WorldWideScience

Sample records for vitro micronucleus assay

  1. An improved in vitro micronucleus assay to biological dosimetry

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Vieira, Daniel P.

    2013-01-01

    The biological dosimetry is widely used to estimate the absorbed dose in people occupationally or accidentally exposed to the radiation for a better medical treatment, minimizing the harmful effects. Many techniques and methods have been proposed to detect and quantify the radioinduced lesions in genetic material, among them, the micronucleus (MN) assay. In the present study, we proposed an improved in vitro micronucleus technique that is rapid, sensitive and with minor cell manipulations. Assays were carried out with human tumor cells (MCF-7) seeded (3x10 4 cells) in slides placed into Petri dishes. Adherent cells were maintained with RPMI medium, supplemented with fetal calf serum, 1 % antibiotics, cytochalasin B (2 μg/mL), and incubated at 37 deg C in the presence of 5% CO2 for 72h. Cells were pre-treated for 24h with aminoguanidine, a nitric oxide synthase inhibitor. Nitric oxide is an intracellular free-radical, involved in DNA double-strand break repair mechanisms. After incubation, adherent cells on slides were briefly fixed with paraformaldehyde and stained with acridine orange (100 μg/mL) for analysis through fluorescence microscopy. Dye fluorescence permitted accurate discrimination between nuclei and micronuclei (bright green) and cytoplasm (red), and made possible a faster counting of binucleated cells. Aminoguanidine (2 mM) induced significant increase (p< 0.05) in frequencies of binucleated cells with micronuclei and in the number of micronuclei per binucleated cell. Data showed that proposed modifications permit to understand an early aspect of NO inhibition and suggested an improved protocol to MN assays. (author)

  2. Combined cytokinesis-block micronucleus and chromosomal aberration assay for the evaluation of radiosensitizers at low radiation doses

    International Nuclear Information System (INIS)

    Oya, Natsuo; Shibamoto, Yuta; Shibata, Toru

    1994-01-01

    Several methods have been tried for evaluating the efficacy of hypoxic cell radiosensitizers at clinically relevant low radiation doses (1-4 Gy). The cytokinesis-block micronucleus assay is known to be useful for both the in vitro and in vivo evaluation of radiosensitizers, while the chromosomal aberration assay has been commonly used to assess the mutagenicity of various agents. In the present study, the chromosomal aberration assay and the cytokinesis-block micronucleus assay were performed simultaneously to assess the radiosensitizing effect of etanidazole and KU-2285 at low radiation doses. The correlation between the two assays was also evaluated. In vitro study: EMT-6 cells were irradiated at a dose of 1-3 Gy under hypoxic conditions with or without the drugs at 1 mM. In vivo-in vitro study: EMT-6 tumor-bearing BALB/c mice received 2-4 Gy of radiation with or without administration of the drugs at 200 mg/kg. Single-cell suspensions were then obtained in both studies and were used for the cytokinesis-block micronucleus assay and the chromosomal aberration assay. The micronucleus frequency in binucleate cells was evaluated in the former assay, and the frequency of chromosomal aberrations in metaphase cells was evaluated in the latter assay. In vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.73 and 2.21, respectively, in the micronucleus assay, and 1.41 and 1.79 in the chromosomal aberration assay. In vivo-in vitro study: the sensitizer enhancement ratios of etanidazole and KU-2285 were 1.18 and 1.31, respectively, in the micronucleus assay, and 1.16 and 1.42 in the chromosomal aberration assay. In both studies, a linear correlation was observed between the micronucleus frequency and the chromosomal aberration frequency. The background (i.e., the frequency at 0 Gy) of the latter assay was considerably lower than that of the former assay, especially in the in vivo study. 31 refs., 4 figs

  3. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  4. Effects of estradiol and progesterone on the variability of the micronucleus assay

    International Nuclear Information System (INIS)

    Baeyens, Ans; Vandersickel, Veerle; Thierens, Hubert; Ridder, Leo De; Vral, Anne

    2005-01-01

    To investigate chromosomal radiosensitivity of lymphocytes the micronucleus (MN) assay has been used for many years. The results of these studies suggest the use of the MN assay as a biomarker for cancer predisposition. However, the MN assay has still some limitations associated with the reproducibility and sensitivity. Especially a high intra-individual variability has been observed. An explanation for this high intra-individual variability is not yet available. In literature it is suggested that the high variability among females is attributable to hormonal status. In this study we investigated if the high intra-individual variability in micronucleus formation in lymphocytes of females after in vitro exposure to ionising radiation is caused by variations in hormone levels of estradiol (E2) and progesterone (PROG). For this, the MN assay was performed on blood samples of 18 healthy women during 7 consecutive weeks while the estradiol and progesterone levels were determined at the same time. The MN assay was also examined in cultures of isolated blood lymphocytes with estradiol or progesterone levels added in vitro. The results demonstrated that estradiol and progesterone levels have no influence on the variations in radiation-induced MN yields observed in blood samples of healthy women. These conclusions were confirmed by the 'in vitro' experiments as no correlation between the MN yields and the concentrations of hormones (estradiol or progesterone) added in vitro to isolated lymphocytes cultures was observed

  5. 40 CFR 79.64 - In vivo micronucleus assay.

    Science.gov (United States)

    2010-07-01

    ... micronucleus assay. (a) Purpose. The micronucleus assay is an in vivo cytogenetic test which uses erythrocytes... that, because it contains RNA, can be differentiated by appropriate staining techniques from a normochromatic erythrocyte (NCE), which lacks RNA. In one to two days, a PCE matures into a NCE. (c) Test method...

  6. Antioxidant evaluation of heterocyclic compounds by cytokinesis-block micronucleus assay.

    Science.gov (United States)

    Godevac, Dejan; Tesević, Vele; Vajs, Vlatka; Milosavljević, Slobodan; Stanković, Miroslava

    2013-03-01

    This article summarizes the results of using cytokinesis-block micronucleus (CBMN) assay to evaluate the antioxidant potential of heterocyclic compounds. Most studies were carried out with naturally occurring heterocyclic compounds such as plant polyphenols: flavonoids, xanthones, coumarins, and ellagitannins, or plant derived products (juices, extracts, supplements) rich in bioactive heterocyclic compounds. There are also some studies dealing with synthetic heterocyclic antioxidants. CBMN assay is an in vitro study that has been used to evaluate antioxidant and protective effects of heterocyclic compounds on induced chromosome aberration in human lymphocytes.

  7. The cytokinesis-block micronucleus assay: a sensitive technique for measuring radiation-induced chromosome damage

    International Nuclear Information System (INIS)

    Fenech, M.; Morley, A.A.

    1987-01-01

    The sensitivity of the cytokinesis-block micronucleus assay was demonstrated by the detection in human lymphocytes of in vitro exposures of as low as 0.02 Gy of X-rays. To determine the suitability of this new method for measuring in vivo exposure to radiation the authors have performed initial longitudinal studies on (a) cancer patients undergoing partial body fractionated radiotherapy and (b) BALB-C mice following in vivo whole body irradiation with acute single doses of X-rays. The results for radiotherapy patients indicate that the dose fractions have an additive effect on the observed micronucleus frequency which appeared to decline following three months after completion of therapy. Results with irradiated mice showed a sharp increase in micronucleus frequency for splenocytes sampled immediately after treatment and the rate of decline in micronucleus frequency during the first week after treatment was dose-dependent. (author)

  8. Radiosensitiviness of blood lymphocytes from skin cancer patients and healthy volunteers as determined by micronucleus assay

    International Nuclear Information System (INIS)

    Lohmann, Tania Helena Ochi.

    1995-01-01

    Cancer, a major death cause in developed countries, has been related to somatic mutations that could be detected by cytogenetic analysis. Among the tools used in these tests, the micronucleus assay has been largely applied at population surveillance, biological dosimetry and early detection of groups with higher risks to developing cancers. In this study, we analysed the chromosome susceptibility of blood lymphocytes from basocellular skin cancer patients and healthy volunteers. The cytogenetic analysis was performed by a micronucleus assay, using progressive doses of ionizing radiation from a 60 Co source as mutagen. Briefly, the blood lymphocytes were irradiated in vitro, as processed by the cytokinesis-blocked method. The micronucleus frequency and distribution, cell cycle kinetics, nucleation index and dose-response relationship were determined in each patient. The results showed that the basocellular skin cancer patients lymphocytes presented higher spontaneous micronucleus frequency as compared with those from healthy young volunteers but lower than healthy now young volunteers . The radiation-induced micronucleus analysis showed that the basocellular skin cancer patients' lymphocytes presented similar proportion of damage lymphocytes as compared with those from healthy volunteers. Nevertheless, the magnitude of this damage was higher in this group with doses. Higher than 400 c Gy, which was not occurred in healthy volunteers. Cell cycle kinetics, as determined by the nucleation index, was lower in basocellular skin cancer patients as compared with healthy volunteers, indicating a more slow cell cycle. Our data showed that the lymphocytes from carcinoma basocellular patients were more radiosensitive as compared with those form healthy volunteers. (author). 159 refs., 21 figs., 16 tabs

  9. Low dose effects detected by micronucleus assay in lymphocytes

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bojtor, I.; Kubasova, T.; Horvath, G.

    1997-01-01

    The effects of low doses of X-rays between 0.01 and 1 Gy were studied on whole blood samples of various individuals using the cytokinesis-blocked lymphocyte micronucleus assay as an endpoint. The adaptive response could be induced in G 0 cells by 0.01 Gy followed by 1 Gy challenging dose within a time period of 8 hours, in vitro. The probability distribution of micronucleus increments in those samples which had received very low doses in the range 0.01-0.05 Gy proved to be of asymmetrical type (i.e. lognormal) -very likely to the same shape which has been verified for unirradiated (control) population - while the variable turned to be normally distributed at or above 1 Gy. Profound changes have been experienced in the main characteristics of the linear dose - response relationship and in regression parameters, as well, when successively lessened dose ranges were studied toward 0.01 Gy. In the range below ∼ 0.2 Gy the response were found to be unrelated to the absorbed dose. These findings suggest that in (very) low dose range a higher attention should be needed to biological parameters like repair, protective mechanisms and antioxidant capacities, rather than to the absorbed radiation energy only. (author)

  10. Evaluation of genotoxicity of nitrile fragrance ingredients using in vitro and in vivo assays.

    Science.gov (United States)

    Bhatia, S P; Politano, V T; Api, A M

    2013-09-01

    Genotoxicity studies were conducted on a group of 8 fragrance ingredients that belong to the nitrile family. These nitriles are widely used in consumer products however there is very limited data in the literature regarding the genotoxicity of these nitriles. The 8 nitriles were assessed for genotoxicity using an Ames test, in vitro chromosome aberration test or in vitro micronucleus test. The positive results observed in the in vitro tests were further investigated using an in vivo micronucleus test. The results from these different tests were compared and these 8 nitriles are not considered to be genotoxic. Dodecanitrile and 2,2,3-trimethylcyclopent-3-enylacetonitrile were negative in the in vitro chromosome aberration test and in vitro micronucleus test, respectively. While citronellyl nitrile, 3-methyl-5-phenylpentanenitrile, cinnamyl nitrile, and 3-methyl-5-phenylpent-2-enenitrile revealed positive results in the in vitro tests, but confirmatory in vivo tests determined these nitriles to be negative in the in vivo micronucleus assay. The remaining two nitriles (benzonitrile and α-cyclohexylidene benzeneacetonitrile) were negative in the in vivo micronucleus test. This study aims to evaluate the genotoxicity potential of these nitriles as well as enrich the literature with genotoxicity data on fragrance ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  12. Biomonitoring of genotoxic risk in radar facility workers: comparison of the comet assay with micronucleus assay and chromatid breakage assay

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    Genotoxic risks of occupational exposure in a radar facility were evaluated by using alkaline comet assay, micronucleus assay and chromatid breakage assay on peripheral blood leukocytes in exposed subjects and corresponding controls. Results show that occupational exposure to microwave radiation correlates with an increase of genome damage in somatic cells. The levels of DNA damage in exposed subjects determined by using alkaline comet assay were increased compared to control and showed interindividual variations. Incidence of micronuclei was also significantly increased compared to baseline control values. After short exposure of cultured lymphocytes to bleomycin, cells of occupationally exposed subjects responded with high numbers of chromatid breaks. Although the level of chromosome damage generated by bleomycin varied greatly between individuals, in exposed subjects a significantly elevated number of chromatid breaks was observed. Our results support data reported in literature indicating that microwave radiation represents a potential DNA-damaging hazard. Alkaline comet assay is confirmed as a sensitive and highly reproducible technique for detection of primary DNA damage inflicted in somatic cells. Micronucleus assay was confirmed as reliable bio-markers of effect and chromatid breakage assay as sensitive bio-marker of individual cancer susceptibility. The results obtained also confirm the necessity to improve measures and to perform accurate health surveillance of individuals occupationally exposed to microwave radiation

  13. Cytokinesis-block micronucleus assay evolves into a 'cytome' assay of chromosomal instability, mitotic dysfunction and cell death

    International Nuclear Information System (INIS)

    Fenech, Michael

    2006-01-01

    The cytokinesis-block micronucleus (CBMN) assay was originally developed as an ideal system for measuring micronuclei (MNi) however it can also be used to measure nucleoplasmic bridges (NPBs), nuclear buds (NBUDs), cell death (necrosis or apoptosis) and nuclear division rate. Current evidence suggests that (a) NPBs originate from dicentric chromosomes in which the centromeres have been pulled to the opposite poles of the cell at anaphase and are therefore indicative of DNA mis-repair, chromosome rearrangement or telomere end-fusions, (b) NPBs may break to form MNi, (c) the nuclear budding process is the mechanism by which cells remove amplified and/or excess DNA and is therefore a marker of gene amplification and/or altered gene dosage, (d) cell cycle checkpoint defects result in micronucleus formation and (e) hypomethylation of DNA, induced nutritionally or by inhibition of DNA methyl transferase can lead to micronucleus formation either via chromosome loss or chromosome breakage. The strong correlation between micronucleus formation, nuclear budding and NPBs (r = 0.75-0.77, P < 0.001) induced by either folic acid deficiency or exposure to ionising radiation is supportive of the hypothesis that folic acid deficiency and/or ionising radiation cause genomic instability and gene amplification by the initiation of breakage-fusion-bridge cycles. In its comprehensive mode, the CBMN assay measures all cells including necrotic and apoptotic cells as well as number of nuclei per cell to provide a measure of cytotoxicity and mitotic activity. The CBMN assay has in fact evolved into a 'cytome' method for measuring comprehensively chromosomal instability phenotype and altered cellular viability caused by genetic defects and/or nutrional deficiencies and/or exogenous genotoxins thus opening up an exciting future for the use of this methodology in the emerging fields of nutrigenomics and toxicogenomics and their combinations

  14. Flow cytometric determination of micronucleus frequency.

    Science.gov (United States)

    Elhajouji, Azeddine; Lukamowicz-Rajska, Magdalena

    2013-01-01

    During the last two decades the micronucleus (MN) test has been extensively used as a genotoxicity screening tool of chemicals and in a variety of exploratory and mechanistic investigations. The MN is a biomarker for chromosomal damage or mitotic abnormalities, since it can originate from chromosome fragments or whole chromosomes that fail to be incorporated into daughter nuclei during mitosis (Fenech et al., Mutagenesis 26:125-132, 2011; Kirsch-Volders et al., Arch Toxicol 85:873-899, 2011). The simplicity of scoring, accuracy, amenability to automation by image analysis or flow cytometry, and readiness to be applied to a variety of cell types either in vitro or in vivo have made it a versatile tool that has contributed to a large extent in our understanding of key toxicological issues related to genotoxins and their effects at the cellular and organism levels. Recently, the final acceptance of the in vitro MN test guideline 487 (OECD Guideline for Testing of Chemicals, In vitro mammalian cell micronucleus test 487. In vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris, 2010) together with the standard in vivo MN test OECD guideline 474 (OECD Guideline for The Testing of Chemicals, Mammalian erythrocyte micronucleus test no. 474. Organization for Economic Cooperation and Development, Paris, 1997) will further position the assay as a key driver in the determination of the genotoxicity potential in exploratory research as well as in the regulatory environment. This chapter covers to some extent the protocol designs and experimental steps necessary for a successful performance of the MN test and an accurate analysis of the MN by the flow cytometry technique.

  15. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.J. [Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, SP (Brazil); Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Pós-Graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina “Dr. Hélio Mandetta”, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Mantovani, M.S.; Silva, A.F. da [Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR (Brazil); Pesarini, J.R. [Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Pós-Graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina “Dr. Hélio Mandetta”, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Mauro, M.O. [Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Doutorado em Biotecnologia e Biodiversidade - Rede Pró Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Ribeiro, L.R. [Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, SP (Brazil); Programa de Pós-Graduação em Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP (Brazil)

    2014-03-28

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.

  16. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    R.J. Oliveira

    2014-04-01

    Full Text Available The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.

  17. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

    International Nuclear Information System (INIS)

    Oliveira, R.J.; Mantovani, M.S.; Silva, A.F. da; Pesarini, J.R.; Mauro, M.O.; Ribeiro, L.R.

    2014-01-01

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero

  18. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    Science.gov (United States)

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  19. Lack of genotoxicity of potassium iodate in the alkaline comet assay and in the cytokinesis-block micronucleus test. Comparison to potassium bromate.

    Science.gov (United States)

    Poul, J M; Huet, S; Godard, T; Sanders, P

    2004-02-01

    Iodine could be added to the diet of human population in the form of iodide or iodate but iodate had not been adequately tested for genotoxicity and carcinogenicity. In the present study, genotoxic effects of potassium iodate were evaluated in vitro using the alkaline comet assay and the cytokinesis-block micronucleus assay on CHO cells and compared to halogenate salt analogues potassium bromate and chlorate and also to their respective reduced forms (potassium iodide, bromide and chloride). The results showed that the comet assay failed to detect the presence of DNA damage after a treatment of cells by potassium iodate for concentrations up to 10 mM. This absence of primary DNA damage was confirmed in the cytokinesis-block micronucleus assay. In the same way, results showed that potassium chlorate as well as potassium iodide, bromide and chloride did not induced DNA damage in the alkaline comet assay for doses up to 10 mM. By contrast, potassium bromate exposure led to an increase in both DNA damage and frequency of micronucleated cells. The repair of bromate-induced DNA damage was incomplete 24 h after the end of treatment. These results seem to indicate that potassium bromate would induce DNA damage by several mechanisms besides oxidative stress.

  20. In vitro mutagenicity and genotoxicity study of 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene, using the micronucleus test and the alkaline single cell gel electrophoresis technique (comet assay) in human lymphocytes.

    Science.gov (United States)

    Tafazoli, M; Kirsch-Volders, M

    1996-12-20

    The main objective of this study was to compare the cytotoxic genotoxic and mutagenic activity of a number of chlorinated aliphatic hydrocarbons, which are widely used as chemical intermediates, solvents, degreasing agents etc. in industry, and to establish the structure-toxicity relationship of the chemicals by using the most adequate determinants in estimating their toxicity. The mutagenicity and cytotoxicity of some of the candidate chemicals, namely 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene were evaluated in an in vitro micronucleus assay. The cytokinesis-block methodology was applied on human lymphocytes in the presence or absence of an external metabolic activation system (S9-mix). In the micronucleus assay, all test substances, except 1,2,3-trichloropropane with and without S9-mix and 1,1,2-trichloroethane without S9-mix in the repeated experiment, exhibited a low but statistically significant mutagenic activity, compared to the concurrent control. However, none of the five chemicals was able to induce a clear and reproducible linear dose-dependent increase in micronucleus frequencies in this assay. Generally, mutagenic activity of the chemicals was found in the absence of severe cytotoxicity and/or cell cycle delay. The DNA breakage capacity and the cytotoxicity of these chemicals were also assessed in the alkaline single cell gel (SCG) electrophoresis test (comet assay) with and without S9-mix in isolated human lymphocytes. All chemical compounds induced DNA breakage, in the presence or absence of the metabolic activation system, at the doses tested. The data showed that the DNA reactivity of the chemicals increased with increasing degree of halogenation. The results of the present work suggested that the comet assay might be a more suitable and sensitive screening method than the micronucleus test for this particular class of compound. However, both assays do detect different

  1. Micronucleus assay for radiation workers

    International Nuclear Information System (INIS)

    Balasem, A.N.; Ali, A.S.K.

    1997-01-01

    Micronucleus assay was performed on 49 radiation workers and 22 healthy volunteers. Radiation workers were subdivided into two groups according to their employments durations in the radiation field. Group a consisted of 18 radiation workers who have been in this work between 5 and 22 years. Group b included 31 employees who have been classified as radiation workers for 1 to 4.5 years. Statistical analysis showed significant variations between the yields of micronuclei in groups A and B as well as between group A and a group of healthy controls. Meanwhile no significant difference was noticed between the yields of micronuclei in group B and the corresponding values in the healthy controls. The possible effect of age in the induction of micronuclei was discussed and a comparison with the yield of chromosomal aberrations was described. It seems that cytokinesis- blocking method may be used to detect the radiation-induced micronuclei in workers exposed occupationally to ionizing radiation in levels below the maximum permissible limit of 0.05 Sv per year

  2. Evaluation of a liver micronucleus assay in young rats (III): a study using nine hepatotoxicants by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study Group (MMS).

    Science.gov (United States)

    Takasawa, Hironao; Suzuki, Hiroshi; Ogawa, Izumi; Shimada, Yasushi; Kobayashi, Kazuo; Terashima, Yukari; Matsumoto, Hirotaka; Aruga, Chinami; Oshida, Keiyu; Ohta, Ryo; Imamura, Tadashi; Miyazaki, Atsushi; Kawabata, Masayoshi; Minowa, Shigenori; Hayashi, Makoto

    2010-04-30

    We have been investigating a liver micronucleus assay to detect genotoxic chemicals using young rats for several years, and had established its advantages with respect to using autonomous proliferation of young rat hepatocytes. Nine chemicals known to induce hepatotoxic effects such as necrosis (2,6-dinitrotolune, bromobenzene, isoniazid, phenacetin, allyl alcohol and thioacetamide), cholestasis (chlorpromazine hydrochloride and alpha-naphthyl isothiocyanate) and oxidative stress (clofibrate) were selected for this study. A liver micronucleus assay was conducted in 4-week-old male F344 rats using two or three dose levels of test chemicals given orally by gavage to evaluate the compound's ability to induce micronucleated hepatocytes. Several of these test chemicals were additionally examined in a peripheral blood micronucleus assay conducted concurrently and in the same animals. The genotoxic rodent hepatocarcinogen, 2,6-dinitrotoluene showed a positive result in the liver micronucleus assay, but the nongenotoxic hepatocarcinogens, clofibrate and thioacetamide gave negative responses. Bromobenzene, known to produce DNA adducts but is noncarcinogenic in rodent liver, was judged equivocal in this assay. alpha-Naphthyl isothiocyanate is noncarcinogenic and showed negative response in the liver. The other four chemicals, known to be either noncarcinogenic or carcinogenic in other non-liver target organs, showed negative results in the liver micronucleus assay. Based on the results in the present study and previous report described above, it was concluded that this technique is able to effectively predict genotoxic rodent hepatocarcinogenicity, and does not give false positives due to hepatotoxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  3. 40 CFR 798.5395 - In vivo mammalian bone marrow cytogenetics tests: Micronucleus assay.

    Science.gov (United States)

    2010-07-01

    ... Genetic Toxicity § 798.5395 In vivo mammalian bone marrow cytogenetics tests: Micronucleus assay. (a... and documented with data, only this one time point need be sampled. (ii) If a repeated treatment... slides, spread as a smear and stained. (2) Analysis. Slides shall be coded before microscopic analysis...

  4. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals?

    Science.gov (United States)

    Speit, Günter

    2013-07-01

    This commentary challenges the paradigm that the cytokinesis-block micronucleus assay (CBMN assay) with cultured human lymphocytes, as it is performed currently, is a sensitive and useful tool for detecting genotoxic effects in populations exposed occupationally or environmentally to genotoxic chemicals. Based on the principle of the assay and the available data, increased micronucleus (MN) frequencies in binucleated cells (BNC) are mainly due to MN produced in vitro during the cultivation period (i.e. MN produced in vivo do not substantially contribute to the MN frequency measured in BNC). The sensitivity of the assay for the detection of induced MN in BNC after an in vivo exposure to a genotoxic chemical is limited because cytochalasin B (Cyt-B) is added relatively late during the culture period and, therefore, the BNC that are scored do not always represent cells that have completed one cell cycle only. Furthermore, this delay means that damaged cells can be eliminated by apoptosis and/or that DNA damage induced in vivo can be repaired prior to the production of a MN in the presence of Cyt-B. A comparison with the in vitro CBMN assay used for genotoxicity testing leads to the conclusion that it is highly unlikely that DNA damage induced in vivo is the cause for increased MN frequencies in BNC after occupational or environmental exposure to genotoxic chemicals. This commentary casts doubt on the usefulness of the CBMN assay as an indicator of genotoxicity in human biomonitoring and questions the relevance of many published data for hazard identification and risk assessment. Thus, it seems worthwhile to reconsider the use of the CBMN assay as presently conducted for the detection of genotoxic exposure in human biomonitoring.

  5. Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay

    International Nuclear Information System (INIS)

    Fenech, M.; Umegaki, K.

    2003-01-01

    Full text: We have performed experiments using the WIL2-NS human B-lymphoblastoid cell line and primary human lymphocytes to (a) determine the importance of including measurements of nucleoplasmic bridges (NPB) in the cytokinesis-block micronucleus (CBMN) assay and (b) provide evidence that NPB originate from dicentric chromosomes and centric ring chromosomes. In addition we describe theoretical models that explain how dicentric chromosomes and centric ring chromosomes may result in the formation of NPB at anaphase. The results with WIL2-NS showed that it was possible to distinguish genotoxic effects induced by different oxidizing agents in terms of the NPB/micronucleus frequency ratio. The results with lymphocytes indicated a strong correlation (a) between NPB, centric ring chromosomes and dicentric chromosomes in metaphases (R>0.93, P 0.93, P<0.0001). The dose-response curves with gamma rays were very similar for NPB, ring chromosomes and dicentric chromosomes, as were the dose-responses for MNi, acentric rings and fragments. However, not all acentric chromosomes and dicentric chromosomes/centric rings were converted to MNi and NPB respectively, depending on the dose of radiation. Preliminary data, using FISH, suggests that NPB often represent DNA from a structural rearrangement involving only one or two homologous chromosomes. The results from this study validate the inclusion of NPB in the CBMN assay which provides a valuable measure of chromosome breakage/ rearrangement that was otherwise not available in the micronucleus assay. The CBMN assay allows NPB measurement to be achieved reliably because inhibition of cytokinesis prevents the loss of NPB that would otherwise occur if cells were allowed to divide

  6. Genotoxicity and ELF-magnetic fields: a review through the micronucleus assay

    International Nuclear Information System (INIS)

    Alcaraz, M.; Andreu-Galvez, M.; Sanchez-Villalobos, J. M.; Achel, D. G.; Olmos, E.; Martinez-Hernandez, C. M.

    2012-01-01

    Thirty for (34) published studies, conducted from 1994 to the present to evaluate the genotoxic effect of magnetic fields using ELF-EMF and diagnostic resonance on humans by the micronucleus assay have been reviewed. some characteristics of the assay methods, their significance to genotoxicity and basic interpretations of the results of these assays are discussed. of the studies analysed 70.5% implicated genotoxic effects induced by these magnetic fields: 52.9% were due to exposure to magnetic fields only and 17,6% by exposure to magnetic fields in combination with some treatment types, resulting in additive or synergistic effect. Evidence exist to support the notion that exposure of humans to magnetic fields stimulates genotoxic effects, although the actual mechanisms of action or even the true human health consequences resulting from these exposure still remain unclear. (Author) 80 refs.

  7. Genotoxic evaluation of [DOTA,Tyr3]octreotate labeled with 131I and 177Lu in human peripheral lymphocytes in vitro by micronucleus assay

    International Nuclear Information System (INIS)

    Suzauki, Miriam Fussae; Silva, Marcia Augusta da; Caldeira Filho, Jose de Souza; Colturato, Maria Tereza; Araujo, Elaine Bortoleti de; Bartolini, Paolo; Okazaki, Kayo

    2005-01-01

    The radiolabeled receptor-binding peptides have being used for cancer diagnosis and therapy. The octreotate, a somatostatin analogue peptide, bound to various tumors expressing sst receptors (thyroid, pancreas, prostrate, melanoma and lymphomas). The amount and the type of receptors for somatostatin influence the tissue uptake. The [DOTA, Tyr 3 ]octreotate has been used because of its high affinity to somatostatin subtype receptors sstr 2 and sstr 5 . The pharmacokinetic study showed that the blood clearance is rapid and only 9% of the intravenous injected activity remains in human blood after one hour. The aim of this study was to evaluate the cytogenetic effect of radiolabeled [DOTA, Tyr 3 ]octreotate in blood cells in vitro, using the cytokinesis-block micronucleus (MN) assay. This technique allows evaluating the mutagenic effects of both endogenous and exogenous agents at chromosome level. Blood samples of healthy donors were collected in heparinized syringes and exposed to different activities of [DOTA, Tyr 3 ]octreotate labeled with with 131 I (n=3) and 177 Lu (n=3), where radioactive concentration ranged from 600 to 5600 kBq/mL, corresponding to an injected activity of 3.1 to 28.9 GBq in a reference man of 70 kg weight. 131 I and 177 Lu are beta- and gamma-emitters. After one-hour exposition to radiopharmaceuticals at 37 deg C, the cells were washed with culture medium for removing the non internalised octreotate and cultivated for 72 hours, according to criteria adopted by the IAEA. The results showed a positive correlation between radioactive concentrations (X) and the frequency of binucleated cells with micronuclei (Y) (P 131 I-DOTA, Tyr 3 ]octreotate was Y = (1.634 ± 0.236) + (0.912 ± 0.137) 10 -3 X and for [ 177 Lu-DOTA, Tyr 3 ]octreotate was Y = (1.715 ± 0.342) + (0.743 ± 0.135) 10 -3 X. The non labeled molecule, [DOTA, Tyr 3 ]octreotate, has no influence in the induction of cytogenetic damage. The micronucleus assay with rat pancreatic tumor cells

  8. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    Science.gov (United States)

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  9. Evaluation of 10 aliphatic halogenated hydrocarbons in the mouse bone marrow micronucleus test.

    Science.gov (United States)

    Crebelli, R; Carere, A; Leopardi, P; Conti, L; Fassio, F; Raiteri, F; Barone, D; Ciliutti, P; Cinelli, S; Vericat, J A

    1999-03-01

    Ten halogenated aliphatic hydrocarbons (carbon tetrachloride, 1-chlorohexane, 2,3-dichlorobutane, 1,2-dichloroethane, 1,2-dichloroethylene, 1,3-dichloropropane, hexachloroethane, 1,1,2-trichloroethane, 1,2,3-trichloropropane and 1,1,3-trichloropropene), previously assayed in genetic assays in fungi, were evaluated in the mouse bone marrow micronucleus test in order to assess their genotoxicity in vivo. All chemicals were administered once i.p. at 40 and 70-80% of their respective LD50 to male and female CD-1 mice, 24 and 48 h before killing. All treatments produced evident clinical symptoms, but no marked depression of bone marrow proliferation. No statistically significant increases in the incidence of micronucleated polychromatic erythrocytes over the control values were observed at any sampling time with any of the 10 halogenated hydrocarbons assayed. The comparison of the results obtained in this study with the findings provided by in vitro micronucleus assays on the same chemicals, reported by other authors, indicate that mouse bone marrow is weakly sensitive to the genotoxic effects induced by halogenated hydrocarbons in other test systems. This suggests that the role of such an assay in carcinogen screening may be questionable for this chemical class. An examination of mouse bone marrow micronucleus test results with the halogenated aliphatic hydrocarbons classified as carcinogens by IARC supports this conclusion.

  10. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487.

    Science.gov (United States)

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. p53 protein expression versus micronucleus induction as an indicator of DNA damage

    International Nuclear Information System (INIS)

    Hickman, A.W.; Carpenter, T.R.; Johnson, N.F.

    1994-01-01

    In vitro assays for detecting DNA damage play an important role in evaluating the possible adverse health effects of chemical compounds. Exposure to many DNA-damaging agents in vitro has been shown to cause elevated levels of the tumor-suppressor protein p53. Work in our laboratory has shown that induction of the p53 protein is useful as a biodosimeter for determining the radiation dose to cells. The purpose of this investigation was to compare the sensitivity of this assay to that of micronucleus induction, which is commonly used as a marker of radiation-induced damage

  12. The effect of gamma radiation on the Common carp (Cyprinus carpio): In vivo genotoxicity assessment with the micronucleus and comet assays.

    Science.gov (United States)

    M K, Praveen Kumar; Soorambail K, Shyama; Bhagatsingh Harisingh, Sonaye; D'costa, Avelyno; Ramesh Chandra, Chaubey

    2015-10-01

    Radioactive wastes may be leached into freshwater, either accidentally or in industrial effluents. We have studied gamma radiation-induced DNA damage in the freshwater fish Cyprinus carpio. Fish were irradiated with 2-10Gy gamma radiation and genotoxic effects in blood cells were studied with the micronucleus (MN) and comet assays. Micronuclei and a dose-dependent increase in comet-tail DNA were seen in dose- and time-dependent studies. The highest % tail DNA was observed at 24h, declining until 72h, which may indicate the repair of radiation-induced DNA single-strand breaks after gamma radiation. However, double-stranded DNA damage may not have been repaired, as indicated by increased micronuclei at later periods. A positive correlation was observed between the comet and micronucleus assay results. This study confirms the mutagenic/genotoxic potential of gamma radiation in the Common carp, as well as the possible combined use of the micronucleus and comet assays for in vivo laboratory studies with fresh-water fish for screening the genotoxic potential of radioactive pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Micronucleus assay as a biomarker of genotoxicity in the occupational exposure to agrochemicals in rural workers.

    Science.gov (United States)

    Gentile, N; Mañas, F; Bosch, B; Peralta, L; Gorla, N; Aiassa, D

    2012-06-01

    This paper aims to evaluate the genotoxic effect of agrochemicals in rural workers occupationally exposed by the micronucleus assay in peripheral blood lymphocytes and to promote the development of health and environmental preventive and protective practices. A total of 30 blood samples from 20 individuals occupationally exposed to different agrochemicals and 10 unexposed persons, who formed the reference group, were analyzed. We found statistically significant differences (p < 0.0005, Student's t Test) in the frequency of micronuclei between the two groups (7.20 ± 1.55 and 15.15 ± 5.10 CBMN for reference and exposed groups respectively). The analysis of age showed a positive correlation (Pearson Correlation Test) with the frequency of micronuclei in exposed population (p < 0.05; r(2) = 0.47), in contrast with smoking habits and years of exposure. Micronucleus assay allows an early detection of populations at higher risk of having genetic damage, allowing us to implement strategies of intervention for the purpose of contributing to reduce that risk.

  14. Significance of the proportion of binucleate cells in the micronucleus assay

    International Nuclear Information System (INIS)

    Imamura, Masahiro; Edgren, M.R.

    1994-01-01

    Using treatment with cytochalasin-B (Cyt-B) for the induction of a cytokinetic block, the significance of the proportion of binucleate cells (BNC) in the micronucleus (MN) assay was investigated in a methodological study. A Chinese hamster cell line V79 was used in which MN were induced by radiation. In complementary tests the radiation effect in inducing MN was enhanced by depletion of the cellular glutathione content with buthionine sulfoximine (BSO). The data indicated that the concentration of Cyt-B is the major factor which determines the proportion of BNC. This proportion was shown to be independent of radiation dose and of BSO. Furthermore, the MN frequency was not related to the percentage of BNC. Therefore, a high proportion of BNC may be practical for the MN assay, but may not make the technique more accurate. (author)

  15. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Rodrigo Juliano Oliveira

    2014-01-01

    Full Text Available β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide.

  16. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    Science.gov (United States)

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the human lymphoblastoid cell line TK6. Cadmium chloride (an inorganic carcinogen), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, capable of detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in the in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Evaluation of the repeated-dose liver micronucleus assay using 2,4-dinitrotoluene: a report of a collaborative study by CSGMT/JEMS.MMS.

    Science.gov (United States)

    Maeda, Akihisa; Tsuchiyama, Hiromi; Asaoka, Yoshiji; Hirakata, Mikito; Miyoshi, Tomoya; Oshida, Keiyu; Miyamoto, Yohei

    2015-03-01

    The liver micronucleus assay using young adult rats has the potential to detect liver carcinogens by repeated dosing, and could be expected to be integrated into repeated-dose toxicity studies using a hepatocyte isolation method without the traditional in situ collagenase perfusion. In this study, to assess the performance of the repeated-dose liver micronucleus assay, 2,4-dinitrotoluene (DNT), which is a rodent liver carcinogen, was administered orally to male rats at doses of 50, 100 and 200 mg/kg/day once daily for 14 or 28 consecutive days, and the frequencies of micronucleated hepatocytes (MNHEPs) and micronucleated immature erythrocytes (MNIMEs) were examined. Significant increases in the MNHEPs were observed at 50 mg/kg/day or more in the 14-day treatment, and 50 and 100 mg/kg/day in the 28-day treatment. These increases were dependent on both the dose and the number of administrations, which indicates the possibility that the MNHEPs accumulate as a result of repeated dosing. In contrast, no increase in the MNIMEs was observed. In conclusion, the repeated-dose liver micronucleus assay using young adult rats is sufficiently sensitive to detect the genotoxicity of 2,4-DNT at a low dose.

  18. Biological Dosimetry Using Micronucleus Assay in Simulated Partial-Body Exposure to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    S. Purnami

    2017-08-01

    Full Text Available In radiation accidents, it is common that only several parts of the body are exposed to radiation. As a consequence there is a mixture of exposed and unexposed lymphocytes in peripheral blood cells of the samples. This phenomenon will cause the dose value estimated using the exposed lymphocytes to be lower than the actual dose. In this study, an assessment of partial body exposures using micronucleus assay by estimating the partial body dose and fraction of irradiated blood was conducted. An optimal D0 value also has been determined in this study to estimate the fraction of irradiated cells. Peripheral blood lymphocytes (PBLs from three healthy donors were irradiated in vitro with 2 Gy of X-rays. Partial radiation exposure was simulated by mixing the irradiated and non-irradiated blood in different proportions. The proportions of mixtures of blood samples irradiated in vitro were 5, 10, 15, 20, and 30 %. Blood samples were then cultured and harvested based on micronuclei assay protocol. At least 2000 binucleated cells with well-preserved cytoplasm were scored for the MN frequency. Dose Estimate 5.1 software was used to calculate the dispersion index (σ2/y and normalized unit of this index (U in each proportion of bloods. The fractions of irradiated cells were calculated with CABAS (Chromosomal Aberration Calculation Software for several different D0 values (2.7; 3.8; 5.4. The results showed that D0 value at 5.4 gave the closest results to the actual proportion of irradiated bloods, while for the dose estimation the estimated doses value from all proportions in all donors were higher than the actual dose. The factor that may cause this phenomenon was that the dose response calibration curve used to predict the radiation dose was not constructed in the laboratory used. Overall it can be concluded that a biodosimetry using MN assay can be used to estimate the radiation dose in partial body exposure. In order to establish a biodosimetry using MN

  19. Alkaline comet assay in liver and stomach, and micronucleus assay in bone marrow, from rats treated with 2-acetylaminofluorene, azidothymidine, cisplatin, or isobutyraldehyde.

    Science.gov (United States)

    Kraynak, A R; Barnum, J E; Cunningham, C L; Ng, A; Ykoruk, B A; Bennet, B; Stoffregen, D; Merschman, M; Freeland, E; Galloway, S M

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM) initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined the ability of the assay to determine the genotoxicity of 2-acetylaminofluorene (AAF), azidothymidine (AZT), cisplatin (CPN), and isobutyraldehyde (IBA) in liver and glandular stomach of male Sprague-Dawley rats. Rats were given oral doses of test compound or control once daily for three days. High dose levels were approximately maximum tolerated doses and were based on preliminary range-finding studies. Tissues were harvested 3h after the final dose (48h after the initial dose). A bone marrow micronucleus assay (MN) was also conducted on the rats treated with AZT, CPN, and IBA. Acute toxic effects of treatment were determined primarily through histomorphologic analysis of liver and stomach but also by body weight and serum liver enzyme changes. The comet assay was conducted on fresh tissue preparations but frozen samples from two studies were also assayed. Statistically significant dose-related differences in comet % DNA in tail were found in liver and stomach for the genotoxin AZT and in liver for the genotoxin CPN, but not in liver or stomach for the non-genotoxin IBA. Statistically significant differences in % DNA in tail were measured in liver for the low and mid dose of the genotoxin AAF, but not the high dose. The comet assays of frozen liver suspensions from CPN- and AAF-treated rats yielded comparable results to the assays of fresh preparations. There were no indications of significant toxicity induced by any treatment. The micronucleus assay was positive for CPN and AZT and negative for IBA. In conclusion, the in vivo comet assay is capable of detecting genotoxic effects of a variety of chemicals and may fill an important role in the genotoxicity test battery. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cytological assay of micronucleus induction by radiation in oral cancer

    International Nuclear Information System (INIS)

    Bhattathiri, V.N.; Bindu, L.; Remani, P.; Chandralekha, B.; Davis, C.A.; Krishnan Nair, M.

    1996-01-01

    A study was conducted to analyze the dose-response relationship of micronucleus (MN) induction by radiation in eighty-three patients with oral cancers. Serial scrape smears were taken before treatment and after delivery of various fractions of a course of radical radiotherapy. The smears were stained with Giemsa's stain and frequency of micronucleated cells (MNC) evaluated. Before treatment 70.5% of tumours showed MNC, the mean value being 4.18 MNC/1000 cells. The frequency of MNC, increased with increasing dose of radiation. As regards relation to treatment duration, there was initially a slight increase, followed by rapid increase and then a plateauing. Radiosensitive and resistant tumours showed differing pattern of change. The MN test by serial cytological assay has potential as a tool to understand the dynamics of radiation induced cell death and predict radiosensitivity. (author). 4 refs., 5 figs

  1. 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487.

    Science.gov (United States)

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Evaluation of a liver micronucleus assay in young rats (IV): a study using a double-dosing/single-sampling method by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study Group (MMS).

    Science.gov (United States)

    Takasawa, Hironao; Suzuki, Hiroshi; Ogawa, Izumi; Shimada, Yasushi; Kobayashi, Kazuo; Terashima, Yukari; Matsumoto, Hirotaka; Oshida, Keiyu; Ohta, Ryo; Imamura, Tadashi; Miyazaki, Atsushi; Kawabata, Masayoshi; Minowa, Shigenori; Maeda, Akihisa; Hayashi, Makoto

    2010-04-30

    A collaborative study was conducted to evaluate whether a liver micronucleus assay using four-week-old male F344 rats can be used to detect genotoxic rat hepatocarcinogens using double-dosing with a single-sampling 4 days after the second dose. The assay methods were thoroughly validated by the seven laboratories involved in the study. Seven chemicals, 2,4-diaminotoluene, diethyl nitrosamine, p-dimethylaminoazobenzene, 1,2-dimethylhydrazine dihydrochloride, 2,4-dinitrotolunene, 2,6-dinitrotoluene and mitomycin C, known to produce positive responses in the single-dosing/triple-sampling method were selected for use in the present study, and each chemical was examined in two laboratories with the exception of 2,4-dinitrotolunene. Although several of the compounds were examined at lower doses for reasons of toxicity than in the single-dosing/triple-sampling method, all chemicals tested in the present study induced micronuclei in liver cells indicating a positive result. These findings suggest that the liver micronucleus assay can be used in young rats to detect genotoxic rat hepatocarcinogens using a double-dosing/single-sampling procedure. Further, the number of animals used in the liver micronucleus assay can be reduced by one-third to a half by using the double-dosing/single-sampling method. This reduction in animal numbers also has significant savings in time and resource for liver perfusion and hepatocyte isolation. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Patient exposure and micronucleus assay during extracorporeal shock wave lithotripsy (ESWL) for kidney stones

    International Nuclear Information System (INIS)

    Shao, M.

    1992-01-01

    This study reports results of radiation exposure to 20 patients with kidney stones during Extracorporeal Shock Wave Lithotripsy (ESWL). A domestically made JT-ESWL-I Lithotripter was used. Data indicated that the amount of radiation exposure is related to the numbers, size, location and radiodensity of the stone, and also the number of shock wave and the time of fluoroscopy exposure given to the patients. The results of the micronucleus frequency of lymphocytes assay in the human peripheral blood are reported. This effect increased with increasing radiation exposure doses. (author). 4 refs., 2 tabs

  4. Mutagenic effects of tributyltin and inorganic lead (Pb II on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests

    Directory of Open Access Journals (Sweden)

    Ferraro Marcos Vinícius M.

    2004-01-01

    Full Text Available Genotoxicity studies on toxic metals and their organic compounds are very important, especially so in the investigation of the effects of these compounds on the aquatic environments where they tend to accumulate. The use of endemic aquatic organisms as biological sentinels has proved useful to environmental monitoring. We assessed the mutagenic potential of tributyltin (TBT and inorganic lead (PbII using samples of the fish Hoplias malabaricus (commonly called traíra using the comet assay and the piscine micronucleus and chromosome aberration tests. Eighteen H. malabaricus were acclimatized in three individual aquariums, each containing six fish, six fish being exposed to 0.3 mg/g of body weight (bw of TBT, six to 21 mg/g bw of PbII and six being used as controls. Exposure to TBT and PbII was achieved by feeding the fish every five days with Astyanax (a small fish that is part of the normal diet of H. malabaricus which had been injected with solutions of TBT, PbII or with water (the control group. After two months the H. malabaricus were sacrificed and their peripheral blood collected and subjected to the comet and micronucleus assays, the chromosome aberration assay being conducted using kidney-tissue. Although the comet assay showed now mutagenic effects at the lead concentrations used but encountered results with TBT, the micronucleus and chromosome aberrations assays both indicated that TBT and PbII are potentially mutagenic (p < 0.01, the micronucleus assay showing morphological alterations of the nucleus.

  5. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    Science.gov (United States)

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test.

    Science.gov (United States)

    Carbajal-López, Yolanda; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Calderón-Segura, María Elena; Martínez-Arroyo, Amparo

    2016-02-01

    The aim of this study was to evaluate the genotoxic effect of pesticides in exfoliated buccal cells of workers occupationally exposed in Guerrero, Mexico, using the comet assay and the micronucleus test. The study compared 111 agricultural workers in three rural communities (Arcelia 62, Ajuchitlan 13, and Tlapehuala 36), with 60 non-exposed individuals. All the participants were males. The presence of DNA damage was investigated in the exfoliated buccal cells of study participants with the comet assay and the micronucleus (MN) test; comet tail length was evaluated in 100 nuclei and 3000 epithelial cells of each individual, respectively; other nuclear anomalies such as nuclear buds, karyolysis, karyorrhexis, and binucleate cells were also evaluated. Study results revealed that the tail migration of DNA and the frequency of MN increased significantly in the exposed group, which also showed nuclear anomalies associated with cytotoxic or genotoxic effect. No positive correlation was noted between exposure time and tail length and micronuclei frequencies. No significant effect on genetic damage was observed as a result of age, smoking, and alcohol consumption. The MN and comet assay in exfoliated buccal cells are useful and minimally invasive methods for monitoring genetic damage in individuals exposed to pesticides. This study provided valuable data for establishing the possible risk to human health associated with pesticide exposure.

  7. Significance of the proportion of binucleate cells in the micronucleus assay; A methodological study

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Masahiro; Edgren, M.R. (Karolinska Inst., Stockholm (Sweden). Dept. of Radiation Physics)

    1994-03-01

    Using treatment with cytochalasin-B (Cyt-B) for the induction of a cytokinetic block, the significance of the proportion of binucleate cells (BNC) in the micronucleus (MN) assay was investigated in a methodological study. A Chinese hamster cell line V79 was used in which MN were induced by radiation. In complementary tests the radiation effect in inducing MN was enhanced by depletion of the cellular glutathione content with buthionine sulfoximine (BSO). The data indicated that the concentration of Cyt-B is the major factor which determines the proportion of BNC. This proportion was shown to be independent of radiation dose and of BSO. Furthermore, the MN frequency was not related to the percentage of BNC. Therefore, a high proportion of BNC may be practical for the MN assay, but may not make the technique more accurate. (author).

  8. Evaluation of repeated dose micronucleus assays of the liver using N-nitrosopyrrolidine: a report of the collaborative study by CSGMT/JEMS.MMS.

    Science.gov (United States)

    Ogawa, Izumi; Hagioa, Soichiro; Furukawa, Satoshi; Abe, Masayoshi; Kuroda, Yusuke; Hayashi, Seigo; Wako, Yumi; Kawasako, Kazufumi

    2015-03-01

    The repeated dose liver micronucleus (RDLMN) assay has the potential to detect liver carcinogens, and can be integrated into a general toxicological study. To assess the performance of the assay, N-nitrosopyrrolidine (NPYR), a genotoxic hepatocarcinogen, was tested in 14- or 28-day RDLMN assays. NPYR was orally administered to rats at a daily dose of 25, 50 or 100 mg/kg. One day after the last administration, a portion of the liver was removed and hepatocyte micronucleus (MN) specimens were prepared by the new method recently established by Narumi et al. In addition, a bone marrow MN assay and a histopathological examination of the liver were conducted. The detection of Phospho-Histone H3 was performed by immunohistochemistry to evaluate the proliferation rate of hepatocytes. The results showed significant increase in the number of micronucleated hepatocytes and Phospho-Histone H3-positive cells from the lowest dose in both 14- and 28-day RDLMN assays. On the other hand, the bone marrow MN assay yielded a negative result, which was in accordance with the existing report of the bone marrow MN assay using mice. Upon histopathological examination, inflammatory lesions and hypertrophy were noted, which may explain the increase in the hepatocyte proliferation and the enhancement of MN induction by NPYR. Our findings indicate that the RDLMN assay could be a useful tool for comprehensive risk assessment of carcinogenicity by providing information on both genotoxicity and histopathology when integrated into a general repeat dosing toxicity assay.

  9. Genotoxic and antigenotoxic properties of selenium compounds in the in vitro micronucleus assay with human whole blood lymphocytes and tk6 lymphoblastoid cells

    Directory of Open Access Journals (Sweden)

    Eduard Cemeli

    2006-01-01

    Full Text Available Selenium is known to possess both genotoxic and antigenotoxic properties. In the present study, we have evaluated the genotoxicity and antigenotoxicity of three selenium compounds (sodium selenate, sodium selenite and selenous acid by measuring in vitro micronucleus induction. Assays were conducted in whole blood lymphocytes and in the TK6 lymphoblastoid cell line, with and without co-treatment with potassium dichromate, a known genotoxic compound. In general, the compounds were more active in TK6 cells than they were in blood lymphocytes. Only 1 μM selenous acid increased the frequency of binucleated cells containing micronuclei (BNMN in blood lymphocytes, while all three selenium compounds increased BNMN in TK6 cells. In addition, combinations of selenous acid and potassium dichromate resulted in lower frequencies of BNMN than potassium dichromate alone in blood lymphocytes, while combinations of sodium selenate and potassium dichromate produced lower frequencies of BNMN than potassium dichromate alone in TK6 cells. The concentrations of selenium compounds that were used, in combination with the medium components and the biological physiology of the whole blood lymphocytes and TK6 cells, could have affected the redox potential of the compounds, switching the chemicals from a pro-oxidant to antioxidant status and vice-versa. The lower activities of the compounds in blood lymphocytes may be due to the protective effects of blood components. The results indicate that the genotoxic and antigenotoxic properties of selenium compounds are highly dependent upon the conditions under which they are evaluated.

  10. Cytochalasin-b micronucleus test of peripheral blood lymphocytes of Kozloduy NPP workers

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Hristova, R.; Atanassova, P.; Stainova, A.; Popova, L.

    2006-01-01

    Full text: The cytokinesis-block micronucleus assay in peripheral blood lymphocytes was applied to evaluate occupational radiation exposure of 65 nuclear power plant workers. Blood samples were collected from 43 workers aged between 32-54 years, mean age 41,7 years. The accumulated radiation doses for each subject varied between 7,9 - 766,4 mSv, mean level of the whole group is 237,78 mSv. Controls were 22 healthy individuals, (13 male and 9 female), aged between 27-52 years, mean age 38,8 years, selected from the administrative staff. All subjects participating in this study were interviewed concerning health status, professional history, smoking habit and other aspects relevant to the study. At least 1000 binucleated cells were analysed per person. The detected frequencies of micronuclei in the control group were ranged between 4.0 and 23.5 per 1000 binucleated cells, with the average incidence yield of 12.16 ±5.59 %. The mean group value of the frequency of micronuclei in peripheral lymphocytes of exposed workers was found to be 18.46±6.72 % in 1000 cells. The difference between the mean frequency of micronuclei in the group of exposed subjects and the control group was statistically significant (P<0,001). The correlation coefficient for duration of employment and accumulated doses is 0,30 (P<0,05). After 1,5 Gy in vitro irradiation of peripheral blood from investigated workers and controls a decreased radiosensitivity of NPP workers is detected using micronucleus assay. Decreased radiosensitivity of the professionally exposed workers could be due to the phenomenon of adaptive response. Micronucleus assay in peripheral blood lymphocytes is useful approach in cytogenetic monitoring of occupationally exposed nuclear industry workers

  11. Cytogenetic radiosensitivity of G0-lymphocytes of breast and esophageal cancer patients as determined by micronucleus assay

    International Nuclear Information System (INIS)

    Mozdarani, H.; Mansouri, Z.; Haeri, S.A.

    2005-01-01

    Enhanced chromosomal radiosensitivity is a feature of many cancer predisposition conditions, indicative of the important role of chromosomal alterations in carcinogenesis. In this study the cytokinesis-blocked micronucleous assay was used to compare the radiosensitivity of blood lymphocytes obtained from Iranian breast or esophageal cancer patients (n=50, n=16; respectively) with that of control individuals (n=40). For each sample, one thousand binucleate lymphocytes were analyzed before and after in vitro exposure to 3 Gy of γ rays. The radiation-induced frequency of micronucleus was significantly higher in the breast cancer group (261/1,000 binucleated cells) than in esophageal cancer group (241/1,000 binucleated cells, P<0.01) or in the control group (240/1,000 binucleated cells, P<0.01). The results indicate that breast cancer patients are more radiosensitive compared to normal healthy individuals or esophageal cancer patients. Increased radiosensitivity could be due to defects in DNA repair genes involved in breast cancer formation. Since patients with esophageal cancer did not show elevated radiosensitivity, it is assumed that the contribution of radiosensitivity-related genes to the development of esophageal cancer may be smaller than the contribution of those genes to breast cancer. (author)

  12. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  13. Cytogenetic Monitoring By Use Of The Micronucleus Assay Among Nuclear Malaysia Radiation Workers-A Preliminary Result

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Mohd Rodzi Ali; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Yahaya Talib; Rehir Dahalan

    2014-01-01

    Biological dosimetry based on the analysis of micronuclei in the cytokinesis-block micronucleus (CBMN) assay can be used as an alternative method for scoring dicentric chromosomes in the field of radiation protection. Bio dosimetry is mainly performed, in addition to physical dosimetry, with the aim of individual dose assessment. Aim of this study was to assess occupationally induced chromosomal damage in radiation workers exposed to ionizing radiation. The CBMN assay was used in the peripheral blood lymphocytes of 50 exposed workers. Number of bi-nucleated cell and micronuclei were scored and statistical analysis was done to see the effect and correlation of micronuclei with gender, age and time of worked. In conclusion, scoring of micronuclei is a useful cytogenetic monitoring for radiation workers. (author)

  14. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    Science.gov (United States)

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The Comet Assay: Tails of the (Unexpected. Use of the comet assay in pharmaceutical development.

    Directory of Open Access Journals (Sweden)

    Bas-jan Van Der Leede

    2015-08-01

    Full Text Available In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by regulatory guidance. In this presentation we want to give insight into the circumstances in vivo comet assay is deployed in a Genetic Toxicology Department of a pharmaceutical company. As the in vivo comet assay is a salvage assay, it means that some events have occurred in an in vitro assay and that the compound (or metabolite responsible for this signal is potentially deselected for further development. More than often the decision to perform an in vivo comet assay is at a very early stage in development and the first time that the compound will be tested in vivo at high/toxic dose levels. As almost no toxicokinetic data and tissue distribution data are available a careful design with maximizes the chances for successful mitigation is necessary. Decisions on acute or repeated dosing need to be made and arrangements for combining the in vivo comet assay with the in vivo micronucleus assay are to be considered. Often synthesis methods need to be scaled up fast to provide the required amount of compound and information on suitable formulations needs to be in place. As exposure data is crucial for interpretation of results, analytical methods need to be brought in place rapidly. An experienced multi skilled and communicative team needs to be available to deploy successfully this kind of assays at an early stage of development. We will present a few scenarios on study conduct and demonstrate how this assay can make a difference for the further development of a new drug.

  16. Correlation of In Vivo Versus In Vitro Benchmark Doses (BMDs) Derived From Micronucleus Test Data: A Proof of Concept Study.

    Science.gov (United States)

    Soeteman-Hernández, Lya G; Fellows, Mick D; Johnson, George E; Slob, Wout

    2015-12-01

    In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement). © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  17. The in vitro toxicology of Swedish snus

    Science.gov (United States)

    Coggins, Christopher R. E.; Ballantyne, Mark; Curvall, Margareta; Rutqvist, Lars-Erik

    2012-01-01

    Three commercial brands of Swedish snus (SWS), an experimental SWS, and the 2S3 reference moist snuff were each tested in four in vitro toxicology assays. These assays were: Salmonella reverse mutation, mouse lymphoma, in vitro micronucleus, and cytotoxicity. Water extractions of each of the 5 products were tested using several different concentrations; the experimental SWS was also extracted using dimethyl sulfoxide (DMSO). Extraction procedures were verified by nicotine determinations. Results for SWS in the mutagenicity assays were broadly negative: there were occasional positive responses, but these were effectively at the highest concentration only (concentrations well above those suggested by regulatory guidelines), and were often associated with cytotoxicity. The 2S3 reference was unequivocally positive in one of the three conditions of the micronucleus assay (MNA), at the highest concentration only. Positive controls produced the expected responses in each assay. The SWS data are contrasted with data reported for combusted tobacco in the form of cigarettes, where strongly positive responses have been routinely reported for mutagenicity and cytotoxicity. These negative findings in a laboratory setting concur with the large amount of epidemiological data from Sweden, data showing that SWS are associated with considerably lower carcinogenic potential when compared with cigarettes. PMID:22400986

  18. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    Science.gov (United States)

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  19. Micronucleus induction as a measure of I-131 exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kasuba, V; Horvat, D [Inst. for Medical Recearch and Occupational Health, Zagreb (Croatia). Laboratory for Mutagenesis; Kusic, Z [Clinical Hospital Sestre Milosrdnice, Zagreb (Croatia). Dept. of Oncology and Nuclear Medicine; Vlatkovic, M [Clinical Hospital Centre, Zagreb (Croatia). Dept. of Nuclear Medicine and Radiation Protection

    1994-10-01

    The change of cell numbers in the peripheral blood following irradiation has been studied for many years, particularly in patients undergoing radiotherapy. Recently, attention is directed towards the use of cytogenetic-mutagenetic methods to estimate the biological effects of received radiation dose. The aim of our study was to identify the difference in number and distribution of micronucleus, depending of applied therapeutic dose of iodine-131. According to their diagnosis, six patients have received iodine-131 in range from 80 to 140 mCi, while in the other group of patients the dose values varied from 7 to 32 mCi. On in vitro peripheral blood lymphocyte cultures micronucleus test was applied. Micronucleus analyses were carried out before the treatment, 24, 48 and 96 hours after the oral application of radiopharmaceutical. The number of micronucleus is showing increase, depending on applied radioactivity of iodine-131 and duration of exposition. The clear dose response relationship was never found. These results illustrate the problem associated with the inhomogeneous distribution of dose which results from the concentration of incorporated radionuclide into thyroid or other tissues. (author).

  20. Analysis of resveratrol and radiation effects in lung cancer cells by micronucleus assay

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Santos, Dymes R.A.; Vieira, Daniel P.; Rogero, Sizue O.; Rogero, Jose R., E-mail: carolina_sm@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Weltman, Eduardo [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Cruz, Aurea S.; Santos, Rezolina P. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2015-07-01

    Mucoepidermoid lung carcinoma is frequently manifested by obstructive trachea symptoms. Radiation and drugs combinations are commonly used in the lung cancer treatment. Currently there is a strong tendency to develop therapeutic strategies focused at the administration of high potential compounds to improve the ionizing radiation treatments, so as to increase the radiation effects on tumor cell while minimizing these effects to surrounding normal tissues. Resveratrol is a polyphenolic phytoalexin compound present in wines and several plants. This compound has a broad spectrum of biological activities such as antioxidant, anticarcinogenic, and induction of cell cycle arrest effects. Analysis of biological effects of ionizing radiation in the presence of resveratrol in different cell cultures has been the subject of many studies. To verify the genotoxic effects in cells exposed to ionizing radiation many methods have been proposed. The cytokinesis-block micronucleus technique is one of the preferred methods. The main of this study was to detect and quantify radioinduced DNA damage in mucoepidermoid lung carcinoma cells (NCI-H292) by cytokinesis-block micronucleus technique using cytocalasin-B. The cell culture was irradiated at a single fraction from a TrueBeam® linear accelerator (0, 0.8, 5, and 10 Gy), in the absence or presence of different resveratrol concentrations (0, 15, 30, and 60 μM). The results showed that resveratrol (15 and μM) induced significant increase frequency (p<0.05) of micronucleus formation in NCI-H292 cell culture non-irradiated and exposed at 5 Gy dose. Moreover, resveratrol (30 μM) induced micronucleus formation at 0.8 Gy dose. (author)

  1. Analysis of resveratrol and radiation effects in lung cancer cells by micronucleus assay

    International Nuclear Information System (INIS)

    Moreno, Carolina S.; Santos, Dymes R.A.; Vieira, Daniel P.; Rogero, Sizue O.; Rogero, Jose R.; Sakuraba, Roberto K.; Weltman, Eduardo; Cruz, Aurea S.; Santos, Rezolina P.

