-04-01

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. • High-resolution ultrasound and MRI can monitor occurrence of cholangiocarcinoma in the hamsters. • Cholangiocarcinomas were detected as early as the 6th week after C. sinensis infection. • Axial T2-weighted MRI demonstrated cholangiocarcinomas and various inflammatory findings in the hamsters.

  17. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hyunsik [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Han, Joon Koo; Kim, Jung Hoon [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Hong, Sung-Tae [Seoul National University, Department of Parasitology, College of Medicine, Seoul (Korea, Republic of); Uddin, M.H. [Seoul National University, Adult Stem Cell Research Center, Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul (Korea, Republic of); Jang, Ja-June [Seoul National University, Department of Pathology, College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The purpose of this study is to evaluate high-resolution ultrasound and magnetic resonance imaging (MRI) in monitoring of cholangiocarcinoma in the hamsters with C. sinensis infection and N-nitrosodimethylamine (NDMA). Twenty-four male Syrian golden hamsters of were divided into four groups composed of five hamsters as control, five hamsters receiving 30 metacercariae of C. sinensis per each hamster, five hamsters receiving NDMA in drinking water, and nine hamsters receiving both metacercariae and NDMA. Ultrasound was performed every other week from baseline to the 12th week of infection. MRI and histopathologic examination was done from the 4th week to 12th week. Cholangiocarcinomas appeared as early as the 6th week of infection. There were 12 cholangiocarcinomas, nine and ten of which were demonstrated by ultrasound and MRI, respectively. Ultrasound and MRI findings of cholangiocarcinomas in the hamsters were similar to those of the mass-forming intrahepatic cholangiocarcinomas in humans. Ultrasound and MRI also showed other findings of disease progression such as periductal increased echogenicity or signal intensity, ductal dilatation, complicated cysts, and sludges in the gallbladder. High-resolution ultrasound and MRI can monitor and detect the occurrence of cholangiocarcinoma in the hamsters non-invasively. (orig.)

  18. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N,α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: in vitro and in vivo studies.

    Science.gov (United States)

    Cheraghi, Mostafa; Namdari, Mehrdad; Daraee, Hadis; Negahdari, Babak

    2017-06-01

    Cardioprotective effect of N, α-L-rhamnopyranosyl vincosamide (VR), isolated from the leaves of Moringa oleifera plant in doxorubicin (Dox)-induced cardiac toxicity rats was evaluated. Twelve (12) rats were randomly selected into three groups; two rats received distilled water in the control group, five rats in group I received varying concentration of VR treatment, and group II containing five rats received varying concentration of VR-loaded magnetic hydrogel nanocomposite. Malondialdehyde (MDA), glutathione peroxidase (GSH) and superoxide dismutase (SOD) enzymes activities level were analysed after two weeks. In addition, the expression of three heart failure markers; beta major histocompatibility complex (β-MHC), atrial natriuretic peptide (ANP), and B type natriuretic peptide (BNP) were also evaluated. It was observed that the level of these markers expression decreases with an increase in VR concentration (p < 0.05). The reduced GSH and SOD level were increased after VR administration, this extract also reduced the initially increased MDA level in cardiac tissue. Pharmacokinetic parameters evaluation showed that nanogel treated rats possesses a significantly increased VR plasma concentration, Cmax, Kel, t½(a), t½(el), Ka and AUC. The result of this study indicated that VR may help to lower the dosage level, and reduces the treatment course in cardiovascular diseases (CVD). Our conclusion proposes the cardio-protective ability of the isolated VR and its beneficial effect via free radical scavenging properties.

  19. On EPR detection of nitric oxide in vivo

    NARCIS (Netherlands)

    van Faassen, E.E.H.|info:eu-repo/dai/nl/071100938

    2008-01-01

    Nitric oxide (NO ) is a peculiar radical: Ground state is not paramagnetic (g = 0 since orbital and spin magnetic moments cancel); low reactivity with other molecules except superoxide (O2 ); thermodynamically unstable; dimerizes to N2O2; difficult to detect in-vivo.

  20. Comparison of the T2-star Values of Placentas Obtained from Pre-eclamptic Patients with Those of a Control Group: an Ex-vivo Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Yurttutan, Nursel; Bakacak, Murat; Kızıldağ, Betül

    2017-09-29

    Endotel dysfunction, vasoconstriction, and oxidative stress are described in the pathophysiology of pre-eclampsia, but its aetiology has not been revealed clearly. To examine whether there is a difference between the placentas of pre-eclamptic pregnant women and those of a control group in terms of their T2 star values. Case-control study. Twenty patients diagnosed with pre-eclampsia and 22 healthy controls were included in this study. The placentas obtained after births performed via Caesarean section were taken into the magnetic resonance imaging area in plastic bags within the first postnatal hour, and imaging was performed via modified DIXON-Quant sequence. Average values were obtained by performing T2 star measurements from four localisations on the placentas. T2 star values measured in the placentas of the control group were found to be significantly lower than those in the pre-eclampsia group (ppre-eclamptic group was found to be 37.48 ms (standard deviation ± 11.3), this value was 28.74 (standard deviation ± 8.08) in the control group. The cut-off value for the T2 star value, maximising the accuracy of diagnosis, was 28.59 ms (area under curve: 0.741; 95% confidence interval: 0.592-0.890); sensitivity and specificity were 70% and 63.6%, respectively. This study, the T2 star value, which is an indicator of iron amount, was found to be significantly lower in the control group than in the pre-eclampsia group. This may be related to the reduction in blood flow to the placenta due to endothelial dysfunction and vasoconstriction, which are important in pre-eclampsia pathophysiology.

  1. Magnetic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  2. Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force.

    Science.gov (United States)

    Tresilwised, Nittaya; Pithayanukul, Pimolpan; Mykhaylyk, Olga; Holm, Per Sonne; Holzmüller, Regina; Anton, Martina; Thalhammer, Stefan; Adigüzel, Denis; Döblinger, Markus; Plank, Christian

    2010-08-02

    Oncolytic adenoviruses rank among the most promising innovative agents in cancer therapy. We examined the potential of boosting the efficacy of the oncolytic adenovirus dl520 by associating it with magnetic nanoparticles and magnetic-field-guided infection in multidrug-resistant (MDR) cancer cells in vitro and upon intratumoral injection in vivo. The virus was complexed by self-assembly with core-shell nanoparticles having a magnetite core of about 10 nm and stabilized by a shell containing 68 mass % lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) and 32 mass % 25 kDa branched polyethylenimine. Optimized virus binding, sufficiently stable in 50% fetal calf serum, was found at nanoparticle-to-virus ratios of 5 fg of Fe per physical virus particle (VP) and above. As estimated from magnetophoretic mobility measurements, 3,600 to 4,500 magnetite nanocrystallites were associated per virus particle. Ultrastructural analysis by electron and atomic force microscopy showed structurally intact viruses surrounded by magnetic particles that occasionally bridged several virus particles. Viral uptake into cells at a given virus dose was enhanced 10-fold compared to nonmagnetic virus when infections were carried out under the influence of a magnetic field. Increased virus internalization resulted in a 10-fold enhancement of the oncolytic potency in terms of the dose required for killing 50% of the target cells (IC(50) value) and an enhancement of 4 orders of magnitude in virus progeny formation at equal input virus doses compared to nonmagnetic viruses. Furthermore, the full oncolytic effect developed within two days postinfection compared with six days in a nonmagnetic virus as a reference. Plotting target cell viability versus internalized virus particles for magnetic and nonmagnetic virus showed that the inherent oncolytic productivity of the virus remained unchanged upon association with magnetic nanoparticles. Hence, we conclude that the mechanism of boosting the

  3. Magnetic nanocomposites.

    Science.gov (United States)

    Behrens, Silke; Appel, Ingo

    2016-06-01

    Magnetic nanocomposites are multi-component materials, typically containing nanosized magnetic materials to trigger the response to an external stimulus (i.e., an external static or alternating magnetic field). Up to now, the search for novel nanocomposites has lead to the combination of a plethora of different materials (e.g., gels, liquid crystals, renewable polymers, silica, carbon or metal organic frameworks) with various types of magnetic particles, offering exciting perspectives not only for fundamental investigations but also for application in various fields, including medical therapy and diagnosis, separations, actuation, or catalysis. In this review, we have selected a few of the most recent examples to highlight general concepts and advances in the preparation of magnetic nanocomposites and recent advances in the synthesis of magnetic nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  5. Magnetic Hysteresis

    CERN Document Server

    Della Torre, Edward

    2000-01-01

    Understanding magnetic hysteresis is vitally important to the development of the science of magnetism as a whole and to the advancement of practical magnetic device applications. Magnetic Hysteresis, by acclaimed expert Edward Della Torre, presents a clear explanation of the connection between physical principles and phenomenological hysteresis. This comprehensive book offers a lucid analysis that enables the reader to save valuable time by reducing trial-and-error design. Dr. Della Torre uses physical principles to modify Preisach modeling and to describe the complex behavior of magnetic media. While Pretsach modeling is a useful mathematical tool, its congruency and deletion properties present limitations to accurate descriptions of magnetic materials. Step-by-step, this book describes the modifications that can overcome these limitations. Special attention is given to the use of feedback around a Preisach transducer to remove the congruency restriction, and to the use of accommodation and aftereffect model...

  6. [Magnetic nanoparticles as tools for cell therapy].

    Science.gov (United States)

    Wilhelm, Claire; Gazeau, Florence

    2012-01-01

    Labelling living cells with magnetic nanoparticles creates opportunities for numerous biomedical applications such as Magnetic Resonance Imaging (MRI) cell tracking, cell manipulation, cell patterning for tissue engineering and magnetically-assisted cell delivery. The unique advantage of magnetic-based methods is to activate or monitor cell behavior by a remote stimulus, the magnetic field. Cell labelling methods using superparamagnetic nanoparticles have been widely developed, showing no adverse effect on cell proliferation and functionalities while conferring magnetic properties to various cell types. This paper first describes how cells can become responsive to magnetic field by safely internalizing magnetic nanoparticles. We next show how magnetic cells can be detected by MRI, giving the opportunity for non-invasive in vivo monitoring of cell migration. We exemplify the fact that MRI cell tracking has become a method of choice to follow the fate of administrated cells in cell therapy assay, whether the cells are grafted locally or administrated in the circulation. Finally we give different examples of magnetic manipulation of cells and their applications to regenerative medicine. Magnetic cell manipulation are forecasted to be more and more developed, in order to improve tissue engineering technique and assist cell-based therapies. Owing to the clinical approval of iron-oxide nanoparticles as MRI contrast agent, there is no major obstacle in the translation to human clinics of the magnetic methods summarized in this paper. © Société de Biologie, 2013.

  7. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  8. 23Na-magnetic resonance imaging of the human lumbar vertebral discs: in vivo measurements at 3.0 T in healthy volunteers and patients with low back pain.

    Science.gov (United States)

    Haneder, Stefan; Ong, Melissa M L; Budjan, Johannes M; Schmidt, René; Konstandin, Simon; Morelli, John N; Schad, Lothar R; Schoenberg, Stefan O; Kerl, Ulrich H

    2014-07-01

    1H magnetic resonance imaging (MRI) of the spine can rule out common causes of low back pain (LBP), such as disc protrusions or nerve root compression; however, no significant causal relation exists between morphology and the extent of symptoms. Functional MRI techniques, such as 23Na, may provide additional information, allowing indirect assessment of vertebral glycosaminoglycan concentrations, decreases in which are associated with early degenerative changes. To evaluate 23Na-MRI of asymptomatic healthy volunteers and symptomatic patients with LPB and correlate the results to the Pfirrmann classification of MRI disc morphology. Retrospective cohort study at an academic medical center. Two groups were studied: (1) 55 healthy volunteers (31 men, 24 women; mean age 28.8 years) and (2) 12 patients (6 men, 6 women; mean age: 35.3 years) with a recent history of LBP. Lumbar spines of the aforementioned groups were examined on a 3.0 T MRI scanner with morphological 1H and 23Na imaging. Intervertebral disc (IVD) 23Na at each level was normalized (23Nanorm). Distribution and differences between mean 23Nanorm corresponding to each Pfirrmann classification were evaluated in the two study groups (analysis of variance). Linear correlations between 23Nanorm, body mass index (BMI), and age were assessed (Pearson correlation coefficient). Gender-dependent differences were evaluated (paired t test). Physiological measure: IVD 23Nanorm as determined by 23Na-MRI. A normal distribution of 23Nanorm was confirmed for both groups (p=.072 and p=.073, respectively). The mean Pfirrmann score statistically significantly differed between them (pvolunteers and patients (.469

  9. Magnetics Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Processing Lab equipped to perform testing of magnetometers, integrate them into aircraft systems, and perform data analysis, including noise reduction...

  10. Magnet Systems

    Data.gov (United States)

    Federal Laboratory Consortium — Over the decades, Fermilab has been responsible for the design, construction, test and analysis of hundreds of conventional and superconducting accelerator magnets...

  11. Magnetic colloids as drug vehicles.

    Science.gov (United States)

    Durán, J D G; Arias, J L; Gallardo, V; Delgado, A V

    2008-08-01

    This review article is a description of the present status of magnetic drug delivery systems (DDS). These are colloidal dispersions of composite nanoparticles consisting of a (polymeric or inorganic) biocompatible matrix and magnetic units, and designed to load and release therapeutic drugs. The matrix, together perhaps with adsorbed polymers or polyelectrolytes, provides the DDS with additional colloidal stability and eventually control of the immune response, and the magnetic inclusions have the goal of providing magnetic guidance. The techniques used in the production of the particles are described. The large surface/volume ratio of the particles brings about a superlative importance of the interface aspects, which are depicted in some detail. Attention is also paid to the possibilities that magnetic DDS offer to be guided by magnetic fields, and to their fate upon entering in contact with the blood proteins and the tumor cells. A description of in vitro and in vivo biodistribution experiments helps in this description. The number of animal experiments performed using magnetic DDS is rather large, but results in humans are far from being sufficient in number, something easily understood. The hopes for improvement and the challenges that must be overcome are described in the closing section.

  12. Scaphoid kinematics in vivo

    NARCIS (Netherlands)

    Moojen, Thybout M.; Snel, Jeroen G.; Ritt, Marco J. P. F.; Venema, Henk W.; Kauer, John M. G.; Bos, Kurt E.

    2002-01-01

    The purpose of this study was to quantify 3-dimensional (3-D) in vivo scaphoid kinematics during flexion-extension motion (FEM) and radial-ulnar deviation (RUD) of the hand. The right wrists of 11 healthy volunteers were imaged by spiral computed tomography during RUD and 5 of those wrists also

  13. Magnetic nanobeads: Synthesis and application in biomedicine

    OpenAIRE

    Shahid Waseem; Zain Ali; Mehmooda Bibi; Zahir Usman

    2016-01-01

    Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coating material for in vivo application, stability and unique physical properties like size, shape and c...

  14. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  15. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  16. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  17. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... forces and motion of the inner cylindrical magnet....

  18. In-vivo

    Science.gov (United States)

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  19. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  20. Non-Bleaching Photoluminescent Magnetic Nanoparticles

    Science.gov (United States)

    Zou, Lu; Kim, Chanjoong; Girgis, Emad; Khalil, Wagdy K. B.

    2013-03-01

    We report a new type of photoluminescent magnetic nanoparticles produced by a very simple process. The nanoparticle consists of an ordinary magnetic nanoparticle as core and a non-toxic polymer shell. The biocompatibility is evaluated using in-vivo tests on mice. They are non-bleaching photoluminescent without any addition of fluorophores, such as quantum dots or fluorescent dyes that can be toxic and easily photobleached, respectively. This work provides a low-cost, bio-safe, non-bleaching alternative of conventional fluoroscent magnetic nanoparticles which covers a wide range of applications, from bio-imaging to biomedical diagnostics and therapeutics, such as hyperthermia.

  1. Shaping magnetic fields to direct therapy to ears and eyes.

    Science.gov (United States)

    Shapiro, B; Kulkarni, S; Nacev, A; Sarwar, A; Preciado, D; Depireux, D A

    2014-07-11

    Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs that can be manipulated by magnetic fields. However, we do not yet have the magnet systems that can then direct those constructs to the right places, in vivo, over human patient distances. We do not yet know where to put the external magnets, how to shape them, or when to turn them on and off to direct particles or magnetized cells-in blood, through tissue, and across barriers-to disease locations. In this article, we consider ear and eye disease targets. Ear and eye targets are too deep and complex to be targeted by a single external magnet, but they are shallow enough that a combination of magnets may be able to direct therapy to them. We focus on how magnetic fields should be shaped (in space and time) to direct magnetic constructs to ear and eye targets.

  2. Nuclear Magnetic Resonance Technology for Medical Studies.

    Science.gov (United States)

    Budinger, Thomas F.; Lauterbur, Paul C.

    1984-01-01

    Reports on the status of nuclear magnetic resonance (NMR) from theoretical and clinical perspectives, reviewing NMR theory and relaxation parameters relevant to NMR imaging. Also reviews literature related to modern imaging strategies, signal-to-noise ratio, contrast agents, in vivo spectroscopy, spectroscopic imaging, clinical applications, and…

  3. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.

    Science.gov (United States)

    Park, J H; Brown, R L; Park, C R; Cohn, M; Chance, B

    1988-12-01

    The purpose of this study was to investigate whether genetically determined properties of muscle metabolism contribute to the exceptional physical endurance of world-class distance runners. ATP, phosphocreatine, inorganic phosphate, and pH were quantitatively determined by 31P nuclear magnetic resonance spectroscopy in the wrist flexor muscles of elite long-distance runners and sedentary control subjects. These muscles had not been exposed to any specific program of exercise training in either group of subjects. The "untrained" muscles were examined at rest, during two cycles of three grades of exercise, and in recovery. The flexor muscles of the athletes had higher concentrations of phosphocreatine and ATP than did those of the control subjects at rest and during exercise. The athletes' muscles possessed a higher capacity for generation of ATP by oxidative metabolism than did control subjects' muscles according to the following criteria: (i) high force output, 60% of maximum voluntary contraction, was more easily reached and better maintained in both exercise cycles; (ii) the ratio of inorganic phosphate to phosphocreatine rose less during exercise and recovered faster in the postexercise period; (iii) there was no loss of adenine nucleotides or total phosphate from the athletes' muscles but significant losses from the control subjects' muscles; and (iv) the pH decreased no more than 0.1 unit in the athletes' muscles during exercise, attesting to a relatively slow glycolysis and/or a rapid oxidation of lactate. In the muscles of the control subjects, on the other hand, the pH decreased nearly 0.4 unit early in the first exercise cycle, indicating a relatively fast glycolysis and/or slower oxidation of lactate. In the second exercise cycle, the pH returned to near normal in the control subjects' muscles, reflecting diminished lactate formation because of glycogen depletion and lactate washout by the high blood flow induced by exercise. By the end of the exercise

  4. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Galanzha, Ekaterina I. [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Zharov, Vladimir P., E-mail: zharovvladimirp@uams.edu [Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-12-10

    Despite progress in detecting circulating tumor cells (CTCs), existing assays still have low sensitivity (1–10 CTC/mL) due to the small volume of blood samples (5–10 mL). Consequently, they can miss up to 10{sup 3}–10{sup 4} CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 10{sup 2}–10{sup 3} times) by the examination of the entire blood volume in vivo (5 L in adults). We focus on in vivo photoacoustic (PA) flow cytometry (PAFC) of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL) and throughput (up to 10 mL/min) than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-resolution PAFC beyond the diffraction and spectral limits.

  5. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Galanzha

    2013-12-01

    Full Text Available Despite progress in detecting circulating tumor cells (CTCs, existing assays still have low sensitivity (1–10 CTC/mL due to the small volume of blood samples (5–10 mL. Consequently, they can miss up to 103–104 CTCs, resulting in the development of barely treatable metastasis. Here we analyze a new concept of in vivo CTC detection with enhanced sensitivity (up to 102–103 times by the examination of the entire blood volume in vivo (5 L in adults. We focus on in vivo photoacoustic (PA flow cytometry (PAFC of CTCs using label-free or targeted detection, photoswitchable nanoparticles with ultrasharp PA resonances, magnetic trapping with fiber-magnetic-PA probes, optical clearance, real-time spectral identification, nonlinear signal amplification, and the integration with PAFC in vitro. We demonstrate PAFC’s capability to detect rare leukemia, squamous carcinoma, melanoma, and bulk and stem breast CTCs and its clusters in preclinical animal models in blood, lymph, bone, and cerebrospinal fluid, as well as the release of CTCs from primary tumors triggered by palpation, biopsy or surgery, increasing the risk of metastasis. CTC lifetime as a balance between intravasation and extravasation rates was in the range of 0.5–4 h depending on a CTC metastatic potential. We introduced theranostics of CTCs as an integration of nanobubble-enhanced PA diagnosis, photothermal therapy, and feedback through CTC counting. In vivo data were verified with in vitro PAFC demonstrating a higher sensitivity (1 CTC/40 mL and throughput (up to 10 mL/min than conventional assays. Further developments include detection of circulating cancer-associated microparticles, and super-rsesolution PAFC beyond the diffraction and spectral limits.

  6. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions

    Science.gov (United States)

    Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bée, A.; Ménager, C.

    2015-11-01

    An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium.An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06133d

  7. Magnetism. Blowing magnetic skyrmion bubbles.

    Science.gov (United States)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M Benjamin; Fradin, Frank Y; Pearson, John E; Tserkovnyak, Yaroslav; Wang, Kang L; Heinonen, Olle; te Velthuis, Suzanne G E; Hoffmann, Axel

    2015-07-17

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally "blow" magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics. Copyright © 2015, American Association for the Advancement of Science.

  8. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  9. Magnetic monopoles and dipoles

    CERN Multimedia

    Dominguez, Daniel

    2016-01-01

    Conventional bar magnets are also called ‘magnetic dipoles’ because they have two magnetic poles (a “North” and a “South” magnetic pole, like the Earth). In theory, “magnetic monopoles” could exist that act like an isolated “magnetic charge”, i.e. either a “North” or a “South” magnetic pole.

  10. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R.

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  11. Fiducial markers for MR histological correlation in ex vivo or short-term in vivo animal experiments: a screening study.

    Science.gov (United States)

    Rouvière, Olivier; Reynolds, Carol; Le, Yuan; Lai, Jinping; Roberts, Lewis R; Felmlee, Joel P; Ehman, Richard L

    2006-01-01

    To test injectable fiducial markers for magnetic resonance (MR) histological correlation in ex vivo or in vivo animal experiments. A total of 35 potential markers were tested ex vivo in pork muscle. The end-points were: 1) visibility, size, and shape on MR images and at macroscopic examination; 2) 24-hour stability; and 3) microscopic appearance. Selected markers were injected in vivo (rabbit's muscle and breast tumor tissue) to test their three-hour in vivo stability and their potential toxicity. Finally, different dilutions of the two best markers were assessed again through the same screening tests to determine whether their size on MR images could be customized by dilution. Two fluid acrylic paints containing inorganic pigments were found to be potentially interesting markers. On MR images, they created well-defined susceptibility artifacts. The markers made with iridescent bronze paint (iron oxide coated mica particles) were readily visible on microscopy and their size on MR images could be customized by dilution. The iridescent stainless steel paint (iron, chromium, nickel) created ex vivo the smallest markers in tissue but needed colloidal iron staining to be visible on microscopy and could not be easily diluted. Fluid acrylic paints are potentially interesting markers for MR histological correlation. Further studies are needed to assess their long-term properties.

  12. Myelin water fraction in human cervical spinal cord in vivo.

    Science.gov (United States)

    Wu, Yijing; Alexander, Andrew L; Fleming, John O; Duncan, Ian D; Field, Aaron S

    2006-01-01

    The noninvasive discrimination of myelin disease from axonal loss and other pathologic confounds remains an unsolved problem in multiple sclerosis but may be possible through magnetic resonance quantitation of the intramyelinic water compartment. Technical challenges have limited the study of this approach in the spinal cord, a common site of involvement in multiple sclerosis. This technical note reports the test-retest reproducibility of a short T2-based estimate of myelin content in human spinal cord in vivo.

  13. Magnetic Materials

    Science.gov (United States)

    1985-03-01

    L -:• •.1 S..+.: s• S,’S .+m • , ++ d ’N .,.++.+ ii L+ i+- -..’ *4’.. ’-t. COMM4ITTEE ON MAGNETIC MATERIALS Chairman ROBERT M. WRITE, Principal...Motors; Sung Ho Jin, AT&T Bell Labs; G. Rodrigue, ... -- =.• Georgia Tech; J. Houze , Allegheny-Ludlum; R. Sundahl, AT&T Bell Labs; (. I... R. O’Handley...this report. Robert M. White Chairman *’-’ . ,i-.. .- ABSTRACT Magnetic materials play a fundamental role in many of the electrical and electronic

  14. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  15. Magnetic properties

    Indian Academy of Sciences (India)

    Unknown

    Texturing of the fluid was carried out when the paraffin wax was in a molten state. Special care was taken during texturing so that the particles did not aggre- gate. The texturing of the sample was carried out using an electromagnet having field uniformity within 1% un- der different texturing magnetic fields (HT). In the pre-.

  16. Magnetic nanobeads: Synthesis and application in biomedicine

    Directory of Open Access Journals (Sweden)

    Shahid Waseem

    2016-07-01

    Full Text Available Nanobiotechnology appears to be an emerging science which leads to new developments in the field of medicine. Importance of the magnetic nanomaterials in biomedical science cannot be overlooked. The most commonly used chemical methods to synthesize drugable magnetic nanobeads are co-precipitation, thermal decomposition and microemulsion. However monodispersion, selection of an appropriate coating material for in vivo application, stability and unique physical properties like size, shape and composition of nanobeads remain unsettled challenge. The use of hazardous reagents during chemical synthesis is another impediment for in vivo application of the magnetic nanobeads. The current minireview put forth the pros and cons of chemical and biological synthesis of magnetic nanobeads. We critically focus on chemical and biological methods of synthesis of the magnetic nanobeads along with their biomedical applications and subsequently suggest a suitable synthetic approach for potential biocompatible nanobeads. Biogenic synthesis is proposed to be the best option which generates biocompatible nanobeads. Reducing enzymes present in plants, plant materials or microbes reduce precursor inorganic salts to nano sized materials. These nanomaterials exhibit biomolecules on their surface. The use of biologically synthesized magnetic nanobeads in diagnostics and therapeutics would be safe for human and ecosystem.

  17. Three-dimensional tissue culture based on magnetic cell levitation.

    Science.gov (United States)

    Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata

    2010-04-01

    Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies.

  18. Magnetically textured ferrofluid in a non-magnetic matrix: Magnetic ...

    Indian Academy of Sciences (India)

    Texturing of two different magnetic fluids were carried out in paraffin wax under the influence of an external magnetic field. The textured samples were characterized using magnetization measurement and a.c. susceptibility techniques. The results are discussed in the light of ratio of anisotropic energy to magnetic and ...

  19. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Magnetic Resonance (MR) Defecography Magnetic resonance (MR) defecography is a ... the limitations of MRI defecography? What is magnetic resonance (MR) defecography? Magnetic resonance imaging (MRI) is a ...

  20. LHC prototype magnet

    CERN Multimedia

    1991-01-01

    1.5 metre superconducting magnet. This prototype magnet for the LHC was cooled to a few degrees above absolute zero, which allowed it to obtain the world record for the highest magnetic field for an accelerator magnet in 1991.

  1. Ferroelectricity in spiral magnets

    NARCIS (Netherlands)

    Mostovoy, M

    2006-01-01

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric

  2. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  3. Magnetic carbon nanotubes: a new tool for shepherding mesenchymal stem cells by magnetic fields.

    Science.gov (United States)

    Vittorio, Orazio; Quaranta, Paola; Raffa, Vittoria; Funel, Niccola; Campani, Daniela; Pelliccioni, Serena; Longoni, Biancamaria; Mosca, Franco; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    We investigated the interaction between magnetic carbon nanotubes (CNTs) and mesenchymal stem cells (MSCs), and their ability to guide these intravenously injected cells in living rats by using an external magnetic field. Multiwalled CNTs were used to treat MSCs derived from rat bone marrow. Cytotoxicity induced by nanotubes was studied using the WST-1 proliferation and Hoechest 33258 apoptosis assays. The effects of nanotubes on MSCs were evaluated by monitoring the effects on cellular growth rates, immunophenotyping and differentiation, and on the arrangement of cytoskeletal actin. MSCs loaded with nanotubes were injected in vivo in the portal vein of rats driving their localization in the liver by magnetic field. An histological analysis was performed on the liver, lungs and kidneys of all animals. CNTs did not affect cell viability and their ability to differentiate in osteocytes and adipocytes. Both the CNTs and the magnetic field did not alter the cell growth rate, phenotype and cytoskeletal conformation. CNTs, when exposed to magnetic fields, are able to shepherd MSCs towards the magnetic source in vitro. Moreover, the application of a magnetic field alters the biodistribution of CNT-labelled MSCs after intravenous injection into rats, increasing the accumulation of cells into the target organ (liver). Multiwalled CNTs hold the potential for use as nanodevices to improve therapeutic protocols for transplantation and homing of stem cells in vivo. This could pave the way for the development of new strategies for the manipulation/guidance of MSCs in regenerative medicine and cell transplantation.

  4. Dynamic manipulation of magnetic contrast agents in photoacoustic imaging

    Science.gov (United States)

    Jia, Congxian; Xia, Jinjun; Pelivanov, Ivan M.; Seo, Chi Hyung; Hu, Xiaoge; Jin, Yongdong; Gao, Xiaohu; O'Donnell, Matthew

    2011-03-01

    Magnetic nanoparticles (MNPs) have been used extensively ex vivo for cellular and molecular separations. We recently showed that a coupled nanoparticle combining a superparamagnetic core with a thin, isolated gold shell providing strong absorption in the near infrared can be used for magnetomotive photoacoustic imaging (mmPA), a new technique in which magnetic manipulation of the particle during PA imaging greatly enhances molecular contrast specificity. This particle can also be biologically targeted for in vivo applications, where mmPA imaging provides a spatially localized readout of magnetic manipulations. As an initial test of potential in vivo molecular assays and integrated molecular therapeutics using magnetic manipulation of nanoparticles, we present experiments demonstrating PA readout of trapped magnetic particles in a flow field. An aqueous solution containing a concentration of 0.05-mg/ml 10-μM superparamagnetic iron oxide particles flowed in a 1.65-mm diameter Zeus PTFE (Teflon) sublite wall tubing at three velocities of 0.8, 1.5 and 3.0-mm/s. Opposed permanent magnets separated by 40-mm were positioned on both sides of the tube. As expected, the targeted objects can be magnetically captured and accumulated locally. By translating the magnets, a dynamic magnetic field (0.1-0.3-T) was alternately generated on the side of the tube closest to one of the magnets and created a synchronous PA motion from accumulated targeted objects. This synchronized motion can be used to differentiate the stationary background or other PA sources moving asynchronously with magnetic manipulations (e.g., moving blood) from targeted cells moving synchronously with the magnetic field. This technology can potentially provide sensitive molecular assays of cellular targets travelling in the vasculature (e.g., metastatic tumor cells).

  5. Magnetism of elementary particles

    CERN Document Server

    Vonsovsky, S V

    1975-01-01

    Spin magnetic moment of the electron ; magnetism of the atomic electron shell ; magnetism of nucleons (protons and neutrons) and atomic nuclei ; anomalous magnetic moments of elementary particles ; the magnetic monopole ; non-linear quantum-electrodynamic effects in a magnetic field.

  6. Umsetzung des KDSF-Datenmodells in VIVO

    OpenAIRE

    Walther, Tatiana; Hauschke, Christian

    2017-01-01

    Im Rahmen des Projekts „Umsetzung Kerndatensatz Forschung in VIVO“ wird am Open Science Lab der Technischen Informationsbibliothek Hannover (TIB) der Versuch unternommen, den Kerndatensatz Forschung in das Forschungsinformationssystem VIVO zu integrieren. Entwurf KDSF-VIVO-Alignment und KDSF-VIVO-Extension: https://github.com/VIVO-DE/VIVO-KDSF-Integration

  7. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  8. Magnetic Surgery

    Science.gov (United States)

    Rivas, Homero; Robles, Ignacio; Riquelme, Francisco; Vivanco, Marcelo; Jiménez, Julio; Marinkovic, Boris; Uribe, Mario

    2018-01-01

    Objective: To evaluate a new magnetic surgical system during reduced-port laparoscopic cholecystectomy in a prospective, multicenter clinical trial. Background: Laparoscopic instrumentation coupled by magnetic fields may enhance surgeon performance by allowing for shaft-less retraction and mobilization. The movements can be performed under direct visualization, generating different angles of traction and reducing the number of trocars to perform the procedure. This may reduce well-known associated complications of trocars, including incisional pain, scarring, infection, bowel, and vascular injuries, among others. Methods: A prospective, multicenter, single-arm, open-label study was performed to assess the safety and performance of a magnetic surgical system (Levita Magnetics’ Surgical System). The investigational device was used during a 3-port laparoscopic technique. The primary endpoints evaluated were safety and feasibility of the device to adequately mobilize the gallbladder to achieve effective exposure of the targeted surgical site. Patients were followed for 30 days postprocedure. Results: Between January 2014 and March 2015, 50 patients presenting with benign gallbladder disease were recruited. Forty-five women and 5 men with an average age of 39 years (18–59), average body mass index of 27 kg/m2 (20.4–34.1) and an average abdominal wall thickness of 2.6 cm (1.8–4.6). The procedures were successfully performed in all 50 patients. No device-related serious adverse events were reported. Surgeons rated as “excellent” (90%) or “sufficient” (10%) the exposure of the surgical site. Conclusions: This clinical trial shows that this new magnetic surgical system is safe and effective in reduced-port laparoscopic cholecystectomy. PMID:27759614

  9. Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  10. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  11. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  12. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  13. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR...

  14. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.

    Science.gov (United States)

    Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori

    2017-07-01

    The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture. Their topological spin arrangements and consequent emergent electromagnetic fields give rise to striking features in transport and magnetoelectric properties in metals and insulators, such as the topological Hall effect, efficient electric-drive of skyrmions, and multiferroic behavior. Such electric controllability and nanometric particle natures highlight magnetic skyrmions as a potential information carrier for high-density magnetic storage devices with excellent energy efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shuffled magnetization-prepared multicontrast rapid gradient-echo imaging.

    Science.gov (United States)

    Cao, Peng; Zhu, Xucheng; Tang, Shuyu; Leynes, Andrew; Jakary, Angela; Larson, Peder E Z

    2018-01-01

    To develop a novel acquisition and reconstruction method for magnetization-prepared 3-dimensional multicontrast rapid gradient-echo imaging, using Hankel matrix completion in combination with compressed sensing and parallel imaging. A random k-space shuffling strategy was implemented in simulation and in vivo human experiments at 7 T for 3-dimensional inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. We combined compressed sensing, based on total variation and spatial-temporal low-rank regularizations, and parallel imaging with pixel-wise Hankel matrix completion, allowing the reconstruction of tens of multicontrast 3-dimensional images from 3- or 6-min scans. The simulation result showed that the proposed method can reconstruct signal-recovery curves in each voxel and was robust for typical in vivo signal-to-noise ratio with 16-times acceleration. In vivo studies achieved 4 to 24 times accelerations for inversion recovery, T2 /diffusion preparation, and magnetization transfer imaging. Furthermore, the contrast was improved by resolving pixel-wise signal-recovery curves after magnetization preparation. The proposed method can improve acquisition efficiencies for magnetization-prepared MRI and tens of multicontrast 3-dimensional images could be recovered from a single scan. Furthermore, it was robust against noise, applicable for recovering multi-exponential signals, and did not require any previous knowledge of model parameters. Magn Reson Med 79:62-70, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnet ic gun * magnet ostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  17. Ferroelectricity in spiral magnets.

    Science.gov (United States)

    Mostovoy, Maxim

    2006-02-17

    It was recently observed that the ferroelectrics showing the strongest sensitivity to an applied magnetic field are spiral magnets. We present a phenomenological theory of inhomogeneous ferroelectric magnets, which describes their thermodynamics and magnetic field behavior, e.g., dielectric susceptibility anomalies at magnetic transitions and sudden flops of electric polarization in an applied magnetic field. We show that electric polarization can also be induced at domain walls and that magnetic vortices carry electric charge.

  18. Visualization of flow structures in Fontan patients using 3-dimensional phase contrast magnetic resonance imaging

    National Research Council Canada - National Science Library

    Sundareswaran, Kartik S; Haggerty, Christopher M; de Zélicourt, Diane; Dasi, Lakshmi P; Pekkan, Kerem; Frakes, David H; Powell, Andrew J; Kanter, Kirk R; Fogel, Mark A; Yoganathan, Ajit P

    2012-01-01

    ...) using in vivo phase contrast magnetic resonance imaging (PC MRI). Sixteen single-ventricle patients were prospectively recruited at 2 leading pediatric institutions for PC MRI evaluation of their Fontan pathway...

  19. Glioma survival prediction with the combined analysis of in vivo 11C-MET-PET, ex vivo and patient features by supervised machine learning.

    Science.gov (United States)

    Papp, Laszlo; Poetsch, Nina; Grahovac, Marko; Schmidbauer, Victor; Woehrer, Adelheid; Preusser, Matthias; Mitterhauser, Markus; Kiesel, Barbara; Wadsak, Wolfgang; Beyer, Thomas; Hacker, Marcus; Traub-Weidinger, Tatjana

    2017-11-24

    Gliomas are the most common types of tumors in the brain. While the definite diagnosis is routinely made ex vivo by histopathologic and molecular examination, diagnostic work-up of patients with suspected glioma is mainly done by using magnetic resonance imaging (MRI). Nevertheless, L-S-methyl-11C-methionine (11C-MET) Positron Emission Tomography (PET) holds a great potential in characterization of gliomas. The aim of this study was to establish machine learning (ML) driven survival models for glioma built on 11C-MET-PET, ex vivo and patient characteristics. Methods: 70 patients with a treatment naïve glioma, who had a positive 11C-MET-PET and histopathology-derived ex vivo feature extraction, such as World Health Organization (WHO) 2007 tumor grade, histology and isocitrate dehydrogenase (IDH1-R132H) mutation status were included. The 11C-MET-positive primary tumors were delineated semi-automatically on PET images followed by the feature extraction of tumor-to-background ratio based general and higher-order textural features by applying five different binning approaches. In vivo and ex vivo features, as well as patient characteristics (age, weight, height, body-mass-index, Karnofsky-score) were merged to characterize the tumors. Machine learning approaches were utilized to identify relevant in vivo, ex vivo and patient features and their relative weights for 36 months survival prediction. The resulting feature weights were used to establish three predictive models per binning configuration based on a combination of: in vivo/ex vivo and clinical patient information (M36IEP), in vivo and patient-only information (M36IP), and in vivo only (M36I). In addition a binning-independent ex vivo and patient-only (M36EP) model was created. The established models were validated in a Monte Carlo (MC) cross-validation scheme. Results: Most prominent ML-selected and -weighted features were patient and ex vivo based followed by in vivo features. The highest area under the curve

  20. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Zheng; Chang, Zhimin; Lu, Mengmeng; Shao, Dan; Yue, Juan; Yang, Dian; Zheng, Xiao; Li, Mingqiang; He, Kan; Zhang, Ming; Chen, Li; Dong, Wen-Fei

    2017-11-04

    Magnetic nanoparticles (NPs) have emerged as a promising tool for suicide gene therapy. However, the separate delivery of the suicide gene and prodrug in current systems limits their clinical translation. Therefore, improving magnetically mediated suicide gene therapy by exploring higher performance magnetic NP-based hybrid nanoplatforms is an important challenge. In the current study, shape-controlled magnetic mesoporous silica nanoparticles (M-MSNs) were prepared, and their performance in magnetic resonance imaging (MRI)-guided, magnetically targeted and hyperthermia-enhanced suicide gene therapy of hepatocellular carcinoma (HCC) was investigated. Compared with sphere-like MSNs, rod-like MSNs exhibited higher loading capacity, faster prodrug release behavior, stronger magnetically enhanced gene delivery and better magnetic hyperthermia properties. Utilizing the improved magnetic properties of the M-MSNs allowed us to demonstrate highly effective dual magnetically enhanced suicide gene therapy in vivo with decreased systematic toxicity and with the ability to monitor therapeutic outcome by MRI. Because of their magnetic targeting abilities, magnetic hyperthermia performance and MRI properties, these M-MSNs might prove to be a potentially superior candidate for suicide gene therapy of HCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Magnetic fluids - suspensions of magnetic dipoles and their magnetic control

    CERN Document Server

    Odenbach, S

    2003-01-01

    Suspensions of magnetic nanoparticles exhibit normal liquid behaviour coupled with superparamagnetic properties. This leads to the possibility to control the properties and the flow of these liquids with moderate magnetic fields. The magnetic control enables various experiments in fluid mechanics and gives rise to the development of numerous technical and medical applications. Ferrofluids and their general properties will be introduced and, as examples for the magnetic control of their flow and properties, thermomagnetic convection and magnetoviscous effects will be discussed in some detail.

  2. Thin Magnetically Soft Wires for Magnetic Microsensors

    Directory of Open Access Journals (Sweden)

    Arcady Zhukov

    2009-11-01

    Full Text Available Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1–30 μm in diameter have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

  3. Electrically Tunable Magnetism in Magnetic Topological Insulators.

    Science.gov (United States)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-17

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  4. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  5. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  6. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Science.gov (United States)

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  7. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  8. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Science.gov (United States)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  9. Breast Tissue Metabolism by Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Jagannathan, Naranamangalam R; Sharma, Uma

    2017-06-07

    Metabolic alterations are known to occur with oncogenesis and tumor progression. During malignant transformation, the metabolism of cells and tissues is altered. Cancer metabolism can be studied using advanced technologies that detect both metabolites and metabolic activities. Identification, characterization, and quantification of metabolites (metabolomics) are important for metabolic analysis and are usually done by nuclear magnetic resonance (NMR) or by mass spectrometry. In contrast to the magnetic resonance imaging that is used to monitor the tumor morphology during progression of the disease and during therapy, in vivo NMR spectroscopy is used to study and monitor tumor metabolism of cells/tissues by detection of various biochemicals or metabolites involved in various metabolic pathways. Several in vivo, in vitro and ex vivo NMR studies using ¹H and 31P magnetic resonance spectroscopy (MRS) nuclei have documented increased levels of total choline containing compounds, phosphomonoesters and phosphodiesters in human breast cancer tissues, which is indicative of altered choline and phospholipid metabolism. These levels get reversed with successful treatment. Another method that increases the sensitivity of substrate detection by using nuclear spin hyperpolarization of 13C-lableled substrates by dynamic nuclear polarization has revived a great interest in the study of cancer metabolism. This review discusses breast tissue metabolism studied by various NMR/MRS methods.

  10. Breast Tissue Metabolism by Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naranamangalam R. Jagannathan

    2017-06-01

    Full Text Available Metabolic alterations are known to occur with oncogenesis and tumor progression. During malignant transformation, the metabolism of cells and tissues is altered. Cancer metabolism can be studied using advanced technologies that detect both metabolites and metabolic activities. Identification, characterization, and quantification of metabolites (metabolomics are important for metabolic analysis and are usually done by nuclear magnetic resonance (NMR or by mass spectrometry. In contrast to the magnetic resonance imaging that is used to monitor the tumor morphology during progression of the disease and during therapy, in vivo NMR spectroscopy is used to study and monitor tumor metabolism of cells/tissues by detection of various biochemicals or metabolites involved in various metabolic pathways. Several in vivo, in vitro and ex vivo NMR studies using 1H and 31P magnetic resonance spectroscopy (MRS nuclei have documented increased levels of total choline containing compounds, phosphomonoesters and phosphodiesters in human breast cancer tissues, which is indicative of altered choline and phospholipid metabolism. These levels get reversed with successful treatment. Another method that increases the sensitivity of substrate detection by using nuclear spin hyperpolarization of 13C-lableled substrates by dynamic nuclear polarization has revived a great interest in the study of cancer metabolism. This review discusses breast tissue metabolism studied by various NMR/MRS methods.

  11. Breast Tissue Metabolism by Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Jagannathan, Naranamangalam R.; Sharma, Uma

    2017-01-01

    Metabolic alterations are known to occur with oncogenesis and tumor progression. During malignant transformation, the metabolism of cells and tissues is altered. Cancer metabolism can be studied using advanced technologies that detect both metabolites and metabolic activities. Identification, characterization, and quantification of metabolites (metabolomics) are important for metabolic analysis and are usually done by nuclear magnetic resonance (NMR) or by mass spectrometry. In contrast to the magnetic resonance imaging that is used to monitor the tumor morphology during progression of the disease and during therapy, in vivo NMR spectroscopy is used to study and monitor tumor metabolism of cells/tissues by detection of various biochemicals or metabolites involved in various metabolic pathways. Several in vivo, in vitro and ex vivo NMR studies using 1H and 31P magnetic resonance spectroscopy (MRS) nuclei have documented increased levels of total choline containing compounds, phosphomonoesters and phosphodiesters in human breast cancer tissues, which is indicative of altered choline and phospholipid metabolism. These levels get reversed with successful treatment. Another method that increases the sensitivity of substrate detection by using nuclear spin hyperpolarization of 13C-lableled substrates by dynamic nuclear polarization has revived a great interest in the study of cancer metabolism. This review discusses breast tissue metabolism studied by various NMR/MRS methods. PMID:28590405

  12. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  13. Magnetic Resonance Imaging

    Science.gov (United States)

    ... specific information about your own examination. What is magnetic resonance imaging (MRI)? What is MRI used for? How safe ... What is the MRI examination like? What is magnetic resonance imaging (MRI)? MRI, or magnetic resonance imaging, is a ...

  14. Magnetism of Carbonados

    Science.gov (United States)

    Kletetschka, G.; Taylor, P. T.; Wasilewski, P. J.

    2000-01-01

    Origin of Carbonado is not clear. Magnetism of Carbonado comes from the surface, indicating contemporary formation of both the surface and magnetic carriers. The interior of carbonado is relatively free of magnetic phases.

  15. In Vivo EPR Resolution Enhancement Using Techniques Known from Quantum Computing Spin Technology.

    Science.gov (United States)

    Rahimi, Robabeh; Halpern, Howard J; Takui, Takeji

    2017-01-01

    A crucial issue with in vivo biological/medical EPR is its low signal-to-noise ratio, giving rise to the low spectroscopic resolution. We propose quantum hyperpolarization techniques based on 'Heat Bath Algorithmic Cooling', allowing possible approaches for improving the resolution in magnetic resonance spectroscopy and imaging.

  16. Biosensing utilizing magnetic markers and superconducting quantum interference devices

    Science.gov (United States)

    Enpuku, Keiji; Tsujita, Yuya; Nakamura, Kota; Sasayama, Teruyoshi; Yoshida, Takashi

    2017-05-01

    Magnetic biosensing techniques that are based on the use of bio-functionalized magnetic nanoparticles (magnetic markers) and superconducting quantum interference devices (SQUIDs) are expected to have various advantages when compared with conventional biosensing methods. In this paper, we review the recent progress made in magnetic biosensing techniques. First, we describe the most important parameters of magnetic markers that are intended for use in biosensing, i.e., the magnetic signal and the relaxation time that are determined by the Brownian and/or Néel relaxation mechanisms. We note that these parameters are significantly dependent on the marker size, and as a result, commercial markers exhibit a wide variety of values for these key parameters. Next, we describe three measurement methods that have been developed based on the magnetic properties of these markers, i.e., AC susceptibility, relaxation and remanence-based measurement methods. The weak (picotesla-range) signals emitted by the markers can be measured precisely with a SQUID system using these methods. Finally, we give examples of biosensing for in vitro and in vivo medical diagnosis applications. For in vitro diagnosis, high-sensitivity detection of various biological targets has been demonstrated without use of any washing process to separate the bound and free markers. For in vivo applications, detection of the quantities and the three-dimensional positions of the markers that have been injected into the test subject are demonstrated. These results confirm the effectiveness of magnetic biosensing techniques.

  17. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  18. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  19. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    Enhancing the magnetic properties of magnetic nanoparticles J. V. Ahlburg, M. S. Músquiz, C. Zeuthen, S. Kjeldgaard, M. Stingaciu, M. Christensen Center for Materials Crystallography, Departement of Chemistry & iNano, Aarhus University, Denmark Strong magnets with a high energy product are vital...

  20. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets with a sim...

  1. Methodological standardization for a multi-institutional in vivo trial of localized 31P MR spectroscopy in human cancer research. In vitro and normal volunteer studies.

    NARCIS (Netherlands)

    Arias-Mendoza, F.; Zakian, K.L.; Schwartz, A.; Howe, F.A.; Koutcher, J.A.; Leach, M.O.; Griffiths, J.R.; Heerschap, A.; Glickson, J.D.; Nelson, S.J.; Evelhoch, J.L.; Charles, H.C.; Brown, T.R.

    2004-01-01

    A multi-institutional group has been created to demonstrate the utility of in vivo 31P magnetic resonance spectroscopy (31P-MRS) to study human cancers in vivo. This review is concerned with the novel problems concerning quality control in this large multinational trial of 31P MRS. Our results show

  2. Storage of nuclear magnetization as long-lived singlet order in low magnetic field.

    Science.gov (United States)

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H

    2010-10-05

    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  3. In vivo histamine optical nanosensors.

    Science.gov (United States)

    Cash, Kevin J; Clark, Heather A

    2012-01-01

    In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores.

  4. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  5. Validation of Transverse Oscillation Vector Velocity Estimation In-Vivo

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Thomsen, Carsten

    2007-01-01

    method Transverse Oscillation (TO), which combines estimates of the axial and the transverse velocity components in the scan plane, makes it possible to estimate the vector velocity of the blood regardless of the Doppler angle. The present study evaluates the TO method with magnetic resonance angiography...... was constructed where the mean difference was 0.2 ml with limits of agreement at -1.4 ml and 1.9 ml (95 % CI for mean difference: -0.3 ml to 0.8 ml). The strong correlation and the low mean difference between the TO method and MRA indicates that reliable vector velocity estimates can be obtained in vivo using...

  6. Magnetic domains the analysis of magnetic microstructures

    CERN Document Server

    Hubert, Alex

    1998-01-01

    The book gives a systematic and comprehensive survey of the complete area of magnetic microstructures. It reaches from micromagnetism of nanoparticles to complex structures of extended magnetic materials. The book starts with a comprehensive evaluation of traditional and modern experimental methods for the observation of magnetic domains and continues with the treatment of important methods for the theoretical analysis of magnetic microcstructures. A survey of the necessary techniques in materials characterization is given. The book offers an observation and analysis of magnetic domains in all

  7. Hoosier Magnetics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-09-30

    Hoosier Magnetics proposes to replace the indirect clinker water cooling system with a cooling system that recycles heat from the hot ferrite to preheat the combustion air. This innovative process would significantly reduce the amount of natural gas required to heat the combustion air while eliminating Hoosier’s largest source of downtime. According to the Department of Energy’s Industrial Technologies Program for Energy Efficiency and Renewable Energy, process temperature is customarily used as a rough indication of where preheating air will be cost effective. Previous studies have concluded that processes operating above 1,600° F are ideal candidates for the utilization of pre-heated combustion air. Hoosier Magnetics’ operating temperatures run between 1800-2200° F making Hoosier the perfect candidate. Using preheated air at 1200° F will result in 35% fuel savings, or $298,935 annually. Additionally, the new system would have improved process reliability and result in both production efficiency increases and cost savings. This technology is NOT practiced or utilized on a wide-spread basis but could have a significant energy reduction impact in many different high heat utilizing industries in the country. While the energy savings is apparent with this theory the application and design of such a process has not been studied.

  8. Environmental magnetism

    CERN Document Server

    Thompson, Roy

    1986-01-01

    The scientist will be forced, in the unenthusiastic words of one of my scientific colleagues, 'to slosh about in the primordial ooze known as inter-disciplinary studies'. John Passmore Man's responsibility for nature The present text has arisen from some thirteen years advances in our perception, appraisal and creative use of collaboration between the two authors. During that of order in natural systems. Out of this can come period, upwards of a dozen postgraduates in enhanced insight into processes, structures and Edinburgh, the New University of Ulster and Liver­ systems interactions on all temporal and spatial scales pool have been closely involved in exploring many of and at all integrative levels from subatomic to cosmic. the applications of magnetic measurements described In the environment, elements of order are often in the second half of the book. Much of the text is difficult to appraise and analyse, not only because of based on their work, both published and unpublished. intrinsic complexity, but ...

  9. Comparison of in vivo and ex vivo imaging of the microvasculature with 2-photon fluorescence microscopy

    Science.gov (United States)

    Steinman, Joe; Koletar, Margaret; Stefanovic, Bojana; Sled, John G.

    2016-03-01

    This study evaluates 2-Photon fluorescence microscopy of in vivo and ex vivo cleared samples for visualizing cortical vasculature. Four mice brains were imaged with in vivo 2PFM. Mice were then perfused with a FITC gel and cleared in fructose. The same regions imaged in vivo were imaged ex vivo. Vessels were segmented automatically in both images using an in-house developed algorithm that accounts for the anisotropic and spatially varying PSF ex vivo. Through non-linear warping, the ex vivo image and tracing were aligned to the in vivo image. The corresponding vessels were identified through a local search algorithm. This enabled comparison of identical vessels in vivo/ex vivo. A similar process was conducted on the in vivo tracing to determine the percentage of vessels perfused. Of all the vessels identified over the four brains in vivo, 98% were present ex vivo. There was a trend towards reduced vessel diameter ex vivo by 12.7%, and the shrinkage varied between specimens (0% to 26%). Large diameter surface vessels, through a process termed 'shadowing', attenuated in vivo signal from deeper cortical vessels by 40% at 300 μm below the cortical surface, which does not occur ex vivo. In summary, though there is a mean diameter shrinkage ex vivo, ex vivo imaging has a reduced shadowing artifact. Additionally, since imaging depths are only limited by the working distance of the microscope objective, ex vivo imaging is more suitable for imaging large portions of the brain.

  10. Water-soluble magnetic nanoparticles with biologically active stabilizers

    Science.gov (United States)

    Zablotskaya, Alla; Segal, Izolda; Lukevics, Edmunds; Maiorov, Mikhail; Zablotsky, Dmitry; Blums, Elmars; Shestakova, Irina; Domracheva, Ilona

    2009-05-01

    We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.

  11. Water-soluble magnetic nanoparticles with biologically active stabilizers

    Energy Technology Data Exchange (ETDEWEB)

    Zablotskaya, Alla [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia)], E-mail: aez@osi.lv; Segal, Izolda; Lukevics, Edmunds [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia); Maiorov, Mikhail; Zablotsky, Dmitry; Blums, Elmars [Institute of Physics, University of Latvia, 32 Miera, Salaspils LV-2169 (Latvia); Shestakova, Irina; Domracheva, Ilona [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia)

    2009-05-15

    We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.

  12. Bifurcation magnetic resonance in films magnetized along hard magnetization axis

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)

    2012-09-15

    We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.

  13. Equilibrium magnetization and magnetization relaxation of multicore magnetic nanoparticles

    Science.gov (United States)

    Ilg, Patrick

    2017-06-01

    Multicore magnetic nanoparticles show promising features for biomedical applications. Their magnetic properties, however, are not well understood to date, so that several ad hoc assumptions are often needed to interpret experimental results. Here, we present a comprehensive computer simulation study on the effect of dipolar interactions and magnetic anisotropy on the equilibrium magnetization and magnetization relaxation dynamics of monodisperse multicore magnetic nanoparticles in viscous solvents. We include thermal fluctuations of the internal Néel relaxation via the stochastic Landau-Lifshitz-Gilbert equation coupled to rotational Brownian motion of the cluster. We find that the effective magnetic moment of the cluster is reduced compared to the noninteracting case due to frustrated dipole-dipole interactions. Furthermore, the magnetization relaxation is found to proceed in a two-step fashion with a fast initial decay being followed by a long-time relaxation. For moderate dipolar interaction strengths, the latter can be approximated quite well by an exponential decay with rate given by the sum of the relaxation rates in the immobilized state and the Brownian rotation. These findings can be helpful for a better interpretation of experimental data obtained from magnetization relaxation measurements.

  14. In aqua vivo EPID dosimetry

    NARCIS (Netherlands)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Ígor; Pecharromán-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; van Herk, Marcel; Mijnheer, Ben J.

    2012-01-01

    At the Netherlands Cancer Institute--Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the

  15. Monitoring of abdominal Staphylococcus aureus infection using magnetic resonance imaging

    DEFF Research Database (Denmark)

    Kromrey, M L; Göhler, A; Friedrich, N

    2017-01-01

    To establish a routine workflow for in vivo magnetic resonance imaging (MRI) of mice infected with bacterial biosafety level 2 pathogens and to generate a mouse model for systemic infection with Staphylococcus aureus suitable for monitoring by MRI. A self-contained acrylic glass animal bed...

  16. Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology

    DEFF Research Database (Denmark)

    Tardif, Christine L; Bedell, Barry J; Eskildsen, Simon Fristed

    2012-01-01

    Although significant improvements have been made regarding the visualization and characterization of cortical multiple sclerosis (MS) lesions using magnetic resonance imaging (MRI), cortical lesions (CL) continue to be under-detected in vivo, and we have a limited understanding of the causes of GM...

  17. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    for magnetic bioseparation, MRI contrast agent and drug delivery. For bioapplications (e.g. MRI contrast agent, bioseparation etc.), superparamagnetic particles are found superior to ferro/ferri magnetic particles due to absence of remanance. Since a magnetic mateiral exhibits magnetic properties only in the presence of a ...

  18. Molecule-based magnets

    Indian Academy of Sciences (India)

    Keywords. Molecular lattices; spin–spin interaction; photo-induced magnetism; single molecule magnets. ... Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be categorized on the basis of the chemical nature of the magnetic units involved: organic-, ...

  19. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    Magnetism in health care; magnetic biomaterials; magnetic intracellular hyperthermia. Abstract. Magnetism plays an important role in different applications of health care. Magnetite (Fe34) is ... Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology – Bombay, Mumbai 400 076, India ...

  20. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  1. In aqua vivo EPID dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  2. Fundamentals of magnetism

    CERN Document Server

    Reis, Mario

    2013-01-01

    The Fundamentals of Magnetism is a truly unique reference text, that explores the study of magnetism and magnetic behavior with a depth that no other book can provide. It covers the most detailed descriptions of the fundamentals of magnetism providing an emphasis on statistical mechanics which is absolutely critical for understanding magnetic behavior. The books covers the classical areas of basic magnetism, including Landau Theory and magnetic interactions, but features a more concise and easy-to-read style. Perfect for upper-level graduate students and industry researchers, The Fu

  3. Facility Measures Magnetic Fields

    Science.gov (United States)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  4. Ultrafast magnetization dynamics

    OpenAIRE

    Woodford, S.

    2008-01-01

    This thesis addresses ultrafast magnetization dynamics from a theoretical perspective. The manipulation of magnetization using the inverse Faraday effect has been studied, as well as magnetic relaxation processes in quantum dots. The inverse Faraday effect – the generation of a magnetic field by nonresonant, circularly polarized light – offers the possibility to control and reverse magnetization on a timescale of a few hundred femtoseconds. This is important both for the technological advant...

  5. Magnetizing the universe

    Indian Academy of Sciences (India)

    Maintaining magnetic fields. Magnetic fields decay if not maintained, because of: Resistance dissipating currents (∼ 20,000 yr for earth) ... Motion in a magnetic field induces electric fields. If this electric field has a curl, can re-generate magnetic fields. ∂B. ∂t. = ∇ × (U × B) + η∇. 2. B. Magnetic Field almost frozen to moving ...

  6. Heteropolar Magnetic Suspension

    Science.gov (United States)

    Misovec, Kathleen; Johnson, Bruce; Downer, James; Eisenhaure, David; Hockney, Richard

    1990-01-01

    Compact permanent-magnet/electromagnet actuator has six degrees of freedom. Heteropolar magnetic actuator conceived for use as actively controlled vibration-isolating suspension device. Exerts forces along, and torques about, all three principal coordinate axes to resist all three components of translational vibration and all three components of rotational vibration. Inner cylinder suspended magnetically within outer cylinder. Electro-magnet coils interact with fields of permanent magnets to provide active control of suspending force and torque.

  7. Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)

    2016-12-01

    Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.

  8. Extended use of superconducting magnets for bio-medical development

    Energy Technology Data Exchange (ETDEWEB)

    Stoynev, Stoyan E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-19

    Magnetic fields interact with biological cells affecting them in variety of ways which are usually hard to predict. Among them, it was observed that strong fields can align dividing cells in a preferred direction. It was also demonstrated that dividing cancer cells are effectively destroyed by applying electric fields in vivo with a success rate dependent on the cell-to-field orientation. Based on these facts, the present note aims to suggest the use of magnetic and electric fields for improved cancer treatment. Several possibilities of generating the electric fields inside the magnetic field volume are reviewed, main tentative approaches are described and discussed. Most if not all of them require special magnet configuration research which can be based on existing magnet systems in operation or in development.

  9. Advanced Magnetic Nanostructures

    CERN Document Server

    Sellmyer, David

    2006-01-01

    Advanced Magnetic Nanostructures is devoted to the fabrication, characterization, experimental investigation, theoretical understanding, and utilization of advanced magnetic nanostructures. Focus is on various types of 'bottom-up' and 'top-down' artificial nanostructures, as contrasted to naturally occurring magnetic nanostructures, such as iron-oxide inclusions in magnetic rocks, and to structures such as perfect thin films. Chapter 1 is an introduction into some basic concepts, such as the definitions of basic magnetic quantities. Chapters 2-4 are devoted to the theory of magnetic nanostructures, Chapter 5 deals with the characterization of the structures, and Chapters 6-10 are devoted to specific systems. Applications of advanced magnetic nanostructures are discussed in Chapters11-15 and, finally, the appendix lists and briefly discusses magnetic properties of typical starting materials. Industrial and academic researchers in magnetism and related areas such as nanotechnology, materials science, and theore...

  10. Cosmological magnetic fields

    Science.gov (United States)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  11. Photoactivated In Vivo Proximity Labeling.

    Science.gov (United States)

    Beck, David B; Bonasio, Roberto

    2017-06-19

    Identification of molecular interactions is paramount to understanding how cells function. Most available technologies rely on co-purification of a protein of interest and its binding partners. Therefore, they are limited in their ability to detect low-affinity interactions and cannot be applied to proteins that localize to difficult-to-solubilize cellular compartments. In vivo proximity labeling (IPL) overcomes these obstacles by covalently tagging proteins and RNAs based on their proximity in vivo to a protein of interest. In IPL, a heterobifunctional probe comprising a photoactivatable moiety and biotin is recruited by a monomeric streptavidin tag fused to a protein of interest. Following UV irradiation, candidate interacting proteins and RNAs are covalently biotinylated with tight spatial and temporal control and subsequently recovered using biotin as an affinity handle. Here, we describe experimental protocols to discover novel protein-protein and protein-RNA interactions using IPL. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. A model for predicting magnetic targeting of multifunctional particles in the microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, Edward J. [Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo 14260, NY (United States); Furlani, Edward P. [Institute for Lasers, Photonics and Biophotonics, University at Buffalo (SUNY), Buffalo 14260, NY (United States)]. E-mail: efurlani@buffalo.edu

    2007-05-15

    A mathematical model is presented for predicting magnetic targeting of multifunctional carrier particles that are designed to deliver therapeutic agents to malignant tissue in vivo. These particles consist of a nonmagnetic core material that contains embedded magnetic nanoparticles and therapeutic agents such as photodynamic sensitizers. For in vivo therapy, the particles are injected into the vascular system upstream from malignant tissue, and captured at the tumor using an applied magnetic field. The applied field couples to the magnetic nanoparticles inside the carrier particle and produces a force that attracts the particle to the tumor. In noninvasive therapy, the applied field is produced by a permanent magnet positioned outside the body. In this paper, a mathematical model is developed for predicting noninvasive magnetic targeting of therapeutic carrier particles in the microvasculature. The model takes into account the dominant magnetic and fluidic forces on the particles and leads to an analytical expression for predicting their trajectory. An analytical expression is also derived for predicting the volume fraction of embedded magnetic nanoparticles required to ensure capture of the carrier particle at the tumor. The model enables rapid parametric analysis of magnetic targeting as a function of key variables including the size of the carrier particle, the properties and volume fraction of the embedded magnetic nanoparticles, the properties of the magnet, the microvessel, the hematocrit of the blood and its flow rate.

  13. In vivo imaging of sulfotransferases

    Science.gov (United States)

    Barrio, Jorge R; Kepe, Vladimir; Small, Gary W; Satyamurthy, Nagichettiar

    2013-02-12

    Radiolabeled tracers for sulfotransferases (SULTs), their synthesis, and their use are provided. Included are substituted phenols, naphthols, coumarins, and flavones radiolabeled with .sup.18F, .sup.123I, .sup.124I, .sup.125I, or .sup.11C. Also provided are in vivo techniques for using these and other tracers as analytical and diagnostic tools to study sulfotransferase distribution and activity, in health and disease, and to evaluate therapeutic interventions.

  14. Magnetic separation of micro-spheres from viscous biological fluids

    Science.gov (United States)

    Chen, Haitao; Kaminski, Michael D.; Caviness, Patricia L.; Xianqiao, Liu; Dhar, Promila; Torno, Michael; Rosengart, Axel J.

    2007-02-01

    A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.

  15. Magnetic separation of micro-spheres from viscous biological fluids.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Kaminski, M. D.; Xianqiao, L.; Caviness, P.; Torno, M.; Rosengart, A. J.; Dhar, P.; Chemical Engineering; Univ. of Chicago Pritzker School of Medicine; Illinois Inst. of Tech.

    2007-02-21

    A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.

  16. Magnetic separation of micro-spheres from viscous biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haitao [Department of Neurology, University of Chicago Pritzker School of Medicine, Chicago, IL 60637 (United States); Kaminski, Michael D [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Caviness, Patricia L [Department of Neurology, University of Chicago Pritzker School of Medicine, Chicago, IL 60637 (United States); Liu Xianqiao [Department of Neurology, University of Chicago Pritzker School of Medicine, Chicago, IL 60637 (United States); Dhar, Promila [Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 (United States); Torno, Michael [Department of Neurology, University of Chicago Pritzker School of Medicine, Chicago, IL 60637 (United States); Rosengart, Axel J [Department of Neurology, University of Chicago Pritzker School of Medicine, Chicago, IL 60637 (United States)

    2007-02-21

    A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v = 39:61 and v:v = 49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.

  17. Submicron magnetic core conducting polypyrrole polymer shell: Preparation and characterization.

    Science.gov (United States)

    Tenório-Neto, Ernandes Taveira; Baraket, Abdoullatif; Kabbaj, Dounia; Zine, Nadia; Errachid, Abdelhamid; Fessi, Hatem; Kunita, Marcos Hiroiuqui; Elaissari, Abdelhamid

    2016-04-01

    Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and both in vivo diagnosis and therapy. For in vitro applications and especially in labs-on-a-chip, microfluidics, microsystems, or biosensors, the needed magnetic dispersion should answer various criteria, for instance, submicron size in order to avoid a rapid sedimentation rate, fast separations under an applied magnetic field, and appreciable colloidal stability (stable dispersion under shearing process). Then, the aim of this work was to prepare highly magnetic particles with a magnetic core and conducting polymer shell particles in order to be used not only as a carrier, but also for the in vitro detection step. The prepared magnetic seed dispersions were functionalized using pyrrole and pyrrole-2-carboxylic acid. The obtained core-shell particles were characterized in terms of particle size, size distribution, magnetization properties, FTIR analysis, surface morphology, chemical composition, and finally, the conducting property of those particles were evaluated by cyclic voltammetry. The obtained functional submicron highly magnetic particles are found to be conducting material bearing function carboxylic group on the surface. These promising conducting magnetic particles can be used for both transport and lab-on-a-chip detection. Copyright © 2015. Published by Elsevier B.V.

  18. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    Science.gov (United States)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p early phase of neuronal dysfunction of neurotransmitters.

  19. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  20. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  1. Magnet and device for magnetic density separation

    NARCIS (Netherlands)

    Polinder, H.; Rem, P.C.

    2014-01-01

    A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is

  2. Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss

    DEFF Research Database (Denmark)

    Archibald, Sarah L.; Masliah, Eliezer; Fennema-Notestine, Christine

    2004-01-01

    previous studies have linked brain viral levels to these alterations, other neuropathological mechanisms might also contribute to them. OBJECTIVE: To examine the relationship between findings on premortem magnetic resonance images and postmortem neuropathologic evidence of human immunodeficiency virus (HIV......) encephalitis and neurodegeneration. DESIGN: Morphometric analysis of magnetic resonance imaging in seropositive cases with matched seronegative controls, and the correlation of these volumes to neuropathological measures in autopsied seropositive cases. SETTING: University of California, San Diego, HIV...... Neurobehavioral Research Center. SUBJECTS: Twenty-one seropositive subjects studied at autopsy and 19 seronegative cases. MAIN OUTCOME MEASURES: In vivo structural magnetic resonance imaging data analyzed by quantitative methods, with comparison of volumes from magnetic resonance imaging and neuropathological...

  3. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  4. Experiments on Magnetic Materials

    Science.gov (United States)

    Schneider, C. S.; Ertel, John P.

    1978-01-01

    Describes the construction and use of a simple apparatus to measure the magnetization density and magnetic susceptibility of ferromagnetic, paramagnetic, and the diamagnetic solids and liquids. (Author/GA)

  5. Boulder Magnetic Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are vector and scalar component values of the Earth's magnetic field for 2004 recorded at the Boulder Magnetic Observatory in Colorado. Vector values are...

  6. Magnetic resonance angiography

    Science.gov (United States)

    MRA; Angiography - magnetic resonance ... Kwong RY. Cardiovascular magnetic resonance imaging. In: Bonow RO, Mann DL, Zipes DP, Libby P, Braunwald E, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular ...

  7. An integrated magnetics component

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an integrated magnetics component comprising a magnetically permeable core comprising a base member extending in a horizontal plane and first, second, third and fourth legs protruding substantially perpendicularly from the base member. First, second, third...... and fourth output inductor windings are wound around the first, second, third and fourth legs, respectively. A first input conductor of the integrated magnetics component has a first conductor axis and extends in-between the first, second, third and fourth legs to induce a first magnetic flux through a first...... flux path of the magnetically permeable core. A second input conductor of the integrated magnetics component has a second coil axis extending substantially perpendicularly to the first conductor axis to induce a second magnetic flux through a second flux path of the magnetically permeable core...

  8. Enhanced Magnetic Model 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  9. ISR magnet power supplies

    CERN Multimedia

    1970-01-01

    At the left, for the main magnets, the 18 kV switchgear is in the foreground and at the rear are cubicles with rectifiers and filters. At the right, rear, are rectifiers for pole face windings and auxiliary magnets.

  10. Enhanced Magnetic Model 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Enhanced Magnetic Model (EMM) extends to degree and order 720, resolving magnetic anomalies down to 56 km wavelength. The higher resolution of the EMM results in...

  11. Optimally segmented magnetic structures

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, Christian; Bjørk, Rasmus

    We present a semi-analytical algorithm for magnet design problems, which calculates the optimal way to subdivide a given design region into uniformly magnetized segments.The availability of powerful rare-earth magnetic materials such as Nd-Fe-B has broadened the range of applications of permanent...... is not available.We will illustrate the results for magnet design problems from different areas, such as electric motors/generators (as the example in the picture), beam focusing for particle accelerators and magnetic refrigeration devices....... magnets[1][2]. However, the powerful rare-earth magnets are generally expensive, so both the scientific and industrial communities have devoted a lot of effort into developing suitable design methods. Even so, many magnet optimization algorithms either are based on heuristic approaches[3...

  12. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  13. Three - dimensional magnetic field observation vessel using magnetic fluid

    OpenAIRE

    櫻井, 勇良

    2011-01-01

    In this study, an observation vessel which could depict magnetic field distributions in threedimensionswas produced. The magnetic field observation vessel was made by putting magnetic fluid and water in a transparent square shaped glass container. Observation of both permanent magnet andelectromagnets was carried out. The movement of the magnetic fluid is different depending on the placement of the magnetic poles. The magnetic fluid showed a tendency to gather near each magnetic pole, when it...

  14. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  15. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  16. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    opaque classical magnet 'cousins' listed above, possibilities of photomagnetic switching exist. Persistent efforts also continue to design the ever-elusive polymer magnets towards applications in industry. While pro- viding a brief overview of the field of molecular magnetism, this article highlights some recent developments.

  17. Magnetism in meteorites

    Science.gov (United States)

    Herndon, J. M.; Rowe, M. W.

    1974-01-01

    An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered.

  18. Magnetic polarizability of pion

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2016-10-01

    Full Text Available We explore the energy dependence of π mesons off the background Abelian magnetic field on the base of quenched SU(3 lattice gauge theory and calculate the magnetic dipole polarizability of charged and neutral pions for various lattice volumes and lattice spacings. The contribution of the magnetic hyperpolarizability to the neutral pion energy has been also found.

  19. Iron dominated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  20. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  1. Common Magnets, Unexpected Polarities

    Science.gov (United States)

    Olson, Mark

    2013-01-01

    In this paper, I discuss a "misconception" in magnetism so simple and pervasive as to be typically unnoticed. That magnets have poles might be considered one of the more straightforward notions in introductory physics. However, the magnets common to students' experiences are likely different from those presented in educational…

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. Neuro magnetic stimulation: Engineering aspects

    Science.gov (United States)

    Al-Mutawaly, Nafia

    Magnetic nerve stimulation has proven to be an effective, non-invasive technique to excite peripheral and central nervous systems. In this technique, the excitement of the neural tissue depends on exposure to a transient magnetic field generated by passing a high pulse of current through a coil. By positioning the coil in a specific orientation over the targeted tissue, the transient magnetic field will induce an electric field in the conductive milieu of the body. If this field reaches a certain threshold within a specific time period, neural depolarization is then evident. The primary objective of this thesis is the development and testing of new coil designs that can focus the magnetic field more effectively. Two such coils have been built. The first coil has an air core, while the other has a magnetic core. The magnetic fields of these coils, applied to the human upper limb, have been determined theoretically, and the results compared to the field generated by the most common commercial coil, the Figure-8 coil. To design these coils and to test them experimentally, a current pulse generator has been designed and built. Further, a novel measurement system using surface mount inductances and a computer based data acquisition system has been designed and built. The experimental results confirm the theoretical findings, that the air core coil is slightly better than the Figure-8, as far as field strength and focality are concerned. In addition, the experimental results, prove that the coil with the ferromagnetic core, is superior. The second objective is to investigate the effect of stimulus waveforms theoretically, experimentally, and through in vivo study. The goals of the study are to establish a quantitative relationship among various waveforms and to investigate the effect of these waveforms in determining the site of stimulation. Accordingly, a multi subject trial was conducted: a Figure-8 coil was applied to the median nerve of ten subjects at the upper limb

  4. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  5. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  6. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  7. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  8. In vitro and in vivo study of commercial calcium phosphate cement HydroSet™.

    Science.gov (United States)

    Kent, Niall W; Blunn, Gordon; Karpukhina, Natalia; Davis, Graham; de Godoy, Roberta Ferro; Wilson, Rory M; Coathup, Melanie; Onwordi, Lyris; Quak, Wen Yu; Hill, Robert

    2018-01-01

    The commercial calcium phosphate cement, HydroSet™, was investigated in vitro, studying phase formation, compressive strength and setting time, followed by an ovine in vivo study to measure osseointegration, bone apposition and bone-to-graft contact. The X-ray diffraction and 31 P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) results showed the initial formation of octacalcium phosphate and hydroxyapatite at one hour. Over 7 days the octacalcium phosphate transformed to apatite, which was the only crystalline phase of the cement at 28 days. This apatite phase is thought to be a calcium deficient apatite. In the scanning electron microscopy, histological images of 12-week ovine in vivo results showed a high degree of osseointegration, 92.5%. Compressive strength comparisons between in vitro and in vivo measurements showed a dramatic difference between the in vitro measurements (highest 25.4 MPa) and in vivo (95 MPa), attributed to bone ingrowth into the cement in vivo. To the best of our knowledge this is the first time phase evolution of HydroSet™ and the properties studied in vitro complement the in vivo evaluation of the cement in a publication. The significance of the new finding of initial formation of octacalcium phosphate in this cement is discussed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 21-30, 2018. © 2016 Wiley Periodicals, Inc.

  9. A magnetic force sensor on a catheter tip for minimally invasive surgery.

    Science.gov (United States)

    Chatzipirpiridis, G; Erne, P; Ergeneman, O; Pane, S; Nelson, B J

    2015-08-01

    This paper presents a magnetically guided catheter for minimally invasive surgery (MIS) with a magnetic force sensing tip. The force sensing element utilizes a magnetic Hall sensor and a miniature permanent magnet mounted on a flexible encapsulation acting as the sensing membrane. It is capable of high sensitivity and robust force measurements suitable for in-vivo applications. A second larger magnet placed on the catheter allows the catheter to be guided by applying magnetic fields. Precise orientation control can be achieved with an external magnetic manipulation system. The proposed device can be used in many applications of minimally invasive surgery (MIS) to detect forces applied on tissue during procedures or to characterize different types of tissue for diagnosis.

  10. Tunneling magnetic force microscopy

    Science.gov (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  11. Magnetically recoverable nanocatalysts

    KAUST Repository

    Polshettiwar, Vivek

    2011-05-11

    A broad overview on magnetically recoverable nanocatalysts is presented and the use of magnetic nanomaterials as catalysts is discussed. Magnetic materials are used as organocatalysts and their applications range to challenging reactions, such as hydroformylation and olefin metathesis. Magnetic nanomaterials are also being used in environmental applications, such as for photo- and biocatalysis and for the adsorption and removal of pollutants from air and water. These materials show great promise as enantioselective catalysts, which are used extensively for the synthesis of medicines, drugs, and other bioactive molecules. By functionalizing these materials using chiral ligands, a series of chiral nanocatalysts can be designed, offering great potential to reuse these otherwise expensive catalyst systems. Characterization of magnetic catalysts is often a challenging task, and NMR characterization of these catalysts is difficult because the magnetic nature of the materials interferes with the magnetic field of the spectrometer.

  12. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  13. Magnetism in lanthanide superlattices

    DEFF Research Database (Denmark)

    Goff, J.P.; Sarthour, R.S.; McMorrow, D.F.

    2000-01-01

    Neutron diffraction studies of heavy rare-earth superlattices have revealed the stabilization of novel magnetic phases chat are not present in bulk materials. The most striking result is the propagation of the magnetic ordering through nonmagnetic spacer materials. Here we describe some recent X......-ray magnetic resonant scattering studies of light rare-earth superlattices, which illuminate the mechanism of interlayer coupling, and provide access to different areas of Physics. such as the interplay between superconductivity and magnetism. Magnetic X-ray diffraction is found to be particularly well suited...... to the study of the modulated magnetic structures in superlattices, and provides unique information on the conduction-electron spin-density wave responsible for the propagation of magnetic order. (C) 2000 Elsevier Science B.V. All rights reserved....

  14. Microscale magnetic compasses

    Science.gov (United States)

    Shiozawa, Hidetsugu; Zhang, Desai; Eisterer, Michael; Ayala, Paola; Pichler, Thomas; McCartney, Martha R.; Smith, David J.

    2017-09-01

    Microscale magnetic compasses have been synthesized with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their orientation in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of only a few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these micro-compasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction that can be understood as a result of the anisotropic demagnetizing field of a non-spherical single-domain particle. This novel type of material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

  15. Wood construction and magnetic characteristics of impregnated type magnetic wood

    Science.gov (United States)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-02-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability.

  16. Brain tumor evaluation and segmentation by in vivo proton spectroscopy and relaxometry.

    Science.gov (United States)

    Martín-Landrove, Miguel; Mayobre, Finita; Bautista, Igor; Villalta, Raúl

    2005-12-01

    A new methodology has been developed for the evaluation and segmentation of brain tumors using information obtained by different magnetic resonance techniques such as in vivo proton magnetic resonance spectroscopy (1HMRS) and relaxometry. In vivo 1HMRS may be used as a preoperative technique that allows noninvasive monitoring of metabolites to identify the different tissue types present in the lesion (active tumor, necrotic tissue, edema, and normal or non-affected tissue). Spatial resolution for treatment consideration may be improved by using 1HMRS combined or fused with images obtained by relaxometry which exhibit excellent spatial resolution. Some segmentation schemes are presented and discussed. The results show that segmentation performed in this way efficiently determines the spatial localization of the tumor both qualitatively and quantitatively. It provides appropriate information for therapy planning and application of therapies such as radiosurgery or radiotherapy and future control of patient evolution.

  17. Correlation of in vivo and ex vivo 1H-MRI with histology in two severities of mouse spinal cord injury

    Directory of Open Access Journals (Sweden)

    Harun Najib NORISTANI

    2015-03-01

    Full Text Available Spinal cord injury (SCI is a debilitating neuropathology with no effective treatment. Magnetic resonance imaging (MRI technology is the only method used to assess the impact of an injury on the structure and function of the human spinal cord. Moreover, in pre-clinical SCI research, MRI is a non-invasive method with great translational potential since it provides relevant longitudinal assessment of anatomical and structural alterations induced by an injury. It is only recently that MRI techniques have been effectively used for the follow-up of SCI in rodents. However, the vast majority of these studies have been carried out on rats and when conducted in mice, the contusion injury model was predominantly chosen. Due to the remarkable potential of transgenic mice for studying the pathophysiology of SCI, we examined the use of both in and ex vivo 1H-MRI (9.4 T in two severities of the mouse spinal cord injury (hemisection and over-hemisection and documented their correlation with histological assessments. We demonstrated that a clear distinction between the two injury severities is possible using in and ex vivo 1H-MRI and that ex vivo MR images closely correlate with histology. Moreover, tissue modifications at a remote location from the lesion epicentre were identified by conventional ex vivo MRI analysis. Therefore, in vivo MRI has the potential to accurately identify in mice the progression of tissue alterations induced by SCI and is successfully implemented by ex vivo MRI examination. This combination of in and ex vivo MRI follow-up associated with histopathological assessment provides a valuable approach for further studies intended to evaluate therapeutic strategies on SCI.

  18. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René

    2013-01-01

    To further improve the accuracy of dose delivery to the patient, several projects are pursuing the integration of linear accelerators with magnetic resonance imaging systems. Generally, this is conceived as the next generation of image-guided radiotherapy. For technical and physical reason it is......, however, not clear yet how dosimetry will be conducted as standard methods and might not be easily transferred to systems with clinical magnetic fields. For dosimetry in MRI accelerators, we have tested plastic scintillation detectors (PSD) coupled to optical fibers. They are suitable for real-time and in......-vivo dosimetry in radiation treatments and diagnostics and could be, being all-optical, promising candidates for this application. To study the basic feasibility of using PSDs with organic scintillators in magnetic fields, we measured the response of these dosimeters in presence of magnetic fields up to 1 T...

  19. Renal perfusion evaluation by alternating current biosusceptometry of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Quini, Caio C., E-mail: caioquini@ibb.unesp.br [Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, SP (Brazil); Matos, Juliana F.; Próspero, André G.; Calabresi, Marcos Felipe F. [Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, SP (Brazil); Zufelato, Nicholas; Bakuzis, Andris F. [Instituto de Física, UFG, Goiânia, GO (Brazil); Baffa, Oswaldo [Departamento de Física, FFCLRP, USP, Ribeirão Preto, SP (Brazil); Miranda, José Ricardo A. [Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, SP (Brazil)

    2015-04-15

    Alternating current susceptometry, a simple and affordable technique, was employed to study the sensitivity of this approach to assess rat kidney perfusion by the injection of 200 μL of magnetic nanoparticles with a concentration of 23 mg/mL in the femoral vein and the measurement of the signal above the kidney. The instrument was able to detect the signal and the transit time of the first and second pass were measured in five animals with average values of 13.6±4.3 s and 20.6±7.1 s. - Highlights: • Rat kidney transit time of magnetic nanoparticles was measured with biosusceptometry. • AC biosusceptometry has sensitivity to measure magnetic nanoparticles in rat kidney. • AC susceptometry has good potential for in vivo studies of magnetic nanoparticles.

  20. Injection and extraction magnets: kicker magnets

    CERN Document Server

    Barnes, M J; Fowler, T; Senaj, V; Sermeus, L

    2010-01-01

    Each stage of an accelerator system has a limited dynamic range and therefore a chain of stages is required to reach high energy. A combination of septa and kicker magnets is frequently used to inject and extract beam from each stage. The kicker magnets typically produce rectangular field pulses with fast rise- and/or fall-times, however, the field strength is relatively low. To compensate for their relatively low field strength, the kicker magnets are generally combined with electromagnetic septa. The septa provide relatively strong field strength but are either DC or slow pulsed. This paper discusses injection and extraction systems with particular emphasis on the hardware required for the kicker magnet.