WorldWideScience

Sample records for vitro impaired uptake

  1. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  2. Zinc uptake in vitro by human retinal pigment epithelium

    International Nuclear Information System (INIS)

    Newsome, D.A.; Rothman, R.J.

    1987-01-01

    Zinc, an essential trace element, is present in unusually high concentrations in the chorioretinal complex relative to most other tissues. Because little has been known about the interactions between the retinal pigment epithelium and free or protein-associated zinc, we studied 65 Zn uptake by human retinal pigment epithelium in vitro. When monolayers were exposed to differing concentrations from 0 to 30 microM 65 Zn in Dulbecco's modified Eagle's medium with 5.4 gm/l glucose at 37 degrees C and 4 degrees C, we observed a temperature-dependent saturable accumulation of the radiolabel. With 15 microM 65 Zn, we saw a biphasic pattern of uptake with a rapid first phase and a slower second phase over 120 min. Uptake of 65 Zn was inhibited by iodacetate and cold, and reduced approximately 50% by the addition of 2% albumin to the labelling medium. Neither ouabain nor 2-deoxyglucose inhibited uptake. Cells previously exposed to 65 Zn retained approximately 70% of accumulated 65 Zn 60 min after being changed to radiolabel-free medium. Following removal of cells from the extracellular matrix adherent to the dish bottom, a variable amount of nonspecific binding of 65 Zn to the residual matrix was demonstrated. These observations are consistent with a facilitated type of transport and demonstrate the ability of human retinal pigment epithelium in vitro to accumulate and retain zinc

  3. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  4. Contraction-mediated glucose uptake is increased in men with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Skov-Jensen, Camilla; Skovbro, Mette; Flint, Anne

    2007-01-01

    stimulation alone and with superimposed exercise. Patients with type 2 diabetes, subjects with impaired glucose tolerance (IGT), healthy controls, and endurance-trained subjects were studied. The groups were matched for age and lean body mass (LBM), and differed in peak oxygen uptake (VO2 peak), body fat...

  5. 'In vitro' determination of the rate of 32P uptake by erythrocytes

    International Nuclear Information System (INIS)

    Silva Filho, J.C.; Vitti, D.M.S.S.; Abdalla, A.L.

    1988-01-01

    An ''in vitro'' methodology based on 32 p uptake by erythrocytes was established as a potencial method for a phosphorus sub-clinical deficiency diagnosis in ruminant. Blood samples stored up to 48 hours were incubated with 32 p at different periods and temperatures. There was no effect of storage time and the greatest 32 p uptake values were obtained with incubation over 2 hours at 38 to 50 0 C. (author) [pt

  6. Factors influencing the in vitro uptake of mercury vapour in blood

    Energy Technology Data Exchange (ETDEWEB)

    Kudsk, F.N.

    1969-01-01

    The influence of a number of factors on the in vitro uptake of mercury vapour in blood has been investigated in order to clarify the mechanism by which mercury is oxidized in blood. The rate of mercury uptake in blood in a pure oxygen atmosphere is moderately increased, but somewhat decreased in a nitrogen atmosphere when compared with the rate of uptake in an atmospheric air phase. Increasing concentrations of methylene blue induce a very pronounced acceleration of the rate of mercury uptake in blood up to a maximum of about 10 times the normal uptake in an atmospheric air phase. Menadione shows a similar, but even more pronounced effect. The menadione-stimulated uptake is markedly inhibited by low concentrations of ethyl alcohol. Concentrations of potassium cyanide from 1/8 x 10/sup -3/ to 4 x 10/sup -3/ M cause a progressive inhibition of the mercury uptake in the blood up to a maximum of about 60%, which is very similar to the effect produced by ethyl alcohol. The investigations point to hydrogen peroxide and oxidized glutathione as agents of importance in the oxidation and uptake of mercury vapour in blood. The way in which ethyl alcohol inhibits the uptake is still unknown. Some possible mechanisms are discussed. 24 references, 4 figures, 3 tables.

  7. Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro

    International Nuclear Information System (INIS)

    Deichen, J.T.; Schmidt, C.; Prante, O.; Maschauer, S.; Kuwert, T.; Papadopoulos, T.

    2004-01-01

    Recent clinical evidence suggests that positron emission tomography with fluorine-18 fluorodeoxyglucose (FDG-PET) is more accurate in detecting thyroid carcinomatous tissue at high than at low TSH levels. The aim of this study was to determine the influence of TSH on FDG uptake in human thyroid cells in vitro. Monolayers of human thyroid tissue were cultured after mechanical disintegration and enzymatic digestion of samples from patients undergoing surgery for nodular goitre. The purity of thyroid cell preparations was ascertained by immunohistochemical staining for the epithelial antigen KL-1, and their viability by measuring the synthesis of thyroglobulin in vitro. The cells were incubated with 0.8-1.5 MBq FDG/ml uptake medium for 1 h. FDG uptake in thyroid cells was quantified as percent of whole FDG activity per well (% ID) or as % ID in relation to total protein mass. This experimental protocol was subsequently varied to study the effect of incubation time, glucose dependency and TSH. Furthermore, radio-thin layer chromatography was used to identify intracellular FDG metabolites. FDG accumulated in the thyroid cells linearly with time, doubling roughly every 20 min. Uptake was competitively inhibited by unlabelled glucose and decreased to approximately 70% at 100 mg/dl glucose compared to the value measured in glucose-free medium. FDG was intracellularly trapped as FDG-6 phosphate and FDG-1,6-diphosphate. TSH significantly increased FDG uptake in vitro in a time- and concentration-dependent manner: Cells cultured at a TSH concentration of 50 μU/ ml doubled FDG uptake compared to TSH-free conditions, and uptake after 72 h of TSH pre-incubation was approximately 300% of that without TSH pre-incubation. TSH stimulates FDG uptake by benign thyroid cells in a time- and concentration-dependent manner. This supports the clinical evidence that in well-differentiated thyroid carcinomas, most of which are still TSH-sensitive, FDG-PET is more accurate at high levels of

  8. Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro

    International Nuclear Information System (INIS)

    Deichen, Jan Thiess; Prante, Olaf; Gack, Michaela; Schmiedehausen, Kristin; Kuwert, Torsten

    2003-01-01

    The fact that fluorine-18 fluorodeoxyglucose ([ 18 F]FDG) accumulates in inflammatory lesions as well as in tumours reduces the diagnostic specificity of positron emission tomography (PET) in oncology. The aim of this study was to characterise the uptake of [ 18 F]FDG in isolated human monocyte-macrophages (HMMs) in vitro in comparison with that in human glioblastoma (GLI) and pancreatic carcinoma cells (PAN). The purity of HMM preparations was determined by immunohistochemical staining and their functional integrity was assessed by long-term incubation with iodine-131 acetylated bovine serum albumin. [ 18 F]FDG uptake in HMMs was quantified as percent of whole [ 18 F]FDG activity per well (% ID) or as % ID in relation to total protein mass. [ 18 F]FDG uptake in HMMs significantly increased with culture duration, yielding 7.5%±0.9% (% ID/100 μg) at day 14. Stimulation by lipopolysaccharide further enhanced [ 18 F]FDG uptake in HMMs by a factor of 2. [ 18 F]FDG uptake significantly decreased with increasing glucose concentration in the medium. Radio-thin layer chromatography of intracellular metabolites revealed that [ 18 F]FDG was trapped by HMMs mainly as [ 18 F]FDG-6-phosphate and [ 18 F]FDG-1,6-diphosphate. [ 18 F]FDG uptake was in the range of uptake values measured in GLI and PAN. By accumulating [ 18 F]FDG in a manner analogous to uptake by tumour cells, activated HMMs may contribute to the [ 18 F]FDG uptake values measured by PET in neoplasms. (orig.)

  9. Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice

    Science.gov (United States)

    Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.

    2016-01-01

    The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483

  10. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  11. Factors influencing intracellular uptake and radiosensitization by 2-nitroimidazoles in vitro

    International Nuclear Information System (INIS)

    Brown, D.M.; Gonzalez-Mendez, R.; Brown, J.M.

    1983-01-01

    In this study it is shown that the radiosensitization of hypoxic Chinese hamster ovary (HA-1) cells in vitro by misonidazole (MIS) and other 1-substituted 2-nitroimidazoles depends on the rate and extent of intracellular uptake of these radiosensitizers, which in turn is governed by their lipophilicity [expressed as the octanol:water partition coefficient (P)]. As the lipophilicity of the compounds decreased, the rate of drug entry into the cells was slower, and below P values of approximately 0.05, peak intracellular drug concentrations were found to be lower than that of MIS (P=0.43). In addition, the number of hydroxyl groups on the side chain of the nitroimidazole molecule influenced the uptake of drug into the cells. For compounds of similar P, but differing in the number of side-chain hydroxyl groups, the addition of a single hydroxyl group to the molecule decreased the amount of drug entering the cell by a factor of approximately 2. These compounds enter the cell by nonmediated passive diffusion since altering the energy (ATP) capacity of the cell by 2-deoxyglucose did not affect uptake. It is also shown that increases in temperature or decreases in pH can increase the intracellular uptake of MIS. For example, equal intracellular and extracellular concentrations (100% uptake) of MIS were obtained if cells were heated to 44-45 0 C for 15 min compared to 20-40% uptake at 37 0 C. Increases in MIS uptake by factors of 2 to 3 could be demonstrated within 30 min when cells were incubated in Hanks' balanced salt solution at pH between 6.0 and 6.3 without loss of cell viability. In addition, MIS uptake in aerobic cultured cells varied from 15 to 60% depending on the cell line and culure conditions used

  12. Predicting Human Clearance of OATP substrates using Cynomolgus monkey: In vitro-in vivo scaling of hepatic uptake clearance.

    Science.gov (United States)

    de Bruyn, Tom; Ufuk, Ayse; Cantrill, Carina; Kosa, Rachel E; Bi, Yi-An; Niosi, Mark; Modi, Sweta; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena Vs; Galetin, Aleksandra; Houston, J Brian

    2018-05-02

    This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV, respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a similar range to human parameters and good predictions from respective hepatocyte parameters (with 2.7 and 3.8-fold bias on average, respectively). The use of cross species empirical scaling factors (based on either dataset average or individual drug scaling factor from cynomolgus monkey data) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current dataset between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance. The American Society for Pharmacology and Experimental Therapeutics.

  13. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    Science.gov (United States)

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-05-14

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H 2 S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H 2 S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H 2 S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H 2 S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H 2 S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H 2 S exerts these roles by inhibiting the activation of JNK signaling pathway. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Adholeya, A. [Energy & Resources Institute, New Delhi (India). India Habitat Centre

    2009-04-15

    Experiments were conducted to investigate the effect of coal ash on organic acid exudation and subsequent metal uptake by ectomycorrhizal fungi. Four isolates of ectomycorrhizal fungi namely, Pisolithus tinctorius (EM-1293 and EM-1299), Scleroderma verucosum (EM-1283) and Scleroderma cepa (EM-1233) were grown on pond ash moistened with Modified Melin-Norkans medium in vitro. Exudation of formic acid, malic acid and succinic acid by these fungi were detected by HPLC. Mycelial accumulation of Al, As, Cd, Cr, Ni and Pb by these fungi was assayed by atomic absorption spectrophotometer. Relationship between organic acid exudation and metal uptake was determined using classical multivariate linear regression model. Correlation between organic acid exudation and metal uptake could be substantiated when several metals are considered collectively. The finding supports the widespread role of low molecular weight organic acid as a function of tolerance, when exposed to metals in vitro.

  15. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  16. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  17. Intracellular uptake and degradation of extracellular tracers in mouse skeletal muscle in vitro: the effect of denervation

    International Nuclear Information System (INIS)

    Libelius, R.; Lundquist, I.; Templeton, W.; Thesleff, S.

    1978-01-01

    Innervated and chronically denervated mouse skeletal muscles have been incubated under various conditions in a Ringer solution containing one of the three macromolecules [ 3 H] α-neurotoxin, [ 3 H]inulin and horseradish peroxidase. Following extensive wash-out for 4 h of the extracellular compartment, the amount of each macromolecule retained intracellularly was obtained. Intracellular uptake of a [ 3 H]monoacetylated α-neurotoxin in vitro at 37 C was found to be increased in denervated mouse extensor digitorum longus muscles compared to innervated control muscles. Similarly, the uptake in vitro at 37 C of [ 3 H] inulin and horseradish peroxidase was also increased in denervated muscles. At 4 C the uptake of [ 3 H]inulin and horseradish peroxidase was markedly reduced. Protamine was found to stimulate the uptake of [ 3 H]inulin at 37 C, but not at 4 C. Reduction in specific activity by addition of 50-fold excess of unlabelled inulin failed to affect the uptake of [ 3 H]inulin suggesting that this uptake process obeyed bulk kinetics. Furthermore, the endocytized [ 3 H]inulin was found to be strongly retained in the muscles since prolonged washing or addition of unlabelled inulin to the washing solution did not reduce the uptake. Characterization of [ 3 H]inulin taken up by the muscles was performed by gel chromatography on Sephadex G-25. Using a purified [ 3 H]inulin solution it was observed that about 45% of the total radioactivity remaining in the muscles was eluted as [ 3 H]inulin. Additional radioactivity consisted of lower molecular weight compounds. These degradation products of [ 3 H]inulin were only present in the muscle homogenate and were not detected in the incubation solution. The results suggest that intracellular uptake of different macromolecules by endocytosis in skeletal muscles increases following denervation, and that following uptake, degradation of the endocytized material may occur. (author)

  18. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.

    Science.gov (United States)

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on

  20. Comparison of [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect

    International Nuclear Information System (INIS)

    Soo Jung Lim; Jin-Sook Ryu; Heuiran Lee; Seok Young Kim; Seung Jun Oh; Dae Hyuk Moon

    2004-01-01

    [18F]FLT is a new radiopharmaceutical for cell proliferation. We compared [18F]FLT and [18F]FDG in in vitro cancer cell uptake and glucose effect. Method: In vitro cancer cell uptake of [18F]FLT was evaluated using SCC7(mouse squamous cell carcinoma). At 24 hours after seeding 1 x 106 cells/well in 6 well plates with RPMI 1640 medium, culture media were changed to medium with glucose free or glucose concentration of 100 mg/dl. Then, [18F]FLT 5 μCi/50 ml was added to each well. After incubation for 30, 60, 90, 120 minutes, cells were washed twice by PBS, and harvested using 0.25% trypsin-EDTA. After centrifugation and counting at gamma counter, cell uptake was calculated by % activity of cellular uptake to total activity of cell and supernatant. For comparison, same tumor cell uptake experiment was performed with [18F]FDG. Results: After incubation with SCC7 cell line for 30, 60, 90, 120 minutes, [18F]FLT showed 1.95%, 2.17%, 2.10% and 2.80% of cell uptake in glucose free media, respectively. The results [18F]FLT uptake in glucose 100 mg/dl media were 1.82%, 1.87%, 1.97%, and 2.94%, respectively. The results of [18F]FDG in glucose free media were 2.50%, 3.47%, 5.04%, and 10.4%, whereas those in glucose 100 mg/dl media were 1.60%, 1.79%, 1.53%, and 1.82%, respectively. Conclusion: In contrast to [18F]FDG, [18F]FLT uptake in cancer cell was not affected by glucose concentration. In physiologic glucose concentration, [18F]FLT uptake in SCC7 cell line was significantly higher than [18F]FDG uptake after 120 minutes incubation. In [18F]FLT PET imaging may not need fasting for preparation before imaging study. (authors)

  1. The assessment of zinc status of an animal from the uptake of 65Zn by the cells of whole blood in vitro

    International Nuclear Information System (INIS)

    Chesters, J.K.; Will, M.

    1978-01-01

    65 Zn uptake by blood cells in vitro has been compared with plasma Zn concentration and plasma alkaline phosphatase (EC 3.1.3.1) activity as indicators of an animal's Zn status. Dietary Zn deficiency, low food intake, reduced dietary protein content and endotoxin administration all reduced plasma Zn concentration in the rat. In each case there was a parallel reduction in plasma alkaline phosphatase activity and an increase in 65 Zn uptake in vitro by cells of whole blood. A similar relationship between the three measurements existed in sheep with lowered plasma Zn concentrations whether these were caused by dietary deficiency or by post-surgical stress. 65 Zn uptake by cells of whole blood did not differentiate dietary Zn deficiency from the other factors which reduce plasma Zn under 'field' conditions. 65 Zn uptake by the cells in whole blood in vitro was three to five times less rapid in blood of ruminant origin than in that from non-ruminants. This difference related to the erythrocytes rather than to the leukocytes or the plasma. (author)

  2. Intracellular uptake and degradation of extracellular tracers in mouse skeletal muscle in vitro: the effect of denervation

    Energy Technology Data Exchange (ETDEWEB)

    Libelius, R; Lundquist, I; Templeton, W; Thesleff, S [Lund Univ. (Sweden)

    1978-01-01

    Innervated and chronically denervated mouse skeletal muscles have been incubated under various conditions in a Ringer solution containing one of the three macromolecules (/sup 3/H) ..cap alpha..-neurotoxin, (/sup 3/H)inulin and horseradish peroxidase. Following extensive wash-out for 4 h of the extracellular compartment, the amount of each macromolecule retained intracellularly was obtained. Intracellular uptake of a (/sup 3/H)monoacetylated ..cap alpha..-neurotoxin in vitro at 37 C was found to be increased in denervated mouse extensor digitorum longus muscles compared to innervated control muscles. Similarly, the uptake in vitro at 37 C of (/sup 3/H) inulin and horseradish peroxidase was also increased in denervated muscles. At 4 C the uptake of (/sup 3/H)inulin and horseradish peroxidase was markedly reduced. Protamine was found to stimulate the uptake of (/sup 3/H)inulin at 37 C, but not at 4 C. Reduction in specific activity by addition of 50-fold excess of unlabelled inulin failed to affect the uptake of (/sup 3/H)inulin suggesting that this uptake process obeyed bulk kinetics. Furthermore, the endocytized (/sup 3/H)inulin was found to be strongly retained in the muscles since prolonged washing or addition of unlabelled inulin to the washing solution did not reduce the uptake. Characterization of (/sup 3/H)inulin taken up by the muscles was performed by gel chromatography on Sephadex G-25. Using a purified (/sup 3/H)inulin solution it was observed that about 45% of the total radioactivity remaining in the muscles was eluted as (/sup 3/H)inulin. Additional radioactivity consisted of lower molecular weight compounds. Degradation products of (/sup 3/H)inulin were only present in the muscle homogenate and were not detected in the incubation solution. Results suggest that intracellular uptake of different macromolecules by endocytosis in skeletal muscles increases following denervation, and that following uptake, degradation of the endocytized material may occur.

  3. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  4. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  5. Extracellular Vesicles from Hypoxic Adipocytes and Obese Subjects Reduce Insulin‐Stimulated Glucose Uptake

    Science.gov (United States)

    Mleczko, Justyna; Ortega, Francisco J.; Falcon‐Perez, Juan Manuel; Wabitsch, Martin; Fernandez‐Real, Jose Manuel

    2018-01-01

    Scope We investigate the effects of extracellular vesicles (EVs) obtained from in vitro adipocyte cell models and from obese subjects on glucose transport and insulin responsiveness. Methods and results EVs are isolated from the culture supernatant of adipocytes cultured under normoxia, hypoxia (1% oxygen), or exposed to macrophage conditioned media (15% v/v). EVs are isolated from the plasma of lean individuals and subjects with obesity. Cultured adipocytes are incubated with EVs and activation of insulin signalling cascades and insulin‐stimulated glucose transport are measured. EVs released from hypoxic adipocytes impair insulin‐stimulated 2‐deoxyglucose uptake and reduce insulin mediated phosphorylation of AKT. Insulin‐mediated phosphorylation of extracellular regulated kinases (ERK1/2) is not affected. EVs from individuals with obesity decrease insulin stimulated 2‐deoxyglucose uptake in adipocytes (p = 0.0159). Conclusion EVs released by stressed adipocytes impair insulin action in neighboring adipocytes. PMID:29292863

  6. The effect of amperozide on uptake and release of [3H]-dopamine in vitro from perfused rat striatal and limbic brain areas

    International Nuclear Information System (INIS)

    Eriksson, E.; Christensson, E.

    1990-01-01

    Amperozide, a putatively antipsychotic drug, was studied for its effects on uptake and release of [ 3 H]-dopamine in rat brain in vitro. Amperozide inhibited uptake of [ 3 H]-dopamine in striatal chopped tissue in vitro with an IC 50 of 18 μM. It also increased basal release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue in vitro at concentrations above 5 μM. Release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue stimulated with 5 μM amphetamine, was inhibited by 1 μM amperozide to 46%. No significant difference was found for the effect of amperozide on in vitro release of [ 3 H]-dopamine from corpus striatum compared to tissue from limbic grain regions; neither on basal release nor on amphetamine-stimulated release of dopamine. (author)

  7. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans

    DEFF Research Database (Denmark)

    Steensberg, Adam; Fischer, Christian P; Sacchetti, Massimo

    2003-01-01

    adrenaline (epinephrine). IL-6 infusion, irrespective of dose, did not result in any changes to endogenous glucose production, whole-body glucose disposal or leg- glucose uptake. These data demonstrate that acute IL-6 administration does not impair whole-body glucose disposal, net leg-glucose uptake......The cytokine interleukin (IL)-6 has recently been linked with type 2 diabetes mellitus and has been suggested to affect glucose metabolism. To determine whether acute IL-6 administration affects whole-body glucose kinetics or muscle glucose uptake, 18 healthy young men were assigned to one of three...... the cessation of infusion (recovery) to determine endogenous glucose production and whole-body glucose disposal. Infusion with HiIL-6 and LoIL-6 resulted in a marked (P

  8. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  9. Radiosensitivity of lymphocytes in vitro

    International Nuclear Information System (INIS)

    Albrecht, S.

    1979-01-01

    The radiation-induced impairment of human T-lymphocytes was studied after in vitro exposure to 25.8 - 825.6 mC/kg (100 - 3200 R) of 60 Co γ-radiation by ascertaining the change in lymphocyte response to phytohaemagglutin stimulation. Following methods were used: (1) measurement of 3 H-thymidine uptake, (2) E-rosette test, and (3) morphological examination of transformed T-cells. The results revealed a dose-dependent decline in T-cell number which was still somewhat more marked with lymphocytes purified over Ficoll-Isopaque prior to irradiation. (author)

  10. Iron uptake by Caco-2 cells following in vitro digestion: effects of heat treatments of pork meat and pH of the digests.

    Science.gov (United States)

    Sørensen, Anne D; Bukhave, Klaus

    2010-10-01

    The present in vitro studies report on iron uptake by Caco-2 cells from pepsin and pepsin+pancreatin-digested pork meat proteins at pH values between 4.6 and 7 mimicking conditions in the duodenum and the proximal jejunum, respectively. Heat treatment of the pork meat resulted in increased iron uptake from pepsin-digested samples to Caco-2 cells at pH 4.6. The major enhancing effects on iron uptake by Caco-2 cells were observed after pepsin digestion in the pH range 4.6-6.0, whereas the pepsin+pancreatin-digested samples resulted in negligible iron uptake in Caco-2 cells at pH 7. Thus, the results emphasize the importance of separating pepsin-digested and pepsin+pancreatin-digested proteins during in vitro studies on iron availability. Furthermore, the present results showed the pH dependency of iron uptake anticipated. The enhancing effect of ascorbic acid was verified by increased iron uptake from pepsin-digested pork meat samples at pH 4.6, while no effect of ascorbic acid was observed at pH 7 in pepsin+pancreatin-digested samples. Copyright © 2010 Elsevier GmbH. All rights reserved.

  11. The effect of P-glycoprotein on 18F-FDG uptake in vitro

    International Nuclear Information System (INIS)

    Yu Chunjing; Zhang Bin; Deng Shengming; Wan Weixing; Wu Yiwei

    2013-01-01

    Objective: To evaluate the effect of P-gp inhibitors of verapamil (VER) and GF120918 on 18 F-FDG uptake in Bcap37 and Bcap37/multidrug resistance (MDR)1 cell lines in vitro, and to explore the relationship between 18 F-FDG uptake and P-gp expression at cellular level. Methods: Bcap37 and Bcap37/MDR1 cells were seeded into 6-well plates at a density of 1 × 10 6 per well. Three days later,37 kBq/ml 18 F-FDG, or 37 kBq/ml 18 F-FDG + 100 μmol/L VER, or 37 kBq/ml 18 F-FDG + 50 μmol/L GF120918 were added into each well. After incubated for 10, 30, 60 and 120 min at 37 ℃ and in 5% CO 2 , the medium was removed and the cells were washed three times with 1 ml ice-cold PBS immediately. The radioactivity of 18 F-FDG was measured using a gamma counter. The uptake of 18 F-FDG was expressed as the ratio of 18 F-FDG radioactivity in Bcap37 or Bcap37/MDR1 cells and the overall radioactivity added to the cells in each well.The t test was used for statistical analysis. Results: 18 F-FDG uptake was higher in Bcap37/MDR1 cells than that in Bcap37 cells after incubated for 10 min. The uptake rate was (1.88 ±0.19) % in Bcap37/MDR1 cells and (1.37 ± 0.18) % in Bcap37 cells (t=7.832, P<0.05). On the contrary, 18 F-FDG uptake was significantly higher in Bcap37 cells than that in Bcap37/MDR1 cells after incubated for 60 and 120 min. The uptake rates were (2.29 ±0.23)% and (2.34 ±0.15)% in Bcap37 cells, (1.47 ±0.14)% and (1.53 ±0.22)% in Bcap37/MDR1 cells (t=8.437, 8.283, both P<0.05). 18 F-FDG uptake was significantly higher with VER or GF120918 in Bcap37/MDR1 cells than that without VER or GF120918 after the incubation of 60 and 120 min (t=9.032, 9.243 and 8.765, 8.803, all P<0.05). The uptake rates with VER or GF120918 were (2.45 ±0.21)% and (2.46 ±0.25)%, (2.50 ±0.24)% and (2.48 ±0.27)%. There was no significant difference of 18 F-FDG uptake in Bcap37 cells with or without VER or GF120918. Conclusions: 18 F-FDG is a substrate of P-gp at cellular level. P-gp may act as an

  12. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Steinberg G

    2011-12-01

    Full Text Available Gerrit Steinberg1,2*, Nicole Lossnitzer2*, Dieter Schellberg2, Thomas Mueller-Tasch2, Carsten Krueger3, Markus Haass4, Karl Heinz Ladwig5, Wolfgang Herzog2, Jana Juenger21University Hospital of Psychiatry, University of Bern, Bern, Switzerland; 2Department of Psychosomatic and General Internal Medicine, Medical Hospital, University of Heidelberg, Heidelberg, 3Department of Cardiology, Josefs Hospital, Heidelberg, 4Department of Cardiology, Theresien Hospital, Mannheim, 5Institute of Epidemiology, German Research Center for Environmental Health, Munich, Germany*both authors contributed equally to this paperBackground: The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy.Methods and results: Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I–III underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]. A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found

  13. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    Science.gov (United States)

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  15. Peak oxygen uptake and left ventricular ejection fraction, but not depressive symptoms, are associated with cognitive impairment in patients with chronic heart failure.

    Science.gov (United States)

    Steinberg, Gerrit; Lossnitzer, Nicole; Schellberg, Dieter; Mueller-Tasch, Thomas; Krueger, Carsten; Haass, Markus; Ladwig, Karl Heinz; Herzog, Wolfgang; Juenger, Jana

    2011-01-01

    The aim of the present study was to assess cognitive impairment in patients with chronic heart failure (CHF) and its associations with depressive symptoms and somatic indicators of illness severity, which is a matter of controversy. Fifty-five patients with CHF (mean age 55.3 ± 7.8 years; 80% male; New York Heart Association functional class I-III) underwent assessment with an expanded neuropsychological test battery (eg, memory, complex attention, mental flexibility, psychomotor speed) to evaluate objective and subjective cognitive impairment. Depressive symptoms were assessed using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID) and a self-report inventory (Hospital Anxiety and Depression Scale [HADS]). A comprehensive clinical dataset, including left ventricular ejection fraction, peak oxygen uptake, and a 6-minute walk test, was obtained for all patients. Neuropsychological functioning revealed impairment in 56% of patients in at least one measure of our neuropsychological test battery. However, the Mini Mental State Examination (MMSE) could only detect cognitive impairment in 1.8% of all patients, 24% had HADS scores indicating depressive symptoms, and 11.1% met SCID criteria for a depressive disorder. No significant association was found between depressive symptoms and cognitive impairment. Left ventricular ejection fraction was related to subjective cognitive impairment, and peak oxygen uptake was related to objective cognitive impairment. Cognitive functioning was substantially reduced in patients with CHF and should therefore be diagnosed and treated in routine clinical practice. Caution is advised when the MMSE is used to identify cognitive impairment in patients with CHF.

  16. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    Science.gov (United States)

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  17. Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

    Directory of Open Access Journals (Sweden)

    Karim Bensaad

    2014-10-01

    Full Text Available Summary: An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3 and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α-dependent manner. There was a significant lipid droplet (LD accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. : Bensaad et al. now show that FABP3 and FABP7 are induced by HIF-1α and lead to a significant lipid droplet (LD accumulation in hypoxia. In hypoxia-reoxygenation, ATP production occurs via fatty acid β-oxidation or glycogen degradation in a cell-type-dependent manner, while inhibition of LD formation increases ROS toxicity and decreases cell survival in vitro and strongly impairs tumorigenesis in vivo.

  18. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  19. In vitro comparison of renal handling and uptake of two somatostatin receptor-specific peptides labeled with indium-111

    International Nuclear Information System (INIS)

    Trejtnar, F.; Novy, Z.; Petrik, M.; Laznickova, A.; Melicharova, L.; Vankova, M.; Laznicek, M.

    2008-01-01

    Radiolabeled receptor-specific somatostatin analogs labeled with gamma- or beta-emitting radionuclides are useful for scintigraphic imaging and/or therapy of selected neuroendocrine tumors. However, significant renal uptake may result in radiotoxicological injury of the kidney and can limit clinical application of the agents. The aim of the study was to analyze renal handling, rate, and mechanism of renal accumulation of two somatostatin receptor-targeted peptides, [DOTA 0 , Tyr 3 , Thr 8 ]-octreotide (DOTA-TATE) and [DOTA 0 , 1-Nal 3 ]-octreotide (DOTA-NOC), labeled with indium-111 using in vitro methods. The perfused rat kidney and freshly isolated rat renal cells were used as experimental models. The perfusion was performed in a recirculation regimen at constant pressure with solution containing bovine albumin, erythrocytes, and a mixture of essential substrates. The renal cells were isolated from rat kidneys using two-phase collagenase perfusion. Accumulation studies were used to evaluate the renal uptake of the peptides and to compare their accumulation with that of passively or actively transported model drugs. The influence of selected inhibitors of receptor-mediated endocytosis and the inhibition of energy-dependent transport processes on the uptake were also investigated using isolated renal cells. The renal clearance of 111 In-DOTA-NOC in the perfused rat kidney was significantly lower than that of 111 In-DOTA-TATE. Reverse situation was found in the case of renal retention. Pretreatment of the perfused kidney with maleate markedly decreased the renal retention. 111 In-DOTA-NOC was accumulated in the isolated renal cells at a higher rate than 111 In-DOTA-TATE (ratio 3:1). The uptake of the radiopeptides in renal cells was higher than the uptake of not only the passively transported sucrose but also actively transported and accumulated methylglucose. The rank order of potency to inhibit the uptake by active endocytosis was approximately aprotinin

  20. In vitro glucose uptake by isolated rat hemi-diaphragm study of Aegle marmelos Correa root

    Directory of Open Access Journals (Sweden)

    Subban Ravi

    2009-03-01

    Full Text Available The methanol extract of the root of Aegle marmelos, a medicinal plant, was fractionated into eight fractions using column chromatography. The anti-diabetic activity of all the fractions was studied using the glucose uptake by isolated rat hemi-diaphragm in vitro model. Using the bioassay-guided fractionation, two compounds 1 and 2 were isolated by column chromatography and identified as 6-methyl-4-chromanone and skimmianine respectively by NMR and mass spectral methods.

  1. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Low whole-body insulin sensitivity in patients with ischaemic heart disease is associated with impaired myocardial glucose uptake predictive of poor outcome after revascularisation

    DEFF Research Database (Denmark)

    Kofoed, Klaus F; Carstensen, Steen; Hove, Jens D

    2002-01-01

    patients with ischaemic heart disease and impaired LV ejection fraction (EF) and age-matched healthy volunteers ( n = 30). As assessed by euglycaemic glucose-insulin clamp, 15 patients had a low and 14 a normal whole-body insulin sensitivity. Using positron emission tomography, patterns of fluorine-18......We tested the hypothesis that low whole-body insulin sensitivity in patients with ischaemic heart disease and impaired left ventricular (LV) function is associated with abnormalities of insulin-mediated myocardial glucose uptake affecting outcome after coronary bypass surgery (CABG). We studied 29......-normal myocardium was found to be higher in patients with normal whole-body insulin sensitivity ( P body insulin sensitivity more segments displayed a pattern of reduced glucose uptake in normoperfused myocardium (PET-reverse mismatch) ( P

  3. In Vitro impairment of whole blood coagulation and platelet function by hypertonic saline hydroxyethyl starch

    Directory of Open Access Journals (Sweden)

    Görlinger Klaus

    2011-02-01

    Full Text Available Abstract Background Hypertonic saline hydroxyethyl starch (HH has been recommended for first line treatment of hemorrhagic shock. Its effects on coagulation are unclear. We studied in vitro effects of HH dilution on whole blood coagulation and platelet function. Furthermore 7.2% hypertonic saline, 6% hydroxyethylstarch (as ingredients of HH, and 0.9% saline solution (as control were tested in comparable dilutions to estimate specific component effects of HH on coagulation. Methods The study was designed as experimental non-randomized comparative in vitro study. Following institutional review board approval and informed consent blood samples were taken from 10 healthy volunteers and diluted in vitro with either HH (HyperHaes®, Fresenius Kabi, Germany, hypertonic saline (HT, 7.2% NaCl, hydroxyethylstarch (HS, HAES6%, Fresenius Kabi, Germany or NaCl 0.9% (ISO in a proportion of 5%, 10%, 20% and 40%. Coagulation was studied in whole blood by rotation thrombelastometry (ROTEM after thromboplastin activation without (ExTEM and with inhibition of thrombocyte function by cytochalasin D (FibTEM, the latter was performed to determine fibrin polymerisation alone. Values are expressed as maximal clot firmness (MCF, [mm] and clotting time (CT, [s]. Platelet aggregation was determined by impedance aggregrometry (Multiplate after activation with thrombin receptor-activating peptide 6 (TRAP and quantified by the area under the aggregation curve (AUC [aggregation units (AU/min]. Scanning electron microscopy was performed to evaluate HyperHaes induced cell shape changes of thrombocytes. Statistics: 2-way ANOVA for repeated measurements, Bonferroni post hoc test, p Results Dilution impaired whole blood coagulation and thrombocyte aggregation in all dilutions in a dose dependent fashion. In contrast to dilution with ISO and HS, respectively, dilution with HH as well as HT almost abolished coagulation (MCFExTEM from 57.3 ± 4.9 mm (native to 1.7 ± 2.2 mm (HH 40

  4. Similar uptake profiles of microcystin-LR and -RR in an in vitro human intestinal model

    International Nuclear Information System (INIS)

    Zeller, P.; Clement, M.; Fessard, V.

    2011-01-01

    Highlights: → First description of in vitro cellular uptake of MCs into intestinal cells. → OATP 3A1 and OATP 4A1 are expressed in Caco-2 cell membranes. → MC-LR and MC-RR show similar uptake in Caco-2 cells. → MCs are probably excreted from Caco-2 cells by an active mechanism. -- Abstract: Microcystins (MCs) are cyclic hepatotoxins produced by various species of cyanobacteria. Their structure includes two variable amino acids (AA) leading to more than 80 MC variants. In this study, we focused on the most common variant, microcystin-LR (MC-LR), and microcystin-RR (MC-RR), a variant differing by only one AA. Despite their structural similarity, MC-LR elicits higher liver toxicity than MC-RR partly due to a discrepancy in their uptake by hepatic organic anion transporters (OATP 1B1 and 1B3). However, even though ingestion is the major pathway of human exposure to MCs, intestinal absorption of MCs has been poorly addressed. Consequently, we investigated the cellular uptake of the two MC variants in the human intestinal cell line Caco-2 by immunolocalization using an anti-MC antibody. Caco-2 cells were treated for 30 min to 24 h with several concentrations (1-50 μM) of both variants. We first confirmed the localization of OATP 3A1 and 4A1 at the cell membrane of Caco-2 cells. Our study also revealed a rapid uptake of both variants in less than 1 h. The uptake profiles of the two variants did not differ in our immunostaining study neither with respect to concentration nor the time of exposure. Furthermore, we have demonstrated for the first time the nuclear localization of MC-RR and confirmed that of MC-LR. Finally, our results suggest a facilitated uptake and an active excretion of MC-LR and MC-RR in Caco-2 cells. Further investigation on the role of OATP 3A1 and 4A1 in MC uptake should be useful to clarify the mechanism of intestinal absorption of MCs and contribute in risk assessment of cyanotoxin exposure.

  5. Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions

    DEFF Research Database (Denmark)

    Kveiborg, M.; Rattan, Suresh; Clark, B.F.C.

    2000-01-01

    Age-related bone loss is thought to be due to impaired osteoblast functions. Insulin-like growth factors (IGFs) have been shown to be important stimulators of bone formation and osteoblast activities in vitro and in vivo. We tested the hypothesis that in vitro osteoblast senescence is associated ...

  6. Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D

    2014-05-01

    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.

  7. Specific in vitro uptake of serotonin by cells in the anterior pituitary of the rat

    International Nuclear Information System (INIS)

    Johns, M.A.; Azmitia, E.C.; Krieger, D.T.

    1982-01-01

    In vivo studies have suggested that serotonin (5HT) influences anterior pituitary function at the hypothalamic level. The present in vitro study investigated the possibility that 5HT may act directly on the anterior pituitary. The high affinity uptake of [3H]5HT into adult rat anterior pituitary tissue was examined in two types of experiments. 1) To test the specificity and saturability of uptake of 5HT in the anterior pituitary, pituitary tissue was incubated (37 C) with [3H]5HT (10(-8)-10(-6) M) in the presence and absence of excess (10(-5) M) unlabeled 5HT, norepinephrine, fluoxetine (FLUOX), metergoline, or cyproheptadine. A Hofstee analysis of the specific uptake of [3H]5HT gave an apparent Km value of 4.23 x 10(-7) M and a Vmax of 1576 pmol/g/10 min [3H]5HT. The total uptake of [3H]5HT was not altered by norepinephrine or metergoline, but was significantly reduced (P less than 0.01-0.001) by FLUOX and cyproheptadine. Uptake was shown to be temperature and sodium dependent and not directly dependent on energy derived from glycolysis or aerobic metabolism. 2) To study the site of uptake of 5 HT in the anterior pituitary, in concomitant radioautographic experiments, tissue was incubated with [3H]5HT with and without excess 5HT or FLUOX. Three patterns of silver grain distribution were observed: 1) nonrandom concentrations over select anterior pituitary cells near blood vessels, 2) heavy aggregates of silver grains usually associated with blood vessels, and 3) a seemingly random dispersal of grains over pituitary tissue. Tissue incubated with [3H]5HT alone contained 10% heavily labeled cells, 32% moderately labeled cells, and 58% weakly labeled cells. In contrast, no heavily labeled cells were seen when tissue was incubated with either excess 5HT or FLUOX in addition to [3H]5HT. Our findings of saturable and specific high affinity uptake of [3H]5HT into a subgroup of anterior pituitary cells suggest a direct pituitary action of 5HT

  8. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  9. In vitro effects of toxaphene on mitochondrial calcium ATPase and calcium uptake in selected rat tissues

    International Nuclear Information System (INIS)

    Trottman, C.H.; Rao, K.S.P.; Morrow, W.; Uzodinma, J.E.; Desaiah, D.

    1985-01-01

    In vitro effects of toxaphene on Ca 2+ -ATPase activity and 45 Ca 2+ -uptake were studied in mitochondrial fractions of heart, kidney and liver tissues of rat. Mitochondrial fractions were prepared by the conventional centrifugation method. Ca 2+ -ATPase activity was determined by measuring the inorganic phosphate liberated during ATP hydrolysis. Toxaphene inhibited Ca 2+ -ATPase in a concentration dependent manner in all the three tissues. Substrate activation kinetics, with heart, kidney and liver tissue fractions, revealed that toxaphene inhibited Ca 2+ -ATPase activity non-competetively by decreasing the maximum velocity of the enzyme without affecting the enzyme-substrate affinity. Toxaphene also inhibited mitochondrial 45 Ca 2+ -uptake in the three selected tissues in a concentration dependent manner. These results indicate that toxaphene is an inhibitor of mitochondrial Ca 2+ -ATPase and calcium transport in heart, kidney and liver tissues of rat. 19 references, 5 figures

  10. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake.

    Science.gov (United States)

    Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li

    2016-10-01

    Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Nagalakshmi Kamaraj

    2017-07-01

    Full Text Available Biodegradable polymer based novel drug delivery systems brought a considerable attention in enhancing the therapeutic efficacy and bioavailability of various drugs. 14-deoxy 11, 12-didehydro andrographolide (poorly water soluble compound loaded polycaprolactone (nano-DDA was synthesized using the solvent evaporation technique. Nano-DDA was characterized by scanning electron microscopy (SEM and dynamic light scattering (DLS studies. Fourier Transform InfraRed Spectroscopy (FTIR was used to investigate the structural interaction between the drug and the polymer. Functional characterization of the formulation was determined using drug content, cellular uptake and in vitro drug release. 2-deoxy-D-[1-3H] glucose uptake assay was carried out to assess the antidiabetic potential of nano-DDA in L6 myotubes. The nano-DDA displayed spherical shape with a smooth surface (252.898 nm diameter, zeta potential, encapsulation and loading efficiencies of −38.9 mV, 91.98 ± 0.13% and 15.09 ± 0.18% respectively. No structural alteration between the drug and the polymer was evidenced (FTIR analysis. Confocal microscopy studies with rhodamine 123 loaded polycaprolactone nanoparticles (Rh123-PCL NPs revealed the internalization of Rh123-PCL NPs in a time dependent manner in L6 myoblasts. A dose dependent increase in glucose uptake was observed for nano-DDA with a maximal uptake of 108.54 ± 1.42% at 100 nM on L6 myotubes, thereby proving its anti-diabetic efficacy. A biphasic pattern of in vitro drug release demonstrated an initial burst release at 24 h followed by a sustained release for up to 11 days. To conclude, our results revealed that nano-DDA formulation can be a potent candidate for antidiabetic drug delivery.

  12. Indomethacin inhibits the uptake of 22sodium by ovine trophoblastic tissue in vitro

    International Nuclear Information System (INIS)

    Lewis, G.S.

    1986-01-01

    Blastocysts from several species synthesize prostaglandins in vitro, but the exact functions of the prostaglandins are unknown. The purpose of this study was to determine if indomethacin, an inhibitor of prostaglandin synthesis, would inhibit the uptake of 22sodium ([22Na]) by ovine trophoblastic tissue. To determine the concentration of indomethacin that would inhibit the synthesis of PGF2 alpha and 13,14-dihydro-15-keto-PGF2 alpha (PGFM) by blastocysts, blastocysts were collected from ewes 16 days after mating, sliced into pieces approximately 2 mm in length and incubated for 48 h at 37 degrees C in 2 ml of medium containing either 0, 0.2, 0.4, 0.8 or 1.6 mM of indomethacin. Concentrations of indomethacin greater than or equal to 0.2 mM reduced (P less than .01) trophoblastic release (ng/micrograms DNA) of PGF2 alpha from 205 +/- 71.2 to less than or equal to 3.3 +/- 0.2, reduced PGFM from 0.7 +/- 0.1 to less than or equal to 0.17 +/- 0.01, and inhibited formation of trophoblastic vesicles. In a second experiment, blastocysts were recovered from ewes 16 days after mating and pieces of trophoblast were incubated with [22Na] and either 0 or 0.4 mM of indomethacin. Indomethacin reduced the uptake of [22Na], which is an indirect measure of the transport of water across epithelia, from 3680 +/- 1118 to 934 +/- 248 cpm/micrograms DNA (P less than .03) and prevented formation of trophoblastic vesicles. Prostaglandins produced by ovine blastocysts might be involved in controlling uptake of water, which is essential for expansion of blastocysts

  13. Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Liang [College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100 (China); Sun, Xiao-Feng [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Feng, Yan-Zhong [Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086 (China); Li, Bo [Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437 (China); Li, Ya-Peng; Yang, Fan [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Nyachoti, Charles Martin [Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Shen, Wei [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China); Sun, Shi-Duo, E-mail: ssdsm@tom.com [College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Lan, E-mail: lilan9600@126.com [Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109 (China)

    2017-02-15

    Zearalenone (ZEA) is an estrogenic mycotoxin mainly produced as a secondary metabolite by numerous species of Fusarium. Previous work showed that ZEA had a negative impact on domestic animals with regard to reproduction. The adverse effects and the mechanisms of ZEA on mammalian ovarian folliculogenesis remain largely unknown, particularly its effect on primordial follicle formation. Thus, we investigated the biological effects of ZEA exposure on murine ovarian germ cell cyst breakdown and primordial follicle assembly. Our results demonstrated that newborn mouse ovaries exposed to 10 or 30 μM ZEA in vitro had significantly less germ cell numbers compared to the control group. Moreover, the presence of ZEA in vitro increased the numbers of TUNEL and γH2AX positive cells within mouse ovaries and the ratio of mRNA levels of the apoptotic genes Bax/Bcl-2. Furthermore, ZEA exposure reduced the mRNA of oocyte specific genes such as LIM homeobox 8 (Lhx8), newborn ovary homeobox (Nobox), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and factor in the germline alpha (Figlα) in a dose dependent manner. Exposure to ZEA led to remarkable changes in the Lhx8 3′-UTR DNA methylation dynamics in oocytes and severely impaired folliculogenesis in ovaries after transplantation under the kidney capsules of immunodeficient mice. In conclusion, ZEA exposure impairs mouse primordial follicle formation in vitro. - Highlights: • First time to evaluate the impact of ZEA on primordial follicle formation • ZEA exposure increases oocyte apoptosis and delays germ cell cyst breakdown. • ZEA exposure impairs the expression of LHX8 by affecting its DNA methylation.

  14. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  15. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  16. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  17. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): in vitro bio-accessibility, intestinal uptake and bioavailability.

    Science.gov (United States)

    D'Antuono, Isabella; Garbetta, Antonella; Linsalata, Vito; Minervini, Fiorenza; Cardinali, Angela

    2015-04-01

    Artichoke is a rich source of health promoting compounds such as polyphenols, important for their pharmaceutical and nutritional properties. In this study, the potential for bioavailability of the artichoke polyphenols was estimated by using both in vitro digestion and Caco-2 human intestinal cell models. In vitro digestive recoveries (bio-accessibility) were found to be 55.8% for total artichoke phenolics and in particular, 70.0% for chlorogenic acid, 41.3% for 3,5-O-dicaffeoylquinic acid, and 50.3% for 1,5-O-dicaffeoylquinic acid, highlighting potential sensitivity of these compounds to gastric and small intestinal digestive conditions. Uptake of artichoke polyphenols was rapid with peak accumulation occurring after 30 min with an efficiency of 0.16%, according to the poor uptake of dietary polyphenols. Some compounds, such as coumaric acid, caffeic acid and caffeic acid derivatives, were also detected in the basolateral side assuming extra and intracellular esterase activities on chlorogenic acid. Only apigenin-7-O-glucoside was transported through the Caco-2 monolayer demonstrating its bioavailability to the extent of 1.15% at 60 min. In addition, permeability coefficient (Papp = 2.29 × 10(-5) cm s(-1)), involving apical to basolateral transport of apigenin 7-O-glucoside, was calculated to facilitate estimation of transport through the Caco-2 monolayer. Finally, the mono and dicaffeoylquinic acids present in artichoke heads exert an antioxidant activity on the human low density lipoprotein system correlated to their chemical structure. In conclusion, the utilized in vitro models, although not fully responding to the morphological and physiological features of human in vivo conditions, could be a useful tool for investigating mechanistic effects of polyphenols released from the food matrix.

  18. Effect of pH on tumor cell uptake of radiogallium in vitro and in vivo

    International Nuclear Information System (INIS)

    Vallabhajosula, S.R.; Hartwig, J.F.; Wolf, W.

    1982-01-01

    When injected at tracer levels into the blood, radiogallium as 67 Ga-citrate binds to, and is transported to, the site of the tumor by transferrin. The process by which transferrin-bound Ga is converted to tumor-bound Ga is not fully unterstood, but may involve the differential physicology of neoplasmas compared with normal tissues. Based on the slight acidity known to be exhibited by the extracellular fluid of many animal and human tumors, we have studied the effect of pH on stability and dissociation of the Ga-transferrin complex and on the uptake of Ga by tumor cells in vitro and animal tumors in vivo. When plasma from rabbits injected with 67 Ga-citrate was dialyzed at pH 6.5-7.5, disociation of Ga from transferrin showed an inverse pH-dependence. A similar inverse dependence on pH was observed for the uptake of Ga by L1210 leukemia cells and Ehrlich ascites cells incubated with Ga-transferrin complex. Tumor uptake of Ga in rats bearing Walker-256 carcinosarcoma or Murphystum lymphosarcoma whose tumor pH had been further lowered by administration of glucose showed a statistically significant increase over control rats receiving no glucose. These results demonstrate that the stability of the Ga-transferrin complex is pH-dependent and suggest that dissociation of this complex due to decreased pH at the tumor site may be one factor involved in tumor localization and binding of Ga. (orig.)

  19. Uridine 3H-5 and leucine 3H-5 uptake in Planarian cells Polycelis tenuis (Iijima) cultivated in vitro

    International Nuclear Information System (INIS)

    Franquinet, Raphael; Le Moigne, Albert; Lender, Theodore

    1975-01-01

    RNA and protein synthesis in planarian cells cultivated in vitro was studied by histoautoradiography. In the non-differentiated cells, uptake of precursor is intense from the beginning of the culture, and sensitive to addition of trophic factor known for their activating effect on mitosis and regeneration. On the contrary the rate of incorporation in differentiated cells is low and uniform, independently of the differents factors added to the medium [fr

  20. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    International Nuclear Information System (INIS)

    MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim

    2015-01-01

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO 2 ) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO 2 nano- or larger particles did not lead to any significant translocation of TiO 2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO 2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO 2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO 2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO 2 nanoparticles are likely to be excreted in the faeces

  1. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    Science.gov (United States)

    MacNicoll, Alan; Kelly, Mick; Aksoy, Hatice; Kramer, Evelien; Bouwmeester, Hans; Chaudhry, Qasim

    2015-02-01

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO2) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO2 nano- or larger particles did not lead to any significant translocation of TiO2 (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO2 was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO2 across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO2 via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO2 nanoparticles are likely to be excreted in the faeces.