    2015-01-01

    Mucoepidermoid lung carcinoma is frequently manifested by obstructive trachea symptoms. Radiation and drugs combinations are commonly used in the lung cancer treatment. Currently there is a strong tendency to develop therapeutic strategies focused at the administration of high potential compounds to improve the ionizing radiation treatments, so as to increase the radiation effects on tumor cell while minimizing these effects to surrounding normal tissues. Resveratrol is a polyphenolic phytoalexin compound present in wines and several plants. This compound has a broad spectrum of biological activities such as antioxidant, anticarcinogenic, and induction of cell cycle arrest effects. Analysis of biological effects of ionizing radiation in the presence of resveratrol in different cell cultures has been the subject of many studies. To verify the genotoxic effects in cells exposed to ionizing radiation many methods have been proposed. The cytokinesis-block micronucleus technique is one of the preferred methods. The main of this study was to detect and quantify radioinduced DNA damage in mucoepidermoid lung carcinoma cells (NCI-H292) by cytokinesis-block micronucleus technique using cytocalasin-B. The cell culture was irradiated at a single fraction from a TrueBeam® linear accelerator (0, 0.8, 5, and 10 Gy), in the absence or presence of different resveratrol concentrations (0, 15, 30, and 60 μM). The results showed that resveratrol (15 and μM) induced significant increase frequency (p<0.05) of micronucleus formation in NCI-H292 cell culture non-irradiated and exposed at 5 Gy dose. Moreover, resveratrol (30 μM) induced micronucleus formation at 0.8 Gy dose. (author)

  2. Genotoxic and Antigenotoxic Assessment of Chios Mastic Oil by the In Vitro Micronucleus Test on Human Lymphocytes and the In Vivo Wing Somatic Test on Drosophila.

    Directory of Open Access Journals (Sweden)

    Dimitris Vlastos

    Full Text Available Chios mastic oil (CMO, the essential oil derived from Pistacia lentiscus (L. var. chia (Duham, has generated considerable interest because of its antimicrobial, anticancer, antioxidant and other beneficial properties. In the present study, the potential genotoxic activity of CMO as well as its antigenotoxic properties against the mutagenic agent mitomycin-C (MMC were evaluated by employing the in vitro Cytokinesis Block MicroNucleus (CBMN assay and the in vivo Somatic Mutation And Recombination Test (SMART. In the in vitro experiments, lymphocytes were treated with 0.01, 0.05 and 0.10% (v/v of CMO with or without 0.05 μg/ml MMC, while in the in vivo assay Drosophila larvae were fed with 0.05, 0.10, 0.50 and 1.00% (v/v of CMO with or without 2.50 μg/ml MMC. CMO did not significantly increase the frequency of micronuclei (MN or total wing spots, indicating lack of mutagenic or recombinogenic activity. However, the in vitro analysis suggested cytotoxic activity of CMO. The simultaneous administration of MMC with CMO did not alter considerably the frequencies of MMC-induced MN and wing spots showing that CMO doesn't exert antigenotoxic or antirecombinogenic action. Therefore, CMO could be considered as a safe product in terms of genotoxic potential. Even though it could not afford any protection against DNA damage, at least under our experimental conditions, its cytotoxic potential could be of interest.

  3. Evaluating the genotoxic effects of workers exposed to lead using micronucleus assay, comet assay and TCR gene mutation test

    International Nuclear Information System (INIS)

    Chen Zhijian; Lou Jianlin; Chen Shijie; Zheng Wei; Wu Wei; Jin Lifen; Deng Hongping; He Jiliang

    2006-01-01

    To evaluate the genotoxic effects of lead (Pb) exposure, 25 workers in a workplace producing storage battery were monitored for three genetic end-points using micronucleus (MN) assay, comet assay and TCR gene mutation test. Twenty-five controls were matched with workers according to age, gender and smoking. The air Pb concentration in the workplace was 1.26 mg/m 3 . All subjects were measured for Pb concentration of blood by atom absorption spectrophotometry. The mean Pb concentration of blood in workers (0.32 mg/l) was significantly higher than that in controls (0.02 mg/l). The results of MN test showed that the mean micronuclei rate (MNR) and mean micronucleated cells rate (MCR) in workers were 9.04 ± 1.51 per mille and 7.76 ± 1.23 per mille , respectively, which were significantly higher than those (2.36 ± 0.42 per mille and 1.92 ± 0.31 per mille ) in controls (P -4 and 1.74 ± 0.17 x 10 -4 , respectively, there was no significant difference between workers and controls (P > 0.05). The results of our study indicated that the genetic damage was detectable in 25 workers occupationally exposed to lead

  4. Use of the micronucleus assay for the selective detection of radiosensitivity in BUdR-unincorporated cells after pulse-labelling of exponentially growing tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, S.; Ono, K.; Fushiki, M.; Abe, M. (Kyoto Univ. (Japan). Faculty of Medicine); Wandl, E.O. (Vienna Univ. (Austria). Klinik fuer Strahlentherapie und Strahlenbiologie)

    1990-08-01

    To determine the radiosensitivity of non S-phase tumour cells in vitro, survival curves of SCC VII tumour cells were obtained after a short block with hydroxyurea. Dose-response curves of micronucleus (MN) frequency appearing in non-S-phase cells were also determined by excluding S-phase cells with immunofluorescence staining to 5-bromo-2'-deoxyuridine (BUdR). Both the dose response curves of MN frequency and survival curves were analysed by a linear-quadratic model (surviving fraction =exp (-{alpha}D-{beta}D{sup 2}), MN frequency =aD+bD{sup 2}+c). A good correlation between the {alpha}/{beta} and a/b ratios was observed. In both BUdR-unincorporated and asynchronous cell cultures, the regression lines between the surviving fraction and micronucleus frequency were statistically identical. (author).

  5. Fish eco-genotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution

    Directory of Open Access Journals (Sweden)

    Bilal Hussain

    2018-02-01

    Full Text Available Owing to white meat production Labeo rohita have vast economic importance, but its population has been reduced drastically in River Chenab due to pollution. Atomic absorption spectrophotometry showed a merciless toxicity level of Cd, Cu, Mn, Zn, Pb, Cr, Sn and Hg. Comet assay results indicated significant (p < .05 DNA fragmentation in Labeo rohita as 42.21 ± 2.06%, 31.26 ± 2.41% and 21.84 ± 2.21% DNA in comet tail, tail moment as 17.71 ± 1.79, 10.30 ± 1.78 and 7.81 ± 1.56, olive moment as 13.58 ± 1.306, 8.10 ± 1.04 and 5.88 ± 0.06, respectively, from three different polluted sites on the river. Micronucleus assay showed similar findings of single micronucleus induction (MN as 50.00 ± 6.30‰, double MN 14.40 ± 2.56‰, while nuclear abnormalities (NA were found as 150.00 ± 2.92‰. These higher frequencies of MN induction and NA were found to be the cause of reduction of 96% of the population of this fish species in an experimental area of the River Chenab. This fish species has been found near extinction through the length of the river Chenab and few specimens in rainy seasons if restored by flood, may die in sugarcane mill season. Due to sweeping extinction Labeo rohita showed the highest sensitivity for pollution and could be used as bioindicator and DNA fragmentation in this column feeder fish species as a biomarker of the pollution load in freshwater bodies.

  6. Evaluation of the repeated-dose liver and gastrointestinal tract micronucleus assays with 22 chemicals using young adult rats: summary of the collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/The Japanese Environmental Mutagen Society (JEMS) - Mammalian Mutagenicity Study Group (MMS).

    Science.gov (United States)

    Hamada, Shuichi; Ohyama, Wakako; Takashima, Rie; Shimada, Keisuke; Matsumoto, Kazumi; Kawakami, Satoru; Uno, Fuyumi; Sui, Hajime; Shimada, Yasushi; Imamura, Tadashi; Matsumura, Shoji; Sanada, Hisakazu; Inoue, Kenji; Muto, Shigeharu; Ogawa, Izumi; Hayashi, Aya; Takayanagi, Tomomi; Ogiwara, Yosuke; Maeda, Akihisa; Okada, Emiko; Terashima, Yukari; Takasawa, Hironao; Narumi, Kazunori; Wako, Yumi; Kawasako, Kazufumi; Sano, Masaki; Ohashi, Nobuyuki; Morita, Takeshi; Kojima, Hajime; Honma, Masamitsu; Hayashi, Makoto

    2015-03-01

    The repeated-dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect hepatocarcinogens. We conducted a collaborative study to assess the performance of this assay and to evaluate the possibility of integrating it into general toxicological studies. Twenty-four testing laboratories belonging to the Mammalian Mutagenicity Study Group, a subgroup of the Japanese Environmental Mutagen Society, participated in this trial. Twenty-two model chemicals, including some hepatocarcinogens, were tested in 14- and/or 28-day RDLMN assays. As a result, 14 out of the 16 hepatocarcinogens were positive, including 9 genotoxic hepatocarcinogens, which were reported negative in the bone marrow/peripheral blood micronucleus (MN) assay by a single treatment. These outcomes show the high sensitivity of the RDLMN assay to hepatocarcinogens. Regarding the specificity, 4 out of the 6 non-liver targeted genotoxic carcinogens gave negative responses. This shows the high organ specificity of the RDLMN assay. In addition to the RDLMN assay, we simultaneously conducted gastrointestinal tract MN assays using 6 of the above carcinogens as an optional trial of the collaborative study. The MN assay using the glandular stomach, which is the first contact site of the test chemical when administered by oral gavage, was able to detect chromosomal aberrations with 3 test chemicals including a stomach-targeted carcinogen. The treatment regime was the 14- and/or 28-day repeated-dose, and the regime is sufficiently promising to incorporate these methods into repeated-dose toxicological studies. The outcomes of our collaborative study indicated that the new techniques to detect chromosomal aberrations in vivo in several tissues worked successfully. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Hyperthermia-induced micronucleus formation in a human keratinocyte cell line

    International Nuclear Information System (INIS)

    Hintzsche, Henning; Riese, Thorsten; Stopper, Helga

    2012-01-01

    Elevated temperature can cause biological effects in vitro and in vivo. Many studies on effects of hypo- and hyperthermia have been conducted, but only few studies systematically investigated the formation of genomic damage in the micronucleus test in human cells in vitro as a consequence of different temperatures. In the present study, HaCaT human keratinocytes were exposed to different temperatures from 37 °C to 42 °C for 24 h in a regular cell culture incubator. Micronucleus frequency as a marker of genomic damage was elevated in a temperature-dependent and statistically significant manner. Apoptosis occurred at temperatures of 39 °C or higher. Cell proliferation was unaffected up to 40 °C and decreased at 41 °C and 42 °C. Expression of the heat shock protein Hsp70 was elevated, particularly at temperatures of 40 °C and higher. These findings are in agreement with several in vivo studies and some in vitro studies looking at single, specific temperatures, but a systematically investigated temperature-dependent increase of genomic damage in human keratinocytes in vitro is demonstrated for the first time here.

  8. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-06-01

    The results concerning of positive findings by micronuclei and non significant ones by comet assay, are corroborated by Deng et al. (2005 study performed in workers occupationally exposed to methotrexate, also a cytostatic drug. According to Cavallo et al. (2009, the comet assay seems to be more suitable for the prompt evaluation of the genotoxic effects, for instance, of polycyclic aromatic hydrocarbons mixtures containing volatile substances, whereas the micronucleus test seems more appropriate to evaluate the effects of exposure to antineoplastic agents. However, there are studies that observed an increase in both the comet assay and the micronucleus test in nurses handling antineoplastic drugs, although statistical significance was only seen in the comet assay, quite the opposite of our results (Maluf & Erdtmann, 2000; Laffon et al. 2005.

  9. Evaluation of the repeated-dose liver micronucleus assay using N-nitrosomorpholine in young adult rats: report on collaborative study by the Collaborative Study Group for the Micronucleus Test (CSGMT)/Japanese Environmental Mutagen Society (JEMS)-Mammalian Mutagenicity Study (MMS) Group.

    Science.gov (United States)

    Hayashi, Aya; Kosaka, Mizuki; Kimura, Aoi; Wako, Yumi; Kawasako, Kazufumi; Hamada, Shuichi

    2015-03-01

    The present study was conducted to evaluate the suitability of a repeated-dose liver micronucleus (LMN) assay in young adult rats as a collaborative study by the Mammalian mutagenicity study (MMS) group. All procedures were performed in accordance with the standard protocols of the MMS Group. Six-week-old male Crl:CD(SD) rats (5 animals/group) received oral doses of the hepatocarcinogen N-nitrosomorpholine (NMOR) at 0 (control), 5, 10, and 30mg/kg/day (10mL/kg) for 14 days. Control animals received vehicle (water). Hepatocytes were collected from the liver 24h after the last dose, and the number of micronucleated hepatocytes (MNHEPs) was determined by microscopy. The number of micronucleated immature erythrocytes (MNIMEs) in the femoral bone marrow was also determined. The liver was examined using histopathologic methods after formalin fixation. The results showed statistically significant and dose-dependent increases in the number of MNHEPs in the liver at doses of 10mg/kg and greater when compared with the vehicle control. However, no significant increase was noted in the number of MNIMEs in the bone marrow at doses of up to 30mg/kg. Histopathology of the liver revealed hypertrophy and single cell necrosis of hepatocytes at doses of 5mg/kg and above. These results showed that the induction of micronuclei by NMOR was detected by the repeated-dose LMN assay, but not by the repeated-dose bone marrow micronucleus assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synergistic interaction of radiation and octylphenol evaluated by tradescantia-micronucleus assay

    International Nuclear Information System (INIS)

    Shin, H. S.; Lee, J. H.; Lee, B. H.; Kim, J. K.

    2003-01-01

    Many kinds of synthetic chemicals have been being used for various purposes. Some of them are called 'endocrine disruptors' because they can disturb the endocrine system of organisms. Presently no technique is established for the quantitative assessment of biological risk of the environmental hormones. The pollen mother cells (PMC) of tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end- point for assessing their effects. Micronucleus frequencies in PMC showed a good dose- and concentration-response relationship for radiation and bisphenol A. The MCN frequencies in the pollen mother cells treated with octylphenol were 4.20, 7.27, 4.93 MCN/100 tetrads for 1, 5 and 10 μM, respectively. On the other hand, the frequencies were 10.13, 19.27, 24.47 MCN/100 tetrads for the octylphenol treatments (1, 5, and 10 μM) combined with 30 cGy irradiation. The MCN frequency of 30 cGy control was 8.00 MCN/100 tetrads for the octylphenol treatments (1, 5, and 10μM) combined with 30 cGy irradiation. The MCN frequency of 30 cGy control was 8.00 MCN/100 tetrads. It is known from the result that the Trad-MCN assay can be an excellent tool for the detection of biologically harmful effects of environmental toxicants or synthetic chemicals

  11. Micronucleus Assay in Exfoliated Buccal Epithelial Cells Using Liquid Based Cytology Preparations in Building Construction Workers.

    Science.gov (United States)

    Arul, P; Smitha, Shetty; Masilamani, Suresh; Akshatha, C

    2018-01-01

    Cytogenetic damage in exfoliated buccal epithelial cells due to environmental and occupational exposure is often monitored by micronucleus (MN) assay using liquid based cytology (LBC) preparations. This study was performed to evaluate MN in exfoliated buccal epithelial cells of building construction workers using LBC preparations. LBC preparations of exfoliated buccal epithelial cells from 100 subjects [50 building construction workers (cases) and 50 administrative staffs (controls)] was evaluated by May-Grunwald Giemsa, Hematoxylin and Eosin and Papanicolaou stains. Student's t test was used for statistical analysis and a P value of 5 years) and smokers and non-smokers of cases (P=0.001). However, there were meaningful differences regarding mean frequencies of MN between smokers, non-smokers, those with alcohol consumption or not in cases and controls using various stains (P=0.001). There was an increased risk of cytogenetic damage in building construction workers. However, evaluation of MN of exfoliated buccal epithelial cells in building construction workers serve as a minimally invasive biomarker for cytogenetic damage. LBC preparations can be applied for MN assay as it improves the quality of smears and cell morphology, decreases the confounding factors and reduces false positive results.

  12. Dose-Response Assessment of Four Genotoxic Chemicals in a Combined Mouse and Rat Micronucleus and Comet Assay Protocol

    Science.gov (United States)

    Recio, Leslie; Hobbs, Cheryl; Caspary, William; Witt, Kristine L.

    2012-01-01

    The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH>13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hour intervals (VS was administered to rats for 3 days); animals were euthanized 4 hours after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern. PMID:20371966

  13. Diesel exhaust particulate material expression of in vitro genotoxic activities when dispersed into a phospholipid component of lung surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X C; Keane, M J; Ong, T M; Harrison, J C; Slaven, J E; Bugarski, A D; Gautam, M; Wallace, W E, E-mail: mjk3@cdc.go [US Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV (United States)

    2009-02-01

    Bacterial mutagenicity and mammalian cell chromosomal and DNA damage in vitro assays were performed on a diesel exhaust particulate material (DPM) standard in two preparations: as an organic solvent extract, and as an aqueous dispersion in a simulated pulmonary surfactant. U.S. National Institute for Standards and Technology DPM SRM 2975 expressed mutagenic activity in the Salmonella reversion assay, and for in vitro genotoxicity to mammalian cells as micronucleus induction and as DNA damage in both preparations: as an acetone extract of the DPM mixed into dimethylsulfoxide, and as a mixture of whole DPM in a dispersion of dipalmitoyl phosphatidyl choline. Dispersion in surfactant was used to model the conditioning of DPM depositing on the deep respiratory airways of the lung. DPM solid residue after acetone extraction was inactive when assayed as a surfactant dispersion in the micronucleus induction assay, as was surfactant dispersion of a respirable particulate carbon black. In general, a given mass of the DPM in surfactant dispersion expressed greater activity than the solvent extract of an equal mass of DPM.

  14. Evaluation of repeated dose micronucleus assays of the liver and gastrointestinal tract using potassium bromate: a report of the collaborative study by CSGMT/JEMS.MMS.

    Science.gov (United States)

    Okada, Emiko; Fujiishi, Yohei; Narumi, Kazunori; Kado, Shoichi; Wako, Yumi; Kawasako, Kazufumi; Kaneko, Kimiyuki; Ohyama, Wakako

    2015-03-01

    The food additive potassium bromate (KBrO3) is known as a renal carcinogen and causes chromosomal aberrations in vitro without metabolic activation and in vivo in hematopoietic and renal cells. As a part of a collaborative study by the Mammalian Mutagenicity Study group, which is a subgroup of the Japanese Environmental Mutagen Society, we administered KBrO3 to rats orally for 4, 14, and 28 days and examined the micronucleated (MNed) cell frequency in the liver, glandular stomach, colon, and bone marrow to confirm whether the genotoxic carcinogen targeting other than liver and gastrointestinal (GI) tract was detected by the repeated dose liver and GI tract micronucleus (MN) assays. In our study, animals treated with KBrO3 showed some signs of toxicity in the kidney and/or stomach. KBrO3 did not increase the frequency of MNed cells in the liver and colon in any of the repeated dose studies. However, KBrO3 increased the frequency of MNed cells in the glandular stomach and bone marrow. Additionally, the MNed cell frequency in the glandular stomach was not significantly affected by the difference in the length of the administration period. These results suggest that performing the MN assay using the glandular stomach, which is the first tissue to contact agents after oral ingestion, is useful for evaluating the genotoxic potential of chemicals and that the glandular stomach MN assay could be integrated into general toxicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test.

    Science.gov (United States)

    Ciğerci, İbrahim Hakkı; Ali, Muhammad Muddassir; Kaygısız, Şöhret Yüksek; Liman, Recep

    2016-02-01

    Cobalt and its different compounds are extensively used worldwide and considered as possible environmental pollutant. Earthworms are useful model organism and its different species are used to monitor soil pollution. No study has been found to detect cobalt chloride (CoCl2) genotoxicity in earthworms. So, current study aimed to evaluate CoCl2 induced genotoxicity in Eisenia hortensis earthworms coelomocytes by alkaline comet assay (CA) and micronucleus (MN) test. The earthworms (n = 10 for each group) were exposed to different series of CoCl2 concentrations (100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm, 600 ppm) to find LD50. The LD50 for CoCl2 was found at 226 ppm. Then, doses of LD50/2, LD50 and 2XLD50 for 48 h were used. CA and MN demonstrated the significant increase (P earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies.

    Science.gov (United States)

    Moche, H; Paget, V; Chevalier, D; Lorge, E; Claude, N; Girard, H A; Arnault, J C; Chevillard, S; Nesslany, F

    2017-08-01

    Nanodiamonds (NDs) are promising nanomaterials for biomedical applications. However, a few studies highlighted an in vitro genotoxic activity for detonation NDs, which was not evidenced in one of our previous work quantifying γ-H2Ax after 20 and 100 nm high-pressure high-temperature ND exposures of several cell lines. To confirm these results, in the present work, we investigated the genotoxicity of the same 20 and 100 nm NDs and added intermediate-sized NDs of 50 nm. Conventional in vitro genotoxicity tests were used, i.e., the in vitro micronucleus and comet assays that are recommended by the French National Agency for Medicines and Health Products Safety for the toxicological evaluation of nanomedicines. In vitro micronucleus and in vitro comet assays (standard and hOGG1-modified) were therefore performed in two human cell lines, the bronchial epithelial 16HBE14o- cells and the colon carcinoma T84 cells. Our results did not show any genotoxic activity, whatever the test, the cell line or the size of carboxylated NDs. Even though these in vitro results should be confirmed in vivo, they reinforce the potential interest of carboxylated NDs for biomedical applications or even as a negative reference nanoparticle in nanotoxicology. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. In vitro and in vivo antimutagenic effects of DIG, a herbal preparation of Berberis vulgaris, Taraxacum officinale and Arctium lappa, against mitomycin C.

    Science.gov (United States)

    Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E

    2015-07-01

    DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.

  18. Evaluation of total PSA assay on vitros ECi and correlation with Kryptor-PSA assay.

    Science.gov (United States)

    Cassinat, B; Wacquet, M; Toubert, M E; Rain, J D; Schlageter, M H

    2001-01-01

    An increasing number of multiparametric immuno-analysers for PSA assays are available. As different immuno-assays may vary in their analytical quality and their accuracy for the follow-up of patients, expertise is necessary for each new assay. The PSA assay on the Vitros-ECi analyser has been evaluated and compared with the PSA assay from the Kryptor analyser. Variation coefficients were 0.91 to 1.98% for within-run assays, and 4.2% to 5.4% for interassay (PSA levels = 0.8 microgram/L to 33.6 micrograms/L). Dilution tests showed 93 to 136% recovery until 70 micrograms/L PSA. Functional sensitivity was estimated at 0.03 microgram/L. Equimolarity of the test was confirmed. Correlation of PSA levels measured with Vitros-ECi and Kryptor analysers displayed a correlation coefficient r2 of 0.9716. The half-lives and doubling times of PSA were similar using both methods. Vitros-ECi PSA assay meets the major criteria for the management of prostate cancer patients.

  19. Evaluation of genotoxicity after application of Listerine(R) on human lymphocytes by micronucleus and single cell gel electrophoresis assays.

    Science.gov (United States)

    Türkez, Hasan; Togar, Basak; Arabaci, Taner

    2012-04-01

    Listerine (LN) is one of the most commonly used mouth rinses worldwide although very limited information is available concerning its genotoxicity. In another view, the biological safety profile of oral care products is frequently assumed on the basis of simplistic test models. Therefore, the present study was undertaken to investigate the in vitro genotoxic potential of LN using micronucleus and single cell gel electrophoresis tests as genetic endpoints. Different concentrations of LN (0-100% of ml/culture, v/v) were applied to whole human blood cultures (n = 5). The result of the present study showed that there were no statistically significant differences (p > 0.05) between the control group and the groups treated with LN alone in both analysed endpoints. In conclusion, our result first demonstrated the absence of genotoxicity of LN on human lymphocytes.

  20. Evaluation of the repeated dose liver micronucleus assay using young adult rats with cyclophosphamide monohydrate: a report of a collaborative study by CSGMT/JEMS.MMS.

    Science.gov (United States)

    Matsumoto, Kazumi; Zaizen, Kazuyo; Miyamoto, Atsushi; Wako, Yumi; Kawasako, Kazufumi; Ishida, Hisao

    2015-03-01

    The repeated dose liver micronucleus (RDLMN) assay using young adult rats has the potential to detect liver carcinogens, and this assay could be integrated into general toxicological studies. In this study, in order to assess the performance of the assay, cyclophosphamide monohydrate (CP) was tested in a 14-day RDLMN assay. Based on the results of the 4-day repeated dose-finding study, 10 mg/kg/day of CP was selected as the highest dose and the lower doses were set at 5, 2.5, 1.25, and 0.625 mg/kg/day for the 14-day RDLMN assay. On the day after the completion of the dosing period, specimens of hepatocytes and bone marrow cells were prepared and the induction of micronuclei was assessed. No changes were observed in the incidences of micronucleated hepatocytes. Nevertheless, the incidences of micronucleated immature erythrocytes in the bone marrow were increased significantly at CP doses of 1.25 mg/kg/day or more. These findings are consistent with reports that CP induces tumors in various tissues but it does not induce liver tumors.

  1. Bio-monitoring for the genotoxic assessment in road construction workers as determined by the buccal micronucleus cytome assay.

    Science.gov (United States)

    Çelik, Ayla; Yildirim, Seda; Ekinci, Seda Yaprak; Taşdelen, Bahar

    2013-06-01

    Buccal micronucleus cytome (BMCyt) assay monitors genetic damage, cell proliferation and cell death in humans exposed to occupational and environmental agents. BMCyt is used as an indicator of genotoxic exposure, since it is associated with chromosomal instability. There is little research on the occupational exposure among road construction workers for genotoxicity testing. In the present study, we evaluated MN frequencies and other nuclear changes, karyorrhexis (KR), karyolysis (KL), broken egg (BE), binucleate (BN), condensed chromatin cell (CCC), and picnotic cell (PC) in buccal mucosa cells of 40 road construction workers (twenty smokers and twenty non-smokers) and 40 control groups consisting of healthy persons (twenty smokers and twenty non-smokers). Microscopic observation was performed of 2000 cells per individual in both road construction workers and control group. In control and worker groups, for each person repair index (RI) was calculated via formula KR+L/BE+MN. The results showed a statistically significant increase in the frequency of MN in buccal epithelial cells of exposed group compared with control group (proad construction workers, RI is lower than the control group. There is a significant difference between workers and control group (proad paving operations are absorbed by workers and that asphalt fume exposure is able to significantly induce cytogenetic damage in buccal mucosa cells of workers after controlling some possible confounding factors, such as age, sex and smoking habits. In addition to determination of nuclear changes and the micronucleus, the determination of RI value presents a new approach to genotoxic bio-monitoring assessment studies of occupationally exposed population. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Results of in vitro chemosensitivity assays

    International Nuclear Information System (INIS)

    Tanigawa, Nobuhiko; Morimoto, Hideki; Akita, Toshiaki; Inoue, Hiroshi; Tanaka, Takeo.

    1986-01-01

    The authors reviewed their experiences to date with chemosensitivity testing of 629 tumors by human tumor clonogenic assay (HTCA) and of 199 tumors by scintillation assay (SA). HTCA and SA were both performed using a double-layer-soft-agar system with continuous exposure of cells to one concentration of standard anticancer drugs. Overall, 60 % of specimens in HTCA and 58 % in SA produced significant growth in vitro. HTCA was 52 % (13/25) reliable for predicting in vivo sensitivity, and 95 % (36/38) reliable for in vivo resistance, whereas SA was 40 % (8/20) reliable for in vivo sensitivity and 88 % (21/24) for in vivo resistance. In vitro success rates were variable, depending on the tumor histology. In vitro growth of gastric cancer specimens was characteristically lower than that of colon cancer specimens (48 % and 60 % in HTCA, and 46 % and 68 % in SA, respectively). (p < 0.005). Optimal in vitro-in vivo drug concentrations and culture conditions are still being defined. Correlation studies of in vitro-in vivo responses of gastrointestinal cancers suggested that in vitro concentrations of 5-fluorouracil and mitomycin C used in this study were considerably higher than their optimal doses. Tumor cell heterogeneity poses significant problems in the clinical use of chemosensitivity assays. In this last study, we sought evidence of tumor heterogeneity by comparing chemosensitivity responses between : 1) different portions of a single tumor, 2) a primary and a metastatic biopsy taken from a patient on the same day, and 3) different metastases from a patient taken on the same day. The results demonstrated the presence of considerable heterogeneity of response to chemotherapy among different tumors from the same patient, and even within the same tumor. The reported discrepancies of in vitro and in vivo sensitivity may be due to such therapeutic heterogeneity among tumors. (J.P.N.)

  3. Techniques for induction of premature chromosome condensation (PCC) by Calyculin-A and micronucleus assay for biodosimetry in Vietnam

    International Nuclear Information System (INIS)

    Pham Ngoc Duy; Tran Que; Hoang Hung Tien; Bui Thi Kim Luyen; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2014-01-01

    The International Atomic Energy Agency (IAEA) and World Health Organization are interested in biological dosimetry method for radiation emergency medicine currently. Some cytogenetic techniques such as premature chromosome condensation (PCC) induced by Calyculin-A and micronucleus (MN) assay are necessary to develop biodosimetry in Vietnam. In this study, we optimized the condition for MN assay with 6 µg/ml Cytochalasin-B concentration and 72.5 hours for peripheral lymphocyte blood culture. The optimization for PCC method is 50 nM Calyculin-A concentration for 45 minutes peripheral lymphocyte blood treatment. For samples exposed to 3.0 Gy gamma 60 Co (dose rate 0.0916 Gy/s), the frequency of MN is 19.02 ± 0.38%, NBP is 1.95 ± 0.28%, dicentric and ring is 41.43 ± 8.12% and frag and min is 63.33 ± 5.16%. For samples exposed to 6.0 Gy gamma 60 Co (dose rate 0.0916 Gy/s), the frequency of ring-PCC is 17.73 ± 2.46%, extra unite is 218.91± 7.58%, dicentric is 83.81 ± 1.09%, ring is 10.75 ± 1.74%, fragment and minute is 193.17 ± 13.10%. MN and ring-PCC are specific marker applying for biodosimetry. (author)

  4. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay.

    Science.gov (United States)

    Huang, Z H; Li, N; Rao, K F; Liu, C T; Huang, Y; Ma, M; Wang, Z J

    2018-03-01

    Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.

  5. Application of liquid-based cytology preparation in micronucleus assay of exfoliated buccal epithelial cells in road construction workers.

    Science.gov (United States)

    Arul, P

    2017-01-01

    Asphalts are bitumens that consist of complex of hydrocarbon mixtures and it is used mainly in road construction and maintenance. This study was undertaken to evaluate the micronucleus (MN) assay of exfoliated buccal epithelial cells in road construction workers using liquid-based cytology (LBC) preparation. Three different stains (May-Grunwald Giemsa, hematoxylin and eosin, and Papanicolaou) were used to evaluate the frequency of MN in exfoliated buccal epithelial of 100 participants (fifty road construction workers and fifty administrative staff) using LBC preparation. Statistical analysis was performed with Student's t-test, and Proad construction exhibit a higher frequency of MN in exfoliated buccal epithelial cells and they are under the significant risk of cytogenetic damage. LBC preparation has potential application for the evaluation of frequency of MN. This technique may be advocated in those who are occupationally exposed to potentially carcinogenic agents in view of improvement in the smear quality and visualization of cell morphology.

  6. Dose-response relationship of octylphenol and radiation evaluated by tradescantia-micronucleus assay

    International Nuclear Information System (INIS)

    Kim, J. K.; Cheon, K. J.; Lee, B. H.; Shin, H. S.; Lee, J. H.

    2002-01-01

    Many kinds of synthetic chemicals have been being used for various purposes. Some of them are called 'Endocrine Disruptor's because they can disturb the endocrine system of organisms. Presently no technique is established for the quantitative assessment of biological risk of the environmental hormones. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end-point assessing their effect. Micronucleus frequencies in PMC showed a good dose- and concentration-response relationship for radiation, bisphenol A and octylphenol. A parallel series of experiment using five increasing doses of gamma-ray at 10, 20, 30, 40 and 50 cGy was conducted. The MCN frequencies of 12.0, 25.2, 41.7, 76 and 83 MCN/100 tetrads were observed from each of the increasing gamma-ray dosage groups, respectively. Lenear regression analysis of the gamma-ray data MCN frequencies yielded a correlation coefficient of 0.95. the MCN frequencies in pollen mother cells treated with bisphenol a and octylphenol showed dose-response relationship in a concentration of 0, 1, 2, 4 μM and 0, 4, 10, 20 μM. the MCN frequency for the bisphenol a and octylphenol group yields 2.33, 8.06, 12.7 and 19.6 MCN/100 tetrads for the bisphenol a and 2.33, 2.33, 11.47, 17.6 MCN/100 tetrads for the octylphenol. The MCN frequency of the control was 2.33 MCN/100 tetrads. It is known from the result that Trad-MCN assay can be an excellent tool for detection of biological risk due to environmental toxicants or synthetic chemicals

  7. Complementing in vitro screening assays with in silico ...

    Science.gov (United States)

    High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive under assay conditions but that can generate active metabolites under in vivo conditions. To address this potential issue, a case study will be presented to demonstrate the use of in silico tools to identify inactive parents with the ability to generate active metabolites. This case study used the results from an orthogonal assay designed to improve confidence in the identification of active chemicals tested across eighteen estrogen receptor (ER)-related in vitro assays by accounting for technological limitations inherent within each individual assay. From the 1,812 chemicals tested within the orthogonal assay, 1,398 were considered inactive. These inactive chemicals were analyzed using Chemaxon Metabolizer software to predict the first and second generation metabolites. From the nearly 1,400 inactive chemicals, over 2,200 first-generation (i.e., primary) metabolites and over 5,500 second-generation (i.e., secondary) metabolites were predicted. Nearly 70% of primary metabolites were immediately detoxified or converted to other metabolites, while over 70% of secondary metabolites remained stable. Among these predicted metabolites, those that are most likely to be produced and remain

  8. In vitro genotoxicity of neutral red after photo-activation and metabolic activation in the Ames test, the micronucleus test and the comet assay.

    Science.gov (United States)

    Guérard, Melanie; Zeller, Andreas; Singer, Thomas; Gocke, Elmar

    2012-07-04

    Neutral red (Nr) is relatively non-toxic and is widely used as indicator dye in many biological test systems. It absorbs visible light and is known to act as a photosensitizer, involving the generation of reactive oxygen species (type-I reaction) and singlet oxygen (type-II reaction). The mutagenicity of Nr was determined in the Ames test (with Salmonella typhimurium strains TA1535, TA97, TA98, TA98NR, TA100, and TA102) with and without metabolic activation, and with and without photo-activation on agar plates. Similarly to the situation following metabolic activation, photo-mutagenicity of Nr was seen with all Salmonella strains tested, albeit with different effects between these strains. To our knowledge, Nr is the only photo-mutagen showing such a broad action. Since the effects are also observed in strains not known to be responsive to ROS, this indicates that ROS production is not the sole mode of action that leads to photo-genotoxicity. The reactive species produced by irradiation are short-lived as pre-irradiation of an Nr solution did not produce mutagenic effects when added to the bacteria. In addition, mutagenicity in TA98 following irradiation was stronger than in the nitroreductase-deficient strain TA98NR, indicating that nitro derivatives that are transformed by bacterial nitroreductase to hydroxylamines appear to play a role in the photo-mutagenicity of Nr. Photo-genotoxicity of Nr was further investigated in the comet assay and micronucleus test in L5178Y cells. Concentration-dependent increases in primary DNA damage and in the frequency of micronuclei were observed after irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Genotoxicity of Heterocyclic PAHs in the Micronucleus Assay with the Fish Liver Cell Line RTL-W1

    Science.gov (United States)

    Brinkmann, Markus; Blenkle, Henning; Salowsky, Helena; Bluhm, Kerstin; Schiwy, Sabrina; Tiehm, Andreas; Hollert, Henner

    2014-01-01

    Heterocyclic aromatic hydrocarbons are, together with their un-substituted analogues, widely distributed throughout all environmental compartments. While fate and effects of homocyclic PAHs are well-understood, there are still data gaps concerning the ecotoxicology of heterocyclic PAHs: Only few publications are available investigating these substances using in vitro bioassays. Here, we present a study focusing on the identification and quantification of clastogenic and aneugenic effects in the micronucleus assay with the fish liver cell line RTL-W1 that was originally derived from rainbow trout (Oncorhynchus mykiss). Real concentrations of the test items after incubation without cells were determined to assess chemical losses due to, e.g., sorption or volatilization, by means of gas chromatography-mass spectrometry. We were able to show genotoxic effects for six compounds that have not been reported in vertebrate systems before. Out of the tested substances, 2,3-dimethylbenzofuran, benzothiophene, quinoline and 6-methylquinoline did not cause substantial induction of micronuclei in the cell line. Acridine caused the highest absolute induction. Carbazole, acridine and dibenzothiophene were the most potent substances compared with 4-nitroquinoline oxide, a well characterized genotoxicant with high potency used as standard. Dibenzofuran was positive in our investigation and tested negative before in a mammalian system. Chemical losses during incubation ranged from 29.3% (acridine) to 91.7% (benzofuran) and may be a confounding factor in studies without chemical analyses, leading to an underestimation of the real potency. The relative potency of the investigated substances was high compared with their un-substituted PAH analogues, only the latter being typically monitored as priority or indicator pollutants. Hetero-PAHs are widely distributed in the environment and even more mobile, e.g. in ground water, than homocyclic PAHs due to the higher water solubility. We

  10. Genotoxicity of heterocyclic PAHs in the micronucleus assay with the fish liver cell line RTL-W1.

    Directory of Open Access Journals (Sweden)

    Markus Brinkmann

    Full Text Available Heterocyclic aromatic hydrocarbons are, together with their un-substituted analogues, widely distributed throughout all environmental compartments. While fate and effects of homocyclic PAHs are well-understood, there are still data gaps concerning the ecotoxicology of heterocyclic PAHs: Only few publications are available investigating these substances using in vitro bioassays. Here, we present a study focusing on the identification and quantification of clastogenic and aneugenic effects in the micronucleus assay with the fish liver cell line RTL-W1 that was originally derived from rainbow trout (Oncorhynchus mykiss. Real concentrations of the test items after incubation without cells were determined to assess chemical losses due to, e.g., sorption or volatilization, by means of gas chromatography-mass spectrometry. We were able to show genotoxic effects for six compounds that have not been reported in vertebrate systems before. Out of the tested substances, 2,3-dimethylbenzofuran, benzothiophene, quinoline and 6-methylquinoline did not cause substantial induction of micronuclei in the cell line. Acridine caused the highest absolute induction. Carbazole, acridine and dibenzothiophene were the most potent substances compared with 4-nitroquinoline oxide, a well characterized genotoxicant with high potency used as standard. Dibenzofuran was positive in our investigation and tested negative before in a mammalian system. Chemical losses during incubation ranged from 29.3% (acridine to 91.7% (benzofuran and may be a confounding factor in studies without chemical analyses, leading to an underestimation of the real potency. The relative potency of the investigated substances was high compared with their un-substituted PAH analogues, only the latter being typically monitored as priority or indicator pollutants. Hetero-PAHs are widely distributed in the environment and even more mobile, e.g. in ground water, than homocyclic PAHs due to the higher water

  11. The effect of an optimized imaging flow cytometry analysis template on sample throughput in the reduced culture cytokinesis-block micronucleus assay

    International Nuclear Information System (INIS)

    Rodrigues, M.A.; Beaton-Green, L.A.; Wilkins, R.C.; Probst, C.E.

    2016-01-01

    In cases of overexposure to ionizing radiation, the cytokinesis-block micronucleus (CBMN) assay can be performed in order to estimate the dose of radiation to an exposed individual. However, in the event of a large-scale radiation accident with many potentially exposed casualties, the assay must be able to generate accurate dose estimates to within ±0.5 Gy as quickly as possible. The assay has been adapted to, validated and optimized on the ImageStream"X imaging flow cyto-meter. The ease of running this automated version of the CBMN assay allowed investigation into the accuracy of dose estimates after reducing the volume of whole blood cultured to 200 μl and reducing the culture time to 48 h. The data analysis template used to identify binucleated lymphocyte cells (BNCs) and micronuclei (MN) has since been optimized to improve the sensitivity and specificity of BNC and MN detection. This paper presents a re-analysis of existing data using this optimized analysis template to demonstrate that dose estimations from blinded samples can be obtained to the same level of accuracy in a shorter data collection time. Here, we show that dose estimates from blinded samples were obtained to within ±0.5 Gy of the delivered dose when data collection time was reduced by 30 min at standard culture conditions and by 15 min at reduced culture conditions. Reducing data collection time while retaining the same level of accuracy in our imaging flow cytometry-based version of the CBMN assay results in higher throughput and further increases the relevancy of the CBMN assay as a radiation bio-dosimeter. (authors)

  12. Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme: Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO).

    Science.gov (United States)

    Correia, Jorge E; Christofoletti, Cintya Ap; Ansoar-Rodríguez, Yadira; Guedes, Thays A; Fontanetti, Carmem S

    2017-04-01

    In Brazil vinasse, a main sugarcane distillery residue, stands out because every liter of alcohol generates 10-15 L of vinasse as waste. An alternative for the disposal of this waste is the fertirrigation of the sugarcane culture itself. However, the high amount released can saturate the soil and through leaching/percolation contaminate water resources. The aim of this study is verifying the toxic potential of vinasse in tilapias and effectiveness of the physicalchemical treatment of this waste with pH adjustment with lime (CaO). The comet assay and the micronucleus test were applied on animals exposed to dilutions of raw vinasse and vinasse adjusted to neutral pH. Bioassays with raw vinasse dilutions indicated a toxic and genotoxic potential; fish exposed to the highest concentration died less than 48 h after the exposure; the incidence of micronucleus was significantly higher when compared to negative control for all dilutions. For the comet assay, the scores of damage were statistically higher for all dilutions, with the exception of the 1% dillution. However, in the bioassay with the chemically treated vinasse (neutral pH), most fish in the 10% dilution survived and there was no significant difference when compared to the control. Damage scores in the comet assay were similar to the results of the untreated vinasse. The chemical treatment of vinasse with lime to neutralize the pH proved to be an effective alternative for the toxicity reduction of this residue, since it reduced the mortality of fish at higher concentrations and the incidence of damage to DNA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    Science.gov (United States)

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature

  14. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation

    Science.gov (United States)

    Rocha, Bruno Alves; Bueno, Paula Carolina Pires; Vaz, Mirela Mara de Oliveira Lima Leite; Nascimento, Andresa Piacezzi; Ferreira, Nathália Ursoli; Moreno, Gabriela de Padua; Rodrigues, Marina Rezende; Costa-Machado, Ana Rita de Mello; Barizon, Edna Aparecida; Campos, Jacqueline Costa Lima; de Oliveira, Pollyanna Francielli; Acésio, Nathália de Oliveira; Martins, Sabrina de Paula Lima; Tavares, Denise Crispim; Berretta, Andresa Aparecida

    2013-01-01

    Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays. PMID:23710228

  15. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2013-01-01

    Full Text Available Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE leading to little knowledge about the biological activities of propolis water extract (PWE. Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays.

  16. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Lamy, Evelyn; Kassie, Fekadu; Gminski, Richard; Schmeiser, Heinz H; Mersch-Sundermann, Volker

    2004-01-15

    3-Nitrobenzanthrone (3-NBA), identified in diesel exhaust and in airborne particulate matter, is a potent mutagen in Salmonella, induces micronuclei formation in mice and in human cells and DNA adducts in rats. In the present study, we investigated the genotoxic potency of 3-NBA in human HepG2 cells using the micronucleus (MN) assay and the single cell gel electrophoresis (SCGE). 3-NBA caused a genotoxic effect at concentrations > or =12 nM in both assays. In the micronucleus assay, we found 98.7+/-10.3 MN/1000 BNC at a concentration of 100 nM 3-NBA in comparison to 27.3+/-0.6 MN/1000 BNC with the negative control. At the same concentration, the DNA-migration (SCGE) showed an Olive tail moment (OTM) of 2.7+/-0.45 and %DNA in the tail of 8.28+/-0.76; OTM and %DNA in the tail of cells treated with the negative control were 0.73+/-0.08 and 2.81+/-0.30, respectively. The results are discussed under consideration of former studies.

  17. Graphistrength© C100 MultiWalled Carbon Nanotubes (MWCNT): thirteen-week inhalation toxicity study in rats with 13- and 52-week recovery periods combined with comet and micronucleus assays

    Science.gov (United States)

    Régnier, Jean-François; Pothmann-Krings, Daniela; Simar, Sophie; Dony, Eva; Le Net, Jean-Loïc; Beausoleil, Julien

    2017-06-01

    Graphistrength© C100 provides superior electrical and mechanical properties for various applications and is one of the industrial MWCNT referenced in the OECD sponsorship program for the safety testing of nanomaterials. Graphistrength© C100 is formed of MWCNT (ca. 12 walls, outer mean diameter ca. 12 nm, length ca. 1 µm) agglomerated in particles with a granulometry centered on 400 µm. A general feature of MWCNT after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. Most of the in vitro and in vivo genotoxicity data available on Graphistrength© C100 are negative. However, a weak DNA damage activity in the in vitro and in vivo FPG-modified Comet assays and a weak clastogenic effect in the in vitro micronucleus test were reported. After investigating different parameters for the aerosol generation, male and female Wistar rats were exposed by nose-only inhalation (6h/day, 5d/week) to target concentrations of 0.05, 0.25 and 5.0 mg/m3 air of a respirable aerosol (MMAD males and females were evaluated by the micronucleus test (OECD TG 474) and DNA damage in the lung, kidney and liver cells of males were assessed by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay (OECD TG 489). Concentration-related deposition of black particles (MWCNT) was observed in lungs. At all sacrifice periods, an inflammatory lung reaction was observed in rats exposed to 5.0 mg/m3 associated with changes in the differential white blood cells counts. The lung inflammation was characterized by changes in the cytological, biochemical and cytokine parameters of the BALF, an increase of the lung weight, an interstitial inflammation mainly around the alveolar ducts at the bronchiole-alveolar junction and a cell hypertrophy/hyperplasia in the terminal and respiratory bronchioles. The slight changes in BALF parameters observed at 0.25 mg/m3 recovered after

  18. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    International Nuclear Information System (INIS)

    Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja

    2008-01-01

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell

  19. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Gajski, Goran [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Garaj-Vrhovac, Vera [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Orescanin, Visnja [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2008-08-15

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.

  20. Role of the micronucleus in stomatogenesis in sexual reproduction of Paramecium tetraurelia: laser microbeam irradiation of the micronucleus

    Energy Technology Data Exchange (ETDEWEB)

    Tam Laiwa; Ng, S.F.

    1986-12-01

    Fifteen amicronucleate cell lines and 22 cell lines with defective micronuclei were obtained following selective laser microbeam irradiation of the micronucleus. The amicronucleate cell lines showed reduced growth rate and formed abnormal oral apparatuses in asexual reproduction, and failed to produce any oral apparatus in autogamy. The 22 cell lines with defective micronucleus exhibited various abnormalities of the oral apparatus newly formed during autogamy. These abnormalities included the arrest of membranelle assembly, reduction in the length of the buccal cavity and oral membranelles, disruption of the organization of the membranelles, quadrulation of the dorsal peniculus, and failure of addition of membranellar basal body rows. Hence the micronucleus plays multiple roles in sexual stomatogenesis. Our results agree with the notion that the micronucleus acts during a critical period between the second meiotic division and up to the formation of the zygotic nucleus to control the early stage of oral membranelle assembly. Laser microbeam irradiation might have created recessive mutations and/or chromosomal aberrations, which were expressed during this critical period with the formation of abnormal postmeiotic nuclei.

  1. Correlation between the results of in vitro and in vivo chromosomal damage tests in consideration of exposure levels of test chemicals.

    Science.gov (United States)

    Yamamura, Eiji; Aruga, Chinami; Muto, Shigeharu; Baba, Nobuyuki; Uno, Yoshifumi

    2018-01-01

    We examined the correlation between the results of in vitro and in vivo chromosomal damage tests by using in-house data of 18 pharmaceutical candidates that showed positive results in the in vitro chromosomal aberration or micronucleus test using CHL/IU cells, and quantitatively analyzed them especially in regard to exposure levels of the compounds. Eight compounds showed that the exposure levels [maximum plasma concentration (C max ) and AUC 0-24h ] were comparable with or higher than the in vitro exposure levels [the lowest effective (positive) concentration (LEC) and AUC vitro  = LEC (μg/mL) × treatment time (h)]. Among them, 3 compounds were positive in the in vivo rodent micronucleus assays using bone marrow cells. For 2 compounds, cytotoxicity might produce false-positive results in the in vitro tests. One compound showed in vitro positive results only in the condition with S9 mix which indicated sufficient concentration of unidentified active metabolite(s) might not reach the bone marrow to induce micronuclei. These facts suggested that the in vivo exposure levels being equal to or higher than the in vitro exposure levels might be an important factor to detect in vivo chromosomal damage induced by test chemicals.

  2. Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition.

    LENUS (Irish Health Repository)

    Baeyens, A

    2002-12-02

    The chromosomal radiosensitivity of breast cancer patients with a known or putative genetic predisposition was investigated and compared to a group of healthy women. The chromosomal radiosensitivity was assessed with the G2 and the G0-micronucleus assay. For the G2 assay lymphocytes were irradiated in vitro with a dose of 0.4 Gy (60)Co gamma-rays after 71 h incubation, and chromatid breaks were scored in 50 metaphases. For the micronucleus assay lymphocytes were exposed in vitro to 3.5 Gy (60)Co gamma-rays at a high dose rate or low dose rate. 70 h post-irradiation cultures were arrested and micronuclei were scored in 1000 binucleate cells. The results demonstrated that the group of breast cancer patients with a known or putative genetic predisposition was on the average more radiosensitive than a population of healthy women, and this with the G2 as well as with the high dose rate and low dose rate micronucleus assay. With the G2 assay 43% of the patients were found to be radiosensitive. A higher proportion of the patients were radiosensitive with the micronucleus assay (45% with high dose rate and 61% with low dose rate). No correlation was found between the G2 and the G0-micronucleus chromosomal radiosensitivity. Out of the different subgroups considered, the group of the young breast cancer patients without family history showed the highest percentage of radiosensitive cases in the G2 (50%) as well as in the micronucleus assay (75-78%).

  3. The role of the micronucleus in stomatogenesis in sexual reproduction of Paramecium tetraurelia: laser microbeam irradiation of the micronucleus

    International Nuclear Information System (INIS)

    Tam Laiwa; Ng, S.F.

    1986-01-01

    Fifteen amicronucleate cell lines and 22 cell lines with defective micronuclei were obtained following selective laser microbeam irradiation of the micronucleus. The amicronucleate cell lines showed reduced growth rate and formed abnormal oral apparatuses in asexual reproduction, and failed to produce any oral apparatus in autogamy. The 22 cell lines with defective micronucleus exhibited various abnormalities of the oral apparatus newly formed during autogamy. These abnormalities included the arrest of membranelle assembly, reduction in the length of the buccal cavity and oral membranelles, disruption of the organization of the membranelles, quadrulation of the dorsal peniculus, and failure of addition of membranellar basal body rows. Hence the micronucleus plays multiple roles in sexual stomatogenesis. Our results agree with the notion that the micronucleus acts during a critical period between the second meiotic division and up to the formation of the zygotic nucleus to control the early stage of oral membranelle assembly. Laser microbeam irradiation might have created recessive mutations and/or chromosomal aberrations, which were expressed during this critical period with the formation of abnormal postmeiotic nuclei. (author)

  4. Comparison of micronucleus frequencies and proliferation kinetics in three X-irradiated cell lines

    International Nuclear Information System (INIS)

    Kaffenberger, W.; Becker, K.; Beuningen, D. van

    1990-01-01

    The kinetics of the occurrence of micronuclei was correlated with the survival of three mammalian cell lines of human, monkey, and mouse origin after irradiation with 240 kV X-rays. Particular attention was paid to the evaluation of the individual proliferation kinetics of the cell lines as well as to the characterization of micronuclei subpopulation with respect to size and possible biological importance using DNA and BUdR labelling techniques, fluorescence microscopy, and image analysis. The results demonstrate very characteristic size distributions of micronuclei for the three cell lines independent of radiation dose and time after irradiation. A close correlation between cell death and the occurrence of micronuclei (expressed as a calculated 'MN index') after irradiation could be established only when the kinetics of progression of cells through the cell cycle (e.g. the doubling time) and the biological characteristics of micronuclei (e.g. BUdR positivity, the micronucleus frequencies, and the number of micronuclei per main nucleus) were taken into account. Therefore, the micronucleus assay might not be useful as a quantitative perdictive assay in vivo but may allow qualitative estimations of radiation damage only because the necessary proliferation parameters of the cells might not be possible to establish in vivo. (orig.) [de

  5. Commentary: critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals-a HUMN project perspective.

    Science.gov (United States)

    Kirsch-Volders, Micheline; Bonassi, Stefano; Knasmueller, Siegfried; Holland, Nina; Bolognesi, Claudia; Fenech, Michael F

    2014-01-01

    The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed to genotoxic chemicals because it allows the measurement of both structural and numerical chromosome aberrations. The CBMN cytome assay version which, apart from measuring micronuclei (MN) already present in cells in vivo or expressed ex vivo, also includes measurement of nucleoplasmic bridges (NPB), nuclear buds (NBUD), necrosis and apoptosis, is also increasingly being used in such studies. Because of the numerous published studies there is now a need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to chemical genotoxins and the genetic hazard this may cause. This review has identified some important misconceptions as well as knowledge gaps that need to be addressed to make further progress in the proper application of this promising technique and enable its full potential to be realised. The HUMN project consortium recommends a three pronged approach to further improve the knowledge base and application of the lymphocyte CBMN cytome assay to measure DNA damage in humans exposed to chemical genotoxins: (i) a series of systematic reviews, one for each class of chemical genotoxins, of studies which have investigated the association of in vivo exposure in humans with MN, NPB and NBUD induction in lymphocytes; (ii) a comprehensive analysis of the literature to obtain new insights on the potential mechanisms by which different classes of chemicals may induce MN, NPB and NBUD in vitro and in vivo and (iii) investigation of the potential advantages of using the lymphocyte CBMN cytome assay in conjunction with other promising complementary DNA damage diagnostics to obtain an even more complete assessment of the DNA damage profile induced by in vivo exposure to chemical genotoxins in humans. Copyright © 2014 The Authors. Published by Elsevier B.V. All

  6. The comet assay: assessment of in vitro and in vivo DNA damage.

    Science.gov (United States)

    Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok

    2013-01-01

    Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.

  7. Micronucleus assay for human peripheral blood lymphocytes as a biomarker of individual sensitivity to assessing radiation health risk in different population

    International Nuclear Information System (INIS)

    Kang, C.-M.; Jeon, H.-J.; Lee, Y.-S.; Lee, S.-J.; Jin, Y.-H.; Kim, Y.-H.; Kim, T.-W.; Cho, C.-K.

    2003-01-01

    Full text: Our studies were to evaluate micronucleus (MN) assay for human peripheral blood lymphocytes (HPBL) as a biomarker of individual sensitivity to assessing radiation health risk in different population in Korea. Further studied are carried out to provide evidence for the existence of individual variations in age-dependent responses. For the MN assay, HPBLs were irradiated with doses of 0, 1, 2, 4, 8Gy 60 Co γ-rays. Spontaneous frequencies not only vary greatly between individuals, but also working or living areas because of the groups with different lifestyle living in different ecological situation and the reaction to radiation exposure. It was shown that the increased level of spontaneous cell with MN was observed with increased age. The relationship between radiosensitivity and the increased spontaneous level of MN may be in inverse proportion. Age and gender are the most important demographic variables impact on MN index with MN frequencies in female being greater than those in male by a factor of depending on the age group. For both sexes, MN frequency was significantly and positively correlated with age. The main lifestyle factors influencing the MN index in subjects are significantly and positively correlated with smoking in measuring the spontaneous frequencies of micronuclei. The described results show that the genetic damaged rate like MN index in human populations is correlated significantly with age, sex and lifestyle factors. So far, it is evident that with regard to the application of MN assay all future studies to evaluate radiation health risks in different population have to take into account the influence of age, gender, and lifestyle. The results suggested that the MN assay have a high potential to ensure appropriate quality control and standard documentation protocol which can be used to monitor a large population exposed to radiation epidemiologically. We conclude that the determination of individual radiosensitivity with MN assay is

  8. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.

    Science.gov (United States)

    Masaki, Hideki; Kato-Itoh, Megumi; Umino, Ayumi; Sato, Hideyuki; Hamanaka, Sanae; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Nakauchi, Hiromitsu

    2015-09-15

    Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs. © 2015. Published by The Company of Biologists Ltd.

  9. A quantitative in vitro assay for the evaluation of phototoxic potential of topically applied materials.

    Science.gov (United States)

    Tenenbaum, S; DiNardo, J; Morris, W E; Wolf, B A; Schnetzinger, R W

    1984-10-01

    A quantitative in vitro method for phototoxic evaluation of chemicals has been developed and validated. The assay uses Saccharomyces cerevisiae, seeded in an agar overlay on top of a plate count agar base. 8-Methoxy psoralen is used as a reference standard against which materials are measured. Activity is quantified by cytotoxicity measured as zones of inhibition. Several known phototoxins (heliotropine, lyral, phantolid, and bergamot oil) and photoallergens (6-methyl coumarin and musk ambrette) are used to validate the assay. An excellent correlation is observed between in vivo studies employing Hartley albino guinea pigs and the in vitro assay for several fragrance raw materials and other chemicals. The in vitro assay exhibits a greater sensitivity from 2-500 fold. For three fragrance oils, the in vitro assay detects low levels of photobiological activity while the in vivo assay is negative. Although the in vitro assay does not discriminate between phototoxins and photoallergens, it can be used for screening of raw materials so that reduction in animal usage can be achieved while maintaining the protection of the consumer.

  10. Study design and statistical analysis of data in human population studies with the micronucleus assay.

    Science.gov (United States)

    Ceppi, Marcello; Gallo, Fabio; Bonassi, Stefano

    2011-01-01

    The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data.

  11. Graphistrength© C100 MultiWalled Carbon Nanotubes (MWCNT): thirteen-week inhalation toxicity study in rats with 13- and 52-week recovery periods combined with comet and micronucleus assays

    International Nuclear Information System (INIS)

    Régnier, Jean-François; Pothmann-Krings, Daniela; Simar, Sophie; Dony, Eva; Net, Jean-Loïc Le; Beausoleil, Julien

    2017-01-01

    Graphistrength© C100 provides superior electrical and mechanical properties for various applications and is one of the industrial MWCNT referenced in the OECD sponsorship program for the safety testing of nanomaterials. Graphistrength© C100 is formed of MWCNT (ca. 12 walls, outer mean diameter ca. 12 nm, length ca. 1 µm) agglomerated in particles with a granulometry centered on 400 µm. A general feature of MWCNT after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. Most of the in vitro and in vivo genotoxicity data available on Graphistrength© C100 are negative. However, a weak DNA damage activity in the in vitro and in vivo FPG-modified Comet assays and a weak clastogenic effect in the in vitr o micronucleus test were reported. After investigating different parameters for the aerosol generation, male and female Wistar rats were exposed by nose-only inhalation (6h/day, 5d/week) to target concentrations of 0.05, 0.25 and 5.0 mg/m 3 air of a respirable aerosol (MMAD < 3 µm) and sacrificed immediately after 4 and 13 weeks of exposure and 13 and 52 weeks of recovery after the 13-week exposure. Clinical, biological and histological evaluations were performed according to the OECD TG 413. Broncho-alveolar lavage fluid (BALF) was collected and analysed for cytokines and inflammatory parameters. Immediately after 13 weeks of exposure, chromosomal aberrations in the bone marrow cells of males and females were evaluated by the micronucleus test (OECD TG 474) and DNA damage in the lung, kidney and liver cells of males were assessed by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay (OECD TG 489). Concentration-related deposition of black particles (MWCNT) was observed in lungs. At all sacrifice periods, an inflammatory lung reaction was observed in rats exposed to 5.0 mg/m 3 associated with changes in the differential white

  12. Xanthium strumarium L. extracts produce DNA damage mediated by cytotoxicity in in vitro assays but does not induce micronucleus in mice.

    Science.gov (United States)

    Piloto Ferrer, Janet; Cozzi, Renata; Cornetta, Tommaso; Stano, Pasquale; Fiore, Mario; Degrassi, Francesca; De Salvia, Rosella; Remigio, Antonia; Francisco, Marbelis; Quiñones, Olga; Valdivia, Dayana; González, Maria L; Pérez, Carlos; Sánchez-Lamar, Angel

    2014-01-01

    Xanthium strumarium L. is a member of the Asteraceae commonly used in Cuba, mainly as diuretic. Some toxic properties of this plant have also been reported and, to date, very little is known about its genotoxic properties. The present work aims was to evaluate the potential cytotoxic and genotoxic risk of whole extract from Xanthium strumarium L. whole extract of aerial parts. No positive response was observed in a battery of four Salmonella typhimurium strains, when exposed to concentrations up to 5 mg/plate, with and without mammalian metabolic activation (liver microsomal S9 fraction from Wistar rats). In CHO cells, high concentrations (25-100 μg/mL) revealed significant reduction in cell viability. Results from sister chromatid exchanges, chromosome aberrations, and comet assay showed that X. strumarium extract is genotoxic at the highest concentration used, when clear cytotoxic effects were also observed. On the contrary, no increase in micronuclei frequency in bone marrow cells was observed when the extract was orally administered to mice (100, 500, and 2000 mg/Kg doses). The data presented here constitute the most complete study on the genotoxic potential of X. strumarium L. and show that the extract can induce in vitro DNA damage at cytotoxic concentrations.

  13. Xanthium strumarium L. Extracts Produce DNA Damage Mediated by Cytotoxicity in In Vitro Assays but Does Not Induce Micronucleus in Mice

    Directory of Open Access Journals (Sweden)

    Janet Piloto Ferrer

    2014-01-01

    Full Text Available Xanthium strumarium L. is a member of the Asteraceae commonly used in Cuba, mainly as diuretic. Some toxic properties of this plant have also been reported and, to date, very little is known about its genotoxic properties. The present work aims was to evaluate the potential cytotoxic and genotoxic risk of whole extract from Xanthium strumarium L. whole extract of aerial parts. No positive response was observed in a battery of four Salmonella typhimurium strains, when exposed to concentrations up to 5 mg/plate, with and without mammalian metabolic activation (liver microsomal S9 fraction from Wistar rats. In CHO cells, high concentrations (25–100 μg/mL revealed significant reduction in cell viability. Results from sister chromatid exchanges, chromosome aberrations, and comet assay showed that X. strumarium extract is genotoxic at the highest concentration used, when clear cytotoxic effects were also observed. On the contrary, no increase in micronuclei frequency in bone marrow cells was observed when the extract was orally administered to mice (100, 500, and 2000 mg/Kg doses. The data presented here constitute the most complete study on the genotoxic potential of X. strumarium L. and show that the extract can induce in vitro DNA damage at cytotoxic concentrations.

