WorldWideScience

Sample records for virus restriction factor

  1. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Science.gov (United States)

    Zielonka, Jörg; Münk, Carsten

    2011-01-01

    Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525

  2. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Carsten Münk

    2011-10-01

    Full Text Available Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors or inhibit viral replication (restriction factors. Similar to Human immunodeficiency virus type 1 (HIV-1, the cat lentivirus Feline immunodeficiency virus (FIV is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors.

  3. Cellular Promyelocytic Leukemia Protein Is an Important Dengue Virus Restriction Factor

    OpenAIRE

    Giovannoni, Federico; Damonte, Elsa B.; Garc?a, Cybele C.

    2015-01-01

    The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity....

  4. Ifit2 Is a Restriction Factor in Rabies Virus Pathogenicity.

    Science.gov (United States)

    Davis, Benjamin M; Fensterl, Volker; Lawrence, Tessa M; Hudacek, Andrew W; Sen, Ganes C; Schnell, Matthias J

    2017-09-01

    Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo , where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons. IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy. Copyright © 2017 American Society for Microbiology.

  5. Host restriction factors in retroviral infection: promises in virus-host interaction

    Directory of Open Access Journals (Sweden)

    Zheng Yong-Hui

    2012-12-01

    Full Text Available Abstract Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs, and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

  6. Host Cell Restriction Factors that Limit Influenza A Infection

    Directory of Open Access Journals (Sweden)

    Fernando Villalón-Letelier

    2017-12-01

    Full Text Available Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors” can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.

  7. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  8. Retroviral restriction and dependency factors in primates and carnivores

    Science.gov (United States)

    Fadel, Hind J.; Poeschla, Eric M.

    2014-01-01

    Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à;-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5alpha, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin. PMID:21715018

  9. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  10. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  11. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  12. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  13. Vif of Feline Immunodeficiency Virus from Domestic Cats Protects against APOBEC3 Restriction Factors from Many Felids▿

    Science.gov (United States)

    Zielonka, Jörg; Marino, Daniela; Hofmann, Henning; Yuhki, Naoya; Löchelt, Martin; Münk, Carsten

    2010-01-01

    To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Δvif FIV, felid A3Z2s did not show any antiviral activity against Δvif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether VifFIV can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.VifFIV was constructed. This HIV-1.VifFIV was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor. PMID:20444897

  14. Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids.

    Science.gov (United States)

    Zielonka, Jörg; Marino, Daniela; Hofmann, Henning; Yuhki, Naoya; Löchelt, Martin; Münk, Carsten

    2010-07-01

    To get more insight into the role of APOBEC3 (A3) cytidine deaminases in the species-specific restriction of feline immunodeficiency virus (FIV) of the domestic cat, we tested the A3 proteins present in big cats (puma, lion, tiger, and lynx). These A3 proteins were analyzed for expression and sensitivity to the Vif protein of FIV. While A3Z3s and A3Z2-Z3s inhibited Deltavif FIV, felid A3Z2s did not show any antiviral activity against Deltavif FIV or wild-type (wt) FIV. All felid A3Z3s and A3Z2-Z3s were sensitive to Vif of the domestic cat FIV. Vif also induced depletion of felid A3Z2s. Tiger A3s showed a moderate degree of resistance against the Vif-mediated counter defense. These findings may imply that the A3 restriction system does not play a major role to prevent domestic cat FIV transmission to other Felidae. In contrast to the sensitive felid A3s, many nonfelid A3s actively restricted wt FIV replication. To test whether Vif(FIV) can protect also the distantly related human immunodeficiency virus type 1 (HIV-1), a chimeric HIV-1.Vif(FIV) was constructed. This HIV-1.Vif(FIV) was replication competent in nonpermissive feline cells expressing human CD4/CCR5 that did not support the replication of wt HIV-1. We conclude that the replication of HIV-1 in some feline cells is inhibited only by feline A3 restriction factors and the absence of the appropriate receptor or coreceptor.

  15. Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Sarah L Londrigan

    Full Text Available BST-2 (tetherin, CD317, HM1.24 restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC. BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection.

  16. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    Science.gov (United States)

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  17. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    Science.gov (United States)

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  18. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus.

    Directory of Open Access Journals (Sweden)

    I-Chueh Huang

    2011-01-01

    Full Text Available Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3 are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV hemagglutinin (HA protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2 of Marburg and Ebola filoviruses (MARV, EBOV. Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV and entry mediated by the SARS-CoV spike (S protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.

  19. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  20. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  1. Selective host range restriction of goat cells for recombinant murine leukemia virus and feline leukemia virus type A.

    OpenAIRE

    Fischinger, P J; Thiel, H J; Blevins, C S; Dunlop, N M

    1981-01-01

    We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow t...

  2. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  3. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    OpenAIRE

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.

  4. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  5. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction.

    Science.gov (United States)

    Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin

    2012-03-15

    Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Avian Influenza Virus Glycoproteins Restrict Virus Replication and Spread through Human Airway Epithelium at Temperatures of the Proximal Airways

    OpenAIRE

    Scull, Margaret A.; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L.; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S.; Pickles, Raymond J.

    2009-01-01

    Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human p...

  7. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    Science.gov (United States)

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.

  8. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity.

    Science.gov (United States)

    Hayward, Joshua A; Tachedjian, Mary; Cui, Jie; Cheng, Adam Z; Johnson, Adam; Baker, Michelle; Harris, Reuben S; Wang, Lin-Fa; Tachedjian, Gilda

    2018-03-29

    Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.

  9. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    Science.gov (United States)

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  10. Genome-Wide Search for Host Association Factors during Ovine Progressive Pneumonia Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jesse Thompson

    Full Text Available Ovine progressive pneumonia virus (OPPV is an important virus that causes serious diseases in sheep and goats with a prevalence of 36% in the USA. Although OPPV was discovered more than half of a century ago, little is known about the infection and pathogenesis of this virus. In this report, we used RNA-seq technology to conduct a genome-wide probe for cellular factors that are associated with OPPV infection. A total of approximately 22,000 goat host genes were detected of which 657 were found to have been significantly up-regulated and 889 down-regulated at 12 hours post-infection. In addition to previously known restriction factors from other viral infections, a number of factors which may be specific for OPPV infection were uncovered. The data from this RNA-seq study will be helpful in our understanding of OPPV infection, and also for further study in the prevention and intervention of this viral disease.

  11. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  12. Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-06-01

    Full Text Available Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.

  13. Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion.

    Science.gov (United States)

    Pawlica, Paulina; Dufour, Caroline; Berthoux, Lionel

    2015-04-01

    IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp. © 2015 The Authors.

  14. Molecular evolution of the primate antiviral restriction factor tetherin.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available BACKGROUND: Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu. It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. METHODOLOGY/PRINCIPAL FINDINGS: Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability. CONCLUSIONS/SIGNIFICANCE: These results conclude that the molecular evolution of Tetherin may be attributed to the host-virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive

  15. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  16. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses.

    Directory of Open Access Journals (Sweden)

    Melvyn W Yap

    2014-03-01

    Full Text Available Fv1 is the prototypic restriction factor that protects against infection by the murine leukemia virus (MLV. It was first identified in cells that were derived from laboratory mice and was found to be homologous to the gag gene of an endogenous retrovirus (ERV. To understand the evolution of the host restriction gene from its retroviral origins, Fv1s from wild mice were isolated and characterized. Most of these possess intact open reading frames but not all restricted N-, B-, NR-or NB-tropic MLVs, suggesting that other viruses could have played a role in the selection of the gene. The Fv1s from Mus spretus and Mus caroli were found to restrict equine infectious anemia virus (EIAV and feline foamy virus (FFV respectively, indicating that Fv1 could have a broader target range than previously thought, including activity against lentiviruses and spumaviruses. Analyses of the Fv1 sequences revealed a number of residues in the C-terminal region that had evolved under positive selection. Four of these selected residues were found to be involved in the novel restriction by mapping studies. These results strengthen the similarities between the two capsid binding restriction factors, Fv1 and TRIM5α, which support the hypothesis that Fv1 defended mice against waves of retroviral infection possibly including non-MLVs as well as MLVs.

  17. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    Science.gov (United States)

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Winton, J.; Lorenzen, Niels

    2005-01-01

    The aim of this study was to develop a standardized molecular assay that used limited resources and equipment for routine genotyping of isolates of the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV). Computer generated restriction maps, based on 62 unique full-length (1524 nt....... Experimental evaluation of the method consisted of three steps: (i) RT-PCR amplification of the G-gene of VHSV isolates using purified viral RNA as template, (ii) digestion of the PCR products with a panel of restriction endonucleases and (iii) interpretation of the resulting RFLP profiles. The RFLP analysis...

  19. Selective receptor expression restricts Nipah virus infection of endothelial cells

    Directory of Open Access Journals (Sweden)

    Diederich Sandra

    2008-11-01

    Full Text Available Abstract Nipah virus (NiV is a highly pathogenic paramyxovirus that causes severe diseases in animals and humans. Endothelial cell (EC infection is an established hallmark of NiV infection in vivo. Despite systemic virus spread via the vascular system, EC in brain and lung are preferentially infected whereas EC in other organs are less affected. As in vivo, we found differences in the infection of EC in cell culture. Only brain-derived primary or immortalized EC were found to be permissive to NiV infection. Using a replication-independent fusion assay, we could show that the lack of infection in non-brain EC was due to a lack of receptor expression. The NiV entry receptors ephrinB2 (EB2 or ephrinB3 were only expressed in brain endothelia. The finding that EB2 expression in previously non-permissive aortic EC rendered the cells permissive to infection then demonstrated that EB2 is not only necessary but also sufficient to allow the establishment of a productive NiV infection. This strongly suggests that limitations in receptor expression restrict virus entry in certain EC subsets in vivo, and are thus responsible for the differences in EC tropism observed in human and animal NiV infections.

  20. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  1. Restriction analysis of genetic variability of Polish isolates of Tomato black ring virus.

    Science.gov (United States)

    Jończyk, Magdalena; Borodynko, Natasza; Pospieszny, Henryk

    2004-01-01

    Several different isolates of Tomato black ring virus (TBRV) have been collected in Poland from cucumber, tomato, potato and black locust plants. Biological tests showed some differences in the range of infected plants and the type of symptoms, which was the basis for selection of seven the most biologically different TBRV isolates. According to the sequence of TBRV-MJ, several primer pairs were designed and almost the entire sequence of both genomic RNAs was amplified. The RT-PCR products derived from all tested TBRV isolates were digested by restriction enzymes. On the basis of the restriction patterns, the variable and the conserved regions of the TBRV genome were defined and the relationships between the Polish TBRV isolates established.

  2. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.

    Science.gov (United States)

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-12-01

    Human sterile alpha motif domain-containing 9 (SAMD9) protein is a host restriction factor for poxviruses, but it can be overcome by some poxvirus host-range proteins that share homology with vaccinia virus C7 protein. To understand the mechanism of action for this important family of host-range factors, we determined the crystal structures of C7 and myxoma virus M64, a C7 family member that is unable to antagonize SAMD9. Despite their different functions and only 23% sequence identity, the two proteins have very similar overall structures, displaying a previously unidentified fold comprised of a compact 12-stranded antiparallel β-sandwich wrapped in two short α helices. Extensive structure-guided mutagenesis of C7 identified three loops clustered on one edge of the β sandwich as critical for viral replication and binding with SAMD9. The loops are characterized with functionally important negatively charged, positively charged, and hydrophobic residues, respectively, together forming a unique "three-fingered molecular claw." The key residues of the claw are not conserved in two C7 family members that do not antagonize SAMD9 but are conserved in distantly related C7 family members from four poxvirus genera that infect diverse mammalian species. Indeed, we found that all in the latter group of proteins bind SAMD9. Taken together, our data indicate that diverse mammalian poxviruses use a conserved molecular claw in a C7-like protein to target SAMD9 and overcome host restriction.

  3. Human cellular restriction factors that target HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  4. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication

    Directory of Open Access Journals (Sweden)

    Julianna Han

    2018-04-01

    Full Text Available Summary: The emergence of influenza A viruses (IAVs from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens. : Using a genome-wide CRISPR/Cas9 screen, Han et al. demonstrate that the major hit, the sialic acid transporter SLC35A1, is an essential host factor for IAV entry. In addition, they identify the DNA-binding transcriptional repressor CIC as a negative regulator of cell-intrinsic immunity. Keywords: CRISPR/Cas9 screen, GeCKO, influenza virus, host factors, sialic acid pathway, SLC35A1, Capicua, CIC, cell-intrinsic immunity, H5N1

  5. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  6. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  7. Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength

    DEFF Research Database (Denmark)

    Lund, Ole; Nascimento, Eduardo J. M.; Maciel, Milton, Jr

    2011-01-01

    Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV...... inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding...

  8. Predictive factors for intrauterine growth restriction.

    Science.gov (United States)

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  9. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors.

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    Full Text Available Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG, including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1. Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5 expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.

  11. SERINC as a Restriction Factor to Inhibit Viral Infectivity and the Interaction with HIV

    Directory of Open Access Journals (Sweden)

    Gracia Viviana Gonzalez-Enriquez

    2017-01-01

    Full Text Available The serine incorporator 5 (SERINC5 is a recently discovered restriction factor that inhibits viral infectivity by preventing fusion. Retroviruses have developed strategies to counteract the action of SERINC5, such as the expression of proteins like negative regulatory factor (Nef, S2, and glycosylated Gag (glycoGag. These accessory proteins downregulate SERINC5 from the plasma membrane for subsequent degradation in the lysosomes. The observed variability in the action of SERINC5 suggests the participation of other elements like the envelope glycoprotein (Env that modulates susceptibility of the virus towards SERINC5. The exact mechanism by which SERINC5 inhibits viral fusion has not yet been determined, although it has been proposed that it increases the sensitivity of the Env by exposing regions which are recognized by neutralizing antibodies. More studies are needed to understand the role of SERINC5 and to assess its utility as a therapeutic strategy.

  12. Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.

    Science.gov (United States)

    Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J

    2003-08-01

    Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.

  13. The ability of multimerized cyclophilin A to restrict retrovirus infection

    International Nuclear Information System (INIS)

    Javanbakht, Hassan; Diaz-Griffero, Felipe; Yuan Wen; Yeung, Darwin F.; Li Xing; Song Byeongwoon; Sodroski, Joseph

    2007-01-01

    In owl monkeys, the typical retroviral restriction factor of primates, TRIM5α, is replaced by TRIMCyp. TRIMCyp consists of the TRIM5 RING, B-box 2 and coiled-coil domains, as well as the intervening linker regions, fused with cyclophilin A. TRIMCyp restricts infection of retroviruses, such as human immunodeficiency virus (HIV-1) and feline immunodeficiency virus (FIV), with capsids that can bind cyclophilin A. The TRIM5 coiled coil promotes the trimerization of TRIMCyp. Here we show that cyclophilin A that is oligomeric as a result of fusion with a heterologous multimer exhibits substantial antiretroviral activity. The addition of the TRIM5 RING, B-box 2 and Linker 2 to oligomeric cyclophilin A generated a protein with antiretroviral activity approaching that of wild-type TRIMCyp. Multimerization increased the binding of cyclophilin A to the HIV-1 capsid, promoting accelerated uncoating of the capsid and restriction of infection

  14. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    Science.gov (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    Previously, we demonstrated that a representative M genogroup type strain of infectious haematopoietic necrosis virus (IHNV) from rainbow trout grows well in rainbow trout-derived RTG-2 cells, but a U genogroup type strain from sockeye salmon has restricted growth, associated with reduced genome replication and mRNA transcription. Here, we analysed further the mechanisms for this growth restriction of U-type IHNV in RTG-2 cells, using strategies that assessed differences in viral genes, host immune regulation and phosphorylation. To determine whether the viral glycoprotein (G) or non-virion (NV) protein was responsible for the growth restriction, four recombinant IHNV viruses were generated in which the G gene of an infectious IHNV clone was replaced by the G gene of U- or M-type IHNV and the NV gene was replaced by NV of U- or M-type IHNV. There was no significant difference in the growth of these recombinants in RTG-2 cells, indicating that G and NV proteins are not major factors responsible for the differential growth of the U- and M-type strains. Poly I:C pretreatment of RTG-2 cells suppressed the growth of both U- and M-type IHNV, although the M virus continued to replicate at a reduced level. Both viruses induced type 1 interferon (IFN1) and the IFN1 stimulated gene Mx1, but the expression levels in M-infected cells were significantly higher than in U-infected cells and an inhibitor of the IFN1-inducible protein kinase PKR, 2-aminopurine (2-AP), did not affect the growth of U- or M-type IHNV in RTG-2 cells. These data did not indicate a role for the IFN1 system in the restricted growth of U-type IHNV in RTG-2 cells. Prediction of kinase-specific phosphorylation sites in the viral phosphoprotein (P) using the NetPhosK program revealed differences between U- and M-type P genes at five phosphorylation sites. Pretreatment of RTG-2 cells with a PKC inhibitor or a p38MAPK inhibitor did not affect the growth of the U- and M-type viruses. However, 100 μm of the

  15. Multiple Restrictions of Human Immunodeficiency Virus Type 1 in Feline Cells▿

    Science.gov (United States)

    Münk, Carsten; Zielonka, Jörg; Constabel, Hannelore; Kloke, Björn-Philipp; Rengstl, Benjamin; Battenberg, Marion; Bonci, Francesca; Pistello, Mauro; Löchelt, Martin; Cichutek, Klaus

    2007-01-01

    The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity ∼10- to ∼40-fold. PMID:17459941

  16. Reduced Risk of Importing Ebola Virus Disease because of Travel Restrictions in 2014: A Retrospective Epidemiological Modeling Study

    Science.gov (United States)

    Otsuki, Shiori

    2016-01-01

    Background An epidemic of Ebola virus disease (EVD) from 2013–16 posed a serious risk of global spread during its early growth phase. A post-epidemic evaluation of the effectiveness of travel restrictions has yet to be conducted. The present study aimed to estimate the effectiveness of travel restrictions in reducing the risk of importation from mid-August to September, 2014, using a simple hazard-based statistical model. Methodology/Principal Findings The hazard rate was modeled as an inverse function of the effective distance, an excellent predictor of disease spread, which was calculated from the airline transportation network. By analyzing datasets of the date of EVD case importation from the 15th of July to the 15th of September 2014, and assuming that the network structure changed from the 8th of August 2014 because of travel restrictions, parameters that characterized the hazard rate were estimated. The absolute risk reduction and relative risk reductions due to travel restrictions were estimated to be less than 1% and about 20%, respectively, for all models tested. Effectiveness estimates among African countries were greater than those for other countries outside Africa. Conclusions The travel restrictions were not effective enough to expect the prevention of global spread of Ebola virus disease. It is more efficient to control the spread of disease locally during an early phase of an epidemic than to attempt to control the epidemic at international borders. Capacity building for local containment and coordinated and expedited international cooperation are essential to reduce the risk of global transmission. PMID:27657544

  17. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    International Nuclear Information System (INIS)

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  18. Cyclin A degradation by primate cytomegalovirus protein pUL21a counters its innate restriction of virus replication.

    Directory of Open Access Journals (Sweden)

    Nicolas Caffarelli

    Full Text Available Cyclin A is critical for cellular DNA synthesis and S phase progression of the cell cycle. Human cytomegalovirus (HCMV can reduce cyclin A levels and block cellular DNA synthesis, and cyclin A overexpression can repress HCMV replication. This interaction has only been previously observed in HCMV as murine CMV does not downregulate cyclin A, and the responsible viral factor has not been identified. We previously reported that the HCMV protein pUL21a disrupted the anaphase-promoting complex (APC, but a point mutant abrogating this activity did not phenocopy a UL21a-deficient virus, suggesting that pUL21a has an additional function. Here we identified a conserved arginine-x-leucine (RxL cyclin-binding domain within pUL21a, which allowed pUL21a to interact with cyclin A and target it for proteasome degradation. Homologous pUL21a proteins from both chimpanzee and rhesus CMVs also contained the RxL domain and similarly degraded cyclin A, indicating that this function is conserved in primate CMVs. The RxL point mutation disabled the virus' ability to block cellular DNA synthesis and resulted in a growth defect similar to pUL21a-deficient virus. Importantly, knockdown of cyclin A rescued growth of UL21a-deficient virus. Together, these data show that during evolution, the pUL21a family proteins of primate CMVs have acquired a cyclin-binding domain that targets cyclin A for degradation, thus neutralizing its restriction on virus replication. Finally, the combined proteasome-dependent degradation of pUL21a and its cellular targets suggests that pUL21a may act as a novel suicide protein, targeting its protein cargos for destruction.

  19. Participation restrictions in ambulatory amyotrophic lateral sclerosis patients: Physical and psychological factors.

    Science.gov (United States)

    Van Groenestijn, Annerieke C; Schröder, Carin D; Kruitwagen-Van Reenen, Esther T; Van Den Berg, Leonard H; Visser-Meily, Johanna M A

    2017-11-01

    The aim of this study was to assess the prevalence of participation restrictions in ambulatory patients with amyotrophic lateral sclerosis (ALS) and to identify physical and psychological contributory factors. In this cross-sectional study, self-reported participation restrictions of 72 ambulatory ALS patients were assessed using the social health status dimension (SIPSOC) of the Sickness Impact Profile (SIP-68). Associations between SIPSOC and physical functioning, psychological factors, and demographic factors were analyzed using hierarchical regression analyses. Ninety-two percent of the patients reported participation restrictions; 54.9% could be explained by physical functioning; psychological factors accounted for 8.1% of the variance. Lung capacity, functional mobility, fatigue, and helplessness were independently associated with participation restrictions. Ambulatory ALS patients have participation restrictions, which may be influenced if early ALS care is directed toward lung capacity, functional mobility, fatigue, and feelings of helplessness. Muscle Nerve 56: 912-918, 2017. © 2017 Wiley Periodicals, Inc.

  20. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    Science.gov (United States)

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  1. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses

    DEFF Research Database (Denmark)

    Mordstein, M; Kochs, G; Dumoutier, L

    2008-01-01

    Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses....... Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants...

  2. Factors associated with prescribing restriction on oncology formulary drugs in Malaysia.

    Science.gov (United States)

    Fatokun, Omotayo; Olawepo, Michael N

    2016-10-01

    Background Drugs listed on formularies are often subjected to a variety of utilization restriction measures. However, the degree of restriction is influenced by multiple factors, including the characteristics and attributes of the listed drugs. Objective To identify the factors that are associated with the levels of prescribing restriction on oncology formulary drugs in Malaysia. Setting Oncology formulary in Malaysia. Method The Malaysia Drug Code assigned to each of the drug products on the Malaysia Ministry of Health (MOH) drug formulary was used to identify oncology drugs belonging to WHO ATC class L (antineoplastic and immunomodulating agents). Main outcome measures Categories of prescribing restrictions, therapeutic class, drug type, administration mode, number of sources and the post-approval use period. Results Oncology drugs having a shorter post-approval use period (p Malaysia MOH drug formulary.

  3. Plant Translation Factors and Virus Resistance

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2015-06-01

    Full Text Available Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.

  4. A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro

    NARCIS (Netherlands)

    E.G.M. Berkhoff (Eufemia); A.C.M. Boon (Adrianus); N.J. Nieuwkoop; R.A.M. Fouchier (Ron); K. Sintnicolaas (Krijn); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    2004-01-01

    textabstractViruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in or adjacent to CTL epitopes. Recently, an amino acid substitution (R384G) in an HLA-B*2705-restricted CTL epitope in the influenza A virus

  5. Identification of H-2d Restricted T Cell Epitope of Foot-and-mouth Disease Virus Structural Protein VP1

    Directory of Open Access Journals (Sweden)

    Zhang Zhong-Wang

    2011-09-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV. The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. Results A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. Conclusions The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.

  6. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein.

    Directory of Open Access Journals (Sweden)

    Benjamin Mänz

    2013-03-01

    Full Text Available The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive mutations in the nucleoprotein (NP of pandemic strains A/Brevig Mission/1/1918 (1918 and A/Hamburg/4/2009 (pH1N1 that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918 cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the MxA-sensitive influenza virus A/Thailand/1(KAN-1/04 (H5N1 resulted in a gain of MxA resistance coupled with a decrease in viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses and that adaptive mutations in the viral NP should be carefully monitored.

  7. Rapid differentiation of closely related isolates of two plant viruses by polymerase chain reaction and restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Barbara, D J; Morton, A; Spence, N J; Miller, A

    1995-09-01

    Immunocapture reverse transcriptase-polymerase chain reaction (RT-PCR) followed by restriction fragment length polymorphism (RFLP) analysis of the product has been shown to be an effective procedure for discriminating serologically indistinguishable isolates of two plant viruses, raspberry bushy dwarf (RBDV) and zucchini yellow mosaic (ZYMV). For both viruses, only limited sequence information was available at the time of primer design, but most of the isolates which were tested could be amplified (the one exception being a serologically quite distinct isolate of ZYMV). Restriction endonucleases revealing diagnostic RFLPs were readily identified. Each of two isolates of ZYMV could be detected in the presence of the other and the relative proportions approximately quantified by visual estimation of the relative intensity of the appropriate bands. A range of isolates of different RBDV pathotypes were compared; isolates were grouped in ways that accorded with their known history. Computer analysis of the published sequence from which the primers had been derived showed the sequenced isolate to be identical with an isolate imported from the USSR. The PCR/RFLP procedure is rapid (it can be completed in less than 2 days), effective and will probably be generally applicable to distinguishing closely related virus isolates, even where little sequence information is available.

  8. Optimizing Restriction Site Placement for Synthetic Genomes

    Science.gov (United States)

    Montes, Pablo; Memelli, Heraldo; Ward, Charles; Kim, Joondong; Mitchell, Joseph S. B.; Skiena, Steven

    Restriction enzymes are the workhorses of molecular biology. We introduce a new problem that arises in the course of our project to design virus variants to serve as potential vaccines: we wish to modify virus-length genomes to introduce large numbers of unique restriction enzyme recognition sites while preserving wild-type function by substitution of synonymous codons. We show that the resulting problem is NP-Complete, give an exponential-time algorithm, and propose effective heuristics, which we show give excellent results for five sample viral genomes. Our resulting modified genomes have several times more unique restriction sites and reduce the maximum gap between adjacent sites by three to nine-fold.

  9. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  10. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  11. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    Science.gov (United States)

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  12. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand.

    Science.gov (United States)

    Radtanakatikanon, Araya; Keawcharoen, Juthatip; Charoenvisal, Na Taya; Poovorawan, Yong; Prompetchara, Eakachai; Yamaguchi, Ryoji; Techangamsuwan, Somporn

    2013-09-27

    Canine distemper virus (CDV) is known to cause multisystemic disease in all families of terrestrial carnivores. Attenuated live vaccines have been used to control CDV in a variety of species for many decades, yet a number of CDV infections in vaccinated dogs are still observed. The aims of this study were to investigate the genetic diversity of CDV lineages based on phosphoprotein (P), hemagglutinin (H) and fusion protein (F) genes and to develop the restriction fragment length polymorphism (RFLP) technique for effective differentiation among individual wild-type and vaccine lineages in Thailand. Four commercial vaccine products, thirteen conjunctival swabs and various tissues from 9 necropsied dogs suspected of having CDV infections were included. Virus isolation was performed using Vero cell expressing canine signaling lymphocyte activation molecules (Vero-DST cells). Reverse-transcription polymerase chain reaction (RT-PCR) on 3 gene regions from the dog derived specimens and the vaccines were carried out, then RFLP analysis upon F-gene amplified fragments was developed. Nucleotide sequence and phylogenetic analysis were compared with other CDV lineages in Genbank. Phylogenetic relationships revealed that CDV field isolates were separated from the vaccine lineage and could be divided into two clusters; one of which belonged to the Asia-1 lineage and another, not related to any previous recognized lineages was proposed as 'Asia-4'. RFLP patterns demonstrating concordance with phylogenetic trees of the distemper virus allowed for differentiation between the Asia-1, Asia-4 and vaccine lineages. Thus, RFLP technique is able to effectively distinguish individual wild-type canine distemper virus from vaccine lineages in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suresh Gopalan

    2007-10-01

    Full Text Available Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery.An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV, a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement.The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

  14. Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors.

    Science.gov (United States)

    Henriet, Simon; Mercenne, Gaëlle; Bernacchi, Serena; Paillart, Jean-Christophe; Marquet, Roland

    2009-06-01

    The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.

  15. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available The flaviviruses dengue virus (DENV and Zika virus (ZIKV are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF, heparin sulfation (NDST1 and EXT1, and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC. We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication.

  16. Automobile driving in older adults: factors affecting driving restriction in men and women.

    Science.gov (United States)

    Marie Dit Asse, Laetitia; Fabrigoule, Colette; Helmer, Catherine; Laumon, Bernard; Lafont, Sylviane

    2014-11-01

    To identify factors associated with driving restriction in elderly men and women. Prospective cohort study of French drivers from 2003 to 2009. The Three-City Cohort of Bordeaux, a prospective study of 2,104 people aged 65 and older. Five hundred twenty-three drivers with a mean age of 76 (273 male, 250 female). Sociodemographic characteristics, driving habits, health variables, cognitive evaluation and dementia diagnosis. Predementia was defined as no dementia at one follow-up and dementia at the next follow-up. Over the 6-year period, 54% of men and 63% of women stopped driving or reduced the distance they drove. Predementia, Parkinson's disease, older age, and a high number of kilometers previously driven were common restriction factors in both sexes. Prevalent dementia, depressive symptomatology, a decline in one or more instrumental activities of daily living, and poor visual working memory were specific factors in men. In women, low income, fear of falling, slow processing speed, and severe decline in global cognitive performance all affected driving restriction. Older women restricted their driving activity more than older men, regardless of the number of kilometers previously driven, physical health, and cognitive status. Factors affecting driving restriction differed according to sex, and women were more likely to stop driving than men in the period preceding a dementia diagnosis. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  17. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus.

    Directory of Open Access Journals (Sweden)

    Natapong Jupatanakul

    2017-01-01

    Full Text Available We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg promoter. Transgene expression inhibits infection with several dengue virus (DENV serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV or chikungunya virus (CHIKV infection, thereby indicating a possible specialization of the pathway's antiviral role.

  18. Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model.

    Directory of Open Access Journals (Sweden)

    Aaron R Everitt

    Full Text Available The interferon-inducible transmembrane (IFITM family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis or protozoan (Plasmodium berghei pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.

  19. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  20. Highlights of the DNA cutters: a short history of the restriction enzymes.

    Science.gov (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G; Murray, Noreen E

    2014-01-01

    In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.

  1. Response of ELA-A1 horses immunized with lipopeptide containing an equine infectious anemia virus ELA-A1-restricted CTL epitope to virus challenge.

    Science.gov (United States)

    Ridgely, Sherritta L; Zhang, Baoshan; McGuire, Travis C

    2003-01-17

    Lipopeptide containing an ELA-A1-restricted cytotoxic T lymphocyte (CTL) epitope from the envelope surface unit (SU) protein of the EIAV(WSU5) strain was used to immunize three horses having the ELA-A1 haplotype. Peptide-specific ELA-A1-restricted CTL were induced in all three horses, although these were present transiently in PBMC. These horses were further immunized with lipopeptide containing the corresponding CTL epitope from the EIAV(PV) strain. Then, the three immunized horses and three non-immunized horses were challenged by intravenous inoculation with 300 TCID(50) EIAV(PV). All horses developed cell free viremia, fever and thrombocytopenia. However, there was a statistically lower fever and thrombocytopenia severity score in the immunized group. Shorter duration of plasma viral load in two of the three immunized horses likely explains the less severe clinical disease in this group. Results indicate that lipopeptide immunization had a protective effect against development of clinical disease following virus challenge.

  2. Analysis of ORF 1 in European porcine reproductive and respiratory syndrome virus by long RT-PCR and restriction fragment length polymorphism (RFLP) analysis

    DEFF Research Database (Denmark)

    Nielsen, H. S.; Storgaard, Torben; Oleksiewicz, M.B.

    2000-01-01

    A rapid method was developed for partial characterization of the replicase-encoding open reading frame 1 (ORF 1) of porcine reproductive and respiratory syndrome virus (PRRSV). It comprised long RT-PCR amplification of 11.1 kb (94%) of ORF 1, followed by restriction fragment length polymorphism a...

  3. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    Science.gov (United States)

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  4. Restriction of Equine Infectious Anemia Virus by Equine APOBEC3 Cytidine Deaminases ▿ †

    Science.gov (United States)

    Zielonka, Jörg; Bravo, Ignacio G.; Marino, Daniela; Conrad, Elea; Perković, Mario; Battenberg, Marion; Cichutek, Klaus; Münk, Carsten

    2009-01-01

    The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene. PMID:19458006

  5. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    Science.gov (United States)

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  6. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  7. Feline immunodeficiency virus and feline leukemia virus: frequency and associated factors in cats in northeastern Brazil.

    Science.gov (United States)

    Lacerda, L C; Silva, A N; Freitas, J S; Cruz, R D S; Said, R A; Munhoz, A D

    2017-05-10

    Our aims were to determine the frequencies of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) in owned and stray cats in the northeastern region of Brazil, ascertain the status of FeLV infection, and investigate potential associated factors among the owned cats. Blood samples from 200 asymptomatic owned cats and 30 stray cats were processed using nested PCR and commercial immunochromatographic tests to diagnose infections. To evaluate the factors associated with FIV and/or FeLV in owned cats, a semi-structured interview was conducted with each owner about the animal's environment, and these data were subjected to unconditional logistic regression. The frequencies for owned cats were 6% (12/200) and 3% (6/200) for FIV and FeLV, respectively. No owned cat was positive for both viruses. Stray cats showed frequencies of 6.66% (2/30) and 0% (0/30) for FIV and FeLV, respectively. Contact with other cats and living in peri-urban areas were considered to be risk factors (P feline population more accurately, particularly with regard to infections by FeLV, which have complex pathogenesis.

  8. Human leukocyte antigen (HLA class I restricted epitope discovery in yellow fewer and dengue viruses: importance of HLA binding strength.