  2. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine.

    Directory of Open Access Journals (Sweden)

    Mingfu Liu

    2015-05-01

    Full Text Available Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine. Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA, mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1 or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload.

  3. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  4. The effect of plant sterol-enriched turkey meat on cholesterol bio-accessibility during in vitro digestion and Caco-2 cell uptake.

    Science.gov (United States)

    Grasso, S; Harrison, S M; Monahan, F J; Brayden, D; Brunton, N P

    2018-03-01

    This study evaluated the effect of a plant sterol-enriched turkey product on cholesterol bio-accessibility during in vitro digestion and cholesterol uptake by Caco-2 monolayers. Turkey products, one plant sterol-enriched (PS) and one plant sterol-free (C), were produced in an industrial pilot plant. Before simulated digestion, matrices were spiked with cholesterol (1:5 weight ratio of cholesterol to plant sterol). Plant sterols were included at a concentration equivalent to the minimum daily intake recommended by the European Food Safety Authority (EFSA) for cholesterol lowering. After simulated digestion, the percentage of cholesterol micellarization and uptake by Caco-2 cells in the presence of PS meat were measured. Compared to C meat, PS meat significantly inhibited cholesterol micellarization on average by 24% and Caco-2 cell accumulation by 10%. This study suggests that plant sterols in meat can reduce cholesterol uptake by intestinal epithelia and it encourages efforts to make new PS-based functional foods.

  5. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake

    Energy Technology Data Exchange (ETDEWEB)

    MacNicoll, Alan; Kelly, Mick [The Food and Environment Research Agency (United Kingdom); Aksoy, Hatice [TÜBİTAK Marmara Research Center, Food Institute (Turkey); Kramer, Evelien; Bouwmeester, Hans [RIKILT - Institute of Food Safety (Netherlands); Chaudhry, Qasim, E-mail: qasim.chaudhry@fera.gsi.gov.uk [The Food and Environment Research Agency (United Kingdom)

    2015-02-15

    Certain food additives may contain a sizeable fraction of particles in the nanoscale. However, little is known about the fate, behaviour and toxicological effects of orally-ingested nanoparticles. This study investigated the uptake and biodistribution of nano- and larger-sized titanium dioxide (TiO{sub 2}) using an in vitro model of gut epithelium and in vivo in rat. The results of the in vivo study showed that oral administration of 5 mg/kg body weight of TiO{sub 2} nano- or larger particles did not lead to any significant translocation of TiO{sub 2} (measured as titanium) either to blood, urine or to various organs in rat at any of the time intervals studied over a 96 h post-administration period. Different methods used for dispersing particles did not affect the uptake, and orally administered TiO{sub 2} was found excreted in the faeces over a period of time. The in vitro study provided further evidence for the lack of translocation of TiO{sub 2} across the gut epithelium model. The overall evidence from both in vivo and in vitro studies did not support that oral ingestion of nano- or larger particles of TiO{sub 2} via food would result in any significant internal exposure of the consumer to the nanoparticles. The dietary TiO{sub 2} nanoparticles are likely to be excreted in the faeces.

  6. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  7. Quercetin uptake and metabolism by murine peritoneal macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Chieh-Jung Liu

    2015-12-01

    Full Text Available Quercetin (Q, a bioflavonoid ubiquitously distributed in vegetables, fruits, leaves, and grains, can be absorbed, transported, and excreted after oral intake. However, little is known about Q uptake and metabolism by macrophages. To clarify the puzzle, Q at its noncytotoxic concentration (44μM was incubated without or with mouse peritoneal macrophages for different time periods. Medium alone, extracellular, and intracellular fluids of macrophages were collected to detect changes in Q and its possible metabolites using high-performance liquid chromatography. The results showed that Q was unstable and easily oxidized in either the absence or the presence of macrophages. The remaining Q and its metabolites, including isorhamnetin and an unknown Q metabolite [possibly Q– (O-semiquinone], might be absorbed by macrophages. The percentage of maximal Q uptake by macrophages was found to be 2.28% immediately after incubation; however, Q uptake might persist for about 24 hours. Q uptake by macrophages was greater than the uptake of its methylated derivative isorhamnetin. As Q or its metabolites entered macrophages, those compounds were metabolized primarily into isorhamnetin, kaempferol, or unknown endogenous Q metabolites. The present study, which aimed to clarify cellular uptake and metabolism of Q by macrophages, may have great potential for future practical applications for human health and immunopharmacology.

  8. Effect of zinc source and picolinic acid on 65Zn uptake in an in vitro continuous-flow perfusion system for pig and poultry intestinal segments

    International Nuclear Information System (INIS)

    Hill, D.A.; Peo, E.R. Jr.; Lewis, A.J.

    1987-01-01

    Twenty weanling pigs and fourteen 9-wk-old broiler chickens were used in three continuous-flow in vitro perfusion experiments using noneverted intestinal sacs to 1) determine differences in 65 Zn absorption due to location within the intestinal tract, 2) evaluate 65 Zn uptake from ZnCl 2 and Zn-methionine (ZnMet) with or without added picolinic acid (PA) in pig intestinal sacs and 3) evaluate 65 Zn uptake from ZnCl 2 and ZnMet in chicken intestinal sacs. No differences in 65 Zn uptake due to gut segment position were observed in the pigs. A Zn source x PA interaction was observed for 65 Zn uptake into the pig gut tissue and for 65 Zn uptake to the serosal side of the gut sacs. Total 65 Zn absorption in the pig gut sacs from the two Zn sources was not different, but the addition of a 5 M ratio of PA to Zn depressed 65 Zn absorption. No differences were observed in total 65 Zn absorption or 65 Zn uptake in poultry gut sac tissue. There was, however, greater uptake of 65 Zn from ZnCl 2 to the serosal side of the sacs than from ZnMet. The data indicate that 65 Zn from ZnCl 2 and ZnMet is similar in total absorption and that the addition of PA depresses Zn uptake

  9. Evaluation of Tl-201 lung uptake and impairment of pulmonary perfusion on scintigraphies in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Koizumi, Tomonori; Kubo, Keishi

    2000-01-01

    Tl-201 lung uptake in 74 patients (85 lesions) and pulmonary perfusion in 105 patients were studied to evaluate clinical usefulness of Tl-201 lung uptake and perfusion lung scintigraphy in pulmonary tuberculosis, using a scintillation camera with a mini-computer system. As indices of Tl-201 lung uptake, lung (lesion) to upper mediastinum uptake ratio (L/M) and visual grading were used. L/M in pulmonary tuberculosis was 1.96±0.66, which was significantly larger than 1.04±0.24 in healthy controls and lower than that in heart diseases with left heart failure and idiopathic interstitial pneumonia, and showed no significant differences with that in acute pneumonia, pyothorax, primary lung cancer and malignant mediastinal tumor. L/M in pulmonary tuberculosis did not correlate with CRP, erythrocyte sedimentation rate, Gaffky number of sputum and body temperature. It correlated with the type of pulmonary tuberculosis according to the Gakken Classification reflecting the disease activity. It was larger in the exudative type, caseo-infiltrative one, disseminated one, one with cavity in infiltrative lesion than the fibro-caseous one. On perfusion lung scintigram, impairment of pulmonary perfusion larger than area of the entire unilateral lung was observed in 68 cases (64.8%). Area of hypoperfused lung field, which correlated with % vital capacity (r=0.60, p=0.0002) and PaO 2 (r=0.39,p=0.0024), was significantly larger in patients with silicosis and those with bilateral pleural involvements such as pleural callosity than in those with type III according to the Gakkai Classification. Most of the patients showed decreased pulmonary perfusion and Tl-201 accumulation of which grade reflects the disease activity in active tuberculous lesion. Patients with miliary tuberculosis and those with silicotuberculosis showed diffuse Tl-201 accumulation in the both lungs. Tl-201 lung scintigraphy seems to be useful for visualizing active tuberculous lesions, particularly the ones that

  10. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    International Nuclear Information System (INIS)

    Gao, Xuemei; Wu, Xinchao; Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing; Maimaiti, Yusufu; Gao, Zairong; Zhang, Yongxue

    2016-01-01

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine "1"3"1I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from "1"3"1I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced "1"3"1I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  11. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Wu, Xinchao [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Maimaiti, Yusufu [Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Gao, Zairong, E-mail: gaobonn@163.com [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Zhang, Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China)

    2016-01-15

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  12. Studies on the uptake of para-boronophenylalanine in melanoma cells

    International Nuclear Information System (INIS)

    Papageorges, M.; Elstad, C.A.; Meadows, G.G.; Gavin, P.R.; Sande, R.D.; Bauer, W.F.

    1992-01-01

    Cell-associated boron levels adequate for neutron capture therapy (NCT) have been demonstrated in-vitro using cultured melanoma cells and in-vivo using xenografts in mice. Preliminary in-vivo studies performed by researchers at the College of Veterinary Medicine, Washington State University (WSU), using a spontaneous canine melanoma model, showed subtherapeutic tumor concentrations of para-boronophenylananine (p-BPA) in a large proportion of dogs. Possible explanations include poor solubility of p-BPA at physiological pH, physiological differences between transplanted and spontaneous tumors, and lack of metabolic incorporation at the cellular level. Reports of in-vitro p-BPA uptake studies are few and contradictory, and the kinetics of boron uptake at the average p-BOA blood concentration achieved in dogs (100 mg/L) is unknown. In-vitro and in-vivo experiments were designed to study boron loading in melanoma cells and to test the hypothesis that short-term tyrosine and phenylalanine deprivation can increase the uptake of p-BPA

  13. Influence of free fatty acids on glucose uptake in prostate cancer cells

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar

    2014-01-01

    The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate.......The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-d-glucose (FDG) and acetate....

  14. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    Science.gov (United States)

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P exercise training (P smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P exercise training (P smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  15. The Effect in Vitro of Ionizing Irradiation and Small Rises in Temperature on the Uptake and Release of Labelled Lipids by the Human Erythrocyte Membrane

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Karle, H.; Stender, S.

    1978-01-01

    1. The effect of X-irradiation (50 000 rad) and an increase in temperature from 37 to 42° C on the synthesis, uptake and release of labelled lipids by erythrocytes was studied in plasma incubations in vitro. 2. Both irradiation and a rise in temperature resulted in an enhanced synthesis of [32P]phosphatidic...

  16. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein

    International Nuclear Information System (INIS)

    Kokkonen, J.O.; Kovanen, P.T.

    1987-01-01

    The uptake of low density lipoprotein (LDL) by cultured mouse macrophages was markedly promoted by isolated rat mast cell granules present in the culture medium. The granule-mediated uptake of 125 I-LDL enhanced the rate of cholesteryl ester synthesis in the macrophages, the result being accumulation of cholesteryl esters in these cells. Binding of LDL to the granules was essential for the granule-mediated uptake of LDL by macrophages, for the uptake process was prevented by treating the granules with avidin or protamine chloride or by treating LDL with 1,2-cyclohexanedione, all of which inhibit the binding of LDL to the granules. Inhibition of granule phagocytosis by the macrophages with cytochalasin B also abolished the granule-mediated uptake of LDL. Finally, mouse macrophage monolayers and LDL were incubated in the presence of isolated rat serosal mast cells. Stimulation of the mast cells with compound 48/80, a degranulating agent, resulted in dose-dependent release of secretory granules from the mast cells and a parallel increase in 14 C cholesteryl ester synthesis in the macrophages. The results show that, in this in vitro model, the sequence of events leading to accumulation of cholesteryl esters in macrophages involves initial stimulation of mast cells, subsequent release of their secretory granules, binding of LDL to the exocytosed granules, and, finally, phagocytosis of the LDL-containing granules by macrophages

  17. Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Audrey E Brown

    Full Text Available Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS. Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects.Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS for up to 24h and examined for changes associated with exercise.In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16 h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16 h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured.EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets.

  18. Quantitative uptake studies of 131I-labeled (E)-5-(2-iodovinyl)-2'-deoxyuridine in herpes simplex virus-infected cells in vitro

    International Nuclear Information System (INIS)

    Gill, M.J.; Samuel, J.; Wiebe, L.I.; Knaus, E.E.; Tyrrell, D.L.

    1984-01-01

    We have synthesized a 131 I-radiolabeled antiviral compound (E)-5-(2-iodovinyl)-2'-deoxyuridine (IVdU) and shown that this agent was selectively trapped within rabbit kidney cells, infected in vitro by thymidine kinase-positive (TK+) herpes simplex virus (HSV). The uptake of 131 I-labeled IVdU was specific, as it was not concentrated within either HSV (TK-) or mock-infected cells. In certain conditions, over 40% of the radiolabel was selectively trapped within HSV (TK+)-infected cells. This was a 20- to 30-fold increase over the uptake of 131 I-labeled IVdU by HSV (TK-) or mock-infected cells. The uptake of 131 I-labeled IVdU varied directly with (i) the dose of the virus used to infect the rabbit kidney cells; (ii) the concentration of radiolabeled IVdU added to the system; and (iii) the time of exposure of IVdU to infected cells. The ability of this agent to be trapped within HSV (TK+)-infected cells merits further evaluation in animal models as it has potential as a noninvasive, herpes-specific diagnostic test, in particular for HSV encephalitis

  19. Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Leonard, Erin M; Nadella, Sunita R; Bucking, Carol; Wood, Chris M

    2009-07-26

    We characterized dietary Ni uptake in the gastrointestinal tract of rainbow trout using both in vivo and in vitro techniques. Adult trout were fed a meal (3% of body mass) of uncontaminated commercial trout chow, labeled with an inert marker (ballotini beads). In vivo dietary Ni concentrations in the supernatant (fluid phase) of the gut contents averaged from 2 micromoll(-1) to 24 micromoll(-1), and net overall absorption efficiency of dietary Ni was approximately 50% from the single meal, similar to that for the essential metal Cu, adding to the growing evidence of Ni essentiality. The stomach and mid-intestine emerged as important sites of Ni uptake in vivo, accounting for 78.5% and 18.9% of net absorption respectively, while the anterior intestine was a site of net secretion. Most of the stomach uptake occurred in the first 4h. In vitro gut sac studies using radiolabeled Ni (at 30 micromoll(-1)) demonstrated that unidirectional uptake occurred in all segments, with area-weighted rates being highest in the anterior intestine. Differences between in vivo and in vitro results likely reflect the favourable uptake conditions in the stomach, and biliary secretion of Ni in the anterior intestine in vivo. The concentration-dependent kinetics of unidirectional Ni uptake in vitro were biphasic in nature, with a saturable Michaelis-Menten relationship observed at 1-30 micromoll(-1) Ni (K(m) - 11 micromoll(-1), J(max) - 53 pmolcm(-2)h(-1) in the stomach and K(m) - 42 micromoll(-1), J(max) - 215 pmolcm(-2)h(-1) in the mid-intestine), suggesting mediation by a channel or carrier process. A linear uptake relationship was seen at higher concentrations, indicative of simple diffusion. Ni uptake (at 30 micromoll(-1)) into the blood compartment was significantly reduced in the stomach by high Mg (50 mmoll(-1)), and in the mid-intestine by both Mg (50 mmoll(-1)) and Ca (50 mmoll(-1)). In both regions, kinetic analysis demonstrated reductions in J(max) with unchanged K

  20. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro

    DEFF Research Database (Denmark)

    Pedersen, M W; Holm, S; Lund, E L

    2001-01-01

    We examined the relationship between (18)F- labeled 2-fluro-2-deoxy-d-glucose (FDG) uptake, and expression of glucose transporters (GLUTs) in two human small-cell lung cancer (SCLC) lines CPH 54A and CPH 54B. Changes in the expression of GLUTs and vascular endothelial growth factor (VEGF) during 12......-, 18-, and 24 hours of severe hypoxia in vivo (xenografts) and in vitro (cell cultures) were recorded for both tumor lines. The two SCLC lines are subpopulations of the same patient tumor. In spite of their common genomic origin they represent consistently different metabolic and microenvironmental...... phenotypes as well as treatment sensitivities. There were higher levels of Glut-1 protein in 54B and a correspondingly higher FDG uptake in this tumor line (P

  1. Cell uptake survey of pegylated nanographene oxide.

    Science.gov (United States)

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  2. Cell uptake survey of pegylated nanographene oxide

    International Nuclear Information System (INIS)

    Vila, M; Nieto, A; Vallet-Regi, M; Portolés, M T; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Marques, P A A P; Gonçalves, G; Cruz, S M A

    2012-01-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml −1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy. (paper)

  3. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    Science.gov (United States)

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  4. Excess L-arginine restores endothelium-dependent relaxation impaired by monocrotaline pyrrole

    International Nuclear Information System (INIS)

    Cheng Wei; Oike, Masahiro; Hirakawa, Masakazu; Ohnaka, Keizo; Koyama, Tetsuya; Ito, Yushi

    2005-01-01

    The pyrrolizidine alkaloid plant toxin monocrotaline pyrrole (MCTP) causes pulmonary hypertension in experimental animals. The present study aimed to examine the effects of MCTP on the endothelium-dependent relaxation. We constructed an in vitro disease model of pulmonary hypertension by overlaying MCTP-treated bovine pulmonary artery endothelial cells (CPAEs) onto pulmonary artery smooth muscle cell-embedded collagen gel lattice. Acetylcholine (Ach) induced a relaxation of the control CPAEs-overlaid gels that were pre-contracted with noradrenaline, and the relaxation was inhibited by L-NAME, an inhibitor of NO synthase (NOS). In contrast, when MCTP-treated CPAEs were overlaid, the pre-contracted gels did not show a relaxation in response to Ach in the presence of 0.5 mM L-arginine. Expression of endothelial NOS protein, Ach-induced Ca 2+ transients and cellular uptake of L-[ 3 H]arginine were significantly smaller in MCTP-treated CPAEs than in control cells, indicating that these changes were responsible for the impaired NO production in MCTP-treated CPAEs. Since cellular uptake of L-[ 3 H]arginine linearly increased according to its extracellular concentration, we hypothesized that the excess concentration of extracellular L-arginine might restore NO production in MCTP-treated CPAEs. As expected, in the presence of 10 mM L-arginine, Ach showed a relaxation of the MCTP-treated CPAEs-overlaid gels. These results indicate that the impaired NO production in damaged endothelial cells can be reversed by supplying excess L-arginine

  5. Impaired coronary microvascular function in diabetics

    International Nuclear Information System (INIS)

    Tsujimoto, Go

    2000-01-01

    Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase (ΔMTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global ΔMTU was significantly lower in the diabetics than in control subjects (14.4±5.4% vs. 21.7±8.5%, p<0.01). Regional ΔMTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between ΔMTU in the 4 left ventricular regions in the same group. ΔMTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics. (author)

  6. Effects of anticonvulsants in vivo on high affinity choline uptake in vitro in mouse hippocampal synaptosomes.

    Science.gov (United States)

    Miller, J. A.; Richter, J. A.

    1985-01-01

    The effects of several anticonvulsant drugs on sodium-dependent high affinity choline uptake (HACU) in mouse hippocampal synaptosomes was investigated. HACU was measured in vitro after in vivo administration of the drug to mice. HACU was inhibited by drugs which have in common the ability to facilitate gamma-aminobutyric acid (GABA) transmission, pentobarbitone, phenobarbitone, barbitone, diazepam, chloridiazepoxide, and valproic acid. Dose-response relationships were determined for these drugs and the drugs' potencies at inhibiting HACU correlated well with their anticonvulsant potencies. Clonazepam, ethosuximide, carbamazepine, and barbituric acid had no effect on HACU in the doses used while phenytoin and trimethadione stimulated HACU. These results suggest that certain anticonvulsants may elicit a part of their anticonvulsant activity by modulating cholinergic neurones. This effect may be mediated through a GABA mechanism. PMID:3978310

  7. Homogenization, lyophilization or acid-extraction of meat products improves iron uptake from cereal-meat product combinations in an in vitro digestion/Caco-2 cell model.

    Science.gov (United States)

    Pachón, Helena; Stoltzfus, Rebecca J; Glahn, Raymond P

    2009-03-01

    The effect of processing (homogenization, lyophilization, acid-extraction) meat products on iron uptake from meat combined with uncooked iron-fortified cereal was evaluated using an in vitro digestion/Caco-2 cell model. Beef was cooked, blended to create smaller meat particles, and combined with electrolytic iron-fortified infant rice cereal. Chicken liver was cooked and blended, lyophilized, or acid-extracted, and combined with FeSO4-fortified wheat flour. In the beef-cereal combination, Caco-2 cell iron uptake, assessed by measuring the ferritin formed by cells, was greater when the beef was blended for the greatest amount of time (360 s) compared with 30 s (P meat products on iron absorption in iron-fortified cereals.

  8. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    International Nuclear Information System (INIS)

    Sizemore, D.J.; Bassett, M.L.

    1984-01-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells

  10. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  11. In vitro and in vivo evidence for active brain uptake of the GHB analogue HOCPCA by the monocarboxylate transporter subtype 1

    DEFF Research Database (Denmark)

    Thiesen, Louise; Kehler, Jan; Clausen, Rasmus P

    2015-01-01

    and in vivo, and to investigate the hypothesis that HOCPCA, like GHB, is a substrate for the monocarboxylate transporters (MCTs). For in vitro uptake studies, MCT1, 2 and 4 were recombinantly expressed in Xenopus laevis oocytes and the previously reported radioligand [(3)H]HOCPCA was used (as substrate......). HOCPCA inhibited the uptake of the endogenous MCT substrate L-[(14)C]lactate, and [(3)H]HOCPCA was shown to act as substrate for MCT1 and 2 (Km values in the low millimolar range). Introducing single point amino acid mutations into positions essential for MCT function supported that HOCPCA binds...... to the endogenous substrate pocket of MCTs. MCT1-mediated brain entry of HOCPCA (10 mg/kg s.c.) was further confirmed in vivo in mice by co-administration of increasing doses of the MCT inhibitor [(R)-5-(3-hydroxypyrrolidine-1-carbonyl)-1-isobutyl-3-methyl-6-(quinolin-4-ylmethyl)thieno[2,3-d]pyrimidine-2,4(1H,3H...

  12. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation

    Science.gov (United States)

    Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina

    2017-01-01

    Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512

  13. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions

    International Nuclear Information System (INIS)

    Jain, Suneil; Coulter, Jonathan A.; Butterworth, Karl T.; Hounsell, Alan R.; McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Dickson, Glenn R.; Prise, Kevin M.; Currell, Fred J.; Hirst, David G.; O’Sullivan, Joe M.

    2014-01-01

    Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored. Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions. Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred. Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy

  14. Endocytosis of the major yolk proteins of the silkmoth, Hyalophora cecropia: Uptake kinetics and interactions

    International Nuclear Information System (INIS)

    Kulakosky, P.C.

    1989-01-01

    The oocytes of Lepidopteran insects take up several yolk proteins in defined proportions even though their relative availability in the hemolymph changes during the several days required to complete yolk formation in all the eggs. There are three hemolymph yolk precursors, vitellogenin, microvitellogenin and lipophorin; one precursor, paravitellogenin is produced in the ovary. The control mechanism for their proportional endocytosis is not known. In this thesis, the author describe the purification of all four proteins and the radiolabeling of the hemolymph precursors. The radiolabeled proteins were tested with an in vitro incubation system to assess the biological activity of the proteins and the reliability of the incubation methods. All of the labeled probes were transferred from the incubation medium to yolk spheres within the oocyte in a saturable, energy-dependent, and stage-specific manner. The rates of uptake were similar to the estimated rates of uptake in situ. The concentration dependence of in vitro uptake was investigated and found to be consistent with in situ concentrations and the composition of yolk in mature eggs. Two precursors, vitellogenin and lipophorin, competed for uptake indicating that they share a common binding site while the third, microvitellin, did not compete with the others. Though vitellogenin and lipophorin competed for uptake, only vitellogenin displayed the unique ability to increase the uptake rate of microvitellin and fluid in vitro

  15. Metallic mercury uptake by catalase Part 1 In Vitro metallic mercury uptake by various kind of animals' erythrocytes and purified human erythrocyte catalase

    OpenAIRE

    劒持,堅志

    1980-01-01

    The uptake of metallic mercury was studied using erythrocytes with different catalase activities taken from various kind of animals. The results were: 1) The uptake of metallic mercury by erythrocytes paralleled the activity of catalase in the erythrocytes with and without hydrogen peroxide, suggesting that the erythrocyte catalase activity is related to the uptake of metallic mercury. 2) The uptake of metallic mercury occurred not only with purified human erythrocyte catalase but also with h...

  16. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists

  17. Uptake of SPECT radiopharmaceuticals in neocortical brain cultures

    Energy Technology Data Exchange (ETDEWEB)

    Jong, B.M. de; Royen, E.A. van

    1989-01-01

    The uptake, retention and uptake antagonism of /sup 201/Tl-DDC, /sup 201/Tl-Cl, /sup 123/I-IMP, /sup 99m/Tc-HMPAO and /sup 99m/Tc-O4/sup -/ were compared in rat neocortex cultures. /sup 201/Tl-DDC and /sup 123/I-IP revealed the highest uptake of radioactivity in the cultures. /sup 99m/Tc-HMPAO and /sup 123/I-IMP showed the highest retention of radioactivity within the tissue in washout experiments. Blocking of bioelectric activity by tetrodotoxin did not significantly affect the uptake of the radiopharmaceuticals (RPHA). Inhibition of Na K ATPase by ouabain inhibited the uptake of /sup 201/Tl-Cl (77%) and /sup 201/Tl-DDC (27%). Imipramine showed a significantly stronger inhibitory effect on /sup 123/I-IMP uptake in comparison with the effect on other RPHA. /sup 99m/Tc-O4/sup -/ was not concentrated within the cultured tissue. Under the in vitro conditions used in this study, the various RPHA were characterised by distinct differences in their interaction with cortical brain tissue.

  18. Bone marrow uptake of 99mTc-MIBI in patients with multiple myeloma

    International Nuclear Information System (INIS)

    Fonti, R.; Del Vecchio, S.; Zannetti, A.; Di Gennaro, F.; Pace, L.; Salvatore, M.; De Renzo, A.; Catalano, L.; Califano, C.; Rotoli, B.

    2001-01-01

    In a previous study, we showed the ability of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) scan to identify active disease in patients with multiple myeloma (Eur J Nucl Med 1998; 25: 714-720). In particular, a semiquantitative score of the extension and intensity of bone marrow uptake was derived and correlated with both the clinical status of the disease and plasma cell bone marrow infiltration. In order to estimate quantitatively 99m Tc-MIBI bone marrow uptake and to verify the intracellular localization of the tracer, bone marrow samples obtained from 24 multiple myeloma patients, three patients with monoclonal gammopathy of undetermined significance (MGUS) and two healthy donors were studied for in vitro uptake. After centrifugation over Ficoll-Hypaque gradient, cell suspensions were incubated with 99m Tc-MIBI and the uptake was expressed as the percentage of radioactivity specifically retained within the cells. The cellular localization of the tracer was assessed by micro-autoradiography. Twenty-two out of 27 patients underwent 99m Tc-MIBI scan within a week of bone marrow sampling. Whole-body images were obtained 10 min after intravenous injection of 555 MBq of the tracer; the extension and intensity of 99m Tc-MIBI uptake were graded using the semiquantitative score. A statistically significant correlation was found between in vitro uptake of 99m Tc-MIBI and both plasma cell infiltration (Pearson's coefficient of correlation r=0.69, P 99m Tc-MIBI inside the plasma cells infiltrating the bone marrow. Therefore, our findings show that the degree of tracer uptake both in vitro and in vivo is related to the percentage of infiltrating plasma cells which accumulate the tracer in their inner compartments. (orig.)

  19. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  20. In-vitro cytotoxicity and cellular uptake studies of luminescent functionalized core-shell nanospheres

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2017-09-01

    Full Text Available Monodispersed luminescent functionalized core-shell nanospheres (LFCSNs were successfully synthesized and investigated for their cyto-toxic effect on human liver hepatocellular carcinoma cell line (HepG2 cells by adopting MTT, DNA Ladder, TUNEL assay and qPCR based gene expressions through mRNA quantifications. The TUNEL and DNA ladder assays suggested an insignificant apoptosis in HepG2 cells due to the LFCSNs treatment. Further, the qPCR results also show that the mRNA expressions of cell cycle checkpoint gene p53 and apoptosis related gene (caspase-9 was up-regulated, while the antiapoptotic gene BCl-2 and apoptosis related genes FADD and CAS-3 (apoptosis effecter gene were down-regulated in the LFCSNs treated cells. The nanospheres that were loaded into the cells confirm their intracellular uptake by light and fluorescent spectro-photometry and microscopy imaging analysis. The loaded nanospheres demonstrate an absolute resistance to photo-bleaching, which were applied for dynamic imaging to real-time tracking in-vitro cell migratory activity for continuous 24 and 48 h durations using a time-lapsed fluorescent microscope. These properties of LFCSNs could therefore promote applications in the area of fluorescent protein biolabeling and drug-delivery.

  1. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  2. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    International Nuclear Information System (INIS)

    Joshy, K.S.; Sharma, Chandra P.; Kalarikkal, Nandakumar; Sandeep, K.; Thomas, Sabu; Pothen, Laly A.

    2016-01-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake

  3. Reassessment of FDG uptake in tumor cells: High FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production

    Energy Technology Data Exchange (ETDEWEB)

    Waki, A.; Fujibayashi, Y.; Yonekura, Y.; Sadato, N.; Ishii, Y.; Yokoyama, A

    1997-10-01

    To determine appropriate use of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) in the diagnosis of malignant tumors, the mechanism of enhanced FDG uptake in tumor cells was reassessed using in vitro cultured cell lines and {sup 3}H-deoxyglucose (DG), in combination with possible parameters of aerobic and anaerobic energy production. The high DG uptake in the tumor cells reflected the dependency of energy production on anaerobic glycolysis, and paradoxically on low levels of aerobic oxidative phosphorylation in mitochondria. We discuss here factors underlying anaerobic glycolysis in tumor cells.

  4. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium

    International Nuclear Information System (INIS)

    Ojo, Adeola A.; Wood, Chris M.

    2008-01-01

    An in vitro gut sac technique was employed to study whether Cd and Zn uptake mechanisms in the gastro-intestinal tract of the rainbow trout are similar to those at the gills, where both metals are taken up via the Ca transport pathway. Metal accumulation in surface mucus, in the mucosal epithelium, and transport into the blood space were assayed using radiolabelled Cd or Zn concentrations of 50 μmol L -1 in the luminal (internal) saline. Elevated luminal Ca (10 or 100 mmol L -1 versus 1 mmol L -1 ) reduced Cd uptake into all three phases by approximately 60% in the stomach, but had no effect in the anterior, mid, or posterior intestine. This finding is in accordance with recent in vivo evidence that Ca is taken up mainly via the stomach, and that high [Ca] diets inhibit Cd accumulation from the food specifically in this section of the tract. In contrast, 10 mmol L -1 luminal Ca had no effect on Zn transport in any section, whereas 100 mmol L -1 Ca stimulated Zn uptake, by approximately threefold, into all three phases in the stomach only. There was no influence of elevated luminal Zn (10 mmol L -1 ) on Cd uptake in the stomach or anterior intestine, or of high Cd (10 mmol L -1 ) on Zn uptake in these sections. However, high [Zn] stimulated Cd transport into the blood space but inhibited accumulation in the mucosal epithelium and/or mucus-binding in the mid and posterior intestine, whereas high [Cd] exerted a reciprocal effect in the mid-intestine only. We conclude that Cd uptake occurs via an important Ca-sensitive mechanism in the stomach which is different from that at the gills, while Cd transport mechanisms in the intestine are not directly Ca-sensitive. Zn uptake does not appear to involve Ca uptake pathways, in contrast to the gills. These results are discussed in the context of other possible Cd and Zn transport pathways, and the emerging role of the stomach as an organ of divalent metal uptake

  5. Assessment of relative individual renal function based on DMSA uptake corrected for renal size

    International Nuclear Information System (INIS)

    Estorch, M.; Camacho, V.; Tembl, A.; Mena, I.; Hernandez, A.; Flotats, A.; Carrio, I.; Torres, G.; Prat, L.

    2002-01-01

    Decreased relative renal DMSA uptake can be a consequence of abnormal kidney size, associated with normal or impaired renal function. The quantification of relative renal function based on DMSA uptake in both kidneys is an established method for the assessment of individual renal function. Aim: To assess relative renal function by means of quantification of renal DMSA uptake corrected for kidney size. Results were compared with relative renal DMSA uptake without size correction, and were validated against the absolute renal DMSA uptake. Material and Methods: Four-hundred-forty-four consecutive patients (147 adults, mean age 14 years) underwent a DMSA study for several renal diseases. The relative renal function, based on the relative DMSA uptake uncorrected and corrected for renal size, and the absolute renal DMSA uptake were calculated. In order to relate the relative DMSA uptake uncorrected and corrected for renal size with the absolute DMSA uptake, subtraction of uncorrected (SU) and corrected (SC) relative uptake percentages of each pair of kidneys was obtained, and these values were correlated to the matched subtraction percentages of absolute uptake (SA). If the individual relative renal function is normal (45%-55%), the subtraction value is less or equal to 10%. Results: In 227 patients (51%) the relative renal DMSA uptake value was normal either uncorrected or corrected for renal size (A), and in 149 patients (34%) it was abnormal by both quantification methods (B). Seventy-seven patients (15%) had the relative renal DMSA uptake abnormal only by the uncorrected method (C). Subtraction value of absolute DMSA uptake percentages was not significantly different of subtraction value of relative DMSA uptake percentages corrected for renal size when relative uncorrected uptake was abnormal and corrected normal. where * p<0.0001, and p=NS. Conclusion: When uncorrected and corrected relative DMSA uptake are abnormal, the absolute uptake is also impaired, while when

  6. Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight

    DEFF Research Database (Denmark)

    Hermann, T S; Rask-Madsen, C; Ihlemann, N

    2003-01-01

    of acetylcholine and sodium nitroprusside in the forearm of fourteen 21-yr-old men with low birth weight and 16 controls of normal birth weight. Glucose uptake was measured during intraarterial insulin infusion. Dose-response studies were repeated during insulin infusion. The maximal blood flow during......Low birth weight has been linked to insulin resistance and cardiovascular disease. We hypothesized that insulin sensitivity of both muscle and vascular tissues were impaired in young men with low birth weight. Blood flow was measured by venous occlusion plethysmography during dose-response studies...... acetylcholine infusion was 14.1 +/- 2.7 and 14.4 +/- 2.1 [ml x (100 ml forearm)(-1) x min(-1)] in low and normal birth weight subjects, respectively. Insulin coinfusion increased acetylcholine-stimulated flow in both groups: 18.0 +/- 3.1 vs. 17.9 +/- 3.1 [ml x (100 ml forearm)(-1) x min(-1)], NS. Insulin...

  7. In vitro uptakes study of 5-carboranyl uridine and its derivatives

    International Nuclear Information System (INIS)

    Hasegawa, Toshinari; Nakaichi, Munekazu; Nakamura, H.; Yamamoto, Y.; Takagaki, M.; Takeuchi, A.

    1998-01-01

    5-carboranyl uridine (5B10U) and its derivatives (5-hydroxymethylcarboranyl uridine (5HB10U), 5-nido-carboranyl uridine (5B9TU), 5'-b-D-glycosyl-5-carboranyl uridine (5'Gly5B10U)) were tested for their efficacy in boron neutron capture therapy. 5HB10U and 5B9TU were favorably taken up by C6 cells; the concentrations of boron in the cultured cells were 81.7 ppm and 57.4 ppm, respectively, when incubated at a boron concentration of 25 ppm for 24 hours. Cellular uptake of boron was dependent on the boron concentration in the culture medium. On the other hand, BSH showed lower uptake of 11.6 ppm under the same experimental condition. 5'Gly5B10U showed least cytotoxicity among three derivatives, however, the uptake was very low despite the challenge of up to 200 ppm of boron in the culture medium. These results suggested that 5HB10U and 5B9TU, the derivatives from 5B10U, were worthy of being tested in vivo. (author)

  8. In vitro uptake of 153gadolinium and gadolinium complexes by hyaline articular cartilage

    International Nuclear Information System (INIS)

    Engel, A.; Fleischmann, D.; Hamilton, G.; Hajek, P.

    1990-01-01

    This in vitro study evaluated whether Gadolinium (Gd) penetrates into hyaline cartilage and would be incorporated into vital chondrocytes. Hyaline joint cartilage of rabbits was exposed to radioactive 153 GdCl 3 and to a radioactive 153 Gd-DTPA-BSA-complex (DTPA, diethylene-triaminepentaacetic acid; BSA, bovine serum albumine). In addition an exchange experiment with radioactive 153 GdCl 3 versus Gd-DTPA-di-N-methylglucamine (Magnevist) was performed. Incorporation of 153 GdCl 3 into neuroblastoma cells, connective tissue cells and chondrocytes was tested. The results showed that the depth and extent of incorporation of Gd depends on the molecular mass and time of exposure. 153 Gd-DTPA-BSA complexes exhibited an incorporation rate of maximal 11 per cent ± 2.8 per cent up to the middle third of the cartilage within 24 h with almost no incorporation (2 ± 1.9 per cent) for the deep layer. The exchange experiment revealed no uptake of Gd for the deep layer. The maximal incorporation rate of 153 GdCl 3 into vital chondrocytes was 6.3 per cent. These data indicate that under the condition of MR-arthrography, Gd-DTPA-di-N-methylglucamine will not be absorbed into the deep layers of hyaline cartilage and will not be incorporated into vital chondrocytes. (author). 8 refs.; 3 tabs

  9. Characteristics of sugar uptake by immature maize embryos

    International Nuclear Information System (INIS)

    Griffith, S.M.; Jones, R.J.; Brenner, M.L.

    1986-01-01

    Characteristics of sugar uptake by immature maize embryos were determined in vitro utilizing a 14 C-sugar solution incubation method. Hexose uptake rates were greater than those for sucrose, however, all showed biphasic kinetics. Glucose and fructose saturable components were evidence at <50 mM and sucrose at <5 mM. Chemical inhibitors (CCCP, DNP, NaCN, and PCMBS) and low temperature reduced sugar uptake. Sucrose influx was pH dependent while glucose was not. Embryos maintained a high sucrose to hexose ratio throughout development. At 25 days after pollination sucrose levels exceeded 200 mM while hexose levels remained below 5 mM. Glucose was rapidly converted to sucrose upon transport into the embryo. These circumstantial data indicate that sugar uptake by immature maize embryos is metabolically dependent and carrier mediated. Furthermore, sucrose transport appears to occur against its concentration gradient involving a H+/sucrose cotransport mechanism, while glucose influx is driven by its concentration gradient and subsequent metabolism

  10. Focal Reduction in Cardiac 123I-Metaiodobenzylguanidine Uptake in Patients With Anderson-Fabry Disease.

    Science.gov (United States)

    Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki

    2016-11-25

    It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).

  11. Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake.

    Science.gov (United States)

    Abbasi, Sedigheh; Lamb, Dane T; Palanisami, Thavamani; Kader, Mohammed; Matanitobua, Vitukawalu; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    Barite contamination of soil commonly occurs from either barite mining or explorative drilling operations. This work reported in vitro data for barite contaminated soils using the physiologically based extraction test (PBET) methodology. The existence of barite in plant tissue and the possibility of 'biomineralised' zones was also investigated using Scanning Electron Microscopy. Soils with low barium (Ba) concentrations showed a higher proportion of Ba extractability than barite rich samples. Barium uptake to spinach from soil was different between short term spiking studies and field weathered soils. Furthermore, Ba crystals were not evident in spinach tissue or acid digest solutions grown in barium nitrate spiked soils despite high accumulation. Barite was found in the plant digest solutions from barite contaminated soils only. Results indicate that under the conservative assumptions made, a child would need to consume extreme quantities of soil over an extended period to cause chronic health problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Studies on the influence of the interval after blood withdrawal and different storage temperatures on the uptake and kinetics of 14C-serotonin in human thrombocytes in vitro

    International Nuclear Information System (INIS)

    Jarosch, U.

    1978-07-01

    The active in-vitro uptake of 14 C-serotonin in human thrombocytes was investigated in dependence of the interval after blood withdrawal (10-130 min) and the storage temperature of the platelet-rich plasma (4 0 , 22 0 , 37 0 C) for different incubation periods (2, 5, 10 minutes at 37 0 C). The kinetic study of 14 C serotonin uptake showed a constant affinity to the thrombocyte serotonin transport system for all experimental conditions while the maximum reaction rate was clearly affected. One exception was the value determined after 130 minutes of storage time and a storage temperature of 37 0 C for a 14 C serotonin concentration of 10 -5 M which showed a reduced affinity. (orig./AJ) [de

  13. Exploring the influence of culture on hearing help-seeking and hearing-aid uptake.

    Science.gov (United States)

    Zhao, Fei; Manchaiah, Vinaya; St Claire, Lindsay; Danermark, Berth; Jones, Lesley; Brandreth, Marian; Krishna, Rajalakshmi; Goodwin, Robin

    2015-07-01

    The purpose of this paper was to highlight the importance of cultural influence in understanding hearing-help seeking and hearing-aid uptake. Information on audiological services in different countries and 'theories related to cross-culture' is presented, followed by a general discussion. Twenty-seven relevant literature reviews on hearing impairment, cross-cultural studies, and the health psychology model and others as secondary resources. Despite the adverse consequences of hearing impairment and the significant potential benefits of audiological rehabilitation, only a small number of those with hearing impairment seek professional help and take up appropriate rehabilitation. Therefore, hearing help-seeking and hearing-aid uptake has recently become the hot topic for clinicians and researchers. Previous research has identified many contributing factors for hearing help-seeking with self-reported hearing disability being one of the main factors. Although significant differences in help-seeking and hearing-aid adoption rates have been reported across countries in population studies, limited literature on the influence of cross-cultural factors in this area calls for an immediate need for research. This paper highlights the importance of psychological models and cross-cultural research in the area of hearing help-seeking and hearing-aid uptake, and consequently some directions for future research are proposed.

  14. Computed Tomography-Based Imaging of Voxel-Wise Lesion Water Uptake in Ischemic Brain: Relationship Between Density and Direct Volumetry.

    Science.gov (United States)

    Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre

    2018-04-01

    Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging

  15. Comparison of the uptake of [123/125I]-2-iodo-D-tyrosine and [123/125I]-2-iodo-L-tyrosine in R1M rhabdomyosarcoma cells in vitro and in R1M tumor-bearing Wag/Rij rats in vivo

    International Nuclear Information System (INIS)

    Bauwens, Matthias; Lahoutte, Tony; Kersemans, Ken; Gallez, Carol; Bossuyt, Axel; Mertens, John

    2006-01-01

    Introduction: Recently, promising results concerning uptake in vivo in tumors of D-amino acids have been published. Therefore, we decided to evaluate the tumor uptake of the D-analogue of [ 123 I]-2-iodo-L-tyrosine, a tracer recently introduced by our group into clinical trials. The uptake of 2-amino-3-(4-hydroxy-2-[ 123/125 I]iodophenyl)-D-propanoic acid (2-iodo-D-tyrosine) was studied in vitro in LAT1-expressing R1M rat rhabdomyosarcoma cells and in vivo in R1M tumor-bearing Wag/Rij rats. Methods: The uptake of [ 125 I]-2-iodo-L-tyrosine and [ 125 I]-2-iodo-D-tyrosine into R1M cells was determined in appropriate buffers, allowing the study of the involved transport systems. In vivo, the biodistribution in R1M-bearing rats of [ 123 I]-2-iodo-L-tyrosine and [ 123 I]-2-iodo-D-tyrosine was performed by both dynamic and static planar imaging with a gamma camera. Results: In in vitro conditions, the uptake of both [ 125 I]-2-iodo-L-tyrosine and [ 125 I]-2-iodo-D-tyrosine in the HEPES buffer was 25% higher in the presence of Na + ions. In the absence of Na + ions, [ 125 I]-2-iodo-D-tyrosine was taken up reversibly in the R1M cells, with an apparent accumulation, probably for the larger part by the LAT1 system. Dynamic planar imaging showed that the uptake in the tumors of [ 123 I]-2-iodo-D-tyrosine was somewhat lower than that of [ 123 I]-2-iodo-L-tyrosine. At 30 min postinjection, the mean differential uptake ratio values of the L- and D-enantiomers are 2.5±0.7 and 1.7±0.6, respectively. Although the uptake of the D-isomer is lower, probably due to a faster clearance from the blood, the tumor-background ratio is the same as that of the L-analogue. Conclusion: A large part (75%) of [ 125 I]-2-iodo-D-tyrosine in vitro and [ 123 I]-2-iodo-D-tyrosine in vivo is reversibly highly taken up in R1M tumor cells by Na + -independent LAT transport systems, more likely by the LAT1. The clearance from the blood of [ 123 I]-2-iodo-D-tyrosine in the rats is faster than that of the

  16. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Adeola A. [Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada)], E-mail: adeolaojo25@yahoo.com; Wood, Chris M. [Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada)], E-mail: woodcm@mcmaster.ca

    2008-08-11

    An in vitro gut sac technique was employed to study whether Cd and Zn uptake mechanisms in the gastro-intestinal tract of the rainbow trout are similar to those at the gills, where both metals are taken up via the Ca transport pathway. Metal accumulation in surface mucus, in the mucosal epithelium, and transport into the blood space were assayed using radiolabelled Cd or Zn concentrations of 50 {mu}mol L{sup -1} in the luminal (internal) saline. Elevated luminal Ca (10 or 100 mmol L{sup -1}versus 1 mmol L{sup -1}) reduced Cd uptake into all three phases by approximately 60% in the stomach, but had no effect in the anterior, mid, or posterior intestine. This finding is in accordance with recent in vivo evidence that Ca is taken up mainly via the stomach, and that high [Ca] diets inhibit Cd accumulation from the food specifically in this section of the tract. In contrast, 10 mmol L{sup -1} luminal Ca had no effect on Zn transport in any section, whereas 100 mmol L{sup -1} Ca stimulated Zn uptake, by approximately threefold, into all three phases in the stomach only. There was no influence of elevated luminal Zn (10 mmol L{sup -1}) on Cd uptake in the stomach or anterior intestine, or of high Cd (10 mmol L{sup -1}) on Zn uptake in these sections. However, high [Zn] stimulated Cd transport into the blood space but inhibited accumulation in the mucosal epithelium and/or mucus-binding in the mid and posterior intestine, whereas high [Cd] exerted a reciprocal effect in the mid-intestine only. We conclude that Cd uptake occurs via an important Ca-sensitive mechanism in the stomach which is different from that at the gills, while Cd transport mechanisms in the intestine are not directly Ca-sensitive. Zn uptake does not appear to involve Ca uptake pathways, in contrast to the gills. These results are discussed in the context of other possible Cd and Zn transport pathways, and the emerging role of the stomach as an organ of divalent metal uptake.

  18. Regulation of myosin light chain kinase during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

    Directory of Open Access Journals (Sweden)

    Shelly Woody

    Full Text Available Myosin II (MyoII is required for insulin-responsive glucose transporter 4 (GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC of MyoIIA via myosin light chain kinase (MLCK. The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy ethane-N,N,N',N'-tetra acetic acid, (BAPTA (in the presence of insulin impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.

  19. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  20. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  1. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  2. UPTAKE AND PHYTOTRANSFORMATION OF ORGANOPHOSPHORUS PESTICIDES BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of organophosphorus (OP) pesticides (malathion, demeton-S-methyl, and crufomate) was investigated in vitro using the axenically aquatic cultivated plants parrot feather (Myriophyllum aquaticum), duckweed (Spirodela oligorrhiza L.), and elodea (E...

  3. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    International Nuclear Information System (INIS)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-01-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both [ 14 C]putrescine and [14 C]spermidine. The in vitro uptake of [ 14 C]putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting [ 14 C]putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of [ 14 C]putrescine and [ 14 C]-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines

  4. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor

    Energy Technology Data Exchange (ETDEWEB)

    Heston, W.D.; Kadmon, D.; Covey, D.F.; Fair, W.R.

    1984-03-01

    The uptake of exogenously administered radiolabeled polyamines by a rat prostate-derived tumor line, the Dunning R3327 MAT-Lu, and various normal tissues was studied. Pretreatment of tumor cells in vitro with alpha-difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, resulted in a markedly enhanced uptake of both (/sup 14/C)putrescine and (14 C)spermidine. The in vitro uptake of (/sup 14/C)putrescine by these cells was effectively inhibited by unlabeled spermine, spermidine, 1,8-diaminooctane, 1,7-diaminoheptane, 1,6-diaminohexane, 1,5-diaminopentane, 1,4-diaminopentane, and 1,4-diaminobutane, but less effectively by 1,4-diamino-2,3-butene and 1,4-diamino-2,3-butyne. The diamines, 1,3-diaminopropane and 1,2-diaminoethane, were ineffective in inhibiting (/sup 14/C)putrescine uptake in vitro into the R3327 MAT-Lu cell line. When tumor-bearing animals were pretreated with DFMO or with DFMO and 5-alpha-dihydrotestosterone propionate, the tumor and prostate uptake of (/sup 14/C)putrescine and (/sup 14/C)-cadaverine was enhanced but not substantially increased in other tissues. In contrast to the in vitro results, spermidine and spermine were not enhanced substantially by DFMO pretreatment into any tissue, and their uptake into the tumor actually decreased. Ethylenediamine, which does not utilize the polyamine transport system, did not have its uptake increased into any tissue following DFMO pretreatment. The chemotherapeutic agent, methylglyoxal bis(guanylhydrazone), which utilizes the polyamine transport system for uptake into cells, exhibited uptake behavior different from that of the polyamines.

  5. Transient coronary vasodilatory impairment after direct PTCA in acute myocardial infarction

    International Nuclear Information System (INIS)

    Yamabe, Hiroshi; Kim, Susik; Hashimoto, Yasunori; Fujita, Hideki; Yano, Takashi; Iwahashi, Masanori; Maeda, Kazumi; Yokoyama, Mitsuhiro

    1995-01-01

    To determine whether transient impairment in coronary artery reserve may occur after acute percutaneous transluminal coronary angioplasty (PTCA) and may be related with myocardial stunning in acute myocardial infarction (MI), 14 paients were examined by dipyridamole (dip) thallium-201 scintigraphy. Of these patients, 13 patients had recanalization after PTCA and one had spontaneous recanalization. Eight and 6 patients were classified as the 'fill-in phenomenon' and as no 'fill-in phenomenon', respectively, on reinjection thallium-201 images after delayed imaging. In the group of 'fill-in phenomenon', thallium uptake was significantly increased both on early images in chronic MI and on reinjection images, as compared with that on early images in acute MI. In the group of 'no fill-in phenomenon', on the contrary, thallium uptake was significantly decreased. An increase of thallium-201 uptake from early images in acute MI to reinjection images was positively correlated with changes in thallium-201 uptake on early images from acute to chronic MI. There was a positive correlation between the arteriographic improvement of wall motion abnormality in the infart zones and % thallium-201 uptake. These data indicate that transient functional impairment may occur not only in the myocardium but also in coronary fine vessels in MI patients successfully treated with direct PTCA. (N.K.)

  6. In vitro uptake of 75Se-selenite by lens of young and adult rats

    International Nuclear Information System (INIS)

    Sladkova, J.; Ostadalova, I.; Babicky, A.; Obenberger, J.

    1988-01-01

    The uptake was observed of 75 Se-selenite by the lens in Wistar strain rats in adult animals, in 17-day old rats kept with their mothers and in prematurely weaned rats. Also measured was the excretion of 75 Se by the lens of young and adult rats following incubation in the medium with radioselenium. The metabolites were analysed which were discharged by the lens containing 75 Se. In Brattleboro rats the uptake of 75 Se-selenite was also measured by the lens in young and adult rats. The uptake of 75 Se-selenite by the lens in young Wistar rats was found to be 1.6 times higher than by the lens of adult rats and the time course of the radioselenium uptake was slightly different. In the lens of prematurely weaned rats no significant difference was found in the uptake of radioselenium after 4 hours as compared with rats of the same age kept with their mothers. In homozygous Brattleboro rats, a higher uptake of 75 Se-selenite was found as compared with both young and adult heterozygous rats. The time course and the quantity of 75 Se efflux from the lens of young and adult Wistar rats differed significantly after 0.5 hour of pre-incubation. From metabolites containing 75 Se excreted by the lens following preincubation, glutathione selenotrisulfide and a not yet accurately determined fraction with a large share of radioactivity were isolated. The stated results provide yet more proof that selenium cataract is a manifestation of the ontogenic dependence of selenium metabolism in the lens and in the entire organism. (author). 4 tabs., 30 refs

  7. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake.

    Science.gov (United States)

    Maekawa, Yoichi; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Yagita, Hideo; Yasutomo, Koji

    2015-01-01

    CD4+ T cells differentiate into memory T cells that protect the host from subsequent infection. In contrast, autoreactive memory CD4+ T cells harm the body by persisting in the tissues. The underlying pathways controlling the maintenance of memory CD4+ T cells remain undefined. We show here that memory CD4+ T cell survival is impaired in the absence of the Notch signaling protein known as recombination signal binding protein for immunoglobulin κ J region (Rbpj). Treatment of mice with a Notch inhibitor reduced memory CD4+ T cell numbers and prevented the recurrent induction of experimental autoimmune encephalomyelitis. Rbpj-deficient CD4+ memory T cells exhibit reduced glucose uptake due to impaired AKT phosphorylation, resulting in low Glut1 expression. Treating mice with pyruvic acid, which bypasses glucose uptake and supplies the metabolite downstream of glucose uptake, inhibited the decrease of autoimmune memory CD4+ T cells in the absence of Notch signaling, suggesting memory CD4+ T cell survival relies on glucose metabolism. Together, these data define a central role for Notch signaling in maintaining memory CD4+ T cells through the regulation of glucose uptake.

  8. Influence of drugs on myocardial iodine-123 metaiodobenzylguanidine uptake in rabbit myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.; Karanikas, G.; Rodrigues, M.; Sinzinger, H. [Dept. of Nuclear Medicine, University of Vienna (Austria)

    2000-03-01

    About 15 years ago, iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging was introduced for the evaluation of myocardial sympathetic nerve function. Two uptake mechanisms for MIBG have so far been identified: uptake type I, a saturable, energy-dependent mechanism, and uptake type II, a non-saturable, energy-independent mechanism. We incubated isolated rabbit myocardial tissue samples with{sup 123}I-MIBG in order to assess the uptake characteristics and the influence of varying incubation conditions. Furthermore, we examined the effects of several drugs and uptake inhibitors on the myocardial uptake of MIBG. The in vitro myocardial uptake of MIBG reached a steady plateau at 23.87%{+-}3.63% after 1 h, i.e. a concentration gradient of 10, in a thermo-independent manner within a concentration range from 1.5 to 1500 {mu}M. This indicates an unsaturable uptake process in the tested concentrations. Pre-incubation with the following drugs caused a significant inhibitory effect on myocardial MIBG uptake: haloperidol, levomepromazine, metoprolol, labetalol and clomipramine. According to our findings, the uptake mechanism seems to be an unspecific process, but the concentration gradient of 10 makes passive diffusion unlikely. Further studies with uptake-II-blocking substances as well as with isolated myocardial cells will be needed to clarify the nature of the myocardial MIBG uptake mechanism. (orig.)

  9. 99mTc-MIBI, 99mTc-tetrofosmin and 99mTc-Q12 in vitro and in vivo

    International Nuclear Information System (INIS)

    Bernard, Bert F.; Krenning, Eric P.; Breeman, Wout A. P.; Ensing, Geert; Benjamins, Harry; Bakker, Willem H.; Visser, Theo J.; Jong, Marion de

    1998-01-01

    The aim of this study was to compare uptake of 99m Tc-MIBI, 99m Tc-tetrofosmin and 99m Tc-Q12 in vitro and biodistribution in vivo in rats. In vitro, uptake decreased in the order MIBI→tetrofosmin→Q12. Uptake of MIBI and tetrofosmin, but not of Q12, in cultured tumor cells was dependent on the plasma membrane and mitochondrial potential. In vivo, heart uptake of all three compounds was high and stable. Tumor uptake decreased in the order MIBI→Q12→tetrofosmin and the tumor/blood ratio in the order MIBI→tetrofosmin→Q12

  10. In vitro uptakes of radiolabeled IVDU and IVFRU in herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene transduced morris hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Choi, Tae Hyun; Ahn, Soon Hyuk; Woo, Kwang Sun; Jeong, Wee Sup; Kwon, Hee Chung; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Awh, Ok Doo [College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of)

    2004-02-01

    The herpes simplex virus type 1 thymidine kinase gene(HSV1-tk) is an attractive candidate as a reporter gene in noninvasive reporter gene monitoring system. The HSV1-tk gene was chosen as a reporter gene, because it has been extensively studied, and there are appropriate reporter probes, substrates of HSV1-tk gene product, to apply for HSV1-tk gene imaging. We used radiolabeled 5-iodovinyl-2'-deoxyuridine (IVDU) and 5-lodovinyl-2'-fluoro-2'-deoxyuridine (IVFRU) as reporter probes for HSV1-tk gene monitoring system. We prepared HSV1-tk gene transduced Morris hepatoma cell line using retroviral vector, MOLTEN containing HSV1-tk gene. And we confirmed the HSV1-tk gene expression by Northern blotting and Western blotting. We compared in vitro uptakes of radioiodinated IVDU and IVFRU to monitor HSV1-tk gene expression in Morris hepatoma cell line (MCA) and HSV1-tk gene tranduced MCA (MAC-tk) cells until 480 minutes. We also performed correlation analysis between percentage of HSV1-tk gene tranduced MCA cell % (MCA-tk%) and uptakes of radiolabeled IVDU or IVFRU. MCA-tk cell expressed HSV1-tk mRNA and HSV1-TK protein. Two compounds showed minimal uptake in MCA, but increased uptake was observed in MCA-tk. IVDU showed 4-fold higher accumulation than IVFRU at 480 min in MCA-tk (p<0.01). Both IVDU and IVFRU uptake were linearly correlated (R{sup 2}>0.96) with increasing MCA-tk%. The rediolabeld IVDU and IVFRU showed higher specific accumulation in retrovirally HSV1-tk gene transfected Morris hepatoma cell line. Both IVDU and IVFRU could be used as good substrates for evaluation of HSV1-tk gene expression.

  11. Uptake of the glycosphingolipid sulfatide in the gastrointestinal tract and pancreas in vivo and in isolated islets of Langerhans

    Directory of Open Access Journals (Sweden)

    Fredman Pam

    2006-10-01

    Full Text Available Abstract Background The glycosphingolipid sulfatide has previously been found in several mammalian tissues, but information on the uptake of exogenously administered sulfatide in different organs in vivo is limited. In pancreatic beta cells, sulfatide has been shown to be involved in insulin processing and secretion in vitro. In this study, we examined the uptake of exogenously administered sulfatide and its distribution to the pancreatic beta cells. This might encourage future studies of the function(s of sulfatide in beta cell physiology in vivo. Radioactive sulfatide was given orally to mice whereafter the uptake of sulfatide in the gastrointestinal tract and subsequent delivery to the pancreas was examined. Sulfatide uptake in pancreas was also studied in vivo by i.p. administration of radioactive sulfatide in mice, and in vitro in isolated rat islets. Isolated tissue/islets were analysed by scintillation counting, autoradiography and thin-layer chromatography-ELISA. Results Sulfatide was taken up in the gastrointestinal tract for degradation or further transport to other organs. A selective uptake of short chain and/or hydroxylated sulfatide fatty acid isoforms was observed in the small intestine. Exogenously administered sulfatide was found in pancreas after i.p, but not after oral administration. The in vitro studies in isolated rat islets support that sulfatide, independently of its fatty acid length, is endocytosed and metabolised by pancreatic islets. Conclusion Our study supports a selective uptake and/or preservation of sulfatide in the gastrointestinal tract after oral administration and with emphasises on pancreatic sulfatide uptake, i.p. administration results in sulfatide at relevant location.

  12. Fractional laser-assisted drug uptake

    DEFF Research Database (Denmark)

    Banzhaf, Christina A; Thaysen-Petersen, Daniel; Bay, Christiane

    2017-01-01

    BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is acknowledged to increase uptake of topically applied agents in skin. AFXL channels gradually close over time, which may impair this capability. The time frame for applying a drug after AFXL exposure remains to be established. The aim...... in laser-exposed and non-laser-exposed skin at 24-48 hours. CONCLUSIONS: The time frame to maintain enhanced drug delivery sustained for several hours after AFXL exposure, corresponding to channel morphology and loss of skin integrity. Lasers Surg. Med. 49:348-354, 2017. © 2016 Wiley Periodicals, Inc....

  13. In vivo and in vitro study of /sub 90/Sr in developing rat molar enamel

    International Nuclear Information System (INIS)

    White, B.A.; Deaton, T.G.; Bawden, J.W.

    1980-01-01

    The uptake patterns of /sub 90/Sr in developing rat molar enamel were studied in vivo and in vitro. Autoradiographic methods were used that preclude loss or translocation of tracers associated with water-soluble compounds in the sections. In eight-day-old rats injected with the tracer, /sub 90/Sr uptake in the enamel was significantly less than for dentin and bone, particularly at early sacrifice times. The uptake pattern of 90Sr was somewhat different from that previously observed for /sub 45/Ca. The in vitro experiments indicated that the viable intact enamel organ limits uptake of /sub 90/Sr by enamel in both the secretory and maturation phases of enamel formation

  14. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  15. Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.

    Science.gov (United States)

    Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A

    2000-05-01

    To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.

  16. In vitro cholesterol uptake by Lactobacillus delbrueckii subsp. bulgaricus isolates

    OpenAIRE

    Małgorzata Ziarno

    2009-01-01

    Background. Some researchers have indicated that Lactobacillus delbrueckii subsp. bulgaricus may provide additional health benefits, reduce serum cholesterol level, for example. The aim of this study was to determine cholesterol uptake by Lb. delbrueckii subsp. bulgaricus commercial yoghurt starter isolates in artificial GIT fluids. Material and methods. Lb. delbrueckii subsp. bulgaricus isolates were cultured in MRS broth and in artificial GIT fluids contained cholesterol at initial con...

  17. 10B uptake by cells for boron neutron capture synovectomy

    International Nuclear Information System (INIS)

    Binello, E.; Yanch, J.C.; Shortkroff, S.

    2000-01-01

    Boron Neutron Capture Synovectomy (BNCS) proposes to use the 10 B(n,α) 7 Li reaction to ablate inflamed synovium (a tissue lining articular joints) in patients with Rheumatoid Arthritis. Boron uptake is an important parameter for treatment design. In this study, a simple method was developed to determine K 2 B 12 H 12 (KBH) uptake in vitro by non-adhering monocytic cells (representative of synovial cells in inflamed joints). Uptake was quantified as a function of incubation time and boron concentration, as well as following washout: no significant difference was found between incubation times tested; average uptake ranged from 55 to 60% of 10 B incubation concentrations varying from 1000 to 5000 ppm: approximately 15% of the 10 B concentration was measured upon re-incubation in boron-free medium. These results agree well with those obtained ex vivo using human arthritic synovium, a significant finding in light of the difficulty typically associated with obtaining such tissue. The full characterization of 10 B uptake for BNCS (with KBH) is discussed. (author)

  18. Cognitive decline and amyloid accumulation in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Koivunen, Jaana; Karrasch, Mira; Scheinin, Noora M

    2012-01-01

    Background/Aims: The relationship between baseline (11)C-Pittsburgh compound B ((11)C-PIB) uptake and cognitive decline during a 2-year follow-up was studied in 9 patients with mild cognitive impairment (MCI) who converted to Alzheimer's disease (AD) and 7 who remained with MCI. Methods: (11)C......: At baseline, there were statistically significant differences in (11)C-PIB uptake, but not in cognitive test performances between the converters and nonconverters. Memory and executive function declined only in the converters during follow-up. In the converters, lower baseline frontal (11)C-PIB uptake...... was associated with faster decline in verbal learning. Higher baseline uptake in the caudate nucleus was related to faster decline in memory consolidation, and higher temporal uptake was associated with decline in executive function. Conclusion: Higher (11)C-PIB uptake in the caudate nucleus and temporal lobe...

  19. Correlation of hepatic 18F-fluorodeoxyglucose uptake with fatty liver

    International Nuclear Information System (INIS)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam

    2006-01-01

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 ± 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), γ -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and γ -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration

  20. Uptake of benzimidazoles by Trichuris suis in vivo in pigs

    DEFF Research Database (Denmark)

    Hansen, Tina Vicky Alstrup; Friis, Christian; Nejsum, Peter

    2014-01-01

    It is recognized that the clinical efficacy of single dose benzimidazoles (BZs) against the nematode, Trichuris suis of pigs and the closely related Trichuris trichiura in humans is only poor to moderate. Recent in vitro studies have indicated that a low uptake of fenbendazole (FBZ) in T. suis may...

  1. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  2. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    Science.gov (United States)

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  3. The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    Lankoff, Anna; Carmichael, Wayne W.; Grasman, Keith A.; Yuan, Moucun

    2004-01-01

    Microcystin-LR is a cyanobacterial heptapeptide that presents acute and chronic hazards to animal and human health. We investigated the influence of this toxin on human and chicken immune system modulation in vitro. Peripheral blood lymphocytes were treated with microcystin-LR at environmentally relevant doses of 1, 10 and 25 μg/ml for 12, 24, 48, 72 h (for proliferation assay cells were treated for 72 h). T-cell and B-cell proliferation as well as apoptosis and necrosis were determined in human and chicken samples. IL-2 and IL-6 production by human lymphocytes also was measured. In addition, uptake kinetics of microcystin-LR into human and chicken peripheral blood lymphocytes were calculated by Liquid Chromatography (LS) /Mass Spectrometry (MS) analysis. At the highest dose microcystin-LR decreased T-cell proliferation and all doses of microcystin-LR inhibited B-cell proliferation. The frequency of apoptotic and necrotic cells increased in a dose and time-dependent manner. Human lymphocytes responded to stimulation with microcystin-LR by increased production of IL-6 and decreased production of IL-2. Human lymphocytes were able to uptake from 0.014 to 1.663 μg/ml and chicken lymphocytes from 0.035 to 1.733 μg/ml of the microcystin-LR added to the cultures, depending on the treatment time and dose. In conclusion, microcystin-LR acted as an immunomodulator in cytokine production and down-regulated lymphocyte functions by induction of apoptosis and necrosis. However, further studies dealing with the influence of microcystin-LR on expression cytokine genes and transcription factors are necessary to confirm these hypotheses

  4. 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B12 and causes vitamin B12 deficiency in mice

    DEFF Research Database (Denmark)

    Mutti, Elena; Ruetz, Markus; Birn, Henrik

    2013-01-01

    Coβ-4-ethylphenyl-cob(III) alamin (EtPhCbl) is an organometallic analogue of vitamin B12 (CNCbl) which binds to transcobalamin (TC), a plasma protein that facilitates the cellular uptake of cobalamin (Cbl). In vitro assays with key enzymes do not convert EtPhCbl to the active coenzyme forms of Cbl...... treated with EtPhCbl (1.01±0.12 µmol/L) compared to controls (0.30±0.02 µmol/L) and CNCbl (0.29±0.01 µmol/L) treated animals. The same pattern was observed for tHcy. Plasma total Cbl concentration was higher in animals treated with EtPhCbl (128.82±1.87 nmol/L) than in CNCbl treated animals (87.......64±0.93 nmol/L). However, the organ levels of total Cbl were significantly lower in animals treated with EtPhCbl compared to CNCbl treated animals or controls, notably in the liver (157.07±8.56 pmol/g vs. 603.85±20.02 pmol/g, and 443.09±12.32 pmol/g, respectively). Differences between the three groups...

  5. Tumor cytotoxicity by endothelial cells. Impairment of the mitochondrial system for glutathione uptake in mouse B16 melanoma cells that survive after in vitro interaction with the hepatic sinusoidal endothelium.

    Science.gov (United States)

    Ortega, Angel L; Carretero, Julian; Obrador, Elena; Gambini, Juan; Asensi, Miguel; Rodilla, Vicente; Estrela, José M

    2003-04-18

    High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.

  6. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  7. α-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded α-Synuclein and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hien T. Tran

    2014-06-01

    Full Text Available Accumulation of misfolded alpha-synuclein (α-syn into Lewy bodies (LBs and Lewy neurites (LNs is a major hallmark of Parkinson’s disease (PD and dementia with LBs (DLB. Recent studies showed that synthetic preformed fibrils (pffs recruit endogenous α-syn and induce LB/LN pathology in vitro and in vivo, thereby implicating propagation and cell-to-cell transmission of pathological α-syn as mechanisms for the progressive spread of LBs/LNs. Here, we demonstrate that α-syn monoclonal antibodies (mAbs reduce α-syn pff-induced LB/LN formation and rescue synapse/neuron loss in primary neuronal cultures by preventing both pff uptake and subsequent cell-to-cell transmission of pathology. Moreover, intraperitoneal (i.p. administration of mAb specific for misfolded α-syn into nontransgenic mice injected intrastriatally with α-syn pffs reduces LB/LN pathology, ameliorates substantia nigra dopaminergic neuron loss, and improves motor impairments. We conclude that α-syn antibodies could exert therapeutic effects in PD/DLB by blocking entry of pathological α-syn and/or its propagation in neurons.

  8. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    Science.gov (United States)

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  9. Radioiodine uptake of undifferentiated thyroid cancer cells by adenovirus-mediated Na+/ I- symporter gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    So, Y.; Lee, Y. J.; Shin, J. H.; Oh, H. J.; Chung, J. K.; Lee, M. C.; Cho, B. Y. [College of Medicine, Univ. of Seoul National, Seoul (Korea, Republic of); Lee, K. H. [Samsung Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    To increase radioiodine uptake on undifferentiated thyroid cancer cell (ARO cells) by adenovirus-mediated human Na+/I- symporter (hNIS) gene transfer. Recombinant adenovirus Ad-hNIS was manufactured successfully. After transfecting Ad-hNIS on ARO cells, in vitro I-125 uptake and efflux studies were performed. For in vivo studies, 1.510'8 p.f.u. (50 1) of Ad-hNIS was injected into xenograft ARO tumors on the R thigh of BALB/c nu/nu mice (n=12), and same amount of normal saline was injected into xenograft ARO tumors on the L thigh. Two, 3, 4 and 6 days after intratumoral injection of Ad-hNIS, I-131 images (3 mice per day) were taken and xenograft tumors on both thighs were all excised. Total RNA was extracted from each tumor tissue and RT-PCR was performed to confirm the hNIS expression of Ad-hNIS injected xenograft ARO tumors. I-125 uptake of Ad-hNIS transfected ARO cells was increased up to 233 folds at 120 minutes in vitro. I-125 efflux study revealed rapid washout of I-125 from Ad-hNIS transfected ARO cells. On dynamic image, I-131 uptake of Ad-hNIS injected ARO tumor was continuously increased until 60 minutes. Mean count ratios of xenograft ARO tumors (R/L) of 60 minutes I-131 images at 2, 3, 4 and 6 days after Ad-hNIS injection were 2.85, 2.54, 2.31, and 2.18, each. On RT-PCR, hNIS expression of Ad-hNIS transfected ARO xenograft tumors was confirmed. Radioiodine uptake was successfully increased in ARO cells by adenovirus-mediated hNIs gene transfer both in vitro and in vivo.

  10. Flavonoid rutin increases thyroid iodide uptake in rats.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Lima Gonçalves

    Full Text Available Thyroid iodide uptake through the sodium-iodide symporter (NIS is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO, the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH, and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  11. Correlation of hepatic {sup 18}F-fluorodeoxyglucose uptake with fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    An, Young Sil; Yoon, Joon Kee; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2006-10-15

    Liver demonstrates heterogeneous FDG uptake and sometimes it shows abnormally increased uptake even though there is no malignant tissue. However, there was no previous study to correlate these various pattern of hepatic FDG uptake with benign liver disease. Therefore, we evaluated the significance of hepatic FDG uptake associated with various clinical factors including fatty liver, liver function tests and lipid profiles. We reviewed a total of 188 patients (male/female: 120/68, mean age: 50 {+-} 9) who underwent PET/CT for screening of malignancy. Patients with DM, impaired glucose tolerance, previous severe hepatic disease or long-term medication history were excluded. The FDG uptake in liver was analyzed semi-quantitatively using ROI on transaxial images (segment 8) and we compared mean standardized uptake value (SUV) between fatty liver and non-fatty liver group. We also evaluated the correlation between hepatic FDG uptake and various clinical factors including serum liver function test (ALT, AST), {gamma} -GT, total cholesterol and triglyceride concentration. The effect of alcoholic history and body mass index on hepatic FDG uptake was analyzed within the fatty liver patients. The hepatic FDG uptake of fatty liver group was significantly higher than that of non-fatty liver group. Serum total cholesterol and triglyceride concentration showed significant correlation with hepatic FDG uptake. However, there was no significant correlation between other factors (ALT, AST, and {gamma} -GT) and FDG uptake. Also there was no difference of mean SUV between normal and abnormal groups on the basis of alcoholic history and body mass index within fatty liver patients. Fatty liver and high serum triglyceride concentration were the independent factors affecting hepatic FDG uptake according to multivariate analysis. In conclusion, hepatic FDG uptake was strongly correlated with fatty liver and serum triglyceride concentration.

  12. Pioglitazone Improves In Vitro Viability and Function of Endothelial Progenitor Cells from Individuals with Impaired Glucose Tolerance

    Science.gov (United States)

    Spigoni, Valentina; Picconi, Angela; Cito, Monia; Ridolfi, Valentina; Bonomini, Sabrina; Casali, Chiara; Zavaroni, Ivana; Gnudi, Luigi; Metra, Marco; Dei Cas, Alessandra

    2012-01-01

    Background Evidence suggests that the PPARγ-agonist insulin sensitizer pioglitazone, may provide potential beneficial cardiovascular (CV) effects beyond its anti-hyperglycaemic function. A reduced endothelial progenitor cell (EPC) number is associated with impaired glucose tolerance (IGT) or diabetes, conditions characterised by increased CV risk. Aim To evaluate whether pioglitazone can provide benefit in vitro in EPCs obtained from IGT subjects. Materials and Methods Early and late-outgrowth EPCs were obtained from peripheral blood mononuclear cells of 14 IGT subjects. The in vitro effect of pioglitazone (10 µM) with/without PPARγ-antagonist GW9662 (1 µM) was assessed on EPC viability, apoptosis, ability to form tubular-like structures and pro-inflammatory molecule expression. Results Pioglitazone increased early and late-outgrowth EPC viability, with negligible effects on apoptosis. The capacity of EPCs to form tubular-like structures was improved by pioglitazone in early (mean increase 28%; p = 0.005) and late-outgrowth (mean increase 30%; p = 0.037) EPCs. Pioglitazone reduced ICAM-1 and VCAM-1 adhesion molecule expression in both early (p = 0.001 and p = 0.012 respectively) and late-outgrowth (p = 0.047 and p = 0.048, respectively) EPCs. Similarly, pioglitazone reduced TNFα gene and protein expression in both early (p = 0.034;p = 0.022) and late-outgrowth (p = 0.026;p = 0.017) EPCs compared to control. These effects were prevented by incubation with the PPARγ-antagonist GW9662. Conclusion Pioglitazone exerts beneficial effects in vitro on EPCs isolated from IGT subjects, supporting the potential implication of pioglitazone as a CV protective agents. PMID:23139771

  13. Aspirin decreases platelet uptake on Dacron vascular grafts in baboons

    International Nuclear Information System (INIS)

    Mackey, W.C.; Connolly, R.J.; Callow, A.D.

    1984-01-01

    The influence of a single dose of aspirin (5.4-7.4 mg/kg) on platelet uptake on 4-mm Dacron interposition grafts was studied in a baboon model using gamma camera scanning for 111-Indium labeled platelets. In vitro assessment of platelet function after aspirin administration revealed that in the baboon, as in the human, aspirin abolished arachidonic acid-induced platelet aggregation, prolonged the lag time between exposure to collagen and aggregation, and decreased plasma thromboxane B2 levels. Aspirin also prolonged the template bleeding time. Scans for 111-Indium labeled platelets revealed that pretreatment with a single dose of aspirin decreased platelet uptake on 4-mm Dacron carotid interposition grafts. This decrease in platelet uptake was associated with a significant improvement in 2-hour graft patency and with a trend toward improved 2-week patency

  14. Variation in In Vitro Digestibility of Barley Protein

    DEFF Research Database (Denmark)

    Buchmann, N. B.

    1979-01-01

    impaired digestibilities; these findings were partially verified in a repeated field trial, but were not confirmed in vivo. In vitro digestibilities of barleys grown in pots at various N-levels were positively correlated with protein or hordein content. In vitro digestibility was negatively correlated...

  15. Retinal uptake and release of (/sup 3/H)DABA

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B; Ehinger, B [Lund Univ. (Sweden)

    1978-03-01

    The uptake of (/sup 3/H)DABA was studied in rat, guinea-pig and cat retinas in vivo and in rabbit retinas both in vivo and in vitro by autoradiography. (/sup 3/H)DABA was preferentially accumulated by a type of amacrine cell but after brief incubation or shortly after intravitreal injections there was not only a neuronal uptake but also a glial one. In guinea-pigs the glial labelling in vivo was significant also after 4 hr. The glial uptake (rabbits) was found to be saturable and temperature dependent as expected for an active uptake mechanism. The Ksub(m) of DABA uptake was 2.11 x 10/sup -5/ m and Vsub(max) 2.38 x 10/sup -5/ mol/mg/min. GABA competitively inhibited the DABA uptake. The uptake was not statistically significantly influenced by OMEGA-amino acids such as glycine, ..beta..-alanine, ..cap alpha..-alanine or epsilon-aminocaproic acid. The effect of different stimuli on the spontaneous efflux of radioactivity from (/sup 3/H)DABA preloaded rabbit retinas was studied with (/sup 3/H)DABA localized to neurons. Light flashes evoked a small but not statistically significant increased release whereas 40mM-K/sup +/ evoked an immediate and large increase. Unlabelled DABA, GABA and ..beta..-alanine (10/sup -5/M) increased the spontaneous efflux of (/sup 3/H)DABA but not glycine. It is concluded that there is in the retina of rats, guinea-pigs, cats, and rabbits, a glial high affinity uptake mechanism in addition to the neuronal uptake. DABA seems to be transported by the same mechanism as GABA in both systems. The DABA seems to be better retained in neurons than in glia in rats, cats and rabbits, which allows it to be used as a neuronal marker.

  16. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. In vivo and In vitro Evaluations of Intestinal Gabapentin Absorption

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Frølund, Sidsel; Nøhr, Martha Kampp

    2015-01-01

    of gabapentin by both in vivo and in vitro investigations METHODS: Pharmacokinetic parameters were determined following a range of intravenous (5-100 mg/kg) and oral doses (10-200 mg/kg) in rats. Transepithelial transport (50 μM-50 mM) and apical uptake of gabapentin (0.01-50 mM) were investigated in Caco-2...... cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. RESULTS: Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH...... inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. CONCLUSIONS: The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell...

  18. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Science.gov (United States)

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  19. Proteasome impairment by α-synuclein.

    Directory of Open Access Journals (Sweden)

    Lisa Zondler

    Full Text Available Parkinson's disease (PD is the second most prevalent neurodegenerative disorder worldwide and characterized by the loss of dopaminergic neurons in the patients' midbrains. Both the presence of the protein α-synuclein in intracellular protein aggregates in surviving neurons and the genetic linking of the α-synuclein encoding gene point towards a major role of α-synuclein in PD etiology. The exact pathogenic mechanisms of PD development are not entirely described to date, neither is the specific role of α-synuclein in this context. Previous studies indicate that one aspect of α-synuclein-related cellular toxicity might be direct proteasome impairment. The 20/26S proteasomal machinery is an important instrument of intracellular protein degradation. Thus, direct proteasome impairment by α-synuclein might explain or at least contribute to the formation of intracellular protein aggregates. Therefore this study investigates direct proteasomal impairment by α-synuclein both in vitro using recombinant α-synuclein and isolated proteasomes as well as in living cells. Our experiments demonstrate that the impairment of proteasome activity by α-synuclein is highly dependent upon the cellular background and origin. We show that recombinant α-synuclein oligomers and fibrils scarcely affect 20S proteasome function in vitro, neither does transient α-synuclein expression in U2OS ps 2042 (Ubi(G76V-GFP cells. However, stable expression of both wild-type and mutant α-synuclein in dopaminergic SH-SY5Y and PC12 cells results in a prominent impairment of the chymotrypsin-like 20S/26S proteasomal protein cleavage. Thus, our results support the idea that α-synuclein in a specific cellular environment, potentially present in dopaminergic cells, cannot be processed by the proteasome and thus contributes to a selective vulnerability of dopaminergic cells to α-synuclein pathology.

  20. Characterization of (/sup 3/H)5-hydroxytryptamine uptake within rat cerebrovascular tree

    Energy Technology Data Exchange (ETDEWEB)

    Amenta, F.; Rossi, M. de; Mione, M.C.; Geppetti, P.

    1985-06-07

    The in vitro uptake of tritiated serotonin ((/sup 3/H)5HT) was studied in a preparation of rat extracerebral arteries. The uptake of (/sup 3/H)5HT was time- and temperature-dependent and of high affinity; linear regression analysis gave a Ksub(m) value of 6.48 X 10/sup 7/ M for the specific uptake. Histoautoradiographic studies showed the highest density of silver grains at the level of the adventitial-medial border of the basilar artery. Fluoxetine inhibited the accumulation of silver grains within the adventitial-medial border in the blood vessel studied. The present data further support the view that a neuronal serotonergic system may play a role in the control of blood flow in the cerebrovascular tree.

  1. In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods

    Directory of Open Access Journals (Sweden)

    Gauhar Rehman

    2018-01-01

    Full Text Available The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays.

  2. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    International Nuclear Information System (INIS)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.

    1988-01-01

    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake

  3. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    Science.gov (United States)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  4. Effect of tonicity on 22NaCl solution uptake by rabbit eye in vivo and in vitro

    International Nuclear Information System (INIS)

    Obenberger, J.; Bartosova, D.; Babicky, A.

    1979-01-01

    Solutions of 22 NaCl in saline or distilled water differ with respect to their ocular uptake. Studies were performed on eyes of living rabbits as well on the enucleated rabbit eyes. Chromatographic paper strips (15x2 mm) were soaked in both solutions, stretched over the cornea and left in contact for 1 min. Radioactivities of paper strips and rabbit eyes were measured and the ocular uptake of 22 Na was expressed as percentual values of the total radioactivities contained in the paper strips before their application to the corneal surface. Values of the ocular uptake of 22 NaCl solved in distilled water exceeded more than twice the values found in experiments where 22 Na solution in saline was used. The use of carrier-free 22 NaCl solutions in distilled water is recommended for the method measuring the ocular uptake hydrodynamics on basis of ocular 22 Na clearance. Uptake of 22 Na in enucleated eyes was twenty-five per cent higher in comparison with the eyes of living rabitts. (author)

  5. The MDP skull uptake test: A new diagnostic tool

    International Nuclear Information System (INIS)

    Ell, P.J.; Jarritt, P.H.; Cullum, I.; Lui, D.

    1984-01-01

    An original approach to the measurement of bone turnover is presented. With SPECT, the authors have measured in pgr/ml, the uptake of MDP by the skull in man. The Cleon 710 scanner, ring phantoms and bone biopsies were used for ultimate in vivo/in vitro count recovery correlation and calibration. A normal range for 24 patients was found: 8.5 to 19.5 pgr/ml with a mean of 14. For patients with bony metastases (12), the values were: 22.5 to 50, mean of 30. For 5 patients with osteomalacia, the values were 46 to 68, mean of 62: for 12 patients with hyperparathyroidism, the values were 37 to 48.5, mean of 43. In 3 patients with Pagets disease, the values were 58.5 to 75, with a mean of 65. In 76 patients with metastatic disease to bone, the conventional wholebody bone scan was investigated against the following: 24h wholebody retention of MDP (WBR), skull uptake as described and GFR by Cr-51-DTPA. There is a correlation between GFR and WBR - r=0.67. There is a lesser correlation between GFR and skull uptake - r=0.3. There is no correlation between skull uptake and WBR - r=0.1. The comparison of skull uptake data with normal whole body bone scans leads to a significant proportion of cancer patients with positive skull uptake data. Monostotic disease (especially if metabolic in nature) expresses itself by abnormal skull uptake even if the clinical site of abnormality lies outside the skull. This new technique is ideal as a tool to investigate phosphonate concentration in bone. With it, the authors have shown the effect of specific activity of label on skull uptake, which increases as the specific activity of labelled MDP decreases

  6. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer's disease

    International Nuclear Information System (INIS)

    Arlt, Soenke; Jahn, Holger; Eichenlaub, Martin; Brassen, Stefanie; Wilke, Florian; Apostolova, Ivayla; Buchert, Ralph; Wenzel, Fabian; Young, Stewart; Thiele, Frank

    2009-01-01

    Brain imaging of FDG uptake and cerebrospinal fluid (CSF) concentration of amyloid-beta 1-42 (Aβ 1-42 ) or tau proteins are promising biomarkers in the diagnosis of Alzheimer's disease (AD). There is still uncertainty regarding any association between decreased FDG uptake and alterations in CSF markers. The relationship between FDG uptake, CSF Aβ 1-42 and total tau (T-tau), as well as the Mini-Mental State Examination (MMSE) score was investigated in 34 subjects with probable AD using step-wise linear regression. FDG uptake was scaled to the pons. Scaled FDG uptake was significantly reduced in the probable AD subjects compared to 17 controls bilaterally in the precuneus/posterior cingulate area, angular gyrus/inferior parietal cortex, inferior temporal/midtemporal cortex, midfrontal cortex, and left caudate. Voxel-based single-subject analysis of the probable AD subjects at p 1-42 . Scaled FDG uptake in the caudate was positively correlated with CSF T-tau. The extent and local severity of the reduction in FDG uptake in probable AD subjects are associated with cognitive impairment. In addition, there appears to be a relationship between local FDG uptake and CSF biomarkers which differs between different brain regions. (orig.)

  7. Thyroid hormone stimulated glucose uptake in human mononuclear blood cells from normal persons and from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1989-01-01

    Thyroxine and T3 induced oxygen consumption and glucose uptake were studied in vitro in mononuclear blood cells isolated from patients with non-insulin-dependent diabetes mellitus (NIDDM) and from non-diabetic control persons. Cellular oxygen consumption and glucose uptake were promptly increased...

  8. Effect of abscisic acid on amino acid uptake and efflux in developing soybean seeds

    International Nuclear Information System (INIS)

    Guldan, S.J.; Brun, W.A.

    1987-01-01

    The role of abscisic acid (ABA) in regulating growth of developing soybean [Glycine max (L.) Merr.] seeds is not fully understood. The objectives of this study were to characterize the effect of ABA on the in vitro uptake of asparagine and glutamine by isolated immature cotyledons in three soybean plant introduction (PI) lines with genotypic differences in seed growth rate and final seed weight. Cotyledons were incubated in uptake buffer solutions plus 14 C-asparagine or 14 C-glutamine and treatment concentrations of ABA. The ABA levels in the uptake solutions were 0, 10 -7 , 10 -6 , and 10 -5 M. The uptake rate of glutamine was approximately three times that of asparagine. Among PI lines, the heavy seeded line had a greater rate of asparagine uptake while the light seeded line had a greater rate of glutamine uptake. For asparagine, 10 -6 M ABA depressed uptake compared to the control. For glutamine, ABA enhanced uptake compared to the control at both 10 -6 and 10 -5 M. In an additional experiment, the authors observed no effect of ABA and K on the release of labeled asparagine from excised soybean seed coats. These data indicate that amino acid uptake rates are genotypically dependent and may be influenced by ABA concentration

  9. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons.

    Science.gov (United States)

    Varela, Luis; Suyama, Shigetomo; Huang, Yan; Shanabrough, Marya; Tschöp, Matthias H; Gao, Xiao-Bing; Giordano, Frank J; Horvath, Tamas L

    2017-06-01

    Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders. © 2017 by the American Diabetes Association.

  10. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum.

    Science.gov (United States)

    Niemand, J; Louw, A I; Birkholtz, L; Kirk, K

    2012-09-01

    Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  11. Alcoholic hepatitis with negligible sup(99m)Tc uptake and transient elevation of serum alpha-fetoprotein

    International Nuclear Information System (INIS)

    Hoshino, Hirosuke; Okumura, Makoto; Shimizu, Masanori; Eimoto, Tadaaki

    1981-01-01

    A 35 year old male with typical alcoholic hepatitis presented almost negligible uptake of sup(99m)Tc on the liver scan. Electron microscopic findings disclosing decreased number of Kupffer cells and impaired blood flow in the sinusoids may elucidate extremely diminshed uptake of isotope by the liver. Transient elevation of serum α-fetoprotein up to 3200 ng/ml observed during the active stage may indicate a regeneration process of hepatic necrosis occurred following the acute alcoholic hepatitis. (author)

  12. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment.

    Science.gov (United States)

    Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael

    2007-08-01

    Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.

  13. Effect of exercise and obesity on skeletal muscle amino acid uptake

    International Nuclear Information System (INIS)

    Friedman, J.E.

    1988-01-01

    To determine if amino acid uptake by muscle of the obese Zucker rat is impaired, epitrochlearis (EPI) and soleus strip (SOL) muscles from 32 pairs of female lean (Fa/-) and obese (fa/fa) Zucker rats were incubated using [ 14 C]α-aminoisobutyric acid (AIB). Because contractile activity also influences amino acid uptake, the effect of acute endurance exercise on amino acid uptake by skeletal muscle from lean and obese rats was also studied. Muscle wet and dry weights were similar in lean and obese rats. However, both muscle protein content and concentration from obese rats were significantly reduced. In preliminary studies, pinning EPI at resting length during incubation significantly increased AIB uptake and reduced muscle water accumulation. AIB uptake was similar in stripped and intact SOL. Lean and obese rats were studied at rest or following a 1 hr treadmill run at 8% grade Muscles were pinned, and preincubated for 30 min at 37 degree C in Krebs Ringer bicarbonate buffer (KRB) containing 5mM glucose under 95:5 O 2 /CO 2 , followed by 30, 60, 120, or 180 min of incubation in KRB with 0.5 mM AIB, [ 14 C]-AIB to measure amino acid, and [ 3 H]-inulin to determine extracellular water

  14. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    Science.gov (United States)

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  15. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jin Cheng [Fourth Military Medical University, Department of Radiation Medicine (China); Bai Ling [Xi' an Gaoxin Hospital, Department of Clinical Laboratories (China); Wu Hong [Fourth Military Medical University, Department of Pharmacy (China); Teng Zenghui [Fourth Military Medical University, Department of Pharmacology (China); Guo Guozhen, E-mail: guozhengg@tom.co [Fourth Military Medical University, Department of Radiation Medicine (China); Chen Jingyuan, E-mail: jy_chen@fmmu.edu.c [Fourth Military Medical University, Department of Occupational and Environmental Health (China)

    2008-08-15

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  16. Cellular uptake and radiosensitization of SR-2508 loaded PLGA nanoparticles

    International Nuclear Information System (INIS)

    Jin Cheng; Bai Ling; Wu Hong; Teng Zenghui; Guo Guozhen; Chen Jingyuan

    2008-01-01

    SR-2508 (etanidazole), a hypoxic radiosensitizer, has potential applications in radiotherapy. The poly(d,l-lactide-co-glycolide)(PLGA) nanoparticles containing SR-2508 were prepared by w/o/w emulsification-solvent evaporation method. The physicochemical characteristics of the nanoparticles (i.e. encapsulation efficiency, particle size distribution, morphology, in vitro release) were studied. The cellular uptake of the nanoparticles for the two human tumor cell lines: human breast carcinoma cells (MCF-7) and human carcinoma cervices cells (HeLa), was evaluated by fluorescence microscopy and transmission electronic microscopy. Cell viability was measured by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical in shape with size between 90 nm and 190 nm. The encapsulation efficiency was 20.06%. The drug release pattern exhibited an initial burst followed by a plateau for over 24 h. The cellular uptake of nanoparticles was observed. Co-culture of MCF-7 and HeLa cells with SR-2508 loaded nanoparticles showed that released SR-2508 retained its bioactivity and effectively sensitized two hypoxic tumor cell lines to radiation. The radiosensitization of SR-2508 loaded nanoparticles was more significant than that of free drug.

  17. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  18. The effect of PPAR-γ agonist on 18F-FDG uptake in tumor and macrophages and tumor cells

    International Nuclear Information System (INIS)

    Kim, Se-Lim; Kim, Eun-Mi; Cheong, Su-Jin; Lee, Chang-Moon; Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Yim, Chang Yeol

    2009-01-01

    Purpose: The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors, and its role in adipogenesis and glucose metabolism has been well established. PPAR-γ agonists have been shown to inhibit many cytokines and to have anti-inflammatory effects. In pathologic conditions, enhanced fluoro-2-deoxy-D-glucose (FDG) uptake is observed not only in malignant tumors but also in inflammatory lesions, and this uptake occurs through the glucose transporter in these cells. Thus, the present study was undertaken to investigate the potential of using PPAR-γ's glucose uptake ability as a diagnostic tool to differentiate between macrophage and tumor cells. Materials and Methods: Cellular uptake studies were carried out on macrophage and two tumor cell lines for comparison by using 18 F-FDG. Western blot analysis was performed to determine the expression levels of both the glucose transporter and hexokinase protein. To confirm the possibility of differentiation between tumor and inflammatory lesions using rosiglitazone based on in vitro studies, 18 F-FDG (3.7x10 6 Bq) uptake in A549 and RAW 264.7 xenograft mice was compared. Results: The cellular uptake study findings were quite different for macrophages and tumor cells. 18 F-FDG uptakes by macrophages decreased by about 60% but was increased twofold in tumor cells after rosiglitazone treatment. Moreover, the expressions of proteins related to glucose uptake correlated well with cellular glucose accumulation in both cell types. Higher tumor uptake was observed after the injection of rosiglitazone in A549 xenograft mice (1.58±0.55 to 4.66±1.16), but no significant change of 18 F-FDG uptake was shown in RAW 264.7 xenograft mice (4.04±1.16 to 4.00±0.14). Conclusion: The present study demonstrates the roles of PPAR-γ agonist on FDG uptake in macrophages and tumor cells in vitro and in vivo. Our findings suggest that rosiglitazone has the

  19. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  20. Uptake and expulsion of 14C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro

    International Nuclear Information System (INIS)

    Soederling, E.; Pihlanto-Leppaelae, A.

    1989-01-01

    The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of 14 C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The 14 C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitolculturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as 14 C-xylitol 5-phosphate. The label subsequently was expelled from the cells as 14 C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium. (author)

  1. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    International Nuclear Information System (INIS)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee

    1990-01-01

    Unexpected renal abnormality can be detected on bone scan using 99m Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  2. Evaluation of Significance of Diffusely Increased Bilateral Renal Uptake on Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Mi Sook; Yang, Woo Jin; Byun, Jae Young; Park, Jung Mi; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-03-15

    Unexpected renal abnormality can be detected on bone scan using {sup 99m}Tc-MDP. The purpose of the study is to evaluate the diagnostic significance of diffusely increased bilateral renal uptake on bone scan. 1,500 bone scan were reviewed and 43 scans which showed diffusely increased bilateral renal uptake were selected for analysis. Laboratory findings for renal and liver function tests including routine urinalysis were reviewed in 43 patients. 26 of 43 case showed abnormality in urinalysis and renal function study. 20 of 43 cases showed abnormal liver function study and 3 of these cases were diagnosed as hepatorenal syndrome later. 13 of those 20 cases had liver cirrhosis with or without hepatoma. 12 of 43 cases showed abnormality both in renal and liver function studies. 2 of 43 cases showed diffusely increased bilateral renal uptake after chemotherapy for cancer but not on previous scans before chemotherapy. 2 of 43 cases showed hypercalcaemia and 8 of 43 cases had multifocal bone uptake due to metastasis or benign bone lesion. But the latter showed no hypercalcaemia at all. There was no significant correlation between increased renal uptake and MDP uptake in soft tissue other than kidneys. This study raised the possibility that the impaired liver and/or renal function may result in diffuse increase of bilateral renal uptake of MDP of unknown mechanism. It seems to need further study on this correlation.

  3. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson's disease with autonomic failure

    International Nuclear Information System (INIS)

    Braune, S.; Luecking, C.H.; Reinhardt, M.; Bathmann, J.; Krause, T.; Lehmann, M.

    1998-01-01

    Objective - To selectively investigate postganglionic sympathetic cardiac neurons in patients with Parkinson's disease and autonomic failure. Material and methods - Metaiodobenzylguanidine (MIBG) is a pharmacologically inactive analogue of noradrenaline, which is similarly metabolized in noradrenergic neurons. Therefore the uptake of radiolabelled MIBG represents not only the localization of postganglionic sympathetic neurons but also their functional integrity. Ten patients with Parkinson's disease and autonomic failure underwent standardized autonomic testing, assessment of catecholamine plasma levels and scintigraphy with [ 123 I]MIGB. Results - The cardiac uptake of MIBG, as demonstrated by the heart/mediastinum ratio, was significantly lower in patients in comparison with controls. Scintigraphy with MIBG allowed the selective in-vivo investigation of postganglionic sympathetic cardiac efferent in patients with autonomic failure, a procedure which was previously confined to post-mortem examination. Conclusion - These findings point to a relevant postganglionic pattern of involvement of the autonomic nervous system (ANS) in Parkinson's disease and autonomic failure. (au)

  4. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    Science.gov (United States)

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.

  5. Intestinal uptake of bile acids: effect of external abdominal irradiation

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Cheeseman, C.I.; Walker, K.

    1984-01-01

    Abdominal irradiation has recently been shown to influence the uptake of hexoses, amino acids, fatty acids and cholesterol into the jejunum of rats. The present studies were undertaken with a previously validated in vitro technique to determine the effect of abdominal irradiation from a cesium source on the rates of uptake of six bile acids into the jejunum, ileum, and colon. The results show that: 1) there likely are multiple ileal carriers for bile acids: 2) abdominal irradiation has a variable effect on these carriers; 3) the passive permeability to bile acids varies with the bile acid and with the site along the intestine; and 4) abdominal irradiation is associated with a rise in the colonic permeability to only some bile acids

  6. Knock down of HIF-1α in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres

    Directory of Open Access Journals (Sweden)

    Esencay Mine

    2010-06-01

    Full Text Available Abstract Background Glioblastoma (GBM is the most common and malignant primary intracranial human neoplasm. GBMs are characterized by the presence of extensive areas of necrosis and hypoxia. Hypoxia and its master regulator, hypoxia inducible factor 1 (HIF-1 play a key role in glioma invasion. Results To further elucidate the functional role of HIF-1α in glioma cell migration in vitro and in invasion in vivo, we used a shRNA approach to knock down HIF-1α expression complemented with genome-wide expression profiling, performed in both normoxic and hypoxic conditions. Our data show that knock down of HIF-1α in glioma cells significantly impairs their migration in vitro as well as their ability to invade into the brain parenchyma in vivo. Next, we assessed the role that HIF-1α plays in maintaining the characteristics of cancer stem cells (CSCs. By using the tumor sphere forming assay, we demonstrate that HIF-1α plays a role in the survival and self-renewal potential of CSCs. Finally, expression profiling experiments in glioma cells provided detailed insight into a broad range of specific biological pathways and processes downstream of HIF-1α. We discuss the role of these processes in the migratory and invasive properties, as well as the stem cell biology of glioblastomas Conclusions Our data show that knock down of HIF-1α in human and murine glioma cells impairs their migration in vitro and their invasion in vivo. In addition, our data suggest that HIF-1α plays a role in the survival and self-renewal potential of CSCs and identify genes that might further elucidate the role of HIF-1α in tumor migration, invasion and stem cell biology.

  7. Presence of plasma proteins facilitates the uptake of 125I-thrombin by the rabbit thoracic aorta endothelium in vitro

    International Nuclear Information System (INIS)

    Hatton, M.W.; Moar, S.L.

    1986-01-01

    Various purified proteins, protein derivatives and two polysaccharides were added individually to a physiological medium in order to effect uptake of 125 I-thrombin by the rabbit aorta endothelium. Over a wide range of concentration (0.004-40 mg/ml), the presence of either purified rabbit or bovine albumin during thrombin uptake encouraged an increase (70-110%) in 125 I-thrombin binding by the endothelium and subendothelium compared to uptake by aorta segments in the absence of added protein. Pretreatment of aorta segments with albumin before incubation with 125 I-thrombin in the absence of albumin did not encourage thrombin uptake to the same extent as having 125 I-thrombin and albumin together. Purified human transferrin, rabbit IgG, chicken ovalbumin or denatured bovine casein could replace albumin to produce a similar enhancement of thrombin uptake. Replacing active concentrations of albumin by either reduced-carboxymethylated albumin, defatted albumin, plasmin-treated or thermolysin-treated albumin also caused an increase (50-130%) in thrombin binding, whereas replacement by acid-hydrolysed albumin or with polyglutamic acid was either ineffective or even inhibitory. Lysine-modified or arginine-modified albumins caused a small enhancement (14-32%) and no enhancement of thrombin uptake, respectively. Dextran, at low concentration (0.04-0.4 mg/ml) did not influence thrombin uptake, and at higher concentration (4-40 mg/ml) caused a decrease in uptake by both the endothelium and subendothelial layers. Low concentration of dextran sulphate inhibited thrombin uptake to 20-30% of control values. These data express the importance of accompanying protein in the response of the vascular endothelium during binding of thrombin. The possibility that other protein-cell interactions may be similarly influenced by macromolecular solutes is also discussed

  8. Comparative evaluation of three diphosphonates: in vitro adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99m complexed)

    International Nuclear Information System (INIS)

    Francis, M.D.; Ferguson, D.L.; Tofe, A.J.; Bevan, J.A.; Michaels, S.E.

    1980-01-01

    We have investigated the in vitro adsorption of three C-14-labeled diphosphonates on calcium phosphate. The three are 1-hydroxy[1- 14 C]ethylidene diphosphonate (C-14 HEDP), [ 14 C]methylenediphosphonate (C-14 MDP), and hydroxy[ 14 C]-methylenediphosphonate (C-14 HMDP). All three adsorbed significantly more, per mole of calcium, on amorphous calcium phosphate than on crystalline hydroxyapatite. Among the three diphosphonates, C-14 HMDP adsorbed-on both amorphous and crystalline calcium phosphate-to a greater degree than did the other two bone-seeking agents. Moreover, when HMDP was complexed with Sn(II) and Tc-99m, it produced a significantly higher uptake of Tc-99m, per mg of calcium, in an isolated in vivo site of osteogenesis. The mechanisms of adsorption are discussed relative to the hydroxyl group on the diphosphonate, to the solubility of the calcium salts of the diphosphonates, and to the form of the calcium phosphate. These studies form a working rationale for the clinically observed high contrast obtained with Tc-99m HMDP between normal bone and soft tissue, and between normal and abnormal bone

  9. Intracellular uptake and distribution of radiolabeled iodovinly deoxy uridine (IVDU) for gene therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. H.; Lee, T. S.; Lee, S. J.; Woo, K. S.; Jeon, W. S.; Choi, C. W.; Yim, S. M. [KCCH, Seoul (Korea, Republic of)

    2001-05-01

    We have evaluated a useful synthetic radiolabeled nucleoside substrate, (E)-5-2(2-[125I] idodovinyl) uracil deoxyuridine (IVDU), for herpes simplex virus type-1 thymidine kinase (HSV1-TK). Cellular uptake of these labeled compounds was observed in vitro. low uptake was showed in MCA cell line and high uptake was observed in Herpes simplex virus type-1 thymidine kinase(HSV1-tk) gene tranduced MCA(MCA-tk) cell line. Intracellular distribution of {sup 125}I-IVDU was differently occured in the MCA and MCA-TK cell line, respectively. Main distribution of MCA cells is in cytosol, and that of MCA-TK cells was in mitochondria and nuclei. For HSV1-tk system. We confirmed that IVDU was incorporated into DNA synthesis.

  10. In vitro study of tumor seeking radiopharmaceutical uptake by human breast cancer cell line MCF-7 after paclitaxel treatment

    International Nuclear Information System (INIS)

    Choi, Joon Young; Choi, Yong; Choe, Yearn Seong; Lee, Kyung Han; Kim, Byung Tae

    2007-01-01

    This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. F-18-fluorodeoxyglucose, C-11-methionine. TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, TI-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h

  11. In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass

    International Nuclear Information System (INIS)

    Eriksson, Olof; Jahan, Mahabuba; Johnstroem, Peter; Korsgren, Olle; Sundin, Anders; Halldin, Christer; Johansson, Lars

    2010-01-01

    Introduction: The positron emission tomography (PET) tracer 9-[ 18 F]fluoroethyl-(+)-dihydrotetrabenazine ([ 18 F]-FE-(+)-DTBZ) is a potential candidate for quantifying beta-cell mass in vivo. The purpose was to investigate in vitro and in vivo utility of this tracer for the assessment of beta-cell mass. Methods: Three pigs were intravenously administered [ 18 F]-FE-(+)-DTBZ and examined by PET/computed tomography. Binding parameters were estimated by kinetic modeling. In vitro k D and B max were determined by saturation binding studies of endocrine and exocrine human tissue homogenates. In vitro pancreatic uptake was determined by tissue autoradiography with pancreases from patients with types 1 (T1DM) and 2 diabetes mellitus (T2DM) and healthy controls. Results: [ 18 F]-FE-(+)-DTBZ had a k D of 3.5±1.0 nM, a B max of 382±108 fmol/mg protein and a specificity of 89±1.8% in islet homogenates. The total exocrine uptake was lower and 65% was nondisplaceable. No uptake difference was observed in pancreatic tissue slices from patients with T1DM, T2DM or healthy controls. The in vivo porcine pancreatic uptake reached a peak of standardized uptake value (SUV) of 2.8 with a low distribution volume ratio in all animals. Moderate to high tracer uptake was identified in the bile system and in bone. Conclusions: [ 18 F]-FE-(+)-DTBZ binds to vesicular monoamine transporter 2 (VMAT2) with high specificity in pure islet tissue in vitro. However, there is high nondisplaceable binding to exocrine tissue. In addition, in vivo tracer metabolism and dehalogenation result in severe underestimation of porcine pancreatic VMAT2 expression and BCM. The results do not support [ 18 F]-FE-(+)-DTBZ as a suitable tracer for in vivo beta-cell imaging.

  12. Comparison of the uptakes of Tc-99m MIBI and Tc-99m tetrofosmin in A549, an MRP-expressing cancer cell, in vitro and in vivo

    International Nuclear Information System (INIS)

    Yoo, Jeong Ah; Jeong, Shin Young; Seo, Myung Rang; Bae, Jin Ho; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae; Choi, Sang Woon; Lee, Byung Ho

    2003-01-01

    Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Western blot analysis and immunohistochemistry were used for detetion of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at 100 μM of verapamil (Vrp), 50 μM of cyclosporin A (CsA) and 25 μM of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 60 min at 37.deg.C, using single cell suspensions at 1x10 6 cells/ml. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetorfosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at

  13. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    Science.gov (United States)

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights

  14. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    International Nuclear Information System (INIS)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  15. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  16. Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: The role of amino acids

    International Nuclear Information System (INIS)

    Aschner, M.; Clarkson, T.W.

    1989-01-01

    Previous studies in the rat in vivo have demonstrated that co-injection of methyl mercury (MeHg) with L-cysteine into the common carotid artery enhances brain Hg levels folowing a single capillary pass through the CNS vasculature. In order to elucidate the relationship between MeHg transport and the neutral amino acid transport carrier system, regulatory aspects of MeHg transport across the bovine blood-brain barrier were investigated in isolated brain microvessel preparations. Following 1 hour co-incubations of 203 Hg-MeHgCl with 0.1 mM L-cysteine at 37 deg. C, 203 Hg uptake by suspended microvessels was significantly increased (P 203 Hg was abolished by co-incubations of microvessels with 0.1 mM L-cysteine-L-methionine, or 0.1 mM L-cysteine plus AT-125 (alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazolacetic acid), an irreversible inhibitor of gamma-glutamyl-transpeptidase. One hr co-incubations of bovine capilaries with 203 Hg-MeHgCl and 0.1 mM D-cysteine at 37 deg. C or 0.1 mM L-cysteine at 0 deg. did not increase rat of 203 Hg uptake compared with controls. These results indicate that L-cysteine enhances the rate of capillary MeHg uptake. The accumulation of 203 Hg in the bovine microvessels appears to be a carrier-mediated process. It is inhibited by L-methionin, a competitive substrate for neutral amino acid transport, and by AT-125. Capillary uptake of 203 Hg is stereospecific to the L-enantiomorph of cystine, suggesting selective uptake of MeHg across the blood-brain barrier. The data emphasize the relationship between the L-enantiomorph neutral amino acid carrier system and MeHg transport across the capillaries. (author)

  17. Radio metal (169Yb) uptake in normal and tumour cells in vitro. Influence of metabolic cell activity and complex structure

    International Nuclear Information System (INIS)

    Franke, W.G.; Kampf, G.

    1996-01-01

    Trivalent radio metal tracers have been used for tumour imaging and metastatic pain palliation. For better understanding their tumour accumulation, basic model studies of uptake of different 169 Yb complexes into cultured normal and tumour cells were performed. Whereas the uptake of 169 Yb citrate is strongly dependent on the metabolic activity and is not tumour-cell pacific, the uptake of 169 Yb complexed with amino carbonic acid (NTA, EDTA, DTPA) does not correlate to the metabolic activities. These complexes are taken up to a greater amount by the tumour cells (by a factor of about 2). Uptake of both complex types leads to a stable association to cellular compounds, 169 Yb is not releasable by the strong complexing agent DTPA. Protein binding of the 169 Yb complexes shows great influence on their cellular uptake. The bound proportion is no more available,for cellular uptake. The results indicate that i 0 uptake of 169 Yb citrate is an active cellular transport process which i not tumor-specific, ii) the 169 Yb amino carbonic acid complexes show a weak favouring by the tumour cells, iii) different from earlier acceptions the Yb complexes studied are not taken up by the cells in protein-bound form. The structure of the Yb complex is decisive for its protein binding and cellular uptake. (author). 13 refs., 6 figs

  18. In vivo and in vitro characterization of [{sup 18}F]-FE-(+)-DTBZ as a tracer for beta-cell mass

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Olof [Division of Radiology, Department of Oncology, Radiology and Clinical Immunology, University Hospital, 751 87 Uppsala (Sweden)], E-mail: olof.eriksson@radiol.uu.se; Jahan, Mahabuba [Department of Clinical Neuroscience, Karolinska Institute, Section of Psychiatry, Karolinska Hospital, 171 76, Stockholm (Sweden); Johnstroem, Peter [Department of Clinical Neuroscience, Karolinska Institute, Section of Psychiatry, Karolinska Hospital, 171 76, Stockholm (Sweden); CNS and Pain Control, AstraZeneca R and D, 151 36, Soedertaelje (Sweden); Korsgren, Olle [Department of Oncology, Radiology and Clinical Immunology, Division of Clinical Immunology, University Hospital, 751 87 Uppsala (Sweden); Sundin, Anders [Division of Radiology, Department of Oncology, Radiology and Clinical Immunology, University Hospital, 751 87 Uppsala (Sweden); Department of Radiology, Karolinska University Hospital, 171 76, Stockholm (Sweden); Halldin, Christer [Department of Clinical Neuroscience, Karolinska Institute, Section of Psychiatry, Karolinska Hospital, 171 76, Stockholm (Sweden); Johansson, Lars [Division of Radiology, Department of Oncology, Radiology and Clinical Immunology, University Hospital, 751 87 Uppsala (Sweden); AstraZeneca R and D, 431 50, Moelndal (Sweden)

    2010-04-15

    Introduction: The positron emission tomography (PET) tracer 9-[{sup 18}F]fluoroethyl-(+)-dihydrotetrabenazine ([{sup 18}F]-FE-(+)-DTBZ) is a potential candidate for quantifying beta-cell mass in vivo. The purpose was to investigate in vitro and in vivo utility of this tracer for the assessment of beta-cell mass. Methods: Three pigs were intravenously administered [{sup 18}F]-FE-(+)-DTBZ and examined by PET/computed tomography. Binding parameters were estimated by kinetic modeling. In vitro k{sub D} and B{sub max} were determined by saturation binding studies of endocrine and exocrine human tissue homogenates. In vitro pancreatic uptake was determined by tissue autoradiography with pancreases from patients with types 1 (T1DM) and 2 diabetes mellitus (T2DM) and healthy controls. Results: [{sup 18}F]-FE-(+)-DTBZ had a k{sub D} of 3.5{+-}1.0 nM, a B{sub max} of 382{+-}108 fmol/mg protein and a specificity of 89{+-}1.8% in islet homogenates. The total exocrine uptake was lower and 65% was nondisplaceable. No uptake difference was observed in pancreatic tissue slices from patients with T1DM, T2DM or healthy controls. The in vivo porcine pancreatic uptake reached a peak of standardized uptake value (SUV) of 2.8 with a low distribution volume ratio in all animals. Moderate to high tracer uptake was identified in the bile system and in bone. Conclusions: [{sup 18}F]-FE-(+)-DTBZ binds to vesicular monoamine transporter 2 (VMAT2) with high specificity in pure islet tissue in vitro. However, there is high nondisplaceable binding to exocrine tissue. In addition, in vivo tracer metabolism and dehalogenation result in severe underestimation of porcine pancreatic VMAT2 expression and BCM. The results do not support [{sup 18}F]-FE-(+)-DTBZ as a suitable tracer for in vivo beta-cell imaging.

  19. Surface determinants of low density lipoprotein uptake by endothelial cells

    International Nuclear Information System (INIS)

    Goeroeg, P.; Pearson, J.D.

    1984-01-01

    The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

  20. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  1. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  2. UPTAKE AND PHYTOTRANSFORMATION OF O,P'-DDT AND P,P'-DDT BY AXENICALLY CULTIVATED AQUATIC PLANTS

    Science.gov (United States)

    The uptake and phytotransformation of o,p'-DDT and p,p'-DDT were investigated in vitro using three axenically cultivated aquatic plants: parrot feather (Mariophyllum aquaticum), duckweed (Spirodela oligorrhiza), and elodea (Elodea canadensis). The decay profile of DDT from the aq...

  3. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  4. Fluoride uptake from restorative dental materials by human enamel

    International Nuclear Information System (INIS)

    Forsten, L.; Rytoemaa, I.; Anttila, A.; Keinonen, J.

    1976-01-01

    The purpose of the study was to determine the uptake in vitro of fluoride from restorative materials by tooth enamel and whether prior etching of the enamel causes a change of uptake. The outermost layer of the labial surface of extracted canines was removed by grinding and the enamel was covered with five different fluoride-containing materials ; a silicate, a composite resin, an amalgam, a silicophosphate, and a polycarboxylate luting cement. The material was either removed immediately or after storing the tooth in distilled water. The fluoride content was determined using a sensitive physical method based on the 19 F (p, αγ) 16 O reaction. In addition, the fluoride content of enamel after etching for different periods of time and of etched enamel which had been in contact with silicate cement was determined. The mean fluoride content of uncovered interior enamel was 226 parts 10 6 . All materials, except the composite, increased clearly the fluoride content of the underlying enamel. Etching of interior enamel also increased the fluoride values. No difference could be shown in fluoride uptake from silicate and composite resin between etched and unetched enamel. (author)

  5. The Role of Extracellular Binding Proteins in the Cellular Uptake of Drugs: Impact on Quantitative In Vitro-to-In Vivo Extrapolations of Toxicity and Efficacy in Physiologically Based Pharmacokinetic-Pharmacodynamic Research.

    Science.gov (United States)

    Poulin, Patrick; Burczynski, Frank J; Haddad, Sami

    2016-02-01

    A critical component in the development of physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) models for estimating target organ dosimetry in pharmacology and toxicology studies is the understanding of the uptake kinetics and accumulation of drugs and chemicals at the cellular level. Therefore, predicting free drug concentrations in intracellular fluid will contribute to our understanding of concentrations at the site of action in cells in PBPK/PD research. Some investigators believe that uptake of drugs in cells is solely driven by the unbound fraction; conversely, others argue that the protein-bound fraction contributes a significant portion of the total amount delivered to cells. Accordingly, the current literature suggests the existence of a so-called albumin-mediated uptake mechanism(s) for the protein-bound fraction (i.e., extracellular protein-facilitated uptake mechanisms) at least in hepatocytes and cardiac myocytes; however, such mechanism(s) and cells from other organs deserve further exploration. Therefore, the main objective of this present study was to discuss further the implication of potential protein-facilitated uptake mechanism(s) on drug distribution in cells under in vivo conditions. The interplay between the protein-facilitated uptake mechanism(s) and the effects of a pH gradient, metabolism, transport, and permeation limitation potentially occurring in cells was also discussed, as this should violate the basic assumption on similar free drug concentration in cells and plasma. This was made because the published equations used to calculate drug concentrations in cells in a PBPK/PD model did not consider potential protein-facilitated uptake mechanism(s). Consequently, we corrected some published equations for calculating the free drug concentrations in cells compared with plasma in PBPK/PD modeling studies, and we proposed a refined strategy for potentially performing more accurate quantitative in vitro-to-in vivo extrapolations

  6. Determinants of maximal oxygen uptake in severe acute hypoxia

    DEFF Research Database (Denmark)

    Calbet, J A L; Boushel, Robert Christopher; Rådegran, G

    2003-01-01

    To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea......: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max....

  7. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  8. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Veli [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2007-07-15

    Uptake in brown adipose tissue (hibernating fat) is sometimes seen at FDG-PET examinations. Despite a characteristic appearance, this may hide clinically relevant uptake. Stimulation of the sympathetic nervous system increases glucose uptake of brown fat. We now re-examine patients with brown fat activity that could disguise tumour uptake after pre-treatment with propranolol (a non-selective {beta}-blocker) in order to reduce the uptake. Our first examinations of this kind are reported. Eleven patients with strong brown fat uptake were studied. There was a mean of 5 days (range 2-8) between the examinations. At the second examination, 80 mg of propranolol was given orally 2 h before FDG administration. In addition to visual evaluation of the brown fat uptake, SUV assessments of the uptake in brown fat, lung, heart, liver, spleen and bone marrow were made. All patients showed complete or almost complete disappearance of the brown fat activity at the second examination (p < 0.001) both upon visual evaluation and when comparing SUVs. In seven patients there was also uptake in a known or strongly suspected malignancy, which remained unchanged between the examinations. Beyond an insignificant decrease in the myocardial uptake, there was no redistribution to the various examined organs at the second examination. Pre-treatment with a single dose of propranolol blocks the FDG uptake in brown adipose tissue, thereby increasing the specificity of the examination. The tumour uptake seems not to be impaired. (orig.)

  9. Uptake of [3H]vitamin D3 from low and high density lipoproteins by cultured human fibroblasts

    International Nuclear Information System (INIS)

    Shireman, R.B.; Williams, D.; Remsen, J.F.

    1986-01-01

    The plasma distribution and cellular uptake of [ 3 H]vitamin D 3 was studied in vitro using cultured human fibroblasts. Incubation of [ 3 H]vitamin D 3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [ 3 H] 1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [ 3 H]vitamin D 3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D 3 was time, concentration, and temperature dependent. At a concentration of 50 μg LDL/ml of medium, the uptake of [ 3 H]vitamin D 3 from LDL at 37 0 C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D 3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver

  10. Nasal Colivelin treatment ameliorates memory impairment related to Alzheimer's disease.

    Science.gov (United States)

    Yamada, Marina; Chiba, Tomohiro; Sasabe, Jumpei; Terashita, Kenzo; Aiso, Sadakazu; Matsuoka, Masaaki

    2008-07-01

    Humanin (HN) and its derivatives, such as Colivelin (CLN), suppress neuronal death induced by insults related to Alzheimer's disease (AD) by activating STAT3 in vitro. They also ameliorate functional memory impairment of mice induced by anticholinergic drugs or soluble toxic amyloid-beta (Abeta) in vivo when either is directly administered into the cerebral ventricle or intraperitoneally injected. However, the mechanism underlying the in vivo effect remains uncharacterized. In addition, from the standpoint of clinical application, drug delivery methods that are less invasive and specific to the central nervous system (CNS) should be developed. In this study, we show that intranasally (i.n.) administered CLN can be successfully transferred to CNS via the olfactory bulb. Using several behavioral tests, we have demonstrated that i.n. administered CLN ameliorates memory impairment of AD models in a dose-responsive manner. Attenuation of AD-related memory impairment by HN derivatives such as CLN appears to be correlated with an increase in STAT3 phosphorylation levels in the septohippocampal region, suggesting that anti-AD activities of HN derivatives may be mediated by activation of STAT3 in vivo as they are in vitro. We further demonstrate that CLN treatment inhibits an Abeta induced decrease in the number of choline acetyltransferase (ChAT)-positive neurons in the medial septum. Combined with the finding that HN derivatives upregulate mRNA expression of neuronal ChAT and vesicular acetylcholine transporter (VAChT) in vitro, it is assumed that CLN may ameliorate memory impairment of AD models by supporting cholinergic neurotransmission, which is at least partly mediated by STAT3-mediated transcriptional upregulation of ChAT and VAChT.

  11. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    International Nuclear Information System (INIS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-01-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe 3 O 4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications. (paper)

  12. Selective uptake of boronophenylalanine by glioma stem/progenitor cells

    International Nuclear Information System (INIS)

    Sun, Ting; Zhou, Youxin; Xie, Xueshun; Chen, Guilin; Li, Bin; Wei, Yongxin; Chen, Jinming; Huang, Qiang; Du, Ziwei

    2012-01-01

    The success of boron neutron capture therapy (BNCT) depends on the amount of boron in cells and the tumor/blood and tumor/(normal tissue) boron concentration ratios. For the first time, measurements of boron uptake in both stem/progenitor and differentiated glioma cells were performed along with measurements of boron biodistribution in suitable animal models. In glioma stem/progenitor cells, the selective accumulation of boronophenylalanine (BPA) was lower, and retention of boron after BPA removal was longer than in differentiated glioma cells in vitro. However, boron biodistribution was not statistically significantly different in mice with xenografts. - Highlights: ► Uptake of BPA was analyzed in stem/progenitor and differentiated glioma cells. ► Selective accumulation of BPA was lower in glioma stem/progenitor cells. ► Retention of boron after BPA removal was longer in glioma stem/progenitor cells. ► Boron biodistribution was not statistically different in mice with xenografts.

  13. In vitro biological models in order to study BNCT

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Kreimann, Erica L.; Schwint, Amanda E.; Juvenal, Guillermo J.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In vitro studies: the uptake of p- 10 borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT) and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p< 0.001). The present experimental results open the possibility of applying BNCT for the treatment of UTC. (author)

  14. Uptake and expulsion of sup 14 C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Soederling, E.; Pihlanto-Leppaelae, A. (Department of Biochemistry, Institute of Dentistry, University of Turku, Turku (Finland))

    1989-01-01

    The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of {sup 14}C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The {sup 14}C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitolculturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as {sup 14}C-xylitol 5-phosphate. The label subsequently was expelled from the cells as {sup 14}C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium. (author).

  15. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Li Zhi

    Full Text Available Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS production. Western blot analysis was used to examine the levels of insulin receptor (IR, phosphorylated insulin receptor substrate 1 (IRS1, Ser307 and phospho-Akt (Ser473. We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307 and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307 response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307 and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.

  16. Autoradiographic pattern of the in vitro uptake of proline by the coronal areas of intact and carious human teeth

    Energy Technology Data Exchange (ETDEWEB)

    Karjalainen, S; Soederling, E [Turku Univ. (Finland)

    1979-01-01

    The biosynthesis of collagen in teeth was studied by following the uptake of proline in vitro. Whole crowns of human teeth were incubated for 6 h with (/sup 14/C)- or (/sup 3/H)-proline. Autoradiographs were prepared from sections of intact teeth and teeth with carious lesions of varying depths and location. The number of silver grains per cm/sup 2/ in the predentine, odontoblast layer and pulp were counted in selected fields magnified x 430 representing the deepest parts of the carious lesions. No differences in the labelling pattern were observed between the intact teeth incubated freshly after extraction and those preserved in liquid nitrogen. The densest labelling of intact teeth was seen in the predentine and odontoblast layer. The alterations under initial dentine caries appeared as increased labelling of the predentine and decreased labelling of the odontoblast layer; no alterations were observed in the underlying pulp. In advanced lesions, the predentine labelling decreased and that in the odontoblast layer and pulp increased. In the initial stages, caries seem to activate collagen synthesis in a relatively restricted area of the underlying structures, but in advanced stages, caries seem to increase the odontoblastic cellular polypeptide chain formation but prevent further maturation of the collagen.

  17. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na + sites on Na + -K + ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na + -K + ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome

  18. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake

    Directory of Open Access Journals (Sweden)

    Courtney M. Anderson

    2015-02-01

    Full Text Available Brown adipose tissue (BAT possesses the inherent ability to dissipate metabolic energy as heat through uncoupled mitochondrial respiration. An essential component of the mitochondrial electron transport chain is coenzyme Q (CoQ. While cells synthesize CoQ mostly endogenously, exogenous supplementation with CoQ has been successful as a therapy for patients with CoQ deficiency. However, which tissues depend on exogenous CoQ uptake as well as the mechanism by which CoQ is taken up by cells and the role of this process in BAT function are not well understood. Here, we report that the scavenger receptor CD36 drives the uptake of CoQ by BAT and is required for normal BAT function. BAT from mice lacking CD36 displays CoQ deficiency, impaired CoQ uptake, hypertrophy, altered lipid metabolism, mitochondrial dysfunction, and defective nonshivering thermogenesis. Together, these data reveal an important new role for the systemic transport of CoQ to BAT and its function in thermogenesis.

  20. (Z)-dimethylamino-1-(4-bromophenyl)-1-(3-pyridyl) propene (H 102/09), a new selective inhibitor of the neuronal 5-hydroxytryptamine uptake

    International Nuclear Information System (INIS)

    Ross, S.B.; Oegren, S.-O.; Renyi, A.L.

    1976-01-01

    The inhibition of the uptake of 3 H-(-)-noradrenaline (NA), 3 H-dopamine and 14 C-5-hydroxytryptamine (5-HT) in mouse brain slices by (Z)-3-dimethylamino-1-(4-bromophenyl)-1-(3-pyridyl)propene(H 102/09), desipramine and chlorimipramine and their releasing effect on the 3 H-amines previously accumulated in the slices were examined. The interactions with reserpine produced hypothermia and sedation and the 5-hydroxytryptophan (5-HTP) syndrome in mice were also studied. Due to the poor inhibitory activity on the NA uptake H 102/09 was a more selective inhii.or of the 5-HT uptake than was chlorimipramine, particularly after administration in vivo, where it was as potent as chlorimipramine (ED50=19μmol/kg intraperitoneally). In vitro chlorimipramine was 6 to 12 times more active than H 102/09. Desipramine was a very selective inhibitor of the NA uptake in vitro and in vivo. The compounds were generally more potent in inhibiting the uptake than in releasing the amines. However, in striatal slices the inhibition of DA uptake could be due to the releasing effect since the difference in potencies were small. The effect of desipramine on 5-HT uptake and that of H102/09 on NA uptake could also involve a release component. The 5-HTP syndrome was potentiated by H 102/09 and chlorimipramine but not by desipramine. The reserpine hypothermia but not the sedation was potently antagonized and reversed by desipramine and by chlorimipramine at high doses but not by H 102/09, suggested that NA but not 5-HT is involved in the hypothermic action of reserpine. (author)

  1. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline; Rinaldi, Carlos

    2013-01-01

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions

  2. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  3. Effect of radioiodine irradiation of thyroid gland in vitro with a dose of 4-5 Gy on iodide transport in thyrocytes

    International Nuclear Information System (INIS)

    Paster, Yi.P.

    2000-01-01

    We study the influence of ouabain on the basal and thyrotropin-stimulated iodide uptake in thyroid gland preliminarily irradiated by radioiodine (absorbed dose: 4-5 Gy) in vitro. Newborn pig thyroid tissue was incubated in a medium, containing 37 kBq/ml of 131-iodine (absorbed dose: 4-5 Gy), washed and achieved by collagenase dissociation. Thyrocytes were incubated with thyrotropin (100.0 mE/ml), ouabain (0.1 mol/l), and 125-iodide (0.4 kBq/ml). Then cells were washed, stored at 4 degree C for 60 days, and the 125-iodide uptake was assessed. Ouabain depressed both the basal and thyrotropin-stimulated iodide uptakes by thyrocytes in vitro. After preliminary radioiodine irradiation of the thyroid tissue (absorbed dose: 4-5 Gy), ouabain stimulated both the basal and thyrotropin-stimulated iodide uptakes by thyrocytes

  4. Human papillomavirus immunization uptake among girls with a refugee background compared with Danish-born girls

    DEFF Research Database (Denmark)

    P. Møller, Sanne; Kristiansen, Maria; Norredam, Marie

    2018-01-01

    Refugee children and their families may experience impaired access to healthcare; therefore, we aimed to uncover human papillomavirus (HPV) immunization patterns among a large group of refugee girls compared with Danish-born girls. We also examined possible predictors of uptake among refugee girls....... We used aregister-based cohort design where refugee girls (n = 3264) who, between 1 January 1994 and 31 December 2010, obtained residency permits in Denmark, were included and matched on age and sex with Danish-born girls (n = 19 584). Personal identification numbers were cross-linked to the National...... Danish Health Service Register, identifying all contacts for HPV-immunization in both the ordinary HPV-immunization program and in a catch-up program. We applied logistic regression to estimate the odds ratios (OR) of uptake. We found that refugee girls had significantly lower HPV-immunization uptake...

  5. Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance

    International Nuclear Information System (INIS)

    Kabasakal, L.; Oezker, K.; Hayward, M.; Akansel, G.; Griffith, O.; Isitman, A.T.; Hellman, R.; Collier, D.

    1996-01-01

    An in vitro study was designed to evaluate the uptake of sestamibi (MIBI) in P-glycoprotein (Pgp) and glutathione-associated (GSH) multidrug-resistant (MDR) cell lines. MIBI uptake was studied in various human breast carcinoma cell lines, i.e. in wild-type (MCF7/wt) cells, in adriamycin-resistant (MCF7/adr) cells which express Pgp and in melphalan-resistant (MCF7/mph) cells with increased levels of GSH. The effects of buthiomine sulphoximine (BSO) and verapamil on MIBI uptake were also studied in the MCF7/mph and MCF7/adr cells respectively. The cells were incubated for 1 h with a dose of 0.1 MBq thallium-201 and technetium-99m MIBI. Both BIBI and 201 Tl uptakes were higher for MCF7/mph cells than for the other cells studied. The mean MIBI uptake in MCF7/adr cells was significantly lower than that in MCF7/wt cells (1.9%±0.5% vs 3.1%.0.6%; P 0.1). This study suggests that the uptake of MIBI is not diminished by glutathione-associated drug resistance and that MIBI uptake in a tumour sample does not necessarly indicate that a cancer is sensitive to drugs. (orig.)

  6. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  7. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  8. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  9. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  10. The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake.

    Science.gov (United States)

    Carpéné, Christian; Grès, Sandra; Rascalou, Simon

    2013-06-01

    The antidepressant phenelzine is a monoamine oxidase inhibitor known to inhibit various other enzymes, among them semicarbazide-sensitive amine oxidase (currently named primary amine oxidase: SSAO/PrAO), absent from neurones but abundant in adipocytes. It has been reported that phenelzine inhibits adipocyte differentiation of cultured preadipocytes. To further explore the involved mechanisms, our aim was to study in vitro the acute effects of phenelzine on de novo lipogenesis in mature fat cells. Therefore, glucose uptake and incorporation into lipid were measured in mouse adipocytes in response to phenelzine, other hydrazine-based SSAO/PrAO-inhibitors, and reference agents. None of the inhibitors was able to impair the sevenfold activation of 2-deoxyglucose uptake induced by insulin. Phenelzine did not hamper the effect of lower doses of insulin. However, insulin-stimulated glucose incorporation into lipids was dose-dependently inhibited by phenelzine and pentamidine, but not by semicarbazide or BTT2052. In contrast, all these SSAO/PrAO inhibitors abolished the transport and lipogenesis stimulation induced by benzylamine. These data indicate that phenelzine does not inhibit glucose transport, the first step of lipogenesis, but inhibits at 100 μM the intracellular triacylglycerol assembly, consistently with its long-term anti-adipogenic effect and such rapid action was not found with all the hydrazine derivatives tested. Therefore, the alterations of body weight control consecutive to the use of this antidepressant drug might be not only related to central effects on food intake/energy expenditure, but could also depend on its direct action in adipocytes. Nonetheless, phenelzine antilipogenic action is not merely dependent on SSAO/PrAO inhibition.

  11. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model

    DEFF Research Database (Denmark)

    Foged, Camilla; Brodin, Birger; Frøkjær, Sven

    2005-01-01

    Current vaccine development includes optimization of antigen delivery to antigen presenting cells, such as dendritic cells (DC). Particulate systems have attracted increasing attention in the development of vaccine delivery systems. In the present study, we investigated DC uptake of model...... fluorescent polystyrene particles with a broad size range and variable surface properties. Localization of particles was investigated using confocal laser scanning microscopy and uptake was quantified by flow cytometry. Immature DC were generated from mononuclear cells isolated from human blood...

  12. Effect of a copper intrauterine contraceptive device of estrogen and progesterone uptake by the Rabbit uterus and cervix

    International Nuclear Information System (INIS)

    Ghosh, Maya; Roy, S.K.

    1976-01-01

    The uptake of labelled estrogen 17β-6,7- 3 H and progesterone 1,2- 3 H by the uterus and cervix of rabbit fitted with inert (nylon) and active (copper wire) IUCD was studied by the in vitro method. The estrogen uptake was significantly high in IUCD fitted horn as compared to its contralateral control with both types of devices. The contralateral control-horn of copper treated animals showed significantly high estrogen uptake than that of intact control horn. This may be due to the bilateral effect of active (copper) IUCD. Similar offsets were not observed with nylon device. Estrogen uptake in the cervix was higher due to either of the devices used compared to that of intact control. The progesterone uptake was not modified in the IUCD horn by copper wire but there was an increase when a nylon suture was used. It appears that the mechanism of action of 'active' IUCDs may be different from that of 'inert' devices. (author)

  13. Uptake and release of 3H-benzo(a)pyrene by arterial cells in vivo and in vitro

    International Nuclear Information System (INIS)

    Pessah-Rasmussen, H.; Stavenow, L.

    1989-01-01

    Cigarette smoking is an established risk factor for the development of clinical manifestations of atherosclerosis. The atherogenicity of the different components of cigarette smoke is still subject to debate. One possible mechanism is that tarderived hydrocarbons might exert toxic and/or mutagenic effects in the arterial wall including a monoclonal proliferation of smooth muscle cells. There is evidence that polycyclic aromatic hydrocarbons (PAH) from cigarette smoke can get access to the blood and that they are transported in plasma lipoproteins. Treatment of chickens with benzo(a)pyrene (BaP) induced or potentiated the development of atherosclerotic lesions. Others have studied the uptake of BaP by fibroblasts in culture. The fate of PAH in the arterial wall and in smooth muscle cells has not been clarified yet. The purpose of the present report was to study the uptake and release of BaP in smooth muscle cells in culture and the uptake of BaP in the arterial wall in vivo. (author)

  14. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Inhibitory Effect of Crizotinib on Creatinine Uptake by Renal Secretory Transporter OCT2.

    Science.gov (United States)

    Arakawa, Hiroshi; Omote, Saki; Tamai, Ikumi

    2017-09-01

    Crizotinib, a tyrosine kinase inhibitor, exhibits some cases of an increase in serum creatinine levels. Creatinine is excreted by not only glomerular filtration but also active secretion by organic cation transporters such as organic cation transporter 2 (OCT2). In the present study, we evaluated in vitro inhibitory effect of crizotinib on OCT2 by directly measuring creatinine uptake by OCT2. Coincubation of crizotinib reduced uptake of [ 14 C]creatinine by cultured HEK293 cells expressing OCT2 (HEK293/OCT2) in a concentration-dependent manner with IC 50 values of 1.58 ± 0.24 μM. Preincubation or both preincubation and coincubation (preincubation/coincubation) with crizotinib showed stronger inhibitory effect on [ 14 C]creatinine uptake compared with that in coincubation alone with IC 50 values of 0.499 ± 0.076 and 0.347 ± 0.040 μM, respectively. These IC 50 values of crizotinib on [ 3 H]N-methyl-4-phenylpyridinium acetate uptake by OCT2 were 10-20 times higher than those of [ 14 C]creatinine uptake. Furthermore, preincubation of crizotinib inhibited creatinine uptake by OCT2 in an apparently competitive manner. In conclusion, crizotinib at a clinically relevant concentration has the potential to inhibit creatinine transport by OCT2, suggesting an increase of serum creatinine levels in clinical use. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Uptake and localization of fluorescent labelled gold nanoparticles in living zebrafish (Danio rerio) using Light Sheet Microscopy

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Asmonaite, G.; Jolk, R.

    2015-01-01

    Despite nanoparticles being used in many different products and applications, the effects and fate in the environment are still not well understood. Uptake of nanoparticles into cells has been shown in vitro and in vivo. However, it is challenging to find suitable methods to identify uptake...... and determine localization on a whole organism level. Furthermore, methods used to identify nanoparticle uptake have been associated with artefacts induced by sample preparation including staining methods for electron microscopy.  This study used Fluorescent Light Sheet Microscopy (FLSM) to determine uptake...... to the particles through the diet or the water phase in a series of separate experiments. In the dietary exposure experiments Artemia salina were exposed to 1 mg Au/L for 24h before being fed to D. rerio. For exposure through the water phase 1 mg Au/L was added directly to aquaria holding the fish and non...

  17. The uptake of tocopherols by RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Papas Andreas M

    2002-10-01

    Full Text Available Abstract Background Alpha-Tocopherol and gamma-tocopherol are the two major forms of vitamin E in human plasma and the primary lipid soluble antioxidants. The dietary intake of gamma-tocopherol is generally higher than that of alpha-tocopherol. However, alpha-tocopherol plasma levels are about four fold higher than those of gamma-tocopherol. Among other factors, a preferential cellular uptake of gamma-tocopherol over alpha-tocopherol could contribute to the observed higher plasma alpha-tocopherol levels. In this investigation, we studied the uptake and depletion of both alpha-tocopherol and gamma-tocopherol (separately and together in cultured RAW 264.7 macrophages. Similar studies were performed with alpha-tocopheryl quinone and gamma-tocopheryl quinone, which are oxidation products of tocopherols. Results RAW 264.7 macrophages showed a greater uptake of gamma-tocopherol compared to alpha-tocopherol (with uptake being defined as the net difference between tocopherol transported into the cells and loss due to catabolism and/or in vitro oxidation. Surprisingly, we also found that the presence of gamma-tocopherol promoted the cellular uptake of alpha-tocopherol. Mass balance considerations suggest that products other than quinone were formed during the incubation of tocopherols with macrophages. Conclusion Our data suggests that gamma-tocopherol could play a significant role in modulating intracellular antioxidant defence mechanisms. Moreover, we found the presence of gamma-tocopherol dramatically influenced the cellular accumulation of alpha-tocopherol, i.e., gamma-tocopherol promoted the accumulation of alpha-tocopherol. If these results could be extrapolated to in vivo conditions they suggest that gamma-tocopherol is selectively taken up by cells and removed from plasma more rapidly than alpha-tocopherol. This could, in part, contribute to the selective maintenance of alpha-tocopherol in plasma compared to gamma-tocopherol.

  18. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Andersen, Kim Francis; Divilov, Vadim; Sevak, Kuntalkumar; Koziorowski, Jacek; Lewis, Jason S.; Pillarsetty, NagaVaraKishore

    2014-01-01

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [ 18 F]-FDG (1 μCi/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14 C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/10 6 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  19. Thyroid uptake test

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    The uptake of radioiodine by the thyroid gland is altered by the iodine content of diet or drugs. American diet has a high iodine content because each slice of the white bread contains nearly 150μg of iodine due to the bleaching process employed in the production of the bread. This carrier content of iodine reduces the uptake so much, that the normal American uptakes are usually three to four times lower than the uptakes in the developing countries. The other drawback of the thyroid uptake test is that it is affected by the iodine containing drugs. Anti-diarrhoea medications are quire common in the developing countries and many of them contain iodine moiety. Without a reliable drug history, a low thyroid uptake value may lead to a misleading conclusion

  20. The autoradiographic pattern of the in vitro uptake of proline by the coronal areas of intact and carious human teeth

    International Nuclear Information System (INIS)

    Karjalainen, S.; Soederling, E.

    1979-01-01

    The biosynthesis of collagen in teeth was studied by following the uptake of proline in vitro. Whole crowns of human teeth were incubated for 6 h with ( 14 C)- or ( 3 H)-proline. Autoradiographs were prepared from sections of intact teeth and teeth with carious lesions of varying depths and location. The number of silver grains per cm 2 in the predentine, odontoblast layer and pulp were counted in selected fields magnified x 430 representing the deepest parts of the carious lesions. No differences in the labelling pattern were observed between the intact teeth incubated freshly after extraction and those preserved in liquid nitrogen. The densest labelling of intact teeth was seen in the predentine and odontoblast layer. The alterations under initial dentine caries appeared as increased labelling of the predentine and decreased labelling of the odontoblast layer; no alterations were observed in the underlying pulp. In advanced lesions, the predentine labelling decreased and that in the odontoblast layer and pulp increased. In the initial stages, caries seem to activate collagen synthesis in a relatively restricted area of the underlying structures, but in advanced stages, caries seem to increase the odontoblastic cellular polypeptide chain formation but prevent further maturation of the collagen. (author)

  1. Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila

    Directory of Open Access Journals (Sweden)

    Ilaria Drago

    2016-09-01

    Full Text Available The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn—a brain region critical for olfactory memory formation—causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism.

  2. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.

    Science.gov (United States)

    Lankoff, Anna; Arabski, Michal; Wegierek-Ciuk, Aneta; Kruszewski, Marcin; Lisowska, Halina; Banasik-Nowak, Anna; Rozga-Wijas, Krystyna; Wojewodzka, Maria; Slomkowski, Stanislaw

    2013-05-01

    Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.

  3. Uptake of {sup 99m}Tc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)], E-mail: grazyna.sobal@meduniwien.ac.at; Menzel, Johannes [Institute of Immunology, Medical University of Vienna, Vienna 1090 (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)

    2009-01-15

    Chondroitin sulfate (CS) is used in the treatment of human osteoarthritis as a slow-acting symptomatic drug. For this reason, we performed uptake studies with {sup 99m}TcCS using different chondrocyte cultures, as well as cartilage tissue in vitro. For uptake studies, adherent monolayer cultures of human chondrocytes (2.7x10{sup 4} cells/well) and {sup 99m}TcCS (1 {mu}Ci) were used. In parallel, we also performed uptake studies with cell suspensions of human chondrocytes at 1x10{sup 6} cells/well incubated with {sup 99m}TcCS (5 {mu}Ci) under identical conditions. Uptake was studied also in cartilage tissue samples and frozen tissue sections for autoradiography. The uptake was monitored for 10-240 min, every 10-30 min for cell cultures and for cartilage tissue up to 72 h. As the commercially available drug Condrosulf (IBSA, Lugano, Switzerland) contains magnesium (Mg) stearate as additive, we investigated the uptake with and without this additive. The washout of the tracer was assessed after the uptake experiments with PBS buffer for different time intervals (10 min-3 h). Tracer uptake in monolayer{+-}additives with low number of cells was low. With the use of chondrocytes in culture suspensions with higher number of cells, a higher uptake of 5.9{+-}0.65% and 1.0{+-}0.1% (n=6) was found, with and without additive, respectively. The saturation was achieved after 100 min. With the use of human rib cartilage, the uptake of {sup 99m}TcCS was continuously increasing with time and was very high with additive amounting to 101.8{+-}5.2% vs. 53.0{+-}8.3% (n=6) without after 72 h and showing delayed saturation up to 30 h. Thus, not only the resorption of the drug is enhanced by Mg-stearate, but also the uptake. The washout of the tracer from cartilage after 3 h of uptake amounted to 3.75{+-}1.5% with additive vs. 13.1{+-}2.1% without. After 24 h, washout was lower amounting to 1.75{+-}0.15% vs. 3.25{+-}0.25%, respectively. The autoradiographic studies paralleled the results

  4. In vitro uptake of 14C-praziquantel by cestodes, trematodes, and a nematode

    International Nuclear Information System (INIS)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-01-01

    14 C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route

  5. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  6. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro

    International Nuclear Information System (INIS)

    Johnston, Helinor J.; Semmler-Behnke, Manuela; Brown, David M.; Kreyling, Wolfgang; Tran, Lang; Stone, Vicki

    2010-01-01

    Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptake of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.

  7. Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae.

    Science.gov (United States)

    Dicke, J M; Verges, D; Kelley, L K; Smith, C H

    1993-01-01

    Like most amino acids, glycine is present in higher concentrations in the fetus than in the mother. Unlike most amino acids, animal studies suggest fetal concentrations of glycine are minimally in excess of those required for protein synthesis. Abnormal glycine utilization has also been demonstrated in small-for-gestational age human fetuses. The mechanism(s) of glycine uptake in the human placenta are unknown. In other mammalian cells glycine is a substrate for the A, ASC and Gly amino acid transport systems. In this study human placental glycine uptake was characterized using microvillous and basal plasma membrane vesicles each prepared from the same placenta. In both membranes glycine uptake was mediated predominantly by the sodium-dependent A system. Competitive inhibition studies suggest that in microvillous vesicles the small percentage of sodium-dependent glycine uptake not inhibited by methylaminoisobutyric acid (MeAIB) shares a transport system with glycine methyl ester and sarcosine, substrates of the Gly system in other tissues. In addition there are mediated sodium-independent and non-selective transport mechanisms in both plasma membranes. If fetal glycine availability is primarily contingent upon the common and highly regulated A system, glycine must compete with many other substrates potentially resulting in marginal fetal reserves, abnormal utilization and impaired growth.

  8. Investigations of (99m)Tc-labeled glucarate as a SPECT radiotracer for non-small cell lung cancer (NSCLC) and potential tumor uptake mechanism.

    Science.gov (United States)

    Meng, Lanfang; Xiu, Yan; Li, Yanli; Xu, Xiaobo; Li, Shanqun; Li, Xiao; Pak, Koon Y; Shi, Hongcheng; Cheng, Dengfeng

    2015-07-01

    This study attempted to evaluate the feasibility of (99m)Tc-labeled glucarate ((99m)Tc-GLA) imaging in non-small cell lung cancer (NSCLC) and the potential tumor uptake mechanism. Cell lysates from two NSCLC cell lines, H292 and H1975, were immunoblotted with anti-glucose transporter 5 (GLUT5) antibody for Western blotting. Thereafter, the two cell lines were used to examine cellular uptake of (99m)Tc-GLA with or without fructose. SPECT/CT imaging studies were performed on small animals bearing H292 and H1975 tumors. Biodistribution studies were also conducted to achieve accurate tissue uptake of this tracer in two tumor models. Hematoxylin & eosin (H&E) staining and GLUT5, Ki67 and cytokeratin-7 (CK-7) immunohistochemistry (IHC) analysis were further investigated on tumor tissues. In Western blotting, H292 cells showed higher levels of GLUT5 compared to the H1975 cells. Meanwhile, the in vitro cell assays indicated GLUT5-dependent uptake of (99m)Tc-GLA in H292 and H1975 cells. The fructose competition assays showed a significant decrease in (99m)Tc-GLA uptake by H292 and H1975 cells when fructose was added. The (99m)Tc-GLA accumulation was as much as two-fold higher in H292 implanted tumors than in H1975 implanted tumors. (99m)Tc-GLA exhibited rapid clearance pharmacokinetics and reasonable uptake in human NSCLC H292 (1.69±0.37 ID%/g) and H1975 (0.89±0.06 ID%/g) implanted tumors at 30min post injection. Finally, the expression of GLUT5, Ki67 and CK-7 on tumor tissues also exhibited positive correlation with the in vitro cell test results and in vivo SPECT/CT imaging results in xenograft tumors. Both in vitro and ex vivo studies demonstrated that the uptake of (99m)Tc-GLA in NSCLC is highly related to GLUT5 expression. Imaging and further IHC results support that (99m)Tc-GLA could be a promising SPECT imaging agent for NSCLC diagnosis and prognosis evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    Directory of Open Access Journals (Sweden)

    Martin Sauer

    2017-01-01

    Full Text Available Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A were exposed to 0.01–50 ng/mL procalcitonin for 2×72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey’s test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P<0.05 and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P<0.001. Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.

  10. Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake.

    Science.gov (United States)

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka

    2015-01-01

    Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.

  11. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M.

    2005-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis

  12. Brain uptake of pipecolic acid, amino acids, amines following intracarotid injection in the mouse

    International Nuclear Information System (INIS)

    Nishio, H.; Giacobini, E.

    1981-01-01

    The uptake of pipecolic acid by the mouse brain was compared to that of several amino acids and amines, following an injection of a double-labeled mixture into the carotid artery. In general, BUI (brain uptake index) values were lower in the mouse than those previously reported in the rat. The only exception was proline. Lysine, a precursor of pipecolic acid biosynthesis in brain, showed a higher BUI than pipecolic acid. The BUI of D,L-[3H]pipecolic acid was found to be 3.39 (at 0.114 mM). This was saturable between a concentration of 0.114 and 3.44 mM. Kinetic analysis suggests the presence of two kinds of transport systems. Substances structurally related to pipecolic acid, such as nipecotic acid, isonipecotic acid, L-proline, and piperidine show a significant inhibitory effect. Amont the amino acids tested, only GABA showed an inhibitory effect. Data are reported which, when considered with other findings present evidence that pipecolic acid is (1) synthesized both in vitro and in vivo in the mouse brain, (2) actively transported in vivo into the brain, and (3) taken up in vitro by synaptosomal preparations

  13. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  14. Release of /sup 3/H-. cap alpha. -methyl-m-tyramine from rat striatum in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dorris, R L [Baylor College of Dentistry, Dallas, Tex. (USA). Dept. of Pharmacology

    1976-01-01

    Release of /sup 3/H-d-..cap alpha..-methyl-m-tyramine (/sup 3/H-MMTA), a false dopaminergic transmitter from rat striatum was studied in vitro. After its initial uptake, /sup 3/H-MMTA was released by high K/sup +/ and by amphetamine. The release requirements were essentially the same as those known to exist for release of dopamine in vitro. These studies indicate that /sup 3/H-MMTA might serve as a useful tool with which to study dopamine release mechanisms in vitro.

  15. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: In Vitro Cellular Uptake

    Directory of Open Access Journals (Sweden)

    Min Wu

    2017-12-01

    Full Text Available Iron deficiency anemia is a common clinical consequence for people who suffer from chronic kidney disease, especially those requiring dialysis. Intravenous (IV iron therapy is a widely accepted safe and efficacious treatment for iron deficiency anemia. Numerous IV iron drugs have been approved by U.S. Food and Drug Administration (FDA, including a single generic product, sodium ferric gluconate complex in sucrose. In this study, we compared the cellular iron uptake profiles of the brand (Ferrlecit® and generic sodium ferric gluconate (SFG products. We used a colorimetric assay to examine the amount of iron uptake by three human macrophage cell lines. This is the first published study to provide a parallel evaluation of the cellular uptake of a brand and a generic IV iron drug in a mononuclear phagocyte system. The results showed no difference in iron uptake across all cell lines, tested doses, and time points. The matching iron uptake profiles of Ferrlecit® and its generic product support the FDA’s present position detailed in the draft guidance on development of SFG complex products that bioequivalence can be based on qualitative (Q1 and quantitative (Q2 formulation sameness, similar physiochemical characterization, and pharmacokinetic bioequivalence studies.

  16. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegeli

    International Nuclear Information System (INIS)

    Zhang Li; Wang Wenxiong

    2007-01-01

    Gastrointestinal metal uptake represents a potential route for metal bioaccumulation in marine fish. Drinking of seawater for osmoregulation causes constant waterborne exposure of the gastrointestinal tract. Tissue specific Cd and Zn accumulation and distribution were investigated in juvenile black sea bream (Acanthopagrus schlegeli) exposed to waterborne Cd (5.7 nM) and Zn (2.6 nM) for 4 h-7 days. The intestine accumulated a large portion of the Cd (43-58%) and Zn (18-28%), and had the highest Cd (>1.0 nmol g -1 ) and Zn (>1.8 nmol g -1 ) concentrations of all body fractions, suggesting that the intestines were the major uptake sites for these waterborne metals. Among all the segments of the gastrointestinal tract, the anterior intestine played the most important role in Cd and Zn uptake. A gastrointestinal injection assay was conducted to distinguish waterborne metal uptake by the intestines and the gills. The intestine contained over 90% of the Cd in the body after depuration for 3-7 days, suggesting that little waterborne Cd entered the rest of the body through the intestine, and that Cd may exert its toxic effects on the gastrointestinal system. In contrast, intestine retained less than 20% of the total Zn after depuration, suggesting that Zn tended to be transported from the intestine to the internal tissues via the cardiovascular system. The uptake kinetics of waterborne Cd and Zn by the intestines and the gills were determined as a first-order and saturated pattern, respectively, over a wide range of ambient metal concentrations (6.2 nM-4.5 μM for Cd, and 13 nM-15 μM for Zn). An in vitro intestinal perfusion assay investigated the effects of intestinal metal composition and drinking rate on uptake. The presence of EDTA significantly reduced intestinal Zn uptake to 11%, while cysteine improved it by 59%. The intestinal Cd and Zn uptake rates were unaffected by the perfusion rate

  17. Plant uptake of dual-labeled organic N biased by inorganic C uptake

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Sauheitl, Leopold; Eriksen, Jørgen

    2010-01-01

    glycine or CO2-3 , but found no differences in uptake rates between these C-sources. The uptake of inorganic C to the shoot tissue was higher for maize grown in full light compared to shading, which indicates a passive uptake of inorganic C with water. We conclude that uptake of inorganic C produced...

  18. In vitro uptake and immune functionality of digested Rosemary extract delivered through food grade vehicles.

    Science.gov (United States)

    Arranz, E; Guri, A; Fornari, T; Mendiola, J A; Reglero, G; Corredig, M

    2017-07-01

    The digestion, absorption, uptake and bioavailability of a rosemary supercritical fluid extract encapsulated in oil in water emulsion were studied. Two emulsions with opposite surface charge were prepared, containing 7% canola oil, and either 2% lactoferrin or whey protein isolate. When absorption and uptake of carnosic acid and carnosol were followed on Caco-2 cell monolayers, there were no differences with protein type. However, when co-cultures of HT-29 MTX were employed, the presence of mucus caused a higher retention of carnosic acid in the apical layer for lactoferrin emulsions. The immune activity of the bioavailable fractions collected from cell absorption experiments was tested ex vivo on murine splenocytes. Although transport through the intestinal barrier models was low, the bioavailable fractions showed a significant effect on splenocytes proliferation. These results demonstrated the potential of using rosemary supercritical extract through protein stabilized oil in water emulsions, as a food with immunomodulatory functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Hsu, Hsin-Fen; Tsou, Tsui-Chun; Chao, How-Ran; Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching

    2010-01-01

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPARγ (peroxisome proliferator-activated receptor γ), C/EBPα (CCAAT/enhancer-binding protein α), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by α-naphthoflavone (α-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  20. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    International Nuclear Information System (INIS)

    Marill, Julie; Anesary, Naeemunnisa Mohamed; Zhang, Ping; Vivet, Sonia; Borghi, Elsa; Levy, Laurent; Pottier, Agnes

    2014-01-01

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation

  1. Boronated protoporphyrin (BOPP): localization in lysosomes of the human glioma cell line SF-767 with uptake modulated by lipoprotein levels

    International Nuclear Information System (INIS)

    Callahan, Daniel E.; Forte, Trudy M.; Javed Afzal, S.M.; Deen, Dennis F.; Kahl, Stephen B.; Bjornstad, Kathleen A.; Bauer, William F.; Blakely, Eleanor A.

    1999-01-01

    Purpose: Boronated protoporphyrin (BOPP) is a candidate for use in both boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) of glioblastoma multiforme (GBM). Our objectives are to identify factors that influence the uptake and retention of BOPP in vitro and to determine BOPP distribution in a human glioma cell line in vitro. This information will aid the development of compounds and treatment strategies that increase the effectiveness of BNCT therapy for GBM. Methods and Materials: The amount, distribution pattern, and site of internalization of BOPP were assessed using fluorescence microscopy. Living human glioma (SF-767) cells were imaged after a 24-h exposure to BOPP (20-135.6 μg/ml, normal serum). Dose-dependent uptake of BOPP was determined using both fluorescence microscopy of individual living cells and inductively-coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of cell pellets. Lysosome- or mitochondria-specific fluorescent probes were used to identify the cellular compartment containing BOPP. Two human fibroblast cell lines, AG-1522 (LDL receptor-positive) and GM019-15C (LDL receptor-deficient), were used to investigate LDL receptor-dependent BOPP uptake. The dependence of BOPP uptake on lipoproteins in the media was determined by exposing each of the three cell types to BOPP in medium containing either normal (NS) or lipoprotein deficient serum (LPDS). Results: BOPP accumulated in the lysosomes of human glioma cells in vitro, and not in the mitochondria, as reported for C6 rat glioma cells in vitro. BOPP uptake was concentration-dependent and was also dependent on the amount of lipoproteins in the medium. Over the range of incubation concentrations studied and at the single exposure duration time point investigated (24 h), all cells retained a similar amount of BOPP. At the lowest incubation concentration (20 μg/ml, NS), the amount of boron retained was near 10 9 atoms per cell (15 μg B/g cells). Lysosomes containing high

  2. Elevated occipital β-amyloid deposition is associated with widespread cognitive impairment in logopenic progressive aphasia.

    Science.gov (United States)

    Whitwell, Jennifer L; Lowe, Val J; Duffy, Joseph R; Strand, Edythe A; Machulda, Mary M; Kantarci, Kejal; Wille, Samantha M; Senjem, Matthew L; Murphy, Matthew C; Gunter, Jeffrey L; Jack, Clifford R; Josephs, Keith A

    2013-12-01

    Most subjects with logopenic variant of primary progressive aphasia (lvPPA) have β-amyloid (Aβ) deposition on Pittsburgh Compound B positron emission tomography (PiB-PET), usually affecting prefrontal and temporoparietal cortices, with less occipital involvement. To assess clinical and imaging features in lvPPA subjects with unusual topographic patterns of Aβ deposition with highest uptake in occipital lobe. Thirty-three lvPPA subjects with Aβ deposition on PiB-PET were included in this case-control study. Line plots of regional PiB uptake were created, including frontal, temporal, parietal and occipital regions, for each subject. Subjects in which the line sloped downwards in occipital lobe (lvPPA-low), representing low uptake, were separated from those where the line sloped upwards in occipital lobe (lvPPA-high), representing unusually high occipital uptake compared to other regions. Clinical variables, atrophy on MRI, hypometabolism on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), and presence and distribution of microbleeds and white matter hyperintensities (WMHs) were assessed. Seventeen subjects (52%) were classified as lvPPA-high. Mean occipital PiB uptake in lvPPA-high was higher than all other regions and higher than all regions in lvPPA-low. The lvPPA-high subjects performed more poorly on cognitive testing, including executive and visuospatial testing, but the two groups did not differ in aphasia severity. Proportion of microbleeds and WMH was higher in lvPPA-high than lvPPA-low. Parietal hypometabolism was greater in lvPPA-high than lvPPA-low. Unusually high occipital Aβ deposition is associated with widespread cognitive impairment and different imaging findings in lvPPA. These findings help explain clinical heterogeneity in lvPPA and suggest that Aβ influences severity of overall cognitive impairment but not aphasia.

  3. Ischaemia and insulin, but not ischaemia and contraction, act synergistically in stimulating muscle glucose uptake in vivo in humans.

    NARCIS (Netherlands)

    Bosselaar, M.; Smits, P.; Tack, C.J.J.

    2009-01-01

    Ischaemia, like muscle contraction, has been reported to induce skeletal muscle glucose uptake in in vitro models. This stimulating effect appears independent of insulin and is probably mediated by activation of AMPK (AMP-activated protein kinase). In the present study, we hypothesized that in vivo

  4. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Science.gov (United States)

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  5. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Rajnikumar Sangani

    2014-03-01

    Full Text Available Bone marrow stromal cell (BMSC adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38 and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.

  6. In vitro investigation on the impact of Solutol HS 15 on the uptake of colchicine into rat hepatocytes.

    Science.gov (United States)

    Bravo González, Roberto Carlos; Boess, Franziska; Durr, Evelyne; Schaub, Nathalie; Bittner, Beate

    2004-07-26

    In the current investigation, the impact of the surface-active formulation ingredient Solutol HS 15 on the uptake of colchicine into freshly isolated rat hepatocytes was investigated using a centrifugal filtration technique through a silicone oil layer. Colchicine is taken up into the cells by an active transport mechanism. When conducting the experiment at 37 degrees C, it was found that at concentrations below its critical micellar concentration (CMC) of 0.021% (0.0003 and 0.003%, w/v), Solutol HS 15 did not impact the uptake of colchicine. By contrast, at a Solutol HS 15 concentration above its CMC (0.03%, w/v), the amount of colchicine taken up into the cells as well as its uptake velocity were significantly decreased. However, in control experiments performed at 4 degrees C, a temperature at which active transport processes should be significantly slowed down, Solutol HS 15 at 0.03% did not affect colchicine uptake and/or its association with the cells. The described findings might be rationalized by inhibition of colchicine transport either due to direct interaction at the transport site or due to alterations of membrane properties in the presence of Solutol HS 15 at concentrations above its CMC. Moreover, a strong molecular interaction between Solutol HS 15 and colchicine as well as an incorporation of colchicine into micelles formed by Solutol HS 15, this way resulting in a limited contact of colchicine with the cells, cannot be excluded as contributors to the observed effect.

  7. Participation of cob tissue in the transport of medium components into maize kernels cultured in vitro

    International Nuclear Information System (INIS)

    Felker, F.C.

    1990-01-01

    Maize (Zea mays L.) kernels cultured in vitro while still attached to cob pieces have been used as a model system to study the physiology of kernel development. In this study, the role of the cob tissue in uptake of medium components into kernels was examined. Cob tissue was essential for in vitro kernel growth, and better growth occurred with larger cob/kernel ratios. A symplastically transported fluorescent dye readily permeated the endosperm when supplied in the medium, while an apoplastic dye did not. Slicing the cob tissue to disrupt vascular connections, but not apoplastic continuity, greatly reduced [ 14 C]sucrose uptake into kernels. [ 14 C]Sucrose uptake by cob and kernel tissue was reduced 31% and 68%, respectively, by 5 mM PCMBS. L-[ 14 C]glucose was absorbed much more slowly than D-[ 14 C]glucose. These and other results indicate that phloem loading of sugars occurs in the cob tissue. Passage of medium components through the symplast cob tissue may be a prerequisite for uptake into the kernel. Simple diffusion from the medium to the kernels is unlikely. Therefore, the ability of substances to be transported into cob tissue cells should be considered in formulating culture medium

  8. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  9. [{sup 14}C]Serotonin uptake and [O-methyl-{sup 11}C]venlafaxine kinetics in porcine brain

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.F. E-mail: dfsmith@inet.uni2.dk; Hansen, S.B.; Oestergaard, L.; Gee, A.D.; Danielsen, E.; Ishizu, K.; Bender, D.; Poulsen, P.H.; Gjedde, A

    2001-08-01

    As part of our program of developing PET tracers for neuroimaging of psychotropic compounds, venlafaxine, an antidepressant drug, was evaluated. First, we measured in vitro rates of serotonin uptake in synaptosomes prepared from selected regions of porcine brain. Then, we determined the pharmacokinetics of venlafaxine, [O-methyl-{sup 11}C]-labeled for PET. Synaptosomal studies showed that the active uptake of [{sup 14}C]5-HT differed markedly between brain regions, with highest rates in hypothalamus, raphe region, and thalamus, and lowest rates in cortex and cerebellum. PET studies showed that the unidirectional rate of uptake of [O-methyl-{sup 11}C]venlafaxine from blood to brain was highest in the hypothalamus, raphe region, thalamus and basal ganglia and lowest in the cortex and cerebellum. Under normal physiological conditions, the capillary permeability-surface area (PS) product for [O-methyl-{sup 11}C]venlafaxine could not be estimated, because of complete flow-limitation of the cerebral uptake. Nevertheless, a correlation occurred between the apparent partition volume of the radiotracer and the rate of active uptake of 5-HT in selected regions of the porcine brain. During hypercapnia, limitations of blood-brain transfer were observed, giving PS-products for water that were only ca. 50% higher than those of venlafaxine. Thus, under normal physiological conditions, the rate of uptake of venlafaxine from blood into brain is completely flow-limited.

  10. Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI

    International Nuclear Information System (INIS)

    Kemppainen, N.M.; Scheinin, N.M.; Koivunen, J.; Johansson, J.; Toivonen, J.T.; Naagren, K.; Rokka, J.; Rinne, J.O.; Karrasch, M.; Parkkola, R.

    2014-01-01

    The aim of this study was to evaluate the longitudinal changes in [ 11 C]PIB uptake in mild cognitive impairment (MCI) and Alzheimer's disease (AD) over a long-term follow-up. Six AD patients, ten MCI patients and eight healthy subjects underwent a [ 11 C]PIB PET scan at baseline and at 2 and 5 years. The clinical status of the MCI patients was evaluated every 6 months. The MCI group showed a significant increase in [ 11 C]PIB uptake over time (p 11 C]PIB scan at baseline but increased uptake later. There was an increase in [ 11 C]PIB uptake with time in the AD group (p = 0.02), but this did not significantly differ from the change in the control group. Our results revealed a significant increase in amyloid load even at the time of AD diagnosis in some of the MCI patients who converted. A positive [ 11 C]PIB scan at baseline in MCI patients strongly predicted future conversion to AD but a negative PIB scan in MCI patients did not exclude future conversion. The results suggest that there is wide individual variation in the brain amyloid load in MCI, and in the course of amyloid accumulation in relation to the clinical diagnosis of AD. (orig.)

  11. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A

    1997-01-01

    decrease in the uptake of the fluorescent long-chain fatty acid analogue boron dipyrromethene difluoride dodecanoic acid (BODIPY-3823); 3) a reduced rate of exogenous oleate incorporation into phospholipids; and 4) a 2-3-fold decrease in the rates of oleate uptake. These data support the hypothesis...

  12. Association between FDG uptake, CSF biomarkers and cognitive performance in patients with probable Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Soenke; Jahn, Holger; Eichenlaub, Martin [University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Hamburg (Germany); Brassen, Stefanie [University Medical Center Hamburg-Eppendorf, Institute for Systems Neuroscience, Hamburg (Germany); Wilke, Florian; Apostolova, Ivayla; Buchert, Ralph [University Medical Center Hamburg-Eppendorf, Department of Nuclear Medicine, Hamburg (Germany); Wenzel, Fabian; Young, Stewart [Philips Research, Digital Imaging Department, Hamburg (Germany); Thiele, Frank [Philips Research, Molecular Imaging Department, Aachen (Germany)

    2009-07-15

    Brain imaging of FDG uptake and cerebrospinal fluid (CSF) concentration of amyloid-beta 1-42 (A{beta}{sub 1-42}) or tau proteins are promising biomarkers in the diagnosis of Alzheimer's disease (AD). There is still uncertainty regarding any association between decreased FDG uptake and alterations in CSF markers. The relationship between FDG uptake, CSF A{beta}{sub 1-42} and total tau (T-tau), as well as the Mini-Mental State Examination (MMSE) score was investigated in 34 subjects with probable AD using step-wise linear regression. FDG uptake was scaled to the pons. Scaled FDG uptake was significantly reduced in the probable AD subjects compared to 17 controls bilaterally in the precuneus/posterior cingulate area, angular gyrus/inferior parietal cortex, inferior temporal/midtemporal cortex, midfrontal cortex, and left caudate. Voxel-based single-subject analysis of the probable AD subjects at p < 0.001 (uncorrected) revealed a total volume of significant hypometabolism ranging from 0 to 452 ml (median 70 ml). The total hypometabolic volume was negatively correlated with the MMSE score, but it was not correlated with the CSF measures. VOI-based step-wise linear regression revealed that scaled FDG uptake in the precuneus/posterior cingulate was negatively correlated with CSF A{beta}{sub 1-42}. Scaled FDG uptake in the caudate was positively correlated with CSF T-tau. The extent and local severity of the reduction in FDG uptake in probable AD subjects are associated with cognitive impairment. In addition, there appears to be a relationship between local FDG uptake and CSF biomarkers which differs between different brain regions. (orig.)

  13. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    International Nuclear Information System (INIS)

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.; James, J.H.; Li, S.; Rigel, D.F.; Fischer, J.E.

    1989-01-01

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle

  14. In vitro and in vivo studies with [18F]fluorocholine on digestive tumoral cell lines and in an animal model of metastasized endocrine tumor

    International Nuclear Information System (INIS)

    Nejjari, Mimoun; Kryza, David; Poncet, Gilles; Roche, Colette; Perek, Nathalie; Chayvialle, Jean-Alain; Le Bars, Didier; Scoazec, Jean-Yves; Janier, Marc; Borson-Chazot, Francoise

    2008-01-01

    Purpose: The aim of this study was to investigate (a) in vitro the relationship between [ 18 F]fluorocholine ([ 18 F]FCH) uptake and cell growth in endocrine cell lines and (b) in vivo the uptake of [ 18 F]FCH by tumoral sites in an animal model of metastasized endocrine tumor. Methods: In vitro studies were conducted on three endocrine and two nonendocrine digestive tumoral cell lines. The proliferative ratio was estimated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The uptake of [ 18 F]FCH and that of [ 18 F]fluorodeoxyglucose ([ 18 F]FDG) were measured before and after cytotoxic therapy. [ 18 F]FCH biodistribution was studied in nude mice and in an endocrine xenografted mice model. Results: The [ 18 F]FCH uptake in tumoral cell lines was related to their proliferative capacities as measured by the MTT assay in basal conditions. After cytotoxic therapy, the IC 50 values calculated with the [ 18 F]FCH incorporation test were very close to those determined with the MTT assay. Biodistribution studies showed that [ 18 F]FCH was predominantly concentrated in the liver and kidney of nude mice. In the STC-1 xenografted animal model, the uptake of [ 18 F]FCH in the primary tumor was only 1.1%. On autoradiography and micro-positron emission tomography, there was no uptake of [ 18 F]FCH in liver metastases but there was a significant uptake of [ 18 F]FDG. Conclusions: In vitro studies suggested that the incorporation of [ 18 F]FCH in endocrine tumor cell lines was related to their growth capacities; however, in vivo studies conducted in an endocrine xenografted animal model showed an uptake of [ 18 F]FCH in hepatic metastases lower than that in normal liver cells. An influence of the microenvironment or a competition phenomenon for [ 18 F]FCH uptake between normal liver and endocrine tumor cells cannot be excluded

  15. Uptake and cytotoxicity of poly(D,L-lactide-co-glycolide) nanoparticles in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Katsikari, A. [Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences and Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Patronidou, Chr.; Kiparissides, C. [Section of Analysis, Design and Control of Chemical Processes and Plants, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Arsenakis, M., E-mail: arsenaki@bio.auth.g [Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences and Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2009-12-15

    The main objectives of the present study were to evaluate the cytotoxicity and the mechanisms of uptake of biodegradable lactic acid-glycolic acid copolymer (PLGA) nanoparticle carrier systems in vitro using the human colon adenocarcinoma cell line Caco2. Nanoparticles (NPs) (PLGA 75:25) with an average diameter of 299.5 nm containing bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) as a fluorescent model protein marker were formulated by the double emulsion technique. Various parameters influencing the internalization process by Caco2 cells including concentration of NPs, duration of contact time and cell culture conditions were studied. After overnight exposure of NPs to cells at 37 deg. C, the cell uptake capacity varied in accord with NP concentration, over the 25-800 mug/ml concentration range tested. Maximal uptake of nanoparticles at 37 deg. C occurred at 4 h and was inhibited significantly at 4 deg. C. The extent of NPs internalization was evaluated by confocal laser scanning microscopy. Potential NP toxicity evaluated by modified MTS and lactate dehydrogenase (LDH) colorimetric cytotoxicity tests, measuring mitochondrial activity and membrane integrity respectively, showed that cell viability is significantly reduced at PLGA nanoparticle concentrations greater than 700 mug/ml after 24 and 48 h respectively. The results obtained in vitro for BSA-FITC loaded PLGA nanoparticles underline their potential as carriers for peptide delivery and their utility for the study of NP cell transport and trafficking mechanisms.

  16. Nitazoxanide induces in vitro metabolic acidosis in Taenia crassiceps cysticerci.

    Science.gov (United States)

    Isac, Eliana; de A Picanço, Guaraciara; da Costa, Tatiane L; de Lima, Nayana F; de S M M Alves, Daniella; Fraga, Carolina M; de S Lino Junior, Ruy; Vinaud, Marina C

    2016-12-01

    Nitazoxanide (NTZ) is a broad-spectrum anti-parasitic drug used against a wide variety of protozoans and helminthes. Albendazole, its active metabolite albendazole sulfoxide (ABZSO), is one of the drugs of choice to treat both intestinal and tissue helminth and protozoan infections. However little is known regarding their impact on the metabolism of parasites. The aim of this study was to compare the in vitro effect of NTZ and ABZSO in the glycolysis of Taenia crassiceps cysticerci. The cysticerci were treated with 1.2; 0.6; 0.3 or 0.15 μg/mL of NTZ or ABZSO. Chromatographic and spectrophotometric analyses were performed in the culture medium and in the cysticerci extract. Regarding the glucose concentrations was possible to observe two responses: impair of the uptake and gluconeogenesis. The pyruvate concentrations were increased in the ABZSO treated group. Lactate concentrations were increased in the culture medium of NTZ treated groups. Therefore it was possible to infer that the metabolic acidosis was greater in the group treated with NTZ than in the ABZSO treated group indicating that this is one of the modes of action used by this drug to induce the parasite death. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism

    Directory of Open Access Journals (Sweden)

    Carducci Claudia

    2012-04-01

    Full Text Available Abstract Background The discovery of the inherited disorders of creatine (Cr synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. Methods Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a D3-Creatine (D3Cr and D3Cr plus β-guanidinopropionate (GPA, an inhibitor of Cr transporter, and b labelled precursors of Guanidinoacetate (GAA and Cr (Arginine, Arg; Glycine, Gly. Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1, L-arginine:glycine amidinotransferase (AGAT, and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT gene expression was assessed in the same cells by real time PCR. Results D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes. In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells and 21% (astrocytes of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. Conclusions Our

  18. Determination of maximum physiologic thyroid uptake and correlation with 24-hour RAI uptake value

    International Nuclear Information System (INIS)

    Duldulao, M.; Obaldo, J.

    2007-01-01

    Full text: In hyperthyroid patients, thyroid uptake values are overestimated, sometimes approaching or exceeding 100%. This is physiologically and mathematically impossible. This study was undertaken to determine the maximum physiologic thyroid uptake value through a proposed simple method using a gamma camera. Methodology: Twenty-two patients (17 females and 5 males), with ages ranging from 19-61 y/o (mean age ± SD; 41 ± 12), with 24-hour uptake value of >50%, clinically hyperthyroid and referred for subsequent radioactive iodine therapy were studied. The computed maximum physiologic thyroid uptake was compared with the 24-hour uptake using the paired Student t-test and evaluated using linear regression analysis. Results: The computed physiologic uptake correlated poorly with the 24-hour uptake value. However, in the male subgroup, there was no statistically significant difference between the two (p=0.77). Linear regression analysis gives the following relationship: physiologic uptake (%) = 77.76 - 0.284 (24-hour RAI uptake value). Conclusion: Provided that proper regions of interest are applied with correct attenuation and background subtraction, determination of physiologic thyroid uptake may be obtained using the proposed method. This simple method may be useful prior to I-131 therapy for hyperthyroidism especially when a single uptake determination is performed. (author)

  19. The effect of local hyperglycemia on skin cells in vitro and on wound healing in euglycemic rats

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Sørensen, Jens A

    2016-01-01

    BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts and keratin......BACKGROUND: Multiple previous studies have established that high systemic blood glucose concentration impairs skin wound healing. However, the effects of local hyperglycemia on wound healing are not well defined. Comprehensive animal studies and in vitro studies using both fibroblasts...

  20. Reasons for low uptake of referrals to ear and hearing services for children in Malawi.

    Directory of Open Access Journals (Sweden)

    Tess Bright

    Full Text Available Early detection and appropriate intervention for children with hearing impairment is important for maximizing functioning and quality of life. The lack of ear and hearing services in low income countries is a significant challenge, however, evidence suggests that even where such services are available, and children are referred to them, uptake is low. The aim of this study was to assess uptake of and barriers to referrals to ear and hearing services for children in Thyolo District, Malawi.This was a mixed methods study. A survey was conducted with 170 caregivers of children who were referred for ear and hearing services during community-based screening camps to assess whether they had attended their referral and reasons for non-attendance. Semi-structured interviews were conducted with 23 caregivers of children who did not take up their referral to explore in-depth the reasons for non-uptake. In addition, 15 stakeholders were interviewed. Thematic analysis of the interview data was conducted and emerging trends were analysed.Referral uptake was very low with only 5 out of 150 (3% children attending. Seven main interacting themes for non-uptake of referral were identified in the semi-structured interviews: location of the hospital, lack of transport, other indirect costs of seeking care, fear and uncertainty about the referral hospital, procedural problems within the camps, awareness and understanding of hearing loss, and lack of visibility and availability of services.This study has highlighted a range of interacting challenges faced by families in accessing ear and hearing services in this setting. Understanding these context specific barriers to non-uptake of ear and hearing services is important for designing appropriate interventions to increase uptake.

  1. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    International Nuclear Information System (INIS)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E.

    1989-01-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings

  2. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chalkidou, A. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Molecular Oncology Laboratory, Theagenio Cancer Hospital, Alexandrou Simeonidi Street 2, 54 007 Thessaloniki (Greece); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Angelakeris, M., E-mail: agelaker@auth.g [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Samaras, T. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Martinez-Boubeta, C. [Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, Barcelona 08028 (Spain); Balcells, Ll. [ICMAB-CSIC, Campus UAB, Bellaterra 08193 (Spain); Papazisis, K. [Molecular Oncology Laboratory, Theagenio Cancer Hospital, Alexandrou Simeonidi Street 2, 54 007 Thessaloniki (Greece); Dendrinou-Samara, C. [Department of Chemistry, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece); Kalogirou, O. [Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki (Greece)

    2011-03-15

    In this work we study the heating efficiency of Fe/MgO magnetic core/biocompatible shell nanoparticles and their in vitro application in magnetic hyperthermia on cancer cells. Different human breast cancer cell lines were used to assess the suitability of nanoparticles for in vivo application. The experiments revealed a very good cytotoxicity profile and significant uptake efficiency together with relatively high specific absorption rates and fast thermal response, features that are crucial for adequate thermal efficiency and minimum duration of treatment. - Research highlights: > Fe/MgO magnetic core/shell nanoparticles and their in vitro application for magnetic hyperthermia. > Very good cytotoxicity profile and significant uptake efficiency in three human breast cancer cell lines. > SAR values and fast thermal response guarantee adequate thermal efficiency and minimum treatment duration.

  3. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsin-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China); Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu 912, Pingtung, Taiwan (China); Kuo, Ya-Ting; Tsai, Feng-Yuan; Yeh, Szu-Ching [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan (China)

    2010-10-15

    Dioxin exposure has been positively associated with human type II diabetes. Because lipophilic dioxins accumulate mainly in adipose tissue, this study aimed to determine if dioxins induce metabolic dysfunction in fat cells. Using 3T3-L1 cells as an in vitro model, we analyzed the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model dioxin, on adipogenic differentiation, glucose uptake, and lipolysis. TCDD inhibited adipogenic differentiation, as determined by using oil droplet formation and adipogenic marker gene expression, including PPAR{gamma} (peroxisome proliferator-activated receptor {gamma}), C/EBP{alpha} (CCAAT/enhancer-binding protein {alpha}), and Glut4 (glucose transporter type 4). Effects of TCDD on glucose uptake were evaluated using fully differentiated 3T3-L1 adipocytes, revealing that TCDD significantly attenuated insulin-induced glucose uptake dose dependently. Inhibition of aryl hydrocarbon receptor (AhR) by {alpha}-naphthoflavone ({alpha}-NF), an AhR inhibitor, did not prevent the inhibitory effect of TCDD on glucose uptake, suggesting that TCDD attenuates insulin-induced glucose uptake in an AhR-independent manner. Effects of TCDD on lipolysis were determined using glycerol release assay. We found that TCDD had no marked effect on isoproterenol-induced glycerol release in fully differentiated 3T3-L1 adipocytes. These results provide in vitro evidence of TCDD's effects on fat cell metabolism, suggesting dioxin exposure in development of insulin resistance and type II diabetes.

  4. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  5. In vitro labelled neurotransmitters release for the study of neuro toxins

    International Nuclear Information System (INIS)

    Camillo, Maria A.P.; Rogero, Jose R.; Troncone, Lanfranco R.P.

    1995-01-01

    There is an increasing concern in the replacement of in vivo by in vitro methods in Pharmacology. Looking for a method which involves the most of the physiological aspects related to neural functions, a super fusion system designed to evaluate in vitro neurotransmitter release from brain striatal tissue is here described. The method is based on the basal and stimulated release of pre-loaded tritium-labelled neurotransmitters. This procedure bears an active uptake/release function which is fairly changed by membrane polarisation state, ion channel activation and enzymatic activity, as well as other still unknown steps involved in neurotransmission. Calcium dependency of dopamine and acetylcholine release induced by high potassium depolarization or glutamate (Glu) stimulation was demonstrated employing calcium-free (+EGTA) super fusion or lanthanum/cadmium addition. Glutamate stimulation involved NMDA receptors since magnesium or MK801 blocks stimulated release. Uptake of DA and Ach was evidenced by using bupropione or hemicolinium-3. presynaptic inhibition of Ach release was evidenced by physostigmine-induced inhibitions of acetylcholinesterase. (author). 3 refs., 6 figs

  6. Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila.

    Science.gov (United States)

    Drago, Ilaria; Davis, Ronald L

    2016-09-06

    The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Science.gov (United States)

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  8. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Sylvia Wagner

    Full Text Available BACKGROUND: The blood-brain barrier (BBB represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. CONCLUSIONS/SIGNIFICANCE: This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  9. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells.

    Science.gov (United States)

    Yang, Cheng; Zhang, Hua; Liu, Ronghua; Zhu, Honghui; Zhang, Lianfu; Tsao, Rong

    2017-11-29

    The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H 2 O 2 . We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.

  10. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1

    DEFF Research Database (Denmark)

    Vohra, Rupali; Gurubaran, Iswariyaraja Sridevi; Henriksen, Ulrik

    2017-01-01

    Using the human Müller cell line, MIO-M1, the aim was to study the impact of mitochondrial inhibition in Müller glia through antimycin A treatment. MIO-M1 cell survival, levels of released lactate, mitochondrial function, and glutamate uptake were studied in response to mitochondrial inhibition...... and glucose restriction. Lactate release decreased in response to glucose restriction. Combined glucose restriction and blocked mitochondrial activity decreased survival and caused collapse of the respiratory chain measured by oxygen consumption rate and extracellular acidification rate. Mitochondrial...... inhibition caused impaired glutamate uptake and decreased mRNA expression of the glutamate transporter, EAAT1. Over all, we show important roles of mitochondrial activity in MIO-M1 cell function and survival....

  11. Cellular uptake of lipoproteins and Persistent Organic Compounds - An update and new data

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjærgaard; Bonefeld-Jørgensen, Eva Cecilie

    2008-01-01

    including the pesticide DDT (p,p'-dichlorodiphenyltrichloroethane), and especially its metabolite DDE (p,p'-dichlorodiphenyldichloroethene), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present...... study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors LRP (low-density lipoprotein...... receptor-related protein) and LDLR (low density lipoprotein receptor) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of LDL and [14C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks...

  12. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (Pdiode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  13. 99Tcm pertechnetate uptake by hepatoma cells induced by tissue specific hNIS gene expression

    International Nuclear Information System (INIS)

    Chen Libo; Luo Quanyong; Yu Yongli; Yuan Zhibin; Lu Hankui; Zhu Ruisen; Guo Lihe

    2007-01-01

    Objective: Human sodium/iodide symporter (hNIS) gene could be used both as an ideal reporter gene and promising therapeutic gene. Rather than radioiodine, 99 Tc m pertechnetate has been proven to be a better radiopharmaceutical for tracing and imaging purposes. Herein, the authors investigated the feasibility of monitoring hNIS gene expression in hepatoma cells using 99 Tc m pertechnetate as a tracer. Methods: Hepatoma cells MH3924A were stably transfected with recombinant retroviral vector in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene. The uptake and efflux of 99 Tc m pertechnetate by transfected hepatoma cells were tested with 99 Tc m pertechnetate (74 kBq) solution adulterated into the culture media and counted after media suspension discharge at different intervals. In further tests, 50 μmol/L NaClO 4 and 500 μmol/L Ouabain were added into the media for 99 Tc m inhibition tests. For in vive studies, five ACI rats bearing NIS transfected hepatoma xenografts were injected with 99 Tc m pertechnetate (15.8 MBq) and followed by dynamic acquisition (0.57 1, 2 and 4 h) with small gamma camera to semi-quantitatively analyze the radioactivity distribution. Results: In vitro tests, the peak uptake of 99 Tc m pertechnetate by cultured transfected MH3924A cells was up to 254 folds higher than that by the wild type cells. 99 Tc m uptake by transfected cells were significantly inhibited by NaClO 4 down to 2.44% (P 99 Tc m pertechnetate out of cultured transfected cells became rapid immediately after renewal of culture media (half life 99 Tc m accumulations by hNIS transfected tumor xenografts were obvious in early phases of the acquisition with peak uptake at 12 min and gradually declining later on. Conclusions: hNIS transfected hepatoma cells can avidly uptake 99 Tc m pertechnetate both in vitro and in vive. It is feasible to utilize 99 Tc m pertechnetate for monitoring and even quantitatively analyzing

  14. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    DEFF Research Database (Denmark)

    Sirvent, P; Fabre, Odile Martine Julie; Bordenave, S

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dys...

  15. The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616.

    Science.gov (United States)

    Sato, Takuya; Nonoyama, Shouta; Kimura, Akane; Nagata, Yuji; Ohtsubo, Yoshiyuki; Tsuda, Masataka

    2017-08-15

    Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderia multivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon. IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the

  16. In vitro uptake of /sup 14/C-praziquantel by cestodes, trematodes, and a nematode

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, P.; Thomas, H.; Weber, H.

    1980-12-01

    /sup 14/C-praziquantel was rapidly taken up by Schistosoma mansoni, Fasciola hepatica, Hymenolepis nana, and isolated strobilocerci of Taenia taeniaeformis. Schistosoma mansoni lost praziquantel rapidly to drug-free medium. Chromatography of extracts prepared after incubation of S. mansoni and H. nana yielded no indication that praziquantel was metabolized. Autoradiography revealed a uniform distribution of praziquantel throughout the tissues of S. mansoni and H. nana. Uptake was considerably slower in the nematode Heterakis spumosa and apparently via the oral route.

  17. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    Science.gov (United States)

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    Amyloid-β (Aβ), tau, and cerebral small vessel disease (CSVD), which occasionally coexist, are the most common causes of cognitive impairments in older people. However, whether tau is observed in patients with subcortical vascular cognitive impairment (SVCI), as well as its associations with Aβ and CSVD, are not yet established. More importantly, the role of tau underlying cognitive impairments in SVCI is unknown. To investigate the extent and the role of tau in patients with SVCI using 18F-AV1451, which is a new ligand to detect neurofibrillary tangles in vivo. This cross-sectional study recruited 64 patients with SVCI from June 2015 to December 2016 at Samsung Medical Center, Seoul, Korea. The patients had significant ischemia on brain magnetic resonance imaging, defined as periventricular white matter hyperintensity at least 10 mm and deep white matter hyperintensity at least 25 mm. We excluded 3 patients with SVCI owing to segmentation error during AV1451 positron emission tomography analysis. We calculated CSVD scores based on the volumes of white matter hyperintensities, numbers of lacunes, and microbleeds using magnetic resonance imaging data. The presence of Aβ was assessed using fluorine 18-labeled (18F) florbetaben positron emission tomography. Tau was measured using 18F-AV1451 positron emission tomography. We determined the spreading order of tau by sorting the regional frequencies of cortical involvement. We evaluated the complex associations between Aβ, CSVD, AV1451 uptake, and cognition in patients with SVCI. Of the 61 patients with SVCI, 44 (72.1%) were women and the mean (SD) age was 78.7 (6.3) years. Patients with SVCI, especially patients with Aβ-negative SVCI, showed higher AV1451 uptake in the inferior temporal areas compared with normal control individuals. In patients with SVCI, Aβ positivity and CSVD score were each independently associated with increased AV1451 uptake in the medial temporal and inferior temporal regions, respectively

  18. The effect of metformin treatment in vivo on acute and long-term energy metabolism and progesterone production in vitro by granulosa cells from women with polycystic ovary syndrome.

    Science.gov (United States)

    Maruthini, D; Harris, S E; Barth, J H; Balen, A H; Campbell, B K; Picton, H M

    2014-10-10

    What are the consequences of polycystic ovary syndrome (PCOS) pathology and metformin-pretreatment in vivo in women with PCOS on the metabolism and steroid production of follicular phenotype- and long-term cultured-granulosa cells (GC)? PCOS pathology significantly compromised glucose metabolism and the progesterone synthetic capacity of follicular- and long-term cultured-GCs and the metabolic impact of PCOS on GC function was alleviated by metformin-pretreatment in vivo. Granulosa cells from women with PCOS have been shown to have an impaired insulin-stimulated glucose uptake and lactate production in vitro. However, these results were obtained by placing GCs in unphysiological conditions in culture medium containing high glucose and insulin concentrations. Moreover, existing data on insulin-responsive steroid production in vitro by PCOS GCs vary. Case-control experimental research comparing glucose uptake, pyruvate and lactate production and progesterone production in vitro by GCs from three aetiological groups, all undergoing IVF; healthy control women (Control, n = 12), women with PCOS treated with metformin in vivo (Metformin, n = 8) and women with PCOS not exposed to metformin (PCOS, n = 8). The study was conducted over a period of 3 years between 2007 and 2010. Rotterdam criteria were used for the diagnosis of PCOS; all subjects were matched for age, BMI and baseline FSH. Individual patient cultures were undertaken with cells incubated in a validated, physiological, serum-free culture medium containing doses of 0-6 mM glucose and 0-100 ng/ml insulin for 6 h and 144 h to quantify the impact of treatments on acute and long-term metabolism, respectively, and progesterone production. The metabolite content of spent media was measured using spectrophotometric plate reader assay. The progesterone content of spent media was measured by enzyme-linked immunosorbent assay. Viable GC number was quantified after 144 h of culture by the vital dye Neutral Red uptake assay

  19. Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune complex-mediated arthritis.

    Science.gov (United States)

    van Lent, P L; Licht, R; Dijkman, H; Holthuysen, A E; Berden, J H; van den Berg, W B

    2001-11-01

    Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex-mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.

  20. Benign oral pathology as a cause of false positive 131I uptake in thyroid carcinoma

    International Nuclear Information System (INIS)

    Mansberg, R.; Wadhwa, S.S.; Fernandes, V.B.

    1997-01-01

    Full text: We present three thyroidectomised patients with a history of thyroid carcinoma who had non-metastatic 131 I uptake due to benign oral pathology. A salivary gland study suggested impaired function but no obstruction was demonstrated on a sialogram. The symptoms resolved on antibiotic therapy and a subsequent 131 I study was normal. A subsequent thallium study demonstrated physiological tracer distribution. A 35-year-old female with papillary cell carcinoma of the thyroid demonstrated a focus of uptake on the right hemi-mandible following both a diagnostic and a therapeutic dose of 131 I. This area was tender and an OPG confirmed an area of liquefaction at this site. A 53-year-old female with medullary cell carcinoma of the thyroid demonstrated a focus of uptake in the right side of the maxilla following a diagnostic administration of 131 I. An OPG confirmed an area of liquefaction around the apex of the right upper centre. These three cases illustrate salivary gland and dental inflammation as causes of false positive 131 I uptake. It is important to differentiate non-metastatic 131 I uptake from that due to functioning metastatic thyroid carcinoma in order to avoid inappropriate treatment with large additional doses of 131 I. As in these patients, clinical assessment and the use of anatomical imaging or other isotopes such as thallium or technetium can be helpful in ruling out a mistaken diagnosis of metastasis

  1. Influence of in vitro irradiation upon LIF production by ConA stimulated mononuclear cells

    International Nuclear Information System (INIS)

    Sandru, G.; Veraguth, P.

    1981-01-01

    Leukocyte migration inhibitory factor (LIF) activity of culture supernatants of in vitro irradiated Concanavalin A (ConA) stimulated lymphocytes was tested by measuring granulocyte migration from clotted plasma droplets placed in flat bottom microplates. The specificity of inhibition was assured by pretreating the assay supernatants with anti-LIF antibodies which abrogated granulocyte migration inhibition but did not impair guinea pig Peritoneal Exudate Cells (PEC) migration inhibition. In vitro irradiation (150-1200 rads) of MNC cultures either before or after ConA stimulation did not impair lymphokine production and sometimes significantly improved the supernatants' LIF activity as compared with that of unirradiated cultures. The existence of radiosensitive suppressor cells regulating LIF production by ConA stimulated mononuclear cells is suggested

  2. Impaired transport of thyroid hormones into livers of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1988-01-01

    Obese (ob/ob) mice exhibit impaired hepatic thyroid hormone action that is mediated, at least in part, by a reduced nuclear 3,5,3'-triiodothyronine (T 3 ) receptor occupancy. The possibility that lowered occupancy in obese mice may be caused by decreased transport of T 3 across the hepatic plasma membrane was examined by measuring the unidirectional influx of [ 125 I]T 3 into livers of 8- to 10-wk-old obese and lean mice using a tissue-sampling portal vein-injection technique. Influx of [ 125 I]thyroxine (T 4 ), a substrate for T 4 5'-deiodinase, was also measured. Unidirectional clearance of T 3 and T 4 was 64 and 80% lower, respectively, in obese mice than in lean mice. Hepatic T 3 and T 4 uptake was nonsaturable in both lean and obese mice, suggesting that transport occurs by lipid-mediated free diffusion. Clearance of another lipid-soluble hormone, hydrocortisone, was also lower in obese mice than in lean mice. Decreased membrane permeability to the above hormones in obese mice may result from reported changes in membrane lipid composition. In conclusion, decreased hepatic thyroid hormone uptake may contribute to impaired thyroid hormone action and T 3 production in livers of obese mice

  3. Tc-99m Hydroxymethylene Diphosphonate (HMDP) Renal Uptake as a Surrogate Marker of Postoperative Impairment of the Glomerular Filtration Rate in Renal Tumor Patients Following Nephron-Sparing Surgery.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Won Woo; So, Young; Ha, Seunggyun; Byun, Seok-Soo; Kim, Sang Eun

    2014-12-01

    We investigated Tc-99m hydroxymethylene diphosphonate (HMDP) scintigraphy findings in renal tumor patients from the perspective of postoperative renal dysfunction following nephron-sparing surgery (NSS). Forty-three renal tumor patients (M:F = 28:15, age 53.9 ± 12.5 years) who had undergone Tc-99m HMDP scintigraphy after NSS were enrolled. The patients were divided into HMDP(+) or HMDP(-) groups by visual assessment, and the asymmetric index (ASI) was calculated using a region-of-interest analysis. In 16 patients, the total and split glomerular filtration rate (GFR) was assessed using Tc-99m diethylenetriaminepentaacetic acid (DTPA) scintigraphy at baseline and at 3 and 6 months post-NSS. High Tc-99m HMDP uptake was observed in the operated kidneys, but this did not persist later than 7 days post-NSS. Split GFR of the operated kidneys at baseline (58.5 ± 9.3 ml/min) was significantly reduced at 6 months post-NSS (40.1 ± 5.9 ml/min, p Tc-99m HMDP. Declines in both total GFR (p = 0.010 and p = 0.002 for 3 and 6 months, respectively) and split GFR of the operated kidneys (p Tc-99m HMDP in the operated kidneys. The ASI was negatively correlated with %change in the split GFR of these operated kidneys at 6 months post-NSS (rho =-0.578, p = 0.0304). Tc-99m HMDP uptake within 1 week following NSS is a surrogate marker of GFR impairment over 6 months post-NSS.

  4. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants

    International Nuclear Information System (INIS)

    Carney, D.N.; Mitchell, J.B.; Kinsella, T.J.

    1983-01-01

    The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While the D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival

  5. Effects of recombinant eel growth hormone on the uptake of ( sup 35 S)sulfate by ceratobranchial cartilages of the Japanese eel, Anguilla japonica

    Energy Technology Data Exchange (ETDEWEB)

    Duan, C.M.; Inui, Y. (Univ. of Tokyo (Japan))

    1990-08-01

    Effects of growth hormone (GH) on the synthesis of mucopolysaccharide by ceratobranchial cartilages of the Japanese eel, Anguilla japonica, were examined by monitoring the in vitro uptake of ({sup 35}S)sulfate. The ({sup 35}S)sulfate uptake decreased rapidly to one-third of the initial level during the first 3 days after hypophysectomy, and decreased gradually thereafter. When hypophysectomized eels were injected intramuscularly with recombinant eel GH (2 micrograms/g), the plasma GH concentrations increased maximally after 6 hr, and declined rapidly thereafter. On the other hand, the sulfate uptake increased significantly after 12 hr, and high levels were maintained until 48 hr. The stimulating effect of GH was dose dependent (0.02-2 micrograms/g). However, the addition of eel GH (0.05-5 micrograms/ml) to the culture medium did not affect the sulfate uptake by hypophysectomized eel cartilages, suggesting that the stimulative action of GH on the sulfate uptake by the cartilages is indirect.

  6. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine (I-123 or I-131) in liquid or capsule form to swallow. The thyroid uptake will begin several hours to 24 hours later. Often, two separate uptake ...

  7. Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study.

    Science.gov (United States)

    Mok, Il-Kyoon; Lee, Jae Kwon; Kim, Jeong Hwa; Pan, Cheol-Ho; Kim, Sang Min

    2018-08-30

    Our previous study reported the improved stability of fucoxanthin (FX) fortified in whole milk (WM) and skimmed milk (SM). In this study, in vivo and in vitro FX bioavailability were investigated using FX-fortified milk (FX-SM and FX-WM) and microalga Phaeodactylum tricornutum biomass (Pt-powder). Organ tissue accumulation of FX and its metabolites (FXOH: fucoxanthinol, AXA: amarouciaxanthin A) after repeated oral administration was in the following order: FX-SM > FX-WM > Pt-powder. In vivo pharmacokinetic study with a single oral administration also demonstrated that the absorption of FXOH and AXA was the highest for FX-SM. To reinforce the in vivo results, in vitro-simulated digestion and Caco-2 cell uptake assays were performed, which revealed that FX-SM showed the highest FX bioaccessibility (release from food matrices) and cellular uptake efficiency of FX and FXOH. In conclusion, skimmed milk was validated as an excellent food matrix for FX application in terms of stability and bioavailability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Study on sup(99m)Tc-colloid accumulation of in vitro clots and thrombi in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ohguchi, Manabu [Kanazawa Univ. (Japan). School of Medicine

    1983-02-01

    The accumulation of different sup(99m)Tc-colloids in vitro clot, venous thrombi and intravascular fibrin deposits in rats was studied. Blood clot was produced by incubating fresh blood at room temperature for three hours. The mean value of % uptake of sup(99m)Tc-Sn colloid in clot was 96.2 % and higher than that of any other sup(99m)Tc-colloids. Venous thrombi in rats were made by clamping the left femoral vein segments for 5 minutes. With sup(99m)Tc-Sn colloid, the mean value of the ratio of the radioactivity in the clamped vein segment to the control segment (L/R ratio) was 54.5. L/R ratios of others were 24.2 with sup(99m)Tc-phytate, 12.1 with sup(99m)Tc-sulfur colloid, 3.9 with sup(99m)Tc-rhenium colloid, 2.4 with sup(99m)Tc-millimicrosphere albumin. L/R ratios were higher for the fresh thrombi, significant uptake was also observed up to seven days. Intravascular fibrin deposits were induced by i.p. injection of endotoxin into rats. Three hours after injection of endotoxin, sup(99m)Tc-colloids were i.v. injected. Significant lung uptake was observed in sup(99m)Tc-colloids except in sup(99m)Tc-rhenium colloid. And the most remarkable change of lung uptake was observed in sup(99m)Tc-Sn colloid. Significant kidney uptake was observed in sup(99m)Tc-Sn colloid and sup(99m)Tc-sulfur colloid. And the most remarkable change of kidney uptake was also observed in sup(99m)Tc-Sn colloid. When heparin was injected i.v. at the same time as endotoxin injection, lung uptake of sup(99m)Tc-Sn colloid was significantly decreased. However, the heparin effect on kidney uptake of sup(99m)Tc-Sn colloid was more significant than on lung uptake. The results in this study indicated that sup(99m)Tc-Sn colloid showed the greatest affinity to in vitro clots, venous thrombi and intravascular fibrin deposits.

  9. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats.

    Science.gov (United States)

    Wang, Fang; Song, Yan-Feng; Yin, Jie; Liu, Zi-Hua; Mo, Xiao-Dan; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.

  10. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  11. Ouabain-binding and 86rubidium-uptake in lymphocytes of normal and borderline hypertensive subjects

    DEFF Research Database (Denmark)

    Nielsen, J R; Pedersen, K E; Johansen, Torben

    1983-01-01

    activity were studied in lymphocytes of nine borderline hypertensives (27 (20-36) years) and nine controls (28 (20-36) years). Maximum 3H-ouabain binding and 86Rb-uptake were taken as measures of the number of pump sites and cation pump activity, respectively. The median number of sodium/potassium pump...... to increased cation pump activity in lymphocytes of BH subjects in vitro may be interpreted as an adaptive change possibly induced by a circulating natriuretic substance....

  12. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  13. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3 radical

    International Nuclear Information System (INIS)

    Srivastava, S.P.; Chen, N.Q.; Holtzman, J.L.

    1990-01-01

    The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3 radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals and are toxic to cultured hepatocytes. The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4

  14. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Dearling, J.L.J.; Lewis, J.S.; Mullen, G.E.D.; Rae, M.T.; Zweit, J.; Blower, P.J.

    1998-01-01

    The well-known perfusion tracer CuPTSM, labelled with 62 Cu or 64 Cu, is believed to be trapped in cells non-selectively by a bioreductive mechanism. It is proposed that by modifying the ligand to increase its electron donor strength (for example by adding alkyl functionality or replacing sulphur ligands with oxygen ligands), the copper complexes will become less easily reduced and tracers with selectivity for hypoxic tissues could thus be developed. The aim of this work was to prepare 64 Cu-labelled complexes of two series of ligands, based on the bis(thiosemicarbazone) (13 ligands) and bis(salicylaldimine) (3 ligands) skeletons, and to evaluate the hypoxia dependence of their uptake in cells. The complexes were incubated with Chinese hamster ovary cells under normoxic and hypoxic conditions, and the cells isolated by centrifugation to determine radioactivity uptake at various time points up to 90 min. Several members of both series demonstrated significant (P 60 Cu, 61 Cu, 62 Cu, 64 Cu) and targeted radiotherapy ( 64 Cu, 67 Cu). (orig.)

  15. Uptake of nuclides by plants

    International Nuclear Information System (INIS)

    Greger, Maria

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate

  16. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  17. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    Science.gov (United States)

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  18. In vivo cellular uptake of glutamate is impaired in the rat hippocampus during and after transient cerebral ischemia

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    2001-01-01

    Using microdialysis in CA1 of the rat hippocampus, we studied the effect of transient cerebral ischemia on in vivo uptake and on extracellular levels of glutamate during, and at different time points after ischemia. (3)H-D-aspartate (test substance), and (14)C-mannitol (reference substance), were...

  19. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  20. In Vitro and In Vivo Antidiabetic Evaluation of Selected Culinary-Medicinal Mushrooms (Agaricomycetes).

    Science.gov (United States)

    Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa

    2017-01-01

    Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.

  1. Effect of dietary fat on uptake of lysine, phenylalanine, leucine and methionine by bovine mammary tissue slices in vitro

    International Nuclear Information System (INIS)

    Nianogo, A.J.; Amos, H.E.; Dean, R.; Froetschel, A.; Fernandez, J.M.

    1989-01-01

    Four mature Holstein cows in late lactation were blocked in two groups based on milk production, in a 2x2 reversal with 21-day periods, and fed: (A) control diet; (B) A plus 1 kg/day tallow. Cows were fed sorghum silage ad libitum. Blood samples were collected from the jugular vein on day 15, 17, and 19 of each period. Fat did not effect DM intake or milk yield, however milk CP yield was 20% lower. Plasma lipids increased 33.6%, glucose decreased 9% and insulin/glucagon ratio decreased 21.2% in cow fed fat. After period two, cows were slaughtered and mammary tissue sampled for incubation in Krebs Ringer bicarbonate buffer containing 22 AA at arterial concentration and .225 μCi/ml of 14 C-labelled L-Leu, L-Phe, L-Lys or D/L Met. Dietary fat decreased tissue AA uptake rate by 21.2%. Uptake was 4.8, 10.3, 17.8 and 2.4 x 10 -3 μM/min/gm of tissue DM for Phe, Lys, Leu and Met, respectively. Results suggest that dietary fat may decrease milk protein synthesis by lowering the rate of AA uptake

  2. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    Science.gov (United States)

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin

  3. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang; Mccrate, Joseph M; Li Hao [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Lee, James C-M, E-mail: liha@missouri.edu [Department of Biological Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2011-03-11

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular

  4. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    International Nuclear Information System (INIS)

    Chen Liang; Mccrate, Joseph M; Li Hao; Lee, James C-M

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of

  5. Effect of interaction of heavy metals on (Na+-K+) ATPase and uptake of 3H-DA and 3H-NA in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Chandra, S.V.; Murthy, R.C.; Husain, T.; Bansal, S.K.

    1984-01-01

    The effect of interaction of Mn 2+ , Pb 2+ and CD 2+ on (Na + -K + ) ATPase and uptake of labelled dopamine ( 3 H-DA) and labelled noradrenaline ( 3 H-NA) were studied in vitro in rat brain synaptosomes. The inhibition of (Na + -K + )ATPase by Pb 2+ + Cd 2+ alone was concentration dependent, however, Mn 2+ had almost no effect on the activity of this enzyme. Interaction of Cd 2+ with either Pb 2+ or Mn 2+ was almost powerful in inhibiting the activity of synaptosomal transport ATPase. Lower concentrations of Pb 2+ increased while higher concentrations inhibited synaptosomal uptake of 3 H-DA and 3 H-NA. Lower concentrations of CD 2+ increased the uptake of 3 H-DA while at concentrations of 100 μM, the uptake was inhibited, this metal had strong inhibitory effect on the uptake of 3 H-NA. Mn 2+ had inhibited the uptake of labelled amines. Interaction of Mn 2+ with Pb 2+ or Cd 2+ produced inhibition on the uptake of 3 H-DA and 3 H-NA. The results of the uptake of biogenic amines in the presence of metal ions apparently had no correlation with the activity og (Na + -K + ) ATPase which is involved in the active transport of cations across cell membranes. (author)

  6. Diselenolane-mediated cellular uptake.

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  7. A mechanistic compartmental model for total antibody uptake in tumors.

    Science.gov (United States)

    Thurber, Greg M; Dane Wittrup, K

    2012-12-07

    Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  9. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Purpose Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Results Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization

  10. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.

    Science.gov (United States)

    Alwani, Saniya; Kaur, Randeep; Michel, Deborah; Chitanda, Jackson M; Verrall, Ronald E; Karunakaran, Chithra; Badea, Ildiko

    2016-01-01

    Nanodiamonds (NDs) are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND) in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA) was also analyzed using flow cytometry. Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed good stability, remaining under 100 nm throughout the testing period. A positive zeta potential of >+20 mV indicated a preservation of surface charges. Size distribution and zeta potential changed for lys-NDs after incubation with blood serum, suggesting an interaction with biomolecules, mainly proteins, and a possible formation of a protein corona. Cellular internalization of lys-NDs was confirmed

  11. Uptake of 75Se-selenite by brush border membrane vesicles from chick duodenum stimulated by vitamin D

    International Nuclear Information System (INIS)

    Mykkanen, H.M.; Wasserman, R.H.

    1989-01-01

    Brush border membrane vesicles were isolated from mucosal homogenates of duodena from normal, rachitic and vitamin D-treated rachitic chicks using a discontinuous sucrose gradient, and further purified by glycerol gradient centrifugation. In vitro uptake of 75Se-selenite by purified brush border membrane vesicles was studied using a rapid filtration technique. The time course of 75Se uptake was non-linear; rapid initial binding was followed by a gradual decrease in the rate of uptake until an equilibrium value was reached at 60-120 min. The initial binding at 36 s was not affected by selenite concentration in the incubation buffer, while the fractional rate of uptake between the 36 s and 2 min time periods was clearly lower with 1 mM Se than with 4-100 microM Se. 75Se uptake did not show any dependency on the external Na-gradient, nor could it be inhibited by other anions (arsenate, phosphate). Treatment of rachitic chicks either with cholecalciferol (500 Iu, 72 h) or with 1,25(OH)2-cholecalciferol (0.5 microgram given 16 h prior to isolation of the vesicles) significantly enhanced 75Se uptake. A threefold excess of mannitol in the outside buffer reduced 75Se uptake by vesicles from vitamin D-deficient and D-treated chicks 60% and 35% respectively, but had no effect on vesicles from vitamin D-treated chicks preloaded with 75Se. Neither saponin treatment nor excess cold selenite could release the label from the vesicles preloaded with 75Se. These data are compatible with the hypothesis that selenite easily crosses the brush border membrane into the intravesicular space and, once inside, is tightly bound by the membrane

  12. Physical activity energy expenditure vs cardiorespiratory fitness level in impaired glucose metabolism

    DEFF Research Database (Denmark)

    Lidegaard, Lærke P; Hansen, Anne-Louise Smidt; Johansen, Nanna B

    2015-01-01

    Aim/hypothesis: Little is known about the relative roles of physical activity energy expenditure (PAEE) and cardiorespiratory fitness (CRF) as determinants of glucose regulation. The aim of this study was to examine the associations of PAEE and CRF with markers of glucose metabolism, and to test...... the hypothesis that CRF modifies the association between PAEE and glucose metabolism. Methods: We analysed cross-sectional data from 755 adults from the Danish ADDITION-PRO study. On the basis of OGTT results, participants without known diabetes were classified as having normal glucose tolerance, isolated...... impaired fasting glycaemia (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG + IGT or screen-detected diabetes mellitus. Markers of insulin sensitivity and beta cell function were determined. PAEE was measured using a combined heart rate and movement sensor. CRF (maximal oxygen uptake...

  13. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  14. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  15. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  16. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (u......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  17. Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Hempel, Casper; Hoyer, Nils; Staalsø, Trine

    2014-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) is taken up by parasitized red blood cells during malaria and stimulates intra-erythrocytic growth of Plasmodium falciparum in vitro. The cause and consequence of this uptake is not understood. METHODS: Plasmodium falciparum was cultured......, SU5416, dose-dependently inhibited growth. None of the treatments reduced intracellular VEGF levels. Thus, the anti-parasitic effect of SU5416 seemed independent of VEGF uptake. SU5416 reduced phosphorylated tyrosine in parasitized red blood cells. Similarly, the broad-spectrum tyrosine kinase...... in vitro. Parasite growth and intracellular VEGF levels were assessed using flow cytometry. Intracellular VEGF was visualized by fluorescence immunocytochemistry. Phosphorylated tyrosine was measured by western blotting. In vivo assessment of intra-erythrocytic VEGF was performed in Plasmodium berghei ANKA...

  18. Physiological and tumoral uptake of 68Ga-DOTATATE. Standardized uptake values and challenges in interpretation

    International Nuclear Information System (INIS)

    Kuyumcu, Serkan; Oezkan, Zeynep Goezde; Sanli, Yasemin; Yilmaz, Ebru; Mudun, Ayse; Adalet, Isik; Unal, Seher

    2013-01-01

    The objective of this study is to determine the range of standardized uptake value (SUV) max of 68Ga-DOTA-tyr3-octreotate (DOTATATE) in normal organs and tumoral lesions and establish uptake unrelated to neuroendocrine tumors (NET). One hundred and twenty patients (57 men, 63 women), who underwent 68 Ga-DOTATATE positron emission tomography (PET)/CT imaging in our institution were analyzed. Patients were indicated for 68 Ga-DOTATATE PET/CT imaging to detect primary tumor or metastasis of suspected or previously known NET, to determine somatostatin receptor (SSTR) positivity and to detect occult source of ectopic Cushing syndrome. Normal range of uptake was calculated for the organs that were proven to have no pathology by either conventional radiological imaging or clinical follow-up, using SUV max as a semiquantitative measure. Uptake and tumor to background (T/B) ratios of tumoral lesions in liver, pancreas, bone, brain and lymph nodes were calculated. Uptakes due to lesions unrelated to NET were also documented. Significant uptake was found in spleen, kidneys, adrenal glands, liver and pituitary gland with mean SUV max of 24.67, 14.30, 13.73, 9.12 and 9.74 respectively. Uptake was measured separately for the pancreatic head and body separately, however, besides a slightly heterogeneous uptake; the difference was not statistically significant. Uptake in the tumoral lesions had high (T/B) ratios with mean SUV max of 28.72, 25.21, 18.28, 34.73 and 12.59 for liver, pancreas, bone, brain and lymph nodes, respectively. Incidental benign tumoral lesions were detected in 3 patients (2.5%) which were meningioma and fibrous dysplasia demonstrating significant and breast fibroadenoma demonstrating mild 68 Ga-DOTATATE uptake. Non-neoplastic processes were detected in 4 patients (14.1%), including postsurgical inflammation, reactive lymph nodes, arthritis and demonstrated faint to mild 68 Ga-DOTATATE uptake, with the exception of significant uptake in accessory spleen. 68 Ga

  19. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore...... to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant...... formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin...

  20. Factors affecting the uptake and retention of Vibrio vulnificus in oysters.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2014-12-01

    Vibrio vulnificus, a bacterium ubiquitous in oysters and coastal water, is capable of causing ailments ranging from gastroenteritis to grievous wound infections or septicemia. The uptake of these bacteria into oysters is often examined in vitro by placing oysters in seawater amended with V. vulnificus. Multiple teams have obtained similar results in studies where laboratory-grown bacteria were observed to be rapidly taken up by oysters but quickly eliminated. This technique, along with suggested modifications, is reviewed here. In contrast, the natural microflora within oysters is notoriously difficult to eliminate via depuration. The reason for the transiency of exogenous bacteria is that those bacteria are competitively excluded by the oyster's preexisting microflora. Evidence of this phenomenon is shown using in vitro oyster studies and a multiyear in situ case study. Depuration of the endogenous oyster bacteria occurs naturally and can also be artificially induced, but both of these events require extreme conditions, natural or otherwise, as explained here. Finally, the "viable but nonculturable" (VBNC) state of Vibrio is discussed. This bacterial torpor can easily be confused with a reduction in bacterial abundance, as bacteria in this state fail to grow on culture media. Thus, oysters collected from colder months may appear to be relatively free of Vibrio but in reality harbor VBNC cells that respond to exogenous bacteria and prevent colonization of oyster matrices. Bacterial-uptake experiments combined with studies involving cell-free spent media are detailed that demonstrate this occurrence, which could explain why the microbial community in oysters does not always mirror that of the surrounding water. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Murrin L Charles

    2011-03-01

    Full Text Available Abstract Background Methamphetamine (METH, an addictive psycho-stimulant drug with euphoric effect is known to cause neurotoxicity due to oxidative stress, dopamine accumulation and glial cell activation. Here we hypothesized that METH-induced interference of glucose uptake and transport at the endothelium can disrupt the energy requirement of the blood-brain barrier (BBB function and integrity. We undertake this study because there is no report of METH effects on glucose uptake and transport across the blood-brain barrier (BBB to date. Results In this study, we demonstrate that METH-induced disruption of glucose uptake by endothelium lead to BBB dysfunction. Our data indicate that a low concentration of METH (20 μM increased the expression of glucose transporter protein-1 (GLUT1 in primary human brain endothelial cell (hBEC, main component of BBB without affecting the glucose uptake. A high concentration of 200 μM of METH decreased both the glucose uptake and GLUT1 protein levels in hBEC culture. Transcription process appeared to regulate the changes in METH-induced GLUT1 expression. METH-induced decrease in GLUT1 protein level was associated with reduction in BBB tight junction protein occludin and zonula occludens-1. Functional assessment of the trans-endothelial electrical resistance of the cell monolayers and permeability of dye tracers in animal model validated the pharmacokinetics and molecular findings that inhibition of glucose uptake by GLUT1 inhibitor cytochalasin B (CB aggravated the METH-induced disruption of the BBB integrity. Application of acetyl-L-carnitine suppressed the effects of METH on glucose uptake and BBB function. Conclusion Our findings suggest that impairment of GLUT1 at the brain endothelium by METH may contribute to energy-associated disruption of tight junction assembly and loss of BBB integrity.

  3. Uptake in melanoma cells of N-(2-diethylaminoethyl)-2-iodobenzamide (BZA2), an imaging agent for melanoma staging: relation to pigmentation

    International Nuclear Information System (INIS)

    Mansard, Sandrine; Papon, Janine; Moreau, Marie-France; Miot-Noirault, Elisabeth; Labarre, Pierre; Bayle, Martine; Veyre, Annie; Madelmont, Jean-Claude; Moins, Nicole

    2005-01-01

    N-(2-diethylaminoethyl)-2-iodobenzamide (BZA 2 ) has been singled out as the most efficacious melanoma scintigraphy imaging agent. Our work was designed to assess the mechanisms of the specific affinity of the radioiodinated iodobenzamide for melanoma tissue. We studied the cellular uptake and retention of [ 125 I]-BZA 2 on various cell lines. In vitro, cellular [ 125 I]-BZA 2 uptake was related to the pigmentation status of the cells: higher in pigmented melanoma cell lines (M4 Beu, IPC 227, B 16) than in a nonpigmented one (M3 Dau) and nonmelanoma cell lines (MCF 7 and L 929). Two mechanisms were assessed: binding of the tracer to melanin or to sigma receptors of melanoma cells. First, the uptake of [ 125 I]-BZA 2 after melanogenesis stimulation by α-melanocyte-stimulating hormone and L-tyrosine increased in the B 16 melanoma cell line both in vitro and in vivo according to melanin concentration. Moreover, the binding of [ 125 I]-BZA 2 to synthetic melanin was dependent on melanin concentration and could be saturated. Second, no competition was evidenced on M4 Beu cells between [ 125 I]-BZA 2 and haloperidol, a sigma ligand, at concentrations ≤10 -6 M. We show that the specificity and sensibility of BZA 2 as a melanoma scintigraphic imaging agent are mostly due to interactions with melanic pigments

  4. {sup 18}F-FDG uptake at the surgical margin after hepatic resection: Patterns of uptake and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Peungjesada, Silanath [University New Mexico, Department of Radiology, Albuquerque, NM (United States); Aloia, Thomas A. [University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Unit 444, Houston, TX (United States); Fox, Patricia [University of Texas MD Anderson Cancer Center, Department of Biostatistics, Unit 1411, Houston, TX (United States); Chasen, Beth [University of Texas MD Anderson Cancer Center, Department of Nuclear Medicine, Unit 1483, Houston, TX (United States); Shin, Sooyoung; Loyer, Evelyne M. [University of Texas MD Anderson Cancer Center, Department of Diagnostic Radiology, Unit 1473, Houston, TX (United States); Baiomy, Ali [Cairo University, National Cancer Center, Cairo (Egypt)

    2015-08-15

    To evaluate the patterns of {sup 18}F-FDG uptake at the surgical margin after hepatectomy to identify features that may differentiate benign and malignant uptake. Patients who had undergone a PET/CT after hepatectomy were identified. Delay between resection and PET/CT, presence of uptake at the surgical margin, pattern of uptake, and maximal standardized value were recorded. The PET/CT findings were correlated with contrast-enhanced CT or MRI. There were 26 patients with increased 18F-FDG uptake; uptake was diffuse in seven and focal in 19. Diffuse uptake was due to inflammation in all cases. Focal uptake was due to recurrence in 12 and inflammation in seven cases. Defining a focal pattern only as a positive for malignancy yielded 100 % sensitivity, 87 % specificity, 37 % false positive rate. As expected, SUV{sub max} was significantly higher for recurrence than inflammation, but did overlap. Contrast-enhanced CT allowed differentiation between malignant and benign uptake in all cases. F-FDG uptake after hepatectomy does not equate to recurrence and yields a high false positive rate. Diffuse uptake did not require additional evaluation in our sample. Focal uptake, however, may be due to recurrence; differentiating benign and malignant nodular uptake relies on optimal contrast-enhanced CT or MRI. (orig.)

  5. Meloxicam-loaded Phospholipid/solutol® HS15 Based Mixed Nanomicelles: Preparation, Characterization, and in vitro Antioxidant Activity.

    Science.gov (United States)

    Shaji, Jessy; Varkey, Dhanila

    2016-01-01

    Rheumatoid arthritis (RA) is a debilitating disease which results in joint destruction, mainly due to chronic inflammation and oxidative stress. Meloxicam (MLX) is a preferential cyclooxygenase-2 (COX-2) inhibitor with potential free radical scavenging activity. Mixed nanomicelles (NMs) of MLX can augment its antioxidant effects. The present study aims to prepare, characterize, and evaluate the in vitro antioxidant effects of MLX-loaded mixed nanomicelles (MLXNMs). Conventional thin-film hydration method was employed to fabricate MLX-NMs. The formulations were characterized for particle size, zeta potential, entrapment efficiency (EE), and drug loading (DL). Additionally, the optimized formulation was characterized for small-angle neutron scattering (SANS), in vitro drug release, and morphology. MLX encapsulation in NMs was confirmed by Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), 1H nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), studies. The cell uptake of sulforhodamine B (SRB)- labeled NMs was studied in RAW 264.7 cells. The in vitro antioxidant activity of optimized MLX-NMs was studied by different antioxidant assays. The optimized MLX-NMs exhibited average size and zeta potential of 88 ± 42 nm and -47.4 ± 16.2 mV, respectively. The EE and DL of MLX were 94.13 ± 1.01 % and 4.20 ± 0.05 %, respectively. Morphology studies confirmed the oblate ellipsoidal shape of MLXNMs. The in vitro release study exhibited a biphasic release pattern. MLX encapsulation into the micelle core was confirmed by FTIR, DSC, 1H NMR, and XRD studies. Additionally, SRB-labeled NMs demonstrated efficient in vitro cell uptake in RAW 264.7 cells. Furthermore, in vitro antioxidant studies exhibited superior free radical scavenging activity of MLXNMs as compared to free MLX. The NMs potentiate the in vitro antioxidant effects of MLX. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Constitutive activation of Gli2 impairs bone formation in postnatal growing mice.

    Directory of Open Access Journals (Sweden)

    Kyu Sang Joeng

    Full Text Available Indian hedgehog (Ihh signaling is indispensable for osteoblast differentiation during endochondral bone development in the mouse embryo. We have previously shown that the Gli2 transcription activator critically mediates Ihh function in osteoblastogenesis. To explore the possibility that activation of Hedgehog (Hh signaling may enhance bone formation, we generated mice that expressed a constitutively active form of Gli2 in the Osx-lineage cells. Unexpectedly, these mice exhibited severe osteopenia due to a marked decrease in osteoblast number and function, although bone resorption was not affected. Quantitative analyses of the molecular markers indicated that osteoblast differentiation was impaired in the mutant mouse. However, the osteoblast-lineage cells isolated from these mice exhibited more robust osteoblast differentiation than normal in vitro. Similarly, pharmacological stimulation of Hh signaling enhanced osteoblast differentiation from Osx-expressing cells isolated from the wild-type mouse. Thus, even though Hh signaling directly promotes osteoblast differentiation in vitro, constitutive activation of this pathway impairs bone formation in vivo, perhaps through an indirect mechanism.

  7. In vitro-in vivo correlation in skin permeation.

    Science.gov (United States)

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  8. Cellular uptake of misonidazole and analogues with acidic or basic functions

    International Nuclear Information System (INIS)

    Dennis, M.F.; Stratford, M.R.L.; Wardman, P.; Watts, M.E.

    1985-01-01

    Average intracellular concentrations of five radiosensitizers in hamster fibroblast-like V79-379A cells in vitro were measured by high performance liquid chromatography, varying the extracellular pH(pHsub(e)) and estimating the apparent intracellular pH from the distribution of 5,5-dimethyloxazolidine-2,4-dione. The intracellular: extracellular concentration ratio for the 2-nitroimidazole, misonidazole was constant at about 0.7 for pHsub(e)=6.6-7.6, whereas the weak base, Ro 03-8799 (1-(2-nitro-1-imidazolyl)-3-N-piperidino-2-propanol) was concentrated intracellularly at pHsub(e)=7.3-7.4 by a factor of 3.3, the factor increasing from about 0.8 at pHsub(e)=6.0, to 7.5 at pHsub(e)=7.85. The weak acid, azomycin (2-nitroimidazole) showed approximately constant uptake (factor 1.1) between pHsub(e)=6.0-7.0, decreasing to 0.8 at pHsub(e)=7.3 and 0.4 at pHsub(e)=7.8. Measurements of intracellular uptake of Ro 31-0052 (the more hydrophilic and less basic 3'-hydroxypiperidino analogue of Ro 03-8799) and of Ro 31-0258 (3-(2-nitro-1-imidazolyl)propionic acid, a stronger acid than azomycin) were made for comparison. The results were compared with theoretical calculations of pH-induced concentration gradients; the time dependence of the uptake of the bases is not at present clearly understood. (author)

  9. In vitro hypoglycemic effects of unripe and ripe fruits of Musa sapientum

    Directory of Open Access Journals (Sweden)

    Somnath Devidas Bhinge

    2018-03-01

    Full Text Available ABSTRACT The present study was undertaken to verify the hypoglycemic potential of unripe and ripe fruit extracts of Musa sapientum by using various in-vitro techniques, namely glucose adsorption capacity, glucose diffusion, amylolysis kinetics and glucose transport across the yeast cells. The results revealed that the unripe and ripe fruit extracts of Musa sapientum adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. There were no significant (p≤0.05 differences between their adsorption capacities. In the amylolysis kinetic experimental model the rate of glucose diffusion was found to be increased with time from 30 to 180 min and both extracts exhibited significant inhibitory effects on the movement of glucose into external solution across the dialysis membrane as compared to control. The plant extracts also promoted glucose uptake by the yeast cells and enhancement of glucose uptake was dependent on both the sample and glucose concentration. The hypoglycemic effect exhibited by the extracts was observed to be mediated by inhibiting α-amylase, inhibiting glucose diffusion by adsorbing glucose and by increasing glucose transport across the cell membranes as revealed by an in-vitro model of yeast cells.

  10. RESPONSE OF Cattleya forbesii ORCHID TO INCREASING SILICON CONCENTRATIONS IN VITRO

    Directory of Open Access Journals (Sweden)

    RONAN CARLOS COLOMBO

    2016-01-01

    Full Text Available Addition of Silicon (Si to culture media has been shown to improve the development of seedlings grown in vitro , and to reduce losses during the acclimatization phase. The objective of this study was to evaluate the in vitro growth of Cattleya forbesii (Orchidaceae in MS medium containing five different concentrations of SiO 2 (0.0, 0.5, 1.0, 1.5, and 2.0 g·L −1 . At day 200, the following variables were measured: number of roots, average length of the root system, leaf area, number of leaves and shoots, shoot height, fresh and dry masses of roots and shoots, water content of roots and shoots, and pH of the culture medium. Most variables decreased as the concentration of Si increased, reducing the in vitro vegetative growth of C. forbesii . Accumulation of Si in leaf tissues was detected by scanning electron microscopy, confirming uptake by plants. The Si source and concentrations tested showed no beneficial effect on in vitro growth of C. forbesii .

  11. Cellular uptake of lipoproteins and persistent organic compounds-An update and new data

    International Nuclear Information System (INIS)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjaergaard; Bonefeld-Jorgensen, Eva Cecilie

    2008-01-01

    There are a number of interactions related to the transport of lipophilic xenobiotic compounds in the blood stream of mammals. This paper will focus on the interactions between lipoproteins and persistent organic pollutants (POPs) and how these particles are taken up by cells. A number of POPs including the pesticide p,p'-dichlorodiphenyltrichloroethane (DDT), and especially its metabolite p,p'-dichlorodiphenyldichloroethene (DDE), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors low-density lipoprotein receptor-related protein (LRP) and low-density lipoprotein receptor (LDLR) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of low-density lipoproteins (LDL) and [ 14 C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks receptor activity. The results showed that [ 14 C]DDT uptake was decreasing when the LDL concentration was increasing. There was no strong evidence for a receptor-mediated uptake of the [ 14 C]DDT-lipoprotein complex. To conclude, DDT travels in the blood stream and can cross cell membranes while being transported as a DDT-lipoprotein complex. The lipoproteins do not need receptors to cross cell membranes since passive diffusion constitutes a major passageway

  12. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport.

    Science.gov (United States)

    Korytowski, Witold; Wawak, Katarzyna; Pabisz, Pawel; Schmitt, Jared C; Girotti, Albert W

    2014-01-03

    StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis. Copyright © 2013. Published by Elsevier B.V.

  13. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Science.gov (United States)

    Westerweel, Peter E; Teraa, Martin; Rafii, Shahin; Jaspers, Janneke E; White, Ian A; Hooper, Andrea T; Doevendans, Pieter A; Verhaar, Marianne C

    2013-01-01

    Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+)Flk-1(+) EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+) hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  14. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment.Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed.In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro.EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  15. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  16. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

    NARCIS (Netherlands)

    Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; Zande, M. van der; Rietjens, I.M.C.M.; Bouwmeester, H.

    2015-01-01

    Intestinal translocation is a key factor for determining bioavailability of nanoparticles (NPs) after oral uptake. Therefore, we evaluated three in vitro intestinal cell models of increasing complexity which might affect the translocation of NPs: a mono-culture (Caco-2 cells), a co-culture with

  17. Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells

    Directory of Open Access Journals (Sweden)

    Freese Christian

    2012-07-01

    Full Text Available Abstract Background The use of gold nanoparticles (AuNPs for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm, to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentration-dependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm, the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the

  18. High affinity (3H) β-Alanine uptake by scar margins of ferric chloride-induced epileptogenic foci in rat isocortex

    International Nuclear Information System (INIS)

    Robitaille, Y.; Sherwin, A.

    1984-01-01

    Cortical astrocytes of normal mammalian brain are endowed with a high affinity uptake system for β-Alanine which is competitively inhibited by gamma aminobutyric acid (GABA), a neurotransmitter strongly implicated in epileptogenesis. The authors evaluated ( 3 H) β-Alanine uptake by reactive astrocytes proliferating within scar of epileptogenic foci induced in rat motor cortex by microinjections of 100 mM ferric chloride. Following in vitro incubation of scar tissue with ( 3 H) β-Alanine, ultrastructural morphometry of grain patterns at 5, 30 and 120 days post injection revealed early and significant grain count increases over astroglial processes, predominantly those related to perivascular glial end-feet. Astrocytic cell body and endothelial cell counts showed a more gradual and stepwise increase. Similar data were obtained by comparing visual and edited mean astrocytic grain counts. These results suggest that the enhanced uptake of reactive astrocytes may reflect a marked decrease of inhibitory GABAergic neurons within ferric chloride-induced scars. 7 figures, 1 table

  19. Dissociation between brain amyloid deposition and metabolism in early mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Liyong Wu

    Full Text Available The hypothetical model of dynamic biomarkers for Alzheimer's disease (AD describes high amyloid deposition and hypometabolism at the mild cognitive impairment (MCI stage. However, it remains unknown whether brain amyloidosis and hypometabolism follow the same trajectories in MCI individuals. We used the concept of early MCI (EMCI and late MCI (LMCI as defined by the Alzheimer's disease Neuroimaging Initiative (ADNI-Go in order to compare the biomarker profile between EMCI and LMCI.To examine the global and voxel-based neocortical amyloid burden and metabolism among individuals who are cognitively normal (CN, as well as those with EMCI, LMCI and mild AD.In the present study, 354 participants, including CN (n = 109, EMCI (n = 157, LMCI (n = 39 and AD (n = 49, were enrolled between September 2009 and November 2011 through ADNI-GO and ADNI-2. Brain amyloid load and metabolism were estimated using [(18F]AV45 and [(18F]fluorodeoxyglucose ([(18F]FDG PET, respectively. Uptake ratio images of [(18F]AV45 and [(18F]FDG were calculated by dividing the summed PET image by the median counts of the grey matter of the cerebellum and pons, respectively. Group differences of global [(18F]AV45 and [(18F]FDG were analyzed using ANOVA, while the voxel-based group differences were estimated using statistic parametric mapping (SPM.EMCI patients showed higher global [(18F]AV45 retention compared to CN and lower uptake compared to LMCI. SPM detected higher [(18F]AV45 uptake in EMCI compared to CN in the precuneus, posterior cingulate, medial and dorsal lateral prefrontal cortices, bilaterally. EMCI showed lower [(18F]AV45 retention than LMCI in the superior temporal, inferior parietal, as well as dorsal lateral prefrontal cortices, bilaterally. Regarding to the global [(18F]FDG, EMCI patients showed no significant difference from CN and a higher uptake ratio compared to LMCI. At the voxel level, EMCI showed higher metabolism in precuneus, hippocampus, entorhinal and

  20. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro

    DEFF Research Database (Denmark)

    Echwald, Søren M; Riis, Helle Bach; Vestergaard, Henrik

    2002-01-01

    In the present study, we tested the hypothesis that variability in the protein tyrosine phosphatase-1B (PTP-1B) gene is associated with type 2 diabetes. Using single-strand conformational polymorphism analysis, we examined cDNA of PTP-1B from 56 insulin-resistant patients with type 2 diabetes.......0012). In summary, a rare P387L variant of the PTP-1B gene is associated with a 3.7 (CI 1.26-10.93, P = 0.02) genotype relative risk of type 2 diabetes in the examined population of Danish Caucasian subjects and results in impaired in vitro serine phosphorylation of the PTP-1B peptide....

  1. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    Science.gov (United States)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  2. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    International Nuclear Information System (INIS)

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  3. An interspecies comparison of the phagocytosis and dissolution of 241AmO2 particles by rat, dog and monkey alveolar macrophages in vitro

    International Nuclear Information System (INIS)

    Taya, A.; Carmack, D.B.; Muggenburg, B.A.; Mewhinney, J.A.

    1992-01-01

    Experiments were conducted to study the phagocytosis and dissolution of 241 AmO 2 particles by rat, dog and monkey alveolar macrophages (PAM) in vitro. The phagocytosis and dissolution of 241 AmO 2 particles were followed up to 20 and 72 h, respectively. Dog and monkey PAM took up 241 AmO 2 particles at similar rates, whereas rat PAM phagocytosed only 60% of the amount phagocytosed by dog and monkey PAM at 20h. The PAM of the three species dissolved 241 AmO 2 particles at similar rates; 8-10% was dissolved by 72h. The results of the 241 AmO 2 uptake in vitro may reflect in vivo situations, where the differences in uptake seen in vitro would probably diminish at later times after exposure. The dissolution results imply that the dissolution of 241 AmO 2 particles by alveolar macrophages of the three species might be species-independent. (author)

  4. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    International Nuclear Information System (INIS)

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used

  5. Iodine metabolism and thyroid functions in various species of domestic animals and poultry birds. I - Species difference in thyroid status as reflected by triiodothyronine 131I uptake test

    International Nuclear Information System (INIS)

    Setia, M.S.; Parshad, Omkar; Varman, P.N.

    1974-01-01

    In vitro triiodothyronine- 131 I uptake, by red blood cells was studied in buffaloes, buffaloe calves, cross-bred calves, rams, goats, piglets and also in pure white leg horn and cross-bred birds. Results revealed that buffalo calves have the lowest uptake values, whereas piglets appeared to have the highest values as compared to other species. Distinct differences in the uptake of T 3 - 131 I by the erythrocytes were observed to exist within as well as amongst the species of farm animals and poultry birds studied. Cross-breds exhibited higher degree of T 3 - 131 I uptake as compared to pure-breds. This test offers promise where more tedious methods may not be possible for conducting the survey on the thyroid status and iodine metabolism on large population of live-stock. (author)

  6. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Science.gov (United States)

    Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here

  7. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Directory of Open Access Journals (Sweden)

    Michael Dannenmann

    Full Text Available European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this

  8. Extension of the culture period for the in vitro growth of bovine oocytes in the presence of bone morphogenetic protein-4 increases oocyte diameter, but impairs subsequent developmental competence.

    Science.gov (United States)

    Yang, Yinghua; Kanno, Chihiro; Sakaguchi, Kenichiro; Yanagawa, Yojiro; Katagiri, Seiji; Nagano, Masashi

    2017-11-01

    Bone morphogenetic protein-4 (BMP-4) inhibits luteinization of granulosa cells during in vitro growth (IVG) culture of bovine oocytes; however, oocytes derived from a 12 day IVG were less competent for development than in vivo-grown oocytes. We herein investigated whether an extended IVG culture with BMP-4 improves oocyte growth and development to blastocysts after in vitro fertilization. Oocyte-granulosa cell complexes (OGCs) were cultured for 14 or 16 days with BMP-4 (10 ng/mL), while a 12 day culture with BMP-4 served as the in vitro control. OGC viability was maintained for the 16 day culture with BMP-4 (83.2%), but was significantly lower without BMP-4 (58.9%) than the control (83.0%). Prolong-cultured oocytes at 16 days had statistically greater diameter (114.6 μm) than the control (111.7 μm). IVG oocytes with BMP-4 for the 16 day culture had a similar nuclear maturation rate to the control (approximately 67%); however, blastocyst rates in BMP-4 treated oocytes of 14 (1.8%) and 16 day (0%) IVG were statistically lower than that of 12 day IVG (9.0%). In conclusion, BMP-4 maintained OGC viability and promoted oocyte growth in a prolonged culture, but impaired the developmental competence of oocytes. Prolonged culture may not be an appropriate strategy for enhancing the developmental competence of IVG oocytes. © 2017 Japanese Society of Animal Science.

  9. Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea)

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F.; Johnson, L.; Simpson, N.B.; Bill, M.; Jumpponen, A.

    2009-11-01

    In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris{reg_sign}] or propiconazole [Tilt{reg_sign}]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt{reg_sign} was more effective in reducing fungal colony growth in vitro than Quadris{reg_sign}, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris{reg_sign} nor Tilt{reg_sign} affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf {sup 15}N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf {sup 15}N assimilation from glycine was three times higher than from {sup 15}NH{sub 4} in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial

  10. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation.

    Science.gov (United States)

    Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G

    2013-02-15

    Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.

  11. Correlation of Somatostatin Receptor-2 Expression with Gallium-68-DOTA-TATE Uptake in Neuroblastoma Xenograft Models.

    Science.gov (United States)

    Zhang, Libo; Vines, Douglass C; Scollard, Deborah A; McKee, Trevor; Komal, Teesha; Ganguly, Milan; Do, Trevor; Wu, Bing; Alexander, Natasha; Vali, Reza; Shammas, Amer; Besanger, Travis; Baruchel, Sylvain

    2017-01-01

    Peptide-receptor imaging and therapy with radiolabeled somatostatin analogs such as 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE have become an effective treatment option for SSTR-positive neuroendocrine tumors. The purpose of this study was to evaluate the correlation of somatostatin receptor-2 (SSTR2) expression with 68 Ga-DOTA-TATE uptake and 177 Lu-DOTA-TATE therapy in neuroblastoma (NB) xenograft models. We demonstrated variable SSTR2 expression profiles in eight NB cell lines. From micro-PET imaging and autoradiography, a higher uptake of 68 Ga-DOTA-TATE was observed in SSTR2 high-expressing NB xenografts (CHLA-15) compared to SSTR2 low-expressing NB xenografts (SK-N-BE(2)). Combined autoradiography-immunohistochemistry revealed histological colocalization of SSTR2 and 68 Ga-DOTA-TATE uptake in CHLA-15 tumors. With a low dose of 177 Lu-DOTA-TATE (20 MBq/animal), tumor growth inhibition was achieved in the CHLA-15 high SSTR2 expressing xenograft model. Although, in vitro , NB cells showed variable expression levels of norepinephrine transporter (NET), a molecular target for 131 I-MIBG therapy, low 123 I-MIBG uptake was observed in all selected NB xenografts. In conclusion, SSTR2 expression levels are associated with 68 Ga-DOTA-TATE uptake and antitumor efficacy of 177 Lu-DOTA-TATE. 68 Ga-DOTA-TATE PET is superior to 123 I-MIBG SPECT imaging in detecting NB tumors in our model. Radiolabeled DOTA-TATE can be used as an agent for NB tumor imaging to potentially discriminate tumors eligible for 177 Lu-DOTA-TATE therapy.

  12. Correlation of Somatostatin Receptor-2 Expression with Gallium-68-DOTA-TATE Uptake in Neuroblastoma Xenograft Models

    Directory of Open Access Journals (Sweden)

    Libo Zhang

    2017-01-01

    Full Text Available Peptide-receptor imaging and therapy with radiolabeled somatostatin analogs such as 68Ga-DOTA-TATE and 177Lu-DOTA-TATE have become an effective treatment option for SSTR-positive neuroendocrine tumors. The purpose of this study was to evaluate the correlation of somatostatin receptor-2 (SSTR2 expression with 68Ga-DOTA-TATE uptake and 177Lu-DOTA-TATE therapy in neuroblastoma (NB xenograft models. We demonstrated variable SSTR2 expression profiles in eight NB cell lines. From micro-PET imaging and autoradiography, a higher uptake of 68Ga-DOTA-TATE was observed in SSTR2 high-expressing NB xenografts (CHLA-15 compared to SSTR2 low-expressing NB xenografts (SK-N-BE(2. Combined autoradiography-immunohistochemistry revealed histological colocalization of SSTR2 and 68Ga-DOTA-TATE uptake in CHLA-15 tumors. With a low dose of 177Lu-DOTA-TATE (20 MBq/animal, tumor growth inhibition was achieved in the CHLA-15 high SSTR2 expressing xenograft model. Although, in vitro, NB cells showed variable expression levels of norepinephrine transporter (NET, a molecular target for 131I-MIBG therapy, low 123I-MIBG uptake was observed in all selected NB xenografts. In conclusion, SSTR2 expression levels are associated with 68Ga-DOTA-TATE uptake and antitumor efficacy of 177Lu-DOTA-TATE. 68Ga-DOTA-TATE PET is superior to 123I-MIBG SPECT imaging in detecting NB tumors in our model. Radiolabeled DOTA-TATE can be used as an agent for NB tumor imaging to potentially discriminate tumors eligible for 177Lu-DOTA-TATE therapy.

  13. Drug uptake (DAPI) of trypanosomes (T. brucei) and antitrypanosomal activity in vitro, in culture and in vivo studied by microscope fluorometry, chromatogram spectrophotometry and radiotracer techniques

    International Nuclear Information System (INIS)

    Kratzer, R.D.

    1982-01-01

    The present study had the following objectives: 1) Investigation of the specific binding and location of the diamidine DAPI within trypanosomes by fluorescence microscopy. 2) Development and standardization of a microscope fluorometry technique for measuring DAPI uptake of single trypanosomes. 3) Determination of the effect of incubation media, exposure time, and drug concentration on DAPI uptake of single trypanosomes. 4) Development of a technique applicable for quantitative fluorescence chemical analysis of DAPI uptake of trypanosomes. 5) Determination of drug uptake of trypanosomes using 14 C labelled DAPI. 6) Comparison of the values obtained by the three methods. (orig./MG)

  14. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity

  15. Radiostatine and radioiodine uptake characterization in sodium iodine symporter-expressing cell lines

    International Nuclear Information System (INIS)

    Petrich, T.; Helmeke, H.J.; Meyer, G.J.; Knapp, W.H.; Poetter, E.

    2002-01-01

    Full text: The sodium iodide symporter (NIS) has been recognized as an attractive target for cancer gene therapy. Here we investigated NIS-mediated transport of the high LET α-emitter astatine, 211 At, in comparison to radioiodine. A constitutive expression vector harbouring the human NIS cDNA was used in combination with reporter gene vectors for transient transfection of 13 different human cancer cell lines. Radioiodine uptake was measured as well as transfection efficiencies. Six stable NIS-expressing cell lines (3 derived from thyroid carcinomas, 2 colon carcinoma, 1 glioblastoma) were generated by antibiotic selection. NIS expression was monitored by immunohistochemistry and RT-PCR. Subsequently the radioastatine and radioiodine uptake characteristics of genetically modified cells were studied in comparison to the respective control cells. After xenotransplantation in nude mice in vivo tumor imaging by scintigraphy and biodistribution studies following organ removal were performed. Transient transfection of NIS cDNA led to high specific sodium perchlorate-sensitive radioiodine uptake in NIS-expressing cells that roughly correlates to transfection efficiencies. Similarly, stable NIS-expressing cell lines were able to concentrate high levels of radioiodine and in addition showed comparable transport capacity for radioastatine. Accumulation of 211 At was inhibited by sodium perchlorate like iodide uptake and displayed dependency an extracellular Na + - and I - -ions as well. Compared to wash-out experiments in cell culture the effective half life of radioiodine and radioastatine in vivo was significantly prolonged. Preliminary dose calculations by MIRD concepts indicated higher tumor radiation doses for 211 At compared to 131 I. Tumor cells of different origins transfected with the NIS-expression vector specifically and significantly take-up radioiodine and radioastatine in vitro and in vivo. The data provide direct evidence that the NIS efficiently transports

  16. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... for a thyroid scan is 30 minutes or less. Thyroid Uptake You will be given radioactive iodine ( ... for each thyroid uptake is five minutes or less. top of page What will I experience during ...

  17. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Scan and Uptake Thyroid scan and uptake uses small amounts of radioactive materials called radiotracers, a special ... is a branch of medical imaging that uses small amounts of radioactive material to diagnose and determine ...

  18. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... uptake measurements are obtained at different times. For example, you may have uptake measurements at four to ... medicine procedures can be time consuming. It can take several hours to days for the radiotracer to ...

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... known as a thyroid uptake. It is a measurement of thyroid function, but does not involve imaging. ... eating can affect the accuracy of the uptake measurement. Jewelry and other metallic accessories should be left ...

  20. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... Uptake? A thyroid scan is a type of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) ... of thyroid function, but does not involve imaging. Nuclear medicine is a branch of medical imaging that ...

  1. Fatty Acid Oxidation Is Preserved Regardless of Impaired Uptake in the Chronically Failing Rat Heart

    OpenAIRE

    TACHIKAWA, Hitoshi

    2004-01-01

    Fatty acid is used as a major fuel in the fasting heart, but the precise metabolism in the failing heart remains unknown. We assessed the hypothesis that the fatty acid metabolism might be impaired or delayed during heart failure. We examined in vivo kinetics of an isotope-labeled fatty acid analogue and its substrates as well as hemodynamic parameters and histopathological findings in a rat model of postmyocarditic dilated cardiomyopathy. Rat experimental autoimmune myocarditis (EAM) was ind...

  2. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available ... radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. It is a measurement of ... potential to identify disease in its earliest stages as well as a patient’s immediate response to therapeutic ...

  3. Applicator for in-vitro ultrasound-activated targeted drug delivery

    Science.gov (United States)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  4. In vitro models of the blood-brain barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Abbott, N Joan; Burek, Malgorzata

    2016-01-01

    The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic...... components of plasma and xenobiotics. This "blood-brain barrier" function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug...... transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood-brain barrier models with a focus on their validation regarding a set of well-established blood-brain barrier characteristics. As an ideal cell culture...

  5. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  6. Uptake of inflammatory cell marker [{sup 11}C]PK11195 into mouse atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, Iina; Marjamaeki, Paeivi; Naagren, Kjell; Roivainen, Anne; Knuuti, Juhani [University of Turku, Turku PET Centre, Turku (Finland); Laine, V.J.O. [Turku University Hospital, Department of Pathology, Turku (Finland); Wilson, Ian [GE Healthcare Biosciences, Medical Diagnostics, London (United Kingdom); Leppaenen, Pia; Ylae-Herttuala, Seppo [University of Kuopio, A.I. Virtanen Institute, Kuopio (Finland)

    2009-01-15

    The ligand [{sup 11}C]PK11195 binds with high affinity and selectivity to peripheral benzodiazepine receptor, expressed in high amounts in macrophages. In humans, [{sup 11}C]PK11195 has been used successfully for the in vivo imaging of inflammatory processes of brain tissue. The purpose of this study was to explore the feasibility of [{sup 11}C]PK11195 in imaging inflammation in the atherosclerotic plaques. The presence of PK11195 binding sites in the atherosclerotic plaques was verified by examining the in vitro binding of [{sup 3}H]PK11195 onto mouse aortic sections. Uptake of intravenously administered [{sup 11}C]PK11195 was studied ex vivo in excised tissue samples and aortic sections of a LDLR/ApoB48 atherosclerotic mice. Accumulation of the tracer was compared between the atherosclerotic plaques and non-atherosclerotic arterial sites by autoradiography and histological analyses. The [{sup 3}H]PK11195 was found to bind to both the atherosclerotic plaques and the healthy wall. The autoradiography analysis revealed that the uptake of [{sup 11}C]PK11195 to inflamed regions in plaques was more prominent (p = 0.011) than to non-inflamed plaque regions, but overall it was not higher than the uptake to the healthy vessel wall. Also, the accumulation of {sup 11}C radioactivity into the aorta of the atherosclerotic mice was not increased compared to the healthy control mice. Our results indicate that the uptake of [{sup 11}C]PK11195 is higher in inflamed atherosclerotic plaques containing a large number of inflammatory cells than in the non-inflamed plaques. However, the tracer uptake to other structures of the artery wall was also prominent and may limit the use of [{sup 11}C]PK11195 in clinical imaging of atherosclerotic plaques. (orig.)

  7. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis.

    Science.gov (United States)

    Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J

    2011-05-01

    Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.

  9. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Thyroid Scan and Uptake Thyroid scan and uptake uses ...

  10. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    Science.gov (United States)

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  11. 99mTc-NC100668, a new tracer for imaging venous thromboemboli: pre-clinical biodistribution and incorporation into plasma clots in vivo and in vitro

    International Nuclear Information System (INIS)

    Edwards, David; Lewis, Joanne; Battle, Mark; Lear, Rochelle; Farrar, Gill; Barnett, D.J.; Godden, Vanessa; Oliveira, Alexandra; Coombes, Catherine; Ahlstroem, Haakan

    2006-01-01

    99m Tc-NC100668 is a new radiotracer being developed to aid the diagnosis of thromboembolism. The structure of NC100668 is similar to a region of human α 2 -antiplasmin, which is a substrate for factor XIIIa (FXIIIa). The purpose of this study was to confirm the uptake of 99m Tc-NC100668 into forming plasma clot and to establish the biodistribution of 99m Tc-NC100668 in Wistar rats. The in vitro plasma clot uptake of 99m Tc-NC100668 and other compounds with known affinities to FXIIIa was measured using a plasma clot assay. The biodistribution and blood clot uptake of radioactivity of 99m Tc-NC100668 in normal Wistar rats and those bearing experimentally induced deep vein thrombi were investigated. The in vitro uptake of 99m Tc-NC100668 was greater than that for [ 14 C]dansyl cadaverine, a known substrate of FXIIIa in the plasma clot assay. The biodistribution of 99m Tc-NC100668 in male and female Wistar rats up to 24 h p.i. showed that radioactivity was rapidly excreted, predominantly into the urine, with very little background tissue retention. In vivo the uptake and retention of 99m Tc-NC100668 into the blood clot was greater than could be accounted for by non-specific accumulation of the radiotracer within the blood clot. 99m Tc-NC100668 was retained by plasma clots in vitro and blood clots in vivo. No significant tissue retention which could interfere with the ability to image thrombi in vivo was observed. This evidence suggests that 99m Tc-NC100668 might be useful in the detection of thromboembolism. (orig.)

  12. Phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of phenolic acids on vascular smooth muscle cells in vitro.

    Science.gov (United States)

    Keane, Karen M; Bell, Phillip G; Lodge, John K; Constantinou, Costas L; Jenkinson, Sarah E; Bass, Rosemary; Howatson, Glyn

    2016-06-01

    To investigate the phytochemical uptake following human consumption of Montmorency tart cherry (L. Prunus cerasus) and influence of selected phenolic acids on vascular smooth muscle cells in vitro. In a randomised, double-blinded, crossover design, 12 healthy males consumed either 30 or 60 mL of Montmorency tart cherry concentrate. Following analysis of the juice composition, venous blood samples were taken before and 1, 2, 3, 5 and 8 h post-consumption of the beverage. In addition to examining some aspects of the concentrate contents, plasma concentrations of protocatechuic acid (PCA), vanillic acid (VA) and chlorogenic (CHL) acid were analysed by reversed-phase high-performance liquid chromatography (HPLC) with diode array for quantitation and mass spectrometry detection (LCMS) for qualitative purposes. Vascular smooth muscle cell migration and proliferation were also assessed in vitro. Both the 30 and 60 mL doses of Montmorency cherry concentrate contained high amounts of total phenolics (71.37 ± 0.11; 142.73 ± 0.22 mg/L) and total anthocyanins (62.47 ± 0.31; 31.24 ± 0.16 mg/L), as well as large quantities of CHL (0.205 ± 0.24; 0.410 ± 0.48 mg/L) and VA (0.253 ± 0.84; 0.506 ± 1.68 mg/L). HPLC/LCMS identified two dihydroxybenzoic acids (PCA and VA) in plasma following MC concentrate consumption. Both compounds were most abundant 1-2 h post-initial ingestion with traces detectable at 8 h post-ingestion. Cell migration was significantly influenced by the combination of PCA and VA, but not in isolation. There was no effect of the compounds on cell proliferation. These data show new information that phenolic compounds thought to exert vasoactive properties are bioavailable in vivo following MC consumption and subsequently can influence cell behaviour. These data may be useful for the design and interpretation of intervention studies investigating the health effects of Montmorency cherries.

  13. Normal cerebral FDG uptake during childhood

    International Nuclear Information System (INIS)

    London, Kevin; Howman-Giles, Robert

    2014-01-01

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV max , and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV max with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  14. Normal cerebral FDG uptake during childhood

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Disciplines of Imaging and Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia)

    2014-04-15

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV{sub max}, and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV{sub max} with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  15. Methods to Evaluate the Effect of Ethanol on the Folate Analogue: Fluorescein Methotrexate Uptake in Human Proximal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Sivakumar JT Gowder

    2009-01-01

    Full Text Available Ethanol-induced folate deficiency is due to effects of ethanol on folate metabolism and absorption. We have already shown by using different methods that ethanol interferes with reabsorption of folate from the proximal tubule. In this study, we have used the folate analogue, the fluorescein methotrexate (FL-MTX, in order to evaluate effects of ethanol on FL-MTX uptake by the human proximal tubular (HPT cells by using a confocal microscope and fluoroskan microplate reader. Since endothelins (ETs play a major role in a number of diseases and also in the damage induced by a variety of chemicals, we have used endothelin-B (ET-B and protein kinase-C (PKC inhibitors to evaluate the role of endothelin in ethanol-mediated FL-MTX uptake by using fluoroskan microplate reader. Confocal microscope and fluoroskan studies reveal that cellular absorption of FL-MTX is concentration-dependent. Moreover, ethanol concentration has an impact on FL-MTX uptake. Fluoroskan studies reveal that the ethanol-induced decrease in FL-MTX uptake is reversed by adding the ET-B receptor antagonist (RES-701-1 or PKC-selective inhibitor (BIM. Thus, we can conclude that ethanol may act via ET and ET in turn may act via ET-B receptor and the PKC signaling pathway to impair FL-MTX transport.

  16. Effect of ferri(IIIcitrate and potassium hexacyanoferrate(III on growth of the moss Bryum argenteum Hedw. (Bryaceae in vitro

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2004-01-01

    Full Text Available In order to examine the manner of iron uptake from the medium, in vitro culture of moss Bryum argenteum Hedw. (Bryaceae was established. Under controlled conditions (16h light/8h dark, light intensity 47μmol m-2s-1 25±2°C, the moss was grown on basal MS medium or on MS medium enriched with various concentrations of ferri(IIIcitrate or potassium hexacyanoferrate(III. It was expected that with the organic chelate complex, Fe(III ion will be more available for the plant. Sixty days after establishing in vitro culture, the plants grown on MS medium enriched with the ferri(IIIcitrate complex were developed better than plants grown on media with the potassium hexacyanoferrate(III complex. To judge from plant production in vitro and in view of the fact that the two compounds were the only source of Fe(III, it would appear that the citrate complex makes Fe(III ions more available than potassium hexacyanoferrate(III. Further research will examine the concentrations of Fe ion uptake by plants and potential use of these tiny moss plants for the phytomining, phytoremedies and hyperaccumulating purposes.

  17. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  18. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza

    2017-04-15

    We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thyroid Scan and Uptake

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... of nuclear medicine imaging. The radioactive iodine uptake test (RAIU) is also known as a thyroid uptake. ...

  20. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations.

    Science.gov (United States)

    Hu, Xiao; Yang, Feifei; Liao, Yonghong; Li, Lin; Zhang, Lan

    2017-11-01

    This study investigated cholesterol-polyethylene glycol (PEG) comodified poly (ethyleneglycol)-poly (lactide) nanoparticles (CLS-PEG NPs) as a novel, biodegradable brain drug delivery system and included an evaluation of its in vitro and in vivo properties. To this end, coumarin-6 (C6), a fluorescent probe, was encapsulated into CLS-PEG NPs by an emulsion polymerization method. We reported that the use of CLS-PEG NPs led to a sustained drug release in vitro. Additionally, cell viability experiments confirmed their safety. The uptake and transport of CLS-PEG NPs, by bEnd.3 cells (an immortalized mouse brain endothelial cell line), was significantly higher than that of a control C6 solution. An investigation of the uptake mechanisms of different NP formulations demonstrated that cholesterol modifications may be the primary way to improve the efficiency of cellular uptake, wherein macropinocytosis may be the most important endocytic pathway in this process. An investigation of the transport mechanisms of CLS-PEG NPs also implicated macropinocytosis, energy and cholesterol in bEnd.3 cells lines. Following an intravenous (IV) administration to rats, pharmacokinetic experiments indicated that C6-loaded CLS-PEG NPs achieved sustained release for up to 12 h. In addition, IV delivery of CLS-PEG NPs appeared to significantly improve the ability of C6 to pass through the blood-brain barrier: the concentration of C6 found in the brain increased nearly 14.2-fold when C6 CLS-PEG NPs were used rather than a C6 solution. These in vitro and in vivo results strongly suggest that CLS-PEG NPs are a promising drug delivery system for targeting the brain, with low toxicity.

  1. Uptake, delivery, and anticancer activity of thymoquinone nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fakhoury, Isabelle [American University of Beirut, Department of Biology (Lebanon); Saad, Walid [American University of Beirut, Department of Chemical and Petroleum Engineering (Lebanon); Bouhadir, Kamal [American University of Beirut, Department of Chemistry (Lebanon); Nygren, Peter [Uppsala University, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology (Sweden); Schneider-Stock, Regine [University of Erlangen-Nuremberg, Experimental Tumor Pathology, Institute for Pathology (Germany); Gali-Muhtasib, Hala, E-mail: amro@aub.edu.lb [American University of Beirut, Department of Biology (Lebanon)

    2016-07-15

    Thymoquinone (TQ) is a promising anticancer molecule but its development is hindered by its limited bioavailability. Drug encapsulation is commonly used to overcome low drug solubility, limited bioavailability, and nonspecific targeting. In this project, TQ nanoparticles (TQ-NP) were synthesized and characterized. The cytotoxicity of the NP was investigated in nontumorigenic MCF-10-A breast cells, while the uptake, distribution, as well as the anticancer potential were investigated in MCF-7 and MDA-MB-231 breast cancer cells. Flash Nanoprecipitation and dynamic light scattering coupled with scanning electron microscopy were used to prepare and characterize TQ-NP prior to measuring their anticancer potential by MTT assay. The uptake and subcellular intake of TQ-NP were evaluated by fluorometry and confocal microscopy. TQ-NP were stable with a hydrodynamic average diameter size around 100 nm. Entrapment efficiency and loading content of TQ-NP were high (around 80 and 50 %, respectively). In vitro, TQ-NP had equal or enhanced anticancer activity effects compared to TQ in MCF-7 and aggressive MDA-MB-231 breast cancer cells, respectively, with no significant cytotoxicity of the blank NP. In addition, TQ and TQ-NP were relatively nontoxic to MCF-10-A normal breast cells. TQ-NP uptake mechanism was both time and concentration dependent. Treatment with inhibitors of endocytosis suggested the involvement of caveolin in TQ-NP uptake. This was further confirmed by subcellular localization findings showing the colocalization of TQ-NP with caveolin and transferrin as well as with the early and late markers of endocytosis. Altogether, the results describe an approach for the enhancement of TQ anticancer activity and uncover the mechanisms behind cell-TQ-NP interaction.Graphical Abstract.

  2. In vitro evaluation of percutaneous diffusion of uranyl nitrate through intact or excoriated skin of rat and pig

    International Nuclear Information System (INIS)

    Petitot, F.; Moreels, A.M.; Paquet, F.

    2004-01-01

    At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique. Our data demonstrated a dramatic increase of uranium percutaneous diffusion through excoriated skin compared with intact skin. Significant uptake of uranium through excoriated skin occurred in only 30 min, indicating that there is only a short interval available to treat a contaminated wound effectively. Moreover, in the case of an incompletely decontaminated superficial wound, viable epidermis behaved as a reservoir for uranium that remained bioavailable. At the present time, potential uptake of uranium and perhaps other radionuclides through intact or wounded skin is not adequately taken into account by radiological protection agencies. Our results emphasize the need for further study and modeling of uptake of radionuclides through intact or wounded skin. (author)

  3. Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Song; Zhu, Bin; Huang, Aiguo [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Hu, Yang [College of Science, Northwest A& F University, Yangling 712100 (China); Wang, Gaoxue, E-mail: wanggaoxue@126.com [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China); Ling, Fei, E-mail: feiling@nwsuaf.edu.cn [College of Animal Science and Technology, Northwest A& F University, Yangling 712100 (China)

    2016-11-15

    Highlights: • MWCNTs (<100 mg/L) were not toxic to S. cerevisiae. • MWCNTs were internalized in S. cerevisiae cells by three pathways. • The uptake kinetics and the subcellular distribution of MWCNTs in S. cerevisiae cells were shown. • S. cerevisiae cells were undergoing apoptosis by mitochondrial impairment pathway. - Abstract: Using Saccharomyces cerevisiae as an experimental model, the potential toxicological effects of oxidized multi-walled carbon nanotubes (MWCNTs) were investigated following exposure to 0–600 mg/L for 24 h. Results indicated that MWCNTs (>100 mg/L) had adverse effects on the cell proliferation. MWCNTs were clearly visible in lysosome, vacuole, endosome, mitochondria, multivesicular body and localization in the perinuclear region. The uptake kinetics data demonstrated that the maximum MWCNTs content (209.61 mg/g) was reached at 3 h, and a steady state was reached after 18 h. Based on the combined results of transmission electron microscope, endocytosis inhibition experiments and endocytosis-related genes (END3, END6, Sla2 and Rsp5) expression analysis, we elucidated MWCNTs uptake mechanism: (i) via a direct penetration of single MWCNTs; (ii) via endocytosis of single MWCNTs; and (iii) via endocytosis of MWCNTs aggregates. The percentage of apoptosis was significant increased at 600 mg/L. The decrease of mitochondrial transmembrane potential and the leakage of cytochrome c shown dose-dependent manners. Interestingly, there was no significant increase of reactive oxygen species (ROS). The apoptosis-related genes (SOD1, SOD2, Yca1, Nma111 and Nuc1) were significant changed. These results obtained in our study demonstrated that oxidized MWCNTs induce Saccharomyces cerevisiae apoptosis via mitochondrial impairment pathway.

  4. Measuring in vitro cellular uptake of nanoparticles by transmission electron microscopy

    International Nuclear Information System (INIS)

    Brown, A P; Brydson, R M D; Hondow, N S

    2014-01-01

    Biomedical application of engineered nanoparticles (NPs) is a growing area of research and development. Uncertainty remains as to the mode of action of many NP types and TEM is a tool capable of addressing this if used in conjunction with standard cellular response assays. We will demonstrate imaging of thin sections of fixed, plastic embedded cells by analytical TEM to identify: superparamagnetic iron oxide NP translocation into cell compartments such as endosomes; amorphous silica NP penetration through a cell membrane without membrane encapsulation and zinc oxide NP degradation in cell compartments. We will then discuss how the in vitro cellular responses to a dose of NPs exposed to cell lines can be correlated to the internalized dose per cell section noting however that quantification of the latter requires random sampling procedures or correlation to higher throughout techniques to measure a population of whole cells. Similarly, analytical TEM measures of NP degradation within intracellular compartments will require a more appropriate sample preparation such as cryo-fixation

  5. In vitro and in vivo evaluations of a radioiodinated thymidine phosphorylase inhibitor as a tumor diagnostic agent for angiogenic enzyme imaging

    International Nuclear Information System (INIS)

    Akizawa, Hiromichi; Zhao, Songji; Takahashi, Masayuki; Nishijima, Ken-ichi; Kuge, Yuji; Tamaki, Nagara; Seki, Koh-ichi; Ohkura, Kazue

    2010-01-01

    Introduction: The expression of thymidine phosphorylase (TP) is closely associated with angiogenesis, tumor invasiveness and activation of antitumor agents. We evaluated radioiodinated 5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil ([ 125 I]IIMU) having high TP-inhibitory potency as the new radiotracer for SPECT targeting of TP expression in tumors. Methods: The characteristics of the radioiodinated TP inhibitor IIMU were determined by evaluating the uptake by tumor cells in vitro and by biodistribution studies in vivo. The distribution of the radiotracer and the extent of TP-specific uptake by tumors were evaluated by a counting method in tumor-bearing mice. Results: The in vitro uptake of radiolabeled IIMU by A431 cells along with high TP expressions was attributed to the binding of the radiotracer to its target enzyme, i.e., TP. In vivo distribution of the radiotracer in A431 tumor-bearing mice revealed tumor/blood and tumor/muscle activity uptake ratios of 36 and 106, respectively, at 3 h after the radiotracer injection. On using low TP-expressing tumors and TP blocking studies as controls, minor TP-specific accumulation of the radiotracer was detected in these studies. Conclusion: According to the binding of radioiodinated IIMU to the angiogenic enzyme TP, it can be concluded that radioiodinated IIMU might be suitable as a SPECT tracer for tumor imaging.

  6. Perceived importance and difficulty of online activities among visually impaired persons in Nigeria.

    Science.gov (United States)

    Okonji, Patrick Emeka; Okiki, Olatokunbo Christopher; Ogwezzy, Darlington

    2018-03-26

    This study investigated perceived relevance of and difficulties in access to day-to-day online activities among visually impaired computer users who used screen readers. The 98 participants in the study were grouped into visually impaired adults (VIA; aged 20-59, n = 60) and visually impaired older adults (VIOA; aged 60 and over, n = 38). Data were collected in structured interview questionnaires with Likert scales exploring ratings of perceived importance and difficulty of access to eleven (11) online platforms of various internet activities. Analyses revealed that the two groups did not differ significantly in ratings of perceived importance of 4 major online activities, namely; Sending or reading email (p = 0.5224), Online banking (p = 0.2833), Online shopping (p = 0.1829), and Health information seeking (p = 0.1414). The topmost rated activity of priority among both groups was sending and reading emails. Findings also show that, apart from sending and reading emails, activities rated as important were mostly perceived as difficult to access. The implications of the study for inclusive design and strategies and/or interventions to encourage uptake of internet use among the visually impaired population are discussed.

  7. Radioiodine uptake in inactive pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Bakheet, S.M.; Powe, J.; Al Suhaibani, H.; Hammami, M.M.; Bazarbashi, M.

    1999-01-01

    Radioiodine may accumulate at sites of inflammation or infection. We have seen such accumulation in six thyroid cancer patients with a history of previously treated pulmonary tuberculosis. We also review the causes of false-positive radioiodine uptake in lung infection/inflammation. Eight foci of radioiodine uptake were seen on six iodine-123 diagnostic scans. In three foci, the uptake was focal and indistinguishable from thyroid cancer pulmonary metastases from thyroid cancer. In the remaining foci, the uptake appeared nonsegmental, linear or lobar, suggesting a false-positive finding. The uptake was unchanged, variable in appearance or non-persistent on follow-up scans and less extensive than the fibrocystic changes seen on chest radiographs. In the two patients studied, thyroid hormone level did not affect the radioiodine lung uptake and there was congruent gallium-67 uptake. None of the patients had any evidence of thyroid cancer recurrence or of reactivation of tuberculosis and only two patients had chronic intermittent chest symptoms. Severe bronchiectasis, active tuberculosis, acute bronchitis, respiratory bronchiolitis, rheumatoid arthritis-associated lung disease and fungal infection such as Allescheria boydii and aspergillosis can lead to different patterns of radioiodine chest uptake mimicking pulmonary metastases. Pulmonary scarring secondary to tuberculosis may predispose to localized radioiodine accumulation even in the absence of clinically evident active infection. False-positive radioiodine uptake due to pulmonary infection/inflammation should be considered in thyroid cancer patients prior to the diagnosis of pulmonary metastases. (orig.)

  8. Organic anion and cation transport in vitro by dog choroid plexus: Effects of neuroleptics and tricyclic antidepressants

    Energy Technology Data Exchange (ETDEWEB)

    Barany, E H [Uppsala Univ. (Sweden)

    1979-01-01

    Dog lateral choroid plexus accumulates the cation /sup 14/C-emepronium and the divalent anion /sup 125/I-iodipamide in vitro. At 10 ..mu..M, high potency neuroleptics with a substituted piperazine side chain and also haloperidol depress only the uptake of the cation and even stimulate the uptake of the anion. In contrast, at 1-10..mu..M, the accumulation of both test substances is inhibited by neuroleptics and tricyclic antidepresssants with an aliphatic side chain. Such unspecific effects on seemingly unrelated transport systems at concentrations reached clinically in the CSF might explain some side actions of low potency neuroleptics and antidepressants.

  9. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  10. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  11. Designing food delivery systems: challenges related to the in vitro methods employed to determine the fate of bioactives in the gut.

    Science.gov (United States)

    Arranz, Elena; Corredig, Milena; Guri, Anilda

    2016-08-10

    An in depth understanding of the underpinning mechanisms that relate to food disruption and processing in the gastrointestinal tract is necessary to achieve optimal intake of nutrients and their bioefficacy. Although in vivo trials can provide insights on physiological responses of nutrients, in vitro assays are often applied as tools to understand specific mechanisms, or as prescreening methods to determine the factors associated with the uptake of food components in the gastrointestinal tract. In vitro assays are also often utilized to design novel or improved food delivery systems. In this review the available approaches to study delivery and uptake of food bioactives and the associated challenges are discussed. For an in depth understanding of food processing in the gastrointestinal tract, it is necessary to apply multidisciplinary methodologies, at the interface between materials science, chemistry, physics and biology.

  12. {sup 99m}Tc-NC100668, a new tracer for imaging venous thromboemboli: pre-clinical biodistribution and incorporation into plasma clots in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, David [Grove Centre, Research and Development, GE Healthcare Bio-Sciences, Little Chalfont (United Kingdom); Uppsala University Hospital, Institution of Oncology, Radiology and Clinical Immunology, Section of Radiology, Uppsala (Sweden); Lewis, Joanne; Battle, Mark; Lear, Rochelle; Farrar, Gill; Barnett, D.J.; Godden, Vanessa; Oliveira, Alexandra; Coombes, Catherine [Grove Centre, Research and Development, GE Healthcare Bio-Sciences, Little Chalfont (United Kingdom); Ahlstroem, Haakan [Uppsala University Hospital, Institution of Oncology, Radiology and Clinical Immunology, Section of Radiology, Uppsala (Sweden)

    2006-11-15

    {sup 99m}Tc-NC100668 is a new radiotracer being developed to aid the diagnosis of thromboembolism. The structure of NC100668 is similar to a region of human {alpha}{sub 2}-antiplasmin, which is a substrate for factor XIIIa (FXIIIa). The purpose of this study was to confirm the uptake of {sup 99m}Tc-NC100668 into forming plasma clot and to establish the biodistribution of {sup 99m}Tc-NC100668 in Wistar rats. The in vitro plasma clot uptake of {sup 99m}Tc-NC100668 and other compounds with known affinities to FXIIIa was measured using a plasma clot assay. The biodistribution and blood clot uptake of radioactivity of {sup 99m}Tc-NC100668 in normal Wistar rats and those bearing experimentally induced deep vein thrombi were investigated. The in vitro uptake of {sup 99m}Tc-NC100668 was greater than that for [{sup 14}C]dansyl cadaverine, a known substrate of FXIIIa in the plasma clot assay. The biodistribution of {sup 99m}Tc-NC100668 in male and female Wistar rats up to 24 h p.i. showed that radioactivity was rapidly excreted, predominantly into the urine, with very little background tissue retention. In vivo the uptake and retention of {sup 99m}Tc-NC100668 into the blood clot was greater than could be accounted for by non-specific accumulation of the radiotracer within the blood clot. {sup 99m}Tc-NC100668 was retained by plasma clots in vitro and blood clots in vivo. No significant tissue retention which could interfere with the ability to image thrombi in vivo was observed. This evidence suggests that {sup 99m}Tc-NC100668 might be useful in the detection of thromboembolism. (orig.)

  13. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity.

    Science.gov (United States)

    Virgin, C E; Ha, T P; Packan, D R; Tombaugh, G C; Yang, S H; Horner, H C; Sapolsky, R M

    1991-10-01

    Glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, can damage the hippocampus and impair its capacity to survive coincident neurological insults. This GC endangerment of the hippocampus is energetic in nature, as it can be prevented when neurons are supplemented with additional energy substrates. This energetic endangerment might arise from the ability of GCs to inhibit glucose transport into both hippocampal neurons and astrocytes. The present study explores the GC inhibition in astrocytes. (1) GCs inhibited glucose transport approximately 15-30% in both primary and secondary hippocampal astrocyte cultures. (2) The parameters of inhibition agreed with the mechanisms of GC inhibition of glucose transport in peripheral tissues: A minimum of 4 h of GC exposure were required, and the effect was steroid specific (i.e., it was not triggered by estrogen, progesterone, or testosterone) and tissue specific (i.e., it was not triggered by GCs in cerebellar or cortical cultures). (3) Similar GC treatment caused a decrease in astrocyte survival during hypoglycemia and a decrease in the affinity of glutamate uptake. This latter observation suggests that GCs might impair the ability of astrocytes to aid neurons during times of neurologic crisis (i.e., by impairing their ability to remove damaging glutamate from the synapse).

  14. Root uptake of transuranic elements

    International Nuclear Information System (INIS)

    Schulz, R.K.

    1977-01-01

    The uptake of elements by plant roots is one of the important pathways of entry of many elements into the food chain of man. Data are cited showing plutonium concentration ratios, plant/soil, ranging from 10 -10 to 10 -3 . Concentration ratios for americium range from 10 -7 to 10 +1 . Limited experiments with curium and neptunium indicate that root uptake of curium is similar to that of americium and that plant uptake of neptunium is substantially larger than that of curium and americium. The extreme ranges of concentration ratios cited for plutonium and americium are due to a number of causes. Experimental conditions such as very intensive cropping will lead to abnormally high concentration ratios. In some experiments, addition of chelating agents markedly increased plant root uptake of transuranic elements. Particle size and composition of the source material influenced uptake of the transuranics by plants. Translocation within the plant, and soil factors such as pH and organic matter content, all affect concentration ratios

  15. Bilingualism as a contributor to cognitive reserve?Evidence from cerebral glucose metabolism in mild cognitive impairment and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Magdalena Eva Kowoll

    2016-04-01

    Full Text Available Objective: Bilingualism is discussed as one factor contributing to ‘cognitive reserve’ (CR as it enhances executive control functions. To elucidate the underlying cerebral correlates regional glucose uptake was compared between bilinguals and monolinguals with mild cognitive impairment (MCI and beginning Alzheimer´s disease (AD by using [18F]fluorodeoxyglucose (FDG positron emission tomography (PET. Methods: 30 patients (73.2 ± 7.4 diagnosed with MCI or probable AD received physical and neuropsychological examinations, blood tests and FDG-PET scans. 16 patients were classified as lifelong bilinguals following the criterion of Bialystok et al.; groups were matched for age, sex and MMSE scores. Analyses were conducted using SPM 8 using the whole brain as reference region for intensity normalization controlling for years of education.Results: Bilingual patient groups showed substantially greater impairment of glucose uptake in frontotemporal and parietal regions (including Brodmann areas 9, 47, 40 and 21 and in the left cerebellum relative to monolingual patients.Conclusions: Bilingualism is likely to contribute to CR given that bilingual patients showed more severe brain changes than monolinguals when adjusting for severity of cognitive impairment . The latter did not only comprise Brodmann areas relevant to speech and language but also structures typically involved in AD pathology such as the temporal and the parietal cortices.

  16. The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ

    Science.gov (United States)

    Appelberg, Rui; Moreira, Diana; Barreira-Silva, Palmira; Borges, Margarida; Silva, Letícia; Dinis-Oliveira, Ricardo Jorge; Resende, Mariana; Correia-Neves, Margarida; Jordan, Michael B; Ferreira, Nuno C; Abrunhosa, Antero J; Silvestre, Ricardo

    2015-01-01

    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-γ (IFN-γ). Mycobacterium avium-infected mice lacking IFN-γ signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-γ signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-γ reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-γ displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-γ is responsible for the Warburg effect observed in organs infected with M. avium. PMID:25807843

  17. Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions

    International Nuclear Information System (INIS)

    Zhao, Songji; Tsukamoto, Eriko; Kato, Takashi; Tamaki, Nagara; Kuge, Yuji; Hikosaka, Kenji; Mochizuki, Takafumi; Hosokawa, Masuo; Kohanawa, Masashi

    2001-01-01

    that FDG uptake in both types of inflammatory lesion was significantly impaired in rats with hyperglycaemia induced by glucose loading, while tumour uptake of FDG was not significantly affected. These results indicate that glucose loading has greater effects on FDG uptake in inflammatory lesions than in tumours, providing a biological basis for differentiation of malignant lesions from benign lesions by FDG-PET in a clinical setting. (orig.)

  18. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice

    Science.gov (United States)

    Acuña, Aníbal I.; Esparza, Magdalena; Kramm, Carlos; Beltrán, Felipe A.; Parra, Alejandra V.; Cepeda, Carlos; Toro, Carlos A.; Vidal, René L.; Hetz, Claudio; Concha, Ilona I.; Brauchi, Sebastián; Levine, Michael S.; Castro, Maite A.

    2013-12-01

    Huntington’s disease has been associated with a failure in energy metabolism and oxidative damage. Ascorbic acid is a powerful antioxidant highly concentrated in the brain where it acts as a messenger, modulating neuronal metabolism. Using an electrophysiological approach in R6/2 HD slices, we observe an abnormal ascorbic acid flux from astrocytes to neurons, which is responsible for alterations in neuronal metabolic substrate preferences. Here using striatal neurons derived from knock-in mice expressing mutant huntingtin (STHdhQ cells), we study ascorbic acid transport. When extracellular ascorbic acid concentration increases, as occurs during synaptic activity, ascorbic acid transporter 2 (SVCT2) translocates to the plasma membrane, ensuring optimal ascorbic acid uptake for neurons. In contrast, SVCT2 from cells that mimic HD symptoms (dubbed HD cells) fails to reach the plasma membrane under the same conditions. We reason that an early impairment of ascorbic acid uptake in HD neurons could lead to early metabolic failure promoting neuronal death.

  19. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  20. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats.

    Science.gov (United States)

    Jiang, Hua; Feng, Jueping; Du, Zhongxia; Zhen, Hui; Lin, Mei; Jia, Shaohui; Li, Tao; Huang, Xinyuan; Ostenson, Claes-Goran; Chen, Zhengwang

    2014-09-01

    Vglycin, a natural 37-residue polypeptide isolated from pea seeds in which six half-cysteine residues are embedded in three pairs of disulfide bonds, is resistant to digestive enzymes and has antidiabetic potential. To investigate the pharmacological activity of Vglycin in vivo and to examine the mechanisms involved, the therapeutic effect of Vglycin in diabetic rats was examined. Diabetes was induced in Wistar rats by high-fat diet and multiple streptozotocin intraperitoneal injections. Diabetic rats were treated daily with Vglycin for 4 weeks. Body weight, food intake, fasting plasma glucose and insulin levels were assayed weekly. Glucose and insulin tolerance tests were conducted on Day 29. Subsequently, levels of p-Akt in the liver and pancreas and cleaved PARP, Pdx-1 and insulin in the pancreas were detected by immunoblotting. The morphology of the pancreas and the insulin expression in the pancreas were analyzed by hematoxylin-eosin staining and immunohistochemistry, respectively. Furthermore, human liver-derived cell lines were used to explore the in vitro effects of Vglycin on insulin sensitivity and glucose uptake. Chronic treatment with Vglycin normalized fasting glucose levels in diabetic rats. The improvement in glucose homeostasis and the increased insulin sensitivity mediated by restored insulin signaling likely contributed to decreased food intake and reduced body weight. Vglycin protected pancreatic cells from damage by streptozotocin. Although insulin synthesis and secretion in impaired β-cell were not significantly elevated, islets morphology was improved in the Vglycin-treated groups. These results suggest that Vglycin could be useful in Type 2 diabetes for restoring impaired insulin signaling, glucose tolerance and pancreatic function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment

    Directory of Open Access Journals (Sweden)

    Timothy H. Witney

    2009-06-01

    Full Text Available Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG, have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose polymerase activity and subsequent depletion of the NAD(H pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic.

  2. Experimental corneal calcification, hydration and /sup 45/Ca uptake in rabbit corneas incubated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Obenberger, J [Ceskoslovenska Akademie Ved, Prague. Oftalmologicka Laborator; Dobiasova, M; Babicky, A [Ceskoslovenska Akademie Ved, Prague. Isotopova Laborator Biologickych Ustavu

    1974-07-01

    Experimental corneal calcification could easily be produced by a combination of corneal injury (perfusion of the anterior chamber of the eye with a solution of potassium permanganate) amd dihydrotachysterol (DHT) treatment. Rabbit corneas with induced calcification as well as corneas of three additional groups of rabbits, i.e. those treated with permanganate or DHT only and control animals were incubated for two hours in a medium containing /sup 45/Ca. An increased uptake of /sup 45/Ca into the cornea was found in the group of rabbits receiving DHT only. Potassium cyanide added to the incubation medium did not affect corneal hydration nor the final activity of the incubated corneas. (auth)

  3. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Z.; Reiske, H.R.; Wilson, D.B.

    1999-11-01

    Two different Cd{sup 2+} uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn{sup 2+} uptake system which also takes up Cd{sup 2+} and is induced by Mn{sup 2+} starvation. The calculated K{sub m} and V{sub max} are 0.26 {mu}M and 3.6 {mu}mol g of dry cell{sup {minus}1} min{sup {minus}1}, respectively. Unlike Mn{sup 2+} uptake, which is facilitated by citrate and related tricarboxylic acids, Cd{sup 2+} uptake is weakly inhibited by citrate. Cd{sup 2+} and Mn{sup 2+} are competitive inhibitors of each other, and the affinity of the system for Cd{sup 2+} is higher than that for Mn{sup 2+}. The other Cd{sup 2+} uptake system is expressed in Mn{sup 2+}-sufficient cells, and no K{sub m} can be calculated for it because uptake is nonsaturable. Mn{sup 2+} does not compete for transport through this system, nor does any other tested cation, i.e., Zn{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Fe{sup 2+}, or Ni{sup 2+}. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn{sup 2+}-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn{sup 2+} for growth as the parental strain. Mn{sup 2+} starvation-induced Cd{sup 2+} uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn{sup 2+} or Cd{sup 2+} accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system.

  4. Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3.

    Science.gov (United States)

    Okura, Takashi; Higuchi, Kei; Kitamura, Atsushi; Deguchi, Yoshiharu

    2014-01-01

    R(-)-Apomorphine is a dopamine agonist used for rescue management of motor function impairment associated with levodopa therapy in Parkinson's disease patients. The aim of this study was to examine the role of proton-coupled organic cation antiporter in uptake of R(-)-apomorphine and its S-enantiomer in human brain, using human endothelial cell line hCMEC/D3 as a model. Uptake of R(-)- or S(+)-apomorphine into hCMEC/D3 cells was measured under various conditions to evaluate its time-, concentration-, energy- and ion-dependency. Inhibition by selected organic cations was also examined. Uptakes of both R(-)- and S(+)-apomorphine increased with time. The initial uptake velocities of R(-)- and S(+)-apomorphine were concentration-dependent, with similar Km and Vmax values. The cell-to-medium (C/M) ratio of R(-)-apomorphine was significantly reduced by pretreatment with sodium azide, but was not affected by replacement of extracellular sodium ion with N-methylglucamine or potassium. Intracellular alkalization markedly reduced the uptake, while intracellular acidification increased it, suggesting that the uptake is driven by an oppositely directed proton gradient. The C/M ratio was significantly decreased by amantadine, verapamil, pyrilamine and diphenhydramine (substrates or inhibitors of proton-coupled organic cation antiporter), while tetraethylammonium (substrate of organic cation transporters (OCTs)) and carnitine (substrate of carnitine/organic cation transporter 2; (OCTN2)) had no effect. R(-)-Apomorphine uptake was competitively inhibited by diphenhydramine. Our results indicate that R(-)-apomorphine transport in human blood-brain barrier (BBB) model cells is similar to S(+)-apomorphine uptake. The transport was dependent on an oppositely directed proton gradient, but was sodium- or membrane potential-independent. The transport characteristics were consistent with involvement of the previously reported proton-coupled organic cation antiporter.

  5. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis.

    Science.gov (United States)

    Klettner, Alexa; Tahmaz, Nihat; Dithmer, Michaela; Richert, Elisabeth; Roider, Johann

    2014-10-01

    Anti-VEGF treatment is the therapy of choice in age-related macular degeneration, and is also applied in diabetic macular oedema or retinal vein occlusion. Recently, the fusion protein, aflibercept, has been approved for therapeutic use. In this study, we investigate the effects of aflibercept on primary RPE cells. Primary RPE cells were prepared from freshly slaughtered pigs' eyes. The impact of aflibercept on cell viability was investigated with MTT and trypan blue exclusion assay. The influence of aflibercept on wound healing was assessed with a scratch assay. Intracellular uptake of aflibercept was investigated in immunohistochemistry and its influence on phagocytosis with a phagocytosis assay using opsonised latex beads. Aflibercept displays no cytotoxicity on RPE cells but impairs its wound healing ability. It is taken up into RPE cells and can be intracellularly detected for at least 7 days. Intracellular aflibercept impairs the phagocytic capacity of RPE cells. Aflibercept interferes with the physiology of RPE cells, as it is taken up into RPE cells, which is accompanied by a reduction of the phagocytic ability. Additionally, it impairs the wound healing capacity of RPE cells. These effects on the physiology of RPE cells may indicate possible side effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    Science.gov (United States)

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  7. Three-day dendritic cells for vaccine development: Antigen uptake, processing and presentation

    Directory of Open Access Journals (Sweden)

    Schendel Dolores J

    2010-09-01

    Full Text Available Abstract Background Antigen-loaded dendritic cells (DC are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. Methods In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC compared with conventional DC prepared in seven days (7d mDC, which represent the most common form of DC used for vaccines to date. Results Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivtRNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. Conclusions This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.

  8. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    Science.gov (United States)

    Khan, Selina; Bijker, Martijn S; Weterings, Jimmy J; Tanke, Hans J; Adema, Gosse J; van Hall, Thorbald; Drijfhout, Jan W; Melief, Cornelis J M; Overkleeft, Hermen S; van der Marel, Gijsbert A; Filippov, Dmitri V; van der Burg, Sjoerd H; Ossendorp, Ferry

    2007-07-20

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam(3)CysSK(4) (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG approximately conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam approximately conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG approximately conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8(+) T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen

  9. 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway

    International Nuclear Information System (INIS)

    Peng, Xiaoli; Gan, Jing; Wang, Qian; Shi, Zhenqiang; Xia, Xiaodong

    2016-01-01

    3-Monochloro-1,2-propanediol (3-MCPD) is the most toxic chloropropanols compounds in foodstuff which mainly generated during thermal processing. Kidney is one of the primary target organs for 3-MCPD. Using human embryonic kidney cell (HEK293FT) as an in vitro model, we found that 3-MCPD caused concentration-dependent increase in cytoxicity as assessed by dye uptake, lactatedehydrogenase (LDH) leakage and MTT assays. HEK293FT cell treated with 3-MCPD suffered the decrease of mitochondrial membrane potential and the impairment of mitochondrial oxidative phosphorylation system, especially the reduced amount of mRNA expression and protein synthesis of electron transport chain complex II, complex IV, and complex III. More importantly, energy release (ATP synthesis) was significantly inhibited by 3-MCPD resulting from the down regulation expressions of ATP synthase (ATP6 and ATP8), as well as the loss of transmembrane potential required for synthesis of ATP. The decreased ratio of mitochondrial apoptogenic factors Bax/Bcl-2 and the cytochrome-c release from mitochondria to cytosol followed by the activation of apoptotic initiators caspase 9 and apoptotic executioners (caspase 3, caspase 6 and caspase 7) leading to apoptosis. The activation of caspase 8 and caspase 2 implied that there were probably other factors to induce the caspase-dependent apoptosis.

  10. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles.

    Directory of Open Access Journals (Sweden)

    Arnaud Beduneau

    Full Text Available BACKGROUND: We posit that the same mononuclear phagocytes (MP that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM were used as vehicles of superparamagnetic iron oxide (SPIO NP and immunoglobulin (IgG or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2 measures using magnetic resonance imaging (MRI were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab'(2 fragments and for Alexa Fluor(R 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab'(2, and/or Alexa Fluor(R 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated

  11. Use of piracetam improves sickle cell deformability in vitro and in vivo.

    Science.gov (United States)

    Gini, E K; Sonnet, J

    1987-01-01

    Microsieving diluted suspensions of oxygenated sickle cell anaemia (HbSS) cells on polycarbonate filters shows that piracetam improves the red cell deformability in vitro. In vivo an oral intake of 160 mg/kg/day divided in four doses enhances the HbSS cell deformability as actively as it does in in vitro experiments. The drug is also able partially to restore the impaired deformability of physiologically deoxygenated HbSS cells. These findings are consistent with the results of clinical trials, which show that continuous treatment with piracetam reduces the incidence of vaso-occlusive crises in patients with sickle cell disease. PMID:3818978

  12. Genistein genotoxicity: Critical considerations of in vitro exposure dose

    International Nuclear Information System (INIS)

    Klein, Catherine B.; King, Audrey A.

    2007-01-01

    The potential health benefits of soy-derived phytoestrogens include their reported utility as anticarcinogens, cardioprotectants and as hormone replacement alternatives in menopause. Although there is increasing popularity of dietary phytoestrogen supplementation and of vegetarian and vegan diets among adolescents and adults, concerns about potential detrimental or other genotoxic effects persist. While a variety of genotoxic effects of phytoestrogens have been reported in vitro, the concentrations at which such effects occurred were often much higher than the physiologically relevant doses achievable by dietary or pharmacologic intake of soy foods or supplements. This review focuses on in vitro studies of the most abundant soy phytoestrogen, genistein, critically examining dose as a crucial determinant of cellular effects. In consideration of levels of dietary genistein uptake and bioavailability we have defined in vitro concentrations of genistein > 5 μM as non-physiological, and thus 'high' doses, in contrast to much of the previous literature. In doing so, many of the often-cited genotoxic effects of genistein, including apoptosis, cell growth inhibition, topoisomerase inhibition and others become less obvious. Recent cellular, epigenetic and microarray studies are beginning to decipher genistein effects that occur at dietarily relevant low concentrations. In toxicology, the well accepted principle of 'the dose defines the poison' applies to many toxicants and can be invoked, as herein, to distinguish genotoxic versus potentially beneficial in vitro effects of natural dietary products such as genistein

  13. Bisphenol A impairs the memory function and glutamatergic homeostasis in a sex-dependent manner in mice: Beneficial effects of diphenyl diselenide.

    Science.gov (United States)

    Jardim, Natália S; Sartori, Glaúbia; Sari, Marcel H M; Müller, Sabrina G; Nogueira, Cristina W

    2017-08-15

    Bisphenol A (BPA) is a compound integrated in commodities, which consequently increases the human exposure to this toxicant. The deleterious effects of BPA exposure during periods of brain development have been documented mainly concerning the impairment in memory functions. Diphenyl diselenide (PhSe) 2 , an organoselenium compound, shows protective/restorative effects against memory deficits in experimental models. Thus, this study investigated the effects of (PhSe) 2 on the memory impairments induced by BPA exposure to male and female mice and the possible involvement of glutamatergic system in these effects. Three-week-old male and female Swiss mice received BPA (5mg/kg), intragastrically, from 21st to 60th postnatal day. After, the animals were intragastrically treated with (PhSe) 2 (1mg/kg) during seven days. The mice performed the behavioral memory tests and the [ 3 H] glutamate uptake and NMDA receptor subunits (2A and 2B) analyses were carried out in the hippocampus and cerebral cortex of mice. The results demonstrated that the BPA exposure induced impairment of object recognition memory in both sexes. However, it caused impairments in spatial memory in female and in the passive avoidance memory in male mice. Besides, BPA caused a decrease in the [ 3 H] glutamate uptake and NMDA receptor subunit levels in the cortical and hippocampal regions depending on the sex. Treatment with (PhSe) 2 reversed in a sex-independent manner the behavioral impairments and molecular alterations. In conclusion, BPA had a negative effect in different memory types as well as in the glutamatergic parameters in a sex-dependent manner and (PhSe) 2 treatment was effective against these alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evidence for compromised metabolic function and limited glucose uptake in spermatozoa from the teratospermic domestic cat (Felis catus) and cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Terrell, Kimberly A; Wildt, David E; Anthony, Nicola M; Bavister, Barry D; Leibo, Stanley P; Penfold, Linda M; Marker, Laurie L; Crosier, Adrienne E

    2010-11-01

    Cheetahs and certain other felids consistently ejaculate high proportions (≥ 60%) of malformed spermatozoa, a condition known as teratospermia, which is prevalent in humans. Even seemingly normal spermatozoa from domestic cat teratospermic ejaculates have reduced fertilizing capacity. To understand the role of sperm metabolism in this phenomenon, we conducted a comparative study in the normospermic domestic cat versus the teratospermic cat and cheetah with the general hypothesis that sperm metabolic function is impaired in males producing predominantly pleiomorphic spermatozoa. Washed ejaculates were incubated in chemically defined medium containing glucose and pyruvate. Uptake of glucose and pyruvate and production of lactate were assessed using enzyme-linked fluorescence assays. Spermatozoa from domestic cats and cheetahs exhibited similar metabolic profiles, with minimal glucose metabolism and approximately equimolar rates of pyruvate uptake and lactate production. Compared to normospermic counterparts, pyruvate and lactate metabolism were reduced in teratospermic cat and cheetah ejaculates, even when controlling for sperm motility. Rates of pyruvate and lactate (but not glucose) metabolism were correlated positively with sperm motility, acrosomal integrity, and normal morphology. Collectively, our findings reveal that pyruvate uptake and lactate production are reliable, quantitative indicators of sperm quality in these two felid species and that metabolic function is impaired in teratospermic ejaculates. Furthermore, patterns of substrate utilization are conserved between these species, including the unexpected lack of exogenous glucose metabolism. Because glycolysis is required to support sperm motility and capacitation in certain other mammals (including dogs), the activity of this pathway in felid spermatozoa is a target for future investigation.

  15. Cellular Uptake of Tile-Assembled DNA Nanotubes.

    Science.gov (United States)

    Kocabey, Samet; Meinl, Hanna; MacPherson, Iain S; Cassinelli, Valentina; Manetto, Antonio; Rothenfusser, Simon; Liedl, Tim; Lichtenegger, Felix S

    2014-12-30

    DNA-based nanostructures have received great attention as molecular vehicles for cellular delivery of biomolecules and cancer drugs. Here, we report on the cellular uptake of tubule-like DNA tile-assembled nanostructures 27 nm in length and 8 nm in diameter that carry siRNA molecules, folic acid and fluorescent dyes. In our observations, the DNA structures are delivered to the endosome and do not reach the cytosol of the GFP -expressing HeLa cells that were used in the experiments. Consistent with this observation, no elevated silencing of the GFP gene could be detected. Furthermore, the presence of up to six molecules of folic acid on the carrier surface did not alter the uptake behavior and gene silencing. We further observed several challenges that have to be considered when performing in vitro and in vivo experiments with DNA structures: (i) DNA tile tubes consisting of 42 nt-long oligonucleotides and carrying single- or double-stranded extensions degrade within one hour in cell medium at 37 °C, while the same tubes without extensions are stable for up to eight hours. The degradation is caused mainly by the low concentration of divalent ions in the media. The lifetime in cell medium can be increased drastically by employing DNA tiles that are 84 nt long. (ii) Dyes may get cleaved from the oligonucleotides and then accumulate inside the cell close to the mitochondria, which can lead to misinterpretation of data generated by flow cytometry and fluorescence microscopy. (iii) Single-stranded DNA carrying fluorescent dyes are internalized at similar levels as the DNA tile-assembled tubes used here.

  16. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Heyland, Jan; Fu, Jianan; Blank, Lars M

    2009-12-01

    Glucose repression of the tricarboxylic acid (TCA) cycle in Saccharomyces cerevisiae was investigated under different environmental conditions using (13)C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO(2) allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g(-1) h(-1)), while the highest acetate production rate of 2.1 mmol g(-1) h(-1) was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l(-1) , pH 5.0, 30 degrees C) S. cerevisiae had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g(-1) h(-1) to about 1.7 mmol g(-1) h(-1) was observed when S. cerevisiae grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO(2) to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (hxk2, grr1) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

  17. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT

    International Nuclear Information System (INIS)

    Büsing, Karen A.; Schönberg, Stefan O.; Brade, Joachim; Wasser, Klaus

    2013-01-01

    Introduction: Chronically altered glucose metabolism interferes with 18 F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in 18 F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on 18 F-FDG uptake in tumors and biodistribution in normal organ tissues. Methods: 18 F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index > 25. The maximum standardized uptake value (SUV max ) of normal organs and the main tumor site was measured. Differences in SUV max in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Results: Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV max in muscle cells and fat, whereas the mean cerebral SUV max was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Conclusions: Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases

  18. Radioiodine uptake by plants from soils

    International Nuclear Information System (INIS)

    Sabova, T.

    1976-01-01

    The uptake and accumulation of radioiodine by wheat, maize and peas from various types of soil have been studied. The uptake depends on the type of soil, on its content of organic matter and on the amount of fertilizer. Radioiodine is mainly accumulated in the roots. Accumulation in above-ground plant parts decreases in the following order: wheat, maize, peas. Uptake was highest from humus and clay soils and lowest from black and meadow soils. Application of chloride fertilizer or carrier iodine lead to an increase of radioiodine uptake in the whole plant. (author)

  19. Quantification of cellular uptake of DNA nanostructures by qPCR.

    Science.gov (United States)

    Okholm, Anders Hauge; Nielsen, Jesper Sejrup; Vinther, Mathias; Sørensen, Rasmus Schøler; Schaffert, David; Kjems, Jørgen

    2014-05-15

    DNA nanostructures facilitating drug delivery are likely soon to be realized. In the past few decades programmed self-assembly of DNA building blocks have successfully been employed to construct sophisticated nanoscale objects. By conjugating functionalities to DNA, other molecules such as peptides, proteins and polymers can be precisely positioned on DNA nanostructures. This exceptional ability to produce modular nanoscale devices with tunable and controlled behavior has initiated an interest in employing DNA nanostructures for drug delivery. However, to obtain this the relationship between cellular interactions and structural and functional features of the DNA delivery device must be thoroughly investigated. Here, we present a rapid and robust method for the precise quantification of the component materials of DNA origami structures capable of entering cells in vitro. The quantification is performed by quantitative polymerase chain reaction, allowing a linear dynamic range of detection of five orders of magnitude. We demonstrate the use of this method for high-throughput screening, which could prove efficient to identify key features of DNA nanostructures enabling cell penetration. The method described here is suitable for quantification of in vitro uptake studies but should easily be extended to quantify DNA nanostructures in blood or tissue samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Impaired absorption of marked oligopeptide Glycine-I Tyrosine-Glycine after successful autologous-allotopic ileal mucosa transplantation in beagles.

    Science.gov (United States)

    Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z

    2004-10-01

    After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.

  1. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  2. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas)

    International Nuclear Information System (INIS)

    Niyogi, Som; Blewett, Tamzin A.; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M.

    2016-01-01

    Highlights: • Zinc accumulation in the euryhaline green crab is partially salinity dependent. • Zinc accumulates mainly in the gills of green crab during acute waterborne exposure. • Branchial zinc and calcium transport in the green crab occurs via a common pathway. • Acute waterborne Zn exposure disrupts calcium and zinc homeostasis in the green crab. - Abstract: Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n = 10) were exposed to control (no added Zn) and 50 μM (3.25 mg L"−"1) of waterborne Zn (∼25% of 96 h LC_5_0 in 100 seawater) for 96 h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1–4 h) branchial Zn uptake over an exposure concentration range of 3–12 μM (200–800 μg L"−"1). The rate of short-term branchial Zn

  3. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas)

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Blewett, Tamzin A. [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biological Sciences, University of Alberta, Edmonton, AB (Canada); Department of Biology, McMaster University, Hamilton, ON (Canada); Gallagher, Trevor [Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Fehsenfeld, Sandra [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biological Sciences, University of Manitoba, Winnipeg, MB (Canada); Department of Zoology, University of British Columbia, Vancouver, BC (Canada); Wood, Chris M. [Bamfield Marine Sciences Centre, Bamfield, BC (Canada); Department of Biology, McMaster University, Hamilton, ON (Canada); Department of Zoology, University of British Columbia, Vancouver, BC (Canada)

    2016-09-15

    Highlights: • Zinc accumulation in the euryhaline green crab is partially salinity dependent. • Zinc accumulates mainly in the gills of green crab during acute waterborne exposure. • Branchial zinc and calcium transport in the green crab occurs via a common pathway. • Acute waterborne Zn exposure disrupts calcium and zinc homeostasis in the green crab. - Abstract: Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n = 10) were exposed to control (no added Zn) and 50 μM (3.25 mg L{sup −1}) of waterborne Zn (∼25% of 96 h LC{sub 50} in 100 seawater) for 96 h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1–4 h) branchial Zn uptake over an exposure concentration range of 3–12 μM (200–800 μg L{sup −1}). The rate of short

  4. Diphenyl ditelluride impairs short-term memory and alters neurochemical parameters in young rats.

    Science.gov (United States)

    Stangherlin, Eluza Curte; Rocha, João Batista Teixeira; Nogueira, Cristina Wayne

    2009-01-01

    The aim of this study was to investigate if maternal exposure to 0.03 mg/kg of diphenyl ditelluride (PhTe)2 during the first 14 days of lactational period in Wistar rats alters recognition memory and neurochemical parameters in young rats. Object recognition memory task, evaluation of synaptosomal [3H]glutamate uptake and release as well as cerebral Na+/K+ATPase activity were evaluated in 4 week-old rats. There were no significant specific overt signs of maternal intoxication. The body weight gain of rats was similar among groups. (PhTe)2-exposed group showed a significantly lower time exploring the novel object when compared to the performance of the control group in short-term memory (STM) test. In addition, (PhTe)2 significantly inhibited synaptosomal [3H]glutamate uptake and cerebral Na+/K+ATPase activity in animals. The synaptosomal [3H]glutamate release was similar between (PhTe)2 and control groups. In conclusion, the present study establishes that young rats presented cognitive impairment after exposure to (PhTe)2 via maternal milk, demonstrated by the performance of animals in object recognition memory task. The possible mechanism involved in (PhTe)2 action in memory of recognition might involve inhibition of cerebral Na+/K+ATPase activity and synaptosomal [3H]glutamate uptake.

  5. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  6. Modulation of adipogenesis and glucose uptake by Curcuma longa extract in 3T3L1 and L6 cell lines - An in vitro study

    Directory of Open Access Journals (Sweden)

    A. Prathapan

    2012-05-01

    Full Text Available Objective: To evaluate the effects of ethyl acetate extract of Curcuma longa against modulation of glucose uptake and adipogenesis in cell line models. Methods: We used 3T3L1 and L6 cells to investigate cytotoxicity, glucose uptake with 2-NBDG as probe and adipogenesis. All the analysis was done with flowcytometry. Results: The results showed that the extract did not possess any significant glucose uptake activity but it exhibited significant adipocyte differentiation potential. Conclusions: Ethyl acetate extract of Curcuma longa exhibits significant antiadipogenesis and can be used as an effective drug for the treatment of obesity and other associated complications.

  7. The effects of human TSH receptor gene transfection on iodide uptake and thyroid-specific gene expression in poorly differentiated thyroid carcinoma cell line

    International Nuclear Information System (INIS)

    Hou Shasha; Wang Hui; Feng Fang; Lin Ning; Fu Hongliang; Du Xueliang; Wu Jingchuan

    2011-01-01

    Objective: To investigate the changes of iodide uptake and the expression of thyroid-specific genes in poorly differentiated follicular thyroid carcinoma (FTC) cells after transfection of human TSH receptor (hTSHR) gene in vitro. Methods: The recombinant eukaryotic expression plasmid PcDNA3.1/hTSHR-cDNA was transformed into DH 5a bacterial for amplification and then the recombinant plasmid was extracted. The recombinant was identified with PCR amplifying, restriction enzyme digestion analysis and DNA sequencing. The recombinant plasmid pcDNA3.1/hTSHR was transfected into FTC-133 cell line by lipofectin method in vitro. Immunofluorescence, iodide uptake studies and real time-PCR were applied to detect target protein expression. Statistical analysis was performed with t-test using SPSS 13.0 software. Results: Kpn I and Xba I restriction enzyme digestion, PCR amplifying and DNA sequencing confirmed that pcDNA3.1/hTSHR was successfully constructed. After transfection of the recombinant plasmid pcDNA3.1/hTSHR-cDNA and the stimulation of hTSH, the tumor cells displayed the expression of hTSHR protein at cell surface and cytoplasm. The iodine uptake in pcDNA3.1/hTSHR transfected cells was 2.9 times higher than that of control(pcDNA3.1(+) transfected cells) group(t = 28.63, P<0.01). The expression of TSHR, NIS, TPO and Tg (mRNA levels) in pcDNA3.1/hTSHR transfected cells were also significantly elevated by 1.74 (t =5.959, P<0.01), 7.2 (t =3.807, P<0.05), 2.88 (t=4.769, P<0.01) and 2.67 times (t=6.388, P<0.01) respectively compared to those of the control group. Conclusion: The study demonstrates that iodide uptake may be reactivated by hTSHR receptor gene transfection in poorly differentiated FTC cell. (authors)

  8. In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available The trehalose metabolic enzymes have been considered as potential targets for drug or vaccine in several organisms such as Mycobacterium, plant nematodes, insects and fungi due to crucial role of sugar trehalose in embryogenesis, glucose uptake and protection from stress. Trehalose-6-phosphate phosphatase (TPP is one of the enzymes of trehalose biosynthesis that has not been reported in mammals. Silencing of tpp gene in Caenorhabditis elegans revealed an indispensable functional role of TPP in nematodes.In the present study, functional role of B. malayi tpp gene was investigated by siRNA mediated silencing which further validated this enzyme to be a putative antifilarial drug target. The silencing of tpp gene in adult female B. malayi brought about severe phenotypic deformities in the intrauterine stages such as distortion and embryonic development arrest. The motility of the parasites was significantly reduced and the microfilarial production as well as their in vitro release from the female worms was also drastically abridged. A majority of the microfilariae released in to the culture medium were found dead. B. malayi infective larvae which underwent tpp gene silencing showed 84.9% reduced adult worm establishment after inoculation into the peritoneal cavity of naïve jirds.The present findings suggest that B. malayi TPP plays an important role in the female worm embryogenesis, infectivity of the larvae and parasite viability. TPP enzyme of B. malayi therefore has the potential to be exploited as an antifilarial drug target.

  9. Thyroid uptake software

    International Nuclear Information System (INIS)

    Alonso, Dolores; Arista, Eduardo

    2003-01-01

    The DETEC-PC software was developed as a complement to a measurement system (hardware) able to perform Iodine Thyroid Uptake studies. The software was designed according to the principles of Object oriented programming using C++ language. The software automatically fixes spectrometric measurement parameters and besides patient measurement also performs statistical analysis of a batch of samples. It possesses a PARADOX database with all information of measured patients and a help system with the system options and medical concepts related to the thyroid uptake study

  10. Dose assessment of SiC nanoparticle dispersions during in vitro assays

    International Nuclear Information System (INIS)

    Mejia, Jorge; Piret, Jean-Pascal; Noël, Florence; Masereel, Bernard; Toussaint, Olivier; Lucas, Stéphane

    2013-01-01

    Here, we show that key physicochemical parameters of commercial Silicon Carbide nanoparticles, such as the primary particles of about 53 nm in size, the agglomerates size, and the surface composition, are considerably modified with respect to the pristine conditions, during in vitro assessment. The use of sample conditioning stages, such as the pre-dispersion in aqueous media and the subsequent dispersion in a culture medium specific to the in vitro assay, produce modifications as the absorption of N, C, and O, from the culture medium, in the nanoparticles surface. Our results show that the sedimented dose, fraction of sedimented NPs during incubation and consequently in contact with cells seeded at the bottom, of Silicon Carbide nanoparticles can be measured from the particle size distribution obtained using a centrifugal liquid sedimentation technique. It is underlined that the variations observed in the physicochemical properties are related to the in vitro assay conditions. Culture medium and incubation time are found to influence the most the sedimented dose and consequently the cells dose uptake

  11. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833.

    Science.gov (United States)

    Gil-Cardeza, María Lourdes; Calonne-Salmon, Maryline; Gómez, Elena; Declerck, Stéphane

    2017-11-01

    Hexavalent chromium is a potent carcinogen, while phosphorus is an essential nutrient. The role of arbuscular mycorrhizal fungi (AMF) in the uptake of P is well known and was also reported, at low levels, for Cr. However, it is unclear whether the uptake of Cr can impact the short-term uptake dynamics of P since both elements have a similar chemical structure and may thus potentially compete with each other during the uptake process. This study investigated the impact of Cr(VI) on short-term P uptake by the AMF Rhizophagus irregularis MUCL 41833 in Medicago truncatula. Bi-compartmented Petri plates were used to spatially separate a root compartment (RC) from a hyphal compartment (HC) using a whole plant in vitro culture system. The HC was supplemented with Cr(VI). Chromium(VI) as well as total Cr and P were monitored during 16 h within the HC and their concentrations determined by the end of the experiment within roots and shoots. Our results indicated that the uptake and translocation of Cr from hyphae to roots was a fast process: roots in which the extraradical mycelium (ERM) was exposed to Cr(VI) accumulated more Cr than roots of which the ERM was not exposed to Cr(VI) or was dead. Our results further confirmed that dead ERM immobilized more Cr than alive ERM. Finally our results demonstrated that the short exposure to Cr(VI) was sufficient to stimulate P uptake by the ERM and that the stimulation process began within the first 4 h of exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 11C-harmine as a potential PET tracer for ductal pancreas cancer: in vitro studies

    International Nuclear Information System (INIS)

    Herlin, G.; Persson, B.; Laangstroem, B.; Aspelin, P.; Bergstroem, M.

    2003-01-01

    Our objective was to find a tracer in diagnosing human pancreatic cancer using positron emission tomography (PET). For this purpose in vitro test of pancreatic tissues with autoradiography was used. Autoradiography was performed with 11 C-harmine (a MAO-A-inhibitor) with and without competitive inhibition. Tissue preparations were obtained from normal human pancreas and pancreatic cancer. The uptake was compared with rat brain or pig brain, tissues with high expression of MAO-A. Nine autoradiography studies on 16 samples from five different human pancreatic cancers gave a significant level of specific binding of 11 C-harmine in 13, and 3 samples did not give a significant level of specific binding of 11 C-harmine. All 16 samples were analysed with autoradiography. Compared with rat brain, the uptake in the human cancers varied between 9 and 43% except for one tissue preparation which had a too low value for measurement. This study shows expression of MAO-A in human pancreatic cancer. This is readily characterised in vitro. The potential use of 11 C-harmine in the diagnosis of pancreatic cancer using PET might be limited, but further PET studies are necessary. (orig.)

  13. Impaired production of proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    1999-01-01

    following LPS stimulation, representing an ex vivo model of sepsis. Levels of tumour necrosis factor-alpha (TNF-alpha), IL-1 beta and IL-6 in whole blood supernatants were measured after in vitro LPS stimulation for 24 h in 168 elderly humans aged 81 years from the 1914 cohort in Glostrup, Denmark and in 91...... of proinflammatory cytokines compared with young men, but this difference was blurred by ageing. No relation was found between circulating plasma levels of TNF-alpha and levels after in vitro LPS stimulation. In conclusion, decreased production of TNF-alpha and IL-1 beta after exposure to LPS may reflect impaired...

  14. Differential Deposition of Fluorescently Tagged Cholesterol on Commercial Contact Lenses Using a Novel In Vitro Eye Model.

    Science.gov (United States)

    Walther, Hendrik; Phan, Chau-Minh; Subbaraman, Lakshman N; Jones, Lyndon

    2018-04-01

    We evaluate the differences in lipid uptake and penetration in daily disposable (DD) contact lenses (CL) using a conventional "in-vial" method compared to a novel in vitro eye model. The penetration of fluorescently labelled 22-(N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino)-23,24-Bisnor-5-Cholen-3beta-Ol (NBD)-cholesterol on three silicone hydrogel (SH) and four conventional hydrogel (CH) DD CLs were investigated. CLs were incubated for 4 and 12 hours in a vial, containing 3.5 mL artificial tear solution (ATS), or were mounted on an in vitro eye-blink platform designed to simulate physiologic tear flow (2 mL/24 hours), tear volume and "simulated" blinking. Subsequently, CLs were analyzed using laser scanning confocal microscopy and ImageJ. Penetration depth and fluorescence intensities of NBD-cholesterol varied between the incubation methods as well as lens materials. Using the traditional vial incubation method, NBD-cholesterol uptake occurred equally on both sides of all lens materials. However, using our eye-blink model, cholesterol penetration was observed primarily on the anterior surface of the CLs. In general, SH lenses showed higher intensities of NBD-cholesterol than CH materials. The traditional "in-vial" incubation method exposes the CLs to an excessively high amount of ATS, which results in an overestimation for cholesterol deposition. Our model, which incorporates important ocular factors, such as intermittent air exposure, small tear volume, and physiological tear flow between blinks, provides a more natural environment for in vitro lens incubation. In vitro measurements of CLs are a common approach to predict their interactions and performance on the eye. Traditional methods, however, are rudimentary. Therefore, this study presents a novel in vitro model to evaluate CLs, which consequently will enhance elucidations of the interactions between CLs and the eye.

  15. Plutonium retention in dairy calves following ingestion of either in vivo labeled or in vitro labeled milk

    International Nuclear Information System (INIS)

    Sutton, W.W.; Patzer, R.G.; Hahn, P.B.; Potter, G.D.

    1977-01-01

    Holstein calves, 4 to 8 days of age, were used to compare the gastrointestinal uptake of plutonium-238 from either in vivo or in vitro plutonium-labeled milk. In vivo labeled milk was collected from intravenously dosed lactating adults and the in vitro labeled milk was prepared at the same nuclide concentration by adding citrate-buffered plutonium nitrate to uncontaminated cow's milk. Dosing was accomplished with individual plastic feeding buckets twice daily for 7 consecutive days. The calves were sacrificed 2 days after the final plutonium dose, at which time tissues were collected for nuclide analysis

  16. Tracing of erythrocytes in vitro with technetium-99 m: clinical applications

    International Nuclear Information System (INIS)

    Boasquevisque, E.M.

    1983-01-01

    The human beings' erythrocytes were studied in vitro by the pre tinning method, using the pyrophosphate - Stannous Chloride Kit. Investigation of factors that can alter the labeling efficiency includes tin concentration, temperature and incubation period, besides of plasma concentration and hematocrit. It was seen that tin uptake by the red blood cells (RBC) was in an exponential fashion, with a reaction constant, K = 0,03 min -1 . The reaction approaches the equilibrium about the 90 minutes. The binding of Tc-99 m in the Acidic insoluble fraction occurs in greater amounts with more concentrated tin solutions. The labeled and heated TBC were used in vivo to scintigraphic investigation. Normal subjects, splenomegaly, accessory spleen and splenic function in sickel-cell disease were studied. Circulation time of labeled RBC appears to be greater in sickel-cell anemia than in controls or splenectomized patients. Uptake was greater in kidney than lungs and liver. (author)

  17. Physiological FDG uptake in the palatine tonsils

    International Nuclear Information System (INIS)

    Kawabe, Joji; Okamura, Terue; Shakudo, Miyuki

    2001-01-01

    In clinical F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) studies of the head and neck region, remarkable symmetric tonsillar FDG uptake is sometimes observed. We determined the incidence and degree of tonsillar FDG uptake and investigated the significance of tonsillar FDG uptake. Between June 1998 and August 1998, we obtained informed consent from 17 patients who were scheduled to undergo a FDG-PET study for their own disease (11 men and 6 women; aged 22 to 77 yr) and who did not have head and neck disease to perform FDG-PET scanning of the head and neck region in addition to their target organs. The incidence and degree of tonsillar FDG uptake were determined. Remarkable tonsillar FDG uptake was found in 9 patients. The SUVs of these FDG uptakes ranged from 2.48 to 6.75, with a mean of 4.29±1.20 (SD). Tonsillar FDG uptakes in the remaining 8 patients were not remarkable, and their SUVs ranged from 1.93 to 3.31, with a mean of 2.46±0.45. Head and neck disease does not appear to have been responsible for the increase in tonsillar FDG uptake. Differences among tonsillar FDG uptake in these 17 patients without head and neck disease appear to reflect differences in activity of ''physiological'' inflammation of the palatine tonsils. (author)

  18. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture

    DEFF Research Database (Denmark)

    Kveiborg, M.; Rattan, Suresh; Eriksen, E.F.

    2001-01-01

    is due to impaired responsiveness to calcitriol known to be important for the regulation of biological activities of the osteoblasts. Thus, we examined changes in vitamin D receptor (VDR) system and the osteoblastic responses to calcitriol treatment during in vitro osteoblast aging. We found no change...... in the amount of VDR at either steady state mRNA level or protein level with increasing in vitro osteoblast age and examination of VDR localization, nuclear translocation and DNA binding activity revealed no in vitro age-related changes. Furthermore, calcitriol (10(-8)M) treatment of early-passage osteoblastic......Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D(3) (calcitriol) are a prerequisite for optimal osteoblast functions. We have previously characterized several human diploid osteoblastic cell lines that exhibit typical in vitro aging characteristics during long...

  19. Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Marc-Andre [Centre Hospitalier Universitaire de Quebec and Laval University, Laboratory for Biomaterials and Bioengineering, Quebec City (Canada); Uppsala University, Biomedical Radiation Sciences, Department of Oncology, Radiology, and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Salnikov, Alexei V. [Uppsala University, BMC, Department of Medical Biochemistry and Microbiology, Uppsala (Sweden); German Cancer Research Center, Division of Molecular Immunology, Heidelberg (Germany); Nestor, Marika [Uppsala University, Division of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala (Sweden); Heldin, Nils-Erik [Uppsala University, Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala (Sweden); Rubin, Kristofer [Uppsala University, BMC, Department of Medical Biochemistry and Microbiology, Uppsala (Sweden); Lundqvist, Hans [Uppsala University, Biomedical Radiation Sciences, Department of Oncology, Radiology, and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2007-09-15

    We tested the suitability of the chimeric monoclonal anti-human CD44 splice version 6 antibody (cMAb U36) for targeting and visualising human anaplastic thyroid carcinoma with PET. We also performed experiments aimed at elucidating the relation between tumour interstitial fluid pressure (TIFP) and the tumour uptake of antibodies. The affinity and specificity of the cMAb U36 for KAT-4 cells were evaluated in vitro, as was the Na{sup +}/I{sup -} symporter (NIS) expression. Biodistribution studies were performed on KAT-4 carcinoma-bearing mice injected with {sup 124}I-cMAb U36 or free iodine. Biodistribution studies were also performed in animals treated with the specific TGF-{beta}1 and -{beta}3 inhibitor Fc:T{beta}RII, which lowers TIFP. Treated and non-treated animals were scanned by microPET. Cultured human undifferentiated/anaplastic thyroid carcinoma KAT-4 cells expressed low levels of NIS and uptake of free iodine was insignificant. The cMAb U36 expressed an affinity (K{sub D}) of 11 {+-} 2 nM. Tumour radioactivity uptake reached maximum values 48 h after injection of {sup 124}I-cMAb U36 ({proportional_to}22%IA/g). KAT-4 carcinomas were readily identified in all {sup 124}I-immuno-PET images. Radioactivity tumour uptake in Fc:T{beta}RII-treated animals was significantly lower at 24 and 48 h after injection, and five times higher thyroid uptake was also noted. We successfully used {sup 124}I-cMAb U36 to visualise CD44v6-expressing human anaplastic thyroid carcinoma. Given the lack of NIS expression in KAT-4, tumour visualisation is not due to free iodine uptake. Lowering the TIFP in KAT-4 carcinomas did not increase the uptake of mAbs into tumour tissue. (orig.)

  20. Sperm-macrophage interaction in the mouse: a quantitative assay in vitro using 111indium oxine-labeled sperm

    International Nuclear Information System (INIS)

    Olive, D.L.; Weinberg, J.B.; Haney, A.F.

    1987-01-01

    The role of reproductive tract macrophages in contraception and reproductive failure has become widely recognized. However, in vitro analysis of sperm phagocytosis by macrophages has relied upon a semi-quantitative method of sperm counting that is of limited accuracy and reproducibility. We have developed an assay using murine sperm labeled with 111 indium oxine, and results indicate the labeling to be rapid and efficient. Incorporation of 111 indium into sperm increased the dose and sperm concentration and reached 90% maximal uptake after 15 min incubation, with maximal uptake occurring at 30 min. No decrease in sperm motility was noted with levels of oxine in excess of those required for significant labeling. Maximal labeling efficiency occurred in phosphate-buffered saline (PBS), with Dulbecco's modified Eagle's medium (DMEM) + 10% adult bovine serum (ABS) producing significantly less uptake. Label dissociation was detectable in PBS at room temperature, but at 37 degrees C in DMEM + 10% ABS, loss of label occurred at a rate of 23.5%/h. Addition of labeled sperm to murine macrophage monolayers under optimal conditions resulted in uptake of 111 indium by macrophages, while free label was unincorporated. Results indicated assay specificity for macrophage-limited uptake, with insignificant label uptake by nonphagocytic murine fibroblasts and better sensitivity than sperm counting. Macrophages from Bacillus Calmette-Guerin (BCG)-infected mice resulted in a decrease in sperm uptake. Female macrophages showed greater capacity for sperm uptake than those of the male mouse. These initial studies demonstrated the utility of this model system in enhancing the understanding of sperm-macrophage interaction in the female reproductive tract

  1. Hydrogen uptake by Azolla-Anabaena

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Silva, P.M.

    1984-01-01

    The hydrogen uptake in the Azolla-Anabaena system is studied. Tritium is used as tracer. Plants are incubated under different atmosphere composition: a) Air + 3 H 2 ; b) Air + CO 2 + 3 H 2 + CO; c) Air + 3 H 2 + CO; d) Air + CO 2 + 3 H 2 + CO to study the pathway of absorbed hydrogen in the Azolla - Anabaena system. Azolla-Anabaena showed greater hydrogen uptake under argonium atmosphere than under air. Carbon monoxide decreased hydrogen uptake. There are evidences of recycling of the hydrogen evolved through notrogenease. (Author) [pt

  2. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  3. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Science.gov (United States)

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  4. Response-predictive gene expression profiling of glioma progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvia Moeckel

    Full Text Available High-grade gliomas are amongst the most deadly human tumors. Treatment results are disappointing. Still, in several trials around 20% of patients respond to therapy. To date, diagnostic strategies to identify patients that will profit from a specific therapy do not exist.In this study, we used serum-free short-term treated in vitro cell cultures to predict treatment response in vitro. This approach allowed us (a to enrich specimens for brain tumor initiating cells and (b to confront cells with a therapeutic agent before expression profiling.As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated progenitor cells allowed to predict therapy-induced impairment of proliferation in vitro.For the tyrosine kinase inhibitor Sunitinib used in this dataset, the approach revealed additional predictive information in comparison to the evaluation of classical signaling analysis.

  5. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

    Directory of Open Access Journals (Sweden)

    Alwani S

    2016-02-01

    Full Text Available Saniya Alwani,1 Randeep Kaur,1 Deborah Michel,1 Jackson M Chitanda,2 Ronald E Verrall,3 Chithra Karunakaran,4 Ildiko Badea1 1Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, 2Department of Chemical & Biological Engineering, 3Department of Chemistry, University of Saskatchewan, 4Canadian Light Source, Saskatoon, SK, Canada Purpose: Nanodiamonds (NDs are emerging as an attractive tool for gene therapeutics. To reach their full potential for biological application, NDs should maintain their colloidal stability in biological milieu. This study describes the behavior of lysine-functionalized ND (lys-ND in various dispersion media, with an aim to limit aggregation and improve the colloidal stability of ND-gene complexes called diamoplexes. Furthermore, cellular and macromolecular interactions of lys-NDs are also analyzed in vitro to establish the understanding of ND-mediated gene transfer in cells. Methods: lys-NDs were synthesized earlier through covalent conjugation of lysine amino acid to carboxylated NDs surface generated through re-oxidation in strong oxidizing acids. In this study, dispersions of lys-NDs were prepared in various media, and the degree of sedimentation was monitored for 72 hours. Particle size distributions and zeta potential measurements were performed for a period of 25 days to characterize the physicochemical stability of lys-NDs in the medium. The interaction profile of lys-NDs with fetal bovine serum showed formation of a protein corona, which was evaluated by size and charge distribution measurements. Uptake of lys-NDs in cervical cancer cells was analyzed by scanning transmission X-ray microscopy, flow cytometry, and confocal microscopy. Cellular uptake of diamoplexes (complex of lys-NDs with small interfering RNA was also analyzed using flow cytometry. Results: Aqueous dispersion of lys-NDs showed minimum sedimentation and remained stable over a period of 25 days. Size distributions showed

  6. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irina N Baranova

    Full Text Available Serum amyloid A (SAA is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.

  7. Dietary Factors Modulate Iron Uptake in Caco-2 Cells from an Iron Ingot Used as a Home Fortificant to Prevent Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Ildefonso Rodriguez-Ramiro

    2017-09-01

    Full Text Available Iron deficiency is a major public health concern and nutritional approaches are required to reduce its prevalence. The aim of this study was to examine the iron bioavailability of a novel home fortificant, the “Lucky Iron Fish™” (LIF (www.luckyironfish.com/shop, Guelph, Canada and the impact of dietary factors and a food matrix on iron uptake from LIF in Caco-2 cells. LIF released a substantial quantity of iron (about 1.2 mM at pH 2 but this iron was only slightly soluble at pH 7 and not taken up by cells. The addition of ascorbic acid (AA maintained the solubility of iron released from LIF (LIF-iron at pH 7 and facilitated iron uptake by the cells in a concentration-dependent manner. In vitro digestion of LIF-iron in the presence of peas increased iron uptake 10-fold. However, the addition of tannic acid to the digestion reduced the cellular iron uptake 7.5-fold. Additionally, LIF-iron induced an overproduction of reactive oxygen species (ROS, similar to ferrous sulfate, but this effect was counteracted by the addition of AA. Overall, our data illustrate the major influence of dietary factors on iron solubility and bioavailability from LIF, and demonstrate that the addition of AA enhances iron uptake and reduces ROS in the intestinal lumen.

  8. Uptake of benzyladenine by excised watermelon cotyledons.

    Science.gov (United States)

    Lampugnani, M G; Fantelli, R; Longo, G P; Longo, C P; Rossi, G

    1981-07-01

    The uptake of 8-[(14)C]N(6)-benzyladenine (BA) was studied in excised watermelon (Citrullus vulgaris Schrad.) cotyledons 24 hours after the start of imbibition. The passive nature of this uptake is suggested by the following evidence: (a) no sign of saturation on increasing external concentration of BA; (b) no decrease in uptake under conditions that inhibit ATP synthesis; (c) no change in amount of radioactivity absorbed when cotyledons are frozen and thawed before the uptake test. About two-thirds of the radioactivity taken up is released after 12 hours of washing. If the washing is performed at 2 C very little radioactivity is released.There seems to be a correlation between the level of radioactivity (i.e. of BA + derivatives) present in the cotyledons and the magnitude of hormonal responses that are observed four days after uptake. This relationship holds regardless of whether a given level of radioactivity has been reached after a short period of uptake or after a long period of uptake followed by washing.

  9. Are all children with visual impairment known to the eye clinic?

    Science.gov (United States)

    Pilling, Rachel F; Outhwaite, Louise

    2017-04-01

    There is a growing body of evidence that children with special needs are more likely to have visual problems, be that visual impairment, visual processing problems or refractive error. While there is widespread provision of vision screening in mainstream schools, patchy provision exists in special schools. The aim of the study was to determine the unmet need and undiagnosed visual problems of children attending primary special schools in Bradford, England. Children attending special schools who were not currently under the care of the hospital eye service were identified. Assessments of visual function and refractive error were undertaken on site at the schools by an experienced orthoptist and/or paediatric ophthalmologist. A total of 157 children were identified as eligible for the study, with a mean age of 7.8 years (range 4-12 years). Of these, 33% of children were found to have visual impairment, as defined by WHO and six children were eligible for severe sight impairment certification. The study demonstrates significant unmet need or undiagnosed visual impairment in a high-risk population. It also highlights the poor uptake of hospital eye care for children identified with significant visual needs and suggests the importance of providing in-school assessment and support, including refractive correction, to fully realise the benefits of a visual assessment programme. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Gastric gallium-67 uptake in gastritis

    International Nuclear Information System (INIS)

    Yeh, E.L.; Tisdale, P.L.; Zielonka, J.S.

    1983-01-01

    Even though Ga-67 imaging has been used widely in the diagnosis of malignant as well as inflammatory lesions, its uptake in the stomach has been reported in the literature mainly in gastric lymphoma and carcinoma. As shown in this case, intense gastric uptake of the radionuclide may be seen in common gastritis without malignancy. Perhaps the benign gastric uptake of Ga-67 deserves more emphasis

  11. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  12. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Science.gov (United States)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  13. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.

    Science.gov (United States)

    Kodali, Vamsi K; Roberts, Jenny R; Shoeb, Mohammad; Wolfarth, Michael G; Bishop, Lindsey; Eye, Tracy; Barger, Mark; Roach, Katherine A; Friend, Sherri; Schwegler-Berry, Diane; Chen, Bean T; Stefaniak, Aleksandr; Jordan, Kevin C; Whitney, Roy R; Porter, Dale W; Erdely, Aaron D

    2017-10-01

    Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute

  14. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  15. Standardization of a method to calculate absolute renal uptake of 99m Tc-DMSA in children

    International Nuclear Information System (INIS)

    Ono, Carla Rachel; Sapienza, Marcelo Tatit; Watanabe, Tomoco; Costa, Paulo Luiz Aguirre; Okamoto, Miriam Roseli Yoshie; Garcez, Alexandre Teles; Buchpiguel, Carlos Alberto; Machado, Beatriz Marcondes; Machado, Marcia Melo Campos; Liberato Junior, Waldyr de Paula

    2006-01-01

    Objective:To standardize a method and determine normal values for absolute renal uptake of 99m Tc-DMSA in children with normal creatinine clearance. Materials and methods: Twenty-two children (between 7 months and 10 years of age; mean 4.5 years) without clinical evidence of renal disease were studied using 99m Tc-DMSA scintigraphy. Eighteen had normal renal ultrasonography, micturating urethrocystography, creatinine clearance and visual interpretation of the scintigraphy with 99m Tc-DMSA. Four children were excluded, one with incomplete creatinine clearance and three due to reduction in the creatinine clearance. Absolute renal uptake of 99m Tc-DMSA (DMSA-Abs) was expressed as the fraction of the administered dose retained by each kidney six hours after administration of the radiopharmaceutical. Results: DMSA-Abs was 21.8 +- 3.2% for the right kidney and 23.1 +-3.3% for the left kidney. There was no correlation between renal uptake and the age groups studied, although there was a tendency to an increase in the creatinine clearance with age. Conclusion: Normal values of DMSA-Abs can be used as an additional parameter for the initial diagnostic evaluation and during follow-up of renal diseases, mainly when bilateral impairment of renal function is suspected or in a patient with a single functioning kidney (in which renal differential function is of limited value). (author)

  16. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    International Nuclear Information System (INIS)

    Moeller, Winfried; Kreyling, Wolfgang G.; Kohlhaeufl, Martin; Haeussinger, Karl; Heyder, Joachim

    2001-01-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 μm geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs

  17. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Winfried E-mail: moeller@gsf.de; Kreyling, Wolfgang G.; Kohlhaeufl, Martin; Haeussinger, Karl; Heyder, Joachim

    2001-07-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 {mu}m geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs.

  18. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    Science.gov (United States)

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  19. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia

    Directory of Open Access Journals (Sweden)

    Sopi Ramadan B

    2012-08-01

    Full Text Available Abstract Background Hyperoxia is shown to impair airway relaxation via limiting L-arginine bioavailability to nitric oxide synthase (NOS and reducing NO production as a consequence. L-arginine can also be synthesized by L-citrulline recycling. The role of L-citrulline supplementation was investigated in the reversing of hyperoxia-induced impaired relaxation of rat tracheal smooth muscle (TSM. Methods Electrical field stimulation (EFS, 2–20 V-induced relaxation was measured under in vitro conditions in preconstricted tracheal preparations obtained from 12 day old rat pups exposed to room air or hyperoxia (>95% oxygen for 7 days supplemented with L-citrulline or saline (in vitro or in vivo. The role of the L-citrulline/L-arginine cycle under basal conditions was studied by incubation of preparations in the presence of argininosuccinate synthase (ASS inhibitor [α-methyl-D, L-aspartate, 1 mM] or argininosuccinate lyase inhibitor (ASL succinate (1 mM and/or NOS inhibitor [Nω-nitro-L-arginine methyl ester; 100 μM] with respect to the presence or absence of L-citrulline (2 mM. Results Hyperoxia impaired the EFS-induced relaxation of TSM as compared to room air control (p ; 0.5 ± 0.1% at 2 V to 50.6 ± 5.7% at 20 V in hyperoxic group: 0.7 ± 0.2 at 2 V to 80.0 ± 5.6% at 20 V in room air group. Inhibition of ASS or ASL, and L-citrulline supplementation did not affect relaxation responses under basal conditions. However, inhibition of NOS significantly reduced relaxation responses (p in vivo and in vitro also reversed the hyperoxia-impaired relaxation. The differences were significant (p ; 0.8 ± 0.3% at 2 V to 47.1 ± 4.1% at 20 V without L-citrulline; 0.9 ± 0.3% at 2 V to 68.2 ± 4.8% at 20 V with L-citrulline. Inhibition of ASS or ASL prevented this effect of L-citrulline. Conclusion The results indicate the presence of an L-citrulline/L-arginine cycle in the airways of rat pups

  20. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    International Nuclear Information System (INIS)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-01-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  1. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Cao, Di [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Yu, Weibang [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Zhao, Zhongxiang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou (China); Huang, Min [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China); Jin, Jing, E-mail: jinjing@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou (China)

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the hepatic

  2. Cotrimoxazole enhances the in vitro susceptibility of Coccidioides posadasii to antifungals

    Directory of Open Access Journals (Sweden)

    Rossana de Aguiar Cordeiro

    2011-12-01

    Full Text Available The aim of the present study was to evaluate the effect of cotrimoxazole on the in vitro susceptibility of Coccidioides posadasii strains to antifungals. A total of 18 strains of C. posadasii isolated in Brazil were evaluated in this study. The assays were performed in accordance with the Clinical and Laboratory Standards Institute guidelines and the combinations were tested using the checkerboard method. The minimum inhibitory concentrations were reduced by 11, 2.4, 4.3 and 3.5 times for amphotericin B, itraconazole, fluconazole and voriconazole, respectively. Moreover, it was seen that cotrimoxazole itself inhibited C. posadasii strains in vitro. The impairment of folic acid synthesis may be a potential antifungal target for C. posadasii.

  3. Cotrimoxazole enhances the in vitro susceptibility of Coccidioides posadasii to antifungals.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Astete-Medrano, Delia Jessica; Marques, Francisca Jakelyne de Farias; Andrade, Heuziwanne Tavares Leite; Perdigão Neto, Lauro Vieira; Tavares, Juliane Lira; de Lima, Rita Amanda Chaves; Patoilo, Kharla Kharolyni Nobre Rabelo; Monteiro, Andre Jalles; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; de Camargo, Zoilo Pires; Sidrim, José Júlio Costa

    2011-12-01

    The aim of the present study was to evaluate the effect of cotrimoxazole on the in vitro susceptibility of Coccidioides posadasii strains to antifungals. A total of 18 strains of C. posadasii isolated in Brazil were evaluated in this study. The assays were performed in accordance with the Clinical and Laboratory Standards Institute guidelines and the combinations were tested using the checkerboard method. The minimum inhibitory concentrations were reduced by 11, 2.4, 4.3 and 3.5 times for amphotericin B, itraconazole, fluconazole and voriconazole, respectively. Moreover, it was seen that cotrimoxazole itself inhibited C. posadasii strains in vitro. The impairment of folic acid synthesis may be a potential antifungal target for C. posadasii.

  4. Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation

    International Nuclear Information System (INIS)

    Benavides, T.; Mitjans, M.; Martinez, V.; Clapes, P.; Infante, M.R.; Clothier, R.H.; Vinardell, M.P.

    2004-01-01

    Extensive efforts have been made, recently, to find surfactants with lower irritation potential than those presently commercially available, for use in pharmaceutical and cosmetic preparations. Cytotoxic and phototoxic effects of a novel family of dicationic arginine-diglyceride surfactant compounds, 1,2-diacyl,3-O-(L-arginyl)-rac-glycerol with alkyl chain lengths in the range from 8 to 14 carbon atoms, were compared to three commercial surfactants. The end-points used to assess toxicity were the red blood cell lysis assay and uptake of the vital dye neutral red 24 h after dosing (NRU), respectively. Two immortalized cell lines, murine fibroblast cell line, 3T3, and one human keratinocyte cell line, HaCaT, were used as in vitro models to predict the potential phototoxicity which could result in irritation, determined by resazurin reduction to resorufin and neutral red uptake (NRU). All tested surfactants had cytotoxicity effects as demonstrated by and decrease of NR uptake, which showed a clear concentration-response relationship. Concentrations resulting in 50% inhibition of NR uptake (IC 50 ) range from 1 μmol l -1 (hexadecyl trimethyl ammonium bromide) to 565 μmol l -1 (12,12-L-arginine). Erythrocyte haemolysis also showed a clear concentration-response relationship, the 50% of haemolysis ranged from 37 μmol l -1 (10,10-L-arginine) to 151 μmol l -1 (sodium lauryl sulphate). Phototoxicity was performed with 12,12-L-acetyl-arginine, the most stable chemical structure. The validated 3T3 NRU photoxicity assay was used and revealed a phototoxic potential

  5. Novel flurbiprofen derivatives with improved brain delivery: synthesis, in vitro and in vivo evaluations.

    Science.gov (United States)

    Zheng, Dan; Shuai, Xiao; Li, Yanping; Zhou, Peng; Gong, Tao; Sun, Xun; Zhang, Zhirong

    2016-09-01

    Tarenflurbil (R-flurbiprofen) was acknowledged as a promising candidate in Alzheimer's disease (AD) therapy. However, the Phase III study of tarenflurbil was extremely restricted by its poor delivery efficiency to the brain. To tackle this problem, the novel carriers for tarenflurbil, racemic flurbiprofen (FLU) derivatives (FLU-D1 and FLU-D2) modified by N,N-dimethylethanolamine-related structures were synthesized and characterized. These derivatives showed good safety level in vitro and they possessed much higher cellular uptake efficiency in brain endothelial cells than FLU did. More importantly, the uptake experiments suggested that they were internalized via active transport mechanisms. Biodistribution studies in rats also illustrated a remarkably enhanced accumulation of these derivatives in the brain. FLU-D2, the ester linkage form of these derivatives, achieved a higher brain-targeting efficiency. Its C max and AUC 0- t were enhanced by 12.09-fold and 4.61-fold, respectively compared with those of FLU. Additionally, it could be hydrolyzed by esterase in the brain to release the parent FLU, which might facilitate its therapeutic effect. These in vitro and in vivo results highlighted the improvement of the brain-targeted delivery of FLU by making use of N,N-dimethylethanolamine ligand, with which an active transport mechanism was involved.

  6. 21 CFR 862.1715 - Triiodothyronine uptake test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Triiodothyronine uptake test system. 862.1715... Systems § 862.1715 Triiodothyronine uptake test system. (a) Identification. A triiodothyronine uptake test... plasma. Measurements of triiodothyronine uptake are used in the diagnosis and treatment of thyroid...

  7. Carbamazepine (Tegretol) inhibits in vivo iodide uptake and hormone synthesis in rat thyroid glands

    International Nuclear Information System (INIS)

    Villa, S.M.; Alexander, N.M.

    1987-01-01

    Decreased serum concentrations of T3 and T4 occur in patients treated with the anticonvulsant drug carbamazepine (CBZ), but with rare exception, these patients remain euthyroid. The mechanism that accounts for diminished hormone levels is unknown, and our objective was to study the direct effect of CBZ on iodide uptake and hormone synthesis in thyroid glands of CBZ-treated and pair-fed control rats. Chronic ingestion (per os) of CBZ in male rats reduced the four hour thyroid 131I-iodide uptake by approximately 60%. This inhibition occurred after the animals had received sufficient CBZ to attain plasma CBZ concentrations of 0.8 microgram/ml. Continued treatment with CBZ ranging from 560 to 800 mg/kg/day for 14 days did not result in further inhibition of iodide uptake even though the plasma CBZ concentrations had increased 6-20 fold. No inhibition of iodide uptake was apparent when the animals initially received CBZ ranging from 40 to 152 mg/kg body weight for 22 days when there were no detectable levels of plasma CBZ. Overall growth rates of CBZ-treated rats were slightly (6-10%) less than the pair-fed control animals. Plasma T4 concentrations were reduced by 18% (p less than 0.05) in the CBZ-fed animals, while T3 concentrations were diminished by 53% (p less than 0.01). CBZ appeared to alter thyroidal iodide transport because the thyroid:plasma iodide ratios were decreased by 26% in the drug-treated rats. The distribution of radioiodine in thyroidal iodoamino acids was essentially the same in both groups of rats but the absolute quantities of radioiodine were more than 2.5 times greater in the control rats. CBZ failed to inhibit peroxidase-catalyzed iodide and guaiacol oxidation in vitro

  8. Five-year follow-up of {sup 11}C-PIB uptake in Alzheimer's disease and MCI

    Energy Technology Data Exchange (ETDEWEB)

    Kemppainen, N.M.; Scheinin, N.M.; Koivunen, J.; Johansson, J.; Toivonen, J.T.; Naagren, K.; Rokka, J.; Rinne, J.O. [University of Turku, Turku PET Centre, P.O. Box 52, Turku (Finland); Karrasch, M. [Abo Akademi University, Department of Psychology and Logopedics, Turku (Finland); Parkkola, R. [Tampere University and Tampere University Hospital, Department of Radiology, Tampere (Finland)

    2014-02-15

    The aim of this study was to evaluate the longitudinal changes in [{sup 11}C]PIB uptake in mild cognitive impairment (MCI) and Alzheimer's disease (AD) over a long-term follow-up. Six AD patients, ten MCI patients and eight healthy subjects underwent a [{sup 11}C]PIB PET scan at baseline and at 2 and 5 years. The clinical status of the MCI patients was evaluated every 6 months. The MCI group showed a significant increase in [{sup 11}C]PIB uptake over time (p < 0.001), with a similar increase from baseline to 2 years (4.7 % per year) and from 2 to 5 years (5.0 % per year). Eight MCI patients (80 %) converted to AD, and two of these patients showed a normal [{sup 11}C]PIB scan at baseline but increased uptake later. There was an increase in [{sup 11}C]PIB uptake with time in the AD group (p = 0.02), but this did not significantly differ from the change in the control group. Our results revealed a significant increase in amyloid load even at the time of AD diagnosis in some of the MCI patients who converted. A positive [{sup 11}C]PIB scan at baseline in MCI patients strongly predicted future conversion to AD but a negative PIB scan in MCI patients did not exclude future conversion. The results suggest that there is wide individual variation in the brain amyloid load in MCI, and in the course of amyloid accumulation in relation to the clinical diagnosis of AD. (orig.)

  9. Uptake of myocardial imaging agents by rejected hearts

    International Nuclear Information System (INIS)

    Bergsland, J.; Carr, E.A.; Carroll, M.; Wright, J.W.; Feldman, M.J.; Massucci, J.; Bhayana, J.N.; Gona, J.M.

    1985-01-01

    Technetium 99 m pyrophosphate, Gallium 67 and Thallium 201 uptakes were measured in heterotopically transplanted rat hearts. Five days after transplantation, Technetium 99 m pyrophosphate, and Gallium 67 uptakes were significantly higher in allogeneic grafts than in syngeneic grafts. At an early stage of rejection (three days after transplantation), only Technetium 99 m pyrophosphate uptake in the left ventricle of allogeneic grafts showed a significant difference (p less than 0.04). At five days, Thallium 201 uptake was significantly lower in allo- than syngeneic grafts. There was a positive correlation between radionuclide uptake and histologic degree of rejection for Technetium 99 m pyrophosphate and Gallium 67 while Thallium 201 uptake correlated negatively. Analysis of variance revealed that hearts with no or minimal rejection had statistically different uptakes than hearts with mild to moderate rejection. These results suggest that uptake of imaging agents might be useful in the diagnosis of rejection of the transplanted heart

  10. Uptake and transport of chromium in plants

    International Nuclear Information System (INIS)

    Ramachandran, V.; D'souza, T.J.; Mistry, K.B.

    1980-01-01

    The uptake of chromium, an important soil and water pollutant, by five different plant species was examined in nutrient culture experiments using chromium-51 as a tracer. The concentration in aerial tissues of both trivalent and hexavalent forms of chromium was the greatest in peas followed by beans, tomato and the cereals over identical uptake periods. The uptake of 51 Cr 3+ was, in general, greater than 51 CrO 4 2- . Studies with bean plants indicated that shoot uptake of both forms of chromium decreased with increasing pH and salt concentration of the external solution. Concentrations of 10 -4 M and 10 -5 M DNP inhibited 51 Cr uptake by bean shoots. (author)

  11. Radioiodine uptake measurements in thyroid

    International Nuclear Information System (INIS)

    Kadireshn, A.; Kapur, S.C.; Samuel, J.R.; Mahajan, M.K.

    1988-01-01

    Evaluation of thyroid function can be carried out by measuring the uptake of orally administered radioactive iodine. The results of the thyroid uptake measurements for the period 1982-1987 in Christian Medical College, Ludhiana are presented here. About 3000 patients were screened during the analysis period. (author)

  12. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging

    International Nuclear Information System (INIS)

    Petrik, Milos; Haas, Hubertus; Schrettl, Markus; Helbok, Anna; Blatzer, Michael; Decristoforo, Clemens

    2012-01-01

    Introduction: Siderophores are low-molecular-mass iron chelators serving as iron transporters for almost all bacteria, fungi and some plants. Iron is an essential element for majority of organisms and plays an important role in virulence of pathogenic organisms. 68 Ga is a positron emitter with complexing properties comparable to those of Fe(III) and readily available from a generator. Initial studies with 68 Ga-triacetylfusarinine C (TAFC) showed excellent targeting properties in a rat infection model. We report here on the in vitro and in vivo evaluation of other siderophores radiolabelled with 68 Ga as potential radiopharmaceuticals for infection imaging. Methods: 68 Ga labelling was performed using acetate buffer. Stability, log P and protein binding values were determined. In vitro uptake was tested using iron-deficient and iron-sufficient Aspergillus fumigatus (A.f.) cultures. Biodistribution of 68 Ga-siderophores was studied in Balb/c mice. Results: Significant differences among studied siderophores were observed in labelling efficiency, stability and protein binding. Uptake in A.f. cultures was highly dependent on iron load and type of the siderophore. In mice, 68 Ga-TAFC and 68 Ga-ferrioxamine E (FOXE) showed rapid renal excretion and low blood values even at a short period after injection; in contrast, 68 Ga-ferricrocin and 68 Ga-ferrichrome revealed high retention in blood and 68 Ga-fusarinine C showed very high kidney retention. Conclusions: Some of the studied siderophores bind 68 Ga with high affinity and stability, especially 68 Ga-TAFC and 68 Ga-FOXE. Low values of protein binding, high and specific uptake in A.f., and excellent in vivo biodistribution make them favourable agents for Aspergillus infection imaging.

  13. Protein metabolism in the rat cerebral cortex in vivo and in vitro as affected by the acquisition enhancing drug piracetam

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effect of Piracetam on rat cerebral protein metabolism in vivo and in vitro was studied. It was found that the drug stimulates the uptake of labelled leucine by cerebral cortex slices, has no effect on the incorporation of leucine into cerebral protein, neither in slices nor in vivo, but

  14. Octreotide Uptake in Parathyroid Adenoma

    Directory of Open Access Journals (Sweden)

    Seyhan Karaçavuş

    2012-08-01

    Full Text Available The patient with a history of bone pain and muscle weakness, was thought to have oncogenic osteomalacia as a result of biochemical investigations and directed to Nuclear Medicine Department for a whole-body bone scintigraphy and 111In-octreotide scintigraphy. There was no focal pathologic tracer uptake, but generalized marked increase in skeletal uptake on bone scintigraphy. Octreotide scintigraphy showed accumulation of octreotide in the region of the left lobe of the thyroid gland in the neck. Thereafter, parathyroid scintigraphy was performed with technetium-99m labeled metroxy-isobutyl-isonitryl (99mTc-MIB and MIBI scan demonstrated radiotracer uptake at the same location with octreotide scintigraphy. The patient underwent left inferior parathyroidectomy and histopathology confirmed a parathyroid adenoma. Somatostatin receptor positive parathyroid adenoma may show octreotide uptake. Octreotide scintigraphy may be promising and indicate a possibility of using somatostatin analogues for the medical treatment of somatostatin receptor positive parathyroid tumors. (MIRT 2012;21:77-79

  15. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    Science.gov (United States)

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  16. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  17. Metformin Targets Brown Adipose Tissue in vivo and Reduces Oxygen Consumption in vitro

    DEFF Research Database (Denmark)

    Breining, Peter; Jensen, Jonas B; Sundelin, Elias I

    2018-01-01

    basic metabolic rate, making BAT an attractive target for treatment of type 2 diabetes. Under the hypothesis that BAT is a metformin target tissue, we investigated in vivo uptake of [11 C]-metformin tracer in mice and studied in vitro effects of metformin on cultured human brown adipocytes. Injected [11......Metformin is the most widely prescribed oral antidiabetic drug worldwide. Despite well-documented beneficial effects on health outcomes in diabetic patients, the target organs that mediate the effects of metformin remain to be established. In adult humans, brown adipose tissue (BAT) can influence...... uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose dependent manner. Collectively, these results support BAT as a putative metformin...

  18. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  19. Folate-conjugated polymeric micelle HB-loaded on targeting effect by intraperitoneal to ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Li, Jie; Yao, Shu; Wang, Kai; Lu, Zaijun; Su, Xuantao; Li, Li; Yuan, Cunzhong; Feng, Jinbo; Yan, Shi; Kong, Beihua; Song, Kun

    2018-04-04

    Photodynamic therapy (PDT) is considered as an innovative and attractive modality to treat ovarian cancer. In this study, a biodegradable polymer poly (ethylene glycol)-poly (lactic acid)(PLA)-folate (FA-PEG-PLA) was prepared in order to synthesize an active targeting, water soluble and pharmacomodulated photosensitizer nano-carriers. The drug loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which HB/FA-PEG-PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (pHB/FA-PEG-PLA micelles, the cellular uptake study in vitro were tested, which owned significantly enhanced uptake of HB/FA-PEG-PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR-). The enhanced uptake of HB/FA-PEG-PLA micelles to cancer cells resulted in a more effective post-PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA-PEG-PLA micelles by SKOV3 cells were also observed in vivo after intraperitoneal injection of folate targeted micelles in tumor-bearing ascitic ovarian cancer animals. The drug levels in ascitic tumor tissues were increased by 20-fold (pHB-loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results demonstrated that our new developed PDT photosensitizer HB/FA-PEG-PLA micelles has a high drug-loading capacity, good biocompatibility, control drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. 99mTc-DPD uptake in juvenile arthritis

    International Nuclear Information System (INIS)

    Stender Hansen, E.; Holm, I.E.; Buenger, C.; Knudsen, V.; Noer, I.; Bach Christensen, S.

    1986-01-01

    Unilateral arthritis of the knee was induced in mongrel puppies by intraarticular injections of 1% Carragheenan. Bone metabolism was studied by a scintimetric technique on static 99m Tc-diphosphonate bone scans every 2nd week during the induction of arthritis for 3 months and monthly in a postarthritic phase of another 3 months. Changes in uptake of radionuclide were present after 2 weeks. The induction phase was characterized by a decreased uptake in the calcification layer of the juxta-articular growth plates and a moderately increased epiphyseal uptake. The postarthritic phase was characterized by normalization of growth plate uptake and a marked increase in epiphyseal uptake. Using contact autoradiography, the epiphyseal uptake was seen mainly in a narrow subchondral and subsynovial bone layer, around bone cysts and osteophytes, whereas central epiphyseal bone was osteopenic with decreased uptake of tracer. The study suggests that the early scintigraphic appearance of juvenile non-suppurative arthritis may be an overall decrease in uptake of 99m Tc-diphosphonate due to a depression of growth plate metabolism. (author)