  14. Prediction of Chemical Carcinogenicity in Rodents from in vitro Genetic Toxicity Assays

    Science.gov (United States)

    Tennant, Raymond W.; Margolin, Barry H.; Shelby, Michael D.; Zeiger, Errol; Haseman, Joseph K.; Spalding, Judson; Caspary, William; Resnick, Michael; Stasiewicz, Stanley; Anderson, Beth; Minor, Robert

    1987-05-01

    Four widely used in vitro assays for genetic toxicity were evaluated for their ability to predict the carcinogenicity of selected chemicals in rodents. These assays were mutagenesis in Salmonella and mouse lymphoma cells and chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells. Seventy-three chemicals recently tested in 2-year carcinogenicity studies conducted by the National Cancer Institute and the National Toxicology Program were used in this evaluation. Test results from the four in vitro assays did not show significant differences in individual concordance with the rodent carcinogenicity results; the concordance of each assay was approximately 60 percent. Within the limits of this study there was no evidence of complementarity among the four assays, and no battery of tests constructed from these assays improved substantially on the overall performance of the Salmonella assay. The in vitro assays which represented a range of three cell types and four end points did show substantial agreement among themselves, indicating that chemicals positive in one in vitro assay tended to be positive in the other in vitro assays. To help put this project into its proper context, we emphasize certain features of the study: 1) Standard protocols were used to mimic the major use of STTs worldwide--screening for mutagens and carcinogens; no attempt was made to optimize protocols for specific chemicals. 2) The 73 NTP chemicals and their 60% incidence of carcinogenicity are probably not representative of the universe of chemicals but rather reflect the recent chemical selection process for the NTP carcinogenicity assay. 3) The small, diverse group of chemicals precludes a meaningful evaluation of the predictive utility of chemical structure information. 4) The NTP is currently testing these same 73 chemicals in two in vivo STTs for chromosomal effects. 5) Complete data for an additional group of 30 to 40 NTP chemicals will be gathered on

  15. Cytokinesis-block micronucleus method in micro-blood cultures

    International Nuclear Information System (INIS)

    Liu Jinwen; Wang Lianzhi; Yang Cangzhen; Yao Yanyu

    1991-01-01

    This paper reports the cytokinesis-block micronucleus method in micro-blood cultures. The observations on detection induced micronuclei of different doses of 60 Co γ-rays irradiation and spontaneous micronucleus of different ages were performed with CB method in comporison with conventional micronucleus (CM) method. The results showed that with direct peripheral micro-blood cultures the cytoknesis-block micronuclei is also obtained. Using CB method, the micronuclei fequency of different ages was linear relationship, Y = 1.62 + 0.74 D, the spontaneous micronuclei frequency of different ages was 4.14%, the induced micronuclei also was a linear relationship, Y = 6.01 + 0.692 D. Using CM method, it showed that the induced micronuclei was a linear relationship, Y = 0.486 D - 1.968, but there is no significant difference between the micronuclei frequency of different ages. Comparison with CM and direct blood smear methods confirmed that the cytokinesis-block method of micro-blood cultures is more sensitive and precise

  16. Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.

    Science.gov (United States)

    Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon

    2018-03-01

    Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Evaluation of apoptosis and apoptosis proteins as possible markers of radiation at doses 0.1-2 Gy, in comparison to the micronucleus assay in three cell lines

    International Nuclear Information System (INIS)

    Jaworska, A.; Angelis, P. de

    1997-01-01

    In recent years the interest in apoptosis as possible indicator of radiation damage has increased. Studies have been done to examine the induction of apoptosis after ionizing radiation using morphological criteria, characteristic DNA damage pattern(ladders), early DNA damage using flow cytometry and/or expression of the proteins involved in apoptosis. But the picture which emerges from these investigations is unclear. Some researchers suggest that apoptosis studies can be used as potential assays of biological dosimetry, others doubt if apoptosis can be used as a marker of irradiation at all. Most studies have been done using relatively high doses of radiation. In this study we focus on apoptosis induction after relatively small doses (0,1-2 Gy). We detected apoptosis with the in situ terminal deoxynucleotidyl transferase assay by flow cytometry, and measured the expression of proteins that regulate apoptosis (Bcl-2, Bax, P53) with Western blotting. As comparison we used the cytokinesis-block micronucleus assay as a reference. The studies were carried out in three lymphoid cell lines: the mouse lymphoma L5178Y resistant and sensitive cell lines widely used in radiobiological studies, and the human pre-B cell leukemia Reh cells. Our results indicate that we can not consider the examined parameters of apoptosis as markers of radiation in these cell lines. (author)

  18. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  19. Spontaneous micronucleus frequencies in human peripheral blood lymphocytes as a screening test for an individual variation in a different population and radiation-induced micronucleus induction

    International Nuclear Information System (INIS)

    Kang, Chang-Mo; Jeon, Hye-Jeong; Cho, Chul-Koo

    2004-01-01

    Our studies were to evaluate the role of epigenetic factors in the variation of radiosensitivity on human peripheral blood lymphocytes by measuring the frequencies of micronucleus (MN) from 293 healthy subjects of different population for assessing the radiation health risk in Korea. We analyzed the frequencies of both spontaneous and in vitro 60 Co γ-rays or 50MeV neutron-induced MNs. The frequencies of spontaneous NMs not only vary greatly between individuals, but also working or living areas. The increased levels of cells with spontaneous MNs were observed with an increasing age. The frequencies of spontaneous MNs were significantly higher in females than in males. For both sexes, MN frequency was significantly and positively correlated with age. Age and gender are the most important demographic variables impacting on the MN index. Donors who had ever smoked showed significantly increased frequencies of MNs compared to nonsmokers. The main lifestyle factors influencing the MN index in the subjects are correlated significantly and positively with smoke while measuring the spontaneous frequencies of micronuclei. Therefore, it is evident that with regard to the application of MN assay all future studies to evaluate the association between radiosensitivity and susceptibility for radiation health risks in different populations should take into account the effect of age, gender and lifestyle. For the dose-response study, the induced MNs were observed at all doses, and the numerical changes according to doses. The dose-response curves were fitted with a linear-quadratic forms of the dose, and the results were different for γ-rays and neutrons significantly. Neutrons were more effective than γ-rays in producing MN with a dose-dependent manner. The frequency of MN varies with dose. The RBE for a micronuclei was 2.37 ± 0.17. The results suggested that the MN assay have a high potential to ensure appropriate quality control and a standard documentation protocol, which

  20. Evaluating In Vitro DNA Damage Using Comet Assay.

    Science.gov (United States)

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  1. The effect of γ-radiation on smoked fish using short-term mutagenicity assays

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Banzon, R.B.

    1989-01-01

    The effect of γ-radiation on the mutagenicity potential of wood-smoked fish was investigated. Smoked fish were irradiated with radiation doses of 2.0, 4.0, 6.0 and 8.0 kGy. The DMSO extracts of non-radiated and irradiated smoked fish were tested for mutagenicity using the Ames plate incorporation assay, host-mediated assay, and the micronucleus test. It was observed that γ-irradiation did not induce any significant increase in the number of revertants of TA98, TA100 and TA104 as compared with the non-radiated smoked fish. Results of the host-mediated assay and the micronucleus test showed no difference in the mutagenic response of non-radiated in irradiated smoked fish. The results indicate thet γ-radiation does not introduce mutagens in smoked fish. (author). 17 refs.; 6 tabs

  2. Modeling Zebrafish Developmental Toxicity using a Concurrent In vitro Assay Battery (SOT)

    Science.gov (United States)

    We describe the development of computational models that predict activity in a repeat-dose zebrafish embryo developmental toxicity assay using a combination of physico-chemical parameters and in vitro (human) assay measurements. The data set covered 986 chemicals including pestic...

  3. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells

    International Nuclear Information System (INIS)

    Moore, L.E.; Warner, M.L.; Smith, A.H.

    1996-01-01

    The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN-) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. The assay was used on 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 μg As/L) and 18 matched controls (average level, 16 μg As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher's exact test). Frequencies of micronuclei containing acentric fragments (MN-) and those containing whole chromosomes (MN+) both increased, suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P =0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN and MN+ were positively associated with urinary arsenic and its metabolites. The association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can not be determined in epithelial tissues. 35 refs., 4 tabs

  4. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    Science.gov (United States)

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  6. An in vitro assay for compounds toxic to rumen protozoa

    International Nuclear Information System (INIS)

    Campbell, A.J.; Cumming, G.J.; Graham, C.A.; Leng, R.A.

    1982-01-01

    The viability of protozoa in whole rumen fluid was assessed by measuring the incorporation of Me- 14 C-choline in vitro. The use of the technique as an assay for testing antiprotozoal agents was evaluated with a variety of surfactant detergents which have previously been shown to have antiprotozoal activity in vivo. A good correlation was obtained between the potency of these compounds in vitro and in vivo. (auth)

  7. Hydrocortisone Increases the Vinblastine-Induced Chromosomal Damages in L929 Cells Investigated by the Micronucleus Assay on Cytokinesis-Blocked Binucleated Cells

    Directory of Open Access Journals (Sweden)

    Tahere Ebrahimipour

    2017-03-01

    Full Text Available Background: Stress may cause damages to DNA or/and change the ability of the cells to overcome these damages. It may also cause irregularities in the cell cycle and induce abnormal cell divisions through glucocorticoid-dependent functions. The abnormal cell divisions, in turn, lead to chromosomal mal-segregation and aneuploidy. In this study, the effects of the stress hormone, hydrocortisone (HYD, were investigated on the induced chromosomal abnormalities by vinblastine (VIN during cell cycle in L929 cells. Methods: This work was performed in winter 2013 at Department of Biology, University of Ferdowsi, Mashhad, Iran. Cultured cells were divided into different groups including control, VIN-treated, HYD treated and VIN+HYD co-treated cells. The induced chromosomal damages were investigated by micronucleus assay in cytokinesis-blocked binucleated cells. Results: Although HYD by itself did not increase the micronuclei (Mn frequency, co-treatment of cells with VIN and HYD led to significant increase (P<0.05 in the frequency of Mn in comparison to control and VIN treated groups. Conclusion: Cells treated with stress hormone are more sensitive to damages induced by VIN. Therefore, stress may not directly result in genetic instability, it can increase the harmful effects associated with other genotoxic agents.

  8. The Tradescantia micronucleus assay is a highly sensitive tool for the detection of low levels of radioactivity in environmental samples.

    Science.gov (United States)

    Mišík, Miroslav; Krupitza, Georg; Mišíková, Katarina; Mičieta, Karol; Nersesyan, Armen; Kundi, Michael; Knasmueller, Siegfried

    2016-12-01

    Environmental contamination with radioactive materials of geogenic and anthropogenic origin is a global problem. A variety of mutagenicity test procedures has been developed which enable the detection of DNA damage caused by ionizing radiation which plays a key role in the adverse effects caused by radioisotopes. In the present study, we investigated the usefulness of the Tradescantia micronucleus test (the most widely used plant based genotoxicity bioassay) for the detection of genetic damage caused by environmental samples and a human artifact (ceramic plate) which contained radioactive elements. We compared the results obtained with different exposure protocols and found that direct exposure of the inflorescences is more sensitive and that the number of micronuclei can be further increased under "wet" conditions. The lowest dose rate which caused a significant effect was 1.2 μGy/h (10 h). Comparisons with the results obtained with other systems (i.e. with mitotic cells of higher plants, molluscs, insects, fish and human lymphocytes) show that the Tradescantia MN assay is one to three orders of magnitude more sensitive as other models, which are currently available. Taken together, our findings indicate that this method is due to its high sensitivity a unique tool, which can be used for environmental biomonitoring in radiation polluted areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dose response curve for micronucleus of cytokinesis-block method in human lymphocytes after 60Co-gamma ray exposure

    International Nuclear Information System (INIS)

    Gao Jinsheng; Zheng Siying; Cai Feng

    1993-08-01

    The micronucleus technique of cytokines block has been proposed as a new method to measure chromosome damage in cytogenetic. The cytokines is blocked by using cytochalasin B (Cyt-B), and micronuclei are scored in cytokines-blocked (CB) cells. This can easily be done owing to the appearance of binucleate cells and large numbers accumulated by adding 3.0 μg/ml cytochalasin B at 44 hours and scoring at 72 hours. The results show that the optimum concentration of Cyt-B is 3.0 μg/ml. the Cyt-B itself can not induce the increase of micronuclei. The micronucleus frequency of normal individuals in vivo, there is an approximately linear relationship between the frequency of induced micronuclei and irradiation dose. The formula is Y 0.36 D + 2.74 (γ 2 = 0.995 P<0.01). Because the cytokines block method is simple and reliable, it is effective for assaying chromosome damage caused by genetic toxic materials

  10. Anticoccidial efficacy testing: In vitro Eimeria tenella assays as replacement for animal experiments.

    Science.gov (United States)

    Thabet, Ahmed; Zhang, Runhui; Alnassan, Alaa-Aldin; Daugschies, Arwid; Bangoura, Berit

    2017-01-15

    Availability of an accurate in vitro assay is a crucial demand to determine sensitivity of Eimeria spp. field strains toward anticoccidials routinely. In this study we tested in vitro models of Eimeria tenella using various polyether ionophores (monensin, salinomycin, maduramicin, and lasalocid) and toltrazuril. Minimum inhibitory concentrations (MIC 95 , MIC 50/95 ) for the tested anticoccidials were defined based on a susceptible reference (Houghton strain), Ref-1. In vitro sporozoite invasion inhibition assay (SIA) and reproduction inhibition assay (RIA) were applied on sensitive laboratory (Ref-1 and Ref-2) and field (FS-1, FS-2, and FS-3) strains to calculate percent of inhibition under exposure of these strains to the various anticoccidials (%I SIA and%I RIA, respectively). The in vitro data were related to oocyst excretion, lesion scores, performance, and global resistance indices (GI) assessed in experimentally infected chickens. Polyether ionophores applied in the RIA were highly effective at MIC 95 against Ref-1 and Ref-2 (%I RIA ≥95%). In contrast, all tested field strains displayed reduced to low efficacy (%I RIA animal model (p89%) against all strains used in this study. However, adjusted GI (GI adj ) for toltrazuril-treated groups exhibited differences between reference and field strains which might indicate varying sensitivity. RIA is a suitable in vitro tool to detect sensitivity of E. tenella towards polyether ionophores, and may thus help to reduce, replace, or refine use of animal experimentation for in vivo sensitivity assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Radiosensitivity of different aged human lymphocytes following electron irradiation in vitro

    International Nuclear Information System (INIS)

    Joksic, G.; Nikolic, M.; Spasojevic-Tisma, V.

    1997-01-01

    Cytochalasin B-blocking micronucleus test and chromosomal aberration analysis were used in this study to estimate the yield of individual variability in radiation response of different aged human lymphocytes. Both analyses were performed in three groups of adults, aged 18-65 years, on two sampling times, following irradiation by therapeutical dose of 2 G in vitro. No statistically significant difference in the induced yield of exchange aberrations between individuals under consideration was found. The yield of total aberration data showed greater variability and was statistically significant in the oldest group against two other adult groups. Regarding to fixation times no statistically significant differences in the induced yield of chromosomal aberration (exchanges as well as total aberrations) were observed. The study has shown a slight increase in spontaneously occurring micronuclei with age. Almost equal mean number of radiation induced micronuclei was observed in the groups of adult aged 18-20 and 45-55 years. The highest mean number was observed in the oldest group. Evident variation in number of radiation induced micronuclei among individuals from the same age group was observed. The results of micronuclei assay for for all individuals under consideration show statistically significant difference in the yield of radiation-induced micronuclei regarding the second fixation time. This study has shown that cytochalasin-B blocking micronucleus test is more sensitive assay than chromosomal aberration analysis for the estimation of individual radiosensitivity. (author)

  12. In vitro cell-mediated immunity assay using 125I-iododeoxyuridine

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.M.

    1979-01-01

    We investigated an in vitro cell-mediated immunity assay using incorporation of 125 I-iododeoxyuridine as an indicator of lymphocyte responsiveness to mitogen stimulation. The system permits the use of whole-blood cultures in rats and dogs

  13. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    Science.gov (United States)

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  14. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    Science.gov (United States)

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A strategy for in vitro safety testing of nanotitania-modified textile products

    International Nuclear Information System (INIS)

    Roszak, Joanna; Stępnik, Maciej; Nocuń, Marek; Ferlińska, Magdalena; Smok-Pieniążek, Anna; Grobelny, Jarosław; Tomaszewska, Emilia; Wąsowicz, Wojciech; Cieślak, Małgorzata

    2013-01-01

    Highlights: • Commercially available TiO 2 /Ag nanomaterials (NMs) showed higher cytotoxic effect than TiO 2 NMs. • Both titania NMs in pristine form induced a weak genotoxic effect in in vitro studies. • Cytotoxic effect of textile materials modified with TiO 2 /Ag NMs depended on the mode of the fiber manufacturing. • The strategy of in vitro testing of textile materials modified with NMs was proposed. -- Abstract: Titanium dioxide nanomaterials are extensively used in many applications, also for modification of textile materials. Toxicological assessment of such textile materials is currently seldom performed, mainly because of lack of appropriate guidelines. The aim of the study was to assess cytotoxic and genotoxic potential of commercially available TiO 2 and TiO 2 /Ag NMs in pristine form as well as polypropylene fibers modified with the NMs. Both titania NMs showed a cytotoxic effect on BALB/3T3 clone A31 and V79 fibroblasts after 72-h exposure. Both NMs induced a weak genotoxic effect in comet assay, with TiO 2 /Ag being more active. In vitro micronucleus test on human lymphocytes revealed a weak mutagenic effect of both materials after 24 h of exposure. In contrast, no significant increase in micronuclei frequency was observed in the in vitro micronucleus test on V79 fibroblasts. The 24-h extracts prepared from polypropylene fibers modified with TiO 2 /Ag induced a cytotoxic effect on BALB/3T3 cells which strongly depended on the mode of the fibers manufacturing. The study presents a comprehensive approach to toxicity assessment of textile fibers modified with NMs. Proposed approach may form a good “starting point” for improved future testing strategies

  16. A strategy for in vitro safety testing of nanotitania-modified textile products

    Energy Technology Data Exchange (ETDEWEB)

    Roszak, Joanna; Stępnik, Maciej; Nocuń, Marek; Ferlińska, Magdalena; Smok-Pieniążek, Anna [Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź (Poland); Grobelny, Jarosław; Tomaszewska, Emilia [University of Lodz, Faculty of Chemistry, 163 Pomorska St, 90-236 Łódź (Poland); Wąsowicz, Wojciech [Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź (Poland); Cieślak, Małgorzata, E-mail: cieslakm@iw.lodz.pl [Textile Research Institute, 118 Gdańska St., 90-520, Łódź (Poland)

    2013-07-15

    Highlights: • Commercially available TiO{sub 2}/Ag nanomaterials (NMs) showed higher cytotoxic effect than TiO{sub 2} NMs. • Both titania NMs in pristine form induced a weak genotoxic effect in in vitro studies. • Cytotoxic effect of textile materials modified with TiO{sub 2}/Ag NMs depended on the mode of the fiber manufacturing. • The strategy of in vitro testing of textile materials modified with NMs was proposed. -- Abstract: Titanium dioxide nanomaterials are extensively used in many applications, also for modification of textile materials. Toxicological assessment of such textile materials is currently seldom performed, mainly because of lack of appropriate guidelines. The aim of the study was to assess cytotoxic and genotoxic potential of commercially available TiO{sub 2} and TiO{sub 2}/Ag NMs in pristine form as well as polypropylene fibers modified with the NMs. Both titania NMs showed a cytotoxic effect on BALB/3T3 clone A31 and V79 fibroblasts after 72-h exposure. Both NMs induced a weak genotoxic effect in comet assay, with TiO{sub 2}/Ag being more active. In vitro micronucleus test on human lymphocytes revealed a weak mutagenic effect of both materials after 24 h of exposure. In contrast, no significant increase in micronuclei frequency was observed in the in vitro micronucleus test on V79 fibroblasts. The 24-h extracts prepared from polypropylene fibers modified with TiO{sub 2}/Ag induced a cytotoxic effect on BALB/3T3 cells which strongly depended on the mode of the fibers manufacturing. The study presents a comprehensive approach to toxicity assessment of textile fibers modified with NMs. Proposed approach may form a good “starting point” for improved future testing strategies.

  17. Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility.

    Science.gov (United States)

    Reisinger, Kerstin; Blatz, Veronika; Brinkmann, Joep; Downs, Thomas R; Fischer, Anja; Henkler, Frank; Hoffmann, Sebastian; Krul, Cyrille; Liebsch, Manfred; Luch, Andreas; Pirow, Ralph; Reus, Astrid A; Schulz, Markus; Pfuhler, Stefan

    2018-03-01

    Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion ® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion ® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will

  18. Sacha Inchi (Plukenetia volubilis L. powder: acute toxicity, 90 days oral toxicity study and micronucleus assay in rodents

    Directory of Open Access Journals (Sweden)

    Idania Rodeiro

    2018-02-01

    Full Text Available Context: Sacha Inchi has been consumed for years by indigenous peoples. Meanwhile, its toxicological potential has not been sufficiently studied. Aims: To assess the acute, sub-chronic toxicity and genotoxicity evaluation of Sacha Inchi powder obtained from Plukenetia volubilis L. Methods: A dose of 2000 mg/kg was orally administered to rats and mice and toxicity symptoms for 14 days were observed. In repeated dose study, the product was orally administered to Sprague Dawley rats of both sexes. Animals received 50, 250 and 500 mg/kg/day of the product for 90 days. At the end, animals were sacrificed and samples were done for hematological and biochemical analysis, organ weighs and histopathological examination. Genotoxicity potential of Sacha Inchi powder was evaluated through micronucleus test in mice. Negative controls received the vehicle (carboxymethyl cellulose, 0.5% used. Results: No morbidity or mortality at 2000 mg/kg of the product were found. Sacha Inchi powder oral administration during 90 days to rats did not lead to death, body weight gain, food consumption, or adverse events. No significant changes on hematological or biochemical parameters, organ weights or histopathological findings were observed. Induction of micronucleus formation attributable to the product was not found in mice. Conclusions: No toxicity effects after oral acute exposure of Sacha Inchi power to rats and mice were observed. Neither toxicity attributable to oral doses of the product up to 500 mg/kg during 90 days to rats were found. Results suggested Sacha Inchi powder does not have genotoxicity potential under our experimental conditions.

  19. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    Science.gov (United States)

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  20. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    International Nuclear Information System (INIS)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H.; Santelli, Glaucia M.M.

    2017-01-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  1. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H., E-mail: abarbezan@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santelli, Glaucia M.M. [Universidade de São Paulo (USP), SP (Brazil). Departamento de Biologia Celular e do Desenvolvimento

    2017-07-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  2. Genotoxicity Assessment of Chlorotrifluoroethylene Tetramer Acid using a Battery of In Vitro and In Vivo/In Vitro Assays

    Science.gov (United States)

    1990-12-01

    hypolipidemic ixgent, clofibrate (Lalwani et al., 1983). However, numerous industrial chemicals such as phthalate eater plasticizers and phenoxy acid ...AD-A240 492 AA..MRL-TR-90-069 ~l~iiIIi1111fl GENOTOXICITY ASSESSMENT OF CHLOROTRIFLUOROETHYLENE TETRAMER ACID USING A BATTERY OF IN VITRO AND IN VIVO... Acid Using a Battery of In Vitro and In Vivo,/n Vitro Assays PE 62202F 6. AUTHOR(S) PR 6302 TA 630201 C. S. Godin, B. C. Myhr, T. E. Lawlor, R. R. Young

  3. In vitro assays for cobblestone area-forming cells, LTC-IC, and CFU-C

    NARCIS (Netherlands)

    van Os, Ronald P; Dethmers-Ausema, Bertien; de Haan, Gerald; Bunting, Kevin

    2008-01-01

    Various assays exist that measure the function of hematopoietic stemcells (HSCs). In this chapter, in vitro assays are described that measure the frequency of progenitors (colony-forming unit in culture; CFU-C), stem cells (long-term culture-initiating cell; LTC-IC), or both (cobblestone

  4. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation.

    Science.gov (United States)

    Banerjee, Sumita; Singh, Narendra Nath; Sreedhar, Gadiputi; Mukherjee, Saikat

    2016-03-01

    Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity. The genotoxicity can be avoided to some extent by the

  5. HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems

    Czech Academy of Sciences Publication Activity Database

    Fenech, M.; Kirsch-Volders, M.; Rössnerová, Andrea; Šrám, Radim; Romm, H.; Bolognesi, C.; Ramakumar, A.; Soussaline, F.; Schunck, CH.; Elhajouji, A.; Anwar, W.; Bonassi, S.

    2013-01-01

    Roč. 216, č. 5 (2013), s. 541-552 ISSN 1438-4639 R&D Projects: GA ČR GAP503/11/0084 Grant - others:Project NewGenesis(XE) FOOD -CT-2005-016320 Institutional support: RVO:68378041 Keywords : Micronucleus * Cytokinesis-block * Automation Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.276, year: 2013

  6. Dose assessment of SiC nanoparticle dispersions during in vitro assays

    International Nuclear Information System (INIS)

    Mejia, Jorge; Piret, Jean-Pascal; Noël, Florence; Masereel, Bernard; Toussaint, Olivier; Lucas, Stéphane

    2013-01-01

    Here, we show that key physicochemical parameters of commercial Silicon Carbide nanoparticles, such as the primary particles of about 53 nm in size, the agglomerates size, and the surface composition, are considerably modified with respect to the pristine conditions, during in vitro assessment. The use of sample conditioning stages, such as the pre-dispersion in aqueous media and the subsequent dispersion in a culture medium specific to the in vitro assay, produce modifications as the absorption of N, C, and O, from the culture medium, in the nanoparticles surface. Our results show that the sedimented dose, fraction of sedimented NPs during incubation and consequently in contact with cells seeded at the bottom, of Silicon Carbide nanoparticles can be measured from the particle size distribution obtained using a centrifugal liquid sedimentation technique. It is underlined that the variations observed in the physicochemical properties are related to the in vitro assay conditions. Culture medium and incubation time are found to influence the most the sedimented dose and consequently the cells dose uptake

  7. The micronucleus assay in mammalian cells in vitro to assess health benefits of various phytochemicals.

    Science.gov (United States)

    Meschini, Roberta; Berni, Andrea; Filippi, Silvia; Pepe, Gaetano; Grossi, Maria Rosaria; Natarajan, Adayapalam T; Palitti, Fabrizio

    2015-11-01

    We evaluated the protective effects of Gentiana lutea extracts (GLEx) and 6-Gingerol (6-G) on clastogenicity of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 7,12-dimethylbenz(α) anthracene (DMBA) in vitro on HepG2 cells using the frequencies of induced micronuclei (MN) as the end point. Pre-, post- and simultaneous treatments with GLEx or 6-G and the carcinogens were carried out. Both GLEx post- and simultaneous treatments reduced the frequencies of MN induced by MNNG and DMBA. Probably this effect is due to an increase of cytostasis and a physico-chemical interaction between GLEx and DMBA under simultaneous treatment. Pre- and simultaneous treatments with 6-G significantly reduced the yield of MNNG-induced micronuclei without affecting % of cytostasis. Simultaneous treatment with 6-G plus DMBA resulted in reduction in the frequency of MN and an increase in cytotoxicity compared to sample treated alone with DMBA, whereas a post-treatment, caused a significant decrease in the yield of MN compared with DMBA alone without any cytotoxic effect. These results are compared with our earlier data obtained in the same system with other phytochemicals. It is concluded that for a critical evaluation of the protective effects of phytochemicals, both the influence on the induced MN and induced cytostasis have to be considered. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genotoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes.

    Science.gov (United States)

    Obiakor, M O; Okonkwo, J C; Ezeonyejiaku, C D

    2014-12-01

    Genotoxicity of Anambra River was studied by micronucleus (MN) assay of preponderant fish species in the river. The micronucleus indices obtained were used as biomarker to estimate and predict pollution profile and possible danger of feeding on the aquatic species. Micronuclei profile of the fish was measured from gill and kidney erythrocytes using microscopic technique. Season, species and location effects on micronuclei, together with their interactions were also determined. Two major seasons (rainy and dry) and preponderant fish species in the river (Synodontis clarias, Linnaeus, 1758 and Tilapia nilotica, Linnaeus, 1757) were studied at five distinct locations that displayed differential environmental stresses. The study showed that the micronucleus index of fish is an excellent biomarker for measuring pollution level and genotoxicity of freshwater habitat. Season, species of fish and location affect micronuclei profile of the fish species sampled in the river. Disease outbreak among rural dwellers depending on the river for domestic and other uses is imminent and they lack knowledge on its health implication. Moreover, the study maintained that the micronuclei in fish could be measured from either the gill or kidney; however, gill is more efficient as it enables collection of several samples from the same individuals without sacrificing it, and Synodontis clarias fish species appeared to be more vulnerable to the genotoxic damage than Tilapia nilotica. Consequently, the study recommended regular monitoring (micronucleus tests) of edible aquatic life such as Synodontis clarias in order to eliminate the danger of people feeding on toxic metals, some of which are carcinogenic. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Genotoxicity Assessment of Perfluorodecanoic Acid Using a Battery of In Vitro and In Vivo/in Vitro Assays.

    Science.gov (United States)

    1990-12-01

    clofibrate (Lalwani et al., 1983) and industrial chemicals such as phthalate ester plasticizers and phsnoxy acid herbicides (Reddy at al., 1976; Kawashima at...of hypolipideaic drugs ( clofibrate , nafenopin, tibric acid and WY-14643) on hepatic peroxisomes and p-3roxisome associated enzymes. Am. .7. Pathol. 90...AD-A240 490 AAMRL-TR-90-070 GENOTOXICITY ASSESSMENT OF PERFLUORODECANOIC ACID USING A BATTERY OF IN VITRO AND IN VIVO/IN VITRO ASSAYS C. S. Godin NSI

  10. Radiation dose-response relationship of micronucleus occurrence in pollen mother cells of tradescantia

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Yeon Ku; Song, Hi Sup

    1999-01-01

    This study was carried out to investigate the radiation dose-response of micronucleus frequencies in Tradescantia pollen mother cells. The number of micronuclei increased in the tetrads as a result of chromosome deletion after irradiation. The maximal frequency of micronucleus showed a good dose-response relationship in the range of dose 0∼50 cGy. On the basis of the relationship, a dose of 1 cGy resulted in two additional micronuclei in 100 tetrads. The radiation dose-response relationship of micronucleus occurrence is prerequisite to biological monitoring of radiation and can be modified for biological risk assessment of toxicants, and to safety test of water or soil integrity

  11. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow.

    Science.gov (United States)

    Boriollo, Marcelo Fabiano Gomes; Souza, Luiz Silva; Resende, Marielly Reis; Silva, Thaísla Andrielle da; Oliveira, Nelma de Mello Silva; Resck, Maria Cristina Costa; Dias, Carlos Tadeu dos Santos; Fiorini, João Evangelista

    2014-04-02

    This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control - NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects.

  12. Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging

    Directory of Open Access Journals (Sweden)

    Renske M. Raaphorst

    2017-09-01

    Full Text Available Positron emission tomography (PET imaging of P-glycoprotein (P-gp in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer´s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro assays where these tracers are characterized, are usually performed at micromolar concentration, causing often discrepant in vivo and in vitro data. We had in vivo rodent PET data of [11C]verapamil, (R-N-[18F]fluoroethylverapamil, (R-O-[18F]fluoroethyl-norverapamil, [18F]MC225 and [18F]MC224 and we included also two new molecules [18F]MC198 and [18F]KE64 in this study. To improve the predictive value of in vitro assays, we labeled all the tracers with tritium and performed bidirectional substrate transport assay in MDCKII-MDR1 cells at three different concentrations (0.01, 1 and 50 µM and also inhibition assay with P-gp inhibitors. As a comparison, we used non-radioactive molecules in transport assay in Caco-2 cells at a concentration of 10 µM and in calcein-AM inhibition assay in MDCKII-MDR1 cells. All the P-gp substrates were transported dose-dependently. At the highest concentration (50 µM, P-gp was saturated in a similar way as after treatment with P-gp inhibitors. Best in vivo correlation was obtained with the bidirectional transport assay at a concentration of 0.01 µM. One micromolar concentration in a transport assay or calcein-AM assay alone is not sufficient for correct in vivo prediction of substrate P-gp PET ligands.

  13. Evaluation of genetic toxicity of 6-diazo-5-oxo-l-norleucine (DON).

    Science.gov (United States)

    Kulkarni, Rohan M; Dakoulas, Emily W; Miller, Ken E; Terse, Pramod S

    2017-09-01

    DON (6-diazo-5-oxo-l-norleucine), a glutamine antagonist, was demonstrated to exhibit analgesic, antibacterial, antiviral and anticancer properties. The study was performed to characterize its in vitro and in vivo genetic toxicity potential. DON was tested in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains (TA98, TA100, TA1535 and TA1537) and Escherichia coli tester strain (WP2 uvrA) with and without S9 and also with reductive S9. In addition, DON was tested for the chromosome aberrations in Chinese hamster ovary (CHO) cells with or without S9 to evaluate the clastogenic potential. Furthermore, DON was also evaluated for its in vivo clastogenic activity by detecting micronuclei in polychromatic erythrocyte (PCE) cells in bone marrow collected from the male mice dosed intravenously with 500, 100, 10, 1 and 0.1 mg/kg at 24 and 48-h post-dose. The Ames mutagenicity assay showed no positive mutagenic responses. However, the in vitro chromosome aberration assay demonstrated dose dependent statistically positive increase in structural aberrations at 4 and 20-h exposure without S9 and also at 4-h exposure with S9. The in vivo micronucleus assay also revealed a statistically positive response for micronucleus formation at 500, 100 and 10 mg/kg at 24 and 48-h post-dose. Thus, DON appears to be negative in the Ames test but positive in the in vitro chromosome aberration assay and in the in vivo micronucleus assay. In conclusion, the results indicate DON is a genotoxic compound with a plausible epigenetic mechanism.

  14. In silico study of in vitro GPCR assays by QSAR modeling

    Science.gov (United States)

    The U.S. EPA is screening thousands of chemicals of environmental interest in hundreds of in vitro high-throughput screening (HTS) assays (the ToxCast program). One goal is to prioritize chemicals for more detailed analyses based on activity in molecular initiating events (MIE) o...

  15. Development of in vitro assay method with radioisotope

    International Nuclear Information System (INIS)

    Choi, Chang Woon; Lim, S. M.; An, S. H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Hong, S. W.; Oh, O. D.

    1999-04-01

    Radioimmunoassay (RIA) and related competitive protein-binding methods began a little over 20 years ago as a cumbersome research methodology in a few specialized laboratories. Endocrinology has been greatly enriched by the new knowledge that has come as a direct result of RIA methods. Establishment of the taxol RIA system will be expected to develop RIA for drug monitoring. Scintillation proximity assay was useful since any separation step is not required, it has the advantage of dealing with multiple samples. The increased sensitivity of the new assay in determining HCV RT([ 125 I]dUTP) suggests that it would be worth investigating whether the system can be applied to analysis. [ 125 I] lodotyramine with 98.5% radiochemical purity. Optimal background counts was certificated using varied radioactivity of radionuclides. Appropriate standard curve was obtained from SPA method successively, and the concentration of hCG from unknown serum was determined by standard curve. The result concentration of hCG from unknown serum was determined by synthesized successively and purified by HPLC system. Hybridoma reducing monoclonal anti thyroglobulin antibodies titer is measured by ELISA. These studies play an important role in development of in vitro assay with radionuclides

  16. Development of in vitro assay method with radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; An, S. H.; Woo, K. S.; Chung, W. S.; Lim, S. J.; Hong, S. W. [Korea Atomic Energy Research Institute. Korea Cancer Center Hospital, Seoul (Korea, Republic of); Oh, O. D. [Yonsei University, Seoul (Korea, Republic of)

    1999-04-01

    Radioimmunoassay (RIA) and related competitive protein-binding methods began a little over 20 years ago as a cumbersome research methodology in a few specialized laboratories. Endocrinology has been greatly enriched by the new knowledge that has come as a direct result of RIA methods. Establishment of the taxol RIA system will be expected to develop RIA for drug monitoring. Scintillation proximity assay was useful since any separation step is not required, it has the advantage of dealing with multiple samples. The increased sensitivity of the new assay in determining HCV RT([{sup 125}I]dUTP) suggests that it would be worth investigating whether the system can be applied to analysis. [{sup 125}I] lodotyramine with 98.5% radiochemical purity. Optimal background counts was certificated using varied radioactivity of radionuclides. Appropriate standard curve was obtained from SPA method successively, and the concentration of hCG from unknown serum was determined by standard curve. The result concentration of hCG from unknown serum was determined by synthesized successively and purified by HPLC system. Hybridoma reducing monoclonal anti thyroglobulin antibodies titer is measured by ELISA. These studies play an important role in development of in vitro assay with radionuclides.

  17. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  18. An In Vitro Potency Assay for Monitoring the Immunomodulatory Potential of Stromal Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Karin Pachler

    2017-07-01

    Full Text Available The regenerative and immunomodulatory activity of mesenchymal stromal cells (MSCs is partially mediated by secreted vesicular factors. Extracellular vesicles (EVs exocytosed by MSCs are gaining increased attention as prospective non-cellular therapeutics for a variety of diseases. However, the lack of suitable in vitro assays to monitor the therapeutic potential of EVs currently restricts their application in clinical studies. We have evaluated a dual in vitro immunomodulation potency assay that reproducibly reports the inhibitory effect of MSCs on induced T-cell proliferation and the alloantigen-driven mixed leukocyte reaction of pooled peripheral blood mononuclear cells in a dose-dependent manner. Phytohemagglutinin-stimulated T-cell proliferation was inhibited by MSC-derived EVs in a dose-dependent manner comparable to MSCs. In contrast, inhibition of alloantigen-driven mixed leukocyte reaction was only observed for MSCs, but not for EVs. Our results support the application of a cell-based in vitro potency assay for reproducibly determining the immunomodulatory potential of EVs. Validation of this assay can help establish reliable release criteria for EVs for future clinical studies.

  19. Amelioration of oxidative stress by anthraquinones in various in vitro assays

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2012-10-01

    Full Text Available Objective: The use of natural phytoconstituents for food and as nutritional supplements is an easiest way to be healthier. Anthraquinone pigments have been traditionally used for various purposes viz. food colorants, textile staining, color paints and medicines. Rubia cordifolia L. is a perennial, herbaceous climbing plant belonging to family Rubiaceae. This plant contain substantial amounts of anthraquinones, especially in the roots. The present study deals with the bioactivity evaluation of phytoconstituents viz. alizarin and purpurin from Rubia cordifolia. Methods: The DNA protective and antioxidant potential of alizarin and purpurin was evaluated using different in vitro assays viz. DNA protection assay, ABTS assay, DPPH assay, Ferric ion reduction potential and Phosphomolybdenum assay. Results: Alizarin and purpurin exhibited good free radical scavenging activity in various assays. In DNA protection assay, alizarin showed more DNA protection against hydroxyl radicals generated by Fenton ’s reagent in comparison to purpurin. Conclusions: Being potent antioxidants, these natural coloring compounds can be boon to the food industry as nutraceuticals. Further, these phytochemicals can be explored for their anticancer activity and may serve as potent cancer chemopreventive molecules.

  20. Micronucleus frequency in Danish schoolchildren and their mothers from the DEMOCOPHES population

    DEFF Research Database (Denmark)

    Mørck, Thit A.; Vande Loock, Kim; Poulsen, Maria Bech

    2016-01-01

    organic pollutants and dioxin-like activity measured in the sameparticipants. The MN frequency analysis was performed with the cytokinesis-block micronucleus(CBMN) assay and included 100 children and 119 mothers. We found a significant correlationbetween mothers and children in the levels of micronuclei...... in 1000 binucleated T lymphocytes(‰MNBN) and in the proliferation index. Further the levels of ‰MNBN were significantly higherin mothers compared with their children. No significant associations were found for ‰MNBNfor traffic related exposure in neither children nor their mothers. In children, a 2.......5 times highermicronuclei in mononuclear T lymphocytes were found in children living within 50 m of a busyroad, however, this was not found in mothers or in MNBN and the effect of exposure to road trafficon MN frequency needs further investigation. No significant associations were found between...

  1. Micronucleus test for radiation biodosimetry in mass casualty events: Evaluation of visual and automated scoring

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, Claudia, E-mail: claudia.bolognesi@istge.i [Environmental Carcinogenesis Unit, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa (Italy); Balia, Cristina; Roggieri, Paola [Environmental Carcinogenesis Unit, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa (Italy); Cardinale, Francesco [Clinical Epidemiology Unit, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa (Italy); Department of Health Sciences, University of Genoa, Genoa (Italy); Bruzzi, Paolo [Clinical Epidemiology Unit, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa (Italy); Sorcinelli, Francesca [Environmental Carcinogenesis Unit, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa (Italy); Laboratory of Genetics, Histology and Molecular Biology Section, Army Medical and Veterinary, Research Center, Via Santo Stefano Rotondo 4, 00184 Roma (Italy); Lista, Florigio [Laboratory of Genetics, Histology and Molecular Biology Section, Army Medical and Veterinary, Research Center, Via Santo Stefano Rotondo 4, 00184 Roma (Italy); D' Amelio, Raffaele [Sapienza, Universita di Roma II Facolta di Medicina e Chirurgia and Ministero della Difesa, Direzione Generale Sanita Militare (Italy); Righi, Enzo [Frascati National Laboratories, National Institute of Nuclear Physics, Via Enrico Fermi 40, 00044 Frascati, Rome (Italy)

    2011-02-15

    In the case of a large-scale nuclear or radiological incidents a reliable estimate of dose is an essential tool for providing timely assessment of radiation exposure and for making life-saving medical decisions. Cytogenetics is considered as the 'gold standard' for biodosimetry. The dicentric analysis (DA) represents the most specific cytogenetic bioassay. The micronucleus test (MN) applied in interphase in peripheral lymphocytes is an alternative and simpler approach. A dose-effect calibration curve for the MN frequency in peripheral lymphocytes from 27 adult donors was established after in vitro irradiation at a dose range 0.15-8 Gy of {sup 137}Cs gamma rays (dose rate 6 Gy min{sup -1}). Dose prediction by visual scoring in a dose-blinded study (0.15-4.0 Gy) revealed a high level of accuracy (R = 0.89). The scoring of MN is time consuming and requires adequate skills and expertise. Automated image analysis is a feasible approach allowing to reduce the time and to increase the accuracy of the dose estimation decreasing the variability due to subjective evaluation. A good correlation (R = 0.705) between visual and automated scoring with visual correction was observed over the dose range 0-2 Gy. Almost perfect discrimination power for exposure to 1-2 Gy, and a satisfactory power for 0.6 Gy were detected. This threshold level can be considered sufficient for identification of sub lethally exposed individuals by automated CBMN assay.

  2. Development of assay platforms for in vitro screening of Treg modulating potential of pharmacological compounds

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Holmstrøm, Kim; Jørgensen, Flemming

    2015-01-01

    that investigates Treg modulation by current drugs. For such research as well as for novel cell based therapies based on Treg infusions, rapid in vitro assays as well as functional assays based on inhibitory capacity of Tregs are required. Here, we report on such assays using highly pure fluorescence-activated cell...... and TNF-α. In conclusion, these assays have the potential for use in pharmacological screening and discovery in relation to drug development in immunology....

  3. Complementing in vitro screening assays with in silico molecular chemistry tools to examine potential in vivo metabolite-mediated effects

    Science.gov (United States)

    High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...

  4. In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.

    Science.gov (United States)

    Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut

    2017-09-28

    The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both

  5. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays.

    Science.gov (United States)

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-François

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.

  6. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays

    International Nuclear Information System (INIS)

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-Francois

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137 Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137 Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137 Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137 Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137 Cs pollution

  7. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    International Nuclear Information System (INIS)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R.; Siwarungsun, N.; Mitchel, R.E.J.

    2000-01-01

    We have compared dose-rate effects for γ-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  8. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  9. Micronucleus formation in cultured human keratinocytes: Involvement of intercellular bioactivation.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Weterings, P J

    1991-01-01

    Micronucleus formation in cultured human keratinocytes was studied after exposure to benzo[a]pyrene, cyclophosphamide and 12-O-tetradecanoylphorbol-13-acetate without the addition of an exogenous metabolizing system. The first two agents need bioactivation by specific isoenzymes of cytochrome P-450 to form genotoxic intermediates. Benzo[a]pyrene induced the micronucleus formation in both uninduced and Aroclor 1254-pretreated cultures. Clastogenic effects of cyclophosphamide were observed only in Aroclor 1254-pretreated cells. The tumour promotor 12-O-tetradecanoylphorbol-13-acetate did not affect the frequency of micronuclei in human keratinocytes. The data indicate that cultured human keratinocytes can be used to study the tissue-specific response to genotoxic agents as well as interindividual variation in biotransformation capacity.

  10. Comparative tumor promotion assessment of e-cigarette and cigarettes using the in vitro Bhas 42 cell transformation assay.

    Science.gov (United States)

    Breheny, Damien; Oke, Oluwatobiloba; Pant, Kamala; Gaça, Marianna

    2017-05-01

    In vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays. Cigarette smoke also contains nongenotoxic carcinogens and is a tumour promoter and cocarcinogen in vivo. We have combined a suite of in vitro assays to compare the relative biological effects of new categories of tobacco and nicotine products with traditional cigarettes. The Bhas promotion assay has been included in this test battery to provide an in vitro surrogate for detecting tumor promoters. The activity of an electronic cigarette (e-cigarette; Vype ePen) was compared to that of a reference cigarette (3R4F) in the promotion assay, using total particulate matter (TPM)/aerosol collected matter (ACM) and aqueous extracts (AqE) of product aerosol emissions. 3R4F TPM was positive in this assay at concentrations ≥6 µg/mL, while e-cigarette ACM did not have any promoter activity. AqE was found to be a lesssuitable test matrix in this assay due to high cytotoxicity. This is the first study to use the Bhas assay to compare tobacco and nicotine products and demonstrates the potential for its future application as part of a product assessment framework. These data add to growing evidence suggesting that e-cigarettes may provide a safer alternative to traditional cigarettes. Environ. Mol. Mutagen. 58:190-198, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment.

    Science.gov (United States)

    Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R

    2018-04-05

    Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to

  12. An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells

    International Nuclear Information System (INIS)

    Maazen, R.W.M. van der; Verhagen, I.; Kogel, A.J. van der

    1990-01-01

    Normal glial progenitor cells can be isolated from the rat central nervous system (CNS) and cultured in vitro on a monolayer of type-1 astrocytes. These monolayers are able to support and stimulate explanted glial progenitor cells to proliferate. Employing these in vitro interactions of specific glial cell types, an in vivo-in vitro clonogenic assay has been developed. This method offers the possibility to study the intrinsic radiosensitivity, repair and regeneration of glial progenitor cells after in vitro or in vivo irradiation. (author)

  13. Screening potential genotoxic effect of aquatic plant extracts using the mussel micronucleus test

    Directory of Open Access Journals (Sweden)

    Bettina Eck-Varanka

    2016-01-01

    Full Text Available Objective: To assess the genotoxic potential of selected aquatic macrophytes: Ceratophyllum demersum L. (hornwort, family Ceratophyllaceae, Typha angustifolia L. (narrowleaf cattail, family Typhaceae, Stratiotes aloides L. (water soldier, family Butomaceae, and Oenanthe aquatica (L. Poir. (water dropwort, family Umbelliferae. Methods: For genotoxicity assessment, the mussel micronucleus test was applied. Micronucleus frequency was determined from the haemolymph of Unio pictorum L. (painter’s mussel. In parallel, total and hydrolisable tannin contents were determined. Results: All plant extracts elucidated significant mutagenic effect. Significant correlation was determined between tannin content and mutagenic capacity. Conclusions: The significant correlation between genotoxicity as expressed by micronucleus frequency and tannin content (both total and hydrolisable tannins indicate that tannin is amongst the main compounds being responsible for the genotoxic potential. It might be suggested that genotoxic capacity of these plants elucidate a real ecological effect in the ecosystem.

  14. Evaluation of a new Syphilis assay on Vitros® 5600 Integrated System

    Directory of Open Access Journals (Sweden)

    Giusy Longo

    2010-12-01

    Full Text Available Introduction. A new homogeneous immunoassay for detection of primary infection of Treponema Pallidum (TP on Vitros® 5600 Integrated System was evaluated.The scope of the study was to verify analytical performances and diagnostic accuracy in comparison to commercial methods (Immunoblotting test, ELISA test, Immunoturbidimetric test. Methods. The new Syphilis assay from SENTINEL CH. SpA, is an immunoturbidimetric assay, using microparticles coated with TP fixed on the surface of polystyrene latex particles which agglutinate by an antigen-antibody reaction when anti-TP antigen is present in the specimen. The assay was implemented on Vitros® 5600 Integrated System. Modified CLSI protocols were adopted. Acceptance criteria for total imprecision were 5% for negative samples (or SD 0.5 U/mL and 4% for positive samples. In comparison to commercial methods, sensitivity must be 99.5% and specificity 99.5%. Results. Total imprecision (22 days gave SD at 6 U/mL lower than 0.5 U/mL, and CV% at 10 U/mL and 45 U/mL lower than 4%. Low quantitation limit is 5 U/mL. No prozone up to 13000 U/mL was found. In the on-board calibration stability study no drift was found up to 4 weeks. 153 samples were tested vs immunoblotting method and specificity was 100%, sensitivity was 100%. 495 samples were tested vs ELISA method and test specificity and sensitivity were 99.6% and 100% respectively. 521 samples were tested vs immunoturbidimetric method and specificity was 99.8%, sensitivity was 100%. Interference from Bilirubin (20 mg/dL, Hemoglobin (500 mg/dL and Triglycerides (1000 mg/dL was not detected.All the sample collection tubes tested (K2EDTA, SST, LH PST II, LH, NH did not interfere with the assay. Conclusion. Performances of the new SENTINEL Syphilis assay on Vitros® 5600 Integrated System meet the requirements for its use as screening tool in blood bank, thus allowing consolidation with general chemistry on a single high volume chemistry analyzer, which is

  15. Development of an in vitro chemo-radiation response assay for cervical carcinoma.

    Science.gov (United States)

    Monk, Bradley J; Burger, Robert A; Parker, Ricardo; Radany, Eric H; Redpath, Leslie; Fruehauf, John P

    2002-11-01

    To determine if synergistic effects of radiation (RT) and chemotherapy (chemo) on human cervical carcinoma cell lines and fresh tumor explants could be determined using an in vitro assay. In vitro radiation response was determined for 4 cell lines and 26 fresh tumor explants in an agar-based assay. Cells were exposed to increasing doses of RT with or without cisplatin (CDDP), carmustine (BCNU), buthionine sulfoximine (BSO), or paclitaxel (Tax). Cell suspensions were cultured for 5 days, with [(3)H]thymidine added on day 3 and proliferation was measured. Results were reported as the fraction of proliferation compared to control (FC). For each combination of irradiation and drug, synergy was tested using the Chou analysis, where a combination index (CI) value of >0.7 indicated cross-resistance. RT dose-dependent proliferation inhibition was observed for 2 of the 4 cell lines, and for all but 1 of the fresh specimens. Significant heterogeneity of tumor response to RT was seen. Four specimens that were 1 standard deviation below the median FC response after exposure to 300 cGy were classified as extremely radiation resistant. Twenty-one tumors were evaluated for synergistic response using the combination of chemo and RT with a median FC of 0.27 (+/-0.27) for 6.0 Gy of RT alone, 0.22 (+/-0.21) for CDDP alone, and 0.05 (+/-0.08) for the combination. A CI of 0.35 and an R value of 0.09 demonstrated synergy between chemo and RT without cross-resistance. Similar synergy without cross-resistance was found for RT in combination with BCNU, BSO, and TAX. Heterogeneous RT dose-response relationships in the in vitro assay were demonstrated. Explants were more sensitive to RT than cell lines. Unlike cell lines, fresh tumor cells consistently displayed synergy with RT and chemo. The synergy between RT and BSO suggests that glutathione depletion may enhance the effect of RT. The assay was feasible for examining fresh tumors and may be an important tool for studying RT or drug

  16. Alkaline Comet Assay and Micronucleus Test Parameters in Children Exposed to Diagnostic X-Ray Examination

    International Nuclear Information System (INIS)

    Gajski, G.; Geric, M.; Garaj-Vrhovac, V.; Milkovic, Dj.; Beck, N.; Ranogajec-Komor, M.; Miljanic, S.; Knezevic, Z.

    2011-01-01

    Chest radiograms represent the basic radiological examination of thorax and are the most frequently performed radiological diagnostic procedure in the child population. Understanding the risks of low doses of radiation is an important aspect in the risk benefit analysis in paediatric populations. To provide the best care for the young patients the effects of radiation should be minimized thus chest X-rays must be performed by highest standards to ensure that the young patient has the lowest risk possible. Since children are the most sensitive to radiation, there is a need for follow up of the young populations that receive these X-ray diagnostic examinations. Follow up would be especially advisable for children that are at higher risk of radiation induced damage, for example children with a predisposition to DNA damage, or for children that are constantly exposed to numerous radiological examinations due to their illness. In that manner, present study was undertaken to evaluate application of different dosimetry systems in conjunction with alkaline comet assay and micronucleus test for the assessment of different types of DNA and chromosomal alterations in child population exposed to acute diagnostic X-rays examination. For that purpose doses were measured using thermoluminescence (TL) and radiophotoluminescent (RPL) dosimetry systems. The study demonstrated that immediately after exposure to diagnostic X-irradiation, mean percentage of DNA in tail of the comets, which is indirect measures of DNA damage, was significantly changed. The same was noticed for mean total number of micronuclei as well. It was shown that children with pulmonary diseases subjected to diagnostic procedure develop a significant increase in mean total number of each measured parameter which are the biomarkers of genetic damage for carcinogenesis, than prior to diagnostic procedure and that interindividual differences exist for each monitored child. Our results show that genetic damage arises

  17. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  18. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  19. [Influence of Four Kinds of PPCPs on Micronucleus Rate of the Root-Tip Cells of Vicia-faba and Garlic].

    Science.gov (United States)

    Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang

    2016-04-15

    In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.

  20. The buccal cytome and micronucleus frequency is substantially altered in Down's syndrome and normal ageing compared to young healthy controls

    International Nuclear Information System (INIS)

    Thomas, Philip; Harvey, Sarah; Gruner, Tini; Fenech, Michael

    2008-01-01

    The buccal micronucleus cytome assay was used to investigate biomarkers for DNA damage, cell death and basal cell frequency in buccal cells of healthy young, healthy old and young Down's syndrome cohorts. With normal ageing a significant increase in cells with micronuclei (P < 0.05, average increase +366%), karyorrhectic cells (P < 0.001, average increase +439%), condensed chromatin cells (P < 0.01, average increase +45.8%) and basal cells (P < 0.001, average increase +233%) is reported relative to young controls. In Down's syndrome we report a significant increase in cells with micronuclei (P < 0.001, average increase +733%) and binucleated cells (P < 0.001, average increase +84.5%) and a significant decrease in condensed chromatin cells (P < 0.01, average decrease -52%), karyolytic cells (P < 0.001, average decrease -51.8%) and pyknotic cells (P < 0.001, average decrease -75.0%) relative to young controls. These changes show distinct differences between the cytome profile of normal ageing relative to that for a premature ageing syndrome, and highlight the diagnostic value of the cytome approach for measuring the profile of cells with DNA damage, cell death and proportion of cells with proliferative potential (i.e., basal cells). Significant correlations amongst cell death biomarkers observed in this study were used to propose a new model of the inter-relationship of cell types scored within the buccal micronucleus cytome assay. This study validates the use of a cytome approach to investigate DNA damage, cell death and cell proliferation in buccal cells with ageing

  1. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    Science.gov (United States)

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP. In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP

  3. An experimental study of radioprotective effect of ginseng alkaloid fraction on cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yul; Cho, Chul Koo; Kim, Mi Sook; Yoo, Hyung Jun; Kim, Seong Ho; Kim, Tae Hwan [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-09-01

    This paper is to assess the effect of Adaptagen as a radioprotector in which main component is alkaloid fraction of ginseng. Evaluation was made in vitro and in vivo study with NIGP(S) mouse by the measurement of regeneration of jejunal crypt cell and micronucleus assay to analyze radioprotective effect of ginseng alkaloid fraction in comparison with that of water fraction after whole body irradiation. The results were as follows, 1. The degree of radiation damage of mouse jejunal crypt cell was diminished in both of alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group. 2. Regeneration of mouse jejunal crypt cell was higher both in alkaloid and water fraction groups than control group. 3. In vitro study, frequency of micronucleus was diminished in tendency for the treated groups than control group but statistically insignificant. 4. In vitro study, frequency of micronucleus was diminished in both alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group.

  4. Practical aspects of mutagenicity testing strategy: an industrial perspective.

    Science.gov (United States)

    Gollapudi, B B; Krishna, G

    2000-11-20

    Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.

  5. Age and smoking habit influence on the spontaneous and radiation induced frequencies of the micronucleus in human lymphocytes

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.; Heredia, M.L.

    1996-01-01

    Several endpoints have been used for monitoring human population that have been exposed at work or in the environment to genotoxic agents, particularly to ionizing radiation. The cytokinesis-block micronucleus (MN) assay in peripheral lymphocytes is a reliable method for evaluating radiation induced chromosomal damage (DNA breaks and mitotic spindle disturbances) and thus, a suitable dosimeter for estimating in vivo whole body exposures. A research to determine the influence of age, sex and life style factors (smoking habits) on the MN spontaneous and radiation induced frequencies was carried out in order to define the use of this assay in Biological Dosimetry. The estimation of MN frequencies was analyzed in lymphocytes cultures from 50 health donors aged between 4 and 60 years. Based on the smoking habits, they were divided into 2 groups. A fraction of the sample was irradiated in vitro with γ-rays in the range of 0.35 Gy to 4 Gy. A statistically significant influence on the spontaneous MN frequency was observed (R 2 = 0.59) when the variables age and smoking habit were analyzed, and a statistically significant influence on the radiation induced MN frequency was also obtained (R 2 = 0.86) when dose, age and smoking habit were studied. Sex did not influence significantly MN variability, but there was a greater dispersion in the results obtained from female donors, when compared to males, possibly due to the loss of X chromosomes. The comparison of the data from smoking donors to the data from non smoking donors supports the convenience of taking into account the smoking habit for estimating in vivo whole body exposure to γ-rays for doses below 2 Gy. (authors). 8 refs., 3 figs., 2 tabs

  6. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom.

    Science.gov (United States)

    Novak Zobiole, Nathalia; Caon, Thiago; Wildgrube Bertol, Jéssica; Pereira, Cintia Alves de Souza; Okubo, Brunna Mary; Moreno, Susana Elisa; Cardozo, Francielle Tramontini Gomes de Sousa

    2015-06-01

    Bothrops moojeni Hoge (Viperidae) venom is a complex mixture of compounds with therapeutic potential that has been included in the research and development of new drugs. Along with the biological activity, the pharmaceutical applicability of this venom depends on its toxicological profile. This study evaluates the cytotoxicity and genotoxicity of the Bothrops moojeni venom (BMV). The in vitro cytotoxicity and genotoxicity of a pooled sample of BMV was assessed by the MTT and Comet assay, respectively. Genotoxicity was also evaluated in vivo through the micronucleus assay. BMV displayed a 50% cytotoxic concentration (CC50) on Vero cells of 4.09 µg/mL. Vero cells treated with 4 µg/mL for 90 min and 6 h presented significant (p < 0.05, ANOVA/Newman-Keuls test) higher DNA damage than the negative control in the Comet assay. The lower DNA damage found after 6 h compared with the 90 min treatment suggests a DNA repair effect. Mice intraperitoneally treated with BMV at 10, 30, or 80 µg/animal presented significant genotoxicity (p < 0.05, ANOVA/Newman-Keuls test) in relation to the negative control after 24 h of treatment. Contrary to the in vitro results, no DNA repair seemed to occur in vivo up to 96 h post-venom inoculation at a dose of 30 µg/animal. The results show that BMV presents cyto- and genotoxicity depending on the concentration/dose used. These findings emphasize the importance of toxicological studies, including assessment of genotoxicity, in the biological activity research of BMV and/or in the development of BMV-derived products.

  7. Micronucleus induction by repeated exposure of diagnostic X-ray on oral buccal mucosa

    International Nuclear Information System (INIS)

    Lohith Tejashvi, K.; Suchetha Kumari, N.; Shetty, Shishir Ram

    2012-01-01

    Radiography is the important diagnostic tools essential for diagnosis and planning of orthodontic treatment. X-ray is ionizing radiation which showed various effects include breaking the bond of biological molecules, inducing loss of ability of cell death, increases nuclear alterations. Micronuclei - x000D - (MN) are small chromatin bodies that appear in the cytoplasm by the - x000D - condensation of acrocentric chromosomal fragments or by whole chromosomes. This - x000D - is a sensitive indicator of genetic damage. - x000D - x000D - . To evaluate micronucleus induction by repeated exposure of diagnostic X-ray on human buccal cell. Methods: 25 patients who visiting to ABSMIDS, Department of Oral medicine and Radiology for dental checkup exposed to diagnostic X-ray more than 4 times have been selected for this study. The buccal cell for analysis was collected from the cheek mucosa by means of gentle scraping of epithelial using ice-cream sticks and placed in Buffer saline. This sample was smeared on glass slide and then fixed in methanol:glacial acetic acid (3:1). Air dried and stained with Giemsa for 15-25 minutes. Then 250 cells in each slides were analyzed under microscope and frequency of micronucleus was scored (n=4). Repeated X-ray exposed cells showed micronucleus (1.25%) and nuclear alteration (2.3%) compare to the control. Repeated X-ray exposure leads to induces detectable number of micronucleus and nuclear alterations. (author)

  8. In vitro chemo-sensitivity assay guided chemotherapy is associated with prolonged overall survival in cancer patients.

    Science.gov (United States)

    Udelnow, Andrej; Schönfęlder, Manfred; Würl, Peter; Halloul, Zuhir; Meyer, Frank; Lippert, Hans; Mroczkowski, Paweł

    2013-06-01

    The overall survival (OS) of patients suffering From various tumour entities was correlated with the results of in vitro-chemosensitivity assay (CSA) of the in vivo applied drugs. Tumour specimen (n=611) were dissected in 514 patients and incubated for primary tumour cell culture. The histocytological regression assay was performed 5 days after adding chemotherapeutic substances to the cell cultures. n=329 patients undergoing chemotherapy were included in the in vitro/in vivo associations. OS was assessed and in vitro response groups compared using survival analysis. Furthermore Cox-regression analysis was performed on OS including CSA, age, TNM classification and treatment course. The growth rate of the primary was 73-96% depending on tumour entity. The in-vitro response rate varied with histology and drugs (e.g. 8-18% for methotrexate and 33-83% for epirubicine). OS was significantly prolonged for patients treated with in vitro effective drugs compared to empiric therapy (log-rank-test, p=0.0435). Cox-regression revealed that application of in vitro effective drugs, residual tumour and postoperative radiotherapy determined the death risk independently. When patients were treated with drugs effective in our CSA, OS was significantly prolonged compared to empiric therapy. CSA guided chemotherapy should be compared to empiric treatment by a prospective randomized trial.

  9. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    Science.gov (United States)

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  10. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  11. Anticoagulants Influence the Performance of In Vitro Assays Intended for Characterization of Nanotechnology-Based Formulations

    Directory of Open Access Journals (Sweden)

    Edward Cedrone

    2017-12-01

    Full Text Available The preclinical safety assessment of novel nanotechnology-based drug products frequently relies on in vitro assays, especially during the early stages of product development, due to the limited quantities of nanomaterials available for such studies. The majority of immunological tests require donor blood. To enable such tests one has to prevent the blood from coagulating, which is usually achieved by the addition of an anticoagulant into blood collection tubes. Heparin, ethylene diamine tetraacetic acid (EDTA, and citrate are the most commonly used anticoagulants. Novel anticoagulants such as hirudin are also available but are not broadly used. Despite the notion that certain anticoagulants may influence assay performance, a systematic comparison between traditional and novel anticoagulants in the in vitro assays intended for immunological characterization of nanotechnology-based formulations is currently not available. We compared hirudin-anticoagulated blood with its traditional counterparts in the standardized immunological assay cascade, and found that the type of anticoagulant did not influence the performance of the hemolysis assay. However, hirudin was more optimal for the complement activation and leukocyte proliferation assays, while traditional anticoagulants citrate and heparin were more appropriate for the coagulation and cytokine secretion assays. The results also suggest that traditional immunological controls such as lipopolysaccharide (LPS are not reliable for understanding the role of anticoagulant in the assay performance. We observed differences in the test results between hirudin and traditional anticoagulant-prepared blood for nanomaterials at the time when no such effects were seen with traditional controls. It is, therefore, important to recognize the advantages and limitations of each anticoagulant and consider individual nanoparticles on a case-by-case basis.

  12. In vitro determination of cytotoxic drug response in ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csóka, K; Tholander, B; Gerdin, E; de la Torre, M; Larsson, R; Nygren, P

    1997-09-17

    The fluorometric microculture cytotoxicity assay (FMCA), a short-term in vitro assay based on the concept of total tumor cell kill, was used for testing the cytotoxic drug sensitivity of tumor cells from patients with ovarian carcinoma. A total of 125 fresh specimens was obtained, 98 (78%) of which were analyzed successfully. Data from 45 patients were available for clinical correlations. The FMCA appeared to yield clinically relevant cytotoxic drug sensitivity data for ovarian carcinoma as indicated by a comparison with tumor samples obtained from patients with non-Hodgkin's lymphoma or kidney carcinoma. Considering the most active single agent in vitro actually given in vivo, and using the median drug activity among all ovarian carcinoma samples as a cut-off, the sensitivity of the assay and its specificity were 75 and 52%, respectively. Cross-resistance in vitro was frequently observed between standard drugs but not between standard drugs and Taxol. Ten percent of the specimens showed an extreme resistance for at least 4 of 6 of the drugs investigated.

  13. Micronucleus frequency and content in healthy relatives of cancer patients

    Czech Academy of Sciences Publication Activity Database

    Zölzer, F.; Křížová, M.; Skalická, Z.F.; Rössnerová, Andrea; Šrám, Radim

    2017-01-01

    Roč. 22, č. 7 (2017), s. 667-673 ISSN 1354-750X Institutional support: RVO:68378041 Keywords : micronucleus centromere test * chromosomal damage * inheritable trait Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Human genetics Impact factor: 2.006, year: 2016

  14. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins

    J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens

    Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in

  15. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay.

    Directory of Open Access Journals (Sweden)

    Elena Serena

    Full Text Available INTRODUCTION: The heart is one of the least regenerative organs in the body and any major insult can result in a significant loss of heart cells. The development of an in vitro-based cardiac tissue could be of paramount importance for many aspects of the cardiology research. In this context, we developed an in vitro assay based on human cardiomyocytes (hCMs and ad hoc micro-technologies, suitable for several applications: from pharmacological analysis to physio-phatological studies on transplantable hCMs. We focused on the development of an assay able to analyze not only hCMs viability, but also their functionality. METHODS: hCMs were cultured onto a poly-acrylamide hydrogel with tunable tissue-like mechanical properties and organized through micropatterning in a 20×20 array. Arrayed hCMs were characterized by immunofluorescence, GAP-FRAP analyses and live and dead assay. Their functionality was evaluated monitoring the excitation-contraction coupling. RESULTS: Micropatterned hCMs maintained the expression of the major cardiac markers (cTnT, cTnI, Cx43, Nkx2.5, α-actinin and functional properties. The spontaneous contraction frequency was (0.83±0.2 Hz, while exogenous electrical stimulation lead to an increase up to 2 Hz. As proof of concept that our device can be used for screening the effects of pathological conditions, hCMs were exposed to increasing levels of H(2O(2. Remarkably, hCMs viability was not compromised with exposure to 0.1 mM H(2O(2, but hCMs contractility was dramatically suppressed. As proof of concept, we also developed a microfluidic platform to selectively treat areas of the cell array, in the perspective of performing multi-parametric assay. CONCLUSIONS: Such system could be a useful tool for testing the effects of multiple conditions on an in vitro cell model representative of human heart physiology, thus potentially helping the processes of therapy and drug development.

  16. Bystander Effects Induced by Continuous Low-Dose-Rate 125I Seeds Potentiate the Killing Action of Irradiation on Human Lung Cancer Cells In Vitro

    International Nuclear Information System (INIS)

    Chen, H.H.; Jia, R.F.; Yu, L.; Zhao, M.J.; Shao, C.L.; Cheng, W.Y.

    2008-01-01

    Purpose: To investigate bystander effects of low-dose-rate (LDR) 125 I seed irradiation on human lung cancer cells in vitro. Methods and Materials: A549 and NCI-H446 cell lines of differing radiosensitivity were directly exposed to LDR 125 I seeds irradiation for 2 or 4 Gy and then cocultured with nonirradiated cells for 24 hours. Induction of micronucleus (MN), γH2AX foci, and apoptosis were assayed. Results: After 2 and 4 Gy irradiation, micronucleus formation rate (MFR) and apoptotic rate of A549 and NCI-H446 cells were increased, and the MFR and apoptotic rate of NCI-H446 cells was 2.1-2.8 times higher than that of A549 cells. After coculturing nonirradiated bystander cells with 125 I seed irradiated cells for 24 hours, MFR and the mean number of γH2AX foci/cells of bystander A549 and NCI-H446 cells were similar and significantly higher than those of control (p 125 I seeds could induce bystander effects, which potentiate the killing action on tumor cells and compensate for the influence of nonuniform distribution of radiation dosage on therapeutic outcomes

  17. The buccal cytome and micronucleus frequency is substantially altered in Down's syndrome and normal ageing compared to young healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Philip [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia); Discipline of Physiology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia)], E-mail: philip.thomas@csiro.au; Harvey, Sarah; Gruner, Tini [Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia); Fenech, Michael [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia)], E-mail: michael.fenech@csiro.au

    2008-02-01

    The buccal micronucleus cytome assay was used to investigate biomarkers for DNA damage, cell death and basal cell frequency in buccal cells of healthy young, healthy old and young Down's syndrome cohorts. With normal ageing a significant increase in cells with micronuclei (P < 0.05, average increase +366%), karyorrhectic cells (P < 0.001, average increase +439%), condensed chromatin cells (P < 0.01, average increase +45.8%) and basal cells (P < 0.001, average increase +233%) is reported relative to young controls. In Down's syndrome we report a significant increase in cells with micronuclei (P < 0.001, average increase +733%) and binucleated cells (P < 0.001, average increase +84.5%) and a significant decrease in condensed chromatin cells (P < 0.01, average decrease -52%), karyolytic cells (P < 0.001, average decrease -51.8%) and pyknotic cells (P < 0.001, average decrease -75.0%) relative to young controls. These changes show distinct differences between the cytome profile of normal ageing relative to that for a premature ageing syndrome, and highlight the diagnostic value of the cytome approach for measuring the profile of cells with DNA damage, cell death and proportion of cells with proliferative potential (i.e., basal cells). Significant correlations amongst cell death biomarkers observed in this study were used to propose a new model of the inter-relationship of cell types scored within the buccal micronucleus cytome assay. This study validates the use of a cytome approach to investigate DNA damage, cell death and cell proliferation in buccal cells with ageing.

  18. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L.

    Science.gov (United States)

    Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar

    2012-05-01

    The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.

  19. Development of a novel in vitro assay for the evaluation of integron DNA integrase activity

    Directory of Open Access Journals (Sweden)

    Fatemeh Tohidi

    2016-05-01

    Full Text Available Integrons play an important role in multidrug resistance. The integron platform codes for integrase (intI that is required for gene cassette integration through site-specific recombination. The recombination crossover occurs between the G and TT nucleotides in non-palindromic attI and palindromic attC sites. The aim of this study was to establish an efficient in vitro assay for integrase purification and activity detection. To this end, the intI gene was cloned into the pET-22b plasmid. Then, the resulting recombinant plasmid was transformed into Escherichia coli Origami™ strain. The recombinant protein expression was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE and western blot assays. The recombinant intI protein was purified by nickel–nitrilotriacetic acid (Ni–NTA affinity chromatography, and its activity was measured by a newly introduced assay. Briefly, specific primers for each side of attI and attC were used, thereby, a polymerase chain reaction would be performed, if a fused plasmid containing both attI and attC sites was created upon recombination. SDS-PAGE and western blotting confirmed the presence of a 38-kDa recombinant protein. Optimum conditions were established for the measurement of the integrase activity and a new model assay was conducted to analyse the recombination activity in vitro. Although the electrophoretic mobility shift assay is an efficient and reliable method, the newly introduced assay provided new or enhanced capability to determine the integrase activity, suggesting that there is no need for expensive and advanced equipment.

  20. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2018-01-01

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay, cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS or cyclophosphamide (CPA. Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.

  1. In vitro toxicity assessment of extracts derived from sol-gel coatings on polycarbonate intended to be used in food contact applications.

    Science.gov (United States)

    Séverin, Isabelle; Lionti, Krystelle; Dahbi, Laurence; Loriot, Catherine; Toury, Bérangère; Chagnon, Marie-Christine

    2016-07-01

    Polycarbonate is a widely used polymer in food contact applications all around the world. However, due to the potential release of Bisphenol A (BPA) during repeated washing cycles, its use becomes compromised as BPA is known for being an endocrine disruptor for rodents. In order to tackle this issue, sol-gel coatings based on organoalkoxysiloxane were developed on PC, to act as a physical barrier. To this end, two sol-gel systems based on tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES), three common sol-gel precursors, were prepared. The coatings derived from the latter two systems were then studied with regards to their potential toxicity in vitro. Migration tests were performed in food simulants, and the maximal migration was obtained in ethanol 10% (v/v) for one system and in isooctane for the other one. In vitro genotoxicity was assessed with the Ames test (OECD 471) and the micronucleus assay (OECD 487), and no genotoxic effect was observed. Moreover, the estrogenic activity of the extracts was studied with a transcriptional activation assay using transient transfection in human cells; none of the extracts was found estrogenic. These negative in vitro results are highly promising for the future use of these new barrier coating formulations onto food contact materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Protein energy-malnutrition: does the in vitro zinc sulfate supplementation improve chromosomal damage repair?

    Science.gov (United States)

    Padula, Gisel; González, Horacio F; Varea, Ana; Seoane, Analía I

    2014-12-01

    Protein-energy malnutrition (PEM) is originated by a cellular imbalance between nutrient/energy supply and body's demand. Induction of genetic damage by PEM was reported. The purpose of this study was to determine the genetic effect of the in vitro zinc sulfate (ZnSO4) supplementation of cultured peripheral blood lymphocytes from children with PEM. Twenty-four samples from 12 children were analyzed. Anthropometric and biochemical diagnosis was made. For the anthropometric assessment, height-for-age index, weight-for-age index, and weight-for-height index were calculated (WHO, 2005). Micronutrient status was evaluated. A survey for assessed previous exposure to potentially genotoxic agents was applied. Results were statistically evaluated using paired sample t test and χ (2) test. Each sample was fractionated and cultured in two separate flasks to performed two treatments. One was added with 180 μg/dl of ZnSO4 (PEMs/ZnSO4) and the other remains non-supplemented (PEMs). Cytotoxic effects and chromosomal damage were assessed using the cytokinesis-block micronucleus assay (CBMN). All participants have at least one type of malnutrition and none have anemia, nor iron, folate, vitamin A, and zinc deficiency. All PEMs/ZnSO4 samples have a significant reduction in the micronucleus (MNi) frequency compared with PEMs (t = 6.25685; p < 0.001). Nuclear division index (NDI) increase in PEMs/ZnSO4 (t = -17.4226; p < 0.001). Nucleoplasmic bridge (NPBs) frequency was four times smaller in PEMs/ZnSO4 (χ (2) = 40.82; p < 0.001). No nuclear buds (NBuds) were observed. Cytotoxic effects and chromosomal damage observed in children suffering from PEM can be repaired in vitro with zinc sulfate supplementation.

  3. Seven benzimidazole pesticides combined at sub-threshold levels induce micronuclei in vitro

    Science.gov (United States)

    Ermler, Sibylle; Scholze, Martin; Kortenkamp, Andreas

    2013-01-01

    Benzimidazoles act by disrupting microtubule polymerisation and are capable of inducing the formation of micronuclei. Considering the similarities in their mechanisms of action (inhibition of microtubule assembly by binding to the colchicine-binding site on tubulin monomers), combination effects according to the principles of concentration addition might occur. If so, it is to be expected that several benzimidazoles contribute to micronucleus formation even when each single one is present at or below threshold levels. This would have profound implications for risk assessment, but the idea has never been tested rigorously. To fill this gap, we analysed micronucleus frequencies for seven benzimidazoles, including the fungicide benomyl, its metabolite carbendazim, the anthelmintics albendazole, albendazole oxide, flubendazole, mebendazole and oxibendazole. Thiabendazole was also tested but was inactive. We used the cytochalasin-blocked micronucleus assay with CHO-K1 cells according to OECD guidelines, and employed an automated micronucleus scoring system based on image analysis to establish quantitative concentration–response relationships for the seven active benzimidazoles. Based on this information, we predicted additive combination effects for a mixture of the seven benzimidazoles by using the concepts of concentration addition and independent action. The observed effects of the mixture agreed very well with those predicted by concentration addition. Independent action underestimated the observed combined effects by a large margin. With a mixture that combined all benzimidazoles at their estimated threshold concentrations for micronucleus induction, micronucleus frequencies of ~15.5% were observed, correctly anticipated by concentration addition. On the basis of independent action, this mixture was expected to produce no effects. Our data provide convincing evidence that concentration addition is applicable to combinations of benzimidazoles that form micronuclei

  4. Development of in vitro and in vivo rabies virus neutralization assays based on a high-titer pseudovirus system

    Science.gov (United States)

    Nie, Jianhui; Wu, Xiaohong; Ma, Jian; Cao, Shouchun; Huang, Weijin; Liu, Qiang; Li, Xuguang; Li, Yuhua; Wang, Youchun

    2017-01-01

    Pseudoviruses are useful virological tools because of their safety and versatility; however the low titer of these viruses substantially limits their wider applications. We developed a highly efficient pseudovirus production system capable of yielding 100 times more rabies pseudovirus than the traditional method. Employing the high-titer pseudoviruses, we have developed robust in vitro and in vivo neutralization assays for the evaluation of rabies vaccine, which traditionally relies on live-virus based assays. Compared with current rapid fluorescent focus inhibition test (RFFIT), our in vitro pseudovirus-based neutralization assay (PBNA) is much less labor-intensive while demonstrating better reproducibility. Moreover, the in vivo PBNA assay was also found to be superior to the live virus based assay. Following intravenous administration, the pseudovirus effectively infected the mice, with dynamic viral distributions being sequentially observed in spleen, liver and brain. Furthermore, data from in vivo PBNA showed great agreement with those generated from the live virus model but with the experimental time significantly reduced from 2 weeks to 3 days. Taken together, the effective pseudovirus production system facilitated the development of novel PBNA assays which could replace live virus-based traditional assays due to its safety, rapidity, reproducibility and high throughput capacity. PMID:28218278

  5. Genotoxicity of 2-bromo-3′-chloropropiophenone

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanxue; Yan, Jian; Li, Yan [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fu, Peter P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I [Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993 (United States); Moore, Martha M. [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Chen, Tao, E-mail: tao.chen@fda.hhs.gov [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)

    2013-07-15

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  6. Genotoxicity of 2-bromo-3′-chloropropiophenone

    International Nuclear Information System (INIS)

    Meng, Fanxue; Yan, Jian; Li, Yan; Fu, Peter P.; Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I; Moore, Martha M.; Chen, Tao

    2013-01-01

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  7. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts

    International Nuclear Information System (INIS)

    Matsumoto, Yoshitaka; Hamada, Nobuyuki; Aoki-Nakano, Mizuho; Furusawa, Yoshiya; Funayama, Tomoo; Sakashita, Tetsuya; Kobayashi, Yasuhiko; Wada, Seiichi; Kakizaki, Takehiko

    2015-01-01

    Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV μm -1 ), neon (375 keV μm -1 ) and argon ions (1260 keV μm -1 ) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1- 6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose. (authors)

  8. Changes in buccal micronucleus cytome parameters associated with smokeless tobacco and pesticide exposure among female tea garden workers of Assam, India.

    Science.gov (United States)

    Kausar, Afifa; Giri, Sarbani; Roy, Prasenjit; Giri, Anirudha

    2014-03-01

    Assam is the highest tea producing state in India. A large number of workers are engaged in various units of tea industry. There are few reports on the health status of the tea garden workers. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effect associated with workers in tea industries in southern Assam. Smokeless tobacco chewing along with betel nut is very common practice among the workers. Workers also get exposed periodically to mixture of pesticides. Employing buccal micronucleus cytome assay, exfoliated buccal cells were analyzed in 90 female tea garden and compared to 90 age and sex matched non-chewer control as well as 70 chewers who are not tea garden workers. Statistically significant (pworkers compared to both the control groups. The frequency of cell proliferation biomarkers was highest in the chewer controls whereas genotoxic and cell death parameters were highest in tea garden workers. Linear correlation analysis revealed strong positive correlation between the duration of occupation and the frequency of micronucleus (r=0.597; pworkers was relatively lower compared to the control group. Pesticide exposure and chewing areca nut along with smokeless tobacco use may be responsible for changes in cytome parameters in exfoliated buccal cells. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. In vitro versus in vivo concordance: a case study of the replacement of an animal potency test with an immunochemical assay.

    Science.gov (United States)

    Schofield, T

    2002-01-01

    Early in its development, the potency of Merck's recombinant hepatitis B vaccine, RECOMBIVAX HB, was monitored using an assay performed in mice. A specification was determined to be the lowest potency which induced acceptable response in clinical trials. As a post-licensing commitment, Merck was asked to replace its mouse potency assay with an in vitro procedure for product release in the US market. Early studies with a commercial enzyme immunoassay (EIA) yielded highly variable results. That assay, combined with a sample pretreatment step, proved more dependable and predictive of potency in the mouse assay. Based on measurements made on manufactured materials, combined with experiments contrived to yield a wide range of reactivity in the two assays, concordance was established between the EIA and the mouse potency assay. This concordance was used to calibrate a specification for the in vitro assay that is predictive of a satisfactory response in vivo. Data from clinical trials established a correspondence between human immunogenicity and these potency markers.

  10. Variability in micronucleus induction with different mutagens applied to several species of fish

    Directory of Open Access Journals (Sweden)

    Cesar Koppe Grisolia

    2000-03-01

    Full Text Available Fish are often used for screening genotoxicity of water. For such programs, a knowledge of the sensitivity to clastogens, spontaneous micronucleus frequency and cell cycle kinetics of the target tissue is necessary. To investigate the pattern of inter-specific sensitivity to micronucleus induction three species of fish, Tilapia rendalli, Oreochromis niloticus and Cyprinus carpio, were exposed to the clastogens bleomycin (BLM, cyclophosphamide (CP, 5-fluorouracil (5-FU, and mitomycin C (MMC. The binucleate/mononucleate ratio in peripheral erythrocytes exposed to cytochalasin B was also used to evaluate the time-dependent response of micronucleus formation during hematopoesis in the kidney and the micronucleus peak in peripheral erythrocytes. Micronucleus frequencies induced by CP were significantly greater than their respective controls for the three fish species throughout all treatment periods. During the whole evaluation period (30 days CP was also the most effective clastogen. In general, until the 14th day of evaluation period T. rendalii was the most sensitive species to clastogens. No difference in micronucleus frequencies among species was observed in the 4th evaluation (at the 30th day. A micronucleus peak was observed at the 7th day after treatment. After the 14th day the frequencies were stabilized. The cytochalasin B experiment was carried out to demonstrate that micronuclei induced in the young kidney erythrocyte cells were detected in the circulating blood 2-4 days later.Este estudo fez uma avaliação da indução de micronúcleos em eritrócitos de sangue periférico de peixes Tilapia rendalli, Oreochromis niloticus e Cyprinus carpio após o tratamento com mitomicina C, ciclofosfamida, 5-fluorouracil e bleomicina. Foram colhidas amostras periódicas de sangue com 2, 7, 14 e 30 dias após o tratamento único. Os tratamentos com citocalasina B tiveram como objetivo analisar as proporções entre células binucleadas

  11. Evaluation of the genotoxic potential of Mangifera indica L. extract (Vimang), a new natural product with antioxidant activity.

    Science.gov (United States)

    Rodeiro, I; Cancino, L; González, J E; Morffi, J; Garrido, G; González, R M; Nuñez, A; Delgado, R

    2006-10-01

    Mangifera indica L. extract (Vimang) consists of a defined mixture of components (polyphenols, terpenoids, steroids, fatty acids and microelements). It contains a variety of polyphenols, phenolic esters, flavan-3-ols and a xanthone (mangiferin), as main component. This extract has antioxidant action, antitumor and immunemodulatory effects proved in experimental models in both in vitro and in vivo assays. The present study was performed to investigate the genotoxicity potential activity of Vimang assessed through different tests: Ames, Comet and micronucleus assays. Positive and negative controls were included in each experimental series. Histidine requiring mutants of Salmonella typhimurium TA1535, TA1537, TA1538, TA98, TA100 and TA102 strains for point-mutation tests and in vitro micronucleus assay in primary human lymphocytes with and without metabolic activation were performed. In addition, genotoxic effects were evaluated on blood peripheral lymphocytes of NMRI mice of both sexes, which were treated during 2 days with intraperitoneal doses of M. indica L. extract (50-150 mg/kg). The observed results permitted to affirm that Vimang (200-5,000 microg/plate) did not increase the frequency of reverse mutations in the Ames test in presence or not of metabolic activation. Results of Comet assay showed that the extract did not induce single strand breaks or alkali-labile sites on blood peripheral lymphocytes of treated animals compared with controls. On the other hand, the results of the micronucleus studies (in vitro and in vivo) showed Vimang induces cytotoxic activity, determined as cell viability or PCE/NCE ratio, but neither increased the frequency of micronucleated binucleate cells in culture of human lymphocytes nor in mice bone marrow cells under our experimental conditions. The positive control chemicals included in each experiment induced the expected changes. The present results indicate that M. indica L. extract showed evidences of light cytotoxic activity

  12. Evaluation of different in vitro assays of inherent sensitivity as predictors of radiotherapy response

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Chicago Univ., IL; Beckett, M.A.; Mustafi, R.; Weichselbaum, R.R.; Vaughan, A.T.M.

    1991-01-01

    The inherent sensitivity of cells within a tumor plays an important role in the response of the tumor to radiotherapy. Clonogenic assays show that cells established from in-field radiotherapy failures are significantly more resistant to radiation than cell lines established from pre-treatment samples. Clonogenic assays fail to predict tumor response to radiotherapy, however. The failure might be due to the small sample size in this study, or the complicating factors of staging, surgery, and chemotherapy, and/or in vivo selection by radiotherapy for resistant tumor cells. In vitro selection for resistant cell lines does not appear to be a complicating factor. Nonclonogenic assays such as those that measure DNA strand break rejoining rates (filter elution, pulse-field gel electrophoresis) or chromosome structure (flow cytometric analysis) show promise as alternative rapid assays of radiation sensitivity and possibly tumor response. 16 refs., 2 figs

  13. An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine.

    Science.gov (United States)

    Asciolla, James J; Miele, Matthew M; Hendrickson, Ronald C; Resh, Marilyn D

    2017-08-18

    Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed. Here, we present the first in vitro assay that accurately recapitulates PORCN-mediated fatty acylation of a Wnt substrate. The critical feature is the use of a double disulfide-bonded Wnt peptide that mimics the two-dimensional structure surrounding the Wnt acylation site. PORCN-mediated Wnt acylation was abolished when the Wnt peptide was treated with DTT, and did not occur with a linear (non-disulfide-bonded) peptide, or when the double disulfide-bonded Wnt peptide contained Ala substituted for the Ser acylation site. We exploited this in vitro Wnt acylation assay to provide direct evidence that the small molecule LGK974, which is in clinical trials for managing Wnt-driven tumors, is a bona fide PORCN inhibitor whose IC 50 for inhibition of Wnt fatty acylation in vitro closely matches that for inhibition of Wnt signaling. Side-by-side comparison of PORCN and Hedgehog acyltransferase (HHAT), two enzymes that attach 16-carbon fatty acids to secreted proteins, revealed that neither enzyme will accept the other's fatty acyl-CoA or peptide substrates. These findings illustrate the unique enzyme-substrate selectivity exhibited by members of the membrane-bound O -acyl transferase family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date.

    Science.gov (United States)

    Pfuhler, S; Fautz, R; Ouedraogo, G; Latil, A; Kenny, J; Moore, C; Diembeck, W; Hewitt, N J; Reisinger, K; Barroso, J

    2014-02-01

    The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests: The completed "False Positives" project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures. The on-going "3D skin model" project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages. The completed "Metabolism" project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure. The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Genetic and rat toxicity studies of cyclodextrin glucanotransferase

    Directory of Open Access Journals (Sweden)

    Robert R. Maronpot

    Full Text Available Introduction: Microbiologically derived cyclodextrin glucanotransferase (CGTase is used commercially as a processing agent in manufacture of food, pharmaceuticals, and cosmetics. Its toxic potential was evaluated in anticipation of use in the production of alpha-glycosyl isoquercitrin, a water-soluble form of quercetin. Methods: Following OECD guidelines, CGTase, produced by Bacillus pseudalcaliphilus DK-1139, was evaluated in a genotoxicity battery consisting of a bacterial reverse mutation assay, an in vitro micronucleus (MN assay and MN and comet assays using B6C3F1 male and female mice. These same genotoxicity assays were also conducted for sodium sulfate, a contaminant of CGTase preparation. In a 90-day Sprague Dawley rat toxicity study, CGTase was administered by gavage in water at daily doses of 0, 250, 500, and 1000 mg/kg/day. Results: CGTase did not induce mutations with or without metabolic activation in the bacterial reverse mutation assay. Formation of micronuclei was not induced in either in vitro or in vivo MN assays with or without metabolic activation. No induction of DNA damage was detected in male or female mouse liver, stomach, or duodenum in the comet assay. Sodium sulfate also tested negative in these same genotoxicity assays. In the 90-day repeated dose rat study there were no treatment-related adverse clinical or pathological findings. Conclusion: The genotoxicity assays and repeated dose toxicity study support the safe use of CGTase in production of alpha-glycosyl isoquercitrin. Keywords: Micronucleus assay, Comet assay, Enzymatically modified isoquercitrin (EMIQ, Food additive, Flavonol, Sodium sulfate

  16. Newborn Congenital Cytomegalovirus Screening Based on Clinical Manifestations and Evaluation of DNA-based Assays for In Vitro Diagnostics.

    Science.gov (United States)

    Fujii, Tomoyuki; Oka, Akira; Morioka, Ichiro; Moriuchi, Hiroyuki; Koyano, Shin; Yamada, Hideto; Saito, Shigeru; Sameshima, Hiroshi; Nagamatsu, Takeshi; Tsuchida, Shinya; Inoue, Naoki

    2017-10-01

    To establish a strategy for congenital cytomegalovirus (cCMV) screening and to establish confirmatory assays approved as in vitro diagnostics by the regulatory authorities, we evaluated the clinical risks and performance of diagnostic assays developed by commercial companies, since cCMV infection has significant clinical consequences. Newborns with clinical manifestations considered to be consequences of cCMV infection (n = 575) were screened for the presence of cytomegalovirus (CMV) DNA in urine specimens collected onto filter paper placed in their diapers using the polymerase chain reaction-based assay reported previously. Liquid urine specimens were obtained from all of 20 CMV-positive newborns and 107 of the CMV-negative newborns identified in the screening. We used these 127 specimens, as well as 12 from cCMV cases identified in a previous study and 41 from healthy newborns, to compare the performance of 2 commercial assays and 1 in-house assay. The risk-based screening allowed the identification of cCMV cases at least 10-fold more efficiently than our previous universal screening, although there appears to be a limit to the identification of asymptomatically infected newborns. Although CMV-specific IgM during pregnancy was found frequently in mothers of cCMV newborns, CMV-IgM alone is not an effective diagnostic marker. The urine-filter-based assay and the 3 diagnostic assays yielded identical results. Although risk-based and universal newborn screening strategies for cCMV infection each have their respective advantages and disadvantages, urine-filter-based assay followed by confirmatory in vitro diagnostics assays is able to identify cCMV cases efficiently.

  17. DNA damage in healthy individuals and respiratory patients after treating whole blood in vitro with the bulk and nano forms of NSAIDs

    Directory of Open Access Journals (Sweden)

    Diana Anderson

    2016-09-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs inhibit COX enzyme activity which affects the inflammatory response. Inflammation is associated with increasing cancer incidence. Pre-clinical and clinical studies have shown that NSAID treatment could cause an anti-tumour effect in cancers. In the present study, blood was taken from healthy individuals (n=17 and patients with respiratory diseases or lung cancer (n=36. White blood cells (WBC were treated with either a micro-suspension, i.e. bulk (B or nano-suspension (N of aspirin (ASP or ibuprofen (IBU up to 500 µg/ml in the comet assay and up to 125 µg/ml in the micronucleus assay. In this study results were compared against untreated lymphocytes and their corresponding treated groups. The results showed, thgat NSAIDs in their nano form significantly reduced the DNA damage in WBCs from lung cancer patients in bulk and nano compared to untreated lymphocytes. Also, there was a decrease in the level of DNA damage in the comet assay after treating WBCs from healthy individuals, asthma and COPD groups with aspirin N (ASP N but not with IBU N. In addition, the number of micronuclei decreased after treatment with NSAIDs in their nano form (ASP N and IBU N in the healthy as well as in the lung cancer group. However, this was not the case for micronucleus frequency in asthma and COPD patients. These data show that lymphocytes from different groups respond differently to treatment with ASP and IBU as measured by comet assay and micronucleus assay, and that the size of the suspended particles of the drugs affects responses.

  18. In vitro Assays for Eukaryotic Leading/Lagging Strand DNA Replication.

    Science.gov (United States)

    Schauer, Grant; Finkelstein, Jeff; O'Donnell, Mike

    2017-09-20

    The eukaryotic replisome is a multiprotein complex that duplicates DNA. The replisome is sculpted to couple continuous leading strand synthesis with discontinuous lagging strand synthesis, primarily carried out by DNA polymerases ε and δ, respectively, along with helicases, polymerase α-primase, DNA sliding clamps, clamp loaders and many other proteins. We have previously established the mechanisms by which the polymerases ε and δ are targeted to their 'correct' strands, as well as quality control mechanisms that evict polymerases when they associate with an 'incorrect' strand. Here, we provide a practical guide to differentially assay leading and lagging strand replication in vitro using pure proteins.

  19. Measurement of immunoglobulin production by peripheral blood mononuclear cells in vitro using a solid-phase immunoradiometric assay

    International Nuclear Information System (INIS)

    Roffe, L.M.; Maini, R.N.; Cohen, M.L.; Meretey, K.

    1981-01-01

    A simple solid-phase immunoradiometric assay for IgG and IgM is described. Supernatants from lymphocyte cultures are incubated in microtitre plates which have been precoated with anti-IgG or anti-IgM. Subsequent binding of 125 I-labelled anti-immunoglobulin is measured and IgG and IgM in supernatants are estimated from the standard curve constructed for each assay. The assay is specific for human IgG and IgM, is able to detect nanogram amounts and offers advantages over other techniques for evaluating in vitro lymphocyte function. (Auth.)

  20. Test of micronucleus in lymphocytes with the cytokinesis-block like possible indicator of the answer of the patient to the radiotherapy

    International Nuclear Information System (INIS)

    Giorgio, Marina di; Nasazzi, Nora; Taja, Maria R.; Roth, Berta; Sardi, Mabel; Menendez, Pablo R.

    2001-01-01

    In order to evaluate the individual cytogenetic response to radiotherapy and its comparison with the clinical response, the cytokinesis-block micronucleus assay was applied to peripheral blood lymphocytes of patients with cervix cancer undergoing radiotherapy. The cytogenetic data were analysed using a mathematical model to evaluate the attenuation of the cytogenetic effect as a function of the time between a single exposure and blood sampling, estimating a cytogenetic recovery factor (k) that might correlate with the individual radiosensitivity, contributing with radiosensitivity tests of current use but applying a rapid methodology easy to implement in a routine clinical laboratory. Long term clinical observations could confirm the validity of k in expressing predisposition of the subject to develop delayed effects. (author)

  1. Association between micronucleus frequency and cervical intraepithelial neoplasia grade in Thinprep cytological test and its significance.

    Science.gov (United States)

    Shi, Yong-Hua; Wang, Bo-Wei; Tuokan, Talaf; Li, Qiao-Zhi; Zhang, Ya-Jing

    2015-01-01

    A micronucleus is an additional small nucleus formed due to chromosomes or chromosomal fragments fail to be incorporated into the nucleus during cell division. In this study, we assessed the utility of micronucleus counting as a screening tool in cervical precancerous lesions in Thinprep cytological test smears under oil immersion. High risk HPV was also detected by hybrid capture-2 in Thinprep cytological test smears. Our results showed that micronucleus counting was significantly higher in high-grade squamous intraepithelial lesion (HSIL) and invasive carcinoma cases compared to low-grade squamous intraepithelial lesion (LSIL) and non-neoplastic cases. Receiver operating characteristic (ROC) curve analysis revealed that micronucleus counting possessed a high degree of sensitivity and specificity for identifying HSIL and invasive carcinoma. Cut-off of 7.5 for MN counting gave a sensitivity of 89.6% and a specificity of 66.7% (P = 0.024 and AUC = 0.892) for detecting HSIL and invasive carcinoma lesions. Multiple linear regression analysis showed that only HSIL and invasive cancer lesions not age, duration of marital life and number of pregnancy are significantly associated with MN counting. The positive rate of high risk HPV was distinctly higher in LSIL, HSIL and invasive cancer than that in non-neoplstic categories. In conclusions, MN evaluation may be viewed as an effective biomarker for cervical cancer screening. The combination of MN count with HPV DNA detection and TCT may serve as an effective means to screen precancerous cervical lesions in most developing nations.

  2. CLSI-based transference and verification of CALIPER pediatric reference intervals for 29 Ortho VITROS 5600 chemistry assays.

    Science.gov (United States)

    Higgins, Victoria; Truong, Dorothy; Woroch, Amy; Chan, Man Khun; Tahmasebi, Houman; Adeli, Khosrow

    2018-03-01

    Evidence-based reference intervals (RIs) are essential to accurately interpret pediatric laboratory test results. To fill gaps in pediatric RIs, the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) project developed an age- and sex-specific pediatric RI database based on healthy pediatric subjects. Originally established for Abbott ARCHITECT assays, CALIPER RIs were transferred to assays on Beckman, Roche, Siemens, and Ortho analytical platforms. This study provides transferred reference intervals for 29 biochemical assays for the Ortho VITROS 5600 Chemistry System (Ortho). Based on Clinical Laboratory Standards Institute (CLSI) guidelines, a method comparison analysis was performed by measuring approximately 200 patient serum samples using Abbott and Ortho assays. The equation of the line of best fit was calculated and the appropriateness of the linear model was assessed. This equation was used to transfer RIs from Abbott to Ortho assays. Transferred RIs were verified using 84 healthy pediatric serum samples from the CALIPER cohort. RIs for most chemistry analytes successfully transferred from Abbott to Ortho assays. Calcium and CO 2 did not meet statistical criteria for transference (r 2 reference intervals, 29 successfully verified with approximately 90% of results from reference samples falling within transferred confidence limits. Transferred RIs for total bilirubin, magnesium, and LDH did not meet verification criteria and are not reported. This study broadens the utility of the CALIPER pediatric RI database to laboratories using Ortho VITROS 5600 biochemical assays. Clinical laboratories should verify CALIPER reference intervals for their specific analytical platform and local population as recommended by CLSI. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies.

    Science.gov (United States)

    Landsiedel, Robert; Sauer, Ursula G; Ma-Hock, Lan; Schnekenburger, Jürgen; Wiemann, Martin

    2014-11-01

    To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.

  4. Factors influencing in vitro respiratory burst assays with head kidney leucocytes from rainbow trout, Oncorhynchus mykiss (Walbaum)

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Holten-Andersen, Lars; Buchmann, Kurt

    Head kidney leukocytes are central elements in a number of in vivo and in vitro assays elucidating innate and adaptive immune mechanisms in teleosts following stimulation with various antigens. These systems are sensitive to a number of factors affecting the outcome of the assays. The present work...... from cells in a concentration of 1 x 104 cells/ml. Co-incubation of cells with inhibitory substances (DiMePE2, cortisol and SOD) decreased the RBA. It is concluded that several biotic and abiotic factors should be taken into account when conducting RBA assays with head kidney leukocytes for elucidation...

  5. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    Science.gov (United States)

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  6. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk

    OpenAIRE

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-01-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OE...

  7. Can in vitro assays account for interactions between inorganic co-contaminants observed during in vivo relative bioavailability assessment?

    Science.gov (United States)

    Ollson, Cameron J; Smith, Euan; Juhasz, Albert L

    2018-02-01

    In vitro assays act as surrogate measurements of relative bioavailability (RBA) for inorganic contaminants. The values derived from these assays are routinely used to refine human health risk assessments (HHRA). Extensive in vitro research has been performed on three major inorganic contaminants; As, Cd and Pb. However, the majority of these studies have evaluated the contaminants individually, even in cases when they are found as co-contaminants. Recently, in vivo studies (animal model) have determined that when the three aforementioned contaminants are present in the same soil matrix, they have the ability to influence each other's individual bioavailability. Since in vitro assays are used to inform HHRA, this study investigated whether bioaccessibility methods including the Solubility/Bioavailability Research Consortium (SBRC) assay, and physiologically based extraction test (PBET), have the ability to detect interactions between As, Cd and Pb. Using a similar dosing methodology to recently published in vivo studies, spiked aged (12 years) soil was assessed by evaluating contaminant bioaccessibility individually, in addition to tertiary combinations. In two spiked aged soils (grey and brown chromosols), there was no influence on contaminant bioaccessibility when As, Cd and Pb we present as co-contaminants. However, in a red ferrosol, the presence of As and Pb significantly decreased (p contaminant interactions and bioaccessibility outcomes. Although bioaccessibility methods may not account for interactions between elements as demonstrated in in vivo models, in vitro assessment provides a conservative prediction of contaminant RBA under co-contaminant scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cytogenetic bio-dosimetry of an accidental exposure of a radiological worker using multiple assays

    International Nuclear Information System (INIS)

    Thierens, H.; De Ruyck, K.; Vral, A.; De Gelder, V.; Whitehouse, C. A.; Tawn, E. J.; Boesman, I.

    2005-01-01

    A technician involved in the maintenance of X-ray equipment visited the occupational medicine service with complaints of skin lesions, apparently caused by an accidental exposure three months earlier. To estimate the dose received by the technician in the accident, bio-dosimetry was performed 6 and 18 months post-exposure with the dicentric and micronucleus assays. Part of the latest blood sample was also used for retrospective dosimetry by fluorescence in situ hybridisation (FISH) analysis for translocations. The data obtained 6 and 18 months post-exposure indicate that both dicentrics and micronuclei disappear with a half-time of 1 y. After correction for delayed blood sampling, dose values of 0.75 Gy (95% confidence limits 0.56-1.05 Gy) from dicentrics and 0.96 Gy (95% confidence limits 0.79-1.18 Gy) from micronuclei were obtained. FISH analysis of translocations resulted in a dose estimate of 0.79 Gy (95% confidence limits 0.61-0.99 Gy). The satisfactory agreement between the three cytogenetic endpoints supports the use of the micronucleus assay for triage purposes in the case of large scale radiological accidents and provides further evidence for the valid use of FISH for translocations as a reliable retrospective biological dosimeter. (authors)

  9. Harmonization of radiobiological assays: why and how?

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    The International Atomic Energy Agency has made available a technical manual for cytogenetic biodosimetry assays (dicentric chromosome aberration (DCA) and cytokinesis-block micronucleus (CBMN) assays) used for radiation dose assessment in radiation accidents. The International Standardization Organization, which develops standards and guidelines, also provides an avenue for laboratory accreditation, has developed guidelines and recommendations for performing cytogenetic biodosimetry assays. Harmonization of DCA and CBMN assays, has improved their accuracy. Double-blinded inter-laboratory comparison studies involving several networks have further validated DCA and CBMN assays and improved the confidence in their potential use for radiation dose assessment in mass casualties. This kind of international harmonization is lacking for pre-clinical radiobiology assays. The widely used pre-clinical assays that are relatively important to set stage for clinical trials include clonogenic assays, flow-cytometry assays, apoptotic assays, and tumor regression and growth delay assays. However, significant inter-laboratory variations occur with respect to data among laboratories. This raises concerns on the reliability and reproducibility of preclinical data that drives further development and translation. Lack of reproducibility may stem from a variety of factors such as poor scientist training, less than optimal experimental design, inadequate description of methodology, and impulse to publish only the positive data etc. Availability of technical manuals, standard operating procedures, accreditation avenues for laboratories performing such assays, inter-laboratory comparisons, and use of standardized protocols are necessary to enhance reliability and reproducibility. Thus, it is important that radiobiological assays are harmonized for laboratory protocols to ensure successful translation of pre-clinical research on radiation effect modulators to help design clinic trials with

  10. In Vitro Toxicological Evaluation of Cigarette Smoke Particulate Matter: Effect of Dimethyl Sulfoxide (DMSO as Solvent

    Directory of Open Access Journals (Sweden)

    Misra M

    2014-12-01

    Full Text Available This study examined the potential to minimize the cytotoxic or genotoxic effects that dimethylsulfoxide (DMSO, when used as solvent, has on the in vitro interleukin-8 (IL-8 release, mammalian cell cytotoxicity and micronuclei formation, and bacterial mutagenesis induced by cigarette smoke wet total particulate matter (WTPM. The use of DMSO as a solvent vehicle for test articles of limited water solubility is widely applied in in vitro assays due to its moderate toxicity to test organisms and its excellent solvent properties for both polar and non-polar compounds, such as WTPM. A significant DMSO dose-dependent depletion in the IL-8 release was observed, with or without the addition of WTPM, at concentrations spanning those typically employed in in vitro assays. DMSO at 3.6% reduced cell viability 40-50%. Overall, DMSO at final concentrations of 0.5% and 4.0% resulted in about 50% and 90% depletion of final IL-8 levels, respectively. DMSO-induced cytotoxicity was evident only at concentrations of 1.5% or more, a concentration higher than that typically employed in such testing. The WTPM-induced cytotoxicity was equivalent at low ranges of DMSO concentrations. DMSO concentrations of 3.6% or higher resulted in an increase of cytotoxicity by 20-25%. DMSO alone did not give rise to bacterial mutagenicity at doses from 0% to 3.9%; however, WTPM exposure with increasing levels of DMSO resulted in increased toxicity of the WTPM at doses of DMSO greater than 6.9%, as indicated by lower revertant counts. This effect suggests that for Ames assay analysis of WTPM collected in DMSO, the level of DMSO should be minimized to prevent lower revertant counts due to DMSO-induced toxicity. DMSO alone gave a dose-dependent increase in the background micronuclei percentage, with a statistically significant increase at 4%. In the presence of WTPM, DMSO at 3% concentration resulted in a significantly higher micro-nucleus frequency, suggesting a possible clastogenic

  11. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    International Nuclear Information System (INIS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Calatayud, Vicent; Garrec, Jean Pierre; He Shang; Penuelas, Josep; Ribas, Angela; Ro-Poulsen, Helge; Rasmussen, Stine; Sanz, Maria Jose; Vergne, Phillippe

    2006-01-01

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites

  12. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, Andreas [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany)]. E-mail: aklumpp@uni-hohenheim.de; Ansel, Wolfgang [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Klumpp, Gabriele [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Calatayud, Vicent [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Garrec, Jean Pierre [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); He Shang [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); Penuelas, Josep [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ribas, Angela [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ro-Poulsen, Helge [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Rasmussen, Stine [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Sanz, Maria Jose [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Vergne, Phillippe [ENS Lyon and Lyon Botanical Garden, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France)

    2006-02-15

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites.

  13. Tuberculin purified protein derivative (PPD) immunoassay as an in vitro alternative assay for identity and confirmation of potency.

    Science.gov (United States)

    Ho, Mei M; Kairo, Satnam K; Corbel, Michael J

    2006-01-01

    Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.

  14. A novel comprehensive evaluation platform to assess nanoparticle toxicity in vitro

    Science.gov (United States)

    Hirsch, C.; Kaiser, J.-P.; Wessling, F.; Fischer, K.; Roesslein, M.; Wick, P.; Krug, H. F.

    2011-07-01

    The amount of engineered nanomaterials (ENM) is constantly increasing. Their unique properties, compared to their bulk counterparts, render them suitable for various applications in many areas of life. Hence, nanomaterials appear in a variety of different consumer products leading to the exposure of human beings and the environment during their lifecycle. Even though results on biological effects of ENM are available, harmonized and validated test systems are still missing. One major problem concerning the reliable and robust toxicity testing arises from interactions of ENM with different assay systems. Modifications or damage to DNA can have fatal consequences, such as the formation of tumor cells and hence carcinogenesis. Therefore we focused on the re-evaluation of two genotoxicity assays concerning their nanomaterial compatibility; namely the cytokinesis-block micronucleus cytome assay (MN-assay) and the alkaline single cell gel electorphoresis assay (comet assay). We demonstrate the interference of ENM agglomerates with the read-out of both assays and discuss possibilities how to acquire relevant genotoxicity data.

  15. A novel comprehensive evaluation platform to assess nanoparticle toxicity in vitro

    International Nuclear Information System (INIS)

    Hirsch, C; Kaiser, J-P; Wessling, F; Fischer, K; Roesslein, M; Wick, P; Krug, H F

    2011-01-01

    The amount of engineered nanomaterials (ENM) is constantly increasing. Their unique properties, compared to their bulk counterparts, render them suitable for various applications in many areas of life. Hence, nanomaterials appear in a variety of different consumer products leading to the exposure of human beings and the environment during their lifecycle. Even though results on biological effects of ENM are available, harmonized and validated test systems are still missing. One major problem concerning the reliable and robust toxicity testing arises from interactions of ENM with different assay systems. Modifications or damage to DNA can have fatal consequences, such as the formation of tumor cells and hence carcinogenesis. Therefore we focused on the re-evaluation of two genotoxicity assays concerning their nanomaterial compatibility; namely the cytokinesis-block micronucleus cytome assay (MN-assay) and the alkaline single cell gel electorphoresis assay (comet assay). We demonstrate the interference of ENM agglomerates with the read-out of both assays and discuss possibilities how to acquire relevant genotoxicity data.

  16. Effects of electromagnetic fields induced from the visual display terminal on the micronucleus frequencies in tradescantia

    International Nuclear Information System (INIS)

    Shin, Hae Shik; Kim, Jin Kyu; Lee, Jin Hong

    2002-01-01

    Humans are exposed daily to electromagnetic fields (EMFs) originating from a variety of devices and VDT (Visual Display Terminal) workstations. This research was designed to examine the biological effects of electromagnetic fields from VDT using the Tradescantia- micronuclesus (Trad-MCN) bioassay. Tradescantia BNL 4430 clone was used to evaluate the influence of EMFs radiated from the VDT workstation. Trad-MCN assay is a cytogenetic test based on the formation of micronuclei that result from chromosome breakage in the meiotic pollen mother cells. No study has established unequivocally a causal relationship between EMFs and animals or plants. Fresh cuttings bearing young flower buds were exposed for 24hours in front of the VDT workstation. The cuttings were placed at 30, 50, 70, and 90cm distances from the workstations. The micronucleus were scored under a light microscope (400 x magnification). Three hundreds of tetrads were scored from each of the slides in every the experimental group. The frequencies expressed in terms of MCN / 100 tetrads. Trad-MCN frequencies were 8.93 ± 0.32, 11.2 ± 0.50, 7.67 ± 0.61, and 6.22 ± 1.78/ 100 tetrads at 30, 50, 70, and 90cm, respectively. In conclusion, EMFs from VDT give rise to damage the chromosome this plant. In addition, The results of the study indicate that Trad-MCN assay can detect chromosome damage due to EMFs from the electrical device workstation. In conclusion, the Trad-MCN assay is sensitive, reproducible, easy to perform, well standardized, inexpensive and undemanding in equipment

  17. Comparative Study of Wheatley’s Trichrome Stain and In-vitro Culture against PCR Assay for the Diagnosis of Blastocystis sp. in Stool Samples

    Directory of Open Access Journals (Sweden)

    Nabilah Amelia MOHAMMAD

    2018-03-01

    Full Text Available Background: This study evaluated the performance of routine permanent stain and cultivation method in comparison with polymerase chain reaction assay as the reference technique to detect Blastocystis sp.Methods: A cross-sectional study was conducted among aboriginal populations that reside in Pahang, Peninsular Malaysia in Feb to Mar 2015. A total of 359 stool samples were examined using Wheatley’s trichrome stain, in-vitro cultivation in Jones’ medium and PCR assay. Positive amplicons were subjected to sequencing and phylogenetic analysis.Results: Fifty-six (15.6% samples were detected positive with Blastocystis sp. by Wheatley’s trichrome stain and 73 (20.3% by in-vitro culture, while PCR assay detected 71 (19.8% positive samples. Detection rate of Blastocystis sp. was highest in combination of microscopic techniques (27.9%. The sensitivity and specificity of Wheatley’s trichrome staining and in-vitro culture techniques compared to PCR assay were 49.3% (95% CI: 37.2-61.4 and 92.7% (95% CI: 89.1-95.4 and 39.4% (95% CI: 28.0-51.8 and 84.4% (95% CI: 79.7-88.4, respectively. However, the sensitivity [60.6% (95% CI: 48.3-71.9] of the method increased when both microscopic techniques were performed together. False negative results produced by microscopic techniques were associated with subtype 3. The agreement between Wheatley’s trichrome stain, in-vitro culture and combination of microscopic techniques with PCR assay were statistically significant by Kappa statistics (Wheatley’s trichrome stain: K = 0.456, P<0.001; in-vitro culture: K = 0.236, P<0.001 and combination techniques: K = 0.353, P<0.001.Conclusion: The combination of microscopic technique is highly recommended to be used as a screening method for the diagnosis of Blastocystis infection either for clinical or epidemiological study to ensure better and accurate diagnosis.

  18. In vitro antioxidant assay of selected aqueous plant extracts and their polyherbal formulation

    Directory of Open Access Journals (Sweden)

    Ganga Raju M.

    2015-04-01

    Full Text Available To support the use of selected plant extracts in Ayurveda, naturopathy, the antioxidant potential of the aqueous extract of Vincarosea (VR, Gymnemasylvestre (GS, Tinosporacordifolia (TC and Emblicaofficinalis (EO and their mixture (PHF of Indian origin was investigated for in vitro antioxidant activity by using in vitro models like superoxide, hydroxyl radical scavenging activity and lipid peroxide inhibition assay. The results were compared with standard (ascorbic acid, a known antioxidant. The various phytoconstituents identified in the above selected plants extracts were poly phenols, flavonoids, terpenoids, tannins, alkaloids. The terpenoids were reported to protect lipids, blood and body fluids against the attack of free radicals, some types of reactive oxygen, hydroxylic groups, peroxides and superoxide radicals. The presence of these phytoconstituents in selected plants might be responsible for antioxidant activity with that of known antioxidant ascorbic acid.

  19. Neoplastic transformation of hamster embryo cells irradiated in utero and assayed in vitro

    International Nuclear Information System (INIS)

    Borek, C.; Pain, C.; Mason, H.

    1977-01-01

    It is stated that induction of neoplastic transformation in vitro by x-rays and neutrons has been reported, and the authors had previously found that transformation by x-rays could be detected at doses as low as 1 R and the rate of transformation increased with dose, reaching a peak of 1% between 150 and 300 R. This frequency of neoplastic transformation in vitro is much higher than the frequency of radiation induced tumors observed after exposing animals to similar doses of radiation. Studies are here reported showing that malignant transformed cells can be obtained from embryos irradiated in utero and assayed in vitro, and that the frequency of transformation is at least tenfold lower than when the irradiations are performed in vitro, and thus closer to the incidence in animals. Hamster embryo cells were used for the studies. Questions that arise are as follows: does the host mediate in modulating transformation by radiation; is there a repair of transforming events before they can be expressed; and how significant is the state of cells during irradiation in determining the rate of transformation. It is known from in vitro studies that cell replication is required for fixation of the transformation. With the in vitro technique cells are seeded as single cells with ample opportunity to divide. In addition they are not in contact with one another, and constitute a mixture of cell types from many tissues. In utero the situation is quite different; the embryonic cells are irradiated as tissues where there is cell to cell contact in tissue-specific arrangements, and where the rate of cell replication varies with the tissue. It remains to be seen which of these factors, if any, is responsible for the lowered yield of transformed cells characteristic of in utero as opposed to in vitro irradiation. (U.K.)

  20. Study on ionizing radiation to the workers' lymphocyte micronucleus rate and chromosome aberrations

    International Nuclear Information System (INIS)

    Li Jianhua; Wang Linchao; He Wei

    2007-01-01

    Objective: To study lymphocyte genetic material of an iron and steel enterprise workers exposed to the ionizing radiation, find out measures to protect their health and reduce ionizing radiation occupation harm. Methods: 342 workers were choseh as the exposed group who worked in an iron and steel enterprise in the beam installment operation, to examine their circumference blood lymphocyte micronucleus rate and the chromosome aberrations, simultaneously select 280 chefs as the control group, The irradiation dosage was determined and statistical analysis was carded out wich the consideration of their length of work and differences in work post. Results: Exposed group: the micronucleus rate masculine gender (MNR), 4 people, the masculine gender pick out rate is 12.87%. The chromosome aberration factor masculine gender (CAF), 12 people, the masculine rate is 3.51%. Control group: MNR 3 people, the asculine gender pick out rate is 1.07%; CAF 2 people, masculine gender rate is 0.72%. Comparing the two groups, every item has the significant difference. Workers in is the exposed group workers have the average exposure dose of 6.73mSv/a, MNR,CAF are illuminated to the dosage have a positive line correlation. They become increased as the job lenght prolongs. The nucleon name, the material calculation and the medical X-radial are responsible for the highest ratio. Conclusion: In iron and steel enterprises, long-time ionizing radiation can cause the workers' circumference blood lymphocyte micronucleus rate and the chromosome aberrations obvious to rise. The beam protection measures strengthened so as to reduce the harms to workers. (authors)

  1. Application of the micronucleus test and comet assay in Trachemys callirostris erythrocytes as a model for in situ genotoxic monitoring.

    Science.gov (United States)

    Zapata, Lina M; Bock, Brian C; Orozco, Luz Yaneth; Palacio, Jaime A

    2016-05-01

    Trachemys callirostris is a turtle species endemic to northern South America. In northern Colombia it occurs in the middle and lower Magdalena River drainage and its principal tributaries (lower Cauca and San Jorge rivers) and in other minor drainages such as the lower Sinú River. In recent years, industrial, agricultural, and mining activities have altered natural habitats in Colombia where this species occurs, and many of the pollutants released there are known to induce genetic alterations in wildlife species. The micronucleus test and comet assay are two of the most widely used methods to characterize DNA damage induced by physical and chemical agents in wildlife species, but have not been employed previously for genotoxic evaluations in T. callirostris. The goal of this study was to optimize these genotoxic biomarkers for T. callirostris erythrocytes in order to establish levels of DNA damage in this species and thereby evaluate its potential as a sentinel species for monitoring genotoxic effects in freshwater environments in northern Colombia. Both genotoxic techniques were applied on peripheral blood erythrocytes from 20 captive-reared T. callirostris individuals as a negative control, as well as from samples obtained from 49 individuals collected in Magangué (Magdalena River drainage) and 24 individuals collected in Lorica (Sinú River drainage) in northern Colombia. Negative control individuals exhibited a baseline frequency of micronuclei of 0.78±0.58 and baseline values for comet tail length and tail moment of 3.34±0.24µm and 10.70±5.5, respectively. In contrast, samples from both field sites exhibited significantly greater evidence of genotoxic effects for both tests. The mean MN frequencies in the samples from Magangué and Lorica were 8.04±7.08 and 12.19±12.94, respectively. The mean tail length for samples from Magangué and Lorica were 5.78±3.18 and 15.46±7.39, respectively. Finally, the mean tail moment for samples from Magangué and

  2. In Vitro and In Vivo Genotoxicity Assessment of Aristolochia manshuriensis Kom.

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2012-01-01

    Full Text Available Arisolochiae species plants containing aristolochic acids I and II (AA I and AA II are well known to cause aristolochic acid nephropathy (AAN. Recently, there are various approaches to use AAs-containing herbs after the removal of their toxic factors. However, there is little information about genotoxicity of Arisolochiae manshuriensis Kom. (AMK per se. To obtain safety information for AMK, its genotoxicity was evaluated in accordance with OECD guideline. To evaluate genotoxicity of AMK, we tested bacterial reverse mutation assay, chromosomal aberration test, and micronucleus test. Here, we also determined the amounts of AA I and II in AMK (2.85 ± 0.08 and 0.50 ± 0.02 mg/g extract, resp.. In bacterial reverse mutation assay, AMK dose-dependently increased revertant colony numbers in TA98, TA100 and TA1537 regardless of metabolic activation. AMK increased the incidence of chromosomal aberration in Chinese hamster ovary-K1 cells, but there was no statistically significant difference. The incidences of micronucleus in bone marrow erythrocyte were significantly increased in mice after oral administration of AMK (5000 mg/kg, comparing with those of vehicle group (P<0.05. The results of three standard tests suggest that the genotoxicity of AMK is directly related to the AAs contents in AMK.

  3. Health assessment of gasoline and fuel oxygenate vapors: micronucleus and sister chromatid exchange evaluations.

    Science.gov (United States)

    Schreiner, Ceinwen A; Hoffman, Gary M; Gudi, Ramadevi; Clark, Charles R

    2014-11-01

    Micronucleus and sister chromatid exchange (SCE) tests were performed for vapor condensate of baseline gasoline (BGVC), or gasoline with oxygenates, methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl alcohol (TBA), or ethanol (G/EtOH). Sprague Dawley rats (the same 5/sex/group for both endpoints) were exposed to 0, 2000, 10,000, or 20,000mg/m(3) of each condensate, 6h/day, 5days/week over 4weeks. Positive controls (5/sex/test) were given cyclophosphamide IP, 24h prior to sacrifice at 5mg/kg (SCE test) and 40mg/kg (micronucleus test). Blood was collected from the abdominal aorta for the SCE test and femurs removed for the micronucleus test. Blood cell cultures were treated with 5μg/ml bromodeoxyuridine (BrdU) for SCE evaluation. No significant increases in micronucleated immature erythrocytes were observed for any test material. Statistically significant increases in SCE were observed in rats given BGVC alone or in female rats given G/MTBE. G/TAME induced increased SCE in both sexes at the highest dose only. Although DNA perturbation was observed for several samples, DNA damage was not expressed as increased micronuclei in bone marrow cells. Inclusion of oxygenates in gasoline did not increase the effects of gasoline alone or produce a cytogenetic hazard. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    Science.gov (United States)

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  5. A liquid chromatography/tandem mass spectrometry assay for the analysis of atomoxetine in human plasma and in vitro cellular samples

    Science.gov (United States)

    Appel, David I.; Brinda, Bryan; Markowitz, John S.; Newcorn, Jeffrey H.; Zhu, Hao-Jie

    2012-01-01

    A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography- tandem mass spectrometry (LC-MS/MS) was developed. This assay represents the first LC-MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3-atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/ml and 10 nM for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3 ng/ml to 900 ng/ml and 10 nM to 10 μM for human plasma and cellular samples, respectively (r2 > 0.999). The intra- and inter-day assay accuracy and precision were evaluated using quality control samples at 3 different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect, and recovery were also successfully demonstrated. The present assay is superior to previously published LC-MS and LC-MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. PMID:22275222

  6. Two simple cleanup methods combined with LC-MS/MS for quantification of steroid hormones in in vivo and in vitro assays

    DEFF Research Database (Denmark)

    Weisser, Johan Juhl; Hansen, Cecilie Hurup; Poulsen, Rikke

    2016-01-01

    Measuring both progestagens, androgens, corticosteroids as well as estrogens with a single method makes it possible to investigate the effects of endocrine-disrupting chemicals (EDCs) on the main pathways in the mammalian steroidogenesis. This paper presents two simple methods for the determination...... of the major steroid hormones in biological matrixes using liquid chromatography tandem mass spectrometry (LC-MS(2)). A novel method was developed for the determination of 14 steroids in the H295R in vitro assay without the need for solid phase extraction (SPE) purification prior to LC-MS(2) analysis....... The in vitro assay was validated by exposing H295R cells to prochloraz for inhibiting steroid hormone secretion and by exposing cells to forskolin for inducing steroid hormone secretion. The developed method fulfills the recommendations for the H295R assay suggested by the OECD. Furthermore, a simple off...

  7. No evidence of chromosome damage in children and adolescents with differentiated thyroid carcinoma after receiving {sup 131}I radiometabolic therapy, as evaluated by micronucleus assay and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Giovanni; Fiore, Lisa; Massart, Francesco; Saggese, Giuseppe [Azienda Ospedaliero-Universitaria Pisana, Department of Pediatrics, Unit of Pediatric Endocrinology and Diabetes, Pisa (Italy); Boni, Giuseppe; Lazzeri, Patrizia; Mariani, Giuliano [Azienda Ospedaliero-Universitaria Pisana, Unit of Nuclear Medicine, Pisa (Italy); Fabiani, Barbara; Verola, Carmela; Scarpato, Roberto [University of Pisa, Department of Biology, Unit of Genetics, Mutagenesis and Environmental Epidemiology, Pisa (Italy); Traino, Claudio [Azienda Ospedaliero-Universitaria Pisana, Health Physics Service, Pisa (Italy)

    2008-11-15

    As {sup 131}I therapy, used to achieve ablation of thyroid gland remnant, can cause chromosome damage in cultured peripheral lymphocytes especially, we investigated whether administration of radioiodine may induce early genome damage in peripheral T lymphocytes of adolescents with differentiated thyroid carcinoma (DTC). We studied 11 patients, aged 14.8 {+-} 3.1 years, who assumed {sup 131}I (range: 1.11-4.44 GBq) to ablate thyroid remnant. A blood sample for micronucleus assay and for evaluating expression of some genes involved in the DNA repair or the apoptosis pathways was obtained from each patient 1 h before (T{sub 0}) and 24 (T{sub 1}) and 48 h (T{sub 2}) post-radioiodine administration. Compared to T{sub 0}, we did not find any difference in the number of micronucleated cells at both T{sub 1} and T{sub 2} in any subject. Nine out of 11 patients had altered expression levels in a majority of the DNA repair and apoptosis genes at T{sub 1}, which decreased at T{sub 2}. We demonstrated for the first time that peripheral cells of DTC children and adolescents who received {sup 131}I at a mean dosage of 3.50 {+-} 0.37 GBq did not show chromosome damage within 48 h from the end of radiometabolic therapy. This may be due to a prompt activation of the cell machinery that maintains the integrity of the genome to prevent harmful double-strand breaks from progressing to chromosome mutations, either by repairing the lesions or by eliminating the most seriously damaged cells via apoptosis. (orig.)

  8. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    Science.gov (United States)

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  9. Development in Assay Methods for in Vitro Antimalarial Drug Efficacy Testing: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Shweta Sinha

    2017-10-01

    Full Text Available The emergence and spread of drug resistance are the major challenges in malaria eradication mission. Besides various strategies laid down by World Health Organization, such as vector management, source reduction, early case detection, prompt treatment, and development of new diagnostics and vaccines, nevertheless the need for new and efficacious drugs against malaria has become a critical priority on the global malaria research agenda. At several screening stages, millions of compounds are screened (1,000–2,000,000 compounds per screening campaign, before pre-clinical trials to select optimum lead. Carrying out in vitro screening of antimalarials is very difficult as different assay methods are subject to numerous sources of variability across different laboratories around the globe. Despite this, in vitro screening is an essential part of antimalarial drug development as it enables to resource various confounding factors such as host immune response and drug–drug interaction. Therefore, in this article, we try to illustrate the basic necessity behind in vitro study and how new methods are developed and subsequently adopted for high-throughput antimalarial drug screening and its application in achieving the next level of in vitro screening based on the current approaches (such as stem cells.

  10. Toxicological Evaluation of Low Molecular Weight Fucoidan in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2016-06-01

    Full Text Available For a long time, fucoidan has been well known for its pharmacological activities, and recently low molecular weight fucoidan (LMF has been used in food supplements and pharmaceutical products. In the present study, LMF was extracted from Laminaria japonica by enzyme hydrolysis. The toxicity of LMF in mouse and rat models was determined by many methods, such as total arsenic content, bacterial reverse mutation assay, chromosome aberration assay, and in vivo micronucleus assay. The present findings showed that LMF at 5000 μg/mL exhibited no mutagenicity. It also produced no formatting disruption of red blood cells in vivo. At 2000 mg/kg BW/day there were no toxicological indications. LMF is expected to be used as a safe food supplement.

  11. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  12. In vivo and in vitro binding assay of 153Sm-EDTMP

    International Nuclear Information System (INIS)

    Chen Daming; Wang Yuqing; Jin Xiaohai; Fan Hongqiang; Bai Hongsheng; Jia Bin; Zhang Jingming

    1999-01-01

    With the waters ultra hydrogel TM 120 μm hplc column (7.7 mm x 300 mm), several experiments have been finished, including the in vitro binding assay of 153 Sm-EDTMP, 153 SmCl 3 with the Cys, BSA, mouse plasma; HPLC analysis of the urine and the extracting solution of liver homogenate after having injected the 153 Sm-EDTMP and 153 SmCl 3 2h; HPLC analysis of the production ( 153 Sm-EDTMP) radiation self-decomposition with large dose. For the HPLC analysis, the condition is the mobile phase of 0.85 mol/mL PBS (pH7.5), flow rate of 0.5 mL/min, sampling of 15 μL. The results are following: (1) The 153 SmCl 3 not only is able to bind with the mouse plasma in vitro, but also is able to be absorbed by liver in vivo; (2) 153 Sm-EDTMP is not bind with the mouse plasma, the Cys and BSA in vitro and vivo; 153 Sm-EDTMP is not found in the extracted solution of liver homogenate at n(EDTMP): n(Sm) ≥ 5:1; 153 Sm-EDTMP is not decomposed in the urine, 1 53 Sm-EDTMP is stable in vivo; (3) 153 Sm-EDTMP radiation self-decomposition is not detected with large dose in the term of validity (6 d), but two small degradation peaks have been found in the production solution after 60 d, the radiochemistry purity of production is always great than 98% during the period

  13. 78 FR 24425 - Assay Migration Studies for In Vitro Diagnostic Devices; Guidance for Industry and Food and Drug...

    Science.gov (United States)

    2013-04-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2008-D-0642] Assay Migration Studies for In Vitro Diagnostic Devices; Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  14. RNA biology in a test tube--an overview of in vitro systems/assays.

    Science.gov (United States)

    Roca, Xavier; Karginov, Fedor V

    2012-01-01

    In vitro systems have provided a wealth of information in the field of RNA biology, as they constitute a superior and sometimes the unique approach to address many important questions. Such cell-free methods can be sorted by the degree of complexity of the preparation of enzymatic and/or regulatory activity. Progress in the study of pre-mRNA processing has largely relied on traditional in vitro methods, as these reactions have been recapitulated in cell-free systems. The pre-mRNA capping, editing, and cleavage/polyadenylation reactions have even been reconstituted using purified components, and the enzymes responsible for catalysis have been characterized by such techniques. In vitro splicing using nuclear or cytoplasmic extracts has yielded clues on spliceosome assembly, kinetics, and mechanisms of splicing and has been essential to elucidate the function of splicing factors. Coupled systems have been important to functionally connect distinct processes, like transcription and splicing. Extract preparation has also been adapted to cells from a variety of tissues and species, revealing general versus species-specific mechanisms. Cell-free assays have also been applied to newly discovered pathways such as those involving small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). The first two pathways have been well characterized largely by in vitro methods, which need to be developed for piRNAs. Finally, new techniques, such as single-molecule studies, are continuously being established, providing new and important insights into the field. Thus, in vitro approaches have been, are, and will continue being at the forefront of RNA research. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Evaluation of genetic alteration induced by radon gas using the micronucleus test (Tradescantia sp. clone KU-20)

    International Nuclear Information System (INIS)

    Bruschi, Armando L.; Azevedo, Heliana de; Macacini, Jose F.; Roque, Claudio V.

    2011-01-01

    The first observations over the existence of radon gas (Rn), initially known as 'thorium emanation', were carried out between the end of 19 th and beginning of 20 th centuries. A result of uranium-238 (U 238 ) radioactive decay, radon is a tasteless, odorless and colorless gas under room temperature, with a 3.825-day half life and particle α emission in its decay, and as final product of its disintegration, the stable lead-206 isotope (Pb 206 ). Being it is the gas with the highest density known, closed and poor ventilated environments are favorable to its accumulation, with its inhalation being the highest health risk. The use of vegetal bioindicators has shown to be excellent on the monitoring of air quality and on mutagenic potential of various pollutants contained in the atmosphere. Within this context, the objective of this study was to evaluate the micronucleus test application potential utilizing the Tradescantia sp. clone KU-20, in order to evaluate genetic alterations induced by radon gas. Stems of Tradescantia sp. clone KU-20, previously immerse in Hoagland solution, were introduced in a radon detection equipment's calibration chamber (Alphaguard), containing radium salt. Afterwards, the accommodated stems were exposed to radon gas (the average radon concentration was 7.639 KBq/m3) for 24 hours. The results demonstrated an increase on micronucleus formation (39.23 + 2.143 MCN/100 tetrads) in stems exposed in relation to the negative control (18.00 + 1.396 MCN/100 tetrads). The difference between the values indicated a significant increase on micronucleus frequency in the inflorescences subjected to radon gas. The presented results demonstrated the micronucleus test application potential using Tradescantia clone KU-20 to evaluate genetic effects induced by radon gas. (author)

  16. In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage

    International Nuclear Information System (INIS)

    Vandenbulcke, Katia; Lahorte, Christophe; Slegers, Guido; De Vos, Filip; Dierckx, Rudi A.; Offner, Fritz; Philippe, Jan; Apostolidis, Christos; Molinet, Roger; Nikula, Tuomo K.; Bacher, Klaus; De Gelder, Virginie; Vral, Anne; Thierens, Hubert

    2003-01-01

    External source radiotherapy and beta radioimmunotherapy (RIT) are effective treatments for lymphoid malignancies. The development of RIT with alpha emitters is attractive because of the high linear energy transfer (LET) and short path length, allowing higher tumour cell kill and lower toxicity to healthy tissues. We assessed the relative biological efficacy (RBE) of alpha RIT (in vitro) compared to external gamma irradiation with respect to induction of apoptosis in B chronic lymphocytic leukaemia (B-CLL) and induction of chromosomal damage in healthy donor B and T lymphocytes. The latter was measured by a micronucleus assay. 213 Bi was eluted from a 225 Ac generator and conjugated to CD20 antibody (rituximab) with CHX-A''-DTPA as a chelator. B-CLL cells from five patients were cultured for 24 h in RPMI/10% FCS while exposed to 213 Bi conjugated to CD20 antibody or after external 60 Co gamma irradiation. Binding assays were performed in samples of all patients to calculate the total absorbed dose. Apoptosis was scored by flow cytometric analyses of the cells stained with annexin V-FITC and 7-AAD. Apoptosis was expressed as % excess over spontaneous apoptosis in control. Full dose range experiments demonstrated 213 Bi-conjugated CD20 antibody to be more effective than equivalent doses of external gamma irradiation, but showed that similar plateau values were reached at 10 Gy. The RBE for induction of apoptosis in B-CLL was 2 between 1.5 and 7 Gy. The micronucleus yield in lymphocytes of healthy volunteers was measured to assess the late toxicity caused by induction of chromosomal instability. While gamma radiation induced a steady increase in micronucleus yields in B and T cells, the damage induced by 213 Bi was more dramatic, with RBE ranging from 5 to 2 between 0.1 Gy and 2 Gy respectively. In contrast to gamma irradiation, 213 Bi inhibited mitogen-stimulated mitosis almost completely at 2 Gy. In conclusion, high-LET targeted alpha particle exposure killed B

  17. Examination of Mutagenic Effects of GAL-57 Herbicide (Bentazone+Dicamba Using Mouse Micronucleus Test

    Directory of Open Access Journals (Sweden)

    Vesela Karan

    2007-01-01

    Full Text Available A micronucleus test was run to investigate mutagenic potential of the herbicide GAL-57, a formulated mixture of bentazone and dicamba.The test was applied to mice of both sexes (strain: CRL: NMRI BR and the herbicide (product was administered by gavage at 2000 mg/kg rate, twice within 24 hs. Cyclophosphamide (positive control was administered at 60 mg/kg, while distilled water as a solvent was negative control. The animals were sacrificed 24 hs after second treatment, their bone marrow cells isolated from femur, and effects evaluated.The data acquired showed that repeated treatment of mice with GAL-57 caused neither biological nor significant statistical increase in the number of micronuclei in treated animals. At the same time, the number of micronucleated polychromatic erythrocytes in the bone marrow of animals treated with cyclophosphamide (positive control showed a significant statistical increase. The results suggest that the herbicide product tested did not show any mutagenic activity under the conditions of mouse micronucleus test.

  18. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    International Nuclear Information System (INIS)

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    2009-01-01

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidative damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure

  19. Antioxidant Activity of Seaweed Extracts: In Vitro Assays, Evaluation in 5 % Fish Oil-in-Water Emulsions and Characterization

    DEFF Research Database (Denmark)

    Farvin Habebullah, Sabeena; Jacobsen, Charlotte

    2015-01-01

    In this study the antioxidant activity of absolute ethanol, 50 % ethanol and water extracts of two species of seaweeds, namely Fucus serratus and Polysiphonia fucoides, were evaluated both in in vitro assays and in 5 % fish oil-in-water (o/w) emulsions. The 50 % ethanolic extracts of P. fucoides...

  20. Assessment of the radioprotective effects of amifostine and melatonin on human lymphocytes irradiated with gamma-rays in vitro

    International Nuclear Information System (INIS)

    Kopjar, N.; Miocic, S.; Ramic, S.; Milic, M.; Viculin, T.

    2005-01-01

    Radioprotective effects of amifostine and melatonin on human peripheral blood irradiated with g-rays were investigated using the micronucleus (MN) assay and the analysis of sister chromatid exchanges (SCE). Duplicate blood samples were pre-treated with amifostine (7.7 mM), melatonin (2 mM) and their combination for 30 minutes. Negative controls were also included. After treatment with radioprotectors, one blood sample from each experimental group was exposed to g-rays from a 6 0C o source. The radiation dose absorbed was 2 Gy. Pre-treated irradiated blood samples showed a decrease in the total number of MN and in the number of cells with more than one MN. Moreover, they also showed significantly lower mean SCE values. Our results indicate that amifostine, melatonin and their combination in vitro have radioprotective effects on g-irradiated human peripheral blood lymphocytes, with no significant genotoxicity. Therefore, it may be reasonable to use them in combination, adjusting the doses of amifostine to achieve the best radioprotective effect with as few side effects as possible. Before employment, this combination should be extensively tested in vitro and in vivo, using the same and other biomarkers for different radiation dose and concentration ranges of both radioprotectors.(author)

  1. In vitro Cell Viability by CellProfiler® Software as Equivalent to MTT Assay.

    Science.gov (United States)

    Gasparini, Luciana S; Macedo, Nayana D; Pimentel, Elisângela F; Fronza, Marcio; Junior, Valdemar L; Borges, Warley S; Cole, Eduardo R; Andrade, Tadeu U; Endringer, Denise C; Lenz, Dominik

    2017-07-01

    This study evaluated in vitro cell viability by the colorimetric MTT stands for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay compared to image analysis by CellProfiler ® software. Hepatoma (Hepa-1c1c7) and fibroblast (L929) cells were exposed to isolated substances, camptothecin, lycorine, tazettine, albomaculine, 3-epimacronine, trispheridine, galanthine and Padina gymnospora , Sargassum sp. methanolic extract, and Habranthus itaobinus Ravenna ethyl acetate in different concentrations. After MTT assay, cells were stained with Panotic dye kit. Cell images were obtained with an inverted microscope equipped with a digital camera. The images were analyzed by CellProfiler ® . No cytotoxicity at the highest concentration analyzed for 3-epimacronine, albomaculine, galanthine, trispheridine, P. gymnospora extract and Sargassum sp. extract where detected. Tazettine offered cytotoxicity only against the Hepa1c1c7 cell line. Lycorine, camptothecin, and H. itaobinus extract exhibited cytotoxic effects in both cell lines. The viability methods tested were correlated demonstrated by Bland-Atman test with normal distribution with mean difference between the two methods close to zero, bias value 3.0263. The error was within the limits of the confidence intervals and these values had a narrow difference. The correlation between the two methods was demonstrated by the linear regression plotted as R 2 . CellProfiler ® image analysis presented similar results to the MTT assay in the identification of viable cells, and image analysis may assist part of biological analysis procedures. The presented methodology is inexpensive and reproducible. In vitro cell viability assessment with MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay may be replaced by image analysis by CellProfiler ® . The viability methods

  2. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Science.gov (United States)

    Luqman, Suaib; Srivastava, Suchita; Kumar, Ritesh; Maurya, Anil Kumar; Chanda, Debabrata

    2012-01-01

    We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance. PMID:22216055

  3. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Suaib Luqman

    2012-01-01

    Full Text Available We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance.

  4. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    International Nuclear Information System (INIS)

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-01-01

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  5. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil); Seabra, S.H. [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Vallim, D.C. [Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Americo, M.A.; Fracallanza, S.E.L. [Laboratorio de Bacteriologia Medica, IMPPG, UFRJ, Rio de Janeiro (Brazil); Vommaro, R.C. [Laboratorio de Ultra-estrutura Celular Hertha Meyer, IBCCF, UFRJ (Brazil); Domingues, R.M.C.P. [Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil)

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  6. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  7. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    Science.gov (United States)

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  8. Cyquant cell proliferation assay as a fluorescence-based method for in vitro screening of antimalarial activity.

    Science.gov (United States)

    Sriwilaijaroen, Nongluk; Kelly, Jane Xu; Riscoe, Michael; Wilairat, Prapon

    2004-12-01

    The appearance of drug resistant parasites and the absence of an effective vaccine have resulted in the need for new effective antimalarial drugs. Consequently, a convenient method for in vitro screening of large numbers of antimalarial drug candidates has become apparent. The CyQUANT cell proliferation assay is a highly sensitive fluorescence-based method for quantitation of cell number by measuring the strong fluorescence produced when green GR dye binds to nucleic acids. We have applied the CyQUANT assay method to evaluate the growth of Plasmodium falciparum D6 strain in culture. The GR-nucleic acid fluorescence linearly correlated with percent parasitemia at both 0.75 or 1 percent hematocrit with the same correlation coefficient of r2 = 0.99. The sensitivity of P. falciparum D6 strain to chloroquine and to 3,6-bis-omega-diethylaminoamyloxyxanthone, a novel antimalarial, determined by the CyQUANT assay were comparable to those obtained by the traditional [3H]-ethanolamine assay: IC50 value of chloroquine was 54 nM and 51 nM by the CyQUANT and [3H]-ethanolamine assay, respectively; IC50 value for 3,6-bis-omega-diethylaminoamyloxyxanthone was 254 nM and 223 nM by the CyQUANT and [3H]-ethanolamine assay, respectively. This procedure requires no radioisotope, uses simple equipment, and is an easy and convenient procedure, with no washing and harvesting steps. Moreover, all procedures can be set up continuously and thus, the CyQUANT assay is suitable in automatic high through-put drug screening of antimalarial drugs.

  9. Determination of Interference During In Vitro Pyrogen Detection: Development and Characterization of a Cell-Based Assay.

    Science.gov (United States)

    Palma, Linda; Rossetti, Francesca; Dominici, Sabrina; Buondelmonte, Costantina; Rocchi, Marco B L; Rizzardi, Gian P; Vallanti, Giuliana; Magnani, Mauro

    Contamination of pharmaceutical products and medical devices with pyrogens such as endotoxins is the most common cause of systemic inflammation and, in worst cases, of septic shock. Thus, quantification of pyrogens is crucial. The limulus amebocyte lysate (LAL)-based assays are the reference tests for in vitro endotoxin detection, in association with the in vivo rabbit pyrogen test (RPT), according to European Pharmacopoeia (EP 2.6.14), and U.S. Pharmacopoeia (USP ). However, several substances interfere with LAL assay, while RPT is not accurate, not quantitative, and raises ethical limits. Biological assays, as monocyte activation tests, have been developed and included in European Pharmacopoeia (EP 7.0; 04/2010:20630) guidelines as an alternative to RPT and proved relevant to the febrile reaction in vivo. Because this reaction is carried out by endogenous mediators under the transcriptional control of nuclear factor-kappaB (NF-kappaB), we sought to determine whether a NF-kappaB reporter-gene assay, based on MonoMac-6 (MM6) cells, could reconcile the basic mechanism of innate immune response with the relevance of monocytoid cell lines to the organism reaction to endotoxins. This article describes both optimization and characterization of the reporter cells-based assay, which overall proved the linearity, accuracy, and precision of the test, and demonstrated the sensitivity of the assay to 0.24 EU/mL endotoxin, close to the pyrogenic threshold in humans. Moreover, the assay was experimentally compared to the LAL test in the evaluation of selected interfering samples. The good performance of the MM6 reporter test demonstrates the suitability of this assay to evaluate interfering or false-positive samples.

  10. Unsaturated compounds induce up-regulation of CD86 on dendritic cells in the in vitro sensitization assay LCSA.

    Science.gov (United States)

    Frohwein, Thomas Armin; Sonnenburg, Anna; Zuberbier, Torsten; Stahlmann, Ralf; Schreiner, Maximilian

    2016-04-01

    Unsaturated compounds are known to cause false-positive reactions in the local lymph node assay (LLNA) but not in the guinea pig maximization test. We have tested a panel of substances (succinic acid, undecylenic acid, 1-octyn-3-ol, fumaric acid, maleic acid, linoleic acid, oleic acid, alpha-linolenic acid, squalene, and arachidonic acid) in the loose-fit coculture-based sensitization assay (LCSA) to evaluate whether unspecific activation of dendritic cells is a confounder for sensitization testing in vitro. Eight out of 10 tested substances caused significant up-regulation of CD86 on dendritic cells cocultured with keratinocytes and would have been classified as sensitizers; only succinic acid was tested negative, and squalene had to be excluded from data analysis due to poor solubility in cell culture medium. Based on human data, only undecylenic acid can be considered a true sensitizer. The true sensitizing potential of 1-octyn-3-ol is uncertain. Fumaric acid and its isomer maleic acid are not known as sensitizers, but their esters are contact allergens. A group of 18- to 20-carbon chain unsaturated fatty acids (linoleic acid, oleic acid, alpha-linolenic acid, and arachidonic acid) elicited the strongest reaction in vitro. This is possibly due to the formation of pro-inflammatory lipid mediators in the cell culture causing nonspecific activation of dendritic cells. In conclusion, both the LLNA and the LCSA seem to provide false-positive results for unsaturated fatty acids. The inclusion of T cells in dendritic cell-based in vitro sensitization assays may help to eliminate false-positive results due to nonspecific dendritic cell activation. This would lead to more accurate prediction of sensitizers, which is paramount for consumer health protection and occupational safety.

  11. In vitro immunomodulation of a whole blood IFN-γ release assay enhances T cell responses in subjects with latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Rajiv L Gaur

    Full Text Available Activation of innate immunity via pathogen recognition receptors (PRR modulates adaptive immune responses. PRR ligands are being exploited as vaccine adjuvants and as therapeutics, but their utility in diagnostics has not been explored. Interferon-gamma (IFN-γ release assays (IGRAs are functional T cell assays used to diagnose latent tuberculosis infection (LTBI; however, novel approaches are needed to improve their sensitivity.In vitro immunomodulation of a whole blood IGRA (QuantiFERON®-TB GOLD In-Tube with Toll-like receptor agonists poly(I:C, LPS, and imiquimod was performed on blood from subjects with LTBI and negative controls.In vitro immunomodulation significantly enhanced the response of T cells stimulated with M. tuberculosis antigens from subjects with LTBI but not from uninfected controls. Immunomodulation of IGRA revealed T cell responses in subjects with LTBI whose T cells otherwise do not respond to in vitro stimulation with antigens alone. Similar to their in vivo functions, addition of poly(I:C and LPS to whole blood induced secretion of inflammatory cytokines and IFN-α and enhanced the surface expression of antigen presenting and costimulatory molecules on antigen presenting cells.In vitro immunomodulation of whole blood IGRA may be an effective strategy for enhancing the sensitivity of T cells for diagnosis of LTBI.

  12. In vitro drug sensitivity testing of tumor cells from patients with non-Hodgkin's lymphoma using the fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Nygren, P; Hagberg, H; Glimelius, B; Sundström, C; Kristensen, J; Christiansen, I; Larsson, R

    1994-01-01

    Tumor cell drug sensitivity is an important determinant of chemotherapy response. Its measurement in vitro would aid in therapy individualization and new drug development. The fluorometric microculture cytotoxicity assay (FMCA), based on production by viable cells of fluorescent fluorescein after 3 days of culture, was used for cytotoxic drug sensitivity testing of 73 samples of tumor cells from patients with non-Hodgkin's lymphoma (NHL). The technical success rate was 92%, and FMCA data showed good correlation to the Disc assay. NHL samples were considerably more drug sensitive than were samples from in vivo resistant tumors. There was no obvious difference in drug sensitivity for high- vs. low-grade or untreated vs. previously treated low-grade NHL. For 26 patients, clinical outcome was correlated to in vitro response giving a sensitivity and specificity of 93 and 48%, respectively. Cross-resistance between standard drugs was frequent in vitro. Resistance modulators potentiated the effect of vincristine and doxorubicin in 10-29% of the samples, most frequently from previously treated patients. The FMCA seems to report clinically relevant drug sensitivity data for NHL, and thus it could serve as a tool for optimization of chemotherapy in the future.

  13. FREQUENCY OF CHROMOSOMAL ABERRATIONS AND MICRONUCLEI IN HORSE LYMPHOCYTES FOLLOWING IN VITRO EXPOSURE TO LOW DOSE IONISING RADIATION

    Directory of Open Access Journals (Sweden)

    Dunja Rukavina

    2012-07-01

    Full Text Available Ionising radiation is known to cause chromosomal instability, which is observed as increased frequency of chromosomal aberration and micronuclei. These are listed as reliable criteria in biological dosimetry. Numerous experiments conducted on both animal and plant models demonstrated that increase in radiation dosage is followed by increased mutation frequency, and that mutations occur even at the lowest exposure. We used horse blood in vitro irradiated by low doses of ionizing radiation. Cultivation of peripheral blood lymphocytes and micronucleus test were used as biomarkers of genetic damage. The observed aberrations were recorded and classified in accordance with the International System of Cytogenetic Nomenclature. Micronuclei were identified on the basis of criteria proposed by Fenech et al. (8. Analysis of chromosomal aberration showed increased frequency of aberrations in blood cultures exposed to 0,1 Gy and 0,2 Gy compared to the controls. Microscopic analysis of chromosomal damage in in vitro micronucleus test revealed that the applied radiation dose induced micronuclei while no binucleated cells with micronuclei were found in lymphocytes that were not irradiated. In this paper we analysed the influence of low dose ionising radiation on frequency of chromosomal aberration and micronuclei in horse lymphocytes following in vitro exposure to X-rays (0,1 Gy and 0,2 Gy. Key words: chromosomal aberrations, micronuclei, ionising radiation, horse lymphocytes

  14. Comparación entre dos biomodelos murinos (ratones Balb/c y ratas Sprague Dawley en el ensayo de micronúcleos transplacentarios Comparison between two murine biomodles (Balb/c mice and Sprague Dawley rats in a transplacental micronucleus assay

    Directory of Open Access Journals (Sweden)

    Daniel Francisco Arencibia Arrebola

    2012-03-01

    at 14th, 15th and 16th days of gestation, and 24 h after the last inoculation in mice and 48 h in rats, it proceeded to perform euthanasia in the pregnant animals to obtain the fetal liver samples. Results: the fetuses from Sprague Dawley exhibited smaller cytotoxicity and genotoxicity indexes, and the lowest endogenous micronucleus results. The best results of the cytotoxicity and genotoxicity induction for the high micronucleus formation with cyclophosphamide were found in Sprague Dawley rat fetuses, being more susceptible to the genotoxic damage by this mutagen. The clastogenic transplacental power of cyclophosphamide was confirmed whereas this genotoxicity assay was linked to reproduction toxicology. Conclusions: these results suggest that the Sprague Dawley rats fetuses could be better used as biomodels in this assay when cyclophosphamide is employed as positive control through the way of administration and the studied dosage. It could be similarly used in the evaluation of new antigenotoxic drugs with antigenotoxic effect through transplacental administration

  15. A reassessment of the in vitro RBC haemolysis assay with defibrinated sheep blood for the determination of the ocular irritation potential of cosmetic products: comparison with the in vivo Draize rabbit test.

    Science.gov (United States)

    Alves, Eloísa Nunes; Presgrave, Rosaura de Farias; Presgrave, Octávio Augusto França; Sabagh, Fernanda Peres; de Freitas, João Carlos Borges Rolim; Corrado, Alexandre P

    2008-07-01

    We examined the correlation between results obtained from the in vivo Draize test for ocular irritation and in vitro results obtained from the sheep red blood cell (RBC) haemolytic assay, which assesses haemolysis and protein denaturation in erythrocytes, induced by cosmetic products. We sought to validate the haemolytic assay as a preliminary test for identifying highly-irritative products, and also to evaluate the in vitro test as alternative assay for replacement of the in vivo test. In vitro and in vivo analyses were carried out on 19 cosmetic products, in order to correlate the lesions in the ocular structures with three in vitro parameters: (i) the extent of haemolysis (H50); (ii) the protein denaturation index (DI); and (iii) the H50/DI ratio, which reflects the irritation potential (IP). There was significant correlation between maximum average scores (MAS) and the parameters determined in vitro (r = 0.752-0.764). These results indicate that the RBC assay is a useful and rapid test for use as a screening method to assess the IP of cosmetic products, and for predicting the IP value with a high level of concordance (94.7%). The assay showed high sensitivity and specificity rates of 91.6% and 100%, respectively.

  16. Assessment of in vivo and in vitro genotoxicity of glibenclamide in eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Juliane Rocha de Sant'Anna

    Full Text Available Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 μM and higher concentrations (10 μM, 100 μM, 240 μM and 480 μM was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 μM, 10 μM and 100 μM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 μM and 480 μM concentrations and the cytokinesis block proliferation index between 0.6 μM and 240 μM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 μM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.

  17. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    Science.gov (United States)

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  18. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet

    Science.gov (United States)

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  19. Kinetic assays for determining in vitro APS reductase activity in plants without the use of radioactive substances.

    Science.gov (United States)

    Brychkova, Galina; Yarmolinsky, Dmitry; Sagi, Moshe

    2012-09-01

    Adenosine 5'-phosphosulfate (APS) reductase (APR; EC 1.8.4.9) catalyzes the two-electron reduction of APS to sulfite and AMP, a key step in the sulfate assimilation pathway in higher plants. In spite of the importance of this enzyme, methods currently available for detection of APR activity rely on radioactive labeling and can only be performed in a very few specially equipped laboratories. Here we present two novel kinetic assays for detecting in vitro APR activity that do not require radioactive labeling. In the first assay, APS is used as substrate and reduced glutathione (GSH) as electron donor, while in the second assay APS is replaced by an APS-regenerating system in which ATP sulfurylase catalyzes APS in the reaction medium, which employs sulfate and ATP as substrates. Both kinetic assays rely on fuchsin colorimetric detection of sulfite, the final product of APR activity. Incubation of the desalted protein extract, prior to assay initiation, with tungstate that inhibits the oxidation of sulfite by sulfite oxidase activity, resulted in enhancement of the actual APR activity. The reliability of the two methods was confirmed by assaying leaf extract from Arabidopsis wild-type and APR mutants with impaired or overexpressed APR2 protein, the former lacking APR activity and the latter exhibiting much higher activity than the wild type. The assays were further tested on tomato leaves, which revealed a higher APR activity than Arabidopsis. The proposed APR assays are highly specific, technically simple and readily performed in any laboratory.

  20. Wholesomeness studies on gamma-irradiated smoked fish using short-term mutagenicity assays

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.

    1985-12-01

    The effect of gamma irradiation on the mutagenicity potential of wood-smoked mackerel (Rastrelliger sp.) was investigated. Smoked fish were irradiated with dose of 2.0, 4.0, 6.0 and 8.0 KGy, and tested for mutagenic activity using the Salmonella plate incorporation assay, host-mediated assay, and micronucleus test. The DMSO extract of unirradiated smoked fish was found to be mutagenic, without metabolic activation in Salmonella strains TA 100 and TA 104, both sensitive to base-pair substitution mutations. Strains TA 98 and TA 97 which are sensitive to frameshift mutations showed no mutagenic activity towards the same DMSO extract. The observed response towards the Salmonella strains was not affected by irradiation in the range of radiation doses studied. The presence of protamutagens in the DMSO extract of unirradiated smoked fish was not detected using the host-mediated assay. In another in-vivo test however, the same DMSO extract induced the formation of micronuclei in the bonemarrow cells of mice. Gamma irradiation up to a dose of 8.0 KGy did not affect the observed mutagenicity of wood-smoked fish. (author)

  1. Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays.

    Science.gov (United States)

    Langer, Gernot

    2016-01-01

    assay results in a systematic fashion and a timely manner. This microplate-based assay development strategy should result in the setting up of more robust and reliable test systems that ensure and increase the confidence in the statistical significance of the actual data generated. And, although assay miniaturisation is essential in order to achieve this, most, if not all, cell-based assays can be easily reformatted and adapted to be used in this format in a straightforward manner. This synopsis aims at summarising valuable, general observations made when implementing a diverse set of functional cellular in vitro assays at Bayer Pharma AG without claiming to deeply review all of the literature available in each and every detail. In addition, phenotypic assays (Moffat et al. 2014) or label-free detection methods (Minor 2008) are not discussed. Although this essay tries to cover the most relevant technological developments in the field, it nevertheless may express personal preferences and peculiarities of the author's approach to state-of-the-art cell-based assay development. For additional reviews covering the actual field, see Wunder et al. (2008) and Michelini et al. (2010).

  2. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    Science.gov (United States)

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  3. Study on cell survival, induction of apoptosis and micronucleus formation in SCL-II and RTiV3 cells after exposure to the Auger electron emitter Tc-99m

    International Nuclear Information System (INIS)

    Kadenbach, K.; Kriehuber, R.; Weiss, D.G.

    2003-01-01

    Full text: Cell survival, induction of apoptosis and micronucleus (MN) formation have been investigated in the human squamous cell carcinoma cell line SCL-II and in the rat tracheal cell line RTiV3 after exposure to the Auger electron emitter Tc-99m. Cells were either acutely gamma(Co-60)-irradiated (0.78 Gy/min) or exposed to Tc-99m-Pertechnetate (25-300 MBq/20ml) for 24 h under cell culture conditions and assayed for cell survival (Colony-forming assay), micronucleus formation (Cytochalasin B assay) and the frequency of apoptotic cells (Fluorescence microscopy). Analytical dosimetrical models have been applied to derive the absorbed dose corresponding to the accumulated decays of Tc-99m. Absorbed doses up to 1.3 Gy could be achieved after Tc-99m exposure leading to no significant cell killing in this dose range except at one dose point (0.25 Gy) in SCL-II cells. MN formation was consistently lower when compared to Co-60 irradiated cells and showed a linear dose-response. The apoptotic response in SCL-II cells after Tc-99m exposure was described best by a 3rd order polynomial and increased apoptosis induction could be observed at much lower doses (0.25 Gy) in comparison to the reference radiation (0.8 Gy). The relative biological effectiveness (RBE) has been determined for MN formation and apoptosis induction and was found to be in the range of 0.1- 1.3 for both investigated biological endpoints, depending on which mathematical model for describing the dose-effect curve was used. Up-take experiments revealed an activity concentration ratio cells vs. medium of 1.2 after 16 h up to 24 h of exposure. No increased biological effectiveness of Tc-99m applied as Sodium-Pertechnetate could be observed in the investigated cell lines in comparison to gamma-irradiation. Induction of apoptosis is slightly increased after Tc-99m exposure in SCL-II cells and it has to be further evaluated, if this is due to the emitted Auger-component. A passive up-take mechanism of Tc-99m is

  4. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    E Bianchi

    Full Text Available Some water bodies in the Sinos River Basin (SRB have been suffering the effects of pollution by residential, industrial and agroindustrial wastewater. The presence of cytotoxic and genotoxic compounds could compromise the water quality and the balance of these ecosystems. In this context, the research aimed to evaluate the genotoxicity and cytotoxicity of the water at four sites along the SRB (in the cities of Santo Antônio da Patrulha, Parobé, Campo Bom and Esteio, using bioassays in fish and cell culture. Samples of surface water were collected and evaluated in vitro using the Astyanax jacuhiensis fish species (micronucleus test and comet assay and the Vero lineage of cells (comet assay and cytotoxicity tests, neutral red - NR and tetrazolium MTT. The micronucleus test in fish showed no significant differences between the sampling sites, and neither did the comet assay and the MTT and NR tests in Vero cells. The comet assay showed an increase in genetic damage in the fish exposed to water samples collected in the middle and lower sections of the basin (Parobé, Campo Bom and Esteio when compared to the upper section of the basin (Santo Antônio da Patrulha. The results indicate contamination by genotoxic substances starting in the middle section of the SRB.

  5. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

    Directory of Open Access Journals (Sweden)

    Abuzar Elnager

    2015-01-01

    Full Text Available Background. Caffeic acid phenethyl ester (CAPE has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM. After 3 hours, D-dimer (DD levels and WB clot weights were measured for each concentration. Thromboelastography (TEG parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM. The 50% effective dose (ED50 of CAPE (based on DD was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.

  6. Evaluation of Antioxidant or Prooxidant Properties of Selected Amino Acids Using In Vitro Assays and in Oil-in-Water Emulsions Under Riboflavin Sensitization.

    Science.gov (United States)

    Ka, HyeJung; Yi, BoRa; Kim, Mi-Ja; Lee, JaeHwan

    2016-05-01

    The antioxidant properties of selected amino acids were tested using in vitro assays and oil-in-water (O/W) emulsions under riboflavin (RF) photosensitization. Headspace oxygen content, lipid hydroperoxides, and conjugated dienes were determined for the degree of oxidation. Riboflavin photosensitization was adapted as the oxidation driving force. In vitro assays showed that cysteine had the highest antioxidant properties followed by tryptophan and tyrosine. However, in O/W emulsions under RF photosensitization, tyrosine inhibited lipid oxidation whereas tryptophan acted as a prooxidant. Tryptophan accelerated the rates of oxidation in O/W emulsion without RF. The antioxidant properties of amino acids differed depending on the antioxidant determination methods, oxidation driving forces, and food matrices. © 2016 Institute of Food Technologists®

  7. In vitro safety assessment of the strawberry tree (Arbutus unedo L.) water leaf extract and arbutin in human peripheral blood lymphocytes.

    Science.gov (United States)

    Jurica, K; Brčić Karačonji, I; Mikolić, A; Milojković-Opsenica, D; Benković, V; Kopjar, N

    2018-04-25

    Strawberry tree (Arbutus unedo L.) leaves have long been used in the traditional medicine of the Mediterranean region. One of their most bioactive constituents is the glycoside arbutin, whose presence makes A. unedo suitable as a potential substitute for bearberry [Arctostaphylos uva ursi (L.) Spreng] leaves, an herbal preparation widely used for treating urinary tract infections. The safety and biocompatibility of strawberry tree water leaf extract have not yet been documented well. This study estimated arbutin content in strawberry tree water leaf extract (STE) using high performance liquid chromatography. Furthermore, we performed an in vitro safety assessment of the 24 h exposure to three presumably non-toxic concentrations of standardized STE and arbutin in human peripheral blood lymphocytes using the apoptosis/necrosis assay, the alkaline comet assay, and the cytokinesis-block micronucleus cytome assay. The STE was also tested for total antioxidant capacity and lipid peroxidation. At a concentration corresponding to the maximum allowable daily intake of arbutin, the tested extract was not cytotoxic, had a negligible potential for causing primary DNA damage and even hindered micronuclei formation in lymphocytes. It also showed a valuable antioxidant capacity, and did not exert marked lipid peroxidation. These promising results represent a solid frame for further development of STE-based herbal preparations. Although arbutin generally had a low DNA damaging potential, the slowing down of lymphocyte proliferation observed after 24 h of exposure points to a cytostatic effect, which merits further research.

  8. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  9. Relationship between the radioisotopic footpad assay and other immunological assays in tumor bearing rats

    International Nuclear Information System (INIS)

    Mizushima, Yutaka; Takeichi, Noritoshi; Minami, Akio; Kasai, Masaharu; Itaya, Toshiyuki

    1981-01-01

    KMT-17, a fibrosarcoma induced by 3-methylcholanthrene in a WKA rat, is a sensitive tumor to various kinds of immunological assays and is a suitable model tumor for the study of the immune status in tumor bearing hosts. The antitumor immune response of KMT-17 bearing rats was studied by a radioisotopic footpad assay (FPA) in comparison with other in vivo and in vitro assays. Delayed hypersensitivity to tumor antigens measured by the FPA was observed from the 8th day after transplantation of KMT-17 cells, reached a peak on the 12 - 15th day, and then declined in the late stage on the 17th day. The kinetics of the FPA correlated well with those of an in vivo Winn assay and of an in vitro lymphocyte cytotoxicity assay ( 51 Cr-release assay). The appearance of an antitumor antibody detected by a complement dependent cytotoxicity test also correlated well with the kinetics of the FPA. A growth inhibition assay (GIA) for non-specific cell-mediated immunity also showed similar kinetics to that of the FPA. The delayed hypersensitivity footpad reaction to tumor cell extracts measured by this FPA was tumor-specific. These results suggest that the FPA is a simple and reliable in vivo assay for evaluating antitumor immunity in tumor bearing hosts. (author)

  10. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.

    1995-01-01

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  11. ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY

    Science.gov (United States)

    ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...

  12. The assessment of micronucleus frequency in lymphocytes in the cohort of coal-miners characterized by different polymorphisms of double strand break reparation genes

    Directory of Open Access Journals (Sweden)

    Maxim Yur'yevich Sinitsky

    2015-12-01

    Full Text Available Background: Coal-miners are exposed to a lot of number of harmful factors (chemical agents, ionizing radiation, heavy metals, coal dust etc.. Material and methods: Venous blood samples extracted from 129 coal-miners. Assessment of cytogenetic damage was performed using the cytokinesis-block micronucleus assay (CBMN on peripheral blood lymphocytes. PCR and gel electrophoresis were used to determine polymorphisms in the genes Lig4 (rs1805388 and XRCC4 (rs6869366. Results: We found a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN and protrusions in carriers of the Ile/ Ile genotype of the Lig4 gene Thr9Ile polymorphism in comparison to Thr/Thr and Thr/Ile genotypes. Conclusions: Thr9Ile polymorphism within Lig4 gene can be used as potential molecular genetic markers of increased individual susceptibility to the complex of harmful factors in coal-mining conditions.

  13. ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro

    Directory of Open Access Journals (Sweden)

    Rödelsperger Klaus

    2005-10-01

    Full Text Available Abstract Asbestos is a known carcinogen and co-carcinogen. It is a persisting risk in our daily life due to its use in building material as asbestos-cement powder. The present study done on V79-cells (Chinese hamster lung cells demonstrates the cytotoxic and genotoxic potential of asbestos-cement powder (ACP in comparison with chrysotile asbestos. A co-exposure of chrysotile and ACP was tested using the cell viability test and the micronucleus assay. The kinetochore analysis had been used to analyse the pathway causing such genotoxic effects. Thiobarbituric acid-reactive substances were determined as evidence for the production of reactive oxygen species. Both, asbestos cement as well as chrysotile formed micronuclei and induced loss of cell viability in a concentration- and time- dependent way. Results of TBARS analysis and iron chelator experiments showed induction of free radicals in ACP- and chrysotile exposed cultures. CaSO4 appeared to be a negligible entity in enhancing the toxic potential of ACP. The co-exposure of both, ACP and chrysotile, showed an additive effect in enhancing the toxicity. The overall study suggests that asbestos-cement is cytotoxic as well as genotoxic in vitro. In comparison to chrysotile the magnitude of the toxicity was less, but co-exposure increased the toxicity of both.

  14. In vitro and in vivo genotoxic effects of somatic cell nuclear transfer cloned cattle meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Jung, Yu-Ri; Lee, Jung-Won; Im, Gi-Sun; Seong, Hwan-Hoo; Park, Jin-Ki; Kang, Jong-Koo; Hwang, Seongsoo

    2011-09-01

    Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Micronucleus induction and reproductive death in a human cell line exposed to low-energy argon beam

    International Nuclear Information System (INIS)

    Courdi, A.; Mari, D.; Herault, J.; Chauvel, P.

    1995-01-01

    The aim of this study was to measure the biological efficiency of a low-energy argon beam (E=7.1 MeV/nucleon, LET=1590 keV/μm) on a human melanoma cell line (CAL4) established in our Institute. Two different methods were used: the micronucleus (MN) test and the colony-forming assay. MN are scored in binucleate cells (BNC) and are formed from acentric fragments or whole chromosomes that have not been incorporated into daughter nuclei at mitosis. The colony-forming assay quantifies reproductive death. Parallel experiments were run with cobalt gamma-rays for comparison. After Co irradiation, the MN-free BNC dose-response curve coincided with that of the loss of colony-forming ability, suggesting the potential of the former as a predictive test of cell killing. After Ar irradiation, there was a dissociation between the two effects, especially at high doses: cell death was greater than the frequency of BNC with MN. The inactivation cross-section was 74 μm 2 ; it was 39 μm 2 for MN yield. Therefore, the relative biological effectiveness (RBE) was higher for cell killing than for MN yield (0.8 and 0.5, respectively, at a Co dose of 3 Gy). The total MN count in BNC followed the same pattern of response as the fraction of BNC with MN. However, multiple (>2) MN in BNC were more frequently observed after low-dose Ar irradiation than after gamma-ray exposure (RBE > 1). Moreover, the frequency of multiple MN induction exceeded that expected from a Poisson distribution at all dose levels of Ar irradiation. (orig.)

  16. In vitro evaluation of {sup 213}Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbulcke, Katia; Lahorte, Christophe; Slegers, Guido [Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Gent (Belgium); De Vos, Filip; Dierckx, Rudi A. [Division of Nuclear Medicine, Ghent University Hospital (Belgium); Offner, Fritz [Department of Hematology, Ghent University Hospital (Belgium); Philippe, Jan [Department of Clinical Chemistry, Ghent University Hospital (Belgium); Apostolidis, Christos; Molinet, Roger; Nikula, Tuomo K. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Bacher, Klaus; De Gelder, Virginie; Vral, Anne; Thierens, Hubert [Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University (Belgium)

    2003-10-01

    External source radiotherapy and beta radioimmunotherapy (RIT) are effective treatments for lymphoid malignancies. The development of RIT with alpha emitters is attractive because of the high linear energy transfer (LET) and short path length, allowing higher tumour cell kill and lower toxicity to healthy tissues. We assessed the relative biological efficacy (RBE) of alpha RIT (in vitro) compared to external gamma irradiation with respect to induction of apoptosis in B chronic lymphocytic leukaemia (B-CLL) and induction of chromosomal damage in healthy donor B and T lymphocytes. The latter was measured by a micronucleus assay. {sup 213}Bi was eluted from a {sup 225}Ac generator and conjugated to CD20 antibody (rituximab) with CHX-A''-DTPA as a chelator. B-CLL cells from five patients were cultured for 24 h in RPMI/10% FCS while exposed to {sup 213}Bi conjugated to CD20 antibody or after external {sup 60}Co gamma irradiation. Binding assays were performed in samples of all patients to calculate the total absorbed dose. Apoptosis was scored by flow cytometric analyses of the cells stained with annexin V-FITC and 7-AAD. Apoptosis was expressed as % excess over spontaneous apoptosis in control. Full dose range experiments demonstrated {sup 213}Bi-conjugated CD20 antibody to be more effective than equivalent doses of external gamma irradiation, but showed that similar plateau values were reached at 10 Gy. The RBE for induction of apoptosis in B-CLL was 2 between 1.5 and 7 Gy. The micronucleus yield in lymphocytes of healthy volunteers was measured to assess the late toxicity caused by induction of chromosomal instability. While gamma radiation induced a steady increase in micronucleus yields in B and T cells, the damage induced by {sup 213}Bi was more dramatic, with RBE ranging from 5 to 2 between 0.1 Gy and 2 Gy respectively. In contrast to gamma irradiation, {sup 213}Bi inhibited mitogen-stimulated mitosis almost completely at 2 Gy. In conclusion, high

  17. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays

    Energy Technology Data Exchange (ETDEWEB)

    Baderna, Diego, E-mail: diego.baderna@marionegri.it [Laboratory of Environmental Chemistry and Toxicology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Colombo, Andrea [Laboratory of Environmental Chemistry and Toxicology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Romeo, Margherita [Department of Molecular Biochemistry and Pharmacology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Cambria, Felice; Teoldi, Federico; Lodi, Marco [Laboratory of Environmental Chemistry and Toxicology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Diomede, Luisa [Department of Molecular Biochemistry and Pharmacology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy); Benfenati, Emilio [Laboratory of Environmental Chemistry and Toxicology, IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan (Italy)

    2014-08-15

    Soil quality is traditionally evaluated by chemical characterization to determine levels of pollutants. Biological tools are now employed for soil monitoring since they can take account of the global biological effects induced by all xenobiotics. A combined monitoring of soils based on chemical analyses, human-related in vitro models and ecotoxicological assay was applied in the Lomellina, a semirural area of northern Italy. Chemical characterization indicated overall good quality of the soils, with low levels of toxic and carcinogenic pollutants such as heavy metals, PAHs, PCDD/Fs and PCBs. HepG2 cells were used as a model for the human liver and BALB/c 3T3 cells to evaluate carcinogenic potential. Cells were treated with soil extractable organic matter (EOM) and the MTS assay, DNA release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity only at doses of 500 and 1000 mg soil equivalents/ml. Potential issues for human health can be hypothesized after ingestion of soil samples from some sites. No statistically significant inductions of foci were recorded after exposure to EOMs, indicating that the levels of the soil-extracted organic pollutants were too low to induce carcinogenesis in our experimental conditions. An acute phytotoxicity test and studies on Caenorhabditis elegans were used as ecotoxicological assays for plants and small invertebrates. No significant alerts for ecotoxicity were found. In this proposed case study, HepG2 cells detected differences in the toxicity of soil EOMs, indicating that this cell line could be appropriate to assess the potential harm caused by the ingestion of contaminated soil. Additional information on the carcinogenic potential of mixtures was provided by the cell transformation assay, strengthening the combined approach. - Highlights: • A combined approach for evaluation of soil quality is

  18. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  19. Filling the concept with data: integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing.

    Science.gov (United States)

    Natsch, Andreas; Emter, Roger; Ellis, Graham

    2009-01-01

    Tests for skin sensitization are required prior to the market launch of new cosmetic ingredients. Significant efforts are made to replace the current animal tests. It is widely recognized that this cannot be accomplished with a single in vitro test, but that rather the integration of results from different in vitro and in silico assays will be needed for the prediction of the skin sensitization potential of chemicals. This has been proposed as a theoretical scheme so far, but no attempts have been made to use experimental data to prove the validity of this concept. Here we thus try for the first time to fill this widely cited concept with data. To this aim, we integrate and report both novel and literature data on 116 chemicals of known skin sensitization potential on the following parameters: (1) peptide reactivity as a surrogate for protein binding, (2) induction of antioxidant/electrophile responsive element dependent luciferase activity as a cell-based assay; (3) Tissue Metabolism Simulator skin sensitization model in silico prediction; and (4) calculated octanol-water partition coefficient. The results of the in vitro assays were scaled into five classes from 0 to 4 to give an in vitro score and compared to the local lymph node assay (LLNA) data, which were also scaled from 0 to 4 (nonsensitizer/weak/moderate/strong/extreme). Different ways of evaluating these data have been assessed to rate the hazard of chemicals (Cooper statistics) and to also scale their potency. With the optimized model an overall accuracy for predicting sensitizers of 87.9% was obtained. There is a linear correlation between the LLNA score and the in vitro score. However, the correlation needs further improvement as there is still a relatively high variation in the in vitro score between chemicals belonging to the same sensitization potency class.

  20. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8

    Energy Technology Data Exchange (ETDEWEB)

    Koller, Verena J., E-mail: verena.koller@meduniwien.ac.at [Institute of Cancer Research, Department of Internal Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria); Auwärter, Volker [Institute of Forensic Medicine, University Medical Center Freiburg, Albertstraße 9, 79104 Freiburg (Germany); Grummt, Tamara [German Federal Environmental Agency, Heinrich-Heine-Str., 12, 08645 Bad Elster (Germany); Moosmann, Bjoern [Institute of Forensic Medicine, University Medical Center Freiburg, Albertstraße 9, 79104 Freiburg (Germany); Mišík, Miroslav [Institute of Cancer Research, Department of Internal Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria); Knasmüller, Siegfried [Institute of Cancer Research, Department of Internal Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna (Austria)

    2014-06-01

    Cannabicyclohexanol (CP-47,497-C8) is a representative of a group of cannabimimetic cyclohexylphenols which is added to herbal mixtures as a cannabis substitute since 2008. Although in the beginning CP-47,497-C8 was the main ingredient of “Spice” and similar products, it was partly replaced by aminoalkylindole-type cannabinoid receptor agonists like JWH-018, JWH-073 or JWH-250, but never completely disappeared from the market. Since information on its toxicological properties is scarce, we investigated the effects of the drug in human derived cell lines. The cytotoxic effects were studied in a panel of assays (SRB, XTT, LDHe and NR tests) in a buccal derived (TR146) and a liver derived (HepG2) cell line. The strongest effects were seen in the two former assays at levels ≥ 7.5 μM indicating that the compound interferes with protein synthesis and causes membrane damage. In additional comet assays, DNA damage was detected at levels ≥ 10 μM. Experiments with lesion specific enzymes showed that these effects are not due to oxidative damage of DNA bases. The negative findings obtained in Salmonella/microsome assays and the positive results of micronucleus tests with the cell lines indicate that the compound does not cause gene mutations but acts on the chromosomal level. In contrast to other synthetic cannabinoids, no indication for estrogenic/antiestrogenic properties was seen in a luciferase assay with bone marrow derived U2-OS cells. In conclusion, our findings show that the drug has only weak cytotoxic properties. However, the induction of chromosomal damage indicates that it may cause adverse effects in users due to its impact on the stability of the genetic material. - Highlights: • We tested the toxic properties of a synthetic cannabinoid. • Acute cytotoxic effects were detected with doses ≥ 7 μM. • No hormonal effects were found. • DNA damage was detected at levels ≥ 10 μM in comet assay and micronucleus tests. • Effects in directly

  1. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8

    International Nuclear Information System (INIS)

    Koller, Verena J.; Auwärter, Volker; Grummt, Tamara; Moosmann, Bjoern; Mišík, Miroslav; Knasmüller, Siegfried

    2014-01-01

    Cannabicyclohexanol (CP-47,497-C8) is a representative of a group of cannabimimetic cyclohexylphenols which is added to herbal mixtures as a cannabis substitute since 2008. Although in the beginning CP-47,497-C8 was the main ingredient of “Spice” and similar products, it was partly replaced by aminoalkylindole-type cannabinoid receptor agonists like JWH-018, JWH-073 or JWH-250, but never completely disappeared from the market. Since information on its toxicological properties is scarce, we investigated the effects of the drug in human derived cell lines. The cytotoxic effects were studied in a panel of assays (SRB, XTT, LDHe and NR tests) in a buccal derived (TR146) and a liver derived (HepG2) cell line. The strongest effects were seen in the two former assays at levels ≥ 7.5 μM indicating that the compound interferes with protein synthesis and causes membrane damage. In additional comet assays, DNA damage was detected at levels ≥ 10 μM. Experiments with lesion specific enzymes showed that these effects are not due to oxidative damage of DNA bases. The negative findings obtained in Salmonella/microsome assays and the positive results of micronucleus tests with the cell lines indicate that the compound does not cause gene mutations but acts on the chromosomal level. In contrast to other synthetic cannabinoids, no indication for estrogenic/antiestrogenic properties was seen in a luciferase assay with bone marrow derived U2-OS cells. In conclusion, our findings show that the drug has only weak cytotoxic properties. However, the induction of chromosomal damage indicates that it may cause adverse effects in users due to its impact on the stability of the genetic material. - Highlights: • We tested the toxic properties of a synthetic cannabinoid. • Acute cytotoxic effects were detected with doses ≥ 7 μM. • No hormonal effects were found. • DNA damage was detected at levels ≥ 10 μM in comet assay and micronucleus tests. • Effects in directly

  2. Micronucleus frequency and hematologic index in Colossoma macropomum (Pisces, Ariidae) for environmental impact assessment at a protected area in Brazil

    International Nuclear Information System (INIS)

    Sousa, Debora Batista Pinheiro; Neta, Raimunda Nonata Fortes Carvalho

    2014-01-01

    This study used micronucleus assays and erythrocyte indices in the freshwater fish tambaqui, Colossoma macropomum, to assess environmental impacts in the Environmental Protection Area at Maracanã, São Luis, Brazil. Fish were sampled from two locations within the protected area, Serena Lagoon and Ambude River, on four occasions. Biometric data (length and weight) and an aliquot of blood were collected from each fish for analysis. Erythrocyte indices including: mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were calculated, and blood samples were examined for micronuclei and nuclear morphological changes. Micronuclei were found in fish from both locations, although the frequency was higher in fish from Ambude River. Nuclear morphological changes were identified only in fish collected from Ambude River. Several nuclear morphological changes were found in erythrocytes stained with Giemsa, including: micronuclei and binucleate nuclei. On average, erythrocyte indices were lower in fish collected from Ambude River than in those from Serena Lagoon. Our results indicate that micronuclei and erythrocyte indices can be used in C. macropomum as indicators of environmental health

  3. Micronucleus frequency and hematologic index in Colossoma macropomum (Pisces, Ariidae) for environmental impact assessment at a protected area in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Debora Batista Pinheiro, E-mail: deborabpsousa@gmail.com [Postgraduate Program of Aquatic Resources and Fishery (PPGRAP/UEMA), State University of Maranhão (Brazil); Neta, Raimunda Nonata Fortes Carvalho [Department of Chemistry and Biology, State University of Maranhão (Brazil)

    2014-10-06

    This study used micronucleus assays and erythrocyte indices in the freshwater fish tambaqui, Colossoma macropomum, to assess environmental impacts in the Environmental Protection Area at Maracanã, São Luis, Brazil. Fish were sampled from two locations within the protected area, Serena Lagoon and Ambude River, on four occasions. Biometric data (length and weight) and an aliquot of blood were collected from each fish for analysis. Erythrocyte indices including: mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were calculated, and blood samples were examined for micronuclei and nuclear morphological changes. Micronuclei were found in fish from both locations, although the frequency was higher in fish from Ambude River. Nuclear morphological changes were identified only in fish collected from Ambude River. Several nuclear morphological changes were found in erythrocytes stained with Giemsa, including: micronuclei and binucleate nuclei. On average, erythrocyte indices were lower in fish collected from Ambude River than in those from Serena Lagoon. Our results indicate that micronuclei and erythrocyte indices can be used in C. macropomum as indicators of environmental health.

  4. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  5. Comparing an in vivo egg reduction test and in vitro egg hatching assay for different anthelmintics against Fasciola species, in cattle.

    Science.gov (United States)

    Arafa, Waleed M; Shokeir, Khalid M; Khateib, Abdelrahman M

    2015-11-30

    This study aimed to compare between the efficiency of in vivo fecal egg reduction test (FERT) and in vitro egg hatching assay (EHA) in evaluating of the anti-Fasciola activity of albendazole, triclabendazole, oxyclozanide and praziquantel. A field trial was carried out on fifty naturally Fasciola infected cattle that were divided equally into 5 groups (A-E). On day zero; groups A-D were drenched with albendazole, triclabendazole, oxyclozanide or praziquantel, respectively, while the remaining one, group E, was kept as untreated control. Fecal egg counts of the different groups were conducted weekly over a period of one month post-treatment. In vitro, commercial albendazole and oxyclozanide were diluted to 0.0002, 0.002, 0.02, 0.2 and 2.0 μg/ml, while commercial triclabendazole and praziquantel were diluted to concentrations of 25, 50, 75 and 100 μg/ml with dimethyl sulfoxide (DMSO). In vivo, at the 2nd week post-treatment, triclabendazole and oxyclozanide showed 100% fecal egg reduction (FER), and albendazole had a maximum of 73.7% reduction (P egg counts. In vitro, triclabendazole treated Fasciola gigantica eggs showed early embryonic lysis with zero% hatching at the different concentrations (P egg development and hatching percentage of oxyclozanide or praziquantel treated groups. In conclusion, the efficacy of triclabendazole and albendazole as fasciolicdes could be predicted by Egg Hatching Assay (EHA). Meanwhile fasciolicide activity of oxyclozanide could not be assessed with EHA. Based on in vivo and in vitro findings, paraziquantel did not show any fasciolicide effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential.

    Science.gov (United States)

    Hobbs, Cheryl A; Koyanagi, Mihoko; Swartz, Carol; Davis, Jeffrey; Kasamoto, Sawako; Maronpot, Robert; Recio, Leslie; Hayashi, Shim-Mo

    2018-03-01

    Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Tityus serrulatus Scorpion Venom: In Vitro Tests and Their Correlation with In Vivo Lethal Dose Assay

    Directory of Open Access Journals (Sweden)

    Daniela Cajado-Carvalho

    2017-11-01

    Full Text Available Scorpion stings are the main cause of human envenomation in Brazil and, for the treatment of victims, the World Health Organization (WHO recommends the use of antivenoms. The first step to achieve effective antivenom is to use a good quality venom pool and to evaluate it, with LD50 determination as the most accepted procedure. It is, however, time-consuming and requires advanced technical training. Further, there are significant ethical concerns regarding the number of animals required for testing. Hence, we investigated the correspondence between LD50 results, in vitro assays, and a strong correlation with proteolytic activity levels was observed, showing, remarkably, that proteases are potential toxicity markers for Tityus serrulatus venom. The comparison of reversed-phase chromatographic profiles also has a potential application in venoms’ quality control, as there were fewer neurotoxins detected in the venom with high LD50 value. These results were confirmed by mass spectrometry analysis. Therefore, these methods could precede the LD50 assay to evaluate the venom excellence by discriminating—and discarding—poor-quality batches, and, consequently, with a positive impact on the number of animals used. Notably, proposed assays are fast and inexpensive, being technically and economically feasible in Tityus serrulatus venom quality control to produce effective antivenoms.

  8. What is required for the validation of in vitro assays for predicting contaminant relative bioavailability? Considerations and criteria

    International Nuclear Information System (INIS)

    Juhasz, Albert L.; Basta, Nicholas T.; Smith, Euan

    2013-01-01

    A number of studies have shown the potential of in vitro assays to predict contaminant in vivo relative bioavailability in order to refine human health exposure assessment. Although the term ‘validated’ has been used to describe the goodness of fit between in vivo and in vitro observations, its misuse has arisen from semantic considerations in addition to the lack of defined criteria for establishing performance validation. While several internal validation methods may be utilised, performance validation should preferably focus on assessing the agreement of model predictions with a set of data which are independent of those used to construct the model. In order to achieve robust validated predictive models, a number of parameters (e.g. size of data set, source of independent soils, contaminant concentration range, animal model, relative bioavailability endpoint) need to be considered in addition to defined criteria for establishing performance validation which are currently lacking. -- Defined criteria for establishing in vivo–in vitro performance validation are required in order to ensure robust, defensible predictive models for human health exposure assessment

  9. Drosophila comet assay: insights, uses, and future perspectives

    Science.gov (United States)

    Gaivão, Isabel; Sierra, L. María

    2014-01-01

    The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has been used to analyze the genotoxicity and action mechanisms of different chemicals, demonstrating good sensitivity and proving its usefulness. Moreover, it is the only assay that can be used to analyze DNA repair in somatic cells in vivo, comparing the effects of chemicals in different repair strains, and to quantitate repair activities in vitro. Additionally, the comet assay in Drosophila, in vivo and in vitro, has been applied to study the influence of protein overexpression on genome integrity and degradation. Although the assay is well established, it could benefit from some research to determine optimal experimental design to standardize it, and then to allow comparisons among laboratories independently of the chosen cell type. PMID:25221574

  10. Nano-immunosafety: issues in assay validation

    International Nuclear Information System (INIS)

    Boraschi, Diana; Italiani, Paola; Oostingh, Gertie J; Duschl, Albert; Casals, Eudald; Puntes, Victor F; Nelissen, Inge

    2011-01-01

    Assessing the safety of engineered nanomaterials for human health must include a thorough evaluation of their effects on the immune system, which is responsible for defending the integrity of our body from damage and disease. An array of robust and representative assays should be set up and validated, which could be predictive of the effects of nanomaterials on immune responses. In a trans-European collaborative work, in vitro assays have been developed to this end. In vitro tests have been preferred for their suitability to standardisation and easier applicability. Adapting classical assays to testing the immunotoxicological effects of nanoparticulate materials has raised a series of issues that needed to be appropriately addressed in order to ensure reliability of results. Besides the exquisitely immunological problem of selecting representative endpoints predictive of the risk of developing disease, assay results turned out to be significantly biased by artefactual interference of the nanomaterials or contaminating agents with the assay protocol. Having addressed such problems, a series of robust and representative assays have been developed that describe the effects of engineered nanoparticles on professional and non-professional human defence cells. Two of such assays are described here, one based on primary human monocytes and the other employing human lung epithelial cells transfected with a reporter gene.

  11. Use of micronucleus test in the assessment of radiation effects in aquatic environments

    International Nuclear Information System (INIS)

    Araujo, Edvaldo F. de; Silva, Luanna R.S.; Lima, Pedro A. de S.; Amancio, Francisco F.; Melo, Ana Maria M. de A.; Silva, Edvane B. da; Silva, Ronaldo C. da

    2011-01-01

    The study of the effects of radioactive substances on the environment is accomplished by radioecology. This science has played an important role in combating all forms of pollution. The uncontrolled use of physical and chemical agents has been a concern for environmental regulatory agencies, due to the serious damage to ecosystems. Aquatic organisms are exposed to a variety of pollutants harmful to aquatic systems. The mollusks Biomphalaria glabrata has been featured as a bioindicator to possess characteristics such as short reproductive cycle ease of maintenance in the laboratory and low maintenance cost. The micronucleus assay has been shown to be a great test to identify mutagenic effects caused by physical and chemical agents. In this study the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to high doses of 60 Co gamma radiation contributing to a further standardization of this test as an indicator of the presence of radioactive contamination in aquatic environments. The young adult snails of Biomphalaria glabrata were divided into groups and subjected to a dose of 0 (control), 40 and 60 Gy of gamma radiation. The results showed that snails irradiated with 40 Gy showed a smaller number of haemocytes, whereas those exposed to 60 Gy had a greater quantity of these cells compared to control group. It can be concluded that the morphological analysis and the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to 60 Co gamma radiation may be used in studies of the action of high doses of radiation in aquatic environments (author)

  12. In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.

    Science.gov (United States)

    Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice

    2014-03-01

    Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis.

    Science.gov (United States)

    Kuroda, Yukihiro; Saito, Madoka

    2010-03-01

    An in vitro method to predict phospholipidosis-inducing potential of cationic amphiphilic drugs (CADs) was developed using biochemical and physicochemical assays. The following parameters were applied to principal component analysis, as well as physicochemical parameters: pK(a) and clogP; dissociation constant of CADs from phospholipid, inhibition of enzymatic phospholipid degradation, and metabolic stability of CADs. In the score plot, phospholipidosis-inducing drugs (amiodarone, propranolol, imipramine, chloroquine) were plotted locally forming the subspace for positive CADs; while non-inducing drugs (chlorpromazine, chloramphenicol, disopyramide, lidocaine) were placed scattering out of the subspace, allowing a clear discrimination between both classes of CADs. CADs that often produce false results by conventional physicochemical or cell-based assay methods were accurately determined by our method. Basic and lipophilic disopyramide could be accurately predicted as a nonphospholipidogenic drug. Moreover, chlorpromazine, which is often falsely predicted as a phospholipidosis-inducing drug by in vitro methods, could be accurately determined. Because this method uses the pharmacokinetic parameters pK(a), clogP, and metabolic stability, which are usually obtained in the early stages of drug development, the method newly requires only the two parameters, binding to phospholipid, and inhibition of lipid degradation enzyme. Therefore, this method provides a cost-effective approach to predict phospholipidosis-inducing potential of a drug. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. A Comparison of the Human Buccal Cell Assay and the Pollen Abortion Assay in Assessing Genotoxicity in an Urban-Rural Gradient

    Directory of Open Access Journals (Sweden)

    Alan da Silveira Fleck

    2014-08-01

    Full Text Available Air pollution is exacerbated near heavy traffic roads in cities. Air pollution concentration and composition vary by region and depend on urban-rural gradients. The aim of this study was to evaluate the distribution of air pollution in areas of varying population densities and to compare plant biomonitoring with an established biomarker of human exposure to traffic-related air pollution in children. The areas of study were selected near a major street in 3 different regions. Areas A, B and C represent high, intermediate and low population densities, respectively. Micronucleus assay, an established biomarker of human exposure, was performed in children from these areas. For a plant biomonitoring assay, the pollen abortion assay was performed on Bauhinia variegata in these areas. NO2 and O3 concentrations were determined by passive sampling. We report here that the pollen abortion frequency in Bauhinia variegata is correlated with NO2 concentration (P = 0.004 and is strongly associated with vehicular flow and population density in the studied areas. Micronuclei frequency in buccal cells of children was higher in the regions with more degree of urbanization (P < 0.001 following the same pattern of O3 concentrations (P = 0.030. In conclusion, our results demonstrate that high concentrations of air pollutants in Porto Alegre are related to both human and plant genotoxicity. Areas with different concentration of pollutants demonstrated to have an urbanization gradient dependent pattern which also reflected on genotoxic damage among these areas.

  15. Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts

    Science.gov (United States)

    Use of an In Vitro, Nuclear Receptor Assay Panel to Characterize the Endocrine-Disrupting Activity Load of Wastewater Treatment Plant Effluent Extracts Katie B. Paul 1.2, Ruth Marfil-Vega 1 Marc A. Mills3, Steve 0. Simmons2, Vickie S. Wilson4, Kevin M. Crofton2 10ak Rid...

  16. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  17. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay

  18. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    Science.gov (United States)

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In vitro safety and efficacy evaluations of a complex botanical mixture of Eugenia dysenterica DC. (Myrtaceae): Prospects for developing a new dermocosmetic product.

    Science.gov (United States)

    Moreira, Larissa Cleres; de Ávila, Renato Ivan; Veloso, Danillo Fabrini Maciel Costa; Pedrosa, Tatiana Nascimento; Lima, Emerson Silva; do Couto, Renê Oliveira; Lima, Eliana Martins; Batista, Aline Carvalho; de Paula, José Realino; Valadares, Marize Campos

    2017-12-01

    In the context of developing a new natural product-based cosmetic, the in vitro efficacy and safety evaluations of a complex botanical mixture based on Eugenia dysenterica leaf hydroalcoholic extract (EDE) (2.5-1000μg/mL) were carried out. Chromatographic analysis demonstrated the presence of the tannin (ellagic acid) and flavonoids (quercetin and gallic acid) which characterize the EDE as a polyphenol-rich mixture. Using HFF-1 fibroblasts, it was shown that EDE promoted cell regeneration after UVA exposure. It also led to the inhibition of the collagenase, elastase and tyrosinase enzymes, which are involved in skin-related disorders. In terms of toxicological evaluation, the EDE was classified as non-phototoxic through the 3T3 Neutral Red Uptake Phototoxicity Test (OECD N° 432, 2004) and non-eye irritant by Bovine Corneal Opacity and Permeability (OECD N° 437, 2013) assay, in conjunction with corneal histomorphometric analysis. Furthermore, the EDE has no skin sensitization potential as demonstrated by a two-out-of-three prediction model [protein-binding/haptenization (OECD N° 442C, 2015), keratinocyte and dendritic cell activations]. In addition, it was shown that the EDE seems to be non-genotoxic through the cytokinesis-block micronucleus assay (OECD N° 487, 2014) using HepG2 cells. When considered together, these findings support the use of EDE botanical mixture in cosmetic/pharmaceutical products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development of an in vitro potency assay for human skeletal muscle derived cells.

    Science.gov (United States)

    Thurner, Marco; Asim, Faheem; Garczarczyk-Asim, Dorota; Janke, Katrin; Deutsch, Martin; Margreiter, Eva; Troppmair, Jakob; Marksteiner, Rainer

    2018-01-01

    Potency is a quantitative measure of the desired biological function of an advanced therapy medicinal product (ATMP) and is a prerequisite for market approval application (MAA). To assess the potency of human skeletal muscle-derived cells (SMDCs), which are currently investigated in clinical trials for the regeneration of skeletal muscle defects, we evaluated acetylcholinesterase (AChE), which is expressed in skeletal muscle and nervous tissue of all mammals. CD56+ SMDCs were separated from CD56- SMDCs by magnetic activated cell sorting (MACS) and both differentiated in skeletal muscle differentiation medium. AChE activity of in vitro differentiated SMDCs was correlated with CD56 expression, fusion index, cell number, cell doubling numbers, differentiation markers and compared to the clinical efficacy in patients treated with SMDCs against fecal incontinence. CD56- SMDCs did not form multinucleated myotubes and remained low in AChE activity during differentiation. CD56+ SMDCs generated myotubes and increased in AChE activity during differentiation. AChE activity was found to accurately reflect the number of CD56+ SMDCs in culture, their fusion competence, and cell doubling number. In patients with fecal incontinence responding to SMDCs treatment, the improvement of clinical symptoms was positively linked with the AChE activity of the SMDCs injected. AChE activity was found to truly reflect the in vitro differentiation status of SMDCs and to be superior to the mere use of surface markers as it reflects not only the number of myogenic SMDCs in culture but also their fusion competence and population doubling number, thus combining cell quality and quantification of the expected mode of action (MoA) of SMDCs. Moreover, the successful in vitro validation of the assay proves its suitability for routine use. Most convincingly, our results demonstrate a link between clinical efficacy and the AChE activity of the SMDCs preparations used for the treatment of fecal

  1. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    Science.gov (United States)

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  2. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine

    International Nuclear Information System (INIS)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-01-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds

  3. Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients.

    Science.gov (United States)

    Nygren, P; Fridborg, H; Csoka, K; Sundström, C; de la Torre, M; Kristensen, J; Bergh, J; Hagberg, H; Glimelius, B; Rastad, J

    1994-03-01

    The semi-automated fluorometric microculture cytotoxicity assay (FMCA), based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) by viable cells, was employed for cytotoxic drug sensitivity testing of tumor cells from patients with hematological or solid tumors. In total, 390 samples from 20 diagnoses were tested with up to 12 standard cytotoxic drugs. The technical success rate for different tumor types ranged from 67 to 95%. Fluorescence was linearly related to cell number but variably steep depending on tumor type. Samples from most solid tumors thus showed higher signal-to-noise ratios than hematological samples. A wide spectrum of in vitro drug activity was obtained, with acute leukemias and non-Hodgkin's lymphomas being sensitive to almost all tested drugs, whereas renal and adrenocortical carcinomas were essentially totally resistant. Between these extremes were samples of breast and ovarian carcinomas and sarcomas. When in vitro response was compared with known clinical response patterns, a good correspondence was observed. The results indicate that the FMCA is a rapid and efficient method for in vitro measurement of tumor-specific drug activity both in hematological and in solid tumors. The assay may be suitable for new drug development and direction of phase-2 trials to suitable patients.

  4. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  5. The development of in vitro mutagenicity testing systems using T-lymphocytes

    International Nuclear Information System (INIS)

    Albertini, R.J.

    1992-05-01

    This work has focused on the development of in vitro T-cell mutation assays. Conditions have been defined to measure the in vitro induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in human T-lymphocytes. This assay is a parallel to our in vivo hprt assay, in that the same cells are utilized. However, the in vitro assay allows for carefully controlled dose response studies. 21 refs., 16 figs., 13 tabs

  6. Molecular epidemiology of malaria in Cameroon. XV. Experimental studies on serum substitutes and supplements and alternative culture media for in vitro drug sensitivity assays using fresh isolates of Plasmodium falciparum.

    Science.gov (United States)

    Basco, Leonardo K

    2003-08-01

    In vitro drug sensitivity assay is an important tool for various on-going studies aiming to establish the correlation between candidate molecular markers for drug resistance and drug response in laboratory-adapted strains and field isolates of Plasmodium falciparum. A widespread use of this technique in the field would require a suitable substitute that can replace human serum. In this study, several alternative sources of serum substitutes and supplements were evaluated for their capacity to sustain parasite growth for a single life cycle and their compatibility with in vitro assays for clinical isolates that have not been adapted to in vitro culture. Albumax, a commercial preparation of lipid-enriched bovine albumin, did not support parasite growth as much as human serum and fetal calf serum in several isolates. Other serum supplements (AmnioMax and Ultroser) supported parasite growth relatively well. The 50% inhibitory concentrations (IC50s) of chloroquine and antifolates determined with 0.05% Albumax were generally two or three times higher than with human serum. With 10% fetal calf serum, IC50s for chloroquine and antifolates were approximately two times higher and three times lower than with human serum, respectively. The use of AmnioMax and OptiMAb resulted in a greater than two-fold increase in IC50s and several uninterpretable assays. Despite possible batch-to-batch differences, fetal calf serum may be a suitable substitute for in vitro drug assays while awaiting the results of further studies on other serum substitutes and supplements.

  7. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    Science.gov (United States)

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  8. Evaluation of perfluorooctanoate for potential genotoxicity

    Directory of Open Access Journals (Sweden)

    John L. Butenhoff

    2014-01-01

    Full Text Available Perfluorooctanoate (PFOA is a fully fluorinated eight-carbon fatty acid analog with exceptional stability toward degradation that has been used as an industrial surfactant and has been detected in environmental and biological matrices. Exposures to PFOA in the workplace and in the environment have continuously stimulated investigations into its potential human health hazards. In this article, the results of fifteen unpublished genotoxicity assays conducted with perfluorooctanoate (as either the linear or linear/branched ammonium salt (APFO or the linear/branched sodium salt are reported and include: seven mutation assays (three in vitro reverse mutation assays with histidine auxotrophic strains of Salmonella typhimurium, two in vitro reverse mutation assays with the tryptophan auxotrophic Escherichia coli WP2uvr strain, one in vitro mitotic recombination (gene conversion assay with Saccharomyces cerevisiae D4, and an in vitro Chinese hamster ovary (CHO HGPRT forward mutation assay; seven studies to assess potential for chromosomal damage (three in vitro CHO chromosomal aberration studies, an in vitro human whole blood lymphocyte chromosomal aberration study, and three in vivo mouse micronucleus assays; and an in vitro C3H 10T1/2 cell transformation assay. Although PFOA has not been demonstrated to be metabolized, all in vitro assays were conducted both in the presence and in the absence of a mammalian hepatic microsomal activation system. These assays were originally described in twelve contract laboratory reports which have been available via the United States Environmental Protection Agency public docket (Administrative Record 226 for over a decade; however, the details of these assays have not been published previously in the open scientific literature. With the exception of limited positive findings at high and cytotoxic concentrations in some assay trials which reflected the likely consequence of cytotoxic disruption of normal cellular

  9. Evaluation of a MTT assay in measurement of radiosensitizing effect

    International Nuclear Information System (INIS)

    Higuchi, Keiko; Mitsuhashi, Norio; Saitoh, Jun-ichi; Maebayashi, Katsuya; Sakurai, Hideyuki; Akimoto, Tetsuo; Niibe, Hideo

    1999-01-01

    The usefulness of a MTT assay by measuring the radiosensitizing effect of caffeine on rat yolk sac tumor cell line with a mutant-type p53 in vitro was evaluated. A rat yolk sac tumor cell line with a mutant-type p53, NMT-1R, was used in this study. The radiosensitivity of NMT-1R with or without caffeine was measured with a MTT assay. The results were compared with those by a clonogenic assay. Caffeine at a concentration of 2.0 mM which released radiation-induced G 2 block demonstrated a radiosensitizing effect, but caffeine at a concentration of 0.5 mM did not. The radiosensitizing effect of caffeine measured by a MTT assay correlated with that measured by a clonogenic assay. A MTT assay was useful to measure radiosensitivity and/or a radiosensitizing effect in vitro. (author)

  10. In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities.

    Science.gov (United States)

    Gunes, Seda; Tamburaci, Sedef; Dalay, Meltem Conk; Deliloglu Gurhan, Ismet

    2017-12-01

    Algae have gained importance in cosmeceutical product development due to their beneficial effects on skin health and therapeutical value with bioactive compounds. Spirulina platensis Parachas (Phormidiaceae) is renowned as a potential source of high-value chemicals and recently used in skincare products. This study develops and evaluates skin creams incorporated with bioactive S. platensis extract. Spirulina platensis was cultivated, the aqueous crude extract was prepared and in vitro cytotoxicity of S. platensis extract in the range of 0.001-1% concentrations for 1, 3 and 7 d on HS2 keratinocyte cells was determined. Crude extracts were incorporated in skin cream formulation at 0.01% (w/w) concentration and in vitro wound healing and genotoxicity studies were performed. Immunohistochemical staining was performed to determine the collagen activity. 0.1% S. platensis extract exhibited higher proliferation activity compared with the control group with 198% of cell viability after 3 d. Skin cream including 1.125% S. platensis crude extract showed enhanced wound healing effect on HS2 keratinocyte cell line and the highest HS2 cell viability % was obtained with this concentration. The micronucleus (MN) assay results indicated that S. platensis extract incorporated creams had no genotoxic effect on human peripheral blood cells. Immunohistochemical analysis showed that collagen 1 immunoreactivity was improved by increased extract concentration and it was strongly positive in cells treated with 1.125% extract incorporated skin cream. The cell viability, wound healing activity and genotoxicity results showed that S. platensis incorporated skin cream could be of potential value in cosmeceutical and biomedical applications.

  11. From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modelling.

    Science.gov (United States)

    Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P

    2017-12-01

    Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    Science.gov (United States)

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. In vitro assay for ACTH-releasing activity using ACTH radioimmunoassay. ACTH releasing activities by various drugs

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K; Takahara, J; Hosogi, H; Ofuji, N; Yasuhara, T [Okayama Univ. (Japan). School of Medicine

    1976-02-01

    This report deals with an in vitro assay of ACTH releasing activity utilizing pituitary incubation combined with ACTH radioimmunoassay. Half of a rat pituitary was preincubated in 2ml Krebs Ringer bicarbonate buffer containing 0.2% glucose and 0.25% BSA (KRBG-BSA) for 1.5 hr (45 min x 2). The medium was replaced by 1 ml KRBG-BSA and incubated for 30 min. Then the medium was again replaced by 1 ml KRBG-BSA or KRBG-BSA containing test materials and incubated for another 30 min. The amount of ACTH assayed by radioimmunoassay in the 2nd 30 min incubation was compared with that in the 1st 30 min incubation, and the result was expressed as a percentage. In the ACTH radioimmunoassay, anti-ACTH serum was diluted to 1:1,500-3,000. The /sup 125/I-..cap alpha../sup 1 -24/ACTH-antibody system was not affected by lysine-vasopressin (LVP), arginine-vasopressin (AVP), rat's pituitary LH, GH or prolactin. Human /sup 1 -39/ACTH was used as the ACTH standard. The dilution curve of the incubation medium was parallel to the standard curve. Reproducibility of immunoassayable ACTH within-assay was 174 +- 5.0 pg/tube (CV=2.9%). A log dose-relationship was observed between the amounts of stalk median eminence extracts (SME; NIAMDD) added to the incubation medium and its ACTH releasing activities. The sensitivity of this assay method was at least 0.1 SME or 10 mU of LVP and AVP. Using this method, it was found that LVP, AVP, norepinephrine (100 ng/ml--200 ng/ml) and 5-hydroxytryptophane (1 ..mu..g/ml) had ACTH releasing activities, but LH-RH, TRH, glucagon, dopamine, phentolamine, propranolol, haloperidol, prostaglandin E/sub 1/ and indomethacin did not affect the release of ACTH.

  14. Influence of processing and storage of integral grape juice (Vitis labrusca L.) on its physical and chemical characteristics, cytotoxicity, and mutagenicity in vitro.

    Science.gov (United States)

    Düsman, E; Almeida, I V; Pinto, E P; Lucchetta, L; Vicentini, V E P

    2017-05-31

    Integral grape juice is extracted from the grape through processes that allow the retention of their natural composition. However, due to the severity of some processes, fruit juices can undergo changes in their quality. The present study evaluated the cytotoxic and mutagenic effects of integral grape juice by a cytokinesis-blocked micronucleus assay in Rattus norvegicus hepatoma cells (HTC) in vitro. Vitis labrusca L. (variety Concord) were produced organically and by a conventional system, and their juice was extracted by a hot extraction process. The organic grapes were subjected to ultraviolet-type C radiation (UV-C). Experiments were performed after production and after 6 months in storage. Physicochemical analyses revealed that UV-C irradiation of organic grapes, the juice production process, and storage resulted in nutraceutical alterations. However, none of the juice concentrations were cytotoxic to HTC cells by the cytokinesis-blocked proliferation index results or were mutagenic, because the formation of micronucleated cells was not induced. In general, juice induced cell proliferation, possibly due to the presence of vitamins and sugar content (total soluble solid). The data increased the understanding of food technology and confirmed the quality and safety consumption of these juices.

  15. Ethamsylate (Dicynone) interference in determination of serum creatinine, uric acid, triglycerides, and cholesterol in assays involving the Trinder reaction; in vivo and in vitro.

    Science.gov (United States)

    Dastych, Milan; Wiewiorka, Ondrej; Benovská, Miroslava

    2014-01-01

    The aim of our research was the quantification of interfering properties of the haemostatic drug Dicynone (ethamsylate) in serum creatinine, uric acid, cholesterol, and triglyceride assays using the Trinder reaction. Blood from patients was collected before and 15 minutes after administration of 500 mg Dicynone dose i.v. and the above mentioned analytes were quantified using Roche assays (Cobas 8000). In our in vitro experiment, we measured concentrations of the analytes in pooled serum aliquots with final concentrations of Dicynone additions 0, 30, 60, 150, and 300 mg/L. Aliquots with 60 mg/L Dicynone were also measured at 2, 6, and 8 hours after initial measurement when stored in 22 degrees C and 4 degrees C for comparison. Concentrations of the measured analytes in samples from patients administered with a 500 mg dose of Dicynone were lower in all cases (n = 10) when compared to values in samples taken immediately before treatment. The in vitro samples showed that considerable negative interference occurred even with the low concentrations of Dicynone additions (30 and 60 mg/L), showing the strongest negative interference in creatinine values, followed by uric acid, triglycerides, and cholesterol. Using in vitro samples, we showed strong time and temperature dependence on Dicynone interference. We found and proved significant negative interference of the drug Dicynone (ethamsylate) in the clinical analysis of blood using in vivo and in vitro experiments. Furthermore, we observed a change of this effect in serum matrix over time and at different storage temperatures.

  16. Endometrial carcinoma in vitro chemosensitivity testing of single and combination chemotherapy regimens using the novel microculture kinetic apoptosis assay: implications for endometrial cancer treatment.

    Science.gov (United States)

    Ballard, Karen S; Homesley, Howard D; Hodson, Charles; Presant, Cary A; Rutledge, James; Hallquist, Allan; Perree, Mathieu

    2010-03-01

    The in vitro microculture kinetic (MiCK) apoptosis assay has been used to predict single or combination chemotherapy response in leukemia patients. This feasibility study addressed MiCK in endometrial cancer specimens. Endometrial cancer specimens from total abdominal hysterectomies were processed at a central laboratory. Single cell suspensions of viable endometrial cancer cells were plated in individual wells. Single and combination regimens were tested: combinations of doxorubicin, cisplatin, and paclitaxel and carboplatin and paclitaxel (Gynecologic Oncology Group [GOG] 209 endometrial cancer phase III trial arms) as well as single agent testing with paclitaxel, carboplatin, doxorubicin, cisplatin, ifosfamide, and vincristine (active agents in GOG trials). Apoptosis was measured continuously over 48 hours. Fifteen of nineteen patients had successful assays. The highest mean chemo sensitivity was noted in the combination of cisplatin, doxorubicin, and paclitaxel with lower mean chemosensitivity for carboplatin and paclitaxel. Combination chemotherapy had higher chemosensitivity than single drug chemotherapy. However, in 25% of patients a single drug had higher chemosensitivity than combination chemotherapy. As single agents, ifosfamide, cisplatin, and paclitaxel had the highest kinetic unit values. Using a panel of agents simulating clinical dose regimens, the MiCK assay was feasible in evaluating in vitro chemosensitivity of endometrial cancer. MiCK assay results correlated with GOG clinical trial results. However, 25% of patients might be best treated with single agent chemotherapy selected by MiCK. Ifosfamide, cisplatin, and paclitaxel appear to have high activity as single agents. MiCK may be useful in future new drug testing and individualizing endometrial cancer patient's chemotherapy management.

  17. In vivo micronucleus test as a biomarker of genotoxicity in free-range goats from suspected contaminated environment

    Directory of Open Access Journals (Sweden)

    Afusat Jagun Jubril

    2017-09-01

    Conclusion: The finding indicates the prevalence and frequency of micronucleus as a biomarker of genotoxicity and an indicator of exposure to environmental genotoxic subtances. Hence, this highlights the relevance of these goats as important sentinel animal model. These findings, therefore, serve as a preliminary data for further studies on the latent genotoxic environmental contaminants and their potential deleterious impact. [J Adv Vet Anim Res 2017; 4(3.000: 281-287

  18. An In Vitro RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity.

    Science.gov (United States)

    Morin, Benjamin; Liang, Bo; Gardner, Erica; Ross, Robin A; Whelan, Sean P J

    2017-01-01

    We report an in vitro RNA synthesis assay for the RNA-dependent RNA polymerase (RdRP) of rabies virus (RABV). We expressed RABV large polymerase protein (L) in insect cells from a recombinant baculovirus vector and the phosphoprotein cofactor (P) in Escherichia coli and purified the resulting proteins by affinity and size exclusion chromatography. Using chemically synthesized short RNA corresponding to the first 19 nucleotides (nt) of the rabies virus genome, we demonstrate that L alone initiates synthesis on naked RNA and that P serves to enhance the initiation and processivity of the RdRP. The L-P complex lacks full processivity, which we interpret to reflect the lack of the viral nucleocapsid protein (N) on the template. Using this assay, we define the requirements in P for stimulation of RdRP activity as residues 11 to 50 of P and formally demonstrate that ribavirin triphosphate (RTP) inhibits the RdRP. By comparing the properties of RABV RdRP with those of the related rhabdovirus, vesicular stomatitis virus (VSV), we demonstrate that both polymerases can copy the heterologous promoter sequence. The requirements for engagement of the N-RNA template of VSV by its polymerase are provided by the C-terminal domain (CTD) of P. A chimeric RABV P protein in which the oligomerization domain (OD) and the CTD were replaced by those of VSV P stimulated RABV RdRP activity on naked RNA but was insufficient to permit initiation on the VSV N-RNA template. This result implies that interactions between L and the template N are also required for initiation of RNA synthesis, extending our knowledge of ribonucleoprotein interactions that are critical for gene expression. The current understanding of the structural and functional significance of the components of the rabies virus replication machinery is incomplete. Although structures are available for the nucleocapsid protein in complex with RNA, and also for portions of P, information on both the structure and function of the L

  19. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays.

    Science.gov (United States)

    Fischer, Janine; Prosenc, Marc H; Wolff, Martin; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2010-05-01

    Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the corrosion products of Mg-based alloys. Corroded Mg converts tetrazolium salts to formazan, leading to a higher background and falsifying the results of cell viability. Tetrazolium-based assays are therefore not a useful tool for testing the cytotoxicity of Mg in static in vitro assays. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: Demonstration of the efficacy of emission controls in an eastern European city

    Energy Technology Data Exchange (ETDEWEB)

    Misik, Miroslav [Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Revova 39, SK 811 02 Bratislava 1 (Slovakia); Micieta, Karol [Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Revova 39, SK 811 02 Bratislava 1 (Slovakia); Solenska, Martina [Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Revova 39, SK 811 02 Bratislava 1 (Slovakia); Misikova, Katarina [Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Revova 39, SK 811 02 Bratislava 1 (Slovakia); Pisarcikova, Helena [Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Revova 39, SK 811 02 Bratislava 1 (Slovakia); Knasmueller, Siegfried [Institute of Cancer Research, Department of Inner Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: siegfried.knasmueller@meduniwien.ac.at

    2007-01-15

    Aim of the study was to monitor changes of genotoxic activity of urban air caused by an incinerator and a petrochemical plant in Tradescantia micronucleus (Trad-MCN) and pollen fertility assays with wild plants (Chelidonium majus, Clematis vitalba, Cichorium intybus, Linaria vulgaris, Robinia pseudoacacia). While in the first sampling period (1997-2000) significantly (on average 80%) more MN were found at the polluted site in comparison to controls from a rural area, no significant effects were observed during a later period (between 2003 and 2005). A similar pattern was observed in the pollen abortion assays in which the most pronounced effects were found in chicory and false acacia. The differences of the results obtained in the two periods can be explained by a substantial reduction of air pollution by use of new technologies. In particular the decrease of SO{sub 2} emissions may account for the effects seen in the present study. - Air pollution caused by industrial emissions induced micronuclei in Tradescantia and increased pollen abortion in wild plant species.

  1. Pharmacokinetic–pharmacodynamic modelling of drug‐induced QTc interval prolongation in man: prediction from in vitro human ether‐à‐go‐go‐related gene binding and functional inhibition assays and conscious dog studies

    Science.gov (United States)

    Dubois, V F S; Casarotto, E; Danhof, M

    2016-01-01

    Background and Purpose Functional measures of human ether‐à‐go‐go‐related gene (hERG; Kv11.1) channel inhibition have been prioritized as an in vitro screening tool for candidate molecules. However, it is unclear how these results can be translated to humans. Here, we explore how data on drug binding and functional inhibition in vitro relate to QT prolongation in vivo. Using cisapride, sotalol and moxifloxacin as paradigm compounds, we assessed the relationship between drug concentrations, binding, functional measures and in vivo effects in preclinical species and humans. Experimental Approach Pharmacokinetic–pharmacodynamic modelling was used to characterize the drug effects in hERG functional patch clamp, hERG radio‐labelled dofetilide displacement experiments and QT interval in conscious dogs. Data were analysed in parallel to identify potential correlations between pharmacological activity in vitro and in vivo. Key Results An Emax model could not be used due to large variability in the functional patch clamp assay. Dofetilide displacement revealed that binding curves are unrelated to the in vivo potency estimates for QTc prolongation in dogs and humans. Mean in vitro potency estimates ranged from 99.9 nM for cisapride to 1030 μM for moxifloxacin. Conclusions and Implications The lack of standardized protocols for in vitro assays leads to significant differences in experimental conditions, making the assessment of in vitro–in vivo correlations unreliable. Identification of an accurate safety window during the screening of candidate molecules requires a quantitative framework that disentangles system‐ from drug‐specific properties under physiological conditions, enabling translation of the results to humans. Similar considerations will be relevant for the comprehensive in vitro pro‐arrhythmia assay initiative. PMID:27427789

  2. Sera from Preeclampsia Patients Elicit Symptoms of Human Disease in Mice and Provide a Basis for an in Vitro Predictive Assay

    OpenAIRE

    Kalkunte, Satyan; Boij, Roland; Norris, Wendy; Friedman, Jennifer; Lai, Zhongbin; Kurtis, Jonathan; Lim, Kee-Hak; Padbury, James F.; Matthiesen, Leif; Sharma, Surendra

    2010-01-01

    Early diagnosis and treatment of preeclampsia would significantly reduce maternal and fetal morbidity and mortality. However, its etiology and prediction have remained elusive. Based on the hypothesis that sera from patients with preeclampsia could function as a “blueprint” of causative factors, we describe a serum-based pregnancy-specific mouse model that closely mirrors the human condition as well as an in vitro predictive assay. We show that a single administration of human preeclampsia se...

  3. In vitro and in vivo genetic toxicology studies with diethylene glycol monohexyl ether.

    Science.gov (United States)

    Ballantyne, B; Vergnes, J S

    2001-01-01

    Diethylene glycol monohexyl ether (DEGHE; CAS no. 112-59-4), an industrial chemical, was investigated for the potential to produce genotoxic effects using three in vitro and two in vivo tests. No mutagenic activity occurred in either the absence or presence of metabolic activation with a Salmonella typhimurium reverse assay using strains TA98, TA100, TA1535, TA1537 and TA1538. In a Chinese hamster ovary (CHO) forward gene mutation test (HGPRT locus) there was an increase in the mutation frequencies, which were relatively small compared with the solvent control values, somewhat inconsistent between duplicate cultures and occurred particularly in the presence of metabolic activation. Linear regression analysis indicated a marginally significant trend for dosage versus mutation frequency, suggesting that DEGHE was weakly positive in this test. A sister chromatid exchange test in CHO cells showed no significant dosage-related effects in the presence or absence of metabolic activation. A peripheral blood micronucleus test in mice by dosing with an intraperitoneal injection of DEGHE did not show any potential for DEGHE to increase the incidence of micronucleated polychromatophilic erythrocytes. In a first femoral bone marrow chromosome aberration test in the rat by peroral dosing, DEGHE did not cause any increase in aberrations for 12-h and 24-h samples with males and females or with females at 48-h sampling. However, with males at 48 h the two lowest doses showed an increased number of aberrations, but not at the high doses. A repeat study in males with a larger number of doses and 24-h and 48-h samples did not replicate this finding. It is concluded that DEGHE may have limited weak mutagenic activity in vitro but is devoid of clastogenic potential. Copyright 2001 John Wiley & Sons, Ltd.

  4. STANDARDIZATION OF A FLUORESCENT-BASED QUANTITATIVE ADHESION ASSAY TO STUDY ATTACHMENT OF Taenia solium ONCOSPHERE TO EPITHELIAL CELLS In Vitro

    Science.gov (United States)

    Chile, Nancy; Evangelista, Julio; Gilman, Robert H.; Arana, Yanina; Palma, Sandra; Sterling, Charles R; Garcia, Hector H.; Gonzalez, Armando; Verastegui, Manuela

    2012-01-01

    To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment. PMID:22178422

  5. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2015. Scientific Opinion on Flavouring Group Evaluation 208 Revision 1 (FGE.208Rev1): Consideration of genotoxicity data on representatives for 10 alicyclic aldehydes with the a,b-unsaturation in ring / side-chain and precursors from chemical subgroup 2.2 of FGE.19

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    genotoxicity studies on p-mentha-1,8-dien-7-al [FL-no: 05.117], the representative substance for FGE.19 subgroup 2.2. This substance was tested in vivo in a combined micronucleus assay in bone marrow and Comet assay in liver and duodenum. It did not induce any increase in micronucleated polychromatic...... erythrocytes of the bone marrow of male rats in the micronucleus test and it did not induce DNA damage in duodenum of the same animals as analysed by the Comet assay. The Comet assay performed in liver shows a positive result and therefore the Panel concluded that p-mentha-1,8-dien-7-al [FL-no: 05...

  6. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    Science.gov (United States)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  7. Aspartame induces angiogenesis in vitro and in vivo models.

    Science.gov (United States)

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p aspartame group had better healing than control group, and this was statistically significant at p aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.

  8. Collaborative study for the validation of alternative in vitro potency assays for human tetanus immunoglobulins.

    Science.gov (United States)

    Gross, S; Janssen, S W J; de Vries, B; Terao, E; Daas, A; Buchheit, K-H

    2010-07-01

    An international collaborative study to validate 2 alternative in vitro methods for the potency testing of human tetanus immunoglobulin products was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM). The study, run in the framework of the Biological Standardisation Programme (BSP) under the aegis of the European Commission and the Council of Europe, involved 21 official medicines control and industry laboratories from 15 countries. Both methods, an enzyme-linked immunoassay (EIA) and a toxoid inhibition assay (TIA), showed good reproducibility, repeatability and precision. EIA and TIA discriminated between low, medium and high potency samples. Potency estimates correlated well and both values were in close agreement with those obtained by in vivo methods. Moreover, these alternative methods allowed to resolve discrepant results between laboratories that were due to product potency loss and reporting errors. The study demonstrated that EIA and TIA are suitable quality control methods for tetanus immunoglobulin, which can be standardised in a control laboratory using a quality assurance system. Consequently, the Group of Experts on Human Blood and Blood Products of the European Pharmacopoeia revised the monograph on human tetanus immunoglobulins to include both the methods as compendial alternatives to the in vivo mouse challenge assay. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  9. Development of an in vitro binding assay for ecdysone receptor of mysid shrimp (Americamysis bahia)

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hirofumi, E-mail: h-yokota@mail.kobe-c.ac.jp [Department of Biosphere Sciences, School of Human Sciences, Kobe College 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505 (Japan); Eguchi, Sayaka [Department of Biosphere Sciences, School of Human Sciences, Kobe College 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505 (Japan); Nakai, Makoto [Hita Laboratory, Chemicals Evaluation and Research Institute (CERI), 3-822, Ishii-machi, Hita-shi, Oita 877-0061 (Japan)

    2011-10-15

    Highlights: We successfully performed cDNA cloning of EcR and USP of mysid shrimp. We then expressed the ligand-binding domains of the corresponding receptor peptides. The translated peptides could bind to ecdysone agonists as heterodimers. These results indicate that they are functional hormone receptors of mysid shrimp. - Abstract: A global effort has been made to establish screening and testing methods that can identify the effects of endocrine-disrupting chemicals (EDCs) on invertebrates. The purpose of our study was to develop an in vitro receptor binding assay for ecdysone receptor (EcR) in mysid shrimp (Americamysis bahia). We cloned mysid shrimp EcR cDNA (2888 nucleotides) and ultraspiracle (USP) cDNA (2116 nucleotides), and determined that they encode predicted proteins of length 570 and 410 amino acids, respectively. The deduced amino acid sequences of these proteins shared 36-71% homology for EcR and 44-65% for USP with those of other arthropods. Phylogenetic analysis revealed that mysid shrimp EcR was classified into an independent cluster together with the EcRs of another mysid species, Neomysis integer and the cluster diverged early from those of the other taxonomic orders of crustaceans. We then expressed the ligand-binding domains (DEF regions) of mysid shrimp EcR (abEcRdef) and USP (abUSPdef) as glutathione S-transferase (GST)-fusion peptides in Escherichia coli. After purifying the fusion peptides by affinity chromatography and removing the GST labels, we subjected the peptides to a ligand-receptor binding assay. [{sup 3}H]-ponasterone A did not bind to abEcRdef or abUSPdef peptides alone but bound strongly to the abEcRdef/abUSPdef mixture with dissociation constant (K{sub d}) = 2.14 nM. Competitive binding assays showed that the IC{sub 50} values for ponasterone A, muristerone A, 20-hydroxyecdysone, and {alpha}-ecdysone were 1.2, 1.9, 35, and 1200 nM, respectively. In contrast, the IC{sub 50} values for two dibenzoylhydrazine ligands

  10. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay.

    Science.gov (United States)

    Linares, María; Viera, Sara; Crespo, Benigno; Franco, Virginia; Gómez-Lorenzo, María G; Jiménez-Díaz, María Belén; Angulo-Barturen, Íñigo; Sanz, Laura María; Gamo, Francisco-Javier

    2015-11-05

    The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. The quantification of new infections to determine parasite viability offers important

  11. In vitro susceptibilities in lymphocytes from mothers and cord blood to the monofunctional alkylating agent EMS

    DEFF Research Database (Denmark)

    Wyatt, N P; Falque-Gonzalez, C; Farrar, D

    2007-01-01

    at the Bradford Royal Infirmary collected venous blood samples from mothers at the time of birth and venous cord blood post-delivery. Lymphocytes were isolated from both blood types and examined in the alkaline comet assay using the monofunctional alkylating agent ethyl methanesulphonate (EMS). There were...... no biologically significant differences when subjects were categorized into subgroups based on lifestyle habits and physical characteristics, and overall there were no statistically significant differences in levels of DNA damage in mothers (n=22) and babies (n=22), except at the basal level (P... values in babies were always lower over the EMS dose range. Whole blood was used in the micronucleus (MN) assay, and there was a significantly (Prate of MN in mothers (n=17), per 1000 binucleates, as compared with lymphocytes from their offspring (n=17) at the basal level. This may...

  12. Cytotoxicity study of plant Aloe vera (Linn

    Directory of Open Access Journals (Sweden)

    Atul N Chandu

    2012-01-01

    Full Text Available Background: The objective of this study has been to evaluate the in-vitro antitumor activity of Aloe vera extract of in cultured B16F10 melanoma cell line by measuring cell viability using "Trypan blue exclusion assay" method. Aim: To find out such kind of anticancer drug which is a cheap, safe, less toxic, and more potent drug compared to chemotherapy drug. Materials and Methods: In-vitro antitumor activity cell culture1, drug treatment (standard and test extract and Trypan blue exclusion assay growth and viability test 1 were used. Treatment of Aloe vera extract against B16F10 melanoma cell line, in all concentration range, showed decrease in percent cell viability, as compared to that of negative when examined by "Trypan blue exclusion assay". Results: In overall variation of test samples, Aloe vera extract showed its best activity in the concentration of 300 μg/ml, which was approximately equal to the activity of standard drug doxorubicin. Evaluation of in-vitro antitumor activity revealed that Aloe vera extract exhibits good cytotoxic activity. The best cytotoxic activity by Aloe vera was shown at 200 μg/ml concentration. Conclusion: The study of cytoprotection against normal cells by micronucleus assay has shown that the herbal extracts have less toxic effects to the normal blood lymphocytes, as compared to that of standard anticancer drug.

  13. In Vitro Assay of Ethanolic Heat Reflux Extract of Nicotiana tabacum L. var Virginia Against Nosocomial Bacteria Pathogen

    Science.gov (United States)

    Pramono, Andri; Fauzantoro, Ahmad; Rizki Hidayati, Irma; Hygea, Arina; Puspita, Oktaviani Sandra; Muktamiroh, Hikmah; Simanjuntak, Kristina; Gozan, Misri

    2018-03-01

    Tobacco plays an important role in international trade as one of the export commodities. Indonesia is one of the good quality export contributors of tobacco leaves in the world. Nevertheless, tobacco is used only as a raw material for the cigarette industries, and the rise on anti-cigarette regulations prompted the exploration of alternative product from tobacco plants. The content of alkaloids, flavonoids, terpenoids and steroids in tobacco leaves were reported in literatures as antibacterial. Therefore, this study proposed in vitro assay of the ethanolic heat reflux extract (EHRE) of Nicotiana tabacum var. Virginia against nosocomial bacteria pathogen ((Pseudomonas aeruginosa (ATCC 27853), Eschericia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212)). Kirby-bauer diffusion method was used for this assay. The concentration of the EHRE for Kirby-bauer assay were 20; 40; 60; 80; and 100%. The presence of clear zones on Kirby-bauer test, against the growth of each nosocomial bacteria pathogen show that tobacco extract has antibacterial effect. Statistical analysis result showed that each extract concentration had significant difference value (p steroids) of tobacco leaf extracts (N. tabacum) has potential as antibacterial against nosocomial bacteria pathogen. Nevertheless, optimization of tobacco leaf extract to obtain maximum active ingredient still needs to be done. This study is important for further development of the tobacco leaf extract as antibacterial

  14. Evaluation of drug-induced hematotoxicity using novel in vitro monkey CFU-GM and BFU-E colony assays.

    Science.gov (United States)

    Goto, Koichi; Goto, Mayumi; Ando-Imaoka, Masako; Kai, Kiyonori; Mori, Kazuhiko

    2017-01-01

    In order to evaluate drug-induced hematotoxicity in monkey cells in vitro, colony-forming unit-granulocyte, macrophage (CFU-GM), and burst-forming unit-erythroid (BFU-E) colony assays were established using mononuclear cells in the bone marrow collected from male cynomolgus monkeys. Furthermore, the effects of doxorubicin, chloramphenicol, and linezolid on CFU-GM and BFU-E colony formation were investigated using established monkey CFU-GM and BFU-E colony assays in comparison with those on human CFU-GM and BFU-E colonies acquired from human umbilical cord blood cells. Bone marrow mononuclear cells were collected from the ischial or iliac bone of male cynomolgus monkeys. The cells were subsequently processed by density gradient separation at 1.067, 1.070, or 1.077 g/mL for CFU-GM or 1.077 g/mL for BFU-E, and then cultured in methylcellulose medium for 9 or 13 days, respectively. A sufficient number of CFU-GM colonies were formed from mononuclear cells processed at a density of 1.070 g/mL. Moreover, the number of BFU-E colonies from the cells processed at a density of 1.077 g/mL was sufficient for the colony assay. The number of CFU-GM or BFU-E colonies decreased after treatment with the drugs of interest in a concentration-dependent manner. Compared with human CFU-GM, monkey CFU-GM were more sensitive to chloramphenicol and resistant to doxorubicin, whereas monkey BFU-E were more sensitive to all compounds in comparison to the sensitivity of human BFU-E. In conclusion, monkey CFU-GM and BFU-E colony assays were established and considered useful tools to evaluate the differences in drug-induced hematotoxicity between species.

  15. Improving colloidal properties of quantum dots with combined silica and polymer coatings for in vitro immuofluorenscence assay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bingbo [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Xing Da [South China Normal University, MOE Key Laboratory of Laser Life Science (China); Lin Chao; Guo Fangfang; Zhao Peng [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Wen Xuejun [Clemson University, Clemson-MUSC Bioengineering Program, Department of Bioengineering (United States); Bao Zhihao, E-mail: zbao@tongji.edu.cn; Shi Donglu [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China)

    2011-06-15

    Semiconductor quantum dots (QDs) are promising fluorescence probes for immuofluorescence assay in the biological applications. However, water solubilization and non-specific binding are two critical issues to be addressed for the practical uses. Here, we reported a new type of QDs with combined silica and polymer coating. QDs with excellent colloidal properties were prepared via carboxylation of the amino groups on the surface of silica-coated QDs by reacting with multi-carboxyl poly (acrylic acid) (PAA). Hydrodynamic size of PAA-functionalized silica-coated QDs was around 40 nm. They were highly fluorescent (about 47.8% quantum yield). No precipitate of QDs was observed after 3 month storage at 4 Degree-Sign C. When cancer cells (HeLa) were used, the functionalized QDs exhibited little or no non-specific cellular binding. The results from in vitro experiments indicated that PAA-functionalized silica-coated QDs-antibody bioconjugates had excellent antigen-capture ability and exhibited little or no non-specific binding to polystyrene spheres which were used to immobilize the antigen for immuoflurescence assay. The PAA-functionalized silica-coated QDs with improved colloidal properties could serve as excellent alternative fluorescent probes for biodetection.

  16. In vitro digestibility of individual amino acids in rumen-undegraded protein: the modified three-step procedure and the immobilized digestive enzyme assay.

    Science.gov (United States)

    Boucher, S E; Calsamiglia, S; Parsons, C M; Stern, M D; Moreno, M Ruiz; Vázquez-Añón, M; Schwab, C G

    2009-08-01

    Three soybean meal, 3 SoyPlus (West Central Cooperative, Ralston, IA), 5 distillers dried grains with solubles, and 5 fish meal samples were used to evaluate the modified 3-step in vitro procedure (TSP) and the in vitro immobilized digestive enzyme assay (IDEA; Novus International Inc., St. Louis, MO) for estimating digestibility of AA in rumen-undegraded protein (RUP-AA). In a previous experiment, each sample was ruminally incubated in situ for 16 h, and in vivo digestibility of AA in the intact samples and in the rumen-undegraded residues (RUR) was obtained for all samples using the precision-fed cecectomized rooster assay. For the modified TSP, 5 g of RUR was weighed into polyester bags, which were then heat-sealed and placed into Daisy(II) incubator bottles. Samples were incubated in a pepsin/HCl solution followed by incubation in a pancreatin solution. After this incubation, residues remaining in the bags were analyzed for AA, and digestibility of RUP-AA was calculated based on disappearance from the bags. In vitro RUP-AA digestibility estimates obtained with this procedure were highly correlated to in vivo estimates. Corresponding intact feeds were also analyzed via the pepsin/pancreatin steps of the modified TSP. In vitro estimates of AA digestibility of the feeds were highly correlated to in vivo RUP-AA digestibility, which suggests that the feeds may not need to be ruminally incubated before determining RUP-AA digestibility in vitro. The RUR were also analyzed via the IDEA kits. The IDEA values of the RUR were good predictors of RUP-AA digestibility in soybean meal, SoyPlus, and distillers dried grains with solubles, but the IDEA values were not as good predictors of RUP-AA digestibility in fish meal. However, the IDEA values of intact feed samples were also determined and were highly correlated to in vivo RUP-AA digestibility for all feed types, suggesting that the IDEA value of intact feeds may be a better predictor of RUP-AA digestibility than the IDEA

  17. Feasibility assessment of Micro electrode chip assay (MEA as a method of detecting neurotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    Enrico eDefranchi

    2011-04-01

    Full Text Available Detection and characterization of chemically-induced toxic effects in the nervous system represent a challenge for the hazard assessment of chemicals. In vivo, neurotoxicological assessments exploit the fact that the activity of neurons in the central and peripheral nervous system has functional consequences. And so far, no in vitro method for evaluating the neurotoxic hazard has yet been validated and accepted for regulatory purpose.The microelectrode array (MEA assay consists of a culture chamber into which an integrated array of microelectrodes is capable of measuring extracellular electrophysiology (spikes and bursts from electro-active tissues. A wide variety of electrically excitable biological tissues may be placed onto the chips including primary cultures of nervous system tissue. Recordings from this type of in vitro cultured system are non invasive, give label free evaluations and provide a higher throughput than conventional electrophysiological techniques. In this paper, twenty substances were tested in a blinded study for their toxicity and dose-response curves were obtained from foetal rat cortical neuronal networks coupled to MEAs. The experimental procedure consisted of evaluating the firing activity (spiking rate and modification/reduction in response to chemical administration. Native/reference activity, 30 minutes of activity recording per dilution, plus the recovery points (after 24 hours were recorded. The preliminary data, using a set of chemicals with different mode-of-actions (13 known to be neurotoxic, 2 non-neuroactive and not toxic and 5 non-neuroactive but toxic show good predictivity (sensitivity: 0.77; specificity: 0.86; accuracy: 0.85. Thus, the MEA with a neuronal network has the potency to become an effective tool to evaluate the neurotoxicity of substances in vitro.

  18. Micronucleus formation in cultured human keratinocytes following exposure to mitomycin C and cyclophosphamide.

    Science.gov (United States)

    van Pelt, F N; Haring, R M; Overkamp, M J; Weterings, P J

    1991-02-01

    A method is described to investigate the induction of micronuclei in cultured human keratinocytes after short-term exposure to known clastogenic agents. The cytokinesis-block method was applied to facilitate the scoring of micronucleated cells. Mitomycin C, a direct-acting compound, caused a 5-20-fold increase in micronuclei over the controls at the highest concentration tested (1 microgram/ml). Cyclophosphamide, an agent requiring metabolic activation, did not induce the formation of micronuclei in cultured keratinocytes. However, after pretreatment of the keratinocyte cultures with Aroclor 1254 for 72 h, exposure to cyclophosphamide resulted in a 3-fold increase in micronucleus frequency over the controls. No cytogenetic effect of Aroclor 1254 was observed in control experiments.

  19. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    International Nuclear Information System (INIS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  20. Assessment of the genetic risks of a metallic alloy used in medical implants.

    Science.gov (United States)

    Gomes, Cristiano C; Moreira, Leonardo M; Santos, Vanessa J S V; Ramos, Alfeu S; Lyon, Juliana P; Soares, Cristina P; Santos, Fabio V

    2011-01-01

    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.

  1. Effect of the trehalose levels on the screening of yeast as probiotic by in vivo and in vitro assays Efeito da trealose na seleção de leveduras para uso como probióticos utilizando testes in vitro e in vivo

    Directory of Open Access Journals (Sweden)

    Flaviano S. Martins

    2008-03-01

    Full Text Available Probiotics are viable defined microorganisms (bacteria or yeasts that exert a beneficial effect on the health of the host when ingested in adequate amounts. Screening for such biotherapeutic agents is commonly performed by in vitro assays simulating gastrointestinal environment to determine the ability to survive in the digestive tract. In the present study, the possibility of extrapolation of data obtained in in vitro assays to in vivo conditions was studied using five Saccharomyces cerevisiae strains isolated from Brazilian Atlantic rain forest. Trehalose contents and survival after exposure to a combination of physiological stresses generally found in the gastrointestinal tract of humans were determined for the five yeasts and compared to the behavior of Saccharomyces boulardii, a well-known probiotic. The results were completed with the colonization capacity of the gastrointestinal tract of gnotobiotic mice by these yeast strains. Some results obtained by in vitro assays are not confirmed by in vivo experiments, indicating that the extrapolation cannot be always done.Probióticos são definidos como microrganismos (bactérias e leveduras que exercem um efeito benéfico na saúde do hospedeiro quando ingeridos em quantidades adequadas. A seleção desses agentes bioterapêuticos normalmente é feita por testes in vitro simulando o ambiente gastrointestinal que determina a capacidade de sobrevivência no trato digestivo. Neste trabalho, a possibilidade de extrapolação dos dados obtidos nos testes in vitro para as condições in vivo foi estudada utilizando cinco linhagens de Saccharomyces cerevisiae isoladas da floresta Atlântica brasileira. O conteúdo de trealose e a sobrevivência após a exposição a diversos estresses fisiológicos geralmente encontrados no trato gastrointestinal de humanos foram determinados para as cinco linhagens e os resultados comparados com a Saccharomyces boulardii, um probiótico conhecido. Esses resultados

  2. Test of micronucleus in lymphocytes with the cytokinesis-block like possible indicator of the answer of the patient to the radiotherapy; Ensayo de micronucleos en linfocitos con bloqueo de la citocinesis como posible indicador de la respuesta del paciente a la radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Giorgio, Marina di; Nasazzi, Nora; Taja, Maria R. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Roth, Berta [Instituto de Oncologia Angel H. Roffo, Buenos Aires (Argentina); Sardi, Mabel; Menendez, Pablo R. [Hospital Italiano, Buenos Aires (Argentina)

    2001-07-01

    In order to evaluate the individual cytogenetic response to radiotherapy and its comparison with the clinical response, the cytokinesis-block micronucleus assay was applied to peripheral blood lymphocytes of patients with cervix cancer undergoing radiotherapy. The cytogenetic data were analysed using a mathematical model to evaluate the attenuation of the cytogenetic effect as a function of the time between a single exposure and blood sampling, estimating a cytogenetic recovery factor (k) that might correlate with the individual radiosensitivity, contributing with radiosensitivity tests of current use but applying a rapid methodology easy to implement in a routine clinical laboratory. Long term clinical observations could confirm the validity of k in expressing predisposition of the subject to develop delayed effects. (author)

  3. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo.

    Science.gov (United States)

    Masumura, Kenichi; Toyoda-Hokaiwado, Naomi; Niimi, Naoko; Grúz, Petr; Wada, Naoko A; Takeiri, Akira; Jishage, Kou-Ichi; Mishima, Masayuki; Nohmi, Takehiko

    2017-12-01

    DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Efficacy Study of Broken Rice Maltodextrin in In Vitro Wound Healing Assay

    Directory of Open Access Journals (Sweden)

    Zahiah Mohamed Amin

    2015-01-01

    Full Text Available Maltodextrins that contain both simple sugars and polymers of saccharides have been widely used as ingredients in food products and pharmaceutical delivery systems. To date, no much work has been reported on the applications of maltodextrin from broken rice (RB sources. Therefore, the objective of this work was to investigate the in vitro wound healing efficacy of RB maltodextrin at different conditions. Wounds treated with lower dextrose equivalent (DE range (DE 10–14 of maltodextrins at a concentration of 10% obtained from RB were found to be able to heal the wounds significantly faster (p<0.01 than maltodextrin with higher DE ranges (DE 15–19 and DE 20–24 and concentrations of 5% and 20%. The findings from both BrdU and MTT assay further confirmed its wound healing properties as the NIH 3T3 fibroblast wounded cells were able to proliferate without causing cytotoxic effect when wounded cell was treated with maltodextrin. All these findings indicated that the RB maltodextrin could perform better than the commercial maltodextrin at the same DE range. This study showed that RB maltodextrins had better functionality properties than other maltodextrin sources and played a beneficial role in wound healing application.

  5. Efficacy Study of Broken Rice Maltodextrin in In Vitro Wound Healing Assay

    Science.gov (United States)

    Mohamed Amin, Zahiah; Koh, Soo Peng; Abdul Hamid, Nur Syazwani

    2015-01-01

    Maltodextrins that contain both simple sugars and polymers of saccharides have been widely used as ingredients in food products and pharmaceutical delivery systems. To date, no much work has been reported on the applications of maltodextrin from broken rice (RB) sources. Therefore, the objective of this work was to investigate the in vitro wound healing efficacy of RB maltodextrin at different conditions. Wounds treated with lower dextrose equivalent (DE) range (DE 10–14) of maltodextrins at a concentration of 10% obtained from RB were found to be able to heal the wounds significantly faster (p < 0.01) than maltodextrin with higher DE ranges (DE 15–19 and DE 20–24) and concentrations of 5% and 20%. The findings from both BrdU and MTT assay further confirmed its wound healing properties as the NIH 3T3 fibroblast wounded cells were able to proliferate without causing cytotoxic effect when wounded cell was treated with maltodextrin. All these findings indicated that the RB maltodextrin could perform better than the commercial maltodextrin at the same DE range. This study showed that RB maltodextrins had better functionality properties than other maltodextrin sources and played a beneficial role in wound healing application. PMID:26436094

  6. Changes of chromosome aberration rate and micronucleus frequency along with accumulated dose in continuously irradiated mice with a low dose rate of γ-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Izumi, Jun; Yanai, Takanori; Ichinohe, Kazuaki; Matsumoto, Tsuneya

    2003-01-01

    Chromosome aberrations in chronically exposed workers in nuclear facilities and medical radiologists have been reported. However chronological change of chromosome aberration rates along with accumulated dose has not been well studied. Chromosome aberrations and micronuclei in spleen lymphocytes were observed serially in mice continuously irradiated with a low dose rate of 20 mGy/day up to 400 days. Chromosome aberration rates were rapidly increased to 11.1% at 1 Gy, while micronucleus incidence increased at 5 Gy. After these doses their increase rates were saturated. Micronucleus incidence in bone marrow erythroblasts was higher than in spleen cells. These chronological changes of cytogenetic aberrations seem to be induced through a balance between developments of chromosome aberrations and micronuclei, and life span of spleen lymphocytes. These results will be helpful for risk assessment in low dose rate radiation exposure. (author)

  7. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane

    DEFF Research Database (Denmark)

    Ziegler, Hanne L; Staerk, Dan; Christensen, Jette

    2002-01-01

    Lupeol, which shows in vitro inhibitory activity against Plasmodium falciparum 3D7 strain with a 50% inhibitory concentration (IC50) of 27.7 +/- 0.5 microM, was shown to cause a transformation of the human erythrocyte shape toward that of stomatocytes. Good correlation between the IC50 value...... culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause...... for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay....

  8. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  9. PAMPA--a drug absorption in vitro model. 5. Unstirred water layer in iso-pH mapping assays and pKa(flux)--optimized design (pOD-PAMPA).

    Science.gov (United States)

    Ruell, Jeffrey A; Tsinman, Konstantin L; Avdeef, Alex

    2003-12-01

    Iso-pH mapping unstirred parallel artificial membrane permeability assay (PAMPA) was used to measure the effective permeability, P(e), as a function of pH from 3 to 10, of five weak monoprotic acids (ibuprofen, naproxen, ketoprofen, salicylic acid, benzoic acid), an ampholyte (piroxicam), five monoprotic weak bases (imipramine, verapamil, propranolol, phenazopyridine, metoprolol), and a diprotic weak base (quinine). The intrinsic permeability, P(o), the unstirred water layer (UWL) permeability, P(u), and the apparent pK(a) (pK(a)(flux)) were determined from the pH dependence of logP(e). The underlying permeability-pH equations were derived for multiprotic weak acids, weak bases and ampholytes. The average thickness of the unstirred water layer on each side of the membrane was estimated to be nearly 2000 microm, somewhat larger than that found in Caco-2 permeability assays (unstirred). Since the UWL thickness in the human intestine is believed to be about forty times smaller, it is critical to correct the in vitro permeability data for the effect of the UWL. Without such correction, the in vitro permeability coefficient of lipophilic molecules would be indicative only of the property of water. In single-pH PAMPA (e.g. pH 7.4), the uncertainty of the UWL contribution can be minimized if a specially-selected pH (possibly different from 7.4) were used in the assay. From the analysis of the shapes of the log P(e)-pH plots, a method to improve the selection of the assay pH, called pK(a)(flux)-optimized design (pOD-PAMPA), was described and tested. From an optimally-selected assay pH, it is possible to estimate P(o), as well as the entire membrane permeability-pH profile.

  10. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    International Nuclear Information System (INIS)

    Shin, Hyeong-Moo; Ernstoff, Alexi; Csiszar, Susan A.

    2015-01-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models

  11. Appraisal of Total Phenol, Flavonoid Contents, and Antioxidant Potential of Folkloric Lannea coromandelica Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Tekeshwar Kumar

    2015-01-01

    Full Text Available The aim of this study was to determine the impending antioxidant properties of different extracts of crude methanolic extract (CME of leaves of Lannea coromandelica (L. coromandelica and its two ethyl acetate (EAF and aqueous (AqF subfractions by employing various established in vitro systems and estimation of total phenolic and flavonoid content. The results showed that extract and fractions possessed strong antioxidant activity in vitro and among them, EAF had the strongest antioxidant activity. EAF was confirmed for its highest phenolic content, total flavonoid contents, and total antioxidant capacity. The EAF was found to show remarkable scavenging activity on 2,2-diphenylpicrylhydrazyl (DPPH (EC50 63.9 ± 0.64 µg/mL, superoxide radical (EC50 8.2 ± 0.12 mg/mL, and Fe2+ chelating activity (EC50 6.2 ± 0.09 mg/mL. Based on our in vitro results, EAF was investigated for in vivo antioxidant assay. Intragastric administration of the EAF can significantly increase levels of superoxide dismutase (SOD, catalase (CAT, glutathione (GSH, and glutathione peroxidase (GSH-Px levels, and decrease malondialdehyde (MDA content in the liver and kidney of CCl4-intoxicated rats. These new evidences show that L. coromandelica bared antioxidant activity.

  12. Two-stage in vitro digestibility assay, a tool for formulating non-starch polysaccharide degrading enzyme combinations for commonly used feed ingredients of poultry rations

    Directory of Open Access Journals (Sweden)

    Y. Ramana Reddy

    2013-05-01

    Full Text Available Aim: An attempt was made to assess the effect of pure enzyme combinations with the objective of formulating customized enzyme mixtures based on sugar release when subjected to two-stage in vitro digestion assay. Materials and Methods: A two-stage in vitro digestibility assay was carried out for commonly used feed ingredients for poultry viz., maize, soy bean meal, sunflower cake, and de-oiled rice bran supplemented with three concentrations of xylanase (5000; 7500 and 10000 IU/kg, cellulase (50; 100 and 400 IU/kg and â-D-glucanase (100; 200 and 400 IU/kg were used to formulate various NSP enzymes combinations. In total 27 NSP enzyme combinations (3x3x3 were formulated and the sugar released due to NSP digestion was quantified by phenol sulphuric acid method. Results: The total sugar release was significantly (P<0.05 higher with supplementation of various enzymes combinations for maize, sunflower cake and de-oiled rice bran where as no significant (P<0.05 interaction of various NSP enzymes combinations was observed for soy bean meal. The NSP digestibility was highest in combination (xylanase-5000, cellulase-50 and â-D-glucanase-400 IU/kg, (xylanase-10000, cellulase-50 and â-D-glucanase-200 IU/kg and (xylanase-7500, cellulase- 100 and â-D-glucanase-100 IU/kg for maize, sunflower cake and de-oiled rice bran respectively. In case of sunflower cake, significant (P<0.01 three way interaction was observed among the xylanase, cellulose, and â-D-glucanase enzymes and the two-way interactions between the enzymes were also significant (P<0.01. Conclusion: It is concluded that 'n' number of non-starch Polysaccharide enzymes combinations can be screened for their efficiency to digest non-starch Polysaccharides present in various feed ingredients commonly used in poultry rations by employing two-stage in vitro digestibility assay as a tool. [Vet World 2013; 6(8.000: 525-529

  13. Relationships between ytterbium precipitation assay, colorimetric ...

    African Journals Online (AJOL)

    digestion and metabolism of protein (Komolong et al., 2001). ... room temperature (25 °C) pending chemical analyses and in vitro ... assayed without sodium sulphite but with a heat-stable α-amylase due to the high ... of starch in the tree fruits.

  14. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay

    International Nuclear Information System (INIS)

    Greaves, Alana K.; Su, Guanyong; Letcher, Robert J.

    2016-01-01

    The in vitro biotransformation and kinetics of six organophosphate triester (OPE) flame retardants were investigated in herring gulls (Larus argentatus) from the Great Lakes using a hepatic microsomal metabolism assay. Administration of each individual OPE (tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), triethyl phosphate (TEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP)) to the in vitro assay (concentration range 0.01 to 10 μM) resulted in rapid depletion with the exception of TEP. Following the Michaelis-Menten enzyme kinetics model, a preliminary 2-minute incubation period was used to estimate the V max (± SE) values (i.e., the maximal rate of reaction for a saturated enzyme system), which ranged from 5.0 ± 0.4 (TPHP) to 29 ± 18 pmol/min/mg protein (TBOEP), as well as the K M (± SE) values (i.e., the OPE concentration corresponding to one half of the V max ), which ranged from 9.8 ± 1 (TPHP) to 189 ± 135 nM (TBOEP). Biotransformation assays over a 100-minute incubation period revealed that TNBP was metabolized most rapidly (with a depletion rate of 73 ± 4 pmol/min/mg protein), followed by TBOEP (53 ± 8 pmol/min/mg), TCIPP (27 ± 1 pmol/min/mg), TPHP (22 ± 2 pmol/min/mg) and TDCIPP (8 ± 1 pmol/min/mg). In vitro biotransformation of OP triesters was clearly structure-dependent where non-halogenated alkyl OP triesters were metabolized more rapidly than halogenated alkyl triesters. Halogenated OP triesters were transformed to their respective diesters more efficiently relative to non-halogenated OP triesters. To our knowledge, this is the first study to investigate OP triester metabolism and OP diester formation in an avian or wildlife model system, which is important to understand the fate and biological activity of OPEs in an exposed organism. - Highlights: • The metabolism and kinetics of 6 OPEs were examined in herring gull liver microsomes. • The

  15. Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, Alana K. [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada); Su, Guanyong, E-mail: guanyong.su85@gmail.com [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada); Letcher, Robert J., E-mail: robert.letcher@canada.ca [Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6 (Canada)

    2016-10-01

    The in vitro biotransformation and kinetics of six organophosphate triester (OPE) flame retardants were investigated in herring gulls (Larus argentatus) from the Great Lakes using a hepatic microsomal metabolism assay. Administration of each individual OPE (tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), triethyl phosphate (TEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP)) to the in vitro assay (concentration range 0.01 to 10 μM) resulted in rapid depletion with the exception of TEP. Following the Michaelis-Menten enzyme kinetics model, a preliminary 2-minute incubation period was used to estimate the V{sub max} (± SE) values (i.e., the maximal rate of reaction for a saturated enzyme system), which ranged from 5.0 ± 0.4 (TPHP) to 29 ± 18 pmol/min/mg protein (TBOEP), as well as the K{sub M} (± SE) values (i.e., the OPE concentration corresponding to one half of the V{sub max}), which ranged from 9.8 ± 1 (TPHP) to 189 ± 135 nM (TBOEP). Biotransformation assays over a 100-minute incubation period revealed that TNBP was metabolized most rapidly (with a depletion rate of 73 ± 4 pmol/min/mg protein), followed by TBOEP (53 ± 8 pmol/min/mg), TCIPP (27 ± 1 pmol/min/mg), TPHP (22 ± 2 pmol/min/mg) and TDCIPP (8 ± 1 pmol/min/mg). In vitro biotransformation of OP triesters was clearly structure-dependent where non-halogenated alkyl OP triesters were metabolized more rapidly than halogenated alkyl triesters. Halogenated OP triesters were transformed to their respective diesters more efficiently relative to non-halogenated OP triesters. To our knowledge, this is the first study to investigate OP triester metabolism and OP diester formation in an avian or wildlife model system, which is important to understand the fate and biological activity of OPEs in an exposed organism. - Highlights: • The metabolism and kinetics of 6 OPEs were examined in herring gull liver

  16. A multi-assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Chris D., E-mail: cmetcalfe@trentu.ca [Environmental and Resource Studies, Trent University, Peterborough, ON, K9J 7B8 (Canada); Kleywegt, Sonya [Standards Development Branch, Ontario Ministry of the Environment, 40 St. Clair Ave. West, Toronto, ON, M4V 1M2 (Canada); Letcher, Robert J. [Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3 (Canada); Topp, Edward [Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON, N5V 7T3 (Canada); Wagh, Purva; Trudeau, Vance L.; Moon, Thomas W. [Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2013-06-01

    Environmental agencies must monitor an ever increasing range of contaminants of emerging concern, including endocrine disrupting compounds (EDCs). An alternative to using ultra-trace chemical analysis of samples for EDCs is to test for biological activity using in vitro screening assays, then use these assay results to direct analytical chemistry approaches. In this study, we used both analytical approaches and in vitro bioassays to characterize the EDCs present in treated wastewater from four wastewater treatment plants (WWTPs) in Ontario, Canada. Estrogen-mediated activity was assessed using a yeast estrogenicity screening (YES) assay. An in vitro competitive binding assay was used to assess capacity to interfere with binding of the thyroid hormone, thyroxine (T4) to the recombinant human thyroid hormone transport protein, transthyretin (i.e. hTTR). An in vitro binding assay with a rat peroxisome proliferator responsive element transfected into a rainbow trout gill cell line was used to evaluate binding and subsequent gene expression via the peroxisome proliferator activated receptor (PPAR). Analyses of a suite of contaminants known to be EDCs in extracts from treated wastewater were conducted using either gas chromatography with mass spectrometry (GC-MS) or liquid chromatography with tandem mass spectrometry (LC-MS/MS). Estrogenic activity was detected in the YES assay only in those extracts that contained detectable amounts of estradiol (E2). There was a positive relationship between the degree of response in the T4-hTTR assay and the amounts of polybrominated diphenyl ether (PBDE) congeners 47 and 99, triclosan and the PBDE metabolite, 4-OH-BDE17. Several wastewater extracts gave a positive response in the PPAR assay, but these responses were not correlated with the amounts of any of the EDCs analyzed by LC-MS/MS. Overall, these data indicate that a step-wise approach is feasible using a combination of in vitro testing and instrumental analysis to monitor for

  17. A multi-assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples

    International Nuclear Information System (INIS)

    Metcalfe, Chris D.; Kleywegt, Sonya; Letcher, Robert J.; Topp, Edward; Wagh, Purva; Trudeau, Vance L.; Moon, Thomas W.

    2013-01-01

    Environmental agencies must monitor an ever increasing range of contaminants of emerging concern, including endocrine disrupting compounds (EDCs). An alternative to using ultra-trace chemical analysis of samples for EDCs is to test for biological activity using in vitro screening assays, then use these assay results to direct analytical chemistry approaches. In this study, we used both analytical approaches and in vitro bioassays to characterize the EDCs present in treated wastewater from four wastewater treatment plants (WWTPs) in Ontario, Canada. Estrogen-mediated activity was assessed using a yeast estrogenicity screening (YES) assay. An in vitro competitive binding assay was used to assess capacity to interfere with binding of the thyroid hormone, thyroxine (T4) to the recombinant human thyroid hormone transport protein, transthyretin (i.e. hTTR). An in vitro binding assay with a rat peroxisome proliferator responsive element transfected into a rainbow trout gill cell line was used to evaluate binding and subsequent gene expression via the peroxisome proliferator activated receptor (PPAR). Analyses of a suite of contaminants known to be EDCs in extracts from treated wastewater were conducted using either gas chromatography with mass spectrometry (GC-MS) or liquid chromatography with tandem mass spectrometry (LC-MS/MS). Estrogenic activity was detected in the YES assay only in those extracts that contained detectable amounts of estradiol (E2). There was a positive relationship between the degree of response in the T4-hTTR assay and the amounts of polybrominated diphenyl ether (PBDE) congeners 47 and 99, triclosan and the PBDE metabolite, 4-OH-BDE17. Several wastewater extracts gave a positive response in the PPAR assay, but these responses were not correlated with the amounts of any of the EDCs analyzed by LC-MS/MS. Overall, these data indicate that a step-wise approach is feasible using a combination of in vitro testing and instrumental analysis to monitor for

  18. Predictive radiosensitivity tests in human lymphocytes

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.; Sardi, M.; Busto, E.; Mairal, L.; Roth, B.; Menendez, P.; Bonomi, M.

    2004-01-01

    Individual radiosensitivity is an inherent characteristic, associated with an abnormally increased reaction to ionising radiation of both the whole body and cells derived from body tissues. Human population is not uniform in its radiation sensitivity. Radiosensitive sub-groups exist, which would suffer an increased incidence of both deterministic and stochastic effects. Clinical studies have suggested that a large part of the spectrum of normal tissue reaction may be due to differences in individual radiosensitivity. The identification of such sub-groups should be relevant for radiation therapy and radiation protection purposes. It is suggested that DNA repair mechanisms are involved. Consequently, the characterization of DNA repair in lymphocytes through cytokinesis blocked micronucleus (MN) and alkaline single-cell microgel electrophoresis (comet) assays could be a suitable approache to evaluate individual radiosensitivity in vitro. The aims of this study were: 1) To assess the in vitro radiosensitivity of peripheral blood lymphocytes from two groups of cancer patients (prospectively and retrospectively studied), using MN and comet assays, in comparison with the clinical radiation reaction and 2) To test the predictive potential of both techniques for the identification of radiosensitivity sub-groups. 38 cancer patients receiving radiation therapy were enrolled in this study. 19 patients were evaluated prior, mid-way and on completion of treatment (prospective group) and 19 patients were evaluated about 6-18 month after radiotherapy (retrospective group). Cytogenetic data from the prospective group were analysed using a mathematical model to evaluate the attenuation of the cytogenetic effect as a function of the time between a single exposure and blood sampling, estimating a cytogenetic recovery factor k. In the retrospective group, blood samples were irradiated in vitro with 0 (control) or 2 Gy and evaluated using MN test. Cytogenetic data were analysed

  19. Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Barber, J.B.P.; Burrill, W.; Spreadborough, A.R.; Levine, E.; Warren, C.; Scott, D.; Kiltie, A.E.; Roberts, S.A.

    2000-01-01

    There is a need for rapid and reliable tests for the prediction of normal tissue responses to radiotherapy, as this could lead to individualization of patient radiotherapy schedules and thus improvements in the therapeutic ratio. Because the use of cultured fibroblasts is too slow to be practicable in a clinical setting, we evaluated the predictive role of assays of lymphocyte chromosomal radiosensitivity in patients having radiotherapy for breast cancer. Radiosensitivity was assessed using a macronucleus (MN) assay at high dose rate (HDR) and low dose rate (LDR) on lymphocytes irradiated in the G 0 phase of the cell cycle (Scott D, Barber JB, Levine EL, Burril W, Roberts SA. Radiation-induced micronucleus induction in lymphocytes identifies a frequency of radiosensitive cases among breast cancer patients: a test for predisposition? Br. J. Cancer 1998;77;614-620) and an assay of G 2 phase chromatid radiosensitivity ('G 2 assay') (Scott D, Spreadborough A, Levine E, Roberts SA. Genetic predisposition in breast cancer. Lancet 1994; 344: 1444). In a study of acute reactions, blood samples were taken from breast cancer patients before the start of radiotherapy, and the skin reaction documented. 116 patients were tested with the HDR MN assay, 73 with the LDR MN assay and 123 with the G 2 assay. In a study of late reactions, samples were taken from a series of breast cancer patients 8-14 years after radiotherapy and the patients assessed for the severity of late effects according to the 'LENT SOMA' scales. 47 were tested with the HDR assay, 26 with the LDR assay and 19 with the G 2 assay. For each clinical endpoint, patients were classified as being normal reactors or 'highly radiosensitive patients' (HR patients (Burnet NG. Johansen J, Turesson I, Nyman J. Describing patients' normal tissue reactions: Concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Int. J. Cancer 1998

  20. A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays

    Science.gov (United States)

    Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.

    2016-01-01

    ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method

  1. Studies on bystander effects of 14MeV neutrons in human blood lymphocytes using CBMN assay

    International Nuclear Information System (INIS)

    Bakkiam, D.; Arul Anantha Kumar, A.; Sonwani, Swetha; Alaguraja, E.; Mathiyarasu, R.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    Radiation induced Bystander Effects (RIBE) in cells generally describes the phenomenon that non-irradiated cells respond as if they have themselves been irradiated upon receiving signals from directly irradiated cells, either through partnering or medium transfer. While it has been well established that bystander effects could be induced by gamma radiation and alpha-particle radiation it is still a question whether neutrons induce bystander effects or not. In view of this, experiments were carried out to quantify cytogenetic damage in human blood lymphocytes induced by neutron directly and indirectly i.e. RIBE through medium transfer method. Cytokinesis Blocked MicroNucleus (CBMN) assay was used to study DNA damage events wherein micronuclei (MN) were scored in binucleated cells. Results of MN frequency in neutron direct and indirect irradiated blood lymphocytes (bystander samples) are compared

  2. Nonclinical cardiovascular safety of pitolisant: comparing International Conference on Harmonization S7B and Comprehensive in vitro Pro-arrhythmia Assay initiative studies.

    Science.gov (United States)

    Ligneau, Xavier; Shah, Rashmi R; Berrebi-Bertrand, Isabelle; Mirams, Gary R; Robert, Philippe; Landais, Laurent; Maison-Blanche, Pierre; Faivre, Jean-François; Lecomte, Jeanne-Marie; Schwartz, Jean-Charles

    2017-12-01

    We evaluated the concordance of results from two sets of nonclinical cardiovascular safety studies on pitolisant. Nonclinical studies envisaged both in the International Conference on Harmonization (ICH) S7B guideline and Comprehensive in vitro Pro-arrhythmia Assay (CiPA) initiative were undertaken. The CiPA initiative included in vitro ion channels, stem cell-derived human ventricular myocytes, and in silico modelling to simulate human ventricular electrophysiology. ICH S7B-recommended assays included in vitro hERG (K V 11.1) channels, in vivo dog studies with follow-up investigations in rabbit Purkinje fibres and the in vivo Carlsson rabbit pro-arrhythmia model. Both sets of nonclinical data consistently excluded pitolisant from having clinically relevant QT-liability or pro-arrhythmic potential. CiPA studies revealed pitolisant to have modest calcium channel blocking and late I Na reducing activities at high concentrations, which resulted in pitolisant reducing dofetilide-induced early after-depolarizations (EADs) in the ICH S7B studies. Studies in stem cell-derived human cardiomyocytes with dofetilide or E-4031 given alone and in combination with pitolisant confirmed these properties. In silico modelling confirmed that the ion channel effects measured are consistent with results from both the stem cell-derived cardiomyocytes and rabbit Purkinje fibres and categorized pitolisant as a drug with low torsadogenic potential. Results from the two sets of nonclinical studies correlated well with those from two clinical QT studies. Our findings support the CiPA initiative but suggest that sponsors should consider investigating drug effects on EADs and the use of pro-arrhythmia models when the results from CiPA studies are ambiguous. © 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  3. Evaluation of Antigen-Specific IgM and IgG Production during an In Vitro Peripheral Blood Mononuclear Cell Culture Assay

    Directory of Open Access Journals (Sweden)

    Yoshiko Matsuda

    2017-07-01

    Full Text Available The recent attention given to diseases associated with memory B-cell (mBC-produced antibodies (Abs suggests the need for a similar in vitro assay to evaluate the functions of mBCs. Here, we cultured peripheral blood mononuclear cells (PBMCs with the intent to collect mBC-derived Abs in vitro and maintain their cell–cell contact-dependent interactions with helper T-cells. PBMCs were cultured with interleukin (IL-21, CpG-oligodeoxynucleotides (ODN, phorbol myristate acetate (PMA, and phytohemagglutinin/leucoagglutinin (PHA-L in 24-well flat-bottom plates (5 × 105 cells/well. A culture supernatant analysis of PBMCs from healthy donors (n = 10 indicated that antigen-specific IgM Ab levels in a PBMC culture supernatant might be better able to demonstrate the antigen sensitization status in a smaller peripheral blood sample, compared to IgG because Epstein–Barr virus-specific IgM mBCs circulate peripherally at a significantly higher frequency once antiviral humoral immunity has stabilized. Thus, our in vitro assay demonstrated the potential significance of antigen-specific IgM Ab production in the culture supernatants. Furthermore, an analysis of cultured PBMCs from allograft kidney recipients (n = 16 sensitized with de novo donor-specific human leukocyte antigen (HLA-specific Abs (DSAs showed that IgM-type HLA-specific Abs were detected mainly from the culture supernatants from PBMCs of patients with stable graft function, whereas IgG isotype HLA Abs were detectable only from patients with biopsy-proven antibody-mediated rejection. In other words, these IgG isotype Abs also represented an activated humoral immune response in vivo. Additionally, IgM- and IgG-expressing mBCs from healthy donors (n = 5 were cultured with IL-21, CpG-ODN, and a supernatant produced by stimulating CD19+ B-cell-depleted PBMCs with PHA-L and PMA in 24-well flat-bottom plates (1 × 105 cells/well, and the resulting in vitro analysis provided some

  4. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, A.M. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Santos, A.G. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Natural Principles and Toxicology, Rodovia Araraquara-Jau, km 01, Araraquara (Brazil); Csipak, A.R.; Caliri, C.M.; Silva, I.C. [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil); Arbex, M.A. [UNIFESP — Federal University of São Paulo, Paulista College of Medicine, Department of Internal Medicine, Rua Pedro de Toledo, 720, São Paulo (Brazil); Silva, F.S.; Marchi, M.R.R. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Analytical Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Cavalheiro, A.J.; Silva, D.H.S.; Bolzani, V.S. [UNESP — Univ. Estadual Paulista, Chemistry Institute, Department of Organic Chemistry, Rua Francisco Degni, S/N, Araraquara (Brazil); Soares, C.P., E-mail: soarescp@hotmail.com [UNESP — Univ. Estadual Paulista, College of Pharmaceutical Sciences, Department of Clinical Analysis, Rua Expedicionários do Brasil, 1621, Araraquara (Brazil)

    2012-12-15

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ► We assessed DNA protection of C. sylvestris ethanolic extract. ► We assessed DNA protection of casearin X. ► We used Tradescantia pallida micronucleus test as screening. ► We used comet assay and micronucleus test in mice. ► The compounds protected DNA against sugar cane burning pollutants.

  5. Cytogenetic effects of radioiodine therapy: a 20-year follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Gordon K. [Oak Ridge Institute for Science and Education, Radiation Emergency Assistance Center/Training Site, Oak Ridge, TN (United States); Khvostunov, Igor K. [Medical Radiological Research Center, Obninsk, Kaluga Region (Russian Federation); Gregoire, Eric [Institut de Radioprotection et de Surete Nucleaire, PRP-HOM/SRBE/LDB, BP 17, Fontenay aux roses Cedex (France); Barquinero, Joan-Francesc [Universtitat Autonoma de Barcelona, Facultat de Biociencies, Cerdanyola del Valles (Spain); Shi, Lin; Tashiro, Satoshi [Hiroshima University, Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2016-05-15

    The purpose of this study was to compare cytogenetic data in a patient before and after treatment with radioiodine to evaluate the assays in the context of biological dosimetry. We studied a 34-year-old male patient who underwent a total thyroidectomy followed by ablation therapy with {sup 131}I (19.28 GBq) for a papillary thyroid carcinoma. The patient provided blood samples before treatment and then serial samples at monthly intervals during the first year period and quarterly intervals for 5 years and finally 20 years after treatment. A micronucleus assay, dicentric assay, FISH method and G-banding were used to detect and measure DNA damage in circulating peripheral blood lymphocytes of the patient. The results showed that radiation-induced cytogenetic effects persisted for many years after treatment as shown by elevated micronuclei and chromosome aberrations as a result of exposure to {sup 131}I. At 5 years after treatment, the micronucleus count was tenfold higher than the pre-exposure frequency. Shortly after the treatment, micronucleus counts produced a dose estimate of 0.47 ± 0.09 Gy. The dose to the patient evaluated retrospectively using FISH-measured translocations was 0.70 ± 0.16 Gy. Overall, our results show that the micronucleus assay is a retrospective biomarker of low-dose radiation exposure. However, this method is not able to determine local dose to the target tissue which in this case was any residual thyroid cells plus metastases of thyroidal origin. (orig.)

  6. Micronucleus as biomarkers of cancer risk in anabolic androgenic steroids users.

    Science.gov (United States)

    Souza, L da Cunha Menezes; da Cruz, L A; Cerqueira, E de Moraes Marcílio; Meireles, Jrc

    2017-03-01

    The use of anabolic androgenic steroids (AAS) has grown among practitioners of recreational bodybuilding, with significant contributions of designer steroids, aiming muscle hypertrophy in healthy subjects. The abusive use of AAS in general is associated with adverse effects; one of the most worrisome is cancer development. The aim of this study was to evaluate the effectiveness of the cytokinesis block micronucleus (CBMN) test in human lymphocytes in identifying risk groups for cancer development in users of AAS. Blood was collected from 15 AAS users bodybuilders (G1), 20 non-users bodybuilders (G2) and 20 non-users sedentary (G3). MN analysis was performed on a minimum of 1000 binucleated lymphocytes. The occurrence of MN was significantly higher ( p < 0.05) in individuals of G1 compared to G2 and G3. The results indicate the sensitivity of CBMN in human lymphocytes in the identification of chromosomal damage in consequence of AAS.

  7. The ability of in vitro antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems.

    Science.gov (United States)

    Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid

    2016-04-01

    The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.

  8. Genetic toxicology in industry: perspectives and initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, J

    1985-01-01

    Recent studies support the view that, incidents apart, synthetic chemicals in general present only an industrial hygiene problem. It is also apparent that, if performed well, the Salmonella assay plus a genetically independent eukaryotic assay will be sufficient to detect genotoxins in vitro, while the in vivo micronucleus assay, linked to a liver genotoxicity assay, will alert to significant carcinogens. Some carcinogens are not genotoxic, are weak and are usually species/organ specific in their action; they should be recognized as different and treated separately. Cancer bioassays could probably be discontinued except in special cases. Current protocols for such assays often yield misleading data and are unnecessarily expensive. When seeking significant environmental carcinogens and mutagens it would be profitable to turn away from industrial chemicals, despite the fact that they are readily available. In summary, it is suggested that there now exist short-term methods from the results of which it is possible to decide, with a high level of certainty, whether a compound will be a rodent carcinogen at dose levels that may be relevant to man.

  9. Role of Macronutrients and Micronutrients in DNA Damage: Results From a Food Frequency Questionnaire.

    Science.gov (United States)

    Ladeira, Carina; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel

    2017-01-01

    The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein ( P macronutrients and micronutrients.

  10. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    International Nuclear Information System (INIS)

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  11. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin–DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody

    Science.gov (United States)

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2016-01-01

    Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ~95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in

  12. Validation of an in vitro model of rat p53 regulation and function

    International Nuclear Information System (INIS)

    Carpenter, T.R.; Groch, R.P.; Hickman, A.W.; Johnson, N.F.

    1994-01-01

    Public and governmental concern about the cancer risks associated with indoor exposure to alpha particle-emitting radon progeny is growing. Such concern arises from the exposure-dependent elevation in cancer risk seen in underground miners, most notably uranium miners. Risk estimates for the general population are derived from extrapolations of risk estimates for the uranium miners. The ability to compare data from the numerous retrospective population studies, animal model experiments, and in vitro experiments is based upon dose-conversion factors that indicate equivalent detrimental endpoints due to certain exposure levels. Recently, efforts to use cytotoxic endpoints such as cell survival, micronucleus formation, and mitotic delay as biologic dosimeters have been compared in vivo and in vitro to obtain dose conversion ratios. While these efforts are successful in cumulative exposure levels of 75-1000 working level months (WLM), such biological dosimeters are insensitive to the cumulative exposure levels found in indoor environments (1-50 WLM). More sensitive indicators of radiation damage/effect are needed to improve dose conversion factors and to better understand how alpha-emitters such as radon cause cancer

  13. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    International Nuclear Information System (INIS)

    Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B.

    2010-01-01

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  14. Detection and measurement of antioxidant capacity in human sera

    International Nuclear Information System (INIS)

    Bognar, G.; Koeteles, G.J.; Otos, M.

    1998-01-01

    The total antioxidant capacity of human sera was measured by the Randox TAS assay and an average value of 1.55 mmol/L was found from 87 healthy adult persons. Exogenous antioxidant added to the blood could be measured additively. Upon X-irradiation of whole blood samples, the antioxidant value decreased down to 1 Gy linearly. Further decrease after higher doses, however, could not be detected. Reductions of radiation-induced human lymphocyte micronucleus frequency as a cytogenetic end-point were observed upon increasing the exogenous antioxidant level in serum with a water-soluble form of alpha-tocopherol, or a plant extract from Sylibum marianum L. in vitro. (author)

  15. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    International Nuclear Information System (INIS)

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-01-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.

  16. Correlation of in vitro lymphocyte radiosensitivity and gene expression with late normal tissue reactions following curative radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Finnon, Paul; Kabacik, Sylwia; MacKay, Alan; Raffy, Claudine; A’Hern, Roger; Owen, Roger; Badie, Christophe; Yarnold, John; Bouffler, Simon

    2012-01-01

    Background and purpose: Identification of mechanisms of late normal tissue responses to curative radiotherapy that discriminate individuals with marked or mild responses would aid response prediction. This study aimed to identify differences in gene expression, apoptosis, residual DNA double strand breaks and chromosomal damage after in vitro irradiation of lymphocytes in a series of patients with marked (31 cases) or mild (28 controls) late adverse reaction to adjuvant breast radiotherapy. Materials and methods: Gene expression arrays, residual γH2AX, apoptosis, G2 chromosomal radiosensitivity and G0 micronucleus assay were used to compare case and control lymphocyte radiation responses. Results: Five hundred and thirty genes were up-regulated and 819 down-regulated by ionising radiation. Irradiated samples were identified with an overall cross-validated error rate of 3.4%. Prediction analyses to classify cases and controls using unirradiated (0 Gy), irradiated (4 Gy) or radiation response (4–0 Gy) expression profiles correctly identified samples with, respectively, 25%, 22% or 18.5% error rates. Significant inter-sample variation was observed for all cellular endpoints but cases and controls could not be distinguished. Conclusions: Variation in lymphocyte radiosensitivity does not necessarily correlate with normal tissue response to radiotherapy. Gene expression analysis can predict of radiation exposure and may in the future help prediction of normal tissue radiosensitivity.

  17. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    Science.gov (United States)

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Radiosensitivity of CD4 and CD8 positive human T lymphocytes by an in vitro colony formation assay

    International Nuclear Information System (INIS)

    Nakamura, Nori; Kusunoki, Yoichiro; Akiyama, Mitoshi.

    1989-12-01

    The recent development of an in vitro lymphocyte colony assay provides a new opportunity to examine possible variations in human radiosensitivity using peripheral blood lymphocytes (PBL) in place of the hitherto used skin fibroblast assay. Our recent study showed that most of the colonies consisted of lymphocytes bearing CD4 or CD8 antigens. Since the fraction of CD4 + and CD8 + cells in PBL differs among individuals, it was suspected that individual radiosensitivity might be biased by the different subset frequencies if the dose-survival curves of the CD4 + and CD8 + cells differed. In the present study, CD4 + lymphocytes (helper/inducer T cells) and CD8 + lymphocytes (suppressor/cytotoxic T cells) were isolated from PBL and their dose-survival curves were determined. The results showed that the D 10 (the dose required to reduce the surviving fraction to 10 %) was quite similar for these two types of cells (3.13 ± 0.10 Gy [mean ±SD] for CD4 + , 3.34 ± 0.50 Gy for CD8 + and 3.07 ± 0.05 Gy for the unsorted cells), supporting the use of a whole PBL population for screening of individuals with altered radiosensitivity. (author)

  19. Assessing nanotoxicity in cells in vitro.

    Science.gov (United States)

    Hillegass, Jedd M; Shukla, Arti; Lathrop, Sherrill A; MacPherson, Maximilian B; Fukagawa, Naomi K; Mossman, Brooke T

    2010-01-01

    Nanomaterials are commonly defined as particles or fibers of less than 1 microm in diameter. For these reasons, they may be respirable in humans and have the potential, based upon their geometry, composition, size, and transport or durability in the body, to cause adverse effects on human health, especially if they are inhaled at high concentrations. Rodent inhalation models to predict the toxicity and pathogenicity of nanomaterials are prohibitive in terms of time and expense. For these reasons, a panel of in vitro assays is described below. These include cell culture assays for cytotoxicity (altered metabolism, decreased growth, lytic or apoptotic cell death), proliferation, genotoxicity, and altered gene expression. The choice of cell type for these assays may be dictated by the procedure or endpoint selected. Most of these assays have been standardized in our laboratory using pathogenic minerals (asbestos and silica) and non-pathogenic particles (fine titanium dioxide or glass beads) as negative controls. The results of these in vitro assays should predict whether testing of selected nanomaterials should be pursued in animal inhalation models that simulate physiologic exposure to inhaled nanomaterials. Conversely, intrathoracic or intrapleural injection of nanomaterials into rodents can be misleading because they bypass normal clearance mechanisms, and non-pathogenic fibers and particles can test positively in these assays.

  20. Cytotoxicity and genotoxicity of Agaricus blazei methanolic extract fractions assessed using gene and chromosomal mutation assays

    Directory of Open Access Journals (Sweden)

    Marilanda Ferreira Bellini

    2008-01-01

    Full Text Available Functional food investigations have demonstrated the presence of substances that could be beneficial to human health when consumed. However, the toxic effects of some substances contained in foods have been determined. Reported medicinal and nutritive properties have led to the extensive commercialization of the basidiomycete fungi Agaricus blazei Murrill (sensu Heinemann, also known as Agaricus brasiliensis Wasser et al., Agaricus subrufescens Peck or the Brazilian medical mushroom (BMM. Different methanolic extract fractions (ME of this mushroom were submitted to the cytokinesis-block micronucleus (CBMN clastogenic assay and the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT assay for gene mutation, both using Chinese hamster ovary cells clone K1 (CHO-K1. The results suggest that all the fractions tested possess cytotoxic and mutagenic potential but no clastogenic effects. Further information is needed on the biochemical components of the A. blazei methanol fractions to identify any substances with cytotoxic and/or mutagenicity potential. These findings indicate that A. blazei methanolic extract should not be used due to their genotoxicity and care should be taken in the use of A. blazei by the general population until further biochemical characterization of this fungi is completed.

  1. Impact of host cell variation on the neutralization of HIV-1 in vitro.

    Science.gov (United States)

    Polonis, Victoria R; Schuitemaker, Hanneke; Bunnik, Evelien M; Brown, Bruce K; Scarlatti, Gabriella

    2009-09-01

    In this review we present current advances in our understanding of HIV-1 neutralization assays that employ primary cell types, as compared with those that utilize cell lines and the newer, more standardized pseudovirus assays. A commentary on the challenges of standardizing in-vitro neutralization assays using primary cells is included. The data from reporter cell line neutralization assays may agree with results observed in primary cells; however, exceptions have recently been reported. Multiple variables exist in primary cell assays using peripheral blood mononuclear cells from HIV-seronegative donors; in-vitro neutralization titers can vary significantly based on the donor cells used for assay targets and for virus propagation. Thus, more research is required to achieve validated primary cell neutralization assays. HIV-vaccine-induced antibody performance in the current neutralization assays may function as a 'gatekeeper' for HIV-1 subunit vaccine advancement. Development of standardized platforms for reproducible measurement of in-vitro neutralization is therefore a high priority. Given the considerable variation in results obtained from some widely applied HIV neutralization platforms, parallel evaluation of new antibodies using different host cells for assay targets, as well as virus propagation, is recommended until immune correlates of protection are identified.

  2. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions); Effets in vitro du piracetam sur la radiosensibilite des cellules hypoxiques (adapatation du test au MTT aux conditions d`hypoxie)

    Energy Technology Data Exchange (ETDEWEB)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Lagarde, P. [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Institut Bergonie, 33 - Bordeaux (France); Pooter, C.M.J. de [Universitaire Instelling Antwerpen, Antwerp (Belgium)]|[Hopital de Middelheim, Anvers (Belgium); Chomy, F. [Institut Bergonie, 33 - Bordeaux (France)

    1995-12-31

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs.

  3. Comparison of risks due to bisphenol A and radiation with trad-MCN assay

    International Nuclear Information System (INIS)

    Shin, H. S.; Lee, J. H.; Kim, J. K.; Chon, K. J.; Lee, B. H.

    2001-01-01

    Many kinds of synthetic chemicals have been being used for various purposes. Some of them are called 'environmental hormones' because they can disturb the endocrine system of organisms. Presently no technique is established for the quantitative assessment of biological risk of the environmental hormones. The pollen mother cells (PMC) of Tradescantia are very sensitive to chemical toxicants or ionizing radiation, and thus can be used as a biological end-point assessing their effect. Micronucleus frequencies in PMC showed a good dose- and concentration-response relationship for radiation and bisphenol A. From the dose-response relationship, it is possible to estimate the equivalent bisphenol A concentration, or vice versa. One μM/ml of bisphenol A is equivalent to 1.8 cGy of radiation in the induction of micronuclei. It is known from the result that Trad-MCN assay can be an excellent tool for detection of biological risk due to environmental toxicants or synthetic chemicals

  4. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    Science.gov (United States)

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Genotoxic potential generated by biomass burning in the Brazilian Legal Amazon by Tradescantia micronucleus bioassay: a toxicity assessment study

    Directory of Open Access Journals (Sweden)

    Artaxo Paulo

    2011-05-01

    Full Text Available Abstract Background The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangará da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangará da Serra region, using Tradescantia pallida as in situ bioindicator. Methods The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.

  6. Testing strategies in mutagenicity and genetic toxicology: an appraisal of the guidelines of the European Scientific Committee for Cosmetics and Non-Food Products for the evaluation of hair dyes.

    Science.gov (United States)

    Kirkland, D J; Henderson, L; Marzin, D; Müller, L; Parry, J M; Speit, G; Tweats, D J; Williams, G M

    2005-12-30

    The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by

  7. In situ monitoring of urban air in Córdoba, Argentina using the Tradescantia-micronucleus (Trad-MCN) bioassay

    Science.gov (United States)

    Carreras, H. A.; Pignata, M. L.; Saldiva, P. H. N.

    During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites ( p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.

  8. In vitro and in vivo antioxidant activities of inulin

    OpenAIRE

    Shang, Hong-Mei; Zhou, Hai-Zhu; Yang, Jun-Yan; Li, Ran; Song, Hui; Wu, Hong-Xin

    2018-01-01

    This study was designed to investigate the in vitro and in vivo antioxidant activities of inulin. The in vitro assays demonstrated that the antioxidant activities of inulin, including the DPPH radical scavenging activity, ABTS scavenging activity and ferric reducing power, were weak and significantly lower than those of Vitamin C (P < 0.05). The influence of dietary supplementation with inulin on the antioxidant status of laying hens was evaluated with in vivo antioxidant assays. The results ...

  9. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.

    Science.gov (United States)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda

    2018-04-30

    Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.

  10. Dioxin-like activity of brominated dioxins as individual compounds or mixtures in in vitro reporter gene assays with rat and mouse hepatoma cell lines.

    Science.gov (United States)

    Suzuki, G; Nakamura, M; Michinaka, C; Tue, N M; Handa, H; Takigami, H

    2017-10-01

    In vitro reporter gene assays detecting dioxin-like compounds have been developed and validated since the middle 1990's, and applied to the determination of dioxin-like activities in various samples for their risk management. Data on characterizing the potency of individual brominated dioxins and their activity in mixture with chlorinated dioxins are still limited on the cell-based assay. This study characterized the dioxin-like activities of the 32 brominated dioxins, such as polybrominated dibenzo-p-dioxins, polybrominated dibenzofurans (PBDFs), coplanar polybrominated biphenyls, mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDFs), as a sole component or in a mixture by DR-CALUX (dioxin-responsive chemically activated luciferase expression) using the rat hepatoma H4IIE cell line and XDS-CALUX (xenobiotic detection systems-chemically activated luciferase expression) assays using the mouse hepatoma H1L6.1 cell line. The 2,3,7,8-TCDD-relative potencies (REPs) of most of the brominated dioxins were within a factor of 10 of the WHO toxicity equivalency factor (WHO-TEF) for the chlorinated analogues. The REPs of a few PXDFs were an order of magnitude higher than the corresponding WHO-TEFs, indicating their toxicological importance. Results with reconstituted mixtures suggest that the activity of brominated and chlorinated dioxins in both CALUX assays was dose-additive. Thus, obtained results indicated the applicability of the CALUX assays as screening tools of brominated dioxins together with their chlorinated analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of an in vitro Assay, based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2016-09-01

    Full Text Available Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting.The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT technology. The procedure developed for clinical testing (cBRT can provide an accurate and timely (5 hours measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV staining test, according to the kappa coefficient test (kappa = 0.623. However, the cBRT assay showed higher levels of specificity (92.2% and accuracy (88.1% as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology.

  12. Establishment of immunoradiometric assay for free prostate-specific antigen

    International Nuclear Information System (INIS)

    Ma Lianxue

    2009-01-01

    An immunoradiometric assay (IRMA) of free prostate specific antigen (F-PSA) in serum was established. One monoclonal antibody against total PSA (T-PSA) was coated on the plastic tubes, the other against F-PSA was labeled with 125 I. The sensitivity of assay was 0.04 μg/L (n=20, +2s), the CVs were 2.9%-4.0% for the intra-assay and 3.5%-10.5% for the inter-assay and the average recovery was 102.7%. The correlative equation comparing with the FPSA-RIA (CIS BIO) is y=0.965 1 χ -0.001 1, and r=0.996 4. This F-PSA IRMA is a sensitive and precise method in detecting F-PSA and fit for the vitro assay. (authors)

  13. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity.

    Science.gov (United States)

    Yang, Xi; Papoian, Thomas

    2018-02-27

    Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  14. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    ) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect r = 0.99) over...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  15. Toxcast Profiling in a Human Stem Cell Assay for Developmental Toxicity (SOT)

    Science.gov (United States)

    We correlated the ToxCast library in a metabolic biomarker-based in vitro assay (Stemina devTOXqP) utilizing human embryonic stem (hES) cells (H9 line). This assay identifies the concentration of a chemical that disrupts cellular metabolism in a manner indicative of teratogenic...

  16. A novel genotoxic aspect of thiabendazole as a photomutagen in bacteria and cultured human cells.

    Science.gov (United States)

    Watanabe-Akanuma, Mie; Ohta, Toshihiro; Sasaki, Yu F

    2005-09-15

    Thiabendazole (TBZ) is a post-harvest fungicide commonly used on imported citrus fruits. We recently found that TBZ showed photomutagenicity with UVA-irradiation in the Ames test using plate incorporation method. In the present study, potential of DNA-damaging activity, mutagenicity, and clastogenicity were investigated by short pulse treatment for 10 min with TBZ (50-400 microg/ml) and UVA-irradiation (320-400 nm, 250 microW/cm2) in bacterial and human cells. UVA-irradiated TBZ caused DNA damage in Escherichia coli and human lymphoblastoid WTK1 cells assayed, respectively, by the umu-test and the single cell gel electrophoresis (comet) assay. In a modified Ames test using Salmonella typhimurium and E. coli, strong induction of -1 frameshift mutations as well as base-substitution mutations were detected. TBZ at 50-100 microg/ml with UVA-irradiation significantly induced micronuclei in WTK1 cells in the in vitro cytochalasin-B micronucleus assay. Pulse treatment for 10 min with TBZ alone did not show any genotoxicity. Although TBZ is a spindle poison that induces aneuploidy, we hypothesize that the photogenotoxicity of TBZ in the present study was produced by a different mechanism, probably by DNA adduct formation. We concluded that UVA-activated TBZ is genotoxic in bacterial and human cells in vitro.

  17. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.

    Science.gov (United States)

    Lehman, Nicholas; Cutrone, Rochelle; Raber, Amy; Perry, Robert; Van't Hof, Wouter; Deans, Robert; Ting, Anthony E; Woda, Juliana

    2012-09-01

    Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.

  18. Genotoxicity of Water Contaminants from the Basin of Lake Sevan, Armenia Evaluated by the Comet Assay in Gibel Carp (Carassius auratus gibelio) and Tradescantia Bioassays.

    Science.gov (United States)

    Simonyan, Anna; Gabrielyan, Barduch; Minasyan, Seyran; Hovhannisyan, Galina; Aroutiounian, Rouben

    2016-03-01

    Combination of bioassays and chemical analysis was applied to determine the genotoxic/mutagenic contamination in four different sites of the basin of Lake Sevan in Armenia. Water genotoxicity was evaluated using the single cell gel electrophoresis technique (comet assay) in erythrocytes of gibel carp (Carassius auratus gibelio), Tradescantia micronucleus (Trad-MCN) and Tradescantia stamen hair mutation (Trad-SHM) assays. Significant inter-site differences in the levels of water genotoxicity according to fish and Trad-MCN bioassays have been revealed. Two groups of locations with lower (south-southwest of the village Shorzha and Peninsula of Lake Sevan) and higher (estuaries of Gavaraget and Dzknaget rivers) levels of water genotoxicity were distinguished. Correlation analysis support the hypothesis that the observed genetic alterations in fish and plant may be a manifestation of the effects of water contamination by nitrate ions, Si, Al, Fe, Mn and Cu. Increase of DNA damage in fish also correlated with content of total phosphorus.

  19. Comparison of tetrazolium colorimetric and [3H]-uridine assays for in vitro chemosensitivity testing.

    Science.gov (United States)

    Ford, C H; Richardson, V J; Tsaltas, G

    1989-01-01

    We have routinely used a [3H]-uridine microplate assay for assessing chemosensitivity. A colorimetric assay with the advantages of safety, cost and simplicity has previously been described and relies on the ability of living cells to reduce a soluble tetrazolium salt, 3-4,5-dimethylthiazol-2,5-diphenyl-tetrazolium bromide (MMT), into an insoluble formazan precipitate. We compared the chemosensitivity of 14 human tumour cell lines of colonic, lung and cervical carcinoma origin to doxorubicin, vindesine or vindesine immunoconjugates in both the [3H]-uridine assay and a modified MTT assay to evaluate whether we could change to the non-radiolabelled method. Correlation between the concentration of drug causing 50% inhibition of cell growth (IC50) for these agents between the two assays was very poor. However, taking account of recent reports in the literature, we modified the MTT assay by removing serum-containing medium and using dimethyl sulphoxide to solubilise the formazan precipitate. This considerably improved the correlation between the assays for doxorubicin (r = 0.871; P = 0.001) and vindesine (r = 0.981; P less than 0.001). Our data indicates that the MTT assay can be used to replace the [3H]-uridine assay for chemosensitivity screening, but further modifications are necessary to improve the sensitivity and decrease the problem of cell loss after washing, which was noted with some adherent cell lines.

  20. Radioprotective effects of histamine H2 receptor antagonists famotidine and ranitidine on gamma ray induced chromosome damage

    International Nuclear Information System (INIS)

    Sharma, N.K.

    2013-01-01

    Histamine H2 receptor antagonist such as Cimetidine, Famotidine and Ranitidine are used in the clinical treatment of peptic ulcer. In vitro metaphase analysis and micronucleus assay were used to test the effects of famotidine and ranitidine on Cobalt 60 γ-ray induced clastogenic effects. Heparinised whole blood was obtained from healthy non-smoker volunteers. Blood samples were irradiated at a dose of 3Gy and incubated at 37 deg C for 1h. Lymphocyte cultures were initiated for metaphase chromosomes and cytochalasin B blocked micronucleus analysis. Aqueous solution of Famotidine (150 g/ml) and Ranitidine (500 g/ml) was added to the whole blood cultures at 0h and 24h. Cultures were harvested and processed at 48h and 72h for chromosome aberrations and micronucleus analysis respectively. Cultures treated with Famotidine at 0h and 24h after 3Gy γ-ray irradiation induce 60.90% and 56.52% inhibition in dicentrics, 48.70% and 43.61% inhibition in total aberrations. Ranitidine at 0h and 24h after 3Gy γ-ray irradiation induce 52.17% and 43.47% inhibition in dicentrics, 33.60% and 46.15% inhibition in total aberrations, when compared with 3Gy γ-ray irradiation alone. 43-54% inhibition in Binucleated cells with micronuclei and 47.72% inhibition in micronuclei at 0h treatment respectively. In conclusion radioprotective effects of Histamine H2 receptor antagonists famotidine and ranitidine on γ-ray induced chromosome damage is observed and the drugs effectively reduced the frequency of radiation induced chromosome aberrations and micronucleus. Famotidine was found to be more effective. The mechanism in which these drugs reduce clastogenic effect of γ-radiation is not fully understood. It might be due to their antioxidant and free radical-scavenging properties. (author)

  1. Synthesis and Evaluation of the Antioxidant Activity of Lipophilic Phenethyl Trifluoroacetate Esters by In Vitro ABTS, DPPH and in Cell-Culture DCF Assays

    Directory of Open Access Journals (Sweden)

    Roberta Bernini

    2018-01-01

    Full Text Available Polyphenols are natural compounds showing a variety of health-promoting effects. Unfortunately, due to low lipid solubility, their applications in the pharmaceutical, food, and cosmetic industries are limited. With the aim of obtaining novel lipophilic derivatives, the present study reports the synthesis of a series of phenethyl trifluoroacetate esters containing up to two hydroxyl groups in the aromatic ring. Experimental logP values confirmed a greater lipophilicity of the novel compounds compared to the parent compounds. The radical scavenging capacity of all phenethyl trifluoroacetate esters was evaluated by in vitro assays (ABTS, DPPH and in cultured cells (L6 myoblasts and THP-1 leukemic monocytes using 2′,7′-dichlorodihydrofluorescein diacetate. These data revealed that the esters showed a good antioxidant effect that was strictly dependent on the grade of hydroxylation of the phenyl ring. The lack of toxicity, evaluated by the MTT assay and proliferation curves, makes these trifluoroacetates attractive derivatives for pharmaceutical, food, and cosmetic applications.

  2. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: synthesis, characterization, and in vitro assays

    Science.gov (United States)

    Ibarra, Jaime; Encinas, David; Blanco, Mateo; Barbosa, Silvia; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2018-01-01

    In this work, we report the synthesis, characterization and biological evaluation of a multifunctional hybrid biocompatible nanoplatform consisting of a biodegradable poly(lactic-co-glycolic acid) (PLGA) matrix functionalized with a polyvinyl alcohol/chitosan mixed surface layer, and co-loaded with superparamagnetic iron oxide nanoparticles (SPIONs) and the anticancer drug cisplatin. In this manner, problems associated with cisplatin low aqueous solubility are precluded as well as a sustained controlled release of the drug is obtained. The hybrid nanoplatforms displayed slightly positive charges and spherical shapes, with an average diameter of ca 100 nm and very low polydispersity. This size range makes these particles suitable a priori to avoid extensive macrophage recognition whilst ensures exploitation of passive targeting in tumoral cells by the enhanced permeation and retention effect and successful interaction with cell surfaces. SPIONs and drug loading extents were determined by inductively coupled plasma mass spectrometry and UV-vis absorption spectroscopy, respectively. The presence of the magnetic nanoparticle in the hybrid platform should enable their intended use as T2 imaging contrast agents as denoted from magnetic imaging measurements in vitro. Furthermore, in vitro release profiles of cisplatin from nanoplatform showed an initial burst release of about 16% in the first 6 h, followed by a sustained release over 10 days ensuring a slow delivery of the drug in the site of action to enhance chemotherapeutic activity. This was confirmed by in vitro cytotoxicity assays denoting that the chemotherapeutic effect of cisplatin on both cervical HeLa and breast MDA-MB-231 cancer cell lines is largely improved when encapsulated in the nanoplatform. Thus, the present characterization and in vitro biological evaluation data indicate that this nanoplatform can be considered as a promising theragnostic nanoplatform for combined imaging and therapy of several tumors

  3. Genotoxicity assessment of ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN).

    Science.gov (United States)

    Reddy, Gunda; Song, Jian; Kirby, Paul; Johnson, Mark S

    2011-12-24

    Ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN) are relatively insensitive explosive compounds that are being explored as safe alternatives to other more sensitive compounds. When used in combination with other high explosives they are an improvement and may provide additional safety during storage and use. The genetic toxicity of these compounds was evaluated to predict the potential adverse human health effects from exposure by using a standard genetic toxicity test battery which included: a gene mutation test in bacteria (Ames), an in vitro Chinese Hamster Ovary (CHO) cell chromosome aberration test and an in vivo mouse micronucleus test. The results of the Ames test showed that EDDN increased the mean number of revertants per plate with strain TA100, without activation, at 5000μg/plate compared to the solvent control, which indicated a positive result. No positive results were observed with the other tester strains with or without activation in Salmonella typhimurium strains TA98, TA1535, TA1537, and Escherichia coli strain WP2 uvrA. DETN was negative for all Salmonella tester strains and E. coli up to 5000μg/plate both with and without metabolic activation. The CHO cell chromosome aberration assay was performed using EDDN and DETN at concentrations up to 5000μg/mL. The results indicate that these compounds did not induce structural chromosomal aberrations at all tested concentrations in CHO cells, with or without metabolic activation. EDDN and DETN, when tested in vivo in the CD-1 mouse at doses up to 2000mg/kg, did not induce any significant increase in the number of micronuclei in bone marrow erythrocytes. These studies demonstrate that EDDN is mutagenic in one strain of Salmonella (TA100) but was negative in other strains, for in vitro induction of chromosomal aberrations in CHO cells, and for micronuclei in the in vivo mouse micronucleus assay. DETN was not genotoxic in all in vitro and in vivo tests. These results show the in

  4. Assessment of the genotoxicity of Cu and Zn in raw and anaerobically digested slurry with the Vicia faba micronucleus test

    OpenAIRE

    Marcato, Claire-Emmanuelle; Pinelli, Eric; Pourrut, Bertrand; Silvestre, Jérôme; Guiresse, Agnès Maritchù

    2009-01-01

    Genotoxicity of Cu and Zn was assessed by use of the micronucleus (MN) test on Vicia faba roots. Plants were exposed to various leachates of rawand anaerobically digested pig slurry, with maximum total concentrations of 200MCu and 600MZn. The results indicated stabilisation of the organic matter during anaerobic digestion of the slurry and bioconversion of some phytotoxic organic compounds (e.g. phenols or p-cresol), but did not showa relationship between Cu and Zn concentrations and MN fr...

  5. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    Science.gov (United States)

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. In vitro cytotoxic, genotoxic and antioxidant/oxidant effects of guaiazulene on human lymphocytes

    Directory of Open Access Journals (Sweden)

    Başak Toğar

    2015-02-01

    Full Text Available The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs. Guaiazulene (GYZ was added into culture tubes at various concentrations (0-400 µg/mL-1. Cytotoxicity against the human lymphocytes cultures was examined by lactate dehydrogenase (LDH release assay. The proliferative response was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS and total antioxidant capacity (TAC levels. Micronucleus (MN and chromosomal aberration (CA tests were used in genotoxicity studies. The results showed that GYZ caused cytotoxicity in the PBLs at high concentrations, but TOS level were not affected, while the level of TAC was significantly increased. GYZ also did not induce chromosomal aberrations when compared to that of the control group. Results this study clearly revealed that GYZ was not genotoxic and also increased the capacity of the antioxidant in the culture of human PBL cells. This report is first report on the impact of GYZ on human PBL cells.

  7. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital.

    Science.gov (United States)

    Tiwari, Aseem K; Pandey, Prashant K; Dara, Ravi C; Rawat, Ganesh S; Raina, Vimarsh; Bhargava, Richa

    2015-01-01

    Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS) on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. This study was designed to evaluate the performance of newly introduced VITROS(®) syphilis Treponema pallidum agglutination (TPA) assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. A total of 108 random blood units collected from the donors (both voluntary and replacement donors) and 28 known syphilis sero-reactive samples stored at -20°C, were used to evaluate the performance of VITROS(®) syphilis TPA assay based on enhanced chemiluminescence assay on VITROS(®) ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. VITROS(®) syphilis TPA showed 100% sensitivity and specificity with precision (20 days study) of endogenous interfering substances like free hemoglobin or fats. Performance of the VITROS(®) syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

  8. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: Resolution of the activity into soluble and membrane-bound fractions

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.J.; Weinstein, J.D. (Clemson Univ., SC (United States))

    1991-07-01

    The first committed step in chlorophyll synthesis is the Mg-chelatase-catalyzed insertion of magnesium into protoporphyrin IX. Since iron insertion into protoporphyrin leads to heme formation, Mg-chelatase lies at the branch point of heme and chlorophyll synthesis in chloroplasts. Little is known about the enzymology or regulation of Mg-chelatase, as it has been assayed only in intact cucumber chloroplasts. In this report we describe an in vitro assay for Mg-chelatase. Mg-chelatase activity in intact pea chloroplasts was 3- to 4-fold higher than in cucumber chloroplasts. This activity survived chloroplast lysis and could be fractionated by centrifugation into supernatant and pellet components. Both of these fractions were required to reconstitute Mg-chelatase activity, and both were inactivated by boiling indicating that the enzyme is composed of soluble and membrane-bound protein(s). The product of the reaction was confirmed fluorometrically as the magnesium chelate of the porphyrin substrate. The specific activity of the reconstituted system was typically 1 nmol of Mg-deuteroporphyrin per h per mg of protein, and activity was linear for at least 60 min under our assay conditions. ATP and magnesium were required for Mg-chelatase activity and the enzymen was sensitive to the sulfhydryl reagent N-ethylmaleimide (I{sub 50}, 20 {mu}M). Broken and reconstituted cucumber chloroplasts were unable to maintain Mg-chelatase activity. However, the cucumber supernatant fraction was active when combined with the pellet fraction of peas; the converse was not true, which suggested that the cucumber pellet was the component that lost activity during lysis.

  9. Evaluation of the In Vitro and In Vivo Antioxidant Potentials of Sudarshana Powder

    Directory of Open Access Journals (Sweden)

    Weerakoon Achchige Selvi Saroja Weerakoon

    2018-01-01

    Full Text Available Sudarshana powder (SP is one of the most effective Ayurveda powder preparations for paediatric febrile conditions. The objective of the present study was to evaluate the in vitro and in vivo antioxidant potentials of SP. The in vitro antioxidant effects were evaluated using ABTS radical cation decolourization assay where the TROLOX equivalent antioxidant capacity (TEAC was determined. The in vivo antioxidant activity of SP was determined in Wistar rats using the Lipid Peroxidation (LPO assay in serum. The in vitro assay was referred to as the TROLOX equivalent antioxidant capacity (TEAC assay. For the in vivo assay, animals were dosed for 21 consecutive days and blood was drawn to evaluate the MDA level. The in vitro antioxidant activity of 0.5 μg of SP was equivalent to 14.45 μg of standard TROLOX. The percentage inhibition against the radical formation was 50.93±0.53%. The SP showed a statistically significant (p<0.01 decrease in the serum level of thiobarbituric acid-reactive substance in the test rats when compared with the control group. These findings suggest that the SP possesses potent antioxidant activity which may be responsible for some of its reported bioactivities.

  10. Sperm-macrophage interaction in the mouse: a quantitative assay in vitro using 111indium oxine-labeled sperm

    International Nuclear Information System (INIS)

    Olive, D.L.; Weinberg, J.B.; Haney, A.F.

    1987-01-01

    The role of reproductive tract macrophages in contraception and reproductive failure has become widely recognized. However, in vitro analysis of sperm phagocytosis by macrophages has relied upon a semi-quantitative method of sperm counting that is of limited accuracy and reproducibility. We have developed an assay using murine sperm labeled with 111 indium oxine, and results indicate the labeling to be rapid and efficient. Incorporation of 111 indium into sperm increased the dose and sperm concentration and reached 90% maximal uptake after 15 min incubation, with maximal uptake occurring at 30 min. No decrease in sperm motility was noted with levels of oxine in excess of those required for significant labeling. Maximal labeling efficiency occurred in phosphate-buffered saline (PBS), with Dulbecco's modified Eagle's medium (DMEM) + 10% adult bovine serum (ABS) producing significantly less uptake. Label dissociation was detectable in PBS at room temperature, but at 37 degrees C in DMEM + 10% ABS, loss of label occurred at a rate of 23.5%/h. Addition of labeled sperm to murine macrophage monolayers under optimal conditions resulted in uptake of 111 indium by macrophages, while free label was unincorporated. Results indicated assay specificity for macrophage-limited uptake, with insignificant label uptake by nonphagocytic murine fibroblasts and better sensitivity than sperm counting. Macrophages from Bacillus Calmette-Guerin (BCG)-infected mice resulted in a decrease in sperm uptake. Female macrophages showed greater capacity for sperm uptake than those of the male mouse. These initial studies demonstrated the utility of this model system in enhancing the understanding of sperm-macrophage interaction in the female reproductive tract

  11. In-Vitro Radio protective Role of Ferulic Acid in Cultured Lymphocytes

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Al Fateh, N.M.; Tawfik, S.S.

    2010-01-01

    Ferulic acid (FA), C 10 H 10 O 4 is the most abundant, ubiquitous hydroxycinnamic acid derived from photochemical phenolic compounds. It is a major constituent of fruits and vegetables such as orange, tomato, carrot, sweet corn and rice bran. Gamma rays generate hydroxyl radicals in cells and cellular DNA damage which leads to genotoxicity and chromosome aberrations. To establish most effective protective support, we used two different concentrations of FA (5 and 10 μg/ ml) and 2 Gy dose of gamma-radiation. Cytogenetic analysis was evaluated using the analysis of structural chromosome aberration (CA) and cytokinesis block micronucleus assay (CBMN). The level of lipid peroxidation analyzed as thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), the enzyme activities of lymphocytes defence mechanism: Superoxide dismutase (SOD), Catalase (CAT) and Glutathione peroxidase (GPx) were determined. The result obtained by all endpoints indicates acceptable toxicity profiles of FA in-vitro when compared with normal lymphocytes; irradiation at 2 Gy increased the MN and CA frequencies. Treatment with FA for 30 min before radiation exposure resulted in a significant decline both of MN and CA yields as FA concentration increased. The levels of TBARS and GSH were altered significantly whereas the levels of the enzymatic antioxidants were decreased in gamma-irradiated lymphocytes. Pretreatment with 10 μg/ ml of FA has attenuated the toxic effects of radiation more than FA (5 μg/ ml) by reduction in the TBARS level, restoration GSH contents and prevented the decreases in the radiation-induced SOD, CAT and GPx activities. These results lead us to the conclusion that FA has antimutagenic effect and benefit as a radio protector against oxidative stress involved by gamma-rays exposure

  12. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye-Min [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kang, Yujung; Chun, Hyung J. [Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Jeong, Joo-Won [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Park, Chan, E-mail: psychan@khu.ac.kr [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effects of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.

  13. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    Science.gov (United States)

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. "Aspartame: A review of genotoxicity data".

    Science.gov (United States)

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A Functional High-Throughput Assay of Myelination in Vitro

    Science.gov (United States)

    2014-07-01

    Human induced pluripotent stem cells, hydrogels, 3D culture, electrophysiology, high-throughput assay 16. SECURITY CLASSIFICATION OF: 17...image the 3D rat dorsal root ganglion ( DRG ) cultures with sufficiently low background as to detect electrically-evoked depolarization events, as...of voltage-sensitive dyes. 8    We have made substantial progress in Task 4.1. We have fabricated neural fiber tracts from DRG explants and

  16. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    Science.gov (United States)

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Combined effects of γ-ray radiation and high atmospheric pressure on peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhu Bingchai; Lu Jiaben; Wang Zongwu; Chen Tiehe

    1989-01-01

    The combined effects of γ-ray radiation and high atmospheric pressure on chromosome aberration, micronucleus and transformation frequency in peripheral blood lymphocytes have been studied. The results indicated that there were no significant influence for effects of high atmospheric pressure on chromosome aberrations, transformation frequency in peripheral blood lymphocytes induced γ-ray radiation, and that high atmospheric pressure increased effect of micronucleus in human peripheral blood lymphocytes in vitro induced γ-ray radiation

  18. Comparison of In-Vitro and Ex-Vivo Wound Healing Assays for the Investigation of Diabetic Wound Healing and Demonstration of a Beneficial Effect of a Triterpene Extract.

    Directory of Open Access Journals (Sweden)

    Christopher Ueck

    Full Text Available Diabetes mellitus is a frequent cause for chronic, difficult-to-treat wounds. New therapies for diabetic wounds are urgently needed and in-vitro or ex-vivo test systems are essential for the initial identification of new active molecules. The aim of this study is to compare in-vitro and ex-vivo test systems for their usability for early drug screening and to investigate the efficacy of a birch bark triterpene extract (TE that has been proven ex-vivo and clinically to accelerate non-diabetic wound healing (WH, in a diabetic context. We investigated in-vitro models for diabetic WH, i.e. scratch assays with human keratinocytes from diabetic donors or cultured under hyperglycaemic conditions and a newly developed porcine ex-vivo hyperglycaemic WH model for their potential to mimic delayed diabetic WH and for the influence of TE in these test systems. We show that keratinocytes from diabetic donors often fail to exhibit significantly delayed WH. For cells under hyperglycaemic conditions significant decrease is observed but is influenced by choice of medium and presence of supplements. Also, donor age plays a role. Interestingly, hyperglycaemic effects are mainly hyperosmolaric effects in scratch assays. Ex-vivo models under hyperglycaemic conditions show a clear and substantial decrease of WH, and here both glucose and hyperosmolarity effects are involved. Finally, we provide evidence that TE is also beneficial for ex-vivo hyperglycaemic WH, resulting in significantly increased length of regenerated epidermis to 188±16% and 183±11% (SEM; p<0.05 compared to controls when using two different TE formulations. In conclusion, our results suggest that microenvironmental influences are important in WH test systems and that therefore the more complex hyperglycaemic ex-vivo model is more suitable for early drug screening. Limitations of the in-vitro and ex-vivo models are discussed. Furthermore our data recommend TE as a promising candidate for in

  19. Assays for the in vitro establishment of Swietenia macrophylla and Cedrela odorata

    Directory of Open Access Journals (Sweden)

    Julián Pérez Flores

    2012-01-01

    Full Text Available Título en español: Ensayos para el establecimiento in vitro de Swietenia macrophylla y Cedrela odorata Abstract: Recalcitrance and contamination in Mahogany (Swietenia macrophylla King and Spanish cedar (Cedrela odorata L. stem tissues are the main causes of its ineffective in vitro propagation. The objectives of this research were: a to evaluate sodium hypochlorite (NaOCl and plant preservative mixture (PPM® as surface disinfectants and/or added to the culture medium for the in vitro establishment of nodal explants taken from 10-year-old Mahogany and Spanish cedar plants, and b to evaluate the in vitro response of such explants treated with N6-benzylaminopurine (BAP (0, 2.2, 4.4, 8.8, 17.7 μM, silver nitrate (AgNO3 (0, 3 mg l-1, activated charcoal (0, 1 g l-1 and vented caps. All the experiments were arranged in a completely randomized design. The NaOCl at 15%, for 20 min, as a surface sterilization or PPM® at 2 ml l-1  into the culture medium, were the best treatments to reduce contamination for both species. For Mahogany explants, BAP at 17.7 μM resulted in higher percentages of bud breaks than Spanish cedar (64% and 25%, respectively. Leaves on elongated shoots dropped off by 20 days after starting the explants in culture and neither the activated charcoal nor the AgNO3 alone or combined prevented leaf abscission. The AgNO3 decreased contamination, but also increased leaf abscission. Bud breaks was two-fold higher for nodal explants established in vessels with vented caps than with normal caps. Mahogany nodal explants were easier to surface sterilize and more buds broke from BAP treated explants than Spanish cedar treated explants in the in vitro establishment. Key words: Spanish cedar, Mahogany, Mature plants, Surface sterilization, in vitro response Resumen: La contaminación y la recalcitrancia de tejidos de tallo de Caoba (Swietenia macrophylla King y Cedro español (Cedrela odorata L. son las causas principales de su inefectiva

  20. Micronucleus Assay and Heavy Metals Characterization of E-waste ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-28

    Mar 28, 2018 ... Ba) in the sediments, water, leachate and aquatic fauna (Tilapia guineensis, Callinectes amnicola and Cardiosoma ..... (2003) limit standard (0.01mg/L) for treated waste water .... the erythrocyte of grey mullet (Mugil cephalus).

  1. Advances in Assays and Analytical Approaches for Botulinum Toxin Detection

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.; Bruckner-Lea, Cindy J.; Marks, James D.

    2010-08-04

    Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.

  2. Evaluation of spontaneous and radiation-induced micronucleus frequency in cultured human peripheral blood lymphocytes depending on age and sex

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. J.; Kang, C. M.; Chung, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2002-12-15

    The goal of this study was to provide data on the dose-dependent production of MicroNucleus (MN) in human lymphocytes irradiated with {sup 60}Co {gamma}-rays and 50MeV neutron, and to evaluate predictive markers of intrinsic radiosensitivity in individuals for monitoring occupational or environmental radiation exposure. For the dose-response study, heparinized whole blood of 10 healthy volunteers was irradiated with {sup 60}Co {gamma}-rays employing of 0.25-8Gy. The MNs were observed all doses, and the numerical changes according to doses. In dose-response curves fit linear-quadratic form (alpha =0.31{+-}0.049, beta =0.0022{+-}0.0022) for {gamma}-rays, but (alpha=0.99{+-}0.528, beta =0.0093{+-}0.0047) for neutron. Neutrons were than {gamma}-rays effective in producing MN with dose-dependent manner. The frequency of MN varies with dose. The RBE (Relative Biological Effectiveness) for micronuclei was 2.370.17. Further studies were carried out to provide evidence for the existence of individual variations in age-dependent responses to radiation. Spontaneous and radiation-induced MN varies greatly among individuals, and little is known about the molecular mechanisms of this variability. It was shown that the increased level of spontaneous cell with MN was observed with increasing age. The relationship between radiosensitivity and the increased spontaneous level of MN may be in inverse proportion. These studies indicated that the MN assay have a high potential as a rapid, sensitive and accurate method which can be used to monitor a large population exposed to radiation for rapid triage in the case of a large-scale accident.

  3. Evaluation of spontaneous and radiation-induced micronucleus frequency in cultrued human peripheral blood lymphocytes depending on age and sex

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. J.; Kang, C. M.; Chung, H. C. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)] [and others

    2002-07-01

    The goal of this study was to provide data on the dose-dependent production of micronucleus (MN) in human lymphocytes irradiated with {sub 60} Co {gamma} -rays and 50MeV neutron, and to evaluate predictive markers of intrinsic radiosensitivity in individuals for monitoring occupational or environmental radiation exposure. For the dose-response study, heparinized whole blood of 10 healthy volunteers was irradiated with {sub 60} Co {gamma} -rays employing of 0.25-8Gy. The MNs were observed all doses, and the numerical changes according to doses. In dose-response curves fit linear- quadratic form (alpha =0.31{+-}0.049, beta =0.0022{+-}0.0022) for {gamma} -rays, but (alpha =0.99{+-}0.528, beta =0.0093{+-}0.0047) for neutron. Neutrons were than {gamma} -rays effective in producing MN with dose-dependent manner. The frequency of MN varies with dose. The RBE for micronuclei was 2.37{+-}0.17. Further studied are carried out to provide evidence for the existence of individual variations in age-dependent responses to radiation. Spontaneous and radiation-induced MN varies greatly between individuals, and little is known about the molecular mechanisms of this variability. It was shown that the increased level of spontaneous cell with MN was observed with increasing age. The relationship between radiosensitivity and the increased spontaneous level of MN may be in inverse proportion. These studies indicates that the MN assay have a high potential as a rapid, sensitive and accurate method which can be used to monitor a large population exposed to radiation for rapid triage in the case of a large-scale accident.

  4. The comet assay in testing the potential genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Amaya Azqueta

    2015-06-01

    Full Text Available In the last two decades the production and use of nanomaterials (NMs has impressively increased. Their small size, given a mass equal to that of the corresponding bulk material, implies an increase in the surface area and consequently in the number of atoms that can be reactive. They possess different physical, chemical and biological properties compared to bulk materials of the same composition, which makes them very interesting and valuable for many different applications in technology, energy, construction, electronics, agriculture, optics, paints, textiles, food, cosmetics, medicine... Toxicological assessment of NMs is crucial; the same properties that make them interesting also make them potentially harmful for health and the environment. However, the term NM covers many different kinds of particle , and so there is no simple, standard approach to assessing their toxicity. NMs can enter the cell, interact with cell components and even penetrate the nucleus and interfere with the genetic material. Among the different branches of toxicology, genotoxicity is a main area of concern since it is closely related with the carcinogenic potential of compounds. The Organisation for Economic Co-operation and Development (OECD has published internationally agreed in vitro and in vivo validated test methods to evaluate different genotoxic endpoints of chemicals, including chromosome and gene mutations, and DNA breaks. However not all the assays are suitable to study the genotoxic potential of NMs as has been shown by the OECD Working Party on Manufactured Nanomaterials (WPMN. Moreover, alterations to DNA bases, which are precursors to mutations and of great importance in elucidating the mechanism of action of NMs, are not covered by the OECD guidelines. The in vivo standard comet assay (which measures DNA breaks and alkali-labile sites was included in the OECD assays battery in September 2014 while the in vitro standard comet assay is currently under

  5. In vitro and in vivo antioxidant activities of inulin.

    Science.gov (United States)

    Shang, Hong-Mei; Zhou, Hai-Zhu; Yang, Jun-Yan; Li, Ran; Song, Hui; Wu, Hong-Xin

    2018-01-01

    This study was designed to investigate the in vitro and in vivo antioxidant activities of inulin. The in vitro assays demonstrated that the antioxidant activities of inulin, including the DPPH radical scavenging activity, ABTS scavenging activity and ferric reducing power, were weak and significantly lower than those of Vitamin C (P inulin on the antioxidant status of laying hens was evaluated with in vivo antioxidant assays. The results indicated that inulin supplementation quadratically improved the egg production rate of the laying hens (P inulin levels increased (P inulin levels increased (P inulin has the potential to improve the antioxidant status of laying hens.

  6. Probing Regenerative Potential of Moringa oleifera Aqueous Extracts Using In vitro Cellular Assays.

    Science.gov (United States)

    Fernandes, Evangeline E; Pulwale, Anubha V; Patil, Gauri A; Moghe, Alpana S

    2016-01-01

    Molecules stimulating regeneration and proliferation of cells are of significance in combating ailments caused due to tissue injury, inflammation, and degenerative disorders. Moringa oleifera is one of the most valued food plants having the profile of important nutrients and impressive range of medicinal uses. To evaluate the potential of M. oleifera aqueous leaf and flower extracts to promote the proliferation of cells and explore their effect on cancer cell lines for assessment of safety. Aqueous leaf and flower extracts of M. oleifera were investigated for effect on rat-derived primary fibroblast, mesenchymal stem cells (MSCs), and cancer cell lines using cell proliferation assay. They were also tested and compared for wound healing, angiogenesis, and hepatoprotective effect using in vitro assays. Statistically significant increase in the proliferation of primary rat fibroblast, MSCs, and angiogenesis was observed after treatment with aqueous flower extract. The aqueous leaf extract determined a comparatively moderate increment in the proliferation of MSCs and angiogenesis. It however showed prominent cytotoxicity to cancer cell lines and a significant hepatoprotective effect. A very clear difference in response of the two extracts to different types of cells was detected in this study. The aqueous flower extract exhibited a higher potential to stimulate cell proliferation while not exerting the same effect on cancer cell lines. The leaf extract on the other hand, had a prominent antitumor and hepatoptotective effects. Moringa oleifera flower extract showed significant ability to promote proliferation of rat fibroblast and mesenchymal stem cells. The extract also had prominent angiogenic and hepatoprotective effects.The extract did not influence proliferation of cancer cell lines indicating its safety for human consumption and use in pharmaceuticals.The Moringa oleifera leaf extract showed relatively less potential to stimulate cells but had prominent cytotoxic

  7. A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA).

    Science.gov (United States)

    Kirkland, David; Fowler, Paul

    2018-04-01

    Trimethylolpropane triacrylate (TMPTA) is a trifunctional acrylate monomer which polymerizes rapidly when exposed to sources of free radicals. It is widely used as a reactive diluent and polymer building block in the formulation of overprint varnishes, inks and a variety of wood, plastic and metal coatings. TMPTA has been tested in a range of in vitro and in vivo genotoxicity tests. There is no clear evidence of induction of gene mutations by TMPTA in bacteria or mammalian cells in vitro, but there is evidence of clastogenicity from induction of small colony tk mutants in the mouse lymphoma assay, and also induction of micronuclei and chromosomal aberrations. However, TMPTA was negative in bone marrow or blood micronucleus tests in vivo following oral or repeated dermal application, and did not induce comets in bone marrow or liver of mice following intravenous administration, which would have achieved plasma (and therefore tissue) concentrations estimated to exceed those inducing clastogenic effects in vitro. It is concluded that TMPTA is not genotoxic in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Repopulation in the SCCVII squamous cell carcinoma assessed by an in vivo-in vitro excision assay

    International Nuclear Information System (INIS)

    Hansen, Olfred; Grau, Cai; Bentzen, Soeren M.; Overgaard, Jens

    1996-01-01

    An in vivo-in vitro excision assay was used to study repopulation after a single dose of clamped irradiation (40 Gy) in the SCCVII tumour implanted in the foot of C3H/Km mice. The growth pattern of clonogenic cells was analysed by two different mathematical models: the logistic model and the Gompertz model. The logistic model described the data better than the Gompertz model. Accelerated repopulation was found when the regrowth rate after irradiation was compared to the growth rate at the time of treatment, and when it was compared to the growth rate in untreated tumours with a number of cells equivalent to the number that was found after irradiation. The clonogenic doubling time (cDT) was estimated at 15.1 h (95% c.i.: 14.2; 16.0) after irradiation, and 27.8 h (95% c.i.: 16.7; 43.5) in untreated controls of matching size. However, the estimate relies on the mathematical model chosen and on extrapolation below actually measured data. A small cDT points to shortening of the cell cycle time and recruitment of non-cycling clonogenic tumour cells to be the main mechanism behind the accelerated repopulation

  9. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  10. Estimation of plasma tacrine concentrations using an in vitro cholinesterase inhibition assay

    International Nuclear Information System (INIS)

    Moriearty, P.L.; Kenny, W.; Kumar, V.

    1989-01-01

    THA (9-amino, 1,2,3,4-tetrahydroacridine; tacrine) is currently under study as a cholinesterase (ChE) inhibitor in Alzheimer disease. In this study, a sensitive radiometric assay for THA inhibition of human plasma ChE, suitable for detection of effects of orally administered drug, is described. The assay is sensitive in a range of 4-50 ng/ml plasma. Reversibility of the inhibition permits distinguishing of drug effects on ChE from changes in amount of enzyme synthesized during treatment

  11. Optimized in vitro procedure for assessing the cytocompatibility of magnesium-based biomaterials.

    Science.gov (United States)

    Jung, Ole; Smeets, Ralf; Porchetta, Dario; Kopp, Alexander; Ptock, Christoph; Müller, Ute; Heiland, Max; Schwade, Max; Behr, Björn; Kröger, Nadja; Kluwe, Lan; Hanken, Henning; Hartjen, Philip

    2015-09-01

    Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Phytochemical And In Vitro Antimicrobial Assay Of The Leaf Extract ...

    African Journals Online (AJOL)

    This study has justified the traditional use of this plant for the treatment of stomach discomfort, diarrhea, dysentery and as a remedy for wound healing whose causative agents are some of the organisms used in this study. Keywords: Antimicrobial, Leaf Extracts,In Vitro, Phytochemical, Newbouldia laevis. African Journal of ...

  13. Progress in hprt mutation assay and its application in radiation biology

    International Nuclear Information System (INIS)

    He Jing; Li Qiang

    2008-01-01

    hprt gene is an X-linked locus that has been well studied and widely used as a bio-marker in mutation detection, hprt mutation assay is a gene mutation test system in mammalian cells in vitro which has been used as a biological dosimeter. In this paper, the biological characteristics of hprt gene, hprt mutation detection methodology and the application of hprt mutation assay in radiation biology are comprehensively reviewed. (authors)

  14. An improved method for staining cell colonies in clonogenic assays

    OpenAIRE

    Guda, Kishore; Natale, Leanna; Markowitz, Sanford D.

    2007-01-01

    Clonogenic assay is a widely used experimental approach to test for the effects of drugs/genes on the growth and proliferative characteristics of cells in vitro. Accurate quantitation of treatment effects in clonogeneic assays depends on the ability to visualize and count cell colonies precisely. We report a novel method (referred as ETeB) for staining cell colonies grown on plastic and specially coated substrates like collagen. Using colon cancer cell lines grown on plastic and collagen, we ...

  15. Evaluation of a new serological test for syphilis based on chemiluminescence assay in a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2015-01-01

    Full Text Available Context: Syphilis is a transfusion transmissible infections and it is mandatory to do serological test for syphilis (STS on all donor blood samples. STS is usually based on detection of antibodies against the cardiolipin-lecithin antigen or against the Treponema-specific antigen. STS with good sensitivity and specificity helps enhance blood safety and consolidation of STS along with other transfusion transmittable infections such as human immunodeficiency virus, hepatitis-C virus, and hepatitis-B virus helps in reducing the errors and enhances efficiency. Aims: This study was designed to evaluate the performance of newly introduced VITROS ® syphilis Treponema pallidum agglutination (TPA assay based on enhanced chemiluminescence principle for its analytical performance for use as a STS on donor blood samples at a tertiary care health center in National Capital Region, India. Materials and Methods: A total of 108 random blood units collected from the donors (both voluntary and replacement donors and 28 known syphilis sero-reactive samples stored at −20°C, were used to evaluate the performance of VITROS ® syphilis TPA assay based on enhanced chemiluminescence assay on VITROS ® ECiQ immunodiagnostics system along with its analytical performance in terms of its sensitivity, precision, cross-reactivity and interference studies. Results: VITROS ® syphilis TPA showed 100% sensitivity and specificity with precision (20 days study of <10% co-efficient of variation. There was no cross-reactivity with other viral and auto-immune antibodies. No interference was observed from endogenous interfering substances like free hemoglobin or fats. Conclusions: Performance of the VITROS ® syphilis TPA assay meets the requirements for its use as STS in blood bank, thus allowing consolidation with other transfusion transmittable infections screening assay on chemiluminescence platform, which is highly valuable for optimizing workflow and efficiency.

  16. Investigation of micronuclei induction in human peripheral blood lymphocytes exposed in vitro to EMF RF

    International Nuclear Information System (INIS)

    Kolomiets, Irina A.; Triapitsina, Galina A.; Polevik, Nikolai D.; Pryakhin, Evgeny A.

    2008-01-01

    Full text: The widespread application of cellular phones is of great concern in view possible consequences for human health. The aim of this study is to assess the capability of electromagnetic fields (EMF) RF with frequency 925 MHz and modulation 217 Hz to induce genotoxic effects as evaluated by the in vitro micronucleus assay on peripheral blood lymphocytes. The flasks of peripheral blood samples collected from healthy volunteers (5 men and 5 women) were placed just on the oscillator of emitting antenna. The signals were produced by the laboratory research plant and were evaluated at four specific absorption rates (SARs) - 0; 0.29; 1.2; 8.1 W/kg. SARs were determined by the calorimetric method. Phytohaemagglutinin stimulated lymphocytes were exposed three times for 10 minutes in the G o (the first 30 minutes after the beginning of cultivation), S (24 hours later), G 2 -M (after 48 hours from the beginning of cultivation) stages of the cell cycle. 72-hours cultures of lymphocytes were examined to determine the extent of micronuclei. The Mann-Whitney U-test was used to evaluate the significance for comparison. The data indicated a significant increase of micronuclei in human lymphocytes exposed to EMF RF (6.5 ± 0.51 0/00; 7.1 ± 0.66 0/00; 7.0 ± 0.50 0/00) in comparison with sham-exposed lymphocytes (3.0 ± 0.60 0/00). There was not revealed a dose-dependent increase of micronuclei in human lymphocytes. It was suggested that the increase of micronuclei in lymphocytes is explicated by a particularity of EMF RF just near the oscillator of emitting antenna. (author)

  17. Comparative evaluation of genetic toxicity patterns of carcinogens and noncarcinogens: strategies for predictive use of short-term assays

    International Nuclear Information System (INIS)

    Tennant, R.W.; Spalding, J.W.; Stasiewicz, S.; Caspary, W.D.; Mason, J.M.; Resnick, M.A.

    1987-01-01

    The results of a recent comprehensive evaluation of the relationship between four measures of in vitro genetic toxicity and the capacity of the chemicals to induce neoplasia in rodents carry some important implications. The results showed that while the Salmonella mutagenesis assay detected only about half of the carcinogenes as mutagens, the other three in vitro assays (mutagenesis in MOLY cells or induction of aberrations or SCEs in CHO cells) did not complement Salmonella since they failed to effectively discriminate between the carcinogens and noncarcinogens found negative in the Salmonella assay. The specificity of the Salmonella assay for this group of 73 chemicals was relatively high (only 4 of 29 noncarcinogens were positive). Therefore, the authors have begun to evaluate in vivo genetic toxicity assays for their ability to complement Salmonella in the identification of carcinogens

  18. Two-tiered keratinocyte assay: IL-18 production by NCTC2544 cells to determine the skin sensitizing capacity and an epidermal equivalent assay to determine sensitizer potency

    DEFF Research Database (Denmark)

    Teunis, Marc; Corsini, Emanuela; Smits, Mieke

    2012-01-01

    the use of animals. The aim of the EU FP6 Integrated Project Sens-it-iv was to develop and optimize an integrated testing strategy consisting of in vitro, human cell based assays which will closely mimic sensitization mechanisms in vivo. These assays should be an alternative approach to the LLNA. The NCTC...... method to the LLNA. Both assays are based on the use of human keratinocytes, which have been shown, over the last two decades, to play a key role in all phases of skin sensitization. First, 4 known chemicals were tested during a transferability study in which 6 laboratories participated. Three...

  19. In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State - Brazil).

    Science.gov (United States)

    Hara, Raquel Vaz; Marin-Morales, Maria Aparecida

    2017-05-01

    In recent years concern about the chemical composition of wastewater generated by the oil refining industry has increased, even after its treatment. These wastewaters contain substances that can harm both the entire aquatic ecosystem and the health of any exposed organisms. The aim of this study was to evaluate the genotoxic and mutagenic potentials of the effluent generated by the largest Brazilian petroleum refinery, the effectiveness of the treatments used by the refinery, and whether its effluent can compromise the water quality of the river where it is discarded. Chromosomal aberration and micronucleus assays were performed in Allium cepa and micronucleus test in mammalian cell culture (CHO-K1). The samples were collected in three sites at the refinery: one site on the Jaguari River and two sites on the Atibaia Rivers (upstream and downstream of the discharged effluent), under three different climatic conditions. Tests with A. cepa showed increased frequencies of chromosomal aberrations and micronuclei in meristematic cells for the effluent after physico-chemical treatment, but the samples after treatment biological and stabilization pond presented none of these abnormalities. It was observed that the induced damage in the meristematic cells was not observed in the F 1 cells of A. cepa roots. The micronucleus test performed with mammalian cell culture also indicated that the effluent, after physico-chemical treatment, induced a significant increase in micronucleus frequencies. Plant and hamster cells exposed to the other samples collected inside the refinery and in the Jaguari and Atibaia Rivers did not present evidence of genotoxicity and mutagenicity in the tests performed. This study showed that the effluent treated carried out by the refinery (biological treatment followed by a stabilization pond) proved to be efficient for the removal of the toxic load still present after the physico-chemical treatment, since no change in the quality of the Atibaia

  20. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  1. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment

    International Nuclear Information System (INIS)

    Wetmore, Barbara A.

    2015-01-01

    High-throughput in vitro toxicity screening provides an efficient way to identify potential biological targets for environmental and industrial chemicals while conserving limited testing resources. However, reliance on the nominal chemical concentrations in these in vitro assays as an indicator of bioactivity may misrepresent potential in vivo effects of these chemicals due to differences in clearance, protein binding, bioavailability, and other pharmacokinetic factors. Development of high-throughput in vitro hepatic clearance and protein binding assays and refinement of quantitative in vitro-to-in vivo extrapolation (QIVIVE) methods have provided key tools to predict xenobiotic steady state pharmacokinetics. Using a process known as reverse dosimetry, knowledge of the chemical steady state behavior can be incorporated with HTS data to determine the external in vivo oral exposure needed to achieve internal blood concentrations equivalent to those eliciting bioactivity in the assays. These daily oral doses, known as oral equivalents, can be compared to chronic human exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. This review will describe the use of QIVIVE methods in a high-throughput environment and the promise they hold in shaping chemical testing priorities and, potentially, high-throughput risk assessment strategies

  2. Toxicological evaluation of the flavour ingredient N-(1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yloxy-2-methylpropan-2-yl-2,6-dimethylisonicotinamide (S2218

    Directory of Open Access Journals (Sweden)

    Donald S. Karanewsky

    Full Text Available A toxicological evaluation of N-(1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yloxy-2-methylpropan-2-yl-2,6-dimethylisonicotinamide (S2218; CAS 1622458-34-7, a flavour with modifying properties, was completed for the purpose of assessing its safety for use in food and beverage applications. S2218 exhibited minimal oxidative metabolism in vitro, and in rat pharmacokinetic studies, the compound was poorly orally bioavailable and rapidly eliminated. S2218 was not found to be mutagenic in an in vitro bacterial reverse mutation assay, and was found to be neither clastogenic nor aneugenic in an in vitro mammalian cell micronucleus assay. In subchronic oral toxicity studies in male and female rats, the NOAEL was 140 mg/kg bw/day (highest dose tested for S2218 sulfate salt (S8069 when administered as a food ad-mix for 13 consecutive weeks. Furthermore, S2218 sulfate salt demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats. Keywords: Flavours with modifying properties, S2218, FEMA GRAS, Subchronic toxicological evaluation, Genetic toxicological evaluation, Developmental toxicity evaluation

  3. Genomic instability related to zinc deficiency and excess in an in vitro model: is the upper estimate of the physiological requirements recommended for children safe?

    Science.gov (United States)

    Padula, Gisel; Ponzinibbio, María Virginia; Gambaro, Rocío Celeste; Seoane, Analía Isabel

    2017-08-01

    Micronutrients are important for the prevention of degenerative diseases due to their role in maintaining genomic stability. Therefore, there is international concern about the need to redefine the optimal mineral and vitamin requirements to prevent DNA damage. We analyzed the cytostatic, cytotoxic, and genotoxic effect of in vitro zinc supplementation to determine the effects of zinc deficiency and excess and whether the upper estimate of the physiological requirement recommended for children is safe. To achieve zinc deficiency, DMEM/Ham's F12 medium (HF12) was chelated (HF12Q). Lymphocytes were isolated from healthy female donors (age range, 5-10 yr) and cultured for 7 d as follows: negative control (HF12, 60 μg/dl ZnSO 4 ); deficient (HF12Q, 12 μg/dl ZnSO 4 ); lower level (HF12Q + 80 μg/dl ZnSO 4 ); average level (HF12Q + 180 μg/dl ZnSO 4 ); upper limit (HF12Q + 280 μg/dl ZnSO 4 ); and excess (HF12Q + 380 μg/dl ZnSO 4 ). The comet (quantitative analysis) and cytokinesis-block micronucleus cytome assays were used. Differences were evaluated with Kruskal-Wallis and ANOVA (p < 0.05). Olive tail moment, tail length, micronuclei frequency, and apoptotic and necrotic percentages were significantly higher in the deficient, upper limit, and excess cultures compared with the negative control, lower, and average limit ones. In vitro zinc supplementation at the lower and average limit (80 and 180 μg/dl ZnSO 4 ) of the physiological requirement recommended for children proved to be the most beneficial in avoiding genomic instability, whereas the deficient, upper limit, and excess (12, 280, and 380 μg/dl) cultures increased DNA and chromosomal damage and apoptotic and necrotic frequencies.

  4. Evaluation of seven in vitro alternatives for ocular safety testing.

    Science.gov (United States)

    Bruner, L H; Kain, D J; Roberts, D A; Parker, R D

    1991-07-01

    Seven in vitro assays were evaluated to determine if any were useful as screening procedures in ocular safety assessment. Seventeen test materials (chemicals, household cleaners, hand soaps, dishwashing liquids, shampoos, and liquid laundry detergents) were tested in each assay. In vivo ocular irritation scores for the materials were obtained from existing rabbit low volume eye test (LVET) data. The seven assays evaluated included the silicon microphysiometer (SM), luminescent bacteria toxicity test (LBT), neutral red assay (NR), total protein assay (TP), Tetrahymena thermophila motility assay (TTMA), bovine eye/chorioallantoic membrane assay (BE/CAM), and the EYTEX system (ETS). For the seventeen materials used in this study there was a significant correlation between the in vivo irritant potential and in vitro data for all the tests except the EYTEX System (SM, r = -0.87; LBT, r = -0.91; NR, r = -0.85; TTMA, r = 0.78; TP, r = -0.86; ETS, r = 0.29). The irritation classifications provided by the BE/CAM also did not correspond with the actual in vivo irritancy potential of the test materials. The result of this study suggested it may be possible to classify materials into broad irritancy categories with some of the assays. This would allow their use as screens prior to limited in vivo confirmation in the ocular safety assessment process.

  5. The alkylphospholipid, perifosine, radiosensitizes prostate cancer cells both in vitro and in vivo

    International Nuclear Information System (INIS)

    Gao, Yuanhong; Ittmann, Michael; Thompson, Timothy C; Butler, E Brian; Xu, Bo; Teh, Bin S; Ishiyama, Hiromichi; Sun, Mianen; Brinkman, Kathryn L; Wang, Xiaozhen; Zhu, Julie; Mai, Weiyuan; Huang, Ying; Floryk, Daniel

    2011-01-01

    Perifosine is a membrane-targeted alkylphospholipid developed to inhibit the PI3K/Akt pathway and has been suggested as a favorable candidate for combined use with radiotherapy. In this study, we investigated the effect of the combined treatment of perifosine and radiation (CTPR) on prostate cancer cells in vitro and on prostate cancer xenografts in vivo. Human prostate cancer cell line, CWR22RV1, was treated with perifosine, radiation, or CTPR. Clonogenic survival assays, sulforhodamine B cytotoxity assays and cell density assays were used to assess the effectiveness of each therapy in vitro. Measurements of apoptosis, cell cycle analysis by flow cytometry and Western blots were used to evaluate mechanisms of action in vitro. Tumor growth delay assays were used to evaluate radiation induced tumor responses in vivo. In vitro, CTPR had greater inhibitory effects on prostate cancer cell viability and clonogenic survival than either perifosine or radiation treatment alone. A marked increase in prostate cancer cell apoptosis was noted in CTPR. Phosphorylation of AKT-T308 AKT and S473 were decreased when using perifosine treatment or CTPR. Cleaved caspase 3 was significantly increased in the CTPR group. In vivo, CTPR had greater inhibitory effects on the growth of xenografts when compared with perifosine or radiation treatment alone groups. Perifosine enhances prostate cancer radiosensitivity in vitro and in vivo. These data provide strong support for further development of this combination therapy in clinical studies

  6. Predicting the Reasons of Customer Complaints: A First Step Toward Anticipating Quality Issues of In Vitro Diagnostics Assays with Machine Learning.

    Science.gov (United States)

    Aris-Brosou, Stephane; Kim, James; Li, Li; Liu, Hui

    2018-05-15

    Vendors in the health care industry produce diagnostic systems that, through a secured connection, allow them to monitor performance almost in real time. However, challenges exist in analyzing and interpreting large volumes of noisy quality control (QC) data. As a result, some QC shifts may not be detected early enough by the vendor, but lead a customer to complain. The aim of this study was to hypothesize that a more proactive response could be designed by utilizing the collected QC data more efficiently. Our aim is therefore to help prevent customer complaints by predicting them based on the QC data collected by in vitro diagnostic systems. QC data from five select in vitro diagnostic assays were combined with the corresponding database of customer complaints over a period of 90 days. A subset of these data over the last 45 days was also analyzed to assess how the length of the training period affects predictions. We defined a set of features used to train two classifiers, one based on decision trees and the other based on adaptive boosting, and assessed model performance by cross-validation. The cross-validations showed classification error rates close to zero for some assays with adaptive boosting when predicting the potential cause of customer complaints. Performance was improved by shortening the training period when the volume of complaints increased. Denoising filters that reduced the number of categories to predict further improved performance, as their application simplified the prediction problem. This novel approach to predicting customer complaints based on QC data may allow the diagnostic industry, the expected end user of our approach, to proactively identify potential product quality issues and fix these before receiving customer complaints. This represents a new step in the direction of using big data toward product quality improvement. ©Stephane Aris-Brosou, James Kim, Li Li, Hui Liu. Originally published in JMIR Medical Informatics (http

  7. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    Science.gov (United States)

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by in vitro and in silico methods.

    Science.gov (United States)

    Osimitz, Thomas G; Welsh, William J; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Radiobiological and PK assays at advance Centre for Training Research and Education in Cancer (ACTREC)

    International Nuclear Information System (INIS)

    Sastri, Goda Jayant; Gota, Vikram

    2014-01-01

    Radiobiological, pharmacokinetic and biodistribution studies are of paramount importance for drug development and more so in the development of newer radiation modulators. Radiobiological studies have now graduated from simple cell survival and viability assays to more complex molecular and imaging studies to study radiation modulation both in in-vitro and in-vivo models. Tata Memorial Centre and its research centre (ACTREC) is a premiere cancer centre in India dedicated to cancer research. The Department of Radiation Oncology treats approximately 7000 new patients in a year and is uniquely placed to do both translational radiation and clinical research in the field of drug development. The Clinical Biology Lab of the Department of Radiation Oncology at ACTREC in collaboration with other labs at ACTREC has standardized cell survival assays, DNA damage assays such as Gamma H2AX assay (by flow as well as confocal microscopy), Micronuclei assay and COMET assays using CASP software for quantification. We have also done apoptotic assays. These assays have been conducted for development newer drug formulations (for e.g liposomal radiosensitizers). We also have a strong imaging division having sophisticated microscopes (confocal and single molecule super resolution microscopes) for in-vitro optical imaging and a dedicated preclinical PET/CT/SPECT for in-vivo imaging. The clinical 3T MRI and PET/CT is being used to study the effect of hypoxia in various cancers

  10. Measurement of amyloid formation by turbidity assay-seeing through the cloud.

    Science.gov (United States)

    Zhao, Ran; So, Masatomo; Maat, Hendrik; Ray, Nicholas J; Arisaka, Fumio; Goto, Yuji; Carver, John A; Hall, Damien

    2016-01-01

    Detection of amyloid growth is commonly carried out by measurement of solution turbidity, a low-cost assay procedure based on the intrinsic light scattering properties of the protein aggregate. Here, we review the biophysical chemistry associated with the turbidimetric assay methodology, exploring the reviewed literature using a series of pedagogical kinetic simulations. In turn, these simulations are used to interrogate the literature concerned with in vitro drug screening and the assessment of amyloid aggregation mechanisms.

  11. In vivo nanotoxicity assays in plant models.

    Science.gov (United States)

    Kumari, Mamta; Ernest, Vinita; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-01-01

    Increasing application of silver nanoparticles (SNPs) and zinc oxide nanoparticles (nZnO) in consumer products like textiles, cosmetics, washing machines and other household products increases their chance to reach the environment. Intensive research is required to assess the nanoparticles' toxicity to the environmental system. The toxicological effect of nanoparticles has been studied at the miniscule scale and requires intensive research to be conducted to assess its unknown effects. Plants are the primary target species which need to be included to develop a comprehensive toxicity profile for nanoparticles. So far, the mechanisms of toxicity of nanoparticles to the plant system remains largely unknown and little information on the potential uptake of nanoparticles by plants and their subsequent fate within the food chain is available. The phytoxicological behaviour of silver and zinc oxide nanoparticles on Allium cepa and seeds of Zea mays (maize), Cucumis sativus (cucumber) and Lycopersicum esculentum (tomato) was done. The in vitro studies on A. cepa have been done to check the cytotoxicological effects including mitotic index, chromosomal aberrations, vagrant chromosomes, sticky chromosomes, disturbed metaphase, breaks and formation of micronucleus. In vitro and in vivo studies on seed systems exposed to different concentration of nanoparticles dispersion to check phytotoxicity end point as root length, germination effect, adsorption and accumulation of nanoparticles (uptake studies) into the plant systems. In vivo studies in a seed system was done using phytagel medium. Biochemical studies were done to check effect on protein, DNA and thiobarbituric acid reactive species concentration. FT-IR studies were done to analyze the functional and conformational changes in the treated and untreated samples. The toxicological effects of nanoparticles had to be studied at the miniscule scale to address existing environment problems or prevent future problems. The

  12. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project.

    Science.gov (United States)

    Judson, Richard S; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Mortensen, Holly M; Reif, David M; Rotroff, Daniel M; Shah, Imran; Richard, Ann M; Dix, David J

    2010-04-01

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.

  13. In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods

    Directory of Open Access Journals (Sweden)

    Gauhar Rehman

    2018-01-01

    Full Text Available The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays.

  14. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Susan, E-mail: S.Gibbs@VUMC.nl [Department of Dermatology, VU University Medical Centre, Dept of Oral Cell Biology, ACTA, Amsterdam (Netherlands); Corsini, Emanuela [Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano (Italy); Spiekstra, Sander W. [Department of Dermatology, VU University Medical Centre, Dept of Oral Cell Biology, ACTA, Amsterdam (Netherlands); Galbiati, Valentina [Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano (Italy); Fuchs, Horst W. [CellSystems GmbH, Troisdorf (Germany); DeGeorge, George; Troese, Matthew [MB Research Labs, Spinnerstown, PA (United States); Hayden, Patrick; Deng, Wei [MatTek Corporation, Ashland, MA (United States); Roggen, Erwin [3Rs Management and Consultancy (Denmark)

    2013-10-15

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robust increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC{sub 50}) with human and animal data showed a superior correlation with human DSA{sub 05} (μg/cm{sup 2}) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA{sub 05} = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA{sub 05} data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer potency

  15. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    International Nuclear Information System (INIS)

    Gibbs, Susan; Corsini, Emanuela; Spiekstra, Sander W.; Galbiati, Valentina; Fuchs, Horst W.; DeGeorge, George; Troese, Matthew; Hayden, Patrick; Deng, Wei; Roggen, Erwin

    2013-01-01

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robust increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC 50 ) with human and animal data showed a superior correlation with human DSA 05 (μg/cm 2 ) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA 05 = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA 05 data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer potency • EC50 (chemical

  16. Classification of sensitizing and irritative potential in a combined in-vitro assay

    International Nuclear Information System (INIS)

    Wanner, Reinhard; Sonnenburg, Anna; Quatchadze, Maria; Schreiner, Maximilian; Peiser, Matthias; Zuberbier, Torsten; Stahlmann, Ralf

    2010-01-01

    We have developed a coculture system which in parallel indicates the sensitizing and irritative potential of xenobiotics. The assay is named loose-fit coculture-based sensitization assay (LCSA) and may be performed within 5 days. The system is composed of human monocytes that differentiate to a kind of dendritic cells by 2-day culturing in the presence of allogenic keratinocytes. The culture medium is enriched by a cocktail of recombinant cytokines. On day 3, concentration series of probes are added. On day 5, cells are harvested and analyzed for expression range of CD86 as a marker of sensitizing potential and for uptake of the viability stain 7-AAD as a marker of irritative potential. Estimation of the concentration required to cause a half-maximal increase in CD86 expression allowed quantification of sensitizing potential, and estimation of the concentration required to reduce viability to 50% allowed quantification of irritative potential. Examination of substances with known potential resulted in categorization of test scores. To evaluate our data, we have compared results with those of the validated animal-based sensitization test, the murine local lymph node assay (LLNA, OECD TG 429). To a large extent, results from LCSA and from LLNA achieved analogous grouping of allergens into categories like weak-moderate-strong. However, the new assay showed an improved capacity to distinguish sensitizers from non-sensitizers and irritants. In conclusion, the LCSA contains potential to fulfil the requirements of the EU's programme for the safety of chemicals 'Registration, Evaluation, Authorisation and Restriction of chemical substances' (REACH, 2006) to replace animal models.

  17. Development and validation of spectrophotometric method for assay determination and in vitro dissolution studies of sofosbuvir tablets

    International Nuclear Information System (INIS)

    Zaman, B.; Hassan, W.; Noreen, H.

    2017-01-01

    In vitro dissolution of sofosbuvir 400 mg tablets dosage form was performed, using USP dissolution apparatus type-II (paddle type), at 75rpm ± 4 %, and 900mL ± 1%, 0.05 M phosphate buffer pH 6.8 ± 0.05 equilibrated at 37.0 ± 0.5ºC as dissolution medium. Percentage of dissolved sofosbuvir as a function of time was determined using the straight line equation and linear regression using zero order and first order ANOVA based kinetics model. Comparative dissolution studies on two different generic brands A and B was performed comparing the drug release profile with innovator brand Sovaldi 400 mg tablets. The comparison of dissolution profiles was evaluated using model independent approach. The values of similarity factor f2 were (4 and 3) and the difference factor f1 were (64 and 50) for both generic products A and B respectively. A simple and precise spectrophotometric method was developed for estimation of sofosbuvir in dissolution medium based on spectrophotometric detection at wavelength 262 nm. The specific absorbance (A = 1%) of sofosbuvir was 178.5 ± 4% and Beer’s law was obeyed in the concentration ranges 4µg mL−1 to 48µg mL−1. The method was validated appropriately for accuracy, precision, linearity, and specificity, according the guidelines of United State Pharmacopoeia and International Conference on Harmonization. The calibration curve was linear with correlation coefficient (r > 0.9999) and there was no spectral interference from excipients present in the tablets dosage form. This method is precise, rapid and specific for determination of sofosbuvir in tablets dosage form and successfully applied for assay determination and in vitro dissolution studies. (author)

  18. Assay of micronuclei in peripheral blood lymphocytes as a biological indicator of radiation dose

    International Nuclear Information System (INIS)

    Sreedevi, B.; Rao, B.S.

    1994-01-01

    Chromosomal aberration analysis (CA) has regularly been used as a biological dosemeter to evaluate suspected overexposures to ionising radiations. Recently, the micronucleus (MN) assay has been suggested as an alternative method. An attempt has been made to explore the dose response parameters of MN assay in cytokinesis-blocked lymphocytes. Whole blood was irradiated with 60 Co gamma rays or 250 kV p X rays. A dose-dependent increase in micronuclei yield was observed. The dose response could be best described by a linear-quadratic relationship for both gamma rays and X rays. The α and β coefficients were found to be 1.9 x 10 -2 Gy -1 and 5.7 x 10 -2 Gy -2 for gamma rays and 6.3 x 10 -2 Gy -1 and 4.3 x 10 -2 Gy -2 for X rays, respectively. In the low dose region X rays were three times more efficient in inducing micronuclei. The background value derived for 25 samples from healthy individuals ranged from 6-18 micronuclei per 1000 cells, with a mean value of 12 ± 4 x 10 -3 . Biological dose estimates for individuals exposed in the range 0.1-1 Gy made by MN and CA methods yielded similar results for doses ≥ 0.5 Gy. Due to the uncertainties in the background incidence of MN, at present this technique cannot provide reliable estimates at low doses. (author)

  19. Correlation of liquid chromatographic and biological assay for potency assessment of filgrastim and related impurities.

    Science.gov (United States)

    Skrlin, Ana; Kosor Krnic, Ela; Gosak, Darko; Prester, Berislav; Mrsa, Vladimir; Vuletic, Marko; Runac, Domagoj

    2010-11-02

    In vivo and in vitro potency assays have always been a critical tool for confirmation of protein activity. However, due to their complexity and time consuming procedures, it remains a challenge to find an alternative analytical approach that would enable their replacement with no impact on the quality of provided information. The goal of this research was to determine if a correlation between liquid chromatography assays and in vitro biological assay could be established for filgrastim (recombinant human granulocyte-colony stimulating factor, rhG-CSF) samples containing various amounts of related impurities. For that purpose, relevant filgrastim related impurities were purified to homogeneity and characterized by liquid chromatography and mass spectrometry. A significant correlation (R(2)>0.90) between the two types of assays was revealed. Potency of oxidized filgrastim was determined to be approximately 25% of filgrastim stated potency (1 x 10(8)IU/mg of protein). Formyl-methionine filgrastim had potency of 89% of the filgrastim stated potency, while filgrastim dimer had 67% of filgrastim stated potency. A mathematical model for the estimation of biological activity of filgrastim samples from chromatography data was established and a significant correlation between experimental potency values and potency values estimated by the mathematical model was obtained (R(2)=0.92). Based on these results a conclusion was made that reversed phase high performance liquid chromatography could be used as an alternative for the in vitro biological assay for potency assessment of filgrastim samples. Such an alternative model would enable substitution of a complex and time consuming biological assay with a robust and precise instrumental method in many practical cases. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Assays for the in vitro establishment of Swietenia macrophylla and Cedrela odorata

    Directory of Open Access Journals (Sweden)

    Julián Pérez Flores

    2012-08-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Título en español: Ensayos para el establecimiento in vitro de Swietenia macrophylla y Cedrela odorata Abstract: Recalcitrance and contamination in Mahogany (Swietenia macrophylla King and Spanish cedar (Cedrela odorata L. stem tissues are the main causes of its ineffective in vitro propagation. The objectives of this research were: a to evaluate sodium hypochlorite (NaOCl and plant preservative mixture (PPM® as surface disinfectants and/or added to the culture medium for the in vitro establishment of nodal explants taken from 10-year-old Mahogany and Spanish cedar plants, and b to evaluate the in vitro response of such explants treated with N6-benzylaminopurine (BAP (0, 2.2, 4.4, 8.8, 17.7 μM, silver nitrate (AgNO3 (0, 3 mg l-1, activated charcoal (0, 1 g l-1 and vented caps. All the experiments were arranged in a completely randomized design. The NaOCl at 15%, for 20 min, as a surface sterilization or PPM® at 2 ml l-1  into the culture medium, were the best treatments to reduce contamination for both species. For Mahogany explants, BAP at 17.7 μM resulted in higher percentages of bud breaks than Spanish cedar (64% and 25%, respectively. Leaves on elongated shoots dropped off by 20 days after

  1. In Vitro Developmental Toxicology Screens: A Report on the Progress of the Methodology and Future Applications.

    Science.gov (United States)

    Zhang, Cindy; Ball, Jonathan; Panzica-Kelly, Julie; Augustine-Rauch, Karen

    2016-04-18

    There has been increasing focus on generation and assessment of in vitro developmental toxicology models for assessing teratogenic liability of chemicals. The driver for this focus has been to find reliable in vitro assays that will reduce or replace the use of in vivo tests for assessing teratogenicity. Such efforts may be eventually applied in testing pharmaceutical agents where a developmental toxicology assay or battery of assays may be incorporated into regulatory testing to replace one of the two species currently used in teratogenic assessment. Such assays may be eventually applied in testing a broader spectrum of chemicals, supporting efforts aligned with Tox21 strategies and responding to REACH legislation. This review describes the developmental toxicology assays that are of focus in these assessments: rodent whole embryo culture, zebrafish embryo assays, and embryonic stem cell assays. Progress on assay development as well as future directions of how these assays are envisioned to be applied for broader safety testing of chemicals are discussed. Altogether, the developmental model systems described in this review provide rich biological systems that can be utilized in better understanding teratogenic mechanisms of action of chemotypes and are promising in providing proactive safety assessment related to developmental toxicity. Continual advancements in refining/optimizing these in vitro assays are anticipated to provide a robust data set to provide thoughtful assessment of how whole animal teratogenicity evaluations can be reduced/refined in the future.

  2. Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers.

    Science.gov (United States)

    Zhang, Xiao; Duan, Huawei; Gao, Feng; Li, Yuanyuan; Huang, Chuanfeng; Niu, Yong; Gao, Weimin; Yu, Shanfa; Zheng, Yuxin

    2015-02-01

    The International Agency for Research on Cancer has recently reclassified diesel engine exhaust (DEE) as a Group 1 carcinogen. Micronucleus (MN), nucleoplasmic bridge (NPB), and nuclear bud (NBUD) frequencies in peripheral blood lymphocytes (PBLs) are associated with cancer risk. However, the impact of DEE exposure on MN frequency has not been thoroughly elucidated due to mixed exposure and its impact on NPB and NBUD frequencies has never been explored in humans. We recruited 117 diesel engine testing workers with exclusive exposure to DEE and 112 non-DEE-exposed workers, and then we measured urinary levels of 4 mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) using high-performance liquid chromatography-mass spectrometry as well as MN, NPB, and NBUD frequencies in PBLs using cytokinesis-block MN assay. The DEE-exposed workers exhibited significantly higher MN, NPB, and NBUD frequencies than the non-DEE-exposed workers (P < 0.05). Among all study subjects, increasing levels of all 4 urinary OH-PAHs, on both quartile and continuous scales, were associated with increased MN, NPB, and NBUD frequencies (all P < 0.05). When the associations were analyzed separately in DEE-exposed and non-DEE-exposed workers, we found that the association between increasing quartiles of urinary 9-hydroxyphenanthrene (9-OHPh) and MN frequencies persisted in DEE-exposed workers (P = 0.001). The percent of MN frequencies increased, on average, by 23.99% (95% confidential interval, 9.64-39.93) per 1-unit increase in ln-transformed 9-OHPh. Our results clearly show that exposure to DEE can induce increases in MN, NPB, and NBUD frequencies in PBLs and suggest that DEE exposure level is associated with MN frequencies. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing.

    Science.gov (United States)

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Walker, David; Camacho, Oscar M; Büttner, Ansgar; Dillon, Debbie; Meredith, Clive

    2016-06-01

    Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).

  4. In vivo hypotensive effect and in vitro inhibitory activity of some Cyperaceae species

    Directory of Open Access Journals (Sweden)

    Monica Lacerda Lopes Martins

    2013-12-01

    Full Text Available In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES, a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg, with acetylcholine (ACh as positive control (5 µg/kg, i.v.. The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.. Captopril (30 mg/kg was used as positive control. Bulbostylis capillaris (86.89 ± 15.20% and ERE (74.89 ± 11.95%, ERE were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%. ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.

  5. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    Science.gov (United States)

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Mutagenic potential of Cordia ecalyculata alone and in association with Spirulina maxima for their evaluation as candidate anti-obesity drugs.

    Science.gov (United States)

    Araldi, R P; Rechiutti, B M; Mendes, T B; Ito, E T; Souza, E B

    2014-07-07

    Obesity is one of the most important nutritional disorders, and can be currently considered as an epidemic. Although there are few weight reduction drugs available on the market, some new drug candidates have been proposed, including Cordia ecalyculata, a Brazilian plant with anorectic properties, and Spirulina maxima, a cyanobacterium with antioxidant and anti-genotoxic activity. In this study, we evaluated the mutagenic potential of C. ecalyculata at doses of 150, 300, and 500 mg/kg alone and in association with S. maxima at doses of 75, 150, and 250 mg/kg, respectively, through an in vivo micronucleus test, using mice of both sexes, and an in vitro micronucleus test and comet assay, using human peripheral blood. For all tests, cyclophosphamide was used as a positive control. The results showed that treatment of 300 mg/kg C. ecalyculata and the combination treatment of 500 mg/kg C. ecalyculata with 250 mg/kg S. maxima resulted in anorectic effects. The mutagenic tests did not reveal any clastogenic or genotoxic activity for any treatment, indicating that these candidates could be marketed as weight-reduction drugs. Moreover, the drugs contain chemo-preventive substances that can protect against tumorigenesis, which has been associated with obesity.

  7. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays.

    Directory of Open Access Journals (Sweden)

    Susan L Welkos

    Full Text Available Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational. Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains

  8. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays.

    Science.gov (United States)

    Welkos, Susan L; Klimko, Christopher P; Kern, Steven J; Bearss, Jeremy J; Bozue, Joel A; Bernhards, Robert C; Trevino, Sylvia R; Waag, David M; Amemiya, Kei; Worsham, Patricia L; Cote, Christopher K

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  9. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    OpenAIRE

    Judson, Richard S.; Houck, Keith A.; Kavlock, Robert J.; Knudsen, Thomas B.; Martin, Matthew T.; Mortensen, Holly M.; Reif, David M.; Rotroff, Daniel M.; Shah, Imran; Richard, Ann M.; Dix, David J.

    2009-01-01

    Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency?s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the ty...

  10. Frequency of micronuclei in hepatocytes following X and fast-neutron irradiations--an analysis by a linear-quadratic model

    International Nuclear Information System (INIS)

    Ono, K.; Nagata, Y.; Akuta, K.; Abe, M.; Ando, K.; Koike, S.

    1990-01-01

    The usefulness of the micronucleus assay for investigating the radiation response of hepatocytes was examined. The frequency was defined as the ratio of the total number of micronuclei to the number of hepatocytes examined. The dose-response curves were curvilinear after X rays and linear after neutrons. These dose-response curves were analyzed by a linear-quadratic model, frequency = aD + bD2 + c. The a/b ratio was 3.03 +/- 1.26 Gy following X irradiation. This value is within the range of the alpha/beta ratios reported by others using the clonogenic assay of hepatocytes. While the a/b value for neutrons was 24.3 +/- 11.7 Gy, the maximum relative biological effectiveness of neutrons was 6.30 +/- 2.53. Since the micronucleus assay is simple and rapid, it may be a good tool for evaluating the radiation response of hepatocytes in vivo

  11. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  12. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Algan, Oe.; Hanks, G.E.; Biade, S.; Chapman, J.D.

    1995-01-01

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHT TM ) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (α a + α p ) D + β p D 2 , were α a represents cell inactivation by radiation-induced apoptosis, α p and β p represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders

  13. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    Data.gov (United States)

    U.S. Environmental Protection Agency — This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activity....

  14. In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3.

    Science.gov (United States)

    Shih, Yu-En; Lin, Yu-Chih; Chung, Tse-Yu; Liu, Mei-Chun; Chen, Guan-Heng; Wu, Chia-Chang; Tzen, Jason T C

    2017-10-01

    Astringency, a sensory characteristic of food and beverages rich in polyphenols, mainly results from the formation of complexes between polyphenols and salivary proteins, causing a reduction of the lubricating properties of saliva. To develop an in vitro assay to estimate the astringency of oolong tea infusion, artificial oil bodies were constituted with sesame oil sheltered by a modified caleosin fused with histatin 3, one of the human salivary small peptides. Aggregation of artificial oil bodies was induced when they were mixed with oolong tea infusion or its major polyphenolic compound, (-)-epigallocatechin gallate (EGCG) of 100μM as observed in light microscopy. The aggregated artificial oil bodies gradually floated on top of the solution and formed a visible milky layer whose thickness was in proportion to the concentrations of tea infusion. This assay system was applied to test four different oolong tea infusions with sensory astringency corresponding to their EGCG contents. The result showed that relative astringency of the four tea infusions was correlated to the thickness of floated artificial oil bodies, and could be estimated according to the standard curve generated by simultaneously observing a serial dilution of the tea infusion with the highest astringency. Copyright © 2016. Published by Elsevier B.V.

  15. Pacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays.

    Science.gov (United States)

    Moreau, Pierrick; Burgeot, Thierry; Renault, Tristan

    2014-04-01

    Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides on oyster susceptibility to infectious agents. Massive mortality outbreaks reported in this species, mainly in spring and summer, may suggest an important role played by the seasonal use of pesticides and freshwater input in estuarine areas where oyster farms are frequently located. To understand the impact of some pesticides detected in French waters, their effects on Pacific oyster hemocytes were studied through short-term in vitro experiments. Bivalve immunity is mainly supported by hemocytes eliminating pathogens by phagocytosis and producing compounds including lysosomal enzymes and antimicrobial molecules. In this study, oyster hemocytes were incubated with a mixture of 14 pesticides and metaldehyde alone, a molecule used to eliminate land mollusks. Hemocyte parameters including dead/alive cells, nonspecific esterase activities, intracytoplasmic calcium, lysosome number and activity, and phagocytosis were monitored by flow cytometry. No significant effect of pesticides tested at different concentrations was reported on oyster hemocytes maintained in vitro for short-term periods in the present study. It could be assumed that these oyster cells were resistant to pesticide exposure in tested conditions and developing in vivo assays appears as necessary to better understand the effects of pollutants on immune system in mollusks.

  16. Dose Assessment using Chromosome Aberration Analyses in Human Peripheral Blood Lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin-Hong; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The healthy five donors were recruited to establish the dose-response calibration curve for chromosomal aberrations by ionizing radiation exposure. Our cytogenetic results revealed that the mean frequency of chromosome aberration increased with increasing radiation dose. In this study, dicentric assay and CBMN assay were compared considering the sensitivity and accuracy of dose estimation. Therefore, these chromosome aberration analyses will be the foundation for biological dosimetric analysis with additional research methods such as translocation and PCC assay. The conventional analysis of dicentric chromosomes in HPBL was suggested by Bender and Gooch in 1962. This assay has been for many years, the golden standard and the most specific method for ionizing radiation damage. The dicentric assay technique in HPBL has been shown as the most sensitive biological method and reliable bio-indicator of quantifying the radiation dose. In contrast, the micronucleus assay has advantages over the dicentric assay since it is rapid and requires less specialized expertise, and accordingly it can be applied to monitor a big population. The cytokinesis-block micronucleus (CBMN) assay is a suitable method for micronuceli measurement in cultured human as well as mammalian cells. The aim of our study was to establish the dose response curve of radiation-induced chromosome aberrations in HPBL by analyzing the frequency of dicentrics and micronuclei.

  17. Characterization of a yeast sporulation-specific P450 family protein, Dit2, using an in vitro assay to crosslink formyl tyrosine.

    Science.gov (United States)

    Bemena, Leo D; Mukama, Omar; Wang, Ning; Gao, Xiao-Dong; Nakanishi, Hideki

    2018-02-01

    The outermost layer of the yeast Saccharomyces cerevisiae spore, termed the dityrosine layer, is primarily composed of bisformyl dityrosine. Bisformyl dityrosine is produced in the spore cytosol by crosslinking of two formyl tyrosine molecules, after which it is transported to the nascent spore wall and assembled into the dityrosine layer by an unknown mechanism. A P450 family protein, Dit2, is believed to mediate the crosslinking of bisformyl dityrosine molecules. To characterize Dit2 and gain insight into the biological process of dityrosine layer formation, we performed an in vitro assay to crosslink formyl tyrosine with using permeabilized cells. For an unknown reason, the production of bisformyl dityrosine could not be confirmed under our experimental conditions, but dityrosine was detected in acid hydrolysates of the reaction mixtures in a Dit2 dependent manner. Thus, Dit2 mediated the crosslinking of formyl tyrosine in vitro. Dityrosine was detected when formyl tyrosine, but not tyrosine, was used as a substrate and the reaction required NADPH as a cofactor. Intriguingly, apart from Dit2, we found that the spore wall, but not the vegetative cell wall, contains bisformyl dityrosine crosslinking activity. This activity may be involved in the assembly of the dityrosine layer. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  18. Interpreting in vitro developmental toxicity test battery results: The consideration of toxicokinetics

    NARCIS (Netherlands)

    Bosgra, S.; Westerhout, J.

    2015-01-01

    In the EU collaborative project ChemScreen an alternative, in vitro assay-based test strategy was developed to screen compounds for reproductive toxicity. A toxicokinetic modeling approach was used to allow quantitative comparison between effective concentrations in the in vitro test battery and

  19. Analysis of Chemical Bioactivity through In Vitro Profiling ...

    Science.gov (United States)

    Safety assessment of drugs and environmental chemicals relies extensively on animal testing. However, the quantity of chemicals needing assessment and challenges of species extrapolation drive the development of alternative approaches. The EPA’s ToxCast and the multiagency Tox21 programs address this through use of an extensive in vitro screening program to generate data on a large library of important environmental chemicals. These in vitro assays encompass both cell-free, biochemical assays targeting proteins that may be potential molecular initiating events and cellular assays that provide coverage of critical signaling pathways and toxicity phenotypes. Effects on model organisms such as the developing zebrafish, are also part of the testing strategy. A variety of computational approaches are used to analyze the resulting complex data sets to gain insight in to inherent biological activity of chemicals and possible mechanisms of toxicity. Several case studies including identification of modulators of estrogen receptor and aromatic hydrocarbon receptor pathways with effects in primary human cell systems will be described. In addition, existing in vivo data from a subset of the chemicals was used to anchor predictive models using in vitro data for a number of adverse endpoints including reproductive and developmental toxicities. The strengths and weaknesses of this approach will be described. This work does not necessarily reflect official Agency policy. Pres

  20. Potential of the Trad-MCN assay applied with inflorescences of Tradescantia pallida 'Purpurea' for evaluating air contamination by naphthalene.

    Science.gov (United States)

    Alves, Edenise Segala; de Souza, Silvia Ribeiro; Pedroso, Andrea Nunes Vaz; Domingos, Marisa

    2008-11-01

    The aims of this study were to determine clastogenic responses of Tradescantia pallida cv. Purpurea to naphthalene (NAPH) by means of the bioassay Trad-MCN with inflorescences of T. pallida cv. Purpurea and to verify if this assay might be an indicator of the potential risk imposed in a workplace, where solid insecticide containing NAPH is usually applied. The clastogenic potential of NAPH was assessed by using static and dynamic experimental systems. In both systems, increased micronucleus frequencies were observed in inflorescences submitted to increasing concentrations of solid or gaseous NAPH. The evident clastogenicity verified in inflorescences exposed experimentally to 25-50 mg m(-3) of NAPH during 6h points to a narrow threshold of plant sensitivity, indicating risks under lower NAPH levels than the standards established by OSHA and therefore revealing its suitability for biomonitoring purposes. However, the clastogenic risk should be carefully investigated by other monitoring methods if human health is taken into consideration.