    Directory of Open Access Journals (Sweden)

    Ole Lund

    Full Text Available Epitopes from all available full-length sequences of yellow fever virus (YFV and dengue fever virus (DENV restricted by Human Leukocyte Antigen class I (HLA-I alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, K(D, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had K(D below 100 nM and the peptides with K(D below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had K(D below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.

  9. Evaluating perspectives for PRRS virus elimination from pig dense areas with a risk factor based herd index.

    Science.gov (United States)

    Fahrion, A S; Beilage, E grosse; Nathues, H; Dürr, S; Doherr, M G

    2014-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is wide-spread in pig populations globally. In many regions of Europe with intensive pig production and high herd densities, the virus is endemic and can cause disease and production losses. This fuels discussion about the feasibility and sustainability of virus elimination from larger geographic regions. The implementation of a program aiming at virus elimination for areas with high pig density is unprecedented and its potential success is unknown. The objective of this work was to approach pig population data with a simple method that could support assessing the feasibility of a sustainable regional PRRSV elimination. Based on known risk factors such as pig herd structure and neighborhood conditions, an index characterizing individual herds' potential for endemic virus circulation and reinfection was designed. This index was subsequently used to compare data of all pig herds in two regions with different pig- and herd-densities in Lower Saxony (North-West Germany) where PRRSV is endemic. Distribution of the indexed herds was displayed using GIS. Clusters of high herd index densities forming potential risk hot spots were identified which could represent key target areas for surveillance and biosecurity measures under a control program aimed at virus elimination. In an additional step, for the study region with the higher pig density (2463 pigs/km(2) farmland), the potential distribution of PRRSV-free and non-free herds during the implementation of a national control program aiming at national virus elimination was modeled. Complex herd and trade network structures suggest that PRRSV elimination in regions with intensive pig farming like that of middle Europe would have to involve legal regulation and be accompanied by important trade and animal movement restrictions. The proposed methodology of risk index mapping could be adapted to areas varying in size, herd structure and density. Interpreted in the

  10. Expression of von Willebrand factor and caldesmon in the placental tissues of pregnancies complicated with intrauterine growth restriction.

    Science.gov (United States)

    Göksever Çelik, Hale; Uhri, Mehmet; Yildirim, Gökhan

    2017-11-02

    The decreased placental perfusion is the underlying reason for intrauterine growth restriction that in turn leads to reduced placental perfusion and ischemia. However, there are several issues to be understood in the pathophysiology of intrauterine growth restriction. We aimed to study whether any compensatory response in placental vascular bed occur in pregnancies complicated with intrauterine growth restriction by the immunohistochemical staining of von Willebrand factor and caldesmon in placental tissues. A total of 103 pregnant women was enrolled in the study including 50 patients who were complicated with IUGR and 50 uncomplicated control patients. The study was designed in a prospective manner. All placentas were also stained with von Willebrand factor and caldesmon monoclonal kits. The immunohistochemical staining of von Willebrand factor and caldesmon expressions in placental tissues were different between normal and intrauterine growth restriction group. The percentages of 2+ and 3+ von Willebrand factor expression were higher in the intrauterine growth restriction group comparing with the normal group, although the difference was not statistically significant. The intensity of caldesmon expression was significantly lower in the intrauterine growth restriction group in comparison with the normal group (p intrauterine growth restriction which is a hypoxic condition. But newly formed vessels are immature and not strong enough. Our study is important to clarify the pathophysiology and placental compensatory responses in intrauterine growth restriction.

  11. [Mumps vaccine virus transmission].

    Science.gov (United States)

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  12. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  13. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  14. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  15. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.

    Science.gov (United States)

    Deeg, Christoph M; Hassan, Ebrahim; Mutz, Pascal; Rheinemann, Lara; Götz, Veronika; Magar, Linda; Schilling, Mirjam; Kallfass, Carsten; Nürnberger, Cindy; Soubies, Sébastien; Kochs, Georg; Haller, Otto; Schwemmle, Martin; Staeheli, Peter

    2017-05-01

    Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population. © 2017 Deeg et al.

  16. Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors

    Directory of Open Access Journals (Sweden)

    Yesseinia I. Angleró-Rodríguez

    2017-10-01

    Full Text Available Zika (ZIKV and dengue virus (DENV are transmitted to humans by Aedes mosquitoes. However, the molecular interactions between the vector and ZIKV remain largely unexplored. In this work, we further investigated the tropism of ZIKV in two different Aedes aegypti strains and show that the virus infection kinetics, tissue migration, and susceptibility to infection differ between mosquito strains. We also compare the vector transcriptome changes upon ZIKV or DENV infection demonstrating that 40% of the mosquito’s midgut infection-responsive transcriptome is virus-specific at 7 days after virus ingestion. Regulated genes included key factors of the mosquito’s anti-viral immunity. Comparison of the ZIKV and DENV infection-responsive transcriptome data to those available for yellow fever virus and West Nile virus identified 26 genes likely to play key roles in virus infection of Aedes mosquitoes. Through reverse genetic analyses, we show that the Toll and the Jak/Stat innate immune pathways mediate increased resistance to ZIKV infection, and the conserved DENV host factors vATPase and inosine-5′-monophosphate dehydrogenase are also utilized for ZIKV infection.

  17. Inter-organizational relationships: promoters and restrictive factors in the formation of cooperation network

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Gaspar

    2014-04-01

    Full Text Available The present paper had as aim to identify factors of inter-organizational relationships which promotes and restricts the formation of companies’ cooperation network, from two levels of analysis (organizational and inter-organizational. To achieve this goal, it was developed a descriptive-qualitative study, with prospecting for primary and secondary data on a cooperation network. The universe was composed by 41 participating companies associated to the analyzed network. The sampling procedure was for researcher’s accessibility and convenience. As a result, it was identified that the network is guided by goals of cooperation among the participating companies, in addition to representing the sector and provide services in the interests of the associates. The main factors influencing the formation of the network were: business center, marketing and training; but only training has been achieved satisfactorily. The business center and marketing factors have not yet been fully developed, being both identified as restrictive factors.

  18. Hepatitus B virus infection : factors influencing the outcome

    NARCIS (Netherlands)

    J. van Hattum (Jan)

    1986-01-01

    textabstractThis study was designed to find correlations between the various courses of disease after hepatitis B virus (HBV) infection and factors that could conceivably have influenced the course of disease. The aim of the study was to find correlations between parameters of viral replication and

  19. Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies.

    Science.gov (United States)

    Molineri, Ana; Giacobino, Agostina; Pacini, Adriana; Bulacio Cagnolo, Natalia; Fondevila, Norberto; Ferrufino, Cecilia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Masciángelo, Germán; Pietronave, Hernán; Signorini, Marcelo

    2017-05-01

    Beekeepers all across the world are suffering important losses of their colonies, and the parasitic mites Varroa destructor and Nosema sp, as well as several bee viruses, are being pointed out as the possible causes of these losses, generally associated with environmental and management factors. The objective of the present study was to evaluate the presence of seven virus species (Deformed wing virus -DWV-, Acute bee paralysis virus -ABPV-, Chronic bee paralysis virus -CBPV-, Black queen cell virus -BQCV-, Kashmir bee virus -KBV-, Israeli acute bee paralysis virus -IAPV-, and Sacbrood bee virus -SBV), as well as the prevalence of Nosema sp. and Varroa destructor, and their possible associated factors, under temperate and subtropical climate conditions in Argentinean colonies. A total of 385 colonies distributed in five Argentinean eco-regions were examined after honey harvest. The final multivariable model revealed only one variable associated with the presence of DWV and two with the presence of ABPV. The apiary random effect was significant in both cases (P=0.018; P=0.006, respectively). Colonies with a Varroa infestation rate >3% showed higher presence of DWV than colonies with <3% of Varroa infestation level (OR=1.91; 95% CI: 1.02-3.57; P<0.044). The same pattern was observed for the presence of ABPV (OR=2.23; 95% CI: 1.04-4.77; P<0.039). Also, colonies where replacement of old combs was not a common practice had higher presence of ABPV (OR=6.02; 95% CI: 1.16-31.25; P<0.033). Regardless of the location of the colonies, virus presence was strongly associated with V. destructor level. Therefore, all the factors that directly or indirectly influence the levels of mites will be also influencing the presence of the viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  1. The Influence of Ecological Factors on the Transmission and Stability of Avian Influenza Virus in the Environment

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-09-01

    Full Text Available Ecology is a science studying the correlation among organisms and some environmental factors. Ecological factors play an important role to transmit Avian Influenza (AI virus and influence its stability in the environment. Avian Influenza virus is classified as type A virus and belong to Orthomyxoviridae family. The virus can infect various vertebrates, mainly birds and mammals, including human. Avian Influenza virus transmission can occur through bird migration. The bird migration patterns usually occur in the large continent covers a long distance area within a certain periode hence transmit the virus from infected birds to other birds and spread to the environment. The biotic (normal flora microbes and abiotic (physical and chemical factors play important role in transmitting the virus to susceptible avian species and influence its stability in the environment. Disinfectant can inactivate the AI virus in the environment but its effectivity is influenced by the concentration, contact time, pH, temperature and organic matter.

  2. Natural Variation in Resistance to Virus Infection in Dipteran Insects

    Directory of Open Access Journals (Sweden)

    William H. Palmer

    2018-03-01

    Full Text Available The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus–host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus–host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.

  3. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  4. Factor Structure of the Restricted Academic Situation Scale: Implications for ADHD

    Science.gov (United States)

    Karama, Sherif; Amor, Leila Ben; Grizenko, Natalie; Ciampi, Antonio; Mbekou, Valentin; Ter-Stepanian, Marina; Lageix, Philippe; Baron, Chantal; Schwartz, George; Joober, Ridha

    2009-01-01

    Background: To study the factor structure of the Restricted Academic Situation Scale (RASS), a psychometric tool used to assess behavior in children with ADHD, 117 boys and 21 girls meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.; "DSM-IV") criteria for ADHD and aged between 6 and 12 years were recruited. Assessments were…

  5. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    Science.gov (United States)

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  6. Factors That Influence the Transmission of West Nile Virus in Florida.

    Science.gov (United States)

    Day, Jonathan F; Tabachnick, Walter J; Smartt, Chelsea T

    2015-09-01

    West Nile virus (WNV) was first detected in North America in New York City during the late summer of 1999 and was first detected in Florida in 2001. Although WNV has been responsible for widespread and extensive epidemics in human populations and epizootics in domestic animals and wildlife throughout North America, comparable epidemics have never materialized in Florida. Here, we review some of the reasons why WNV has yet to cause an extensive outbreak in Florida. The primary vector of mosquito-borne encephalitis virus in Florida is Culex nigripalpus Theobald. Rainfall, drought, and temperature are the primary factors that regulate annual populations of this species. Cx. nigripalpus is a competent vector of WNV, St. Louis encephalitis virus, and eastern equine encephalitis virus in Florida, and populations of this species can support focal amplification and transmission of these arboviruses. We propose that a combination of environmental factors influencing Cx. nigripalpus oviposition, blood-feeding behavior, and vector competence have limited WNV transmission in Florida to relatively small focal outbreaks and kept the state free of a major epidemic. Florida must remain vigilant to the danger from WNV, because a change in these environmental factors could easily result in a substantial WNV epidemic rivaling those seen elsewhere in the United States. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph

    2006-01-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  8. Human papilloma virus: a new risk factor in a subset of head and neck cancers.

    Science.gov (United States)

    Bisht, Manisha; Bist, Sampan Singh

    2011-01-01

    Head and neck cancer is the sixth most common malignancy worldwide. Tobacco smoking and alcohol consumption are two well known behavioral risk factors associated with head and neck cancer. Recently, evidence is mounting that infection with human papilloma virus, most commonly human papilloma virus-16 is responsible for a subset of head and neck squamous cell carcinoma especially tumors of tonsillar origin. The molecular pathway used by human papilloma virus to trigger malignant transformation of tissue is different from that of other well known risk factors, i.e. smoking and alcohol, associated with squamous cell carcinoma. Apparently, these subsets of patients with human papilloma virus positive tumor are more likely to have a better prognosis than human papilloma virus negative tumor. Considering this fact, the human papilloma virus infection should be determined in all oropharyngeal cancers since it can have a major impact on the decision making process of the treatment.

  9. Nonhuman Primate Models of Hepatitis A Virus and Hepatitis E Virus Infections.

    Science.gov (United States)

    Lanford, Robert E; Walker, Christopher M; Lemon, Stanley M

    2018-04-23

    Although phylogenetically unrelated, human hepatitis viruses share an exclusive or near exclusive tropism for replication in differentiated hepatocytes. This narrow tissue tropism may contribute to the restriction of the host ranges of these viruses to relatively few host species, mostly nonhuman primates. Nonhuman primate models thus figure prominently in our current understanding of the replication and pathogenesis of these viruses, including the enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV), and have also played major roles in vaccine development. This review draws comparisons of HAV and HEV infection from studies conducted in nonhuman primates, and describes how such studies have contributed to our current understanding of the biology of these viruses. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation.

    Directory of Open Access Journals (Sweden)

    Vanessa C McFadden

    2017-02-01

    Full Text Available The FoxA family of pioneer transcription factors regulates hepatitis B virus (HBV transcription, and hence viral replication. Hepatocyte-specific FoxA-deficiency in the HBV transgenic mouse model of chronic infection prevents the transcription of the viral DNA genome as a result of the failure of the developmentally controlled conversion of 5-methylcytosine residues to cytosine during postnatal hepatic maturation. These observations suggest that pioneer transcription factors such as FoxA, which mark genes for expression at subsequent developmental steps in the cellular differentiation program, mediate their effects by reversing the DNA methylation status of their target genes to permit their ensuing expression when the appropriate tissue-specific transcription factor combinations arise during development. Furthermore, as the FoxA-deficient HBV transgenic mice are viable, the specific developmental timing, abundance and isoform type of pioneer factor expression must permit all essential liver gene expression to occur at a level sufficient to support adequate liver function. This implies that pioneer transcription factors can recognize and mark their target genes in distinct developmental manners dependent upon, at least in part, the concentration and affinity of FoxA for its binding sites within enhancer and promoter regulatory sequence elements. This selective marking of cellular genes for expression by the FoxA pioneer factor compared to HBV may offer the opportunity for the specific silencing of HBV gene expression and hence the resolution of chronic HBV infections which are responsible for approximately one million deaths worldwide annually due to liver cirrhosis and hepatocellular carcinoma.

  11. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense

    NARCIS (Netherlands)

    Halbach, R.; Junglen, S.; Rij, R.P. van

    2017-01-01

    Recent virus discovery programs have identified an extensive reservoir of viruses in arthropods. It is thought that arthropod viruses, including mosquito-specific viruses, are ancestral to vertebrate-pathogenic arboviruses. Mosquito-specific viruses are restricted in vertebrate cells at multiple

  12. Treatment of Ebola Virus Infection With a Recombinant Inhibitor of Factor Vlla/Tissue Factor: A Study in Rhesus Monkeys

    National Research Council Canada - National Science Library

    Geisbert, Thomas W; Hensley, Lisa E; Jahrling, Peter B; Larsen, Tom; Geisbert, Joan B

    2003-01-01

    Infection with the Ebola virus induces overexpression of the procoagulant tissue factor in primate monocytes and macrophages, suggesting that inhibition of the tissue-factor pathway could ameliorate...

  13. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Science.gov (United States)

    de Chassey, Benoît; Aublin-Gex, Anne; Ruggieri, Alessia; Meyniel-Schicklin, Laurène; Pradezynski, Fabrine; Davoust, Nathalie; Chantier, Thibault; Tafforeau, Lionel; Mangeot, Philippe-Emmanuel; Ciancia, Claire; Perrin-Cocon, Laure; Bartenschlager, Ralf; André, Patrice; Lotteau, Vincent

    2013-01-01

    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  14. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Directory of Open Access Journals (Sweden)

    Benoît de Chassey

    Full Text Available Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1 appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  15. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif

    Directory of Open Access Journals (Sweden)

    Yuqing eFeng

    2014-08-01

    Full Text Available The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-DNA APOBEC3 enzymes deaminate cytosines to forms uracils in single-stranded (- DNA regions. Upon replication of the (-DNA to (+DNA, the HIV-1 reverse transcriptase incorporates adenines opposite the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but by several degradation-independent mechanisms such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.

  16. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  17. H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s)

    International Nuclear Information System (INIS)

    Noguchi, M.; Onoe, K.; Ogasawara, M.; Iwabuchi, K.; Geng, L.; Ogasawara, K.; Good, R.A.; Morikawa, K.

    1985-01-01

    To study adaptive-differentiation phenomena of T lymphocytes, suppressor T-cell factors (TsF) produced by Ly-2+ splenic T cells from fully allogeneic mouse bone marrow chimeras were analyzed. AKR mice irradiated and reconstituted with B10 marrow cells (B10----AKR chimeras) produced an Ly-2+ TsF after hyperimmunization with sheep erythrocytes. The TsF suppressed primary antibody responses (to sheep erythrocytes) generated with spleen cells of mice of H-2b haplotype but not those of H-2k haplotype. Thus, this suppressor factor was donor-H-2-restricted. The immunoglobulin heavy chain variable region gene (Igh-V)-restricting element was not involved in this form of suppression. Similar results were obtained when TsF from B6----BALB/c and BALB/c----B6 chimeras were analyzed. The TsF from B10----AKR chimeras suppressed responses of B10.A(3R) and B10.A(5R) mice but not those of B10.A(4R). This finding showed that identity between the factor-producing cells and target spleen cells is required on the left-hand side of the E beta locus of the H-2 region and that the putative I-Jb locus is not involved in this form of suppression. The present results support the postulate that post-thymic differentiation in the presence of continued or repeated stimulation with antigen and donor-derived antigen-presenting cells generates donor-H-2-restricted T-cell clones that may predominate within the repertoire of the specific antigen being presented

  18. Local Risk Factors in Genital Human Papilloma Virus Infection in ...

    African Journals Online (AJOL)

    Keywords: Genital human papilloma virus, Pap smear, Risk factors. Access this article online .... their Pap smears taken and questionnaires on sexual attitudes, .... the high‑risk types, which mediate the response of the enhancer to steroid ...

  19. Prevalence And Risk Factors For Human Pappiloma Virus Infection ...

    African Journals Online (AJOL)

    Human Pappiloma Virus (HPV) infection is a disease of global public health importance, culminating into a high risk of cervical cancer. Most of the risk factors are modifiable, thus making HPV itself preventable. Efforts towards community HPV prevention and vaccination have not yielded the desired results, most especially ...

  20. Exposure to tobacco secondhand smoke and its associated factors among non-smoking adults in smoking-restricted and non-restricted areas: findings from a nationwide study in Malaysia.

    Science.gov (United States)

    Lim, Kuang Hock; Teh, Chien Huey; Nik Mohamed, Mohamad Haniki; Pan, Sayan; Ling, Miaw Yn; Mohd Yusoff, Muhammad Fadhli; Hassan, Noraryana; Baharom, Nizam; Dawam, Netty Darwina; Ismail, Norliana; Ghazali, Sumarni Mohd; Cheong, Kee Chee; Chong, Kar Hon; Lim, Hui Li

    2018-01-08

    Secondhand smoke (SHS) has been associated with increased morbidity and mortality. Therefore, the aims of the paper are to assess SHS exposure among non-smoking adults in Malaysia attending various smoking-restricted and non-restricted public areas according to the Control of Tobacco Product Regulations (CTPR) as well as its relationship with various sociodemographic variables. Data were extracted from a cross-sectional study, the Global Adults Tobacco Survey (GATS) 2011 which involved 3269 non-smokers in Malaysia. Data was obtained through face-to-face interviews using a validated pre-tested questionnaire. Factors associated with exposure to SHS were identified via multivariable analysis. The study revealed that almost two-thirds of respondents were exposed to SHS in at least one public area in the past 1 month, with a significantly higher exposure among males (70.6%), those with higher educational attainment (81.4%) and higher income (quintile 1%-73.9%). Besides, the exposure to SHS was almost four times higher in non-restricted areas compared with restricted areas under the CTPR (81.9% vs 22.9). Multivariable analysis revealed that males and younger adults at non-restricted areas were more likely to be exposed to SHS while no significant associated factors of SHS exposure was observed in restricted areas. The study revealed the prevalence of SHS exposure was higher among Malaysian adults. Although smoke-free laws offer protection to non-smokers from exposure to SHS, enforcement activities in restricted areas should be enhanced to ensure strict public abidance. In addition, legislation of restricted areas should also be extended to greatly reduce the SHS exposure among non-smokers in Malaysia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Varicella Zoster Virus and Relapsing Remitting Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julio Sotelo

    2011-01-01

    Full Text Available Multiple sclerosis (MS is an immune-mediated disorder; however, little is known about the triggering factors of the abnormal immune response. Different viruses from the herpes family have been mentioned as potential participants. Here, we review the evidences that support the association of varicella zoster virus (VZV with MS. Epidemiological studies from geographical areas, where incidence of MS has increased in recent decades, pointed out a high frequency of varicella and zoster in the clinical antecedents of MS patients, and also laboratory investigations have found large quantities of DNA from VZV in leucocytes and cerebrospinal fluid of MS patients restricted to the ephemeral period of MS relapse, followed by disappearance of the virus during remission. The above observations and the peculiar features of VZV, mainly characterized by its neurotropism and long periods of latency followed by viral reactivation, support the idea on the participation of VZV in the etiology of MS. However, as with reports from studies with other viruses, particularly Epstein Barr virus, conflicting results on confirmatory studies about the presence of viral gene products in brain tissue indicate the need for further research on the potential participation of VZV in the etiology of MS.

  2. Varicella Zoster Virus and Relapsing Remitting Multiple Sclerosis

    Science.gov (United States)

    Sotelo, Julio; Corona, Teresa

    2011-01-01

    Multiple sclerosis (MS) is an immune-mediated disorder; however, little is known about the triggering factors of the abnormal immune response. Different viruses from the herpes family have been mentioned as potential participants. Here, we review the evidences that support the association of varicella zoster virus (VZV) with MS. Epidemiological studies from geographical areas, where incidence of MS has increased in recent decades, pointed out a high frequency of varicella and zoster in the clinical antecedents of MS patients, and also laboratory investigations have found large quantities of DNA from VZV in leucocytes and cerebrospinal fluid of MS patients restricted to the ephemeral period of MS relapse, followed by disappearance of the virus during remission. The above observations and the peculiar features of VZV, mainly characterized by its neurotropism and long periods of latency followed by viral reactivation, support the idea on the participation of VZV in the etiology of MS. However, as with reports from studies with other viruses, particularly Epstein Barr virus, conflicting results on confirmatory studies about the presence of viral gene products in brain tissue indicate the need for further research on the potential participation of VZV in the etiology of MS. PMID:22096629

  3. Regulatory role of neuron-restrictive silencing factor in expression of TRPC1

    International Nuclear Information System (INIS)

    Ohba, Takayoshi; Watanabe, Hiroyuki; Takahashi, Yoichiro; Suzuki, Takashi; Miyoshi, Ichiro; Nakayama, Shinnsuke; Satoh, Eisaku; Iino, Kenji; Sasano, Hironobu; Mori, Yasuo; Kuromitsu, Sadao; Imagawa, Keiichi; Saito, Yoshihiko; Iijima, Toshihiko; Ito, Hiroshi; Murakami, Manabu

    2006-01-01

    Neuron-restrictive silencer factor (NRSF) binds its consensus element to repress the transcription of various genes. The dominant-negative form (dnNRSF) has a hypertrophic effect on cardiogenesis through an unidentified mechanism. We examined the involvement of transient receptor potential (TRP) channel proteins, using transgenic mice overexpressing dnNRSF (dnNRSF mice). Electrophoretic mobility-shift assays revealed an interaction between NRSF and a neuron-restrictive silencer element-like sequence in intron 4 of TRPC1 genomic DNA. According to RT-PCR and Western analyses, TRPC1 was up-regulated in dnNRSF mouse heart. Transient overexpression of TRPC1 in HEK 293T cells increased the activity of the nuclear factor in activated T cells (NFAT) promoter and stimulated store-operated Ca 2+ channel (SOCC)-mediated Ca 2+ entry. Transfection of TRPC1 into primary cardiomyocytes increased NFAT activity, indicating a major role for TRPC1 in NFAT activation. Our findings strongly suggest that NRSF regulates TRP1 gene expression and causes changes in the levels of calcium entry through SOCCs

  4. [Hepatitis caused by virus C. Risk factors].

    Science.gov (United States)

    Garassini, M E; Pulgar, Y; Alvarado, M; Garassini, M A

    1995-01-01

    To establish the risk factors to hepatitis C virus (HCV) infection, we studied 120 patients divided in 2 groups: A first group of 40 patients with HCV infection, 24 (60%) with past medical history of blood transfusion, 14 (35%) of them also had hemodialysis and 3 Kidney transplant. 10 patients (25%) had mayor surgery without transfusion, 3 had frequent visits to the dentist and 3 month baby whose mother was HCV positive. In 4 patients we found no risk factors. A second group of 80 patients who visit our clinic for the first time, 2 were found positive for HCV (1.6%). 13 of them had blood transfusion, one was HCV+ (OR: 5.5, P = 0.73). 41 had history of mayor surgery, one HCV+ (OR: 0.95, P = 1.000). The risk factors related to HCV infection in our population were blood transfusion, hemodialysis and mayor surgery. The use of EV drugs, tatoos, sexual behavior, interfamiliar or vertical transmission were not risk factor in our population.

  5. Molecular cloning of osteoma-inducing replication-competent murine leukemia viruses from the RFB osteoma virus stock

    DEFF Research Database (Denmark)

    Pedersen, Lene; Behnisch, Werner; Schmidt, Jörg

    1992-01-01

    We report the molecular cloning of two replication-competent osteoma-inducing murine leukemia viruses from the RFB osteoma virus stock (M. P. Finkel, C. A. Reilly, Jr., B. O. Biskis, and I. L. Greco, p. 353-366, in C. H. G. Price and F. G. M. Ross, ed., Bone--Certain Aspects of Neoplasia, 1973......). Like the original RFB osteoma virus stock, viruses derived from the molecular RFB clones induced multiple osteomas in mice of the CBA/Ca strain. The cloned RFB viruses were indistinguishable by restriction enzyme analysis and by nucleotide sequence analysis of their long-terminal-repeat regions...

  6. Factors associated with parental use of restrictive feeding practices to control their children's food intake.

    Science.gov (United States)

    Gray, Wendy N; Janicke, David M; Wistedt, Kristin M; Dumont-Driscoll, Marilyn C

    2010-10-01

    There is a critical need to identify risk factors that make parents more likely to restrict their child's food intake. Child weight and ethnicity, parent weight, parent body dissatisfaction, and parent concern of child weight were examined as correlates of parent use of restrictive feeding practices in a diverse sample of 191 youth (ages 7-17). Participants attending a pediatric outpatient visit completed the Child Feeding Questionnaire (parent feeding practices and beliefs), the Figure Rating Scale (body dissatisfaction) and a demographic form. Parent BMI and child degree of overweight were calculated. Parent use of restrictive feeding practices was positively associated with parent BMI and was moderated by parent body dissatisfaction. Parent concern of child weight mediated the relationship between increasing child degree of overweight and parent use of restrictive feeding practices. There were no differences by child gender or ethnicity in parent use of restrictive feeding practices. These preliminary findings highlight the importance of assessing for underlying parent motivations for utilizing restrictive feeding practices and may help to identify and intervene with families at-risk for engaging in counterproductive weight control strategies. Continued identification of correlates of parent use of restrictive feeding practices is needed across child development and among individuals from diverse backgrounds.

  7. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  8. Comparison of camelpox viruses isolated in Dubai.

    Science.gov (United States)

    Pfeffer, M; Meyer, H; Wernery, U; Kaaden, O R

    1996-03-01

    Between October 1993 and March 1994, outbreaks of pox-like exanthemas were observed in several camel raising farms in Dubai. Scabs from twenty camels with either local or generalized lesions were examined, seven of them had previously been vaccinated with a modified live camelpox virus vaccine. Inspection of scabs by electron microscopy confirmed an infection with orthopox viruses (OPV) in 10 animals and with parapox virus in one camel. Investigation of the scabs by polymerase chain reaction and dot blot assay revealed the presence of OPV in 15 or 13 samples, respectively. OPV could be isolated in cell culture in 14 cases. Restriction enzyme profiles characterized all isolates as camelpox virus. Their DNA patterns were virtually identical displaying only slight variations in the terminal fragments. In contrast, the vaccine strain showed a distinct restriction enzyme profile, indicating that it was not involved in the infections.

  9. Granulocyte colony-stimulating factor protects mice during respiratory virus infections.

    Directory of Open Access Journals (Sweden)

    Tamar Hermesh

    Full Text Available A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.

  10. Measuring the Restrictiveness of Living Environments for Children and Youth: Reconceptualizing Restriction

    Science.gov (United States)

    Rauktis, Mary E.; Huefner, Jonathan C.; O'Brien, Kirk; Pecora, Peter J.; Doucette, Ann; Thompson, Ronald W.

    2009-01-01

    The "Restrictiveness of Living Environment Scale" has long been the primary way to conceptualize the "restrictiveness" of a child's living situation. However, changes in systems of care and other factors have created a need to revisit how restrictiveness is conceptualized and measured. A measure was created to assess an environment's level of…

  11. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  12. The role of NSm during tomato spotted wilt virus infection

    NARCIS (Netherlands)

    Storms, M.M.H.

    1998-01-01

    In the past ten years the genome organisation of tomato spotted wilt virus (TSWV) has been intensively studied in our laboratory. Complete genome sequence data revealed that this enveloped plant virus belongs to the Bunyaviridae, a virus family further restricted to

  13. Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression.

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of beta-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and alpha-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells.

  14. Changes in Soluble Factor-Mediated CD8+ Cell-Derived Antiviral Activity in Cynomolgus Macaques Infected with Simian Immunodeficiency Virus SIVmac251: Relationship to Biological Markers of Progression†

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of β-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and α-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells. PMID:16352548

  15. The influence of marital factors on genital human papilloma virus ...

    African Journals Online (AJOL)

    Aim: To study the association between marital factors and human papilloma virus (HPV) infection of the cervix. Method: The subjects were 450 randomly selected sexually active women attending the antenatal, postnatal, gynaecology and family planning clinics in the Department of Obstetrics and Gynaecology of the ...

  16. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

    Science.gov (United States)

    Sze, Alexandre; Olagnier, David; Hadj, Samar Bel; Han, Xiaoying; Tian, Xiao Hong; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A; Wu, Jian Hui; Lin, Rongtuan

    2017-10-03

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens , used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

  17. Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication.

    Directory of Open Access Journals (Sweden)

    Kelly M Cheney

    2010-10-01

    Full Text Available Type I interferons (IFNα and β are induced directly in response to viral infection, resulting in an antiviral state for the cell. In vitro studies have shown that IFNα is a potent inhibitor of viral replication; however, its role in HIV-1 infection is incompletely understood. In this study we describe the ability of IFNα to restrict HIV-1 infection in primary human macrophages in contrast to peripheral blood mononuclear cells and monocyte-derived dendritic cells. Inhibition to HIV-1 replication in cells pretreated with IFNα occurred at an early stage in the virus life cycle. Late viral events such as budding and subsequent rounds of infection were not affected by IFNα treatment. Analysis of early and late HIV-1 reverse transcripts and integrated proviral DNA confirmed an early post entry role for IFNα. First strand cDNA synthesis was slightly reduced but late and integrated products were severely depleted, suggesting that initiation or the nucleic acid intermediates of reverse transcription are targeted. The depletion of integrated provirus is disproportionally greater than that of viral cDNA synthesis suggesting the possibility of a least an additional later target. A role for either cellular protein APOBEC3G or tetherin in this IFNα mediated restriction has been excluded. Vpu, previously shown by others to rescue a viral budding restriction by tetherin, could not overcome this IFNα induced effect. Determining both the viral determinants and cellular proteins involved may lead to novel therapeutic approaches. Our results add to the understanding of HIV-1 restriction by IFNα.

  18. BOVINE RESPIRATORY SYNCYTIAL VIRUS EPIDEMIOLOGY AND RISK FACTORS ON CATTLE HERDS OF CAMPECHE STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    Lisandro Alberto Encalada Mena

    2016-12-01

    Full Text Available High seroprevalence in Yucatan and proximity to the state of Campeche make it necessary to determine the seroprevalence and risk factors of bovine respiratory syncytial virus (VRSB in the state of Campeche, Mexico. Thus the objective of the present work was to determine the seroprevalence and risk factors bovine respiratory syncytial virus (BRSV of the state of Campeche, Mexico. The sampled of 36 cattle herds (842 sera were analyzed by indirect ELISA kit, in the 11 municipalities of Campeche. A survey to obtain risk factors (sex, age of animals, number of animals grazing density, management system, presence of sheep on the farm and access to the roadside was applied and calculated X2 for each variable considered. Of the total number of samples analyzed (842, 273 were positive (32.47%. The prevalence ranges found ranged from 0% to 84%, so in 9 of the herds there were no positive samples, indicating a 75% (27/36 of dispersion of this virus. X2 analysis indicated that all variables were significant and are risk factors regarding with respect to the variable seroprevalence of BRSV. The results indicate a wide circulation of BRSV and we suggest implement recommendations that will enable a lower spread of this virus in the cattle population.

  19. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  20. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies

    Directory of Open Access Journals (Sweden)

    Hero Alfred

    2010-11-01

    Full Text Available Abstract Background Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP, the Indian Buffet Process (IBP, and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB analysis. Results Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV, Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD, closely related non-Bayesian approaches. Conclusions Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  1. Bayesian inference of the number of factors in gene-expression analysis: application to human virus challenge studies.

    Science.gov (United States)

    Chen, Bo; Chen, Minhua; Paisley, John; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S; Hero, Alfred; Lucas, Joseph; Dunson, David; Carin, Lawrence

    2010-11-09

    Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

  2. Risk Factors for Sexual Transmission of Hepatitis C Virus Among Human Immunodeficiency Virus-Infected Men Who Have Sex With Men: A Case-Control Study

    NARCIS (Netherlands)

    Vanhommerig, Joost W.; Lambers, Femke A. E.; Schinkel, Janke; Geskus, Ronald B.; Arends, Joop E.; van de Laar, Thijs J. W.; Lauw, Fanny N.; Brinkman, Kees; Gras, Luuk; Rijnders, Bart J. A.; van der Meer, Jan T. M.; Prins, Maria; Molenkamp, R.; Mutschelknauss, M.; Nobel, H. E.; Reesink, H. W.; van der Valk, M.; van den Berk, G. E. L.; Brinkman, K.; Kwa, D.; van der Meche, N.; Toonen, A.; Vos, D.; van Broekhuizen, M.; Lauw, F. N.; Mulder, J. W.; Arends, J. E.; van Kessel, A.; de Kroon, I.; Boonstra, A.; van der Ende, M. E.; Hullegie, S.; Rijnders, B. J. A.; van de laar, T. J. W.; Gras, L.; Smit, C.; van der Veldt, W.

    2015-01-01

    Background. Since 2000, incidence of sexually acquired hepatitis C virus (HCV)-infection has increased among human immunodeficiency virus (HIV)-infected men who have sex with men (MSM). To date, few case-control and cohort studies evaluating HCV transmission risk factors were conducted in this

  3. Restrictions for Medicaid Reimbursement of Sofosbuvir for the Treatment of Hepatitis C Virus Infection in the United States.

    Science.gov (United States)

    Barua, Soumitri; Greenwald, Robert; Grebely, Jason; Dore, Gregory J; Swan, Tracy; Taylor, Lynn E

    2015-08-04

    The aim of this study was to systematically evaluate state Medicaid policies for the treatment of hepatitis C virus (HCV) infection with sofosbuvir in the United States. Medicaid reimbursement criteria for sofosbuvir were evaluated in all 50 states and the District of Columbia. The authors searched state Medicaid Web sites between 23 June and 7 December 2014 and extracted data in duplicate. Any differences were resolved by consensus. Data were extracted on whether sofosbuvir was covered and the criteria for coverage based on the following categories: liver disease stage, HIV co-infection, prescriber type, and drug or alcohol use. Of the 42 states with known Medicaid reimbursement criteria for sofosbuvir, 74% limit sofosbuvir access to persons with advanced fibrosis (Meta-Analysis of Histologic Data in Viral Hepatitis [METAVIR] fibrosis stage F3) or cirrhosis (F4). One quarter of states require persons co-infected with HCV and HIV to be receiving antiretroviral therapy or to have suppressed HIV RNA levels. Two thirds of states have restrictions based on prescriber type, and 88% include drug or alcohol use in their sofosbuvir eligibility criteria, with 50% requiring a period of abstinence and 64% requiring urine drug screening. Heterogeneity is present in Medicaid reimbursement criteria for sofosbuvir with respect to liver disease staging, HIV co-infection, prescriber type, and drug or alcohol use across the United States. Restrictions do not seem to conform with recommendations from professional organizations, such as the Infectious Diseases Society of America and the American Association for the Study of Liver Diseases. Current restrictions seem to violate federal Medicaid law, which requires states to cover drugs consistent with their U.S. Food and Drug Administration labels.

  4. Prevalence and risk factors of feline leukaemia virus and feline immunodeficiency virus in peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Bande Faruku

    2012-03-01

    Full Text Available Abstract Background Feline leukaemia virus (FeLV and feline immunodeficiency virus (FIV are major causes of morbidity and mortality in domestic and wild felids. Despite the clinical importance of feline retroviruses and the growing interest in cats as pets, information about FeLV and FIV in Malaysia is presently insufficient to properly advise veterinarians and pet owners. A cross-sectional study was carried out from January 2010 to December 2010 to determine the prevalence and risk factors associated with FeLV and FIV among domestic cats in peninsular Malaysia. Plasma samples were harvested from the blood of 368 domestic cats and screened for evidence of FeLV p27 antigen and FIV antibodies, using an immunochromatographic kit. Additionally, data on cat demographics and health were collected using a structured questionnaire, and were evaluated as potential risk factors for FeLV or FIV status. Results Of the 368 cats that were evaluated in this study, 12.2% (45/368; 95% CI = 8.88 - 15.58 were positive for FeLV p27 antigen, 31.3%, (115/368; 95% CI = 26.51 - 35.99 were seropositive to FIV antibodies, and 4.3% (16/368; 95% CI = 2.27 - 6.43 had evidence of both viruses. Factors found to significantly increase the risk for FeLV seropositivity include sex, age, behaviour, sickness, and living in a multi-cat household. Seropositive response to FIV was significantly associated with sex, neuter status, age, behaviour, and health status. Conclusions The present study indicates that FeLV and FIV are common among domestic cats in peninsular Malaysia, and that factors related to cat demographics and health such as age, sex, behaviour, health status and type of household are important predictors for seropositive status to FeLV or FIV in peninsular Malaysia. High prevalence of FeLV or FIV observed in our study is of concern, in view of the immunosuppressive potentials of the two pathogens. Specific measures for control and prevention such as screening and

  5. Protection of melon plants against Cucumber mosaic virus infection ...

    African Journals Online (AJOL)

    This study was carried out to characterize a virus causing severe mosaic, yellowing, stunting and leaf deformation on melon (Cucumis melo L.), and evaluate the capacity of Pseudomonas fluorescens as biofertilizer to improve plant growth and restrict the accumulation of the virus in the plant. The virus was identified as an ...

  6. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    Science.gov (United States)

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  7. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  8. Genetic characterization, molecular epidemiology, and phylogenetic relationships of insect-specific viruses in the taxon Negevirus.

    Science.gov (United States)

    Nunes, Marcio R T; Contreras-Gutierrez, María Angélica; Guzman, Hilda; Martins, Livia C; Barbirato, Mayla Feitoza; Savit, Chelsea; Balta, Victoria; Uribe, Sandra; Vivero, Rafael; Suaza, Juan David; Oliveira, Hamilton; Nunes Neto, Joaquin P; Carvalho, Valeria L; da Silva, Sandro Patroca; Cardoso, Jedson F; de Oliveira, Rodrigo Santo; da Silva Lemos, Poliana; Wood, Thomas G; Widen, Steven G; Vasconcelos, Pedro F C; Fish, Durland; Vasilakis, Nikos; Tesh, Robert B

    2017-04-01

    The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The use of non-human primates as animal models for the study of hepatitis viruses

    Directory of Open Access Journals (Sweden)

    C.L. Vitral

    1998-08-01

    Full Text Available Hepatitis viruses belong to different families and have in common a striking hepatotropism and restrictions for propagation in cell culture. The transmissibility of hepatitis is in great part limited to non-human primates. Enterically transmitted hepatitis viruses (hepatitis A virus and hepatitis E virus can induce hepatitis in a number of Old World and New World monkey species, while the host range of non-human primates susceptible to hepatitis viruses transmitted by the parenteral route (hepatitis B virus, hepatitis C virus and hepatitis delta virus is restricted to few species of Old World monkeys, especially the chimpanzee. Experimental studies on non-human primates have provided an invaluable source of information regarding the biology and pathogenesis of these viruses, and represent a still indispensable tool for vaccine and drug testing.

  10. Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Novosad, Shannon A; Dunn, Angela C; Brent, Carolyn R; Savage, Harry M; Faraji, Ary; Peterson, Dallin; Dibbs, Andrew; Vietor, Brook; Christensen, Kimberly; Laven, Janeen J; Godsey, Marvin S; Christensen, Bryan; Beyer, Brigette; Cortese, Margaret M; Johnson, Nina C; Panella, Amanda J; Biggerstaff, Brad J; Rubin, Michael; Fridkin, Scott K; Staples, J Erin; Nakashima, Allyn K

    2017-08-01

    In 2016, Zika virus disease developed in a man (patient A) who had no known risk factors beyond caring for a relative who died of this disease (index patient). We investigated the source of infection for patient A by surveying other family contacts, healthcare personnel, and community members, and testing samples for Zika virus. We identified 19 family contacts who had similar exposures to the index patient; 86 healthcare personnel had contact with the index patient, including 57 (66%) who had contact with body fluids. Of 218 community members interviewed, 28 (13%) reported signs/symptoms and 132 (61%) provided a sample. Except for patient A, no other persons tested had laboratory evidence of recent Zika virus infection. Of 5,875 mosquitoes collected, none were known vectors of Zika virus and all were negative for Zika virus. The mechanism of transmission to patient A remains unknown but was likely person-to-person contact with the index patient.

  11. Assessment of Attention to Clothing and Impact of Its Restrictive Factors in Iranian Patients with Traumatic Spinal Cord Injury (ACIRF-SCI): Introduction of a New Questionnaire.

    Science.gov (United States)

    Laleh, Leila; Latifi, Sahar; Koushki, Davood; Matin, Marzieh; Javidan, Abbas Norouzi; Yekaninejad, Mir Saeed

    2015-01-01

    Patients with spinal cord injury (SCI) deal with various restrictive factors regarding their clothing, such as disability and difficulty with access to shopping centers. We designed a questionnaire to assess attention to clothing and impact of its restrictive factors among Iranian patients with SCI (ACIRF-SCI). The ACIRF-SCI has 5 domains: functional, medical, attitude, aesthetic, and emotional. The first 3 domains reflect the impact of restrictive factors (factors that restrict attention to clothing), and the last 2 domains reflect attention to clothing and fashion. Functional restrictive factors include disability and dependence. Medical restrictive factors include existence of specific medical conditions that interfere with clothing choice. Construct validity was assessed by factorial analysis, and reliability was expressed by Cronbach's alpha. A total of 100 patients (75 men and 25 women) entered this study. Patients with a lower injury level had a higher total score (P SCI who have greater ability and independence experience a lower impact of restrictive factors related to clothing. The ACIRF-SCI reveals that this assumption is statistically significant, which shows its admissible discriminant validity. The measured construct validity (0.97) and reliability (internal consistency expressed by alpha = 0.61) are acceptable.

  12. The evolution of plant virus transmission pathways

    Science.gov (United States)

    Frédéric M. Hamelin; Linda J.S. Allen; Holly R. Prendeville; M. Reza Hajimorad; Michael J. Jeger

    2016-01-01

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, oravector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which...

  13. The association between measurement sites of visceral adipose tissue and cardiovascular risk factors after caloric restriction in obese Korean women.

    Science.gov (United States)

    Lee, Hye-Ok; Yim, Jung-Eun; Lee, Jeong-Sook; Kim, Young-Seol; Choue, Ryowon

    2013-02-01

    Quantities as well as distributions of adipose tissue (AT) are significantly related to cardiovascular disease (CVD) risk factors and can be altered with caloric restriction. This study investigated which cross-sectional slice location of AT is most strongly correlated with changes in CVD risk factors after caloric restriction in obese Korean women. Thirty-three obese pre-menopausal Korean women (32.4 ± 8.5 yrs, BMI 27.1 ± 2.3 kg/m(2)) participated in a 12 weeks caloric restriction program. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were measured using computed tomography (CT) scans at the sites of L2-L3, L3-L4, and L4-L5. Fasting serum levels of glucose, insulin, triglyceride, total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), leptin and homeostasis model assessment-insulin resistance (HOMA-IR) were observed. Pearson's partial correlation coefficients were used to assess the relationship between AT measurement sites and changes in CVD risk factors after calorie restriction. When calories were reduced by 350 kcal/day for 12 weeks, body weight (-2.7%), body fat mass (-8.2%), and waist circumference (-5.8%) all decreased (P restriction, serum levels of glucose (-4.6%), TC (-6.2%), LDL-C (-5.3%), leptin (-17.6%) and HOMA-IR (-18.2%) decreased significantly (P restriction.

  14. Angiogenic factors for prediction of preeclampsia and intrauterine growth restriction onset in high-risk women: AngioPred study.

    Science.gov (United States)

    Raia-Barjat, Tiphaine; Prieux, Carole; Gris, Jean-Christophe; Chapelle, Céline; Laporte, Silvy; Chauleur, Céline

    2017-09-22

    The study aimed to compare the level of two angiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin (sEng), for the prediction of preeclampsia and intrauterine growth restriction in high-risk pregnant women. A prospective multicenter cohort study of 200 pregnant patients was conducted between June 2008 and October 2010. sFlt1 and sEng were measured by enzyme-linked immunosorbent assay. Forty-five patients developed a placenta-mediated adverse pregnancy outcome. Plasma levels of sFlt1 and sEng were higher in patients who will experience a preeclampsia at 28, 32, and 36 weeks compared with patients with no complication. The same results were observed for intrauterine growth restriction. Plasma levels of sFlt1 and sEng were not significantly different for patients with preeclampsia compare to patients with intrauterine growth restriction. Patients with early pre-eclampsia (PE) had very high rates of angiogenic factors at 20, 24, and 28 weeks. Patients with late PE and early and late intrauterine growth retardation (IUGR) had high rates at 32 and 36 weeks. In high-risk women, angiogenic factors are disturbed before the onset of preeclampsia and this is true for intrauterine growth restriction.

  15. Analysis of single-nucleotide polymorphisms in the APOBEC3H gene of domestic cats (Felis catus) and their association with the susceptibility to feline immunodeficiency virus and feline leukemia virus infections.

    Science.gov (United States)

    de Castro, Fernanda Luz; Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; da Silva, Tailene Rabello; Costenaro, Jamile Girardi; Knak, Marcus Braga; de Matos Almeida, Sabrina Esteves; Campos, Fabrício Souza; Roehe, Paulo Michel; Franco, Ana Cláudia

    2014-10-01

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are widely distributed retroviruses that infect domestic cats (Felis catus). Restriction factors are proteins that have the ability to hamper retroviruses' replication and are part of the conserved mechanisms of anti-viral immunity of mammals. The APOBEC3 protein family is the most studied class of restriction factors; they are cytidine deaminases that generate hypermutations in provirus DNA during reverse transcription, thus causing hypermutations in the viral genome, hindering virus replication. One of the feline APOBEC3 genes, named APOBEC3H, encodes two proteins (APOBEC3H and APOBEC3CH). In other mammals, APOBEC3H single-nucleotide polymorphisms (SNPs) can alter the stability and cellular localization of the encoded protein, thus influencing its subcellular localization and reducing its anti-viral effect. In cats, the association of APOBEC3H SNPs with susceptibility to retroviral infections was not yet demonstrated. Therefore, this study aimed the investigation on the variability of APOBEC3H and the possible association with FIV/FeLV infections. DNA obtained from whole blood of fifty FIV- and/or FeLV-infected cats and fifty-nine FIV- and/or FeLV-uninfected cats were used as templates to amplify two different regions of the APOBEC3H, with subsequent sequencing and analysis. The first region was highly conserved among all samples, while in the second, six single-nucleotide variation points were identified. One of the SNPs, A65S (A65I), was significantly correlated with the susceptibility to FIV and/or FeLV infections. On the other hand, the haplotype analysis showed that the combination "GGGGCC" was positively correlated with the lack of FIV and/or FeLV infections. Our results indicate that, as previously shown in other mammals, variability of restriction factors may contribute to susceptibility of domestic cats to retroviral infections; however, these results should be confirmed by more

  16. Antiviral T cell competence and restriction specificity of mixed allogeneic (P1 + P2----P1) irradiation chimeras

    International Nuclear Information System (INIS)

    Rueedi, E.S.; Sykes, M.; Ildstad, S.T.; Chester, C.H.; Althage, A.; Hengartner, H.; Sachs, D.H.; Zinkernagel, R.M.

    1989-01-01

    Mixed irradiation bone marrow chimeras were prepared by reconstituting lethally irradiated C57BL/10 (B10) or B10.D2 mice with T cell-depleted bone marrow cells of B10 plus B10.D2 origin. These chimeras were healthy and survived well under conventional housing conditions and after experimental laboratory infections. Of a total of 17 chimeras tested, 2 died spontaneously or from the injected virus. Twelve of fifteen chimeras mounted a measurable cytotoxic T cell response to virus. Despite approximately equal percentages of B10 and B10.D2 lymphocytes in chimeras, cytotoxic T cell responses to vaccinia virus and lymphocytic choriomeningitis virus were mediated variably by either syngeneic or allogeneic donor lymphocytes; thus the H-2 type of effector T cells frequently did not correspond to the 50:50 distribution of spleen or peripheral blood lymphocytes. Cytotoxic responses were restricted exclusively to recipient H-2 type. All mixed chimeras examined were able to mount a good IgG response to vesicular stomatitis virus. These results confirm previous data suggesting that such mixed chimeras are healthy and immunocompetent and demonstrate strict recipient-determined restriction specificity of effector T cells; they also suggest that if T help is necessary for induction of virus-specific cytotoxic T cells, it does not require host-restricted interactions between helper T cells and precursor cytotoxic T cells

  17. Modeling Powassan virus infection in Peromyscus leucopus, a natural host.

    Directory of Open Access Journals (Sweden)

    Luwanika Mlera

    2017-01-01

    Full Text Available The tick-borne flavivirus, Powassan virus (POWV causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi, suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5 of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.

  18. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    Directory of Open Access Journals (Sweden)

    Adam J. Hume

    2016-07-01

    Full Text Available Effective inactivation of biosafety level 4 (BSL-4 pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation.

  19. IFITM Proteins Restrict HIV-1 Infection by Antagonizing the Envelope Glycoprotein

    Directory of Open Access Journals (Sweden)

    Jingyou Yu

    2015-10-01

    Full Text Available The interferon-induced transmembrane (IFITM proteins have been recently shown to restrict HIV-1 and other viruses. Here, we provide evidence that IFITM proteins, particularly IFITM2 and IFITM3, specifically antagonize the HIV-1 envelope glycoprotein (Env, thereby inhibiting viral infection. IFITM proteins interact with HIV-1 Env in viral producer cells, leading to impaired Env processing and virion incorporation. Notably, the level of IFITM incorporation into HIV-1 virions does not strictly correlate with the extent of inhibition. Prolonged passage of HIV-1 in IFITM-expressing T lymphocytes leads to emergence of Env mutants that overcome IFITM restriction. The ability of IFITMs to inhibit cell-to-cell infection can be extended to HIV-1 primary isolates, HIV-2 and SIVs; however, the extent of inhibition appears to be virus-strain dependent. Overall, our study uncovers a mechanism by which IFITM proteins specifically antagonize HIV-1 Env to restrict HIV-1 infection and provides insight into the specialized role of IFITMs in HIV infection.

  20. Environmental and biological factors influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus.

    Science.gov (United States)

    Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra; Tabachnick, Walter J

    2009-08-01

    Complex interactions between environmental and biological factors influence the susceptibility of Culex pipiens quinquefasciatus to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.

  1. Dual miRNA targeting restricts host range and attenuates neurovirulence of flaviviruses.

    Directory of Open Access Journals (Sweden)

    Konstantin A Tsetsarkin

    2015-04-01

    Full Text Available Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3'NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4 replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics.

  2. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    Science.gov (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  3. Prevalence of nucleic acid sequences specific for human parvoviruses, hepatitis A and hepatitis E viruses in coagulation factor concentrates.

    Science.gov (United States)

    Modrow, S; Wenzel, J J; Schimanski, S; Schwarzbeck, J; Rothe, U; Oldenburg, J; Jilg, W; Eis-Hübinger, A M

    2011-05-01

    Due to their high resistance to inactivation procedures, nonenveloped viruses such as parvovirus B19, human bocavirus (HBoV), human parvovirus 4 (PARV4), hepatitis A (HAV) and hepatitis E virus (HEV) pose a particular threat to blood products. Virus transmission to patients treated with blood products presents an additional burden to disease. We determined the frequency and the amount of nucleic acid specific for nonenveloped viruses in recently manufactured preparations of commercial coagulation factor concentrates. At least three different batches of each of 13 different plasma-derived and recombinant coagulation factor products were tested for the presence and the amount of nucleic acid for parvovirus B19, HBoV, human parvovirus 4, hepatitis A virus and HEV by using quantitative polymerase chain reaction. Whereas none of the recombinant products tested positive for any of these viruses, parvovirus B19 DNA with amounts ranging between 2×10(1) and 1.3×10(3) genome equivalents/ml was detected in five plasma-derived products. In addition to parvovirus B19 genotype 1, genotypes 2 and 3 were observed in two batches of a factor VIII/von-Willebrand factor product. In two products (one factor VIII concentrate and one activated prothrombin complex concentrate), a combination of both genotypes 1 and 2 of parvovirus B19 was detected. The data show that nucleic acids from several relevant nonenveloped viruses are not found at detectable levels in coagulation factor concentrates. In some cases, parvovirus B19 DNA was detectable at low levels. Testing of the plasma pools for the full range of parvovirus genotypes is advocated for ensuring product safety. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  4. New generation of mobile phone viruses and corresponding countermeasures

    OpenAIRE

    Wang, Pu; González, Marta C.; Menezes, Ronaldo; Barabási, Albert-László

    2010-01-01

    The fast growing market for smart phones coupled with their almost continuous online presence makes these devices the new targets of virus writers. It has been recently found that the topological spread of MMS (Multimedia Message Services) viruses is highly restricted by the underlying fragmentation of the call graph. In this paper, we study MMS viruses under another type of spreading behavior: scanning. We find that hybrid MMS viruses including some level of scanning are more dangerous to th...

  5. Isolation of a new herpes virus from human CD4+ T cells

    International Nuclear Information System (INIS)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M.; June, C.H.

    1990-01-01

    A new human herpes virus has been isolated from CD4 + T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpes virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date

  6. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  7. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    Science.gov (United States)

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  8. Effect of feed restriction on performance and postprandial nutrient metabolism in pigs co-infected with Mycoplasma hyopneumoniae and swine influenza virus.

    Directory of Open Access Journals (Sweden)

    Nathalie Le Floc'h

    Full Text Available As nutritional status and inflammation are strongly connected, feeding and nutritional strategies could be effective to improve the ability of pigs to cope with disease. The aims of this study were to investigate the impact of a feed restriction on the ability of pigs to resist and be tolerant to a coinfection with Mycoplasma hyopneumoniae (Mhp and the European H1N1 swine influenza virus, and the consequences for nutrient metabolism, with a focus on amino acids. Two groups of specific pathogen-free pigs were inoculated with Mhp and H1N1 21 days apart. One group was fed ad libitum, the other group was subjected to a two-week 40% feed restriction starting one week before H1N1 infection. The two respective mock control groups were included. Three days post-H1N1 infection, 200 g of feed was given to pigs previously fasted overnight and serial blood samples were taken over 4 hours to measure plasma nutrient concentrations. Throughout the study, clinical signs were observed and pathogens were detected in nasal swabs and lung tissues. Feed-restricted pigs presented shorter hyperthermia and a positive mean weight gain over the 3 days post-H1N1 infection whereas animals fed ad libitum lost weight. Both infection and feed restriction reduced postprandial glucose concentrations, indicating changes in glucose metabolism. Post-prandial plasma concentrations of the essential amino acids histidine, arginine and threonine were lower in co-infected pigs suggesting a greater use of those amino acids for metabolic purposes associated with the immune response. Altogether, these results indicate that modifying feeding practices could help to prepare animals to overcome an influenza infection. Connections with metabolism changes are discussed.

  9. Immunodomination during peripheral vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Leon C W Lin

    Full Text Available Immunodominance is a fundamental property of CD8(+ T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d., subcutaneous (s.c., intraperitoneal (i.p. and intravenous (i.v. injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c. compared with those that allow systemic virus dissemination (i.p. and i.v.. This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+ T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1 and CD86 (B7-2, which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+ T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+ T cell immunity to viruses.

  10. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses.

    Science.gov (United States)

    Broadbent, Andrew J; Santos, Celia P; Godbout, Rachel A; Subbarao, Kanta

    2014-11-01

    Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our

  11. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  12. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    OpenAIRE

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.; Taubenberger, Jeffery K.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backb...

  13. Virus Genomes Reveal the Factors that Spread and Sustained the West African Ebola Epidemic

    Science.gov (United States)

    2016-08-09

    Ladner, J. T. et al. Evolution and Spread of Ebola Virus in Liberia , 2014--2015. Cell Host Microbe 18, 659–669 (2015). 15. Lemey, P. et al. Unifying...Virus genomes reveal the factors that spread and sustained the West African Ebola epidemic. Gytis Dudas1,2, Luiz Max Carvalho1, Trevor Bedford2...Charlesville, Liberia ., 19University of Sierra Leone, Freetown, Sierra Leone , 20Center for Systems Biology, Department of Organismic and Evolutionary

  14. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  15. Cellular Antiviral Factors that Target Particle Infectivity of HIV-1.

    Science.gov (United States)

    Goffinet, Christine

    2016-01-01

    In the past decade, the identification and characterization of antiviral genes with the ability to interfere with virus replication has established cell-intrinsic innate immunity as a third line of antiviral defense in addition to adaptive and classical innate immunity. Understanding how cellular factors have evolved to inhibit HIV-1 reveals particularly vulnerable points of the viral replication cycle. Many, but not all, antiviral proteins share type I interferon-upregulated expression and sensitivity to viral counteraction or evasion measures. Whereas well-established restriction factors interfere with early post-entry steps and release of HIV-1, recent research has revealed a diverse set of proteins that reduce the infectious quality of released particles using individual, to date poorly understood modes of action. These include induction of paucity of mature glycoproteins in nascent virions or self-incorporation into the virus particle, resulting in poor infectiousness of the virion and impaired spread of the infection. A better understanding of these newly discovered antiviral factors may open new avenues towards the design of drugs that repress the spread of viruses whose genomes have already integrated.

  16. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  17. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  18. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric; Ekchariyawat, Peeraya; Molès, Jean-Pierre; Simmons, Graham; Chazal, Nathalie; Desprès, Philippe

    2015-01-01

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  19. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  20. A Sensitive Assay for Virus Discovery in Respiratory Clinical Samples

    NARCIS (Netherlands)

    de Vries, Michel; Deijs, Martin; Canuti, Marta; van Schaik, Barbera D. C.; Faria, Nuno R.; van de Garde, Martijn D. B.; Jachimowski, Loes C. M.; Jebbink, Maarten F.; Jakobs, Marja; Luyf, Angela C. M.; Coenjaerts, Frank E. J.; Claas, Eric C. J.; Molenkamp, Richard; Koekkoek, Sylvie M.; Lammens, Christine; Leus, Frank; Goossens, Herman; Ieven, Margareta; Baas, Frank; van der Hoek, Lia

    2011-01-01

    In 5-40% of respiratory infections in children, the diagnostics remain negative, suggesting that the patients might be infected with a yet unknown pathogen. Virus discovery cDNA-AFLP (VIDISCA) is a virus discovery method based on recognition of restriction enzyme cleavage sites, ligation of adaptors

  1. Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method

    International Nuclear Information System (INIS)

    Mitrašinović, A.M.; Robles Hernández, F.C.

    2012-01-01

    Highlights: ► A new method to determine the growth restricting factor. (Q) is proposed ► The proposed method is highly accurate (R 2 = 0.99) and simple. ► A major novelty of this method is the determination of Q for non-dilute samples. ► The method proposed herein is based on quasi-binary phase diagrams and composition. ► This method can be easily implemented industrially or as a research tool. - Abstract: In the present research paper is suggested a new methodology to determine the growth restricting factor (Q) and grain size (GS) for various Al-alloys. The present method combines a thermodynamical component based on the liquidus behavior of each alloying element that is later incorporated into the well known growth restricting models for multi-component alloys. This approach that can be used to determine Q and/or GS based on the chemical composition and the slope of the liquidus temperature of any Al-alloy solidified in close to equilibrium conditions. This method can be modified further in order to assess the effect of cooling rate or thermomechanical processing on growth restricting factor and grain size. In the present paper is proposed a highly accurate (R 2 = 0.99) and validated model for Al–Si alloys, but it can be modified for any other Al–X alloying system. The present method can be used for alloys with relatively high solute content and due to the use of the thermodynamics of liquidus this system considers the poisoning effects of single and multi-component alloying elements.

  2. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  3. A novel role for APOBEC3: Susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS) is aggravated in APOBEC3 deficient mice

    Science.gov (United States)

    2012-01-01

    Background APOBEC3 proteins are host factors that restrict infection by retroviruses like HIV, MMTV, and MLV and are variably expressed in hematopoietic and non-hematopoietic cells, such as macrophages, lymphocytes, dendritic, and epithelia cells. Previously, we showed that APOBEC3 expressed in mammary epithelia cells function to limit milk-borne transmission of the beta-retrovirus, mouse mammary tumor virus. In this present study, we used APOBEC3 knockout mice and their wild type counterpart to query the role of APOBEC3 in sexual transmission of LP-BM5 MLV – the etiological agent of murine AIDs (mAIDs). Results We show that mouse APOBEC3 is expressed in murine genital tract tissues and gametes and that genital tract tissue of APOBEC3-deficient mice are more susceptible to infection by LP-BM5 virus. APOBEC3 expressed in genital tract tissues most likely plays a role in decreasing virus transmission via the sexual route, since mice deficient in APOBEC3 gene have higher genitalia and seminal plasma virus load and sexually transmit the virus more efficiently to their partners compared to APOBEC3+ mice. Moreover, we show that female mice sexually infected with LP-BM5 virus transmit the virus to their off-spring in APOBEC3-dependent manner. Conclusion Our data indicate that genital tissue intrinsic APOBEC3 restricts genital tract infection and limits sexual transmission of LP-BM5 virus. PMID:22691411

  4. Comparative analysis of radiation- and virus-induced leukemias in BALB/c mice

    International Nuclear Information System (INIS)

    Newcomb, E.W.; Binari, R.; Fleissner, E.

    1985-01-01

    Endogenous murine leukemia virus (MuLV) proviral copies were analyzed in thymomas induced in normal BALB/c (Fv-1b) and in Fv-1n congenic mice by X-irradiation. Both strains of mice developed leukemia with similar kinetics, indicating that N-tropism of endogenous MuLV was not a rate-limiting factor in development of disease. Southern blot analysis, using a probe specific for ecotropic virus and for ecotropic-specific sequences retained in pathogenic, env-recombinant viruses, showed that the majority of radiation leukemias lacked newly acquired, clonally integrated, proviruses. This was in contrast to virus-induced leukemias, which routinely exhibited several new proviral integration sites. When an internal proviral DNA restriction fragment was monitored, some radiation leukemias showed evidence of nonclonal infection, accounting for more frequent isolation of infectious virus from such leukemias. Differences in expression of T-cell surface antigens were found in X-ray-induced and virus-induced leukemias. All radiation leukemias were TL positive, whereas virus-induced leukemias were primarily negative for TL. Some differences were also found in Lyt-1 and Lyt-2 expression. The data as a whole suggest that, in the majority of cases, radiation leukemogenesis is not initiated by a viral route--that is, the sort of viral mechanism for which exogenous infection by known pathogenic MuLV is the paradigm

  5. Restriction of virus infection by plants. Final report, July 1, 1987--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, G.

    1992-12-31

    The basis of genotypic resistance of the Arlington line of cowpea (Vigna unguiculata) against cowpea mosaic virus (CPMV) has been attributed, to an inhibitor of the processing of CPMV polyproteins. We sought to purify the protein that is postulated to be the inhibitor of polyprotein processing and to characterize the inhibitor and its gene. Such information can be the basis for engineering resistance to specific viruses in plants. In studies with cherry leafroll virus (CLRV) we sought understanding of the biochemical basis of the resistance.

  6. Theiler's virus RNA and protein synthesis in the central nervous system of demyelinating mice

    International Nuclear Information System (INIS)

    Cash, E.; Chamorro, M.; Brahic, M.

    1985-01-01

    The authors studied Theiler's virus RNA and capsid protein synthesis in sections of mouse spinal cord using in situ hybridization coupled to immunoperoxidase. They found that the majority of infected cells contain 100 to 500 viral genomes and no detectable capsid antigens. Similarly, baby hamster kidney (BHK) cells, which are permissive to Theiler's virus, do not synthesize capsid if they contain less than 1000 viral genomes. The results demonstrate that virus multiplication is restricted in vivo at the level of RNA replication. They suggest that RNA restriction is sufficient to explain the lack of capsid antigen synthesis

  7. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses. Copyright © 2016 Turnbull et al.

  8. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The cold adapted and temperature sensitive influenza A/Ann Arbor/6/60 virus, the master donor virus for live attenuated influenza vaccines, has multiple defects in replication at the restrictive temperature

    International Nuclear Information System (INIS)

    Chan, Winnie; Zhou, Helen; Kemble, George; Jin Hong

    2008-01-01

    We have previously determined that the temperature sensitive (ts) and attenuated (att) phenotypes of the cold adapted influenza A/Ann Arbor/6/60 strain (MDV-A), the master donor virus for the live attenuated influenza A vaccines (FluMist), are specified by the five amino acids in the PB1, PB2 and NP gene segments. To understand how these loci control the ts phenotype of MDV-A, replication of MDV-A at the non-permissive temperature (39 deg. C) was compared with recombinant wild-type A/Ann Arbor/6/60 (rWt). The mRNA and protein synthesis of MDV-A in the infected MDCK cells were not significantly reduced at 39 deg. C during a single-step replication, however, vRNA synthesis was reduced and the nuclear-cytoplasmic export of viral RNP (vRNP) was blocked. In addition, the virions released from MDV-A infected cells at 39 deg. C exhibited irregular morphology and had a greatly reduced amount of the M1 protein incorporated. The reduced M1 protein incorporation and vRNP export blockage correlated well with the virus ts phenotype because these defects could be partially alleviated by removing the three ts loci from the PB1 gene. The virions and vRNPs isolated from the MDV-A infected cells contained a higher level of heat shock protein 70 (Hsp70) than those of rWt, however, whether Hsp70 is involved in thermal inhibition of MDV-A replication remains to be determined. Our studies demonstrate that restrictive replication of MDV-A at the non-permissive temperature occurs in multiple steps of the virus replication cycle

  10. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  11. Emerging viruses in the Felidae: shifting paradigms.

    Science.gov (United States)

    O'Brien, Stephen J; Troyer, Jennifer L; Brown, Meredith A; Johnson, Warren E; Antunes, Agostinho; Roelke, Melody E; Pecon-Slattery, Jill

    2012-02-01

    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.

  12. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    Science.gov (United States)

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  13. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Natarajan Ayithan

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host.

  14. Risk Factors for Hepatitis C Virus Infection among Blood Donors in Georgia

    International Nuclear Information System (INIS)

    Zaller, Nickolas; Nelson, Kenrad E.; Aladashvili, Malvina; Badridze, Nino; Rio, Carlos del; Tsertsvadze, Tengiz

    2004-01-01

    Background: Growing awareness about the importance of blood safety for controlling the transmission of hepatitis C virus (HCV) has helped to decrease the spread of this virus in many settings. This study was conducted in order to evaluate potential risk factors for HCV infection among blood donors in Georgia. Methods: The study population consisted of 553 blood donors in three major Georgian cities; Tbilisi, the capital city and Batumi and Poti, naval port cities. Risk factors were examined using a behavior questionnaire. All blood samples were initially tested using 3rd generation anti-HCV enzyme-linked immunosorbent assays and confirmed using recombinant immunoblot assays and nucleic acid testing. Results: Forty-three blood donors, 7.8%, were confirmed HCV positive. Significant risk factors included: drug injection ever (OR: 42; 95% CI: 3.2-550.7); history of hepatitis (OR: 25.9; 95% CI: 4.6-145.5); history of a previous surgical procedure (OR: 148.4; 95% CI: 26.9-817.4); blood transfusion (OR: 25.9; 95% CI: 3.2-210.9). Conclusions: This study found a very high prevalence of HCV among blood donors in Georgia. The main risk factor for HCV infection in this population of blood donors was previous contact with contaminated blood or blood products. Reliable screening of donors and their blood is critical for controlling the further spread of HCV in Georgia

  15. Seroepidemiology and risk factors of hepatitis B virus in Aden, Yemen

    Directory of Open Access Journals (Sweden)

    Amen Ahmed Bawazir

    2011-03-01

    Full Text Available Summary: Background: There is little published data concerning hepatitis B virus (HBV infection in Aden and no data concerning risk factors for infection. This study aimed to determine the prevalence of HBV infection and risk factors for infection in Aden, Yemen. Methods: A prospective cross sectional survey of individuals attending primary health care facilities was stratified by age and population size. Five hundred and thirty five participants were interviewed and serum was screened for the presence of Immunoglobin G HBV core antibodies (antiHBc. AntiHBc positive participants were tested for antibodies to hepatitis B surface antigen (HBsAg. A case–control analysis of risk factors for HBV was undertaken comparing risk factors between antiHBc positive cases and seronegative controls. Results: The age-standardized seroprevalence for antiHBc was 16.2% (95% confidence interval (CI 13.1–19.3 and for HBsAg was 1.5% (95% CI 0.5–2.5. The seroprevalence of antiHBc and HBsAg was estimated to range from 5.5% and 0% in infants to 40% and 4.6% in adults, respectively (p 5–9 members, AOR = 2.9, 95% CI = 1.1–7.6 and ownership of a landline telephone (AOR = 2.8, 95% CI = 1.3–5.8 were independent risk factors for HBV infection. Conclusions: HBV is still a public health problem in this community, with older individuals having much higher prevalence than younger generations. The results of this study would categorise Aden as a low HBV endemic zone. Perinatal transmission does not seem to be a major route of transmission. Keywords: Hepatitis B virus, Seroepidemiology, Risk factors, Aden, Yemen

  16. Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk - risk factors and spatial analysis.

    Science.gov (United States)

    Toftaker, Ingrid; Sanchez, Javier; Stokstad, Maria; Nødtvedt, Ane

    2016-10-01

    Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV) are considered widespread among cattle in Norway and worldwide. This cross-sectional study was conducted based on antibody-ELISA of bulk tank milk (BTM) from 1347 herds in two neighboring counties in western Norway. The study aims were to determine the seroprevalence at herd level, to evaluate risk factors for BRSV and BCoV seropositivity, and to assess how these factors were associated with the spatial distribution of positive herds. The overall prevalence of BRSV and BCoV positive herds in the region was 46.2% and 72.2%, respectively. Isopleth maps of the prevalence risk distribution showed large differences in prevalence risk across the study area, with the highest prevalence in the northern region. Common risk factors of importance for both viruses were herd size, geographic location, and proximity to neighbors. Seropositivity for one virus was associated with increased odds of seropositivity for the other virus. Purchase of livestock was an additional risk factor for BCoV seropositivity, included in the model as in-degree, which was defined as the number of incoming movements from individual herds, through animal purchase, over a period of five years. Local dependence and the contribution of risk factors to this effect were assessed using the residuals from two logistic regression models for each virus. One model contained only the x- and y- coordinates as predictors, the other had all significant predictors included. Spatial clusters of high values of residuals were detected using the normal model of the spatial scan statistic and visualized on maps. Adjusting for the risk factors in the final models had different impact on the spatial clusters for the two viruses: For BRSV the number of clusters was reduced from six to four, for BCoV the number of clusters remained the same, however the log-likelihood ratios changed notably. This indicates that geographical differences in proximity to

  17. Travel to tropical areas: Zika virus disease

    CERN Multimedia

    CERN Medical Service

    2016-01-01

    Transmitted by the bite of a certain species of mosquitoes (Aedes), the Zika virus is spreading quickly in tropical areas of Central America, the Caribbean and South America.   Although no specific treatment nor vaccine is currently available, the most effective preventive measures are those focused on avoiding mosquito bites. There are no travel restrictions in place at present. However it is recommended that pregnant women defer travel plans to countries affected by the Zika virus. For further information on symptoms and prevention measures, please click on the Zika virus link or contact the Medical Service.

  18. Identification and typing of herpes simplex viruses with monoclonal antibodies.

    OpenAIRE

    Balachandran, N; Frame, B; Chernesky, M; Kraiselburd, E; Kouri, Y; Garcia, D; Lavery, C; Rawls, W E

    1982-01-01

    Monoclonal antibodies which reacted with type-specific antigens of herpes simplex virus type 2 or with antigens shared by herpes simplex virus types 1 and 2 were used in an indirect immunofluorescence assay to type virus isolates and to detect viral antigens in cells obtained from herpetic lesions. Complete concordance was obtained for 42 isolates typed by endonuclease restriction analysis of viral DNA and by indirect immunofluorescence with monoclonal antibodies. Examination of a limited num...

  19. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  20. Identification of an osteoclast transcription factor that binds to the human T cell leukemia virus type I-long terminal repeat enhancer element.

    Science.gov (United States)

    Inoue, D; Santiago, P; Horne, W C; Baron, R

    1997-10-03

    Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.

  1. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators

    Science.gov (United States)

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S.; Tosi, Giovanna

    2013-01-01

    The activation of CD4+ T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution. PMID:23986750

  2. Caprine arthritis encephalitis virus: prevalence and risk factors in Lebanon.

    Science.gov (United States)

    Tabet, E; Hosri, C; Abi-Rizk, A

    2015-12-01

    An epidemiological survey, accompanied by a serological analysis,was conducted on samples taken from Lebanese goat herds in order to determine the prevalence of infection with the caprine arthritis encephalitis virus (CAEV) in Lebanon. The results of the survey provided information on various livestock production, animal health and herd management factors. Serum samplesfrom 952 goats, including the local breeds (Baladi and Damascene) and imported breeds (Alpine and Saneen), were taken from 60 farms distributed throughout Lebanon and tested for the presence of anti-CAEV antibodies. The data obtained were analysed using a statistical model to assess CAEV infection risk factors in Lebanon. In total, 125 samples proved to be positive, representing a prevalence in selected individuals of 13.1% and in selected herds of 51.7%. The Bekaa region had the highest number of herds with seropositive goats (90% of herds); the level was lower in Mount Lebanon, the North and the South (54%, 34% and 33%, respectively). The prevalence in relation to the livestock production system was 70% in herds in intensive systems, 54% in semi-intensive systems and 45% in extensive systems. The indigenous breeds were more resistant and tolerant of CAEV than the imported breeds. This study confirms the presence of CAEV in Lebanese goat herds and identifies the different livestock production practices likely to favour the rapid spread of the virus.

  3. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology?

    Science.gov (United States)

    Smith, Donald B; Simmonds, Peter

    2015-04-01

    Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis. © 2014 The Authors. Liver International Published by John Wiley & Sons Ltd.

  4. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Pagny, Gaëlle; Paulstephenraj, Pauline S; Poque, Sylvain; Sicard, Ophélie; Cosson, Patrick; Eyquard, Jean-Philippe; Caballero, Mélodie; Chague, Aurélie; Gourdon, Germain; Negrel, Lise; Candresse, Thierry; Mariette, Stéphanie; Decroocq, Véronique

    2012-11-01

    Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  5. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    Science.gov (United States)

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  6. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Genetic variation among Aedes aegypti populations can greatly influence their vector competence for human pathogens such as the dengue virus (DENV. While intra-species transcriptome differences remain relatively unstudied when compared to coding sequence polymorphisms, they also affect numerous aspects of mosquito biology. Comparative molecular profiling of mosquito strain transcriptomes can therefore provide valuable insight into the regulation of vector competence. We established a panel of A. aegypti strains with varying levels of susceptibility to DENV, comprising both laboratory-maintained strains and field-derived colonies collected from geographically distinct dengue-endemic regions spanning South America, the Caribbean, and Southeast Asia. A comparative genome-wide gene expression microarray-based analysis revealed higher basal levels of numerous immunity-related gene transcripts in DENV-refractory mosquito strains than in susceptible strains, and RNA interference assays further showed different degrees of immune pathway contribution to refractoriness in different strains. By correlating transcript abundance patterns with DENV susceptibility across our panel, we also identified new candidate modulators of DENV infection in the mosquito, and we provide functional evidence for two potential DENV host factors and one potential restriction factor. Our comparative transcriptome dataset thus not only provides valuable information about immune gene regulation and usage in natural refractoriness of mosquito populations to dengue virus but also allows us to identify new molecular interactions between the virus and its mosquito vector.

  7. Emerging Viruses in the Felidae: Shifting Paradigms

    Directory of Open Access Journals (Sweden)

    Meredith A. Brown

    2012-02-01

    Full Text Available The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids.

  8. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3.

    Science.gov (United States)

    Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2017-06-01

    The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3

  9. The Smc5/6 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune Response and Is Counteracted by the HBV X Protein Shortly after Infection

    Science.gov (United States)

    Daffis, Stephane; Ramakrishnan, Dhivya; Burdette, Dara; Peiser, Leanne; Salas, Eduardo; Ramos, Hilario; Yu, Mei; Cheng, Guofeng; Strubin, Michel; Delaney IV, William E.; Fletcher, Simon P.

    2017-01-01

    The structural maintenance of chromosome 5/6 complex (Smc5/6) is a restriction factor that represses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing HBV X protein (HBx), which targets Smc5/6 for degradation. However, the mechanism by which Smc5/6 suppresses HBV transcription and how HBx is initially expressed is not known. In this study we characterized viral kinetics and the host response during HBV infection of primary human hepatocytes (PHH) to address these unresolved questions. We determined that Smc5/6 localizes with Nuclear Domain 10 (ND10) in PHH. Co-localization has functional implications since depletion of ND10 structural components alters the nuclear distribution of Smc6 and induces HBV gene expression in the absence of HBx. We also found that HBV infection and replication does not induce a prominent global host transcriptional response in PHH, either shortly after infection when Smc5/6 is present, or at later times post-infection when Smc5/6 has been degraded. Notably, HBV and an HBx-negative virus establish high level infection in PHH without inducing expression of interferon-stimulated genes or production of interferons or other cytokines. Our study also revealed that Smc5/6 is degraded in the majority of infected PHH by the time cccDNA transcription could be detected and that HBx RNA is present in cell culture-derived virus preparations as well as HBV patient plasma. Collectively, these data indicate that Smc5/6 is an intrinsic antiviral restriction factor that suppresses HBV transcription when localized to ND10 without inducing a detectable innate immune response. Our data also suggest that HBx protein may be initially expressed by delivery of extracellular HBx RNA into HBV-infected cells. PMID:28095508

  10. Physical Factors Affecting in Vitro Replication of Foot and Mouth Disease Virus (Serotype “O”

    Directory of Open Access Journals (Sweden)

    Muhammad Taslim Ghori*, Khushi Muhammad and Masood Rabbani1

    2011-10-01

    Full Text Available Effect of physical factors (temperature, pH and UV light on replicating ability of “O” type of Foot and Mouth Disease (FMD virus on Baby Hamster Kidney (BHK cell line was determined. The freshly grown FMD virus containing 106 units of tissue culture infective dose (TCID50 was divided into aliquots. Each of the 9 virus aliquots was exposed to 37, 57 or 77C for 15, 30 or 45 minutes, respectively. Each of the 5 virus aliquots was mixed with MEM-199 maintenance medium having pH 3, 5, 7, 9, or 11. Similarly, each of the 3 aliquots having 1 mm depth of the medium was exposed to ultraviolet light (252.7 nm wavelength: one foot distance for 15, 30 or 45 minutes. Each of the virus aliquot exposed to either of the temperature, pH or ultraviolet light (UV for either of the interaction time was inoculated to 8 wells of the 96-well cell culture plate containing complete monolayer of BHK cell line. One row of 8 wells served as virus control and other row of 8 wells served as control for monolayer of the BHK-21 cell line. The plates were incubated at 37°C for 48 hours. It was observed that temperature of 57 and 77C inactivated the virus within 15 minutes. The virus when admixed in the MEM-199 maintenance medium having pH 3, 5, 9 or 11, of the medium inactivated the virus while pH 7 did not show any detrimental effect on its survival. The ultraviolet light for 15, 30 or 45 minutes showed undetectable effect on survival of the virus as either of the virus aliquot exposed to the UV light for either of the interaction time showed cytopathogenic effects (CPE. It was concluded that the temperature of 57°C or higher for 15 minutes, acidic pH (below 5 or basic pH (more than 9 may inactivate the FMD virus.

  11. Ultra-violet radiation is responsible for the differences in global epidemiology of chickenpox and the evolution of varicella-zoster virus as man migrated out of Africa.

    Science.gov (United States)

    Rice, Philip S

    2011-04-23

    Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming

  12. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  13. Variation in biological properties of cauliflower mosaic virus clones.

    Science.gov (United States)

    al-Kaff, N; Covey, S N

    1994-11-01

    Infectious clones were prepared from virion DNA of three cauliflower mosaic virus (CaMV) isolates, 11/3, Xinjiang (XJ), and Aust, to investigate pathogenic variation in virus populations. Of 10 infectious clones obtained for isolate 11/3, four pathotypes were identified, each producing symptoms in turnip that differed from those of the 11/3 wild-type. Virus from two clonal groups of 11/3 was transmissible by aphids whereas that from two others was not. Of the five infectious clones obtained from isolate XJ, two groups were identified, one of which differed symptomatically from the wild-type. Only one infectious clone was obtained from isolate Aust and this had properties similar to the wild-type. Restriction enzyme polymorphisms were found in some clonal groups and these correlated with symptoms. Other groups with different pathogenic properties could not be distinguished apart by restriction site polymorphisms. Further variation was observed in the nucleotide sequences of gene II (coding for aphid transmission factor) from these viruses as compared with other CaMV isolates. In the aphid non-transmissible clones of isolate 11/3, one had a Gly to Arg mutation in gene II similar to that of other non-deleted non-transmissible CaMV isolates. The second had a 322 bp deletion at the site of a small direct repeat similar to that of isolate CM4-184 although occurring in a different position. The gene II deletion of isolate 11/3 produced a frame-shift that separated genes II and III by 60 bp. Most CaMV clones studied remained biologically stable producing similar symptoms during subsequent passages. However, one clone (11/3-7) produced two new biotypes during its first passage suggesting that it was relatively unstable. Our results show that wild-type populations of CaMV contain a range of infectious genome variants with contrasting biological properties and differing stability. We suggest that a variety of significant viral phenotypic changes can occur during each

  14. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Torpey, D.J. III

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with /sup 51/Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant.

  15. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  16. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  17. Adherence to diet and fluid restriction of individuals on hemodialysis treatment and affecting factors in Turkey.

    Science.gov (United States)

    Efe, Dilek; Kocaöz, Semra

    2015-04-01

    This study was conducted to determine adherence to diet and fluid restriction in hemodialysis-treated individuals and the affecting factors in Turkey. This descriptive study was conducted between 15 October 2010 and 15 January 2011 in subjects who voluntarily agreed to participate in the study from three dialysis centers in a city located in the Central Anatolia Region of Turkey. One hundred and twenty-one individuals treated with hemodialysis made up the study sample. The data were collected using a questionnaire consisting of 41 questions and the Dialysis Diet and Fluid Non-adherence Questionnaire. The data were evaluated with percentage, median, Mann-Whitney U-test, Kruskal-Wallis test, Student's t-test in independent samples and Spearman's rank correlation coefficient. The authors found that 98.3% of the individuals experienced non-adherence to diet and 95.0% with fluid restriction. The authors found a weak and negative relationship between calcium levels and non-adherence to fluid restriction, a weak relationship between phosphorus levels and diet non-adherence frequency and degree and the fluid non-adherence frequency scores, and a moderate positive relationship between phosphorus levels and fluid restriction non-adherence degree scores (P < 0.05). Based on these results, regular training and information regarding diet and fluid restriction must be provided to individuals aged 21-35 years with no one in the family to help with their care, those who consumed salted food, or had interdialytic weight gain of 4.5 kg or more. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  18. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  19. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  20. Antibody Tracing, Seroepidemiology and Risk Factors of Bovine Respiratory Syncytial Virus and Bovine Adenovirus-3 in Dairy Holstein Farms

    Directory of Open Access Journals (Sweden)

    Mahsa FARZINPOUR

    2016-01-01

    Full Text Available Antibody tracing, risk factors and seroepidemiology of bovine respiratory syncytial virus and bovine adenovirus-3 were investigated in 22 Industrial and Semi-Industrial dairy Holstein farms. Serum samples (n=736 from various ages of unvaccinated cows were collected from May to September 2012. Risk factors including age, past history of respiratory diseases, amount of milk production, husbandry type and herd size were considered. Data were analyzed by Chi-square and logistic regression. Results indicated that the infection with some of individual viruses was related to past history of respiratory disease and herd size. No specific pattern was seen on the effect of level of milk production on seropositivity of animals. The seroprevalence for BRSV and BAV-3 were 89.1% and 88%, respectively. The present study indicates that infections of bovine respiratory viruses frequently occur in cattle of Fars province and the main viral cause of primary occurrence of respiratory diseases may be due to aforementioned viruses.

  1. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  2. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.

    Science.gov (United States)

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A

    2017-06-29

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.

  3. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells

    Science.gov (United States)

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.

    2018-01-01

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595

  4. Comparison of the prevalence and incidence of infection with bovine virus diarrhoea virus (BVDV) in Denmark and Michigan and association with possible risk factors

    DEFF Research Database (Denmark)

    Houe, H.; Baker, J.C.; Maes, R.K.

    1995-01-01

    Based on 2 previous surveys on the occurrence of infection with bovine virus diarrhoea virus (BVDV) in Danish and Michigan dairy herds, the prevalence and incidence of the infection were compared. The presence of certain possible risk factors for the occurrence of infection in the 2 areas were...... summarized and it was investigated if any of these risk factors had significant effect on the presence of animals persistently infected (PI) with BVDV in the dairy herds. Information on the cattle population density in the 2 areas was obtained from statistical yearbooks. Further information...... for the individual farms on age distribution, housing of animals, herd size, pasturing and purchasing policy was gathered. The prevalence of PI animals was more than 10 times higher in Denmark as compared to Michigan. In herds without PI animals, the annual incidence of seroconversion as calculated from the age...

  5. Alteration of placental haemostatic mechanisms in idiopathic intrauterine growth restriction

    Directory of Open Access Journals (Sweden)

    Jaime Eduardo Bernal Villegas

    2012-08-01

    Full Text Available Intrauterine growth restriction is a complication of pregnancy with a high probability of perinatal morbidity and mortality. It appears tobe caused by abnormal development of placental vasculature. Haemostatic processes are important for the development of the placenta,and an imbalance between procoagulant and anticoagulant factors has been associated with risk of intrauterine growth restriction.Objective. To evaluate coagulation abnormalities in placenta of pregnancies complicated with idiopathic intrauterine growth restriction.Materials and methods. Five placentas from pregnancies with idiopathic intrauterine growth restriction were compared to 19 controls.We performed gross and histological examination of the placenta. Analysis was made of both mRNA expression by real-time PCRand protein by ELISA of tissue factor and thrombomodulin in placental tissue. Results. Results based on histological evaluation wereconsistent with an increased prothrombotic state in placentas from pregnancies with idiopathic intrauterine growth restriction, andthrombosis of chorionic vessels was the most important finding. The study showed an increased expression of tissue factor protein(p=0.0411 and an increase in the ratio of tissue factor/thrombomodulin mRNA (p=0.0411 and protein (p=0.0215 in placentas frompregnancies with idiopathic intrauterine growth restriction. There were no statistically significant differences neither between cases andcontrols in the mRNA levels of tissue factor or thrombomodulin nor at the protein level of thrombomodulin. Conclusion. Evidence ofalteration of local haemostatic mechanisms at the level of the placenta, including abnormal expression of tissue factor and tissue factor/thrombomodulin ratio, in pregnancies that occur with idiopathic intrauterine growth restriction is presented.

  6. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link.

    Directory of Open Access Journals (Sweden)

    Gemma L Kelly

    2009-03-01

    Full Text Available Two factors contribute to Burkitt lymphoma (BL pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV. Although the virus has B cell growth-transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc-driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro-transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus

  7. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis

    International Nuclear Information System (INIS)

    Drillien, R.; Spehner, D.; Kirn, A.

    1978-01-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by uv irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective

  8. Investigation of radiation enhanced reactivation of cytoplasmic replicating human virus

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Haynes, K.F.; Stafford, J.E.

    1976-01-01

    When monolayers of CV-1 monkey kidney cells were exposed to ultraviolet (uv) radiation (0 to 200 erg/nm 2 ) or x rays (0 to 10 krads) before infection with uv-irradiated herpes simplex virus, an increase in the infectivity of this nuclear replicating virus occurred as measured by plaque formation. These phenomena are known as uv (Weigle) reactivation (WR) and x-ray reactivation (x-ray R). In this study the presence of WR and x-ray R was examined in CV-1 cells infected with uv-irradiated vaccinia virus or poliovirus, both cytoplasmic replicating viruses. Little or no WR or x-ray R was observed for either of these viruses. These results suggest that WR and x-ray R in mammalian cells may be restricted to viruses which are synthesized in the cell nucleus

  9. SAMHD1 restricts HIV-1 replication and regulates interferon production in mouse myeloid cells.

    Directory of Open Access Journals (Sweden)

    Ruonan Zhang

    Full Text Available SAMHD1 restricts the replication of HIV-1 and other retroviruses in human myeloid and resting CD4(+ T cells and that is counteracted in SIV and HIV-2 by the Vpx accessory protein. The protein is a phosphohydrolase that lowers the concentration of deoxynucleoside triphosphates (dNTP, blocking reverse transcription of the viral RNA genome. Polymorphisms in the gene encoding SAMHD1 are associated with Aicardi-Goutières Syndrome, a neurological disorder characterized by increased type-I interferon production. SAMHD1 is conserved in mammals but its role in restricting virus replication and controlling interferon production in non-primate species is not well understood. We show that SAMHD1 is catalytically active and expressed at high levels in mouse spleen, lymph nodes, thymus and lung. siRNA knock-down of SAMHD1 in bone marrow-derived macrophages increased their susceptibility to HIV-1 infection. shRNA knock-down of SAMHD1 in the murine monocytic cell-line RAW264.7 increased its susceptibility to HIV-1 and murine leukemia virus and increased the levels of the dNTP pool. In addition, SAMHD1 knock-down in RAW264.7 cells induced the production of type-I interferon and several interferon-stimulated genes, modeling the situation in Aicardi-Goutières Syndrome. Our findings suggest that the role of SAMHD1 in restricting viruses is conserved in the mouse. The RAW264.7 cell-line serves as a useful tool to study the antiviral and innate immune response functions of SAMHD1.

  10. NcoI restriction fragment length polymorphism (RFLP) of the tumour necrosis factor (TNF alpha) region in primary biliary cirrhosis and in healthy Danes

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1989-01-01

    The restriction fragment length polymorphism of the human tumour necrosis factor (TNF alpha) region was investigated by means of 20 different restriction enzymes and a human TNF alpha cDNA probe. Only one of the enzymes, NcoI, revealed a polymorphic pattern consisting of fragments of 10.5 and 5.5...

  11. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection.

    Directory of Open Access Journals (Sweden)

    Héctor Moreno

    Full Text Available BACKGROUND: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS: The effect of the mutagenic base analogue 5-fluorouracil (FU on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI, or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV, but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV and encephalomyocarditis virus (EMCV. The increase in mutation frequency and Shannon entropy (mutant spectrum complexity as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS: (i Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.

  12. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Chuang, C.-K.; Chen, W.-J.

    2009-01-01

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay on the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.

  13. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.

    Science.gov (United States)

    Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A

    2009-09-01

    Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.

  14. Ocelots on Barro Colorado Island are infected with feline immunodeficiency virus but not other common feline and canine viruses.

    Science.gov (United States)

    Franklin, Samuel P; Kays, Roland W; Moreno, Ricardo; TerWee, Julie A; Troyer, Jennifer L; VandeWoude, Sue

    2008-07-01

    Transmission of pathogens from domestic animals to wildlife populations (spill-over) has precipitated local wildlife extinctions in multiple geographic locations. Identifying such events before they cause population declines requires differentiating spillover from endemic disease, a challenge complicated by a lack of baseline data from wildlife populations that are isolated from domestic animals. We tested sera collected from 12 ocelots (Leopardus pardalis) native to Barro Colorado Island, Panama, which is free of domestic animals, for antibodies to feline herpes virus, feline calicivirus, feline corona virus, feline panleukopenia virus, canine distemper virus, and feline immunodeficiency virus (FIV), typically a species-specific infection. Samples also were tested for feline leukemia virus antigens. Positive tests results were only observed for FIV; 50% of the ocelots were positive. We hypothesize that isolation of this population has prevented introduction of pathogens typically attributed to contact with domestic animals. The high density of ocelots on Barro Colorado Island may contribute to a high prevalence of FIV infection, as would be expected with increased contact rates among conspecifics in a geographically restricted population.

  15. Demographic and ecological risk factors for human influenza A virus infections in rural Indonesia.

    Science.gov (United States)

    Root, Elisabeth Dowling; Agustian, Dwi; Kartasasmita, Cissy; Uyeki, Timothy M; Simões, Eric A F

    2017-09-01

    Indonesia has the world's highest reported mortality for human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus. Indonesia is an agriculturally driven country where human-animal mixing is common and provides a unique environment for zoonotic influenza A virus transmission. To identify potential demographic and ecological risk factors for human infection with seasonal influenza A viruses in rural Indonesia, a population-based study was conducted in Cileunyi and Soreang subdistricts near Bandung in western Java from 2008 to 2011. Passive influenza surveillance with RT-PCR confirmation of influenza A viral RNA in respiratory specimens was utilized for case ascertainment. A population census and mapping were utilized for population data collection. The presence of influenza A(H3N2) and A(H1N1)pdm09 virus infections in a household was modeled using Generalized Estimating Equations. Each additional child aged <5 years in a household increased the odds of H3N2 approximately 5 times (OR=4.59, 95%CI: 3.30-6.24) and H1N1pdm09 by 3.5 times (OR=3.53, 95%CI: 2.51-4.96). In addition, the presence of 16-30 birds in the house was associated with an increased odds of H3N2 (OR=5.08, 95%CI: 2.00-12.92) and H1N1pdm09 (OR=12.51 95%CI: 6.23-25.13). Our findings suggest an increase in influenza A virus infections in rural Indonesian households with young children and poultry. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  16. Factors contributing to the disturbance of coagulation and fibrinolysis in dengue virus infection

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    2013-01-01

    Full Text Available Hemorrhage is one of the hallmarks of dengue hemorrhagic fever. However, the mechanisms that cause hemorrhage are unclear. In this review we focus on the possible factors that may be involved in the disturbance of coagulation and fibrinolysis during dengue virus (DENV infection. Factors such as autoantibodies and cytokines induced by DENV infection as well as hemostatic molecules expressed on DENV-infected cells, and DENV viral proteins may all contribute to the defect of hemostasis during DENV infection. It is the combination of these viral and host factors that may tilt the balance of coagulation and fibrinolysis toward bleeding in dengue patients.

  17. Culicoides-virus interactions: infection barriers and possible factors underlying vector competence

    Science.gov (United States)

    In the United States, Culicoides midges vector arboviruses of economic importance such as Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. A limited number of studies have demonstrated the complexities of midge-virus interactions, including dynamic changes in virus titer and prevalence over...

  18. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  19. Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine

    DEFF Research Database (Denmark)

    Mocanu, Elena; Nguyen, Phuong H.; Gibescu, Madeleine

    2016-01-01

    electric power consumption, local price and meteorological data collected from 1900 customers. The households are equipped with local generation and smart appliances capable of responding to realtime pricing signals. The results show that for the short-term (5 minute to 1 day ahead) prediction problems......The electrical demand forecasting problem can be regarded as a nonlinear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high temporal resolution. To solve this challenging problem, various time series and machine learning...... developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for electrical demand forecasting. The assessment is made on the EcoGrid dataset, originating from the Bornholm island experiment in Denmark, consisting of aggregated...

  20. Identification of a Conserved Interface of Human Immunodeficiency Virus Type 1 and Feline Immunodeficiency Virus Vifs with Cullin 5.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Gertzen, Christoph G W; Häussinger, Dieter; Gohlke, Holger; Münk, Carsten

    2018-03-15

    Members of the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 [A3]) family of DNA cytidine deaminases are intrinsic restriction factors against retroviruses. In felids such as the domestic cat ( Felis catus ), the A3 genes encode the A3Z2, A3Z3, and A3Z2Z3 antiviral cytidine deaminases. Only A3Z3 and A3Z2Z3 inhibit viral infectivity factor (Vif)-deficient feline immunodeficiency virus (FIV). The FIV Vif protein interacts with Cullin (CUL), Elongin B (ELOB), and Elongin C (ELOC) to form an E3 ubiquitination complex to induce the degradation of feline A3s. However, the functional domains in FIV Vif for the interaction with Cullin are poorly understood. Here, we found that the expression of dominant negative CUL5 prevented the degradation of feline A3s by FIV Vif, while dominant negative CUL2 had no influence on the degradation of A3. In coimmunoprecipitation assays, FIV Vif bound to CUL5 but not CUL2. To identify the CUL5 interaction site in FIV Vif, the conserved amino acids from positions 47 to 160 of FIV Vif were mutated, but these mutations did not impair the binding of Vif to CUL5. By focusing on a potential zinc-binding motif (K175-C161-C184-C187) of FIV Vif, we found a conserved hydrophobic region (174IR175) that is important for the CUL5 interaction. Mutation of this region also impaired the FIV Vif-induced degradation of feline A3s. Based on a structural model of the FIV Vif-CUL5 interaction, the 52LW53 region in CUL5 was identified as mediating binding to FIV Vif. By comparing our results to the human immunodeficiency virus type 1 (HIV-1) Vif-CUL5 interaction surface (120IR121, a hydrophobic region that is localized in the zinc-binding motif), we suggest that the CUL5 interaction surface in the diverse HIV-1 and FIV Vifs is evolutionarily conserved, indicating a strong structural constraint. However, the FIV Vif-CUL5 interaction is zinc independent, which contrasts with the zinc dependence of HIV-1 Vif. IMPORTANCE Feline

  1. Activation of nucleotide oligomerization domain 2 (NOD2 by human cytomegalovirus initiates innate immune responses and restricts virus replication.

    Directory of Open Access Journals (Sweden)

    Arun Kapoor

    Full Text Available Nucleotide-binding oligomerization domain 2 (NOD2 is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease.

  2. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  3. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  4. [Study on restriction factors and countermeasures of influence of China medical devices competitiveness].

    Science.gov (United States)

    Zhang, Zhijun

    2012-07-01

    Recent years, China medical devices industry has been a sunrise industry with widely-ranged products, high-tech innovation, and booming market demands. But with the globalization of market economy, China industry is still in the inferior position of competition. How to promote the industrial structure transition, increase scientific and technological level, speed up the updating of products, enhance the international competitiveness is one of the major tasks to maintain the healthy development of industry. This article makes a study on current situation of China medical devices industry, analyses the new opportunities, challenges and restriction factors, provides the countermeasures of strengthening industry competitiveness as well.

  5. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    Science.gov (United States)

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  6. Vaccination against Louping Ill Virus Protects Goats from Experimental Challenge with Spanish Goat Encephalitis Virus.

    Science.gov (United States)

    Salinas, L M; Casais, R; García Marín, J F; Dalton, K P; Royo, L J; Del Cerro, A; Gayo, E; Dagleish, M P; Alberdi, P; Juste, R A; de la Fuente, J; Balseiro, A

    2017-05-01

    Spanish goat encephalitis virus (SGEV) is a recently described member of the genus Flavivirus belonging to the tick-borne encephalitis group of viruses, and is closely related to louping ill virus (LIV). Naturally acquired disease in goats results in severe, acute encephalitis and 100% mortality. Eighteen goats were challenged subcutaneously with SGEV; nine were vaccinated previously against LIV and nine were not. None of the vaccinated goats showed any clinical signs of disease or histological lesions, but all of the non-vaccinated goats developed pyrexia and 5/9 developed neurological clinical signs, primarily tremors in the neck and ataxia. All non-vaccinated animals developed histological lesions restricted to the central nervous system and consistent with a lymphocytic meningomyeloencephalitis. Vaccinated goats had significantly (P goats throughout the experiment, but increased rapidly and were significantly (P goats against LIV confers highly effective protection against SGEV; this is probably mediated by IgG and prevents an increase in viral RNA load in serum such that vaccinated animals would not be an effective reservoir of the virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  8. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  9. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  10. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  11. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  12. Epidemiology and Transmission of Hepatitis A Virus and Hepatitis E Virus Infections in the United States.

    Science.gov (United States)

    Hofmeister, Megan G; Foster, Monique A; Teshale, Eyasu H

    2018-04-30

    There are many similarities in the epidemiology and transmission of hepatitis A virus (HAV) and hepatitis E virus (HEV) genotype (gt)3 infections in the United States. Both viruses are enterically transmitted, although specific routes of transmission are more clearly established for HAV than for HEV: HAV is restricted to humans and primarily spread through the fecal-oral route, while HEV is zoonotic with poorly understood modes of transmission in the United States. New cases of HAV infection have decreased dramatically in the United States since infant vaccination was recommended in 1996. In recent years, however, outbreaks have occurred among an increasingly susceptible adult population. Although HEV is the most common cause of acute viral hepatitis in developing countries, it is rarely diagnosed in the United States. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Science.gov (United States)

    Demanou, Maurice; Pouillot, Régis; Grandadam, Marc; Boisier, Pascal; Kamgang, Basile; Hervé, Jean Pierre; Rogier, Christophe; Rousset, Dominique; Paupy, Christophe

    2014-07-01

    Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon. A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699), 24.2% in Garoua (n = 728) and 9.8% in Yaounde (n = 603). IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100) in Douala, 80% (n = 94) in Garoua and 77% (n = 66) in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2). Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde. In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  14. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Directory of Open Access Journals (Sweden)

    Maurice Demanou

    2014-07-01

    Full Text Available Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon.A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699, 24.2% in Garoua (n = 728 and 9.8% in Yaounde (n = 603. IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100 in Douala, 80% (n = 94 in Garoua and 77% (n = 66 in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2. Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde.In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  15. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  16. Novel RNA viruses within plant parasitic cyst nematodes.

    Science.gov (United States)

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  17. 38 CFR 1.467 - Restrictions on the use of identification cards and public signs.

    Science.gov (United States)

    2010-07-01

    ... Immunodeficiency Virus (hiv), Or Sickle Cell Anemia § 1.467 Restrictions on the use of identification cards and... abuse, alcoholism or alcohol abuse, HIV infection, or sickle cell anemia treatment program. A facility... alcohol abuse, HIV infection, or sickle cell anemia. (b) Treatment locations should not be identified by...

  18. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments.

    Science.gov (United States)

    Díaz-Muñoz, Samuel L

    2017-01-01

    Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus-host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus-virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus-virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus-virus interactions also increased culture coinfection with ssDNA-dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of

  19. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse

    Directory of Open Access Journals (Sweden)

    Blanchet Fabien P

    2013-01-01

    Full Text Available Abstract Background Dendritic cells and their subsets, located at mucosal surfaces, are among the first immune cells to encounter disseminating pathogens. The cellular restriction factor BST-2/tetherin (also known as CD317 or HM1.24 potently restricts HIV-1 release by retaining viral particles at the cell surface in many cell types, including primary cells such as macrophages. However, BST-2/tetherin does not efficiently restrict HIV-1 infection in immature dendritic cells. Results We now report that BST-2/tetherin expression in myeloid (myDC and monocyte-derived dendritic cells (DC can be significantly up-regulated by IFN-α treatment and TLR-4 engagement with LPS. In contrast to HeLa or 293T cells, infectious HIV-1 release in immature DC and IFN-α–matured DC was only modestly affected in the absence of Vpu compared to wild-type viruses. Strikingly, immunofluorescence analysis revealed that BST-2/tetherin was excluded from HIV containing tetraspanin-enriched microdomains (TEMs in both immature DC and IFN-α–matured DC. In contrast, in LPS-mediated mature DC, BST-2/tetherin exerted a significant restriction in transfer of HIV-1 infection to CD4+ T cells. Additionally, LPS, but not IFN-α stimulation of immature DC, leads to a dramatic redistribution of cellular restriction factors to the TEM as well as at the virological synapse between DC and CD4+ T cells. Conclusions In conclusion, we demonstrate that TLR-4 engagement in immature DC significantly up-regulates the intrinsic antiviral activity of BST-2/tetherin, during cis-infection of CD4+ T cells across the DC/T cell virological synapse. Manipulating the function and potency of cellular restriction factors such as BST-2/tetherin to HIV-1 infection, has implications in the design of antiviral therapeutic strategies.

  20. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  1. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  2. The C-terminus of the Polerovirus P5 readthrough domain limits virus infection to the phloem

    Science.gov (United States)

    Unlike most plant viruses, poleroviruses are restricted to vascular phloem tissues, from which they are transmitted by their aphid vectors. Phloem limitation has been attributed to the absence of virus proteins facilitating movement or counteracting plant defense. The polerovirus capsid is composed ...

  3. Seroprevalences of feline leukemia virus and feline immunodeficiency virus infection in cats in the United States and Canada and risk factors for seropositivity.

    Science.gov (United States)

    Burling, Amie N; Levy, Julie K; Scott, H Morgan; Crandall, Michael M; Tucker, Sylvia J; Wood, Erin G; Foster, Jessie D

    2017-07-15

    OBJECTIVE To estimate seroprevalences for FeLV antigen and anti-FIV antibody and risk factors for seropositivity among cats in the United States and Canada. DESIGN Cross-sectional study. ANIMALS 62,301 cats tested at 1,396 veterinary clinics (n = 45,406) and 127 animal shelters (16,895). PROCEDURES Blood samples were tested with a point-of-care ELISA for FeLV antigen and anti-FIV antibody. Seroprevalence was estimated, and risk factors for seropositivity were evaluated with bivariate and multivariable mixed-model logistic regression analyses adjusted for within-clinic or within-shelter dependencies. RESULTS Overall, seroprevalence was 3.1% for FeLV antigen and 3.6% for anti-FIV antibody. Adult age, outdoor access, clinical disease, and being a sexually intact male were risk factors for seropositivity for each virus. Odds of seropositivity for each virus were greater for cats tested in clinics than for those tested in shelters. Of 1,611 cats with oral disease, 76 (4.7%) and 157 (9.7%) were seropositive for FeLV and FIV, respectively. Of 4,835 cats with respiratory disease, 385 (8.0%) were seropositive for FeLV and 308 (6.4%) were seropositive for FIV. Of 1,983 cats with abscesses or bite wounds, 110 (5.5%) and 247 (12.5%) were seropositive for FeLV and FIV, respectively. Overall, 2,368 of 17,041 (13.9%) unhealthy cats were seropositive for either or both viruses, compared with 1,621 of 45,260 (3.6%) healthy cats. CONCLUSIONS AND CLINICAL RELEVANCE Seroprevalences for FeLV antigen and anti-FIV antibody were similar to those reported in previous studies over the past decade. Taken together, these results indicated a need to improve compliance with existing guidelines for management of feline retroviruses.

  4. Meat consumption is a major risk factor for hepatitis E virus infection.

    Directory of Open Access Journals (Sweden)

    Ed Slot

    Full Text Available The incidence of autochthonous hepatitis E virus genotype 3 (HEV gt3 infections in Western Europe is high. Although pigs are a major reservoir of the virus, the exact sources and transmission route(s of HEV gt3 to humans remain unclear.To determine the role of meat consumption at a population level, the seroprevalence of anti-HEV IgG antibodies was compared between Dutch blood donors with a vegetarian lifestyle and donors who consume meat on a daily basis.The age-weighted anti-HEV IgG seroprevalence among donors not eating meat was significantly lower than among meat-eating donors (12.4% vs 20.5%, p = 0.002. For both groups the prevalence strongly increased with age and the difference in prevalence was apparent for all age groups.Compared with meat-eating donors, the incidence of HEV infection is significantly lower among donors not eating meat, indicating that meat consumption is a major risk factor for HEV infection.

  5. Cacao in México: Restrictive factors and productivity levels

    Directory of Open Access Journals (Sweden)

    Julio Díaz-José

    2014-12-01

    Full Text Available Cacao (Theobroma cacao L. represents one of the most important agricultural crops of the humid Mexican tropics. In the last 10 yr, approximately 23.000 t of this grain were no longer produced per cycle. The objective of this study was to identify characteristics and factors that restrict production in the states of Tabasco and Chiapas. A survey was applied to obtain information about 184 producers and their plantations by two-stage sampling. Descriptive statistics were calculated and multilevel models were adjusted to analyze the information. Results show that there are differences (P < 0.05 in cacao yield between municipalities (380 kg ha-1 + u,o j is the estimated residual for each municipality. Crop productivity levels are higher in the state of Tabasco than in Chiapas (644 and 344 kg ha-1, respectively. Incidence of frosty pod rot of cacoa, also known as moniliasis, induced by Moniliophthora roreri [(Cif H.C. Evans, Stalpers, Samson & Benny 1978] is significantly greater (P < 0.05 in the state of Chiapas (60% than in Tabasco (48%.Producers who carry out more crop management practices increase yields and decrease the pathogen's impact on their plantations. Results suggest the need to apply differentiated public policies to promote production within each region or municipality.

  6. Porcine reproductive and respiratory disease virus: evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity

    Science.gov (United States)

    Recent cases of porcine reproductive and respiratory syndrome virus (PRRSV) infection in United States swineherds have been associated with high mortality in piglets and severe morbidity in sows. Analysis of the ORF5 gene from such clinical cases revealed a unique restriction fragment polymorphism (...

  7. Suppressor T-cell factor(s) display an altered pattern of Igh (immunoglobulin heavy chain locus) genetic restriction when developed in an Igh-congeneic host

    International Nuclear Information System (INIS)

    HayGlass, K.T.; Naides, S.J.; Benacerraf, B.; Sy, M.S.

    1985-01-01

    Suppressor T cell factor(s) (TsF 1 ) inhibit the in vivo priming of azobenzenearsonate-specific cytotoxic T-cell responses. The activity of TsF 1 is restricted by genes linked to Igh-1 allotypic markers. TsF 1 obtained from B6.Igh-1/sup n/ mice was unable to suppress the immune response in B6.Igh-1/sup b/ mice and vice versa. However, TsF 1 prepared from B6.Igh-1/sup n/ T cells parked in an Igh-congeneic B6.Igh-1/sup b/ environment displays an additional restriction specificity of the host. Thus, TsF 1 prepared from these Igh-chimeric mice suppressed immune responses in both B6.Igh-1/sup n/ (donor) and B6.Igh-1/sup b/ (recipient) mice but not in mice of the unrelated strain BALB/c.Igh-1/sup a/. The results indicate that the establishment of the suppressor T-cell repertoire is dependent not only upon the genetic background of the individual T cell but also upon the influence of Igh-linked determinants present when T-cell clones are selected during the response

  8. Restrictions for reimbursement of interferon-free direct-acting antiviral drugs for HCV infection in Europe

    NARCIS (Netherlands)

    Marshall, Alison D.; Cunningham, Evan B.; Nielsen, Stine; Aghemo, Alessio; Alho, Hannu; Backmund, Markus; Bruggmann, Philip; Dalgard, Olav; Seguin-Devaux, Carole; Flisiak, Robert; Foster, Graham R.; Gheorghe, Liana; Goldberg, David; Goulis, Ioannis; Hickman, Matthew; Hoffmann, Patrick; Jancorienė, Ligita; Jarcuska, Peter; Kåberg, Martin; Kostrikis, Leondios G.; Makara, Mihály; Maimets, Matti; Marinho, Rui Tato; Matičič, Mojca; Norris, Suzanne; Ólafsson, Sigurður; Øvrehus, Anne; Pawlotsky, Jean-Michel; Pocock, James; Robaeys, Geert; Roncero, Carlos; Simonova, Marieta; Sperl, Jan; Tait, Michele; Tolmane, Ieva; Tomaselli, Stefan; van der Valk, Marc; Vince, Adriana; Dore, Gregory J.; Lazarus, Jeffrey V.; Grebely, Jason

    2018-01-01

    All-oral direct-acting antiviral drugs (DAAs) for hepatitis C virus, which have response rates of 95% or more, represent a major clinical advance. However, the high list price of DAAs has led many governments to restrict their reimbursement. We reviewed the availability of, and national criteria

  9. Antibody- and TRIM21-dependent intracellular restriction of Salmonella enterica.

    Science.gov (United States)

    Rakebrandt, Nikolas; Lentes, Sabine; Neumann, Heinz; James, Leo C; Neumann-Staubitz, Petra

    2014-11-01

    TRIM21 ('tripartite motif-containing protein 21', Ro52) is a ubiquitously expressed cytosolic Fc receptor, which has a potent role in protective immunity against nonenveloped viruses. TRIM21 mediates intracellular neutralisation of antibody-coated viruses, a process called ADIN (antibody-dependent intracellular neutralisation). Our results reveal a similar mechanism to fight bacterial infections. TRIM21 is recruited to the intracellular pathogen Salmonella enterica in epithelial cells early in infection. TRIM21 does not bind directly to S. enterica, but to antibodies opsonising it. Most importantly, bacterial restriction is dependent on TRIM21 as well as on the opsonisation state of the bacteria. Finally, Salmonella and TRIM21 colocalise with the autophagosomal marker LC3, and intracellular defence is enhanced in starved cells suggesting an involvement of the autophagocytic pathway. Our data extend the protective role of TRIM21 from viruses to bacteria and thereby strengthening the general role of ADIN in cellular immunity. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Aging, adiposity, and calorie restriction.

    Science.gov (United States)

    Fontana, Luigi; Klein, Samuel

    2007-03-07

    Excessive calorie intake and subsequent obesity increases the risk of developing chronic disease and decreases life expectancy. In rodent models, calorie restriction with adequate nutrient intake decreases the risk of developing chronic disease and extends maximum life span. To evaluate the physiological and clinical implications of calorie restriction with adequate nutrient intake. Search of PubMed (1966-December 2006) using terms encompassing various aspects of calorie restriction, dietary restriction, aging, longevity, life span, adiposity, and obesity; hand search of journals that focus on obesity, geriatrics, or aging; and search of reference lists of pertinent research and review articles and books. Reviewed reports (both basic science and clinical) included epidemiologic studies, case-control studies, and randomized controlled trials, with quality of data assessed by taking into account publication in a peer-reviewed journal, number of animals or individuals studied, objectivity of measurements, and techniques used to minimize bias. It is not known whether calorie restriction extends maximum life span or life expectancy in lean humans. However, calorie restriction in adult men and women causes many of the same metabolic adaptations that occur in calorie-restricted rodents and monkeys, including decreased metabolic, hormonal, and inflammatory risk factors for diabetes, cardiovascular disease, and possibly cancer. Excessive calorie restriction causes malnutrition and has adverse clinical effects. Calorie restriction in adult men and women causes beneficial metabolic, hormonal, and functional changes, but the precise amount of calorie intake or body fat mass associated with optimal health and maximum longevity in humans is not known. In addition, it is possible that even moderate calorie restriction may be harmful in specific patient populations, such as lean persons who have minimal amounts of body fat.

  11. Unique Structural Features of Influenza Virus H15 Hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Tzarum, Netanel; McBride, Ryan; Nycholat, Corwin M.; Peng, Wenjie; Paulson, James C.; Wilson, Ian A. (Scripps)

    2017-04-12

    Influenza A H15 viruses are members of a subgroup (H7-H10-H15) of group 2 hemagglutinin (HA) subtypes that include H7N9 and H10N8 viruses that were isolated from humans during 2013. The isolation of avian H15 viruses is, however, quite rare and, until recently, geographically restricted to wild shorebirds and waterfowl in Australia. The HAs of H15 viruses contain an insertion in the 150-loop (loop beginning at position 150) of the receptor-binding site common to this subgroup and a unique insertion in the 260-loop compared to any other subtype. Here, we show that the H15 HA has a high preference for avian receptor analogs by glycan array analyses. The H15 HA crystal structure reveals that it is structurally closest to H7N9 HA, but the head domain of the H15 trimer is wider than all other HAs due to a tilt and opening of the HA1 subunits of the head domain. The extended 150-loop of the H15 HA retains the conserved conformation as in H7 and H10 HAs. Furthermore, the elongated 260-loop increases the exposed HA surface and can contribute to antigenic variation in H15 HAs. Since avian-origin H15 HA viruses have been shown to cause enhanced disease in mammalian models, further characterization and immune surveillance of H15 viruses are warranted.

    IMPORTANCEIn the last 2 decades, an apparent increase has been reported for cases of human infection by emerging avian influenza A virus subtypes, including H7N9 and H10N8 viruses isolated during 2013. H15 is the other member of the subgroup of influenza A virus group 2 hemagglutinins (HAs) that also include H7 and H10. H15 viruses have been restricted to Australia, but recent isolation of H15 viruses in western Siberia suggests that they could be spread more globally via the avian flyways that converge and emanate from this region. Here we report on characterization of the three-dimensional structure and receptor specificity of the H15 hemagglutinin, revealing distinct features and specificities that can

  12. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. An introduction to computer viruses

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.

    1992-03-01

    This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

  14. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus.

    Science.gov (United States)

    Shyamala, Venkatakrishna

    2014-01-01

    In the last few decades through an awareness of transfusion transmitted infections (TTI), a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV), Hepatitis C virus (HCV), and Hepatitis B virus (HBV). However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP) and occult HBV infections (OBI). Effective mode of nucleic acid technology (NAT) testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID) format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases.

  15. Factors in enhancing blood safety by nucleic acid technology testing for human immunodeficiency virus, hepatitis C virus and hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Venkatakrishna Shyamala

    2014-01-01

    Full Text Available In the last few decades through an awareness of transfusion transmitted infections (TTI, a majority of countries have mandated serology based blood screening assays for Human immunodeficiency virus (HIV, Hepatitis C virus (HCV, and Hepatitis B virus (HBV. However, despite improved serology assays, the transfusion transmission of HIV, HCV, and HBV continues, primarily due to release of serology negative units that are infectious because of the window period (WP and occult HBV infections (OBI. Effective mode of nucleic acid technology (NAT testing of the viruses can be used to minimize the risk of TTIs. This review compiles the examples of NAT testing failures for all three viruses; analyzes the causes for failure, and the suggestions from retrospective studies to minimize such failures. The results suggest the safest path to be individual donation testing (ID format for highest sensitivity, and detection of multiple regions for rapidly mutating and recombining viruses. The role of blood screening in the context of the donation and transfusion practices in India, the donor population, and the epidemiology is also discussed. World wide, as the public awareness of TTIs increases, as the recipient rights for safe blood are legally upheld, as the possibility to manage diseases such as hepatitis through expensive and prolonged treatment becomes accessible, and the societal responsibility to shoulder the health costs as in the case for HIV becomes routine, there is much to gain by preventing infections than treating diseases.

  16. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  17. PREVALENCE AND RISK FACTORS ASSOCIATED WITH THE PRRS VIRUS IN SEMEN OF BOARS IN PIG FARMS OF YUCATAN

    Directory of Open Access Journals (Sweden)

    Aremi Jordan-Craviotto

    2009-07-01

    Full Text Available The objectives of the present study were to estimate the prevalence of and to determine the risk factors associated with the porcine reproductive and respiratory syndrome virus (PRRSV, American strain in semen of boars in pig herds of Yucatan, Mexico. Ninety two boars from 26 herds were ejaculated once. Semen samples were processed by the RT-nPCR test using the ORF7 primer to detect the PRRS virus. The true prevalence estimated was 10.1% (95% CI = 4.1-16.1%. Significance of risk factors was determined by Fisher-exact test. The odds of detecting genetic material of the PRRSV was greater (OR = 9.2 in semen of boars used under natural mating than those used in artificial insemination. In herds where boar’s acclimatization was not practiced the odds of a positive boar was 4.3. Another risk factor (P < 0.05 was the origin of the animals. In conclusion, the prevalence of the PRRSV in boar semen was smaller to the notified in the literature and determinate in blood serum. Management practices, such as the use of the artificial insemination and acclimatization of the boar, could be useful in reducing the prevalence of the PRRS virus in the pig farms.

  18. Role of HIV-2 envelope in Lv2-mediated restriction

    International Nuclear Information System (INIS)

    Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.; Dittmar, Matthias T.

    2005-01-01

    We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1 (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-AΔenv-GFP, ROD-AΔenv-RFP, or ROD-AΔenv-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)

  19. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  20. Human immunodeficiency virus testing behaviors among US adults: the roles of individual factors, legislative status, and public health resources.

    Science.gov (United States)

    Du, Ping; Camacho, Fabian; Zurlo, John; Lengerich, Eugene J

    2011-09-01

    The Centers for Disease Control and Prevention recommended an "opt-out" human immunodeficiency virus (HIV) testing strategy in 2006 for all persons aged 13 to 64 years at healthcare settings. We conducted this study to identify individual, health, and policy factors that may be associated with HIV testing in US adults. The 2008 Behavioral Risk Factors Surveillance System data were utilized. Individuals' residency states were classified into 4 categories based on the legislation status to HIV testing laws in 2007 and HIV/acquired immune deficiency syndrome morbidity. A multivariate logistic regression adjusting for survey designs was performed to examine factors associated with HIV testing. A total of 281,826 adults aged 18 to 64 years answered HIV testing questions in 2008. The proportions of US adults who had ever been tested for HIV increased from 35.9% in 2006 to 39.9% in 2008. HIV testing varied across the individual's characteristics including sociodemographics, access to regular health care, and risk for HIV infection. Compared with residents of "high morbidity-opt out" states, those living in "high morbidity-opt in" states with legislative restrictions for HIV testing had a slightly lower odds of being tested for HIV (adjusted odds ratio = 0.96; 95% confidence interval = 0.92, 1.01). Adults living in "low morbidity" states were significantly less likely to be tested for HIV, regardless of legislative status. To implement routine HIV testing in the general population, the role of public health resources should be emphasized and legislative barriers should be further reduced. Strategies need to be developed to reach people who do not have regular access to health care.

  1. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  2. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  3. A Traffic Restriction Scheme for Enhancing Carpooling

    Directory of Open Access Journals (Sweden)

    Dong Ding

    2017-01-01

    Full Text Available For the purpose of alleviating traffic congestion, this paper proposes a scheme to encourage travelers to carpool by traffic restriction. By a variational inequity we describe travelers’ mode (solo driving and carpooling and route choice under user equilibrium principle in the context of fixed demand and detect the performance of a simple network with various restriction links, restriction proportions, and carpooling costs. Then the optimal traffic restriction scheme aiming at minimal total travel cost is designed through a bilevel program and applied to a Sioux Fall network example with genetic algorithm. According to various requirements, optimal restriction regions and proportions for restricted automobiles are captured. From the results it is found that traffic restriction scheme is possible to enhance carpooling and alleviate congestion. However, higher carpooling demand is not always helpful to the whole network. The topology of network, OD demand, and carpooling cost are included in the factors influencing the performance of the traffic system.

  4. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  5. Feline Tetherin Efficiently Restricts Release of Feline Immunodeficiency Virus but Not Spreading of Infection▿

    Science.gov (United States)

    Dietrich, Isabelle; McMonagle, Elizabeth L.; Petit, Sarah J.; Vijayakrishnan, Swetha; Logan, Nicola; Chan, Chi N.; Towers, Greg J.; Hosie, Margaret J.; Willett, Brian J.

    2011-01-01

    Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and “OrfA” proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread. PMID:21490095

  6. Feline tetherin efficiently restricts release of feline immunodeficiency virus but not spreading of infection.

    Science.gov (United States)

    Dietrich, Isabelle; McMonagle, Elizabeth L; Petit, Sarah J; Vijayakrishnan, Swetha; Logan, Nicola; Chan, Chi N; Towers, Greg J; Hosie, Margaret J; Willett, Brian J

    2011-06-01

    Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.

  7. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Science.gov (United States)

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to

  8. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Directory of Open Access Journals (Sweden)

    Samantha J Griffiths

    Full Text Available Herpes simplex virus type 1 (HSV-1 is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi screen with a druggable genome small interfering RNA (siRNA library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome

  9. Comparison of risk factors for seropositivity to feline immunodeficiency virus and feline leukemia virus among cats: a case-case study.

    Science.gov (United States)

    Chhetri, Bimal K; Berke, Olaf; Pearl, David L; Bienzle, Dorothee

    2015-02-10

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are reported to have similar risk factors and similar recommendations apply to manage infected cats. However, some contrasting evidence exists in the literature with regard to commonly reported risk factors. In this study, we investigated whether the known risk factors for FIV and FeLV infections have a stronger effect for either infection. This retrospective study included samples from 696 cats seropositive for FIV and 593 cats seropositive for FeLV from the United States and Canada. Data were collected during two cross sectional studies, where cats were tested using IDEXX FIV/FeLV ELISA kits. To compare the effect of known risk factors for FIV infection compared to FeLV, using a case-case study design, random intercept logistic regression models were fit including cats' age, sex, neuter status, outdoor exposure, health status and type of testing facility as independent variables. A random intercept for testing facility was included to account for clustering expected in testing practices at the individual clinics and shelters. In the multivariable random intercept model, the odds of FIV compared to FeLV positive ELISA results were greater for adults (OR = 2.09, CI: 1.50-2.92), intact males (OR = 3.14, CI: 1.85-3.76), neutered males (OR = 2.68, CI: 1.44- 3.14), cats with outdoor access (OR = 2.58, CI: 1.85-3.76) and lower for cats with clinical illness (OR = 0.60, 95% CI: 0.52-0.90). The variance components obtained from the model indicated clustering at the testing facility level. Risk factors that have a greater effect on FIV seropositivity include adulthood, being male (neutered or not) and having access to outdoors, while clinical illness was a stronger predictor for FeLV seropositivity. Further studies are warranted to assess the implications of these results for the management and control of these infections.

  10. The first phlebo-like virus infecting plants: a case study on the adaptation of negative-stranded RNA viruses to new hosts.

    Science.gov (United States)

    Navarro, Beatriz; Minutolo, Maria; De Stradis, Angelo; Palmisano, Francesco; Alioto, Daniela; Di Serio, Francesco

    2018-05-01

    A novel negative-stranded (ns) RNA virus associated with a severe citrus disease reported more than 80 years ago has been identified. Transmission electron microscopy showed that this novel virus, tentatively named citrus concave gum-associated virus, is flexuous and non-enveloped. Notwithstanding, its two genomic RNAs share structural features with members of the genus Phlebovirus, which are enveloped arthropod-transmitted viruses infecting mammals, and with a group of still unclassified phlebo-like viruses mainly infecting arthropods. CCGaV genomic RNAs code for an RNA-dependent RNA polymerase, a nucleocapsid protein and a putative movement protein showing structural and phylogenetic relationships with phlebo-like viruses, phleboviruses and the unrelated ophioviruses, respectively, thus providing intriguing evidence of a modular genome evolution. Phylogenetic reconstructions identified an invertebrate-restricted virus as the most likely ancestor of this virus, revealing that its adaptation to plants was independent from and possibly predated that of the other nsRNA plant viruses. These data are consistent with an evolutionary scenario in which trans-kingdom adaptation occurred several times during the history of nsRNA viruses and followed different evolutionary pathways, in which genomic RNA segments were gained or lost. The need to create a new genus for this bipartite nsRNA virus and the impact of the rapid and specific detection methods developed here on citrus sanitation and certification are also discussed. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  11. Canine distemper virus - a morbillivirus in search of new hosts?

    NARCIS (Netherlands)

    T.C. Harder (Timm); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractCanine distemper morbillivirus (CDV) induces a multisystemic, often fatal disease in a wide and seemingly expanding host range among the Carnivora. Several genotypes of an otherwise monotypic virus species co-circulate in a geographically restricted pattern. Interspecies transmissions

  12. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving expre...

  13. Placental gene expression of the placental growth factor (PlGF) in intrauterine growth restriction.

    Science.gov (United States)

    Joó, József Gábor; Rigó, János; Börzsönyi, Balázs; Demendi, Csaba; Kornya, László

    2017-06-01

    We analyzed changes in gene expression of placental growth factor (PIGF) in human placental samples obtained postpartum from pregnancies with IUGR. During a twelve-month study period representing the calendar year of 2012 placental samples from 101 pregnancies with IUGR and from 140 normal pregnancies were obtained for analysis of a potential difference in PIGF gene expression. There was no significant difference in gene activity of the PIGF gene between the IUGR versus normal pregnancy groups (Ln2 α : 0.92; p intrauterine growth restriction PIGF expression does show a significant decrease indicating its potential role in the profound defect in angiogenesis in these cases.

  14. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. ...

  15. Epstein-Barr virus: general factors, virus-related diseases and measurement of viral load after transplant

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Fagundes Gequelin

    2011-10-01

    Full Text Available The Epstein-Barr virus is responsible for infectious mononucleosis syndrome and is also closely associated to several types of cancer. The main complication involving Epstein-Barr virus infection, both in recipients of hematopoietic stem cells and solid organs, is post-transplant lymphoproliferative disease. The importance of this disease has increased interest in the development of laboratory tools to improve post-transplant monitoring and to detect the disease before clinical evolution. Viral load analysis for Epstein-Barr virus through real-time polymerase chain reaction is, at present, the best tool to measure viral load. However, there is not a consensus on which sample type is the best for the test and what is its predictive value for therapeutic interventions.

  16. Human papilloma virus: An etiological and prognostic factor for oral cancer?

    Science.gov (United States)

    Lafaurie, Gloria I; Perdomo, Sandra J; Buenahora, María R; Amaya, Sandra; Díaz-Báez, David

    2018-05-01

    The increasing prevalence of human papilloma virus (HPV)-positive oral tumors can be considered an epidemic. Although the incidence of HPV cervical cancer is decreasing, the incidence of oral cavity and oropharyngeal cancers associated with HPV is increasing. The presence of certain HPV genotypes could be a predictor of future oral cancer lesions, although lesions associated with HPV could be less aggressive and exhibit a higher survival rate. In the present study, we review the most important biologic, clinic, epidemiologic, and prognostic factors associated with HPV infection and oral cancer. © 2018 John Wiley & Sons Australia, Ltd.

  17. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We...

  18. Risk Factors Associated with Ebola and Marburg Viruses Seroprevalence in Blood Donors in the Republic of Congo.

    Directory of Open Access Journals (Sweden)

    Nanikaly Moyen

    Full Text Available Ebola and Marburg viruses (family Filoviridae, genera Ebolavirus and Marburgvirus cause haemorrhagic fevers in humans, often associated with high mortality rates. The presence of antibodies to Ebola virus (EBOV and Marburg virus (MARV has been reported in some African countries in individuals without a history of haemorrhagic fever. In this study, we present a MARV and EBOV seroprevalence study conducted amongst blood donors in the Republic of Congo and the analysis of risk factors for contact with EBOV.In 2011, we conducted a MARV and EBOV seroprevalence study amongst 809 blood donors recruited in rural (75; 9.3% and urban (734; 90.7% areas of the Republic of Congo. Serum titres of IgG antibodies to MARV and EBOV were assessed by indirect double-immunofluorescence microscopy. MARV seroprevalence was 0.5% (4 in 809 without any identified risk factors. Prevalence of IgG to EBOV was 2.5%, peaking at 4% in rural areas and in Pointe Noire. Independent risk factors identified by multivariate analysis were contact with bats and exposure to birds.This MARV and EBOV serological survey performed in the Republic of Congo identifies a probable role for environmental determinants of exposure to EBOV. It highlights the requirement for extending our understanding of the ecological and epidemiological risk of bats (previously identified as a potential ecological reservoir and birds as vectors of EBOV to humans, and characterising the protection potentially afforded by EBOV-specific antibodies as detected in blood donors.

  19. Neurodevelopment in preterm infants with and without placenta-related intrauterine growth restriction and its relation to perinatal and postnatal factors.

    Science.gov (United States)

    Candel-Pau, Júlia; Perapoch López, Josep; Castillo Salinas, Félix; Sánchez Garcia, Olga; Pérez Hoyos, Santiago; Llurba Olivé, Elisa

    2016-01-01

    Intrauterine-growth restriction is associated with impaired neurodevelopment. However, studies on early childhood neurodevelopment of premature infants with placenta-related intrauterine-growth restriction (IUGR) are scarce and heterogeneous. We aimed to analyze the impact of placenta-related IUGR on preschool age neurodevelopment in preterm infants, and to ascertain which prenatal and postnatal factors influence neurodevelopment in these infants. Prospective cohorts study: 48 placenta-related IUGR premature infants and 25 matched non-IUGR premature infants (mean gestational age: 31.4 and 31.6 weeks, respectively). Preschool neurodevelopment assessment with cognitive Bayley Scales III and with ASQ-III surveys (age interval: 34.07-42.50 months). Inter-cohort result comparison. Analysis of perinatal and environmental factors associated with impaired neurodevelopment in both cohorts. No statistically significant neurodevelopment differences were observed at preschool age between both preterm cohorts. Multivariate analysis of perinatal and environmental factors showed daycare, breastfeeding, higher parental educational level, and absence of severe neonatal morbidity to be associated with a lower risk of altered neurodevelopment at preschool age. Placenta-related IUGR does not have a significant impact on preschool neurodevelopment in our preterm patients. Instead, post-natal positive environmental factors such as parental educational level, breastfeeding, and daycare attendance make a difference towards an improvement in neurodevelopment in these infants.

  20. Clonorchis sinensis infection and co-infection with the hepatitis B virus are important factors associated with cholangiocarcinoma and hepatocellular carcinoma.

    Science.gov (United States)

    Shi, Yunliang; Jiang, Zhihua; Yang, Yichao; Zheng, Peiqiu; Wei, Haiyan; Lin, Yuan; Lv, Guoli; Yang, Qingli

    2017-10-01

    To evaluate the contributions of Clonorchis sinensis and hepatitis B virus to the development of cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC), C. sinensis and hepatitis B virus infections in 20 clinical liver cancer cases from a C. sinensis- and hepatitis B virus-epidemic region were detected. Eight cases of ICC, 11 cases of HCC and one mixed ICC and HCC case were verified by CT, pathological section and (or) observations during surgery. The C. sinensis infection was detected by stool microscopy and ELISA, and the worms and eggs found during surgery and in pathological sections also allowed for diagnoses. Hepatitis B virus infections were detected by ELISA. In the 20 cases, 18 patients were diagnosed with C. sinensis infections. Eight of the 20 patients were infected with the hepatitis B virus, and seven were co-infected with C. sinensis. In the eight ICC patients, seven were diagnosed with C. sinensis infection, and two had mixed infections with the hepatitis B virus. In the 11 HCC patients, 10 were diagnosed with C. sinensis, four had mixed infections with the hepatitis B virus, and only one HCC patient presented a single infection by the hepatitis B virus. These clinical observations revealed that C. sinensis infection and C. sinensis co-infection with the hepatitis B virus are important factors in ICC and HCC.

  1. The family context of low-income parents who restrict child screen time.

    Science.gov (United States)

    Lampard, Amy M; Jurkowski, Janine M; Davison, Kirsten K

    2013-10-01

    The American Academy of Pediatrics recommends that parents restrict child screen time to two hours per day, but many preschool-aged children exceed this viewing recommendation. Modifying children's viewing habits will require collaborating with parents, but little is known about the factors that influence parents' capacity for effective screen-related parenting. This study aimed to identify the demographic, family and community contextual factors associated with low-income parents' restriction of child screen time. Parents (N=146) of children (age 2-5 years) attending Head Start centers in the United States completed a self-report survey in 2010 assessing parent and child screen use (television, DVD, video, video games, and leisure-time computer use), parent restriction of child screen time, and family (parent stress, social support, and life pressures) and community (neighborhood safety and social capital) factors. Children were more likely to meet the American Academy of Pediatrics screen time recommendation if their parent reported high restriction of child screen time. Parent and child demographic characteristics were not associated with parents' restriction of child screen time. In multivariate analysis, less parent screen time, fewer parent life pressures, and greater social support were associated with parents' high restriction of screen time. Family contextual factors may play an important role in enabling low-income parents to restrict their children's screen time. When counseling low-income parents about the importance of restricting child screen time, practitioners should be sensitive to family contextual factors that may influence parents' capacity to implement this behavior change.

  2. Risk factors of hepatitis B virus infection among blood donors in Duhok city, Kurdistan Region, Iraq.

    Science.gov (United States)

    R Hussein, Nawfal

    2018-01-01

    Hepatitis B virus (HBV) infection is a public health problem. The lack of information about the seroprevalence and risk factors is an obstacle for preventive public health plans to reduce the burden of viral hepatitis. Therefore, this study was conducted in Iraq, where no studies had been performed to determine the prevalence and risk factors of HBV infection. Blood samples were collected form 438 blood donors attending blood bank in Duhok city. Serum samples were tested for HBV core-antibodies (HBcAb) and HBV surface-antigen (HBsAg) by ELISA. Various risk factors were recorded and multivariate analysis was performed. 5/438 (1.14%) of the subjects were HBsAg positive (HBsAg and HBcAb positive) and 36/438 (8.2%) were HBcAb positive. Hence, 41 cases were exposed to HBV and data analysis was based on that. Univariate analysis showed that there were significant associations between history of illegitimate sexual contact, history of alcohol or history of dental surgeries and HBV exposure (p<0.05 for all). Then, multivariate analysis was conducted to find HBV exposure predictive factors. It was found that history of dental surgery was a predictive factor for exposure to the virus (P=0.03, OR: 2.397). This study suggested that the history of dental surgery was predictive for HBV transmission in Duhok city. Further population-based study is needed to determine HBV risk factors in the society and public health plan based on that should be considered.

  3. Variants of early-onset restrictive eating disturbances in middle childhood.

    Science.gov (United States)

    Kurz, Susanne; van Dyck, Zoé; Dremmel, Daniela; Munsch, Simone; Hilbert, Anja

    2016-01-01

    This study sought to determine the factor structure of the newly developed self-report screening questionnaire Eating Disturbances in Youth-Questionnaire (EDY-Q) as well as to report the distribution of variants of early-onset restrictive eating disturbances characteristic of avoidant/restrictive food intake disorder (ARFID) in a middle childhood population sample. Using the EDY-Q, a total of 1,444 children aged 8-13 years were screened in elementary schools in Switzerland via self-report. The factor analysis of the 12 items covering ARFID related symptoms was performed using a principal component analysis (PCA). The PCA showed a four factor solution, with clear allocation to the scales covering three variants of early-onset restrictive eating disturbances and weight problems. Inadequate overall food intake was reported by 19.3% of the children, a limited accepted amount of food by 26.1%, and food avoidance based on a specific underlying fear by 5.0%. The postulated factor structure of the EDY-Q was confirmed, further supporting the existence of distinct variants of early-onset restrictive eating disturbances. Avoidant/restrictive eating behavior seems to be a common experience in middle childhood, but results have to be confirmed using validated interviews. © 2015 Wiley Periodicals, Inc.

  4. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    Science.gov (United States)

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study

  5. Decoding restricted participation in sequential electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Knaut, Andreas; Paschmann, Martin

    2017-06-15

    Restricted participation in sequential markets may cause high price volatility and welfare losses. In this paper we therefore analyze the drivers of restricted participation in the German intraday auction which is a short-term electricity market with quarter-hourly products. Applying a fundamental electricity market model with 15-minute temporal resolution, we identify the lack of sub-hourly market coupling being the most relevant driver of restricted participation. We derive a proxy for price volatility and find that full market coupling may trigger quarter-hourly price volatility to decrease by a factor close to four.

  6. Environmental and biological factors influencing Culex pipiens quinquefasciatus (Diptera: Culicidae) vector competence for West Nile Virus.

    Science.gov (United States)

    Richards, Stephanie L; Lord, Cynthia C; Pesko, Kendra N; Tabachnick, Walter J

    2010-07-01

    Interactions between environmental and biological factors affect the vector competence of Culex pipiens quinquefasciatus for West Nile virus. Three age cohorts from two Cx. p. quinquefasciatus colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of Cx. p. quinquefasciatus vector competence for St. Louis encephalitis virus are discussed.

  7. Induction of human interferon gene expression is associated with a nuclear factor that interacts with the site of the human immunodeficiency virus-enhancer

    International Nuclear Information System (INIS)

    Hiscott, J.; Alper, D.; Cohen, L.; Leblanc, J.F.; Sportza, L.; Wong, A.; Xanthoudakis, S.

    1989-01-01

    The relationship between transcription of alpha and beta interferon (IFN-α and IFN-β) genes and the interaction of IFN promoter-binding transcription factors has been examined in monoblastoid U937 cells following priming with recombinant IFN-α2 (rIFN-α2) and Sendai virus induction. Pretreatment of U937 cells with rIFN-α2 prior to Sendai virus infection increased the mRNA levels of IFN-α1, IFN-α2, and IFN-β as well as the final yield of biologically active IFN. Analysis of nuclear protein-IFN promoter DNA interactions by electrophoretic mobility-shift assays demonstrated increased factor binding to IFN-α1 and IFN-β regulatory domains, although no new induction-specific complexes were identified. On the basis of competition electrophoretic mobility-shift assay results, factors interacting with the IFN-α1 and IFN-β promoters appear to be distinct DNA-binding proteins. Hybrid promoter-chloramphenicol acetyltransferase fusion plasmids, containing either the IFN-β regulatory element or the human immunodeficiency virus enhancer element linked to the simian virus 40 promoter, were analyzed for virus and phorbol ester inducibility in epithelial and lymphoid cells, respectively. These experiments suggest that induction of IFN gene expression may be controlled in part by transcription regulatory proteins binding to an NF-κB-like site within the IFN-β promoter

  8. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    Science.gov (United States)

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and

  9. Incidence and Risk Factors for Respiratory Syncytial Virus and Human Metapneumovirus Infections among Children in the Remote Highlands of Peru

    Science.gov (United States)

    Wu, Andrew; Budge, Philip J.; Williams, John; Griffin, Marie R.; Edwards, Kathryn M.; Johnson, Monika; Zhu, Yuwei; Hartinger, Stella; Verastegui, Hector; Gil, Ana I.; Lanata, Claudio F.; Grijalva, Carlos G.

    2015-01-01

    Introduction The disease burden and risk factors for respiratory syncytial virus (RSV) and human metapneumovirus (MPV) infections among children living in remote, rural areas remain unclear. Materials and Methods We conducted a prospective, household-based cohort study of children aged factors for RSV detection included younger age (RR 1.02, 95% CI: 1.00-1.03), the presence of a smoker in the house (RR 1.63, 95% CI: 1.12-2.38), residing at higher altitudes (RR 1.93, 95% CI: 1.25-3.00 for 2nd compared to 1st quartile residents; RR 1.98, 95% CI: 1.26-3.13 for 3rd compared to 1st quartile residents). Having an unemployed household head was significantly associated with MPV risk (RR 2.11, 95% CI: 1.12-4.01). Conclusion In rural high altitude communities in Peru, childhood ARI due to RSV or MPV were common and associated with higher morbidity than ARI due to other viruses or with no viral detections. The risk factors identified in this study may be considered for interventional studies to control infections by these viruses among young children from developing countries. PMID:26107630

  10. Effectiveness of travel restrictions in the rapid containment of human influenza: a systematic review

    Science.gov (United States)

    Mateus, Ana LP; Otete, Harmony E; Beck, Charles R; Dolan, Gayle P; Nguyen-Van-Tam, Jonathan S

    2014-01-01

    Abstract Objective To assess the effectiveness of internal and international travel restrictions in the rapid containment of influenza. Methods We conducted a systematic review according to the requirements of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Health-care databases and grey literature were searched and screened for records published before May 2014. Data extraction and assessments of risk of bias were undertaken by two researchers independently. Results were synthesized in a narrative form. Findings The overall risk of bias in the 23 included studies was low to moderate. Internal travel restrictions and international border restrictions delayed the spread of influenza epidemics by one week and two months, respectively. International travel restrictions delayed the spread and peak of epidemics by periods varying between a few days and four months. Travel restrictions reduced the incidence of new cases by less than 3%. Impact was reduced when restrictions were implemented more than six weeks after the notification of epidemics or when the level of transmissibility was high. Travel restrictions would have minimal impact in urban centres with dense populations and travel networks. We found no evidence that travel restrictions would contain influenza within a defined geographical area. Conclusion Extensive travel restrictions may delay the dissemination of influenza but cannot prevent it. The evidence does not support travel restrictions as an isolated intervention for the rapid containment of influenza. Travel restrictions would make an extremely limited contribution to any policy for rapid containment of influenza at source during the first emergence of a pandemic virus. PMID:25552771

  11. Radiation enhanced reactivation of nuclear replicating mammalian viruses

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.

    1977-01-01

    When CV-1 monkey kidney cells were UV-irradiated (0 to 18 J/m 2 ) or X-irradiated (0 to 10 krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3 to 5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus. (author)

  12. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Nansen, A; Jensen, Teis; Christensen, Jan Pravsgaard

    1999-01-01

    To define the role of IFN-gamma in the control of acute infection with a noncytopathogenic virus, mice with targeted defects of the genes encoding IFN-gamma, perforin, or both were infected i.v. with two strains of lymphocytic choriomeningitis virus differing markedly in their capacity to spread...... in wild-type mice. Our results reveal that IFN-gamma is pivotal to T cell-mediated control of a rapidly invasive stain, whereas it is less important in the acute elimination of a slowly invasive strain. Moreover, the majority of mice infected with the rapidly invasive strain succumb to a wasting syndrome...... mediated by CD8+ effector cells. The primary effector mechanism underlying this disease is perforin-dependent lysis, but other mechanisms are also involved. Wasting disease can be prevented if naive CD8+ cells from mice transgenic for an MHC class I-restricted lymphocytic choriomeningitis virus...

  13. Factors Influencing Virulence and Plaque Properties of Attenuated Venezuelan Equine Encephalomyelitis Virus Populations

    Science.gov (United States)

    Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.

    1969-01-01

    A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235

  14. Structural and antigenic variation among diverse clade 2 H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    David A Shore

    Full Text Available Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1, A/Hubei/1/2010 (Hubei10, clade 2.3.2.1 and A/Anhui/1/2005 (Anhui05, clade 2.3.4]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.

  15. Maternal nutrient restriction during pregnancy impairs an endothelium-derived hyperpolarizing factor-like pathway in sheep fetal coronary arteries.

    Science.gov (United States)

    Shukla, Praveen; Ghatta, Srinivas; Dubey, Nidhi; Lemley, Caleb O; Johnson, Mary Lynn; Modgil, Amit; Vonnahme, Kimberly; Caton, Joel S; Reynolds, Lawrence P; Sun, Chengwen; O'Rourke, Stephen T

    2014-07-15

    The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway. Copyright © 2014 the American Physiological Society.

  16. Tetherin restricts productive HIV-1 cell-to-cell transmission.

    Directory of Open Access Journals (Sweden)

    Nicoletta Casartelli

    2010-06-01

    Full Text Available The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24 impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or DeltaVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of DeltaVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.

  17. Partial characterisation of citrus leaf blotch virus, a new virus from Nagami kumquat.

    Science.gov (United States)

    Galipienso, L; Vives, M C; Moreno, P; Milne, R G; Navarro, L; Guerri, J

    2001-01-01

    Citrus leaf blotch virus (CLBV) was purified from leaves of Nagami kumquat SRA-153 that showed bud union crease when propagated on Troyer citrange. Virions were filamentous particles (960 x 14 nm) containing a 42 kDa protein and a single-stranded RNA (ssRNA) of about 9,000 nt (Mr 3 x 10(6)). Infected tissue contained three species of double-stranded RNA (dsRNA) of Mr 6, 4.5 and 3.4 x 10(6). The nucleotide sequence of several complementary DNA (cDNA) clones showed significant similarities with replication-related proteins from plant filamentous viruses in several genera. A digoxigenin-labelled probe from one of these cDNA clones hybridised in Northern blots with ssRNA from virions and with the three dsRNA species, suggesting that the ssRNA is the genomic RNA of the virus, the largest dsRNA is its replicative form, and the two smaller dsRNAs probably replicative forms of 5' co-terminal subgenomic RNAs. CLBV was also detected in several citrus cultivars from Spain and Japan including Navelina sweet orange field trees propagated on Troyer citrange showing bud union crease; however, no virus could be detected in other citrus trees with similar symptoms. This indicates that CLBV is not restricted to kumquat SRA-153, but its involvement in causing the bud union disorder remains unclear.

  18. Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability.

    Directory of Open Access Journals (Sweden)

    Yonghong Xu

    Full Text Available This paper describes a new computer virus spreading model which takes into account the possibility of a virus outbreak on a network with limited anti-virus ability. Then, the model is investigated for the existence of equilibria and their stabilities are proved and illustrated. Moreover, it is found that these two factors are not only relative to the threshold value determining whether the virus becomes extinct or not, but that they are also relative to the virus epidemic levels. Theoretical and experimental results indicate that, in some ways, it would be practically possible to eradicate the virus or suppress its prevalence below a suitable level. Consequently, some suggestions are proposed that may help eradicate or suppress virus propagation over a real computer network.

  19. Factors associated with post-seasonal serological titer and risk factors for infection with the pandemic A/H1N1 virus in the French general population.

    Directory of Open Access Journals (Sweden)

    Nathanael Lapidus

    Full Text Available The CoPanFlu-France cohort of households was set up in 2009 to study the risk factors for infection by the pandemic influenza virus (H1N1pdm in the French general population. The authors developed an integrative data-driven approach to identify individual, collective and environmental factors associated with the post-seasonal serological H1N1pdm geometric mean titer, and derived a nested case-control analysis to identify risk factors for infection during the first season. This analysis included 1377 subjects (601 households. The GMT for the general population was 47.1 (95% confidence interval (CI: 45.1, 49.2. According to a multivariable analysis, pandemic vaccination, seasonal vaccination in 2009, recent history of influenza-like illness, asthma, chronic obstructive pulmonary disease, social contacts at school and use of public transports by the local population were associated with a higher GMT, whereas history of smoking was associated with a lower GMT. Additionally, young age at inclusion and risk perception of exposure to the virus at work were identified as possible risk factors, whereas presence of an air humidifier in the living room was a possible protective factor. These findings will be interpreted in light of the longitudinal analyses of this ongoing cohort.

  20. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Sqd to produce spatially-restricted Egfr activation...

  1. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Squid to produce spatially-restricted EGFR activation...

  2. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  3. Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada.

    Science.gov (United States)

    Little, Susan; Sears, William; Lachtara, Jessica; Bienzle, Dorothee

    2009-06-01

    The purposes of this study were to determine the seroprevalence of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) infection among cats in Canada and to identify risk factors for seropositivity. Signalment, lifestyle factors, and test results for FeLV antigen and FIV antibody were analyzed for 11 144 cats from the 10 Canadian provinces. Seroprevalence for FIV antibody was 4.3% and seroprevalence for FeLV antigen was 3.4%. Fifty-eight cats (0.5%) were seropositive for both viruses. Seroprevalence varied geographically. Factors such as age, gender, health status, and lifestyle were significantly associated with risk of FeLV and FIV seropositivity. The results suggest that cats in Canada are at risk of retrovirus infection and support current recommendations that the retrovirus status of all cats should be known.

  4. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  5. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    Science.gov (United States)

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  6. A Common Profile of Disordered Angiogenic Factor Production and the Exacerbation of Inflammation in Early Preeclampsia, Late Preeclampsia, and Intrauterine Growth Restriction.

    Science.gov (United States)

    Kwiatkowski, Sebastian; Dołęgowska, Barbara; Kwiatkowska, Ewa; Rzepka, Rafał; Torbè, Andrzej; Bednarek-Jędrzejek, Magdalena

    2016-01-01

    Preeclampsia and intrauterine growth restriction are two separate disease entities that, according to numerous reports, share the same pathogenesis. In both, angiogenesis disorders and generalized inflammation are the dominant symptoms. In this study, we hypothesized that both diseases demonstrate the same profile in early preeclampsia, late preeclampsia, and intrauterine growth restriction patients, with the only difference being the degree of exacerbation of lesions. One hundred sixty-seven patients were enrolled in the study and divided into four groups: early preeclampsia, late preeclampsia, and intrauterine growth restriction groups, and one control group. Concentrations of the angiogenesis and inflammatory markers soluble fms-like tyrosine kinase receptor 1, placental growth factor, high-sensitivity C-reactive protein, and interleukin-6 were determined, and the behavior of these markers and correlations among them were studied. Higher concentrations of soluble fms-like tyrosine kinase receptor 1, high-sensitivity C-reactive protein, and interleukin-6 and a lower concentration of placental growth factor were observed in the study groups compared with the control group. No differences in concentrations of the studied markers were found among the study groups but significant correlations were observed. The higher values for the angiogenesis and inflammatory markers both in preeclampsia patients and patients with intrauterine growth restriction of placental origin compared with the control group suggest the existence of the same underlying disorders in the development of these pathologies. The observed mutual correlations for disordered angiogenesis and inflammatory markers are suggestive of a mutual relationship between these processes in the development of pathologies evolving secondary to placental ischemia. The same lesion profile was observed for both preeclampsia and 'placental' intrauterine growth restriction patients, which could be used in developing

  7. Sequential analysis of the virus-immune responder characteristics of thymocytes from F1→parent radiation chimeras

    International Nuclear Information System (INIS)

    Korngold, R.; Doherty, P.C.

    1982-01-01

    The virus-immune responder characteristics of thymocytes, spleen and lymph node (LN) cells from (P 1 x P 2 )F 1 →P 1 radiation chimeras have been examined sequentially at weekly intervals. Adoptively-transferred thymocytes generate strong cytotoxic thymus-derived lymphocyte (CTL) responses from 28 to 100 days after reconstitution with bone marrow, which are almost invariably restricted to recognition of virus presented in the context of P 1 . This pattern of H-2 restriction is also maintained for spleen and LN cells from the [(H-2sup(kxd)F 1 →H-2sup(k)] and [(H-2sup(kxb)F 1 →H-2sup(k)] combinations but there is random emergence of reactivity to H-2sup(k)+virus for peripheral lymphoid cells from [(H-2sup(kxb)F 1 →H-2sup(b)] chimeras. Treatment of established [(P 1 xP 2 )]F 1 →P 1 ] chimeras with a low dose of cyclophosphamide (Cy) did not lead to the emergence of significant CTL effector function for P2 + virus. Also, administration of a large dose of Cy prior to irradiation of the chimera recipients did not modify the H-2 restriction profile of the chimera, though the level of CTL responsiveness associated with the appropriate H-2 type was apparently enhanced. (Auth.)

  8. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor

    Science.gov (United States)

    Hai-Ying, Chi; Nagano, Kiori; Ezzikouri, Sayeh; Yamaguchi, Chiho; Kayesh, Mohammad Enamul Hoque; Rebbani, Khadija; Kitab, Bouchra; Nakano, Hirohumi; Kouji, Hiroyuki; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2016-01-01

    Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women. PMID:27041457

  9. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection.

    Directory of Open Access Journals (Sweden)

    Victor Emmanuel Viana Geddes

    2018-05-01

    Full Text Available Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950's, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection. Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2, a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes and TRAF3 (TNF-Receptor Associated Factor 3, were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold and virus titer (3 fold. Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of

  10. Molecular characterization and prevalence of two capulaviruses: Alfalfa leaf curl virus from France and Euphorbia caput-medusae latent virus from South Africa.

    Science.gov (United States)

    Bernardo, Pauline; Muhire, Brejnev; François, Sarah; Deshoux, Maëlle; Hartnady, Penelope; Farkas, Kata; Kraberger, Simona; Filloux, Denis; Fernandez, Emmanuel; Galzi, Serge; Ferdinand, Romain; Granier, Martine; Marais, Armelle; Monge Blasco, Pablo; Candresse, Thierry; Escriu, Fernando; Varsani, Arvind; Harkins, Gordon W; Martin, Darren P; Roumagnac, Philippe

    2016-06-01

    Little is known about the prevalence, diversity, evolutionary processes, genomic structures and population dynamics of viruses in the divergent geminivirus lineage known as the capulaviruses. We determined and analyzed full genome sequences of 13 Euphorbia caput-medusae latent virus (EcmLV) and 26 Alfalfa leaf curl virus (ALCV) isolates, and partial genome sequences of 23 EcmLV and 37 ALCV isolates. While EcmLV was asymptomatic in uncultivated southern African Euphorbia caput-medusae, severe alfalfa disease symptoms were associated with ALCV in southern France. The prevalence of both viruses exceeded 10% in their respective hosts. Besides using patterns of detectable negative selection to identify ORFs that are probably functionally expressed, we show that ALCV and EcmLV both display evidence of inter-species recombination and biologically functional genomic secondary structures. Finally, we show that whereas the EcmLV populations likely experience restricted geographical dispersion, ALCV is probably freely moving across the French Mediterranean region. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transmission of Influenza A Viruses

    Science.gov (United States)

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  12. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  13. Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH.

    Science.gov (United States)

    Kainulainen, Markus; Habjan, Matthias; Hubel, Philipp; Busch, Laura; Lau, Simone; Colinge, Jacques; Superti-Furga, Giulio; Pichlmair, Andreas; Weber, Friedemann

    2014-03-01

    The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.

  14. Distinct Contributions of Autophagy Receptors in Measles Virus Replication.

    Science.gov (United States)

    Petkova, Denitsa S; Verlhac, Pauline; Rozières, Aurore; Baguet, Joël; Claviere, Mathieu; Kretz-Remy, Carole; Mahieux, Renaud; Viret, Christophe; Faure, Mathias

    2017-05-22

    Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO₂ and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.

  15. Hantaan Virus Nucleocapsid Protein Binds to Importin alpha Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced Activation of Nuclear Factor Kappa B

    Science.gov (United States)

    2008-11-19

    Microbiology . All Rights Reserved. Hantaan Virus Nucleocapsid Protein Binds to Importin Proteins and Inhibits Tumor Necrosis Factor Alpha-Induced...Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702,1 and Department of Microbiology , Mount Sinai...34–36. 32. Prescott , J., C. Ye, G. Sen, and B. Hjelle. 2005. Induction of innate immune response genes by Sin Nombre hantavirus does not require

  16. Prevalence of Blood-Borne Viruses in Health Care Workers of a Northern District in Pakistan: Risk Factors and Preventive Behaviors

    Directory of Open Access Journals (Sweden)

    Muhammad Zuhaib Khan

    2016-01-01

    Full Text Available Background. Blood-borne viral infections like viral hepatitis are highly prevalent in Pakistan. There is also a potential threat of human immunodeficiency virus (HIV spread in the country. Health care workers (HCWs are a high risk population for acquiring such viral infections and potential spread to the patients. This study aimed to determine the frequency of three blood-borne viruses: HCV, HBV, and HIV in HCWs of district Malakand in northern Khyber Pakhtunkhwa (KPK province of Pakistan. Moreover, risk factors and preventive behaviors among HCWs were investigated in detail. Materials and Methods. Prevalence was investigated using serological assays followed by real time polymerase chain reaction (RT-PCR based characterization. A total of 626 health care workers working at 17 different health care units, belonging to 6 different job categories, were included in this study. Results. HIV was not detected in the HCWs while rate of prevalence of HCV and HBV was far less (0.8 % and 0.64 %, resp. as compared to general population (4.7%–38%. The majority of HCWs were aware of the mode of spread of these viruses and associated risk factors. Needle stick injury was found to be the most important risk factor for possible acquisition of these infections.

  17. Immunogenicity of HLA Class I and II Double Restricted Influenza A-Derived Peptides

    DEFF Research Database (Denmark)

    Pedersen, Sara Ram; Christensen, Jan Pravsgaard; Buus, Søren

    2016-01-01

    The aim of the present study was to identify influenza A-derived peptides which bind to both HLA class I and -II molecules and by immunization lead to both HLA class I and class II restricted immune responses. Eight influenza A-derived 9-11mer peptides with simultaneous binding to both HLA-A*02...... four of the double binding peptides did result in HLA-A*02:01 restricted responses only. According to their cytokine profile, the CD4 T cell responses were of the Th2 type. In influenza infected mice, we were unable to detect natural processing in vivo of the double restricted peptides and in line...... with this, peptide vaccination did not decrease virus titres in the lungs of intranasally influenza challenged mice. Our data show that HLA class I and class II double binding peptides can be identified by bioinformatics and biochemical technology. By immunization, double binding peptides can give rise...

  18. Prevalencia del virus papiloma humano y sus factores de riesgo en hombres: revisión sistemática Prevalence of human papillomavirus virus and risk factors in men: a systematic review

    Directory of Open Access Journals (Sweden)

    Jaiberth Cardona-Arias

    2011-12-01

    Full Text Available Introducción. El virus del papiloma humano (Human Papilloma Virus, HPV es el causante de diversos cánceres del sistema genitourinario; se ha detectado en 97,4 % de los casos de cáncer de cuello uterino. No obstante su alta prevalencia, ha sido poco estudiado en hombres y las investigaciones realizadas presentan resultados divergentes. Objetivo. Describir el comportamiento de la infección por HPV en hombres y sus factores de riesgo, a partir de la combinación de diversos estudios. Materiales y métodos. Se trata de una revisión sistemática de la literatura científica con base en estudios publicados en español, inglés y portugués, en 10 bases de datos multidisciplinarias. Se incluyeron investigaciones realizadas en diferentes poblaciones, a partir de la implementación de un protocolo de búsqueda que incluyó criterios de inclusión y exclusión, aplicados por tres investigadores de forma independiente. Resultados. Se incluyeron 17 artículos, los cuales correspondían a una población de 8.788 hombres universitarios o militares, con VIH u otra infección de transmisión sexual, y compañeros de mujeres con cáncer de cuello uterino o que estaban infectadas con HPV. La prevalencia global de la infección fue de 38 %, con un rango entre 9 y 84 %. Los principales factores de riesgo de la infección incluyeron aspectos sociodemográficos, clínicos y de comportamiento. Conclusión. La disminución de la prevalencia de infección por HPV depende de la implementación de estrategias de intervención que incluyan hombres y cuyo eje sean los factores de riesgo y no los grupos de riesgo.Introduction: Human Papilloma Virus (HPV is responsible for various cancers of the genitourinary tract, it has been detected in 97.4% of cases of cervical cancer, despite its high prevalence, it has not been studied in men and investigations inform divergent results. Objective: To describe the prevalence of HPV infection in men and their risk factors, from the

  19. Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas

    Science.gov (United States)

    Bóta, András; Gangavarapu, Karthik; Kraemer, Moritz U. G.; Grubaugh, Nathan D.

    2018-01-01

    Background An unprecedented Zika virus epidemic occurred in the Americas during 2015-2016. The size of the epidemic in conjunction with newly recognized health risks associated with the virus attracted significant attention across the research community. Our study complements several recent studies which have mapped epidemiological elements of Zika, by introducing a newly proposed methodology to simultaneously estimate the contribution of various risk factors for geographic spread resulting in local transmission and to compute the risk of spread (or re-introductions) between each pair of regions. The focus of our analysis is on the Americas, where the set of regions includes all countries, overseas territories, and the states of the US. Methodology/Principal findings We present a novel application of the Generalized Inverse Infection Model (GIIM). The GIIM model uses real observations from the outbreak and seeks to estimate the risk factors driving transmission. The observations are derived from the dates of reported local transmission of Zika virus in each region, the network structure is defined by the passenger air travel movements between all pairs of regions, and the risk factors considered include regional socioeconomic factors, vector habitat suitability, travel volumes, and epidemiological data. The GIIM relies on a multi-agent based optimization method to estimate the parameters, and utilizes a data driven stochastic-dynamic epidemic model for evaluation. As expected, we found that mosquito abundance, incidence rate at the origin region, and human population density are risk factors for Zika virus transmission and spread. Surprisingly, air passenger volume was less impactful, and the most significant factor was (a negative relationship with) the regional gross domestic product (GDP) per capita. Conclusions/Significance Our model generates country level exportation and importation risk profiles over the course of the epidemic and provides quantitative

  20. Prognostic factors for patients with hepatitis B virus-related acute-on-chronic liver failure

    Directory of Open Access Journals (Sweden)

    LI Ying

    2017-03-01

    Full Text Available ObjectiveTo investigate the prognostic factors for patients with hepatitis B virus-related acute-on-chronic liver failure, and to provide a basis for clinical diagnosis and treatment. MethodsA total of 172 patients with hepatitis B virus (HBV-related acute-on-chronic liver failure who were admitted to The First Hospital of Jilin University from January 1, 2006 to January 1, 2016 and had complete medical records and follow-up data were enrolled, and a retrospective analysis was performed for their clinical data and laboratory markers to determine prognostic factors. The independent-samples t test was used for comparison of continuous data between groups, the chi-square test was used for comparison of categorical data between groups, and a multivariate logistic regression analysis was performed for the indices determined to be statistically significant by the univariate analysis to screen out independent risk factors for the prognosis of patients with HBV-related acute-on-chronic liver failure. ResultsThe multivariate logistic regression analysis was performed for the indices determined to be statistically significant by the univariate analysis, and the results showed that the prognostic factors were total bilirubin (TBil, prothrombin time activity (PTA, Na+, total cholesterol (TC, Child-Turcotte-Pugh (CTP score, age ≥50 years, the presence of liver cirrhosis, bilirubin-enzyme separation, and complications. The multivariate regression analysis was performed for the complications determined to affect prognosis by the univariate analysis, and the results showed that the complications as risk factors were hepatic encephalopathy, hepatorenal syndrome, and infection. ConclusionTBil, PTA, Na+, TC, CTP score, age ≥50 years, the presence of liver cirrhosis, bilirubin-enzyme separation, and complications are independent risk factors for the prognosis of patients with HBV-related acute-on-chronic liver failure. Liver failure patients with hepatic

  1. Factors Underlying Ebola Virus Infection Among Health Workers, Kenema, Sierra Leone, 2014-2015.

    Science.gov (United States)

    Senga, Mikiko; Pringle, Kimberly; Ramsay, Andrew; Brett-Major, David M; Fowler, Robert A; French, Issa; Vandi, Mohamed; Sellu, Josephine; Pratt, Christian; Saidu, Josephine; Shindo, Nahoko; Bausch, Daniel G

    2016-08-15

    Ebola virus disease (EVD) in health workers (HWs) has been a major challenge during the 2014-2015 outbreak. We examined factors associated with Ebola virus exposure and mortality in HWs in Kenema District, Sierra Leone. We analyzed data from the Sierra Leone National Viral Hemorrhagic Fever Database, contact tracing records, Kenema Government Hospital (KGH) staff and Ebola Treatment Unit (ETU) rosters, and burial logs. From May 2014 through January 2015, 600 cases of EVD originated in Kenema District, including 92 (15%) HWs, 66 (72%) of whom worked at KGH. Among KGH medical staff and international volunteers, 18 of 62 (29%) who worked in the ETU developed EVD, compared with 48 of 83 (58%) who worked elsewhere in the hospital. Thirteen percent of HWs with EVD reported contact with EVD patients, while 27% reported contact with other infected HWs. The number of HW EVD cases at KGH declined roughly 1 month after implementation of a new triage system at KGH and the opening of a second ETU within the district. The case fatality ratio for HWs and non-HWs with EVD was 69% and 74%, respectively. The cluster of HW EVD cases in Kenema District is one of the largest ever reported. Most HWs with EVD had potential virus exposure both inside and outside of hospitals. Prevention measures for HWs must address a spectrum of infection risks in both formal and informal care settings as well as in the community. © 2016 World Health Organization; licensee Oxford Journals.

  2. Genetic characterization of dengue virus type 3 isolates in the State of Rio de Janeiro, 2001

    OpenAIRE

    Miagostovich, M.P.; Santos, F.B. dos; Simone, T.S. de; Costa, E.V.; Filippis, A.M.B.; Schatzmayr, H.G.; Nogueira, R.M.R.

    2002-01-01

    The genetic characterization of dengue virus type 3 (DEN-3) strains isolated from autochthonous cases in the State of Rio de Janeiro, Brazil, in 2001 is presented. Restriction site-specific (RSS)-PCR performed on 22 strains classified the Brazilian DEN-3 viruses as subtype C, a subtype that contains viruses from Sri Lanka, India, Africa and recent isolates from Central America. Nucleic acid sequencing (positions 278 to 2550) of one DEN-3 strain confirmed the origin of these strains, since gen...

  3. Reduced insulin-like growth factor-I serum levels in formerly obese women subjected to laparoscopic-adjustable gastric banding or diet-induced long-term caloric restriction.

    Science.gov (United States)

    Mitterberger, Maria C; Mattesich, Monika; Klaver, Elise; Piza-Katzer, Hildegunde; Zwerschke, Werner

    2011-11-01

    Life-span extension in laboratory rodents induced by long-term caloric restriction correlates with decreased serum insulin-like growth factor-I (IGF-I) levels. Reduced activity of the growth hormone/IGF-I signaling system slows aging and increases longevity in mutant mouse models. In the present study, we show that long-term caloric restriction achieved by two different interventions for 4 years, either laparoscopic-adjustable gastric banding or reducing diet, leads to reduced IGF-I serum levels in formerly obese women relative to normal-weight women eating ad libitum. Moreover, we present evidence that the long-term caloric restriction interventions reduce fasting growth hormone serum levels. The present study indicates that the activity of the growth hormone/IGF-I axis is reduced in long-term calorically restricted formerly obese humans. Furthermore, our findings suggest that the duration and severity of the caloric restriction intervention are important for the outcome on the growth hormone/IGF-I axis in humans.

  4. Malaria and human immunodeficiency virus infection as risk factors for anemia in infants in Kisumu, western Kenya

    NARCIS (Netherlands)

    van Eijk, Anna M.; Ayisi, John G.; ter Kuile, Feiko O.; Misore, Ambrose O.; Otieno, Juliana A.; Kolczak, Margarette S.; Kager, Piet A.; Steketee, Richard W.; Nahlen, Bernard L.

    2002-01-01

    The role of maternal and pediatric infection with human immunodeficiency virus type 1 (HIV-1) and malaria as risk factors for anemia was determined in a birth cohort of infants born to mothers participating in a study of the interaction between placental malaria and HIV infection, in Kisumu, Kenya.

  5. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    Directory of Open Access Journals (Sweden)

    Philippa M Beard

    Full Text Available Vaccinia virus (VACV is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  6. Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome

    Directory of Open Access Journals (Sweden)

    Wendy Fonseca

    2018-02-01

    Full Text Available Respiratory syncytial virus (RSV is a common pathogen that infects virtually all children by 2 years of age and is the leading cause of hospitalization of infants worldwide. While most children experience mild symptoms, some children progress to severe lower respiratory tract infection. Those children with severe disease have a much higher risk of developing childhood wheezing later in life. Many risk factors are known to result in exacerbated disease, including premature birth and early age of RSV infection, when the immune system is relatively immature. The development of the immune system before and after birth may be altered by several extrinsic and intrinsic factors that could lead to severe disease predisposition in children who do not exhibit any currently known risk factors. Recently, the role of the microbiome and the resulting metabolite profile has been an area of intense study in the development of lung disease, including viral infection and asthma. This review explores both known risk factors that can lead to severe RSV-induced disease as well as emerging topics in the development of immunity to RSV and the long-term consequences of severe infection.

  7. Culicoides variipennis and bluetongue-virus epidemiology in the United States.

    Science.gov (United States)

    Tabachnick, W J

    1996-01-01

    The bluetongue viruses are transmitted to ruminants in North America by Culicoides variipennis. US annual losses of approximately $125 million are due to restrictions on the movement of livestock and germplasm to bluetongue-free countries. Bluetongue is the most economically important arthropod-borne animal disease in the United States. Bluetongue is absent in the northeastern United States because of the inefficient vector ability there of C. variipennis for bluetongue. The vector of bluetongue virus elsewhere in the United States is C. variipennis sonorensis. The three C. variipennis subspecies differ in vector competence for bluetongue virus in the laboratory. Understanding C. variipennis genetic variation controlling bluetongue transmission will help identify geographic regions at risk for bluetongue and provide opportunities to prevent virus transmission. Information on C. variipennis and bluetongue epidemiology will improve trade and provide information to protect US livestock from domestic and foreign arthropod-borne pathogens.

  8. Restricted Social Engagement among Adults Living with Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Kayla P. Meek

    2018-01-01

    Full Text Available Background: Social engagement is key to health and quality of life. Little is known about social engagement patterns of middle-aged and older adults who live with one or more chronic illnesses. This study investigated social engagement restrictions among middle-aged and older adults with chronic conditions and factors associated with these restrictions. Methods: Cross-sectional representative data from the National Council on Aging Chronic Care Survey were examined for relationships between social engagement restrictions and chronic conditions, health status, support, quality of life implications, self-care barriers, caregiving, and demographics. Associations were tested using bivariate analyses and binary logistic regression. Results: Participants were 793 middle-aged (age 44–64 and older adults (age 65+ with one or more chronic conditions. Factors associated with social engagement restrictions included having higher education, receiving care, having more physician visits and hospitalizations, being disabled, being unemployed, and having higher Emotional and Physical Problems Scale scores. Conclusions: Findings reveal the prevalence of social engagement restrictions among middle-aged and older adults with chronic conditions. Results highlight the importance of promoting research, assessments, and interventions to increase social engagement among this aging population.

  9. The welfare effects of mobility restrictions

    Czech Academy of Sciences Publication Activity Database

    Jeong, Byeongju

    2003-01-01

    Roč. 6, č. 3 (2003), s. 685-696 ISSN 1094-2025 Institutional research plan: CEZ:AV0Z7085904 Keywords : mobility restriction * partnership * search Subject RIV: AH - Economics Impact factor: 0.600, year: 2003

  10. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    DEFF Research Database (Denmark)

    Buggert, M.; Norström, M.; Lundegaard, Claus

    2011-01-01

    , the functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... bioinformatic prediction program NetMHCIIpan to select 64 optimized MHC II restricted epitopes located in the HIV Gag, Pol, Env, Nef and Tat regions. The epitopes were selected to cover the global diversity of the virus (multiple subtypes) and the human immune system(diverse MHC II types). Optimized...

  11. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  12. Emerging viruses in the genus Comovirus

    Czech Academy of Sciences Publication Activity Database

    Petrzik, Karel; Koloniuk, Igor

    2010-01-01

    Roč. 40, č. 2 (2010), s. 290-292 ISSN 0920-8569 R&D Projects: GA ČR GA522/07/0053 Institutional research plan: CEZ:AV0Z50510513 Keywords : Capsid proteins * plant virus * Radish mosaic virus * Turnip ringspot virus Subject RIV: EE - Microbiology, Virology Impact factor: 1.693, year: 2010

  13. Interaction in vitro between the proteinase of Tomato ringspot virus (genus Nepovirus) and the eukaryotic translation initiation factor iso4E from Arabidopsis thaliana.

    Science.gov (United States)

    Léonard, Simon; Chisholm, Joan; Laliberté, Jean-François; Sanfaçon, Hélène

    2002-08-01

    Eukaryotic initiation factor eIF(iso)4E binds to the cap structure of mRNAs leading to assembly of the translation complex. This factor also interacts with the potyvirus VPg and this interaction has been correlated with virus infectivity. In this study, we show an interaction between eIF(iso)4E and the proteinase (Pro) of a nepovirus (Tomato ringspot virus; ToRSV) in vitro. The ToRSV VPg did not interact with eIF(iso)4E although its presence on the VPg-Pro precursor increased the binding affinity of Pro for the initiation factor. A major determinant of the interaction was mapped to the first 93 residues of Pro. Formation of the complex was inhibited by addition of m(7)GTP (a cap analogue), suggesting that Pro-containing molecules compete with cellular mRNAs for eIF(iso)4E binding. The possible implications of this interaction for translation and/or replication of the virus genome are discussed.

  14. Inherited thrombophilia in pregnant women with intrauterine growth restriction.

    Science.gov (United States)

    Coriu, Letitia; Copaciu, Elena; Tulbure, Dan; Talmaci, Rodica; Secara, Diana; Coriu, Daniel; Cirstoiu, Monica

    2014-12-01

    Intrauterine growth restriction (IUGR) is a major cause of fetal morbidity and mortality during pregnancy. The role of mutation in the factor V gene, prothrombin gene, MTHFR gene, as risk factors for intrauterine growth restriction during pregnancy, is not very well known so far. This is a retrospective study of 151 pregnant women with a history of complicated pregnancy: intrauterine growth restriction, preeclampsia, recurrent pregnancy loss or maternal venous thromboembolism, who were admitted in Bucharest Emergency University Hospital, during the period January 2010 to July 2014. Genetic testing was performed for all the cases to detect: factor V Leiden mutation, G20210A mutation in the prothrombin gene, C677T mutation and A1298C mutation in methylenetetrahydrofolate reductase (MTHFR) gene. Blood samples were obtained as soon as the diagnosis of intrauterine growth restriction was established with ultrasonography. The following gene mutations were associated with increased risk of IUGR: G20210A prothrombin gene mutation (OR 4.81, 95% CI 1.05 - 2.22, p= 0.043), G1691A factor V gene mutation (factor V Leiden) (OR 1.58, 95% CI 0.61 - 4.080, p= 0.347), C677T MTHFR gene mutation (OR 1.61, 95% CI 0.79 to 3.26, p= 0.186), compound heterozygous MTHFR C677T and A1298C (OR 1.66, 95% CI 0.81- 3.42, p= 0.169). Particularly, for G20210A prothrombin gene mutation we found statistically significant risk (p≤0.05) of IUGR.

  15. Co-circulation of Usutu virus and West Nile virus in a reed bed ecosystem

    Czech Academy of Sciences Publication Activity Database

    Rudolf, Ivo; Bakonyi, T.; Šebesta, Oldřich; Mendel, Jan; Peško, Juraj; Betášová, Lenka; Blažejová, Hana; Venclíková, Kristýna; Straková, Petra; Nowotny, N.; Hubálek, Zdeněk

    2015-01-01

    Roč. 8, č. 520 (2015), s. 520 ISSN 1756-3305 EU Projects: European Commission(XE) 261504 - EDENEXT Institutional support: RVO:68081766 Keywords : Culex modestus * Usutu virus * West Nile virus * Flavivirus * Arbovirus * Surveillance * Mosquitoes Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2015

  16. Risk factors for admission and the role of respiratory syncytial virus ...

    African Journals Online (AJOL)

    disease and poor outcomes when exposed to the influenza virus. Studies of CTL responses ... (IL)8 and IL2) and human neutrophil elastase play a significant ~ role in the ..... Prophylaxis against respiratory syncytial virus in premature infants.

  17. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants.

    Science.gov (United States)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A*02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A*02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. © 2013 Elsevier Inc. All rights reserved.

  18. Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses.

    Directory of Open Access Journals (Sweden)

    Songsong Wu

    2017-03-01

    Full Text Available Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4, could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility loci. Reactive oxygen species (ROS plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.

  19. Family and other social factors contributing to differences in human immunodeficiency virus infection between South Africa and Bangladesh

    NARCIS (Netherlands)

    van Ginneken, J.K.S.

    2008-01-01

    The objective of this study is to draw attention to the importance of social, cultural, economic and political factors as causes of the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic in South Africa by comparing the current situation in this country with

  20. Risk factors for exposure to influenza a viruses, including subtype H5 viruses, in Thai free-grazing ducks.

    Science.gov (United States)

    Beaudoin, A L; Kitikoon, P; Schreiner, P J; Singer, R S; Sasipreeyajan, J; Amonsin, A; Gramer, M R; Pakinsee, S; Bender, J B

    2014-08-01

    Free-grazing ducks (FGD) have been associated with highly pathogenic avian influenza (HPAI) H5N1 outbreaks and may be a viral reservoir. In July-August 2010, we assessed influenza exposure of Thai FGD and risk factors thereof. Serum from 6254 ducks was analysed with enzyme-linked immunosorbent assay (ELISA) to detect antibodies to influenza A nucleoprotein (NP), and haemagglutinin H5 protein. Eighty-five per cent (5305 ducks) were seropositive for influenza A. Of the NP-seropositive sera tested with H5 assays (n = 1423), 553 (39%) were H5 ELISA positive and 57 (4%) suspect. Twelve per cent (74 of 610) of H5 ELISA-positive/suspect ducks had H5 titres ≥ 1 : 20 by haemagglutination inhibition. Risk factors for influenza A seropositivity include older age, poultry contact, flock visitors and older purchase age. Study flocks had H5 virus exposure as recently as March 2010, but no HPAI H5N1 outbreaks have been identified in Thailand since 2008, highlighting a need for rigorous FGD surveillance. © 2012 Blackwell Verlag GmbH.

  1. Nutrients and Other Environmental Factors Influence Virus Abundances across Oxic and Hypoxic Marine Environments

    Directory of Open Access Journals (Sweden)

    Jan F. Finke

    2017-06-01

    Full Text Available Virus particles are highly abundant in seawater and, on average, outnumber microbial cells approximately 10-fold at the surface and 16-fold in deeper waters; yet, this relationship varies across environments. Here, we examine the influence of a suite of environmental variables, including nutrient concentrations, salinity and temperature, on the relationship between the abundances of viruses and prokaryotes over a broad range of spatial and temporal scales, including along a track from the Northwest Atlantic to the Northeast Pacific via the Arctic Ocean, and in the coastal waters of British Columbia, Canada. Models of varying complexity were tested and compared for best fit with the Akaike Information Criterion, and revealed that nitrogen and phosphorus concentrations, as well as prokaryote abundances, either individually or combined, had significant effects on viral abundances in all but hypoxic environments, which were only explained by a combination of physical and chemical factors. Nonetheless, multivariate models of environmental variables showed high explanatory power, matching or surpassing that of prokaryote abundance alone. Incorporating both environmental variables and prokaryote abundances into multivariate models significantly improved the explanatory power of the models, except in hypoxic environments. These findings demonstrate that environmental factors could be as important as, or even more important than, prokaryote abundance in describing viral abundance across wide-ranging marine environments

  2. Detection of Potato Leaf Roll Virus (PLRV), Potato Virus Y (PVY) and Potato Virus X (PVX) on Five Potato Varieties by Using of DAS-ELISA and RT-PCR Methods

    OpenAIRE

    Kuswinanti, Tutik

    2012-01-01

    Potato is a staple food crop that widely grown around the world. Virus infection is main factor that affects great loss of the potato production. Potato virus X(PVX), potato virus Y(PVY),and potato leaf roll virus(PLRV) are top three viruses that result in decreased yield of potato in Indonesia. Therefore, the rapid methods of DAS-ELISA was studied to test tuber samples of five potato varieties, Granola, Atlantik, Raja, Super John, Kalosi, and Masalle. Two simple, rapid, sensitive, reliable...

  3. On restricted context-free grammars

    Czech Academy of Sciences Publication Activity Database

    Dassow, J.; Masopust, Tomáš

    2012-01-01

    Roč. 78, č. 1 (2012), s. 293-304 ISSN 0022-0000 Institutional research plan: CEZ:AV0Z10190503 Keywords : context-free grammars * derivation restriction * normal forms Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022000011000572

  4. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  5. Rat Neutrophil Phagocytosis Following Feed Restriction

    Czech Academy of Sciences Publication Activity Database

    Slapničková, Martina; Berger, J.

    2002-01-01

    Roč. 11, č. 3 (2002), s. 172-177 ISSN 0938-7714 Institutional research plan: CEZ:AV0Z5052915 Keywords : circulating neutrophil * diet restriction * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.167, year: 2001

  6. Metabolic Regulation of Methionine Restriction in Diabetes.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Chen, Shuai; Li, Yuying; Han, Hui; Gao, Jing; Liu, Gang; Wu, Xin; Li, Tiejun; Kim, Sung Woo; Yin, Yulong

    2018-03-30

    Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway, and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Tap and Dbp5, but not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus RNA

    International Nuclear Information System (INIS)

    LeBlanc, Jason J.; Uddowla, Sabena; Abraham, Benjamin; Clatterbuck, Sarah; Beemon, Karen L.

    2007-01-01

    All retroviruses must circumvent cellular restrictions on the export of unspliced RNAs from the nucleus. While the unspliced RNA export pathways for HIV and Mason-Pfizer monkey virus are well characterized, that of Rous sarcoma virus (RSV) is not. We have previously reported that the RSV direct repeat (DR) elements are involved in the cytoplasmic accumulation of unspliced viral RNA. Here, using fluorescent in situ hybridization (FISH), we demonstrate that unspliced viral RNAs bearing a single point mutation (G8863C) in the DR exhibit a restricted cellular localization in and around the nucleus. In contrast, wild type unspliced viral RNA had a diffuse localization throughout the nucleus and cytoplasm. Since the RSV Gag protein has a transient localization in the nucleus, we examined the effect of Gag over-expression on a DR-mediated reporter construct. While Gag did not enhance DR-mediated nuclear export, the dominant-negative expression of two cellular export factors, Tap and Dbp5, inhibited expression of the same reporter construct. Furthermore, FISH studies using the dominant-negative Dbp5 demonstrated that unspliced wild type RSV RNA was retained within the nucleus. Taken together, these results further implicate the DR in nuclear RNA export through interactions with Tap and Dbp5

  8. Gliopathy of Demyelinating And Non-Demyelinating Strains Of Mouse Hepatitis Virus.

    Directory of Open Access Journals (Sweden)

    Lawrence Charles Kenyon

    2015-12-01

    Full Text Available Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59 and non-demyelinating (RSMHV2 viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.

  9. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  10. Upregulation of innate antiviral restricting factor expression in the cord blood and decidual tissue of HIV-infected mothers.

    Science.gov (United States)

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine

  11. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nutrigenetics and nutrigenomics of caloric restriction.

    Science.gov (United States)

    Abete, Itziar; Navas-Carretero, Santiago; Marti, Amelia; Martinez, J Alfredo

    2012-01-01

    Obesity is a complex disease resulting from a chronic and long-term positive energy balance in which both genetic and environmental factors are involved. Weight-reduction methods are mainly focused on dietary changes and increased physical activity. However, responses to nutritional intervention programs show a wide range of interindividual variation, which is importantly influenced by genetic determinants. In this sense, subjects carrying several obesity-related single-nucleotide polymorphisms (SNPs) show differences in the response to calorie-restriction programs. Furthermore, there is evidence indicating that dietary components not only fuel the body but also participate in the modulation of gene expression. Thus, the expression pattern and nutritional regulation of several obesity-related genes have been studied, as well as those that are differentially expressed by caloric restriction. The responses to caloric restriction linked to the presence of SNPs in obesity-related genes are reviewed in this chapter. Also, the influence of energy restriction on gene expression pattern in different tissues is addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Risk factors for the incidence of dengue virus infection in preschool children.

    Science.gov (United States)

    Teixeira, Maria G; Morato, Vanessa; Barreto, Florisneide R; Mendes, Carlos M C; Barreto, Maurício L; Costa, Maria da Conceição N

    2012-11-01

    To estimate the seroincidence of dengue in children living in Salvador, Bahia, Brazil and to evaluate the factors associated.   A prospective serological survey was carried out in a sample of children 0-3 years of age. A multilevel logistic model was used to identify the determinants of seroincidence. The seroprevalence of dengue was 26.6% in the 625 children evaluated. A second survey detected an incidence of 33.2%. Multilevel logistic regression showed a statistically significant association between the seroincidence of dengue and age and the premises index. In Salvador, the dengue virus is in active circulation during early childhood; consequently, children have heterotypic antibodies and run a high risk of developing dengue haemorrhagic fever, because the sequence and intensity of the three dengue virus serotypes currently circulating in this city are very similar to those that were circulating in Rio de Janeiro, Brazil, in 2008. Therefore, the authors strongly recommend that the health authorities in cities with a similar epidemiological scenario be aware of this risk and implement improvements in health care, particularly targeting the paediatric age groups. In addition, information should be provided to the population and actions should be implemented to combat this vector. © 2012 Blackwell Publishing Ltd.

  14. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Gisela Canedo-Marroquín

    2017-08-01

    Full Text Available The Human Respiratory Syncytial Virus (hRSV is a major cause of acute lower respiratory tract infections (ARTIs and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F, the Glycoprotein (G, and the Small Hydrophobic (SH protein, which are located on the virus surface. In addition, the Nucleoprotein (N, Phosphoprotein (P large polymerase protein (L part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2. HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.

  16. Extrauterine growth restriction: Universal problem among premature infants

    Directory of Open Access Journals (Sweden)

    Brunnella Alcantara Chagas de FREITAS

    2016-02-01

    Full Text Available ABSTRACT Objective: To analyze the growth rate of premature infants in the first weeks of life and factors associated with extrauterine growth restriction. Methods: This is a cross-sectional study of 254 premature infants in a neonatal intensive care unit conducted from January 1, 2008 to December 31, 2010. Infants who died or had malformations incompatible with life were excluded. Median weight curves according to gestational age were constructed for the first four weeks of life. The Fenton growth chart calculations provided the weight Z-scores. Extrauterine growth restriction was defined as corrected weight-for-age Z-score ≤-2. Perinatal, morbidity, and health care variables were analyzed. The Poisson regression model yielded the prevalenceratios . Associations between extrauterine growth restriction and the perinatal, morbidity, and care variables were investigated. Poisson regression controlled possible confounding factors. Results: The frequency of extrauterine growth restriction was 24.0%. Most (85.0% small-for-gestational-age infants developed extrauterine growth restriction; 55.3% of extrauterine growth restriction cases involved small-for-gestational-age infants. Premature infants with gestational age >32 weeks did not recover the median birth weight until the third week of life and had a higher frequency of small-for-gestational-age. The Z-scores of non-small-for-gestational-age infants decreased more after birth than those of small-for-gestational-age infants. extrauterine growth restriction was associated with small-for-gestational-age (PR=6.14; 95%CI=3.33-11.33;p <0.001 and time without enteral diet (PR=1.08; 95%CI=1.04-1.13; p =0.010. Conclusion: Extrauterine growth restriction occurs in premature infants of all gestational age. The participation of small-for-gestational-age and nutritional practices in its genesis is noteworthy. We suggest prospective studies of all premature infants. The implementation of best care practices

  17. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection

    Science.gov (United States)

    Saxena, Kapil; Simon, Lukas M.; Zeng, Xi-Lei; Blutt, Sarah E.; Crawford, Sue E.; Sastri, Narayan P.; Karandikar, Umesh C.; Ajami, Nadim J.; Zachos, Nicholas C.; Kovbasnjuk, Olga; Donowitz, Mark; Conner, Margaret E.; Shaw, Chad A.; Estes, Mary K.

    2017-01-01

    The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine. PMID:28069942

  18. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    Full Text Available Equine influenza viruses (EIVs of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts.

  19. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    Science.gov (United States)

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  20. Radiation leukemia virus and x-irradiation induce in C57BL/6 mice two distinct T-cell neoplasms: a growth factor-dependent lymphoma and a growth factor-independent lymphoma

    International Nuclear Information System (INIS)

    Haas, Martin; Rothenberg, Ellen; Bogart, M.H.; Jones, O.W.

    1987-01-01

    Two different classes of neoplastic T cells were isolated from radiation leukemia virus (RadLV)-inoculated and from X-ray-treated C57BL/6 mice. One consisted of growth factor-dependent T-cell lymphoma (FD-TCL) lines which were established from the spleens and thymuses of treated mice within a day of lymphoma detection. Non-thymic, factor-dependent TCL cells produced interleukin-2 upon lectin stimulation, and were autostimulatory because they secreted growth factor(s) constitutively. In vivo, FD-TCL cells that were injected intraperitoneally or intravenously homed to the spleen, proliferated in it and killed the injected mice. The isolation and study of FD-TCL cells was facilitated by their cultivation on stromal hematopoietic monolayers in supplemented ''lymphocyte medium'', until an autostimulating, self-sustaining concentration of FD-TCL cells was obtained. FD-TCL cells could not be grown from lymphoid tissue of normal, control mice. In contrast, T-cell lymphoma (TCL) lines, which were established from virus-induced thymomas which had been kept in situ for 4-6 weeks after detection, consisted of factor-independent cells that possessed an aneuploid karyotype. The phenotypic markers of TCL cells differed from those of FD-TCL cells, suggesting heterogeneity in the stages of differentiation at which cells can give rise to growth factor-independent (TCL) and to growth factor-dependent (FD-TCL) lines. (author)

  1. Effect of uv-irradiation on genetic recombination of Simian virus 40 mutants

    International Nuclear Information System (INIS)

    Gentil, A.; Margot, A.; Sarasin, A.

    1983-01-01

    Genetic recombination in monkey kidney cells has been studied using Simian virus 40 (SV40) as a molecular probe. Control or uv-irradiated cells have been co-infected with two thermosensitive mutants of SV40, tsA58 and tsA30. Recombination between the two viral genomes gives rise to a wild type virus phenotype, able to grow at the restrictive temperature of 41 0 C, which was taken as a measure of the recombination activity of the host cells. Results show that recombination takes place at a low frequency when viruses are not uv-irradiated. Irradiation of one or both viruses increases drastically recombination frequency. Pretreatment of the host cells with uv-light or mitomycin C 24 hours before being infected does not increase recombination frequency measured in our experimental conditions. 23 references, 5 tables

  2. In Vitro Assembly of Virus-Like Particles of a Gammaretrovirus, the Murine Leukemia Virus XMRV

    Czech Academy of Sciences Publication Activity Database

    Hadravová, Romana; de Marco, A.; Ulbrich, P.; Štokrová, Jitka; Doležal, Michal; Pichová, Iva; Ruml, T.; Briggs, J. A. G.; Rumlová, Michaela

    2012-01-01

    Roč. 86, č. 3 (2012), s. 1297-1306 ISSN 0022-538X R&D Projects: GA ČR GA204/09/1388; GA MŠk 1M0508 Grant - others:GA MŠk(CZ) 1M0520 Program:1M Institutional research plan: CEZ:AV0Z40550506 Keywords : human-immunodeficiency-virus * Rous sarcoma virus * chronic-fatigue-syndrome * Pfizer monkey virus * N-terminal domain Subject RIV: CE - Biochemistry Impact factor: 5.076, year: 2012

  3. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Megan C. Mladinich

    2017-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59 persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs, without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7, IRF9, and IFN-stimulated genes (ISGs 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread.

  4. Clinical Features of and Risk Factors for Fatal Ebola Virus Disease, Moyamba District, Sierra Leone, December 2014-February 2015.

    Science.gov (United States)

    Haaskjold, Yngvar Lunde; Bolkan, Håkon Angell; Krogh, Kurt Østhuus; Jongopi, James; Lundeby, Karen Marie; Mellesmo, Sindre; Garcés, Pedro San José; Jøsendal, Ola; Øpstad, Åsmund; Svensen, Erling; Fuentes, Luis Matias Zabala; Kamara, Alfred Sandy; Riera, Melchor; Arranz, Javier; Roberts, David P; Stamper, Paul D; Austin, Paula; Moosa, Alfredo J; Marke, Dennis; Hassan, Shoaib; Eide, Geir Egil; Berg, Åse; Blomberg, Bjørn

    2016-09-01

    The 2013-2016 outbreak of Ebola virus disease (EVD) in West Africa infected >28,000 people, including >11,000 who died, and disrupted social life in the region. We retrospectively studied clinical signs and symptoms and risk factors for fatal outcome among 31 Ebola virus-positive patients admitted to the Ebola Treatment Center in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the outbreak. Significant predictors for death were shorter time from symptom onset to admission, male sex, high viral load on initial laboratory testing, severe pain, diarrhea, bloody feces, and development of other bleeding manifestations during hospitalization. These risk factors for death could be used to identify patients in need of more intensive medical support. The lack of fever in as many as one third of EVD cases may have implications for temperature-screening practices and case definitions.

  5. Helicobacter pylori, hepatitis viruses A, C, E antibodies and HBsAg-prevalence and associated risk factors in pediatric communities of karachi

    International Nuclear Information System (INIS)

    Aziz, S.; Muzzafar, R.; Hafiz, S.; Abbas, Z.; Zafar, M.N.; Naqvi, S.A.A.; Rizvi, S.A.U.H.

    2007-01-01

    To document the prevalence of Helicobacter pylori (H. pylori), Hepatitis A virus (HAV), Hepatitis C virus (HCV), Hepatitis E virus (HEV) antibodies and Hepatitis B virus surface antigen (HBsAg), in the pediatric age group of low socioeconomic urban communities of Karachi and to identify risk factors associated with these infections. Three hundred and eighty children, ages 5 months to 15 years were investigated. Venous blood samples were collected and questionnaire filled on sociodemographic characteristics (family income, number of dependents in the family, area of living, number of people per room per house, and number of children sharing bed with parents and siblings). Gastrointestinal symptoms were recorded. Anti-HAV IgG (Hepatitis A virus IgG antibody), anti-HCV (Hepatitis C virus antibody), anti-HEV (Hepatitis E antibodies) and HBsAg, were analyzed by enzyme immunoassays (EIAs). Samples were also screened for anti-HIV1/2 (human immunodeficiency virus 1 and 2 antibodies by EIA. IgG antibodies against H. pylori were detected by immunochromatography. A correlation between increasing age and seroconversion was seen for hepatotropic viruses. At 14 years and above,100% of the children were found to be positive for anti-HAV, 26% for anti-HEV, and 1.4%, for anti-HCV while HBsAg was positive in 1.9%. H. pylori infection did not show a significant increase with age. Both anti-HAV and anti-H. pylori were present simultaneously in 30% of the population investigated. With age, increasing number of children acquired antibodies against hepatotropic viruses and H. pylori. Occurrence of HBsAg and anti-HEV at a later age suggests horizontal, rather than vertical transmission. (author)

  6. KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification

    DEFF Research Database (Denmark)

    Bürck, Carolin; Mund, Andreas; Berscheminski, Julia

    2016-01-01

    Once transported to the replication sites, HAdVs need to assure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characte......Once transported to the replication sites, HAdVs need to assure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly...... characterized, but represent a decisive moment in establishing a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin associated transcription factor regulates the dynamic organization of host chromatin structure via its ability to influence epigenetic marks...

  7. [Human papilloma viruses: other risk factor of head and neck carcinoma].

    Science.gov (United States)

    Woto-Gaye, G; M'Farrej, M K; Doh, K; Thiam, I; Touré, S; Diop, R; Dial, C

    2016-08-01

    Head and neck carcinoma (HNC) occupy the sixth place as the most frequent type of cancer worldwide. Next to alcohol and tobacco intoxication, other risk factors (RF) are suspected, including the human papilloma viruses (HPVs). The aim of this study was to highlight the prevalence of HPVs and histo-epidemiological characteristics of HNC HPV+ in Senegal. This is a prospective, multicenter preliminary study of 18 months (January 1, 2012-June 30, 2014). The cases of HNC histologically confirmed in Senegal were then sent to the bio-pathology department of the Curie Institute in Paris to search HPVs. In the 90 included cases, the PCR technique was successful in 54 cases (60%). HPVs were found in seven cases, that is, a prevalence of 13%. HPVs were associated with 5 cases of hypopharyngeal carcinoma and 2 cases of carcinoma of the oral cavity. Patients with HNC HPV+ had a median age of 42 years against 49 years for HPV-patients. Three patients (42.8%) with HPV+ carcinomas were smokers. Of the 47 HPV-patients, 40 patients (87.1%) had alcohol intoxication and/or smoking. The concept of oral sex was refuted by all our patients. Squamous cell carcinoma was the only histological type found. HPV+ cell carcinoma showed no specific histological appearance. HPVs are another certain RF of HNC in Senegal. The major therapeutic and prognostic impact of HPVinduced cancers requires the systematic search of the viruses by the PCR technique.

  8. Virulence determinants of pandemic influenza viruses

    Science.gov (United States)

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  9. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: final report of a case-control study.

    Science.gov (United States)

    de Araújo, Thalia Velho Barreto; Ximenes, Ricardo Arraes de Alencar; Miranda-Filho, Demócrito de Barros; Souza, Wayner Vieira; Montarroyos, Ulisses Ramos; de Melo, Ana Paula Lopes; Valongueiro, Sandra; de Albuquerque, Maria de Fátima Pessoa Militão; Braga, Cynthia; Filho, Sinval Pinto Brandão; Cordeiro, Marli Tenório; Vazquez, Enrique; Cruz, Danielle di Cavalcanti Souza; Henriques, Claudio Maierovitch Pessanha; Bezerra, Luciana Caroline Albuquerque; Castanha, Priscila Mayrelle da Silva; Dhalia, Rafael; Marques-Júnior, Ernesto Torres Azevedo; Martelli, Celina Maria Turchi; Rodrigues, Laura Cunha

    2018-03-01

    and had cerebral abnormalities, 13 were positive for Zika infection but had no cerebral abnormalities, and 11 were negative for Zika virus but had cerebral abnormalities. The association between microcephaly and congenital Zika virus infection was confirmed. We provide evidence of the absence of an effect of other potential factors, such as exposure to pyriproxyfen or vaccines (tetanus, diphtheria, and acellular pertussis, measles and rubella, or measles, mumps, and rubella) during pregnancy, confirming the findings of an ecological study of pyriproxyfen in Pernambuco and previous studies on the safety of Tdap vaccine administration during pregnancy. Brazilian Ministry of Health, Pan American Health Organization, and Enhancing Research Activity in Epidemic Situations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Blood transfusion and hepatitis viruses

    African Journals Online (AJOL)

    virus in blood donors: investigation of type-specific differences in serologic reactivity and rate of alanine aminotransferase abnormalities. Transfusion 1993;. 33: 7-13. 45. McFarlane IG, Smith HM, Johnson PJ, Bray GP, Vergani 0, Williams R. Hepatitis. C virus antibodies in chronic active hepatitis: pathogenetic factor or false-.

  11. Foot-and-Mouth Disease Virus Serotype O Phylodynamics: Genetic Variability Associated with Epidemiological Factors in Pakistan

    DEFF Research Database (Denmark)

    Brito, B. P.; Perez, A. M.; Jamal, S. M.

    2013-01-01

    One of the most challenging aspects of foot-and-mouth disease (FMD) control is the high genetic variability of the FMD virus (FMDV). In endemic settings such as the Indian subcontinent, this variability has resulted in the emergence of pandemic strains that have spread widely and caused devastating...... outbreaks in disease-free areas. In countries trying to control and eradicate FMD using vaccination strategies, the constantly evolving and wide diversity of field FMDV strains is an obstacle for identifying vaccine strains that are successful in conferring protection against infection with field viruses....... Consequently, quantitative knowledge on the factors that are associated with variability of the FMDV is prerequisite for preventing and controlling FMD in the Indian subcontinent. A hierarchical linear model was used to assess the association between time, space, host species and the genetic variability...

  12. [Validation of the modified algorithm for predicting host susceptibility to viruses taking into account susceptibility parameters of primary target cell cultures and natural immunity factors].

    Science.gov (United States)

    Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2010-01-01

    The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.

  13. HLA-E-Restricted Cross-Recognition of Allogeneic Endothelial Cells by CMV-Associated CD8 T Cells: A Potential Risk Factor following Transplantation

    Science.gov (United States)

    Allard, Mathilde; Tonnerre, Pierre; Nedellec, Steven; Oger, Romain; Morice, Alexis; Guilloux, Yannick; Houssaint, Elisabeth; Charreau, Béatrice; Gervois, Nadine

    2012-01-01

    Although association between CMV infection and allograft rejection is well admitted, the precise mechanisms involved remain uncertain. Here, we report the characterization of an alloreactive HLA-E-restricted CD8 T cell population that was detected in the PBL of a kidney transplant patient after its CMV conversion. This monoclonal CD8 T cell population represents a sizable fraction in the blood (3% of PBL) and is characterized by an effector-memory phenotype and the expression of multiple NK receptors. Interestingly, these unconventional T cells display HLA-E-dependent reactivity against peptides derived from the leader sequences of both various HCMV-UL40 and allogeneic classical HLA-I molecules. Consequently, while HLA-E-restricted CD8 T cells have potential to contribute to the control of CMV infection in vivo, they may also directly mediate graft rejection through recognition of peptides derived from allogeneic HLA-I molecules on graft cells. Therefore, as HLA-E expression in nonlymphoid organs is mainly restricted to endothelial cells, we investigated the reactivity of this HLA-E-restricted T cell population towards allogeneic endothelial cells. We clearly demonstrated that CMV-associated HLA-E-restricted T cells efficiently recognized and killed allogeneic endothelial cells in vitro. Moreover, our data indicate that this alloreactivity is tightly regulated by NK receptors, especially by inhibitory KIR2DL2 that strongly prevents TCR-induced activation through recognition of HLA-C molecules. Hence, a better evaluation of the role of CMV-associated HLA-E-restricted T cells in transplantation and of the impact of HLA-genotype, especially HLA-C, on their alloreactivity may determine whether they indeed represent a risk factor following organ transplantation. PMID:23226431

  14. Bidirectional enhancing activities between human T cell leukemia-lymphoma virus type I and human cytomegalovirus in human term syncytiotrophoblast cells cultured in vitro.

    Science.gov (United States)

    Tóth, F D; Aboagye-Mathiesen, G; Szabó, J; Liu, X; Mosborg-Petersen, P; Kiss, J; Hager, H; Zdravkovic, M; Andirkó, I; Aranyosi, J

    1995-12-01

    The syncytiotrophoblast layer of the human placenta has an important role in limiting transplacental viral spread from mother to fetus. Human cytomegalovirus (HCMV) is capable of establishing a latent infection in syncytiotrophoblast cells, with restriction of gene expression to immediate-early and early proteins. We analyzed the extent of replication of human T cell leukemia-lymphoma virus type I (HTLV-I) in human term syncytiotrophoblasts infected with HTLV-I alone or coinfected with HTLV-I and HCMV. Although syncytiotrophoblasts could be infected with cell-free HTLV-I, no viral protein expression was found in the singly infected cells. On the contrary, coinfection of the cells with HTLV-I and HCMV resulted in simultaneous replication of both viruses. Bidirectional enhancing activities between HTLV-I and HCMV were mediated primarily by the Tax and immediate-early proteins, respectively. The stimulatory effect of HTLV-I Tax on HCMV replication appeared to be mediated partly by tumor necrosis factor beta and transforming growth factor beta-1. We observed formation of pseudotypes with HTLV-I nucleocapsids within HCMV envelopes, whereas HCMV was not pseudotyped by HTLV-I envelopes in dually infected syncytiotrophoblast cells. Our data suggest that in vivo dual infection of syncytiotrophoblast cells with HTLV-I and HCMV may facilitate the transplacental transmission of both viruses.

  15. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    International Nuclear Information System (INIS)

    Lloyd, Richard E.

    2015-01-01

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication

  16. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Richard E., E-mail: rlloyd@bcm.edu

    2015-05-15

    Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. - Highlights: • Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. • A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. • Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.

  17. Factors Associated with Spontaneous Clearance of Hepatitis C Virus in Chinese Population

    Directory of Open Access Journals (Sweden)

    Fei Kong

    2014-01-01

    Full Text Available Hepatitis C virus (HCV infections spontaneously clear in approximately 15–45% of infected individuals. Factors which influence spontaneous HCV clearance remain to be identified. The purpose of the present study was to identify variables associated with spontaneous HCV clearance in a referred population of Chinese patients. The prevalence of host, viral, and environmental factors known to influence the outcome of HCV infections was compared in 92 HCV spontaneous clearance subjects and 318 HCV persistent infection subjects. Univariate and multivariate analyses were performed to identify those factors associated with spontaneous HCV clearance. In univariate analysis, female gender, a history of icteric hepatitis, serologic evidence of concurrent HBV infection, and rs12979860 CC genotype were positively associated with spontaneous HCV clearance, while alcohol consumption was negatively associated with clearance. In multivariate analysis, female gender, a history of icteric hepatitis, concurrent HBV infection, and rs12979860 CC genotype remained independent variables associated with spontaneous HCV clearance. Spontaneous HCV clearance is more likely to occur in females, subjects with a history of icteric hepatitis, HBV coinfections, and those with the rs12979860 CC genotype.

  18. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  19. Activity restriction among women with a short cervix.

    Science.gov (United States)

    Grobman, William A; Gilbert, Sharon A; Iams, Jay D; Spong, Catherine Y; Saade, George; Mercer, Brian M; Tita, Alan T N; Rouse, Dwight J; Sorokin, Yoram; Leveno, Kenneth J; Tolosa, Jorge E; Thorp, John M; Caritis, Steve N; Van Dorsten, J Peter

    2013-06-01

    To estimate determinants of and outcomes associated with activity restriction among women with a short cervix. This was a secondary analysis of a randomized trial of 17-α hydroxyprogesterone caproate for prevention of preterm birth among nulliparous women with singleton gestations and cervices less than 30 mm by midtrimester ultrasonography. Women were asked weekly whether they had been placed on pelvic, work, or nonwork rest. "Any activity restriction" was defined as being placed on any type of rest. Factors associated with any activity restriction were determined and the association between preterm birth and activity restriction was estimated with multivariable logistic regression. Of the 657 women in the trial, 646 (98%) responded to questions regarding activity restriction. Two hundred fifty-two (39.0%) were placed on any activity restriction at a median of 23.9 weeks (interquartile range 22.6-27.9 weeks). Women on activity restriction were older, more likely to have private insurance, less likely to be Hispanic, had a shorter cervical length, and were more likely to have funneling and intra-amniotic debris. Preterm birth at less than 37 weeks of gestation was more common among women placed on activity restriction (37% compared with 17%, Prestriction (adjusted odds ratio 2.37, 95% confidence interval 1.60-3.53). Results were similar for preterm birth at less than 34 weeks of gestation. Activity restriction did not reduce the rate of preterm birth in asymptomatic nulliparous women with a short cervix.

  20. Laryngopharyngeal reflux and herpes simplex virus type 2 are possible risk factors for adult-onset recurrent respiratory papillomatosis (prospective case-control study).

    Science.gov (United States)

    Formánek, M; Jančatová, D; Komínek, P; Matoušek, P; Zeleník, K

    2017-06-01

    The human papillomavirus (HPV) causes recurrent respiratory papillomatosis (RRP). Although HPV prevalence is high, the incidence of papillomatosis is low. Thus, factors other than HPV infection probably contribute to RRP. This study investigated whether patients with papillomatosis are more often infected with herpes simplex virus type 2 and chlamydia trachomatis (ChT) and whether laryngopharyngeal reflux (LPR) occurs in this group of patients more often. Prospective case-control study. Department of Otorhinolaryngology of University Hospital. The study included 20 patients with adult-onset RRP and 20 adult patients with vocal cord cyst and no pathology of laryngeal mucosa (control group). Immunohistochemical analysis of pepsin, HPV, herpes simplex virus type 2 and ChT was performed in biopsy specimens of laryngeal papillomas and of healthy laryngeal mucosa (control group) obtained from medial part of removed vocal cord cyst during microlaryngoscopy procedures. Pathologic LPR (pepsin in tissue) was diagnosed in 8/20 (40.0%) patients with papillomatosis and in 0/20 control patients (P = .003). Herpes simplex virus type 2 was present in 9/20 (45.0%) patients with papillomatosis and in 0/20 control patients (P = .001). Five specimens were positive for both pepsin and herpes simplex virus type 2. No samples were positive for ChT. There were no significant differences between groups for age, body mass index, diabetes mellitus and gastrooesophageal reflux disease. Tobacco exposure was not more frequent in RRP group either (P = .01). Results show that LPR and herpes simplex virus type 2 are significantly more often present in patients with RRP. LPR and herpes simplex virus type 2 might activate latent HPV infection and thereby be possible risk factors for RRP. © 2016 John Wiley & Sons Ltd.

  1. Progressive multifocal leukoencephalopathy restricted to the posterior fossa in a patient with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabricio Guimaraes; Lamb, Leslie; Del Carpio-O' Donovan, Raquel, E-mail: goncalves.neuroradio@gmail.com [McGill University Health Center Montreal General Hospital (Canada)

    2011-11-15

    Progressive multifocal leukoencephalopathy is a neurological infectious disease caused by the John Cunningham polyoma virus (JCV), an opportunistic agent with worldwide distribution. This disease is frequently seen in immunosuppressed patients and rarely associated with systemic lupus erythematosus. In the central nervous system PML demyelinating lesions occur in the supratentorial compartment. The authors describe a rare case of PML secondary to SLE treatment with atypical presentation restricted to the posterior fossa (author)

  2. Progressive multifocal leukoencephalopathy restricted to the posterior fossa in a patient with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Goncalves, Fabricio Guimaraes; Lamb, Leslie; Del Carpio-O'Donovan, Raquel

    2011-01-01

    Progressive multifocal leukoencephalopathy is a neurological infectious disease caused by the John Cunningham polyoma virus (JCV), an opportunistic agent with worldwide distribution. This disease is frequently seen in immunosuppressed patients and rarely associated with systemic lupus erythematosus. In the central nervous system PML demyelinating lesions occur in the supratentorial compartment. The authors describe a rare case of PML secondary to SLE treatment with atypical presentation restricted to the posterior fossa (author)

  3. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  4. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed H. Salaheldin

    2018-03-01

    Full Text Available Highly pathogenic H5N1 avian influenza virus (A/H5N1 of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed, biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.

  5. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Science.gov (United States)

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  6. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  7. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    Science.gov (United States)

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host

  8. Reduced angiogenic factor expression in intrauterine fetal growth restriction using semiquantitative immunohistochemistry and digital image analysis.

    Science.gov (United States)

    Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent

    2018-05-01

    To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.

  9. Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα

    NARCIS (Netherlands)

    Dorobantu, Cristina M.; Harak, Christian; Klein, Rahel; van der Linden, Lonneke; Strating, Jeroen R. P. M.; van der Schaar, Hilde M.; Lohmann, Volker; van Kuppeveld, Frank J. M.

    2016-01-01

    Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in

  10. The biology of herpes simplex virus infection in humans.

    Science.gov (United States)

    Baringer, J R

    1976-01-01

    Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.

  11. Risk factors associated with white spot syndrome virus infection in a Vietnamese rice-shrimp farming system.

    Science.gov (United States)

    Corsin, F; Turnbull, J F; Hao, N V; Mohan, C V; Phi, T T; Phuoc, L H; Tinh, N T; Morgan, K L

    2001-10-29

    White spot disease (WSD) is a pandemic disease caused by a virus commonly known as white spot syndrome virus (WSSV). Several risk factors for WSD outbreaks have been suggested. However, there have been very few studies to identify risk factors for WSD outbreaks in culture systems. This paper presents and discusses the risk factors for WSSV infection identified during a longitudinal observational study conducted in a Vietnamese rice-shrimp farming system. A total of 158 variables were measured comprising location, features of the pond, management practices, pond bottom quality, shrimp health and other animals in the pond. At the end of the study period WSSV was detected in 15 of the 24 ponds followed through the production cycle (62.5%). One hundred and thirty-nine variables were used in univariate analyses. All the variables with a p-value Hemigrapsus spp. crabs during the first month of production, feeding vitamin premix or legumes, presence of high numbers of shrimp with bacterial infection and the presence of larger mud crabs or gobies at harvest. No associations were detected with WSSV at harvest and stocking density, presence, or number or weight of wild shrimp in the pond. The multivariate model to identify outcomes associated with WSSV infection highlighted the presence of high mortality as the main variable explaining the data. The results obtained from this study are discussed in the context of WSD control and areas requiring further investigation are suggested.

  12. Demonstration of a novel HIV-1 restriction phenotype from a human T cell line.

    Directory of Open Access Journals (Sweden)

    Yanxing Han

    2008-07-01

    Full Text Available Although retroviruses may invade host cells, a productive infection can be established only after the virus counteracts inhibition from different types of host restriction factors. Fv1, APOBEC3G/F, TRIM5alpha, ZAP, and CD317 inhibit the replication of different retroviruses by interfering with viral uncoating, reverse transcription, nuclear import, RNA stability, and release. In humans, although APOBEC3G/3F and CD317 block HIV-1 replication, their antiviral activities are neutralized by viral proteins Vif and Vpu. So far, no human gene has been found to effectively block wild type HIV-1 replication under natural condition. Thus, identification of such a gene product would be of great medical importance for the development of HIV therapies.In this study, we discovered a new type of host restriction against the wild type HIV-1 from a CD4/CXCR4 double-positive human T cell line. We identified a CEM-derived cell line (CEM.NKR that is highly resistant to productive HIV-1 infection. Viral production was reduced by at least 1000-fold when compared to the other permissive human T cell lines such as H9, A3.01, and CEM-T4. Importantly, this resistance was evident at extremely high multiplicity of infection. Further analyses demonstrated that HIV-1 could finish the first round of replication in CEM.NKR cells, but the released virions were poorly infectious. These virions could enter the target cells, but failed to initiate reverse transcription. Notably, this restriction phenotype was also present in CEM.NKR and 293T heterokaryons.These results clearly indicate that CEM.NKR cells express a HIV inhibitory gene(s. Further characterization of this novel gene product(s will reveal a new antiretroviral mechanism that directly inactivates wild type HIV-1.

  13. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  14. VHS virus - present situation

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Olesen, Niels Jørgen

    2015-01-01

    of the worldwide distribution of the disease will be given. Virus evolution: Recent studies indicate that only a few amino acid changes in the structural proteins of VHSV can change the virulence patterns significantly, thereby coming closer to assessing the risk of none to low virulent viruses becoming high...... virulent. Virulence factors both depend on the ability of VHSV to enter a cell and on the speed and efficiencyof virus replication in the cells. Apparently the viral nucleocapsid protein plays a very important role for the later and seems to be the target for determination of a virulence marker....

  15. Mumps vaccine virus genome is present in throat swabs obtained from uncomplicated healthy recipients.

    Science.gov (United States)

    Nagai, T; Nakayama, T

    2001-01-08

    Seven children were followed for up to 42 days post-vaccination with live mumps vaccine and 37 throat swabs were obtained serially. Viral genomic RNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) in the phosphoprotein (P) and hemagglutinin-neuraminidase (HN) regions. Virus isolation was also attempted. Genomic differentiation of detected mumps virus genome was performed by sequence analysis and/or restriction fragment length polymorphism (RFLP). No adverse reaction was observed in these children. Although mumps virus was not isolated from any of the samples, viral RNA was detected in four samples from three vaccine recipients, 18, 18 and 26, and 7 days after vaccination, respectively. Detected viral RNA was identified as the vaccine strain. Our data suggests that vaccine virus inoculated replicates in the parotid glands but the incidence of virus transmission from recipients to other susceptible subjects should be low.

  16. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  17. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    Directory of Open Access Journals (Sweden)

    Magdalena Molero-Abraham

    2015-01-01

    developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  18. Identification of restriction endonuclease with potential ability to cleave the HSV-2 genome: Inherent potential for biosynthetic versus live recombinant microbicides

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2008-08-01

    Full Text Available Abstract Background Herpes Simplex virus types 1 and 2 are enveloped viruses with a linear dsDNA genome of ~120–200 kb. Genital infection with HSV-2 has been denoted as a major risk factor for acquisition and transmission of HIV-1. Developing biomedical strategies for HSV-2 prevention is thus a central strategy in reducing global HIV-1 prevalence. This paper details the protocol for the isolation of restriction endunucleases (REases with potent activity against the HSV-2 genome and models two biomedical interventions for preventing HSV-2. Methods and Results Using the whole genome of HSV-2, 289 REases and the bioinformatics software Webcutter2; we searched for potential recognition sites by way of genome wide palindromics. REase application in HSV-2 biomedical therapy was modeled concomitantly. Of the 289 enzymes analyzed; 77(26.6% had potential to cleave the HSV-2 genome in > 100 but 400 but Conclusion Viral genome slicing by way of these bacterially- derived R-M enzymatic peptides may have therapeutic potential in HSV-2 infection; a cofactor for HIV-1 acquisition and transmission.

  19. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication.

    Science.gov (United States)

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses.

  20. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    International Nuclear Information System (INIS)

    Kawano, Masaaki; Morikawa, Katsuma; Suda, Tatsuya; Ohno, Naohito; Matsushita, Sho; Akatsuka, Toshitaka; Handa, Hiroshi; Matsui, Masanori

    2014-01-01

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A ⁎ 02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A ⁎ 02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties

  1. Chimeric SV40 virus-like particles induce specific cytotoxicity and protective immunity against influenza A virus without the need of adjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Masaaki [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Morikawa, Katsuma [Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Suda, Tatsuya [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Ohno, Naohito [Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Matsushita, Sho [Department of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Allergy Center, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Akatsuka, Toshitaka [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Handa, Hiroshi, E-mail: handa.h.aa@m.titech.ac.jp [Solutions Research Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503 (Japan); Matsui, Masanori, E-mail: mmatsui@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2014-01-05

    Virus-like particles (VLPs) are a promising vaccine platform due to the safety and efficiency. However, it is still unclear whether polyomavirus-based VLPs are useful for this purpose. Here, we attempted to evaluate the potential of polyomavirus VLPs for the antiviral vaccine using simian virus 40 (SV40). We constructed chimeric SV40-VLPs carrying an HLA-A{sup ⁎}02:01-restricted, cytotoxic T lymphocyte (CTL) epitope derived from influenza A virus. HLA-A{sup ⁎}02:01-transgenic mice were then immunized with the chimeric SV40-VLPs. The chimeric SV40-VLPs effectively induced influenza-specific CTLs and heterosubtypic protection against influenza A viruses without the need of adjuvants. Because DNase I treatment of the chimeric SV40-VLPs did not disrupt CTL induction, the intrinsic adjuvant property may not result from DNA contaminants in the VLP preparation. In addition, immunization with the chimeric SV40-VLPs generated long-lasting memory CTLs. We here propose that the chimeric SV40-VLPs harboring an epitope may be a promising CTL-based vaccine platform with self-adjuvant properties. - Highlights: • We constructed chimeric SV40-VLPs carrying an influenza virus-derived CTL epitope. • Chimeric SV40-VLPs induce influenza-specific CTLs in mice without adjuvants. • Chimeric SV40-VLPs induce heterosubtypic protection against influenza A viruses. • Chimeric SV40-VLPs induce long-lasting memory CTLs. • Chimeric SV40-VLPs is a promising vaccine platform with self-adjuvant properties.

  2. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    Science.gov (United States)

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Avian influenza virus transmission to mammals.

    Science.gov (United States)

    Herfst, S; Imai, M; Kawaoka, Y; Fouchier, R A M

    2014-01-01

    Influenza A viruses cause yearly epidemics and occasional pandemics. In addition, zoonotic influenza A viruses sporadically infect humans and may cause severe respiratory disease and fatalities. Fortunately, most of these viruses do not have the ability to be efficiently spread among humans via aerosols or respiratory droplets (airborne transmission) and to subsequently cause a pandemic. However, adaptation of these zoonotic viruses to humans by mutation or reassortment with human influenza A viruses may result in airborne transmissible viruses with pandemic potential. Although our knowledge of factors that affect mammalian adaptation and transmissibility of influenza viruses is still limited, we are beginning to understand some of the biological traits that drive airborne transmission of influenza viruses among mammals. Increased understanding of the determinants and mechanisms of airborne transmission may aid in assessing the risks posed by avian influenza viruses to human health, and preparedness for such risks. This chapter summarizes recent discoveries on the genetic and phenotypic traits required for avian influenza viruses to become airborne transmissible between mammals.

  4. Viruses and oral cancer. Is there a link?

    Science.gov (United States)

    Sand, Lars; Jalouli, Jamshid

    2014-05-01

    Oral squamous cell carcinoma (OSCC) is the most common malignant tumour of the oral cavity. The aetiology of epithelial cancer of the head and neck is considered to be a multifactorial, sequential process. DNA viruses are found in many different cancers and are also capable of transforming cells to a malignant phenotype. Human Papilloma Virus (HPV) has been proposed as risk factors in OSCC development and HPV type 16 is the most important subtype. Other oncogenic virus species i.e., Epstein-Barr Virus and Herpes Simplex Virus Type 1 have been proposed to be involved in oral carcinogenesis. However, no convincing evidence exist that they are an established risk factor in OSCC. Therefore more studies are needed in order to clarify the different aspects of virus involvement. Here, we review the existing literature on viral involvement in oral cancer. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Learning to overeat: maternal use of restrictive feeding practices promotes girls' eating in the absence of hunger.

    Science.gov (United States)

    Birch, Leann L; Fisher, Jennifer Orlet; Davison, Kirsten Krahnstoever

    2003-08-01

    Experimental findings causally link restrictive child-feeding practices to overeating in children. However, longitudinal data are needed to determine the extent to which restrictive feeding practices promote overeating. Our objectives were to determine whether restrictive feeding practices foster girls' eating in the absence of hunger (EAH) and whether girls' weight status moderates the effects of restrictive feeding practices. Longitudinal data were used to create a study design featuring 2 maternal restriction factors (low and high), 2 weight-status factors (nonoverweight and overweight), and 3 time factors (ages 5, 7, and 9 y). Mean EAH increased significantly (P responsive to environmental cues. These findings are not expected to be generalized to boys or to other racial and ethnic groups.

  6. Can early protein restriction induce the development of binge eating?

    Science.gov (United States)

    Fechine, Madge Farias; Borba, Tássia Karin; Cabral-Filho, José Eulálio; Bolaños-Jiménez, Francisco; Lopes-de-Souza, Sandra; Manhães-de-Castro, Raul

    2016-04-01

    We tested the hypothesis that perinatal undernourishment is a factor for binge eating. At 52 days rats born from dams fed on 17% protein (Control) or 8% protein (Undernourished) were distributed into four groups, two of which continued to be fed ad libitum chow and two were submitted to three consecutive Restricted/Refeeding (R/R) cycles. According to the following schedule: Control Naïve (from mothers fed 17% protein/no restriction phase); Control Restricted (from mothers fed 17% protein/restriction phase); Undernourished Naïve (from mothers fed 8% protein/no restriction phase); and Undernourished Restricted (from mothers fed 8% protein/restriction phase). Each cycle consisted of a restriction phase (in the first four days 40% of the mean daily individual chow intake was offered for consumption), followed by a refeeding phase (4 days of chow ad libitum). After the three cycles, all animals were subjected to a feeding test (chow diet and palatable food ad libitum for 24h). During the feeding test, the Undernourished Restricted demonstrated rebound hyperphagia during 2, 4 and 6h. These results suggest the perinatal undernourishment cannot contribute to a binge eating phenotype. Copyright © 2016. Published by Elsevier B.V.

  7. Seroprevalence and factors associated with bovine viral diarrhea virus (BVDV) infection in dairy cattle in three milksheds in Ethiopia.

    Science.gov (United States)

    Aragaw, Kassaye; Sibhat, Berhanu; Ayelet, Gelagay; Skjerve, Eystein; Gebremedhin, Endrias Z; Asmare, Kassahun

    2018-05-31

    This work was conducted to estimate the seroprevalence, to identify potential factors that influence seroprevalence of bovine viral diarrhea virus (BVDV), and to investigate the association between BVDV serostatus and occurrence of reproductive disorders in dairy cattle in three milksheds in Ethiopia. A total of 1379 serum samples were obtained from cattle randomly selected from 149 herds from three milksheds representing central, southern, and western Ethiopia. Sera samples were examined for bovine viral diarrhea virus (BVDV) antibodies using commercial competitive enzyme-linked immunosorbent assay (ELISA) kit. Logistic regression analysis was employed to investigate associations between risk factors and the risk of BVDV seroprevalence, and BVDV serostatus and reproductive disorders. Seroreaction to BVDV antigens was detected in 32.6% of the 1379 cattle and 69.8% of the 149 herds sampled. Factors associated with BVDV seroplevalence were age, breed, and herd size (P  0.05). Risk of reproductive disorders was not affected by BVDV serostatus, except for repeat breeding (P > 0.05). The present study demonstrated that BVDV has wide distribution in the country being detected in all the 15 conurbations and 69.8% of herds involved in the study.

  8. Comparison of risk factors among blood donors, volunteers and replacement individuals, infected or not by hepatitis C virus

    Directory of Open Access Journals (Sweden)

    MJDB Felippe

    2009-01-01

    Full Text Available Hepatitis C is transmitted primarily parenterally by contaminated blood and is often associated with: intravenous drug abuse, invasive procedures, blood transfusions, acupuncture, tattooing, and alcohol and tobacco use. This study aimed to quantify and evaluate the risk factors among blood donors, volunteer blood donors and replacement individuals, infected or not by the C virus. The main transmission routes of C virus were identified in 55 men and 25 women (GI monitored by the Ambulatory Unit of the Department of Tropical Diseases, Botucatu Medical School, and in 24 men and 26 women (GII, all active blood donors at the Bauru State Hospital Transfusional Agency. Both groups were similar in: tobacco and alcohol consumption, sexual behavior, tattooing and illicit drug use. The duration of alcohol and tobacco consumption and blood transfusions in GI were longer, whereas the option for steady partners, condom use, disposable materials and piercings were predominant in GII. In conclusion, the risk factors for hepatitis C demonstrate the necessity of health policies that act on the primary and secondary prevention levels (respectively, reduction of infection incidence and hepatopathy risk.

  9. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  10. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  11. Viruses of insects reared for food and feed

    DEFF Research Database (Denmark)

    Maciel Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even...... with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks...... for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays...

  12. Sociodemographic factors and clinical conditions associated to hospitalization in influenza A (H1N1 2009 virus infected patients in Spain, 2009-2010.

    Directory of Open Access Journals (Sweden)

    Fernando González-Candelas

    Full Text Available The emergence and pandemic spread of a new strain of influenza A (H1N1 virus in 2009 resulted in a serious alarm in clinical and public health services all over the world. One distinguishing feature of this new influenza pandemic was the different profile of hospitalized patients compared to those from traditional seasonal influenza infections. Our goal was to analyze sociodemographic and clinical factors associated to hospitalization following infection by influenza A(H1N1 virus. We report the results of a Spanish nationwide study with laboratory confirmed infection by the new pandemic virus in a case-control design based on hospitalized patients. The main risk factors for hospitalization of influenza A (H1N1 2009 were determined to be obesity (BMI≥40, with an odds-ratio [OR] 14.27, hematological neoplasia (OR 10.71, chronic heart disease, COPD (OR 5.16 and neurological disease, among the clinical conditions, whereas low education level and some ethnic backgrounds (Gypsies and Amerinds were the sociodemographic variables found associated to hospitalization. The presence of any clinical condition of moderate risk almost triples the risk of hospitalization (OR 2.88 and high risk conditions raise this value markedly (OR 6.43. The risk of hospitalization increased proportionally when for two (OR 2.08 or for three or more (OR 4.86 risk factors were simultaneously present in the same patient. These findings should be considered when a new influenza virus appears in the human population.

  13. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  14. Restricted Interval Valued Neutrosophic Sets and Restricted Interval Valued Neutrosophic Topological Spaces

    Directory of Open Access Journals (Sweden)

    Anjan Mukherjee

    2016-08-01

    Full Text Available In this paper we introduce the concept of restricted interval valued neutrosophic sets (RIVNS in short. Some basic operations and properties of RIVNS are discussed. The concept of restricted interval valued neutrosophic topology is also introduced together with restricted interval valued neutrosophic finer and restricted interval valued neutrosophic coarser topology. We also define restricted interval valued neutrosophic interior and closer of a restricted interval valued neutrosophic set. Some theorems and examples are cites. Restricted interval valued neutrosophic subspace topology is also studied.

  15. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus.

    Science.gov (United States)

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei

    2015-02-01

    Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was

  16. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats.

    Science.gov (United States)

    Freije, William A; Thamotharan, Shanthie; Lee, Regina; Shin, Bo-Chul; Devaskar, Sherin U

    2015-04-01

    Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation. © 2014 Wiley Periodicals, Inc.

  17. Cost assessment of the movement restriction policy in France during the 2006 bluetongue virus episode (BTV-8).

    Science.gov (United States)

    Tago, Damian; Hammitt, James K; Thomas, Alban; Raboisson, Didier

    2014-12-01

    This study aims at evaluating the costs of the movement restriction policy (MRP) during the 2006 BTV-8 epidemic in France for the producers of 6-9 month old Charolais beef weaned calves (BWC), an important sector that was severely affected by the restrictions imposed. This study estimates the change in the number of BWC sold that was due to the movement restrictions, and evaluates the economic effect of the MRP. The change in BWC sold by producers located inside the restriction zone (RZ) was analyzed for 2006 by using a multivariate matching approach to control for any internal validity threat. The economic evaluation of the MRP was based on several scenarios that describe farms' capacity constraints, feeding prices, and the animal's selling price. Results show that the average farmer experienced a 21% decrease in animals sold due to the MRP. The economic evaluation of the MRP shows a potential gain during the movement standstill period in the case of no capacity constraint faced by the farm and food self-sufficiency. This gain remains limited and close to zero in case of a low selling price and when animals are held until they no longer fit the BWC market so that they cannot be sold as an intermediate product. Capacity constraints represent a tremendous challenge to farmers facing movement restrictions and the fattening profit becomes negative under such conditions. The timing and length of the movement standstill period significantly affect the profitability of the strategy employed by the farmer: for a 5.5 month-long standstill period with 3.5 months of cold weather, farmers with capacity constraints have stronger incentives to leave their animals outside during the whole period and face higher mortality and morbidity rates than paying for a boarding facility for the cold months. This is not necessarily true for a shorter standstill period. Strategies are also sensitive to the feed costs and to the food self-sufficiency of the farm. Altogether, the present work

  18. Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak.

    Science.gov (United States)

    Bogoch, Isaac I; Creatore, Maria I; Cetron, Martin S; Brownstein, John S; Pesik, Nicki; Miniota, Jennifer; Tam, Theresa; Hu, Wei; Nicolucci, Adriano; Ahmed, Saad; Yoon, James W; Berry, Isha; Hay, Simon I; Anema, Aranka; Tatem, Andrew J; MacFadden, Derek; German, Matthew; Khan, Kamran

    2015-01-03

    The WHO declared the 2014 west African Ebola epidemic a public health emergency of international concern in view of its potential for further international spread. Decision makers worldwide are in need of empirical data to inform and implement emergency response measures. Our aim was to assess the potential for Ebola virus to spread across international borders via commercial air travel and assess the relative efficiency of exit versus entry screening of travellers at commercial airports. We analysed International Air Transport Association data for worldwide flight schedules between Sept 1, 2014, and Dec 31, 2014, and historic traveller flight itinerary data from 2013 to describe expected global population movements via commercial air travel out of Guinea, Liberia, and Sierra Leone. Coupled with Ebola virus surveillance data, we modelled the expected number of internationally exported Ebola virus infections, the potential effect of air travel restrictions, and the efficiency of airport-based traveller screening at international ports of entry and exit. We deemed individuals initiating travel from any domestic or international airport within these three countries to have possible exposure to Ebola virus. We deemed all other travellers to have no significant risk of exposure to Ebola virus. Based on epidemic conditions and international flight restrictions to and from Guinea, Liberia, and Sierra Leone as of Sept 1, 2014 (reductions in passenger seats by 51% for Liberia, 66% for Guinea, and 85% for Sierra Leone), our model projects 2.8 travellers infected with Ebola virus departing the above three countries via commercial flights, on average, every month. 91,547 (64%) of all air travellers departing Guinea, Liberia, and Sierra Leone had expected destinations in low-income and lower-middle-income countries. Screening international travellers departing three airports would enable health assessments of all travellers at highest risk of exposure to Ebola virus infection

  19. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  20. Factors associated with future commitment and past history of human papilloma virus vaccination among female college students in northern Taiwan

    OpenAIRE

    Kuo, Ping-Fen; Yeh, Ying-Tse; Sheu, Shuh-Jen; Wang, Tze-Fang

    2014-01-01

    Objective To investigate factors influencing commitment to human papilloma virus (HPV) vaccination and prior vaccination among female college students in northern Taiwan. Methods A quota sample of 400 female college students was recruited from nine colleges in northern Taiwan during March 2013. Of these, 398 completed the self administered questionnaire which was designed based on the health promotion model. Results The results showed that factors associated with prior vaccination behavior we...

  1. Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    Directory of Open Access Journals (Sweden)

    Wood Richard J

    2006-05-01

    Full Text Available Abstract Background Diets that restrict carbohydrate (CHO have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. Methods We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy. A total of 27 single nucleotide polymorphisms (SNPs were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. Results Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF, hepatic glycogen synthase (GYS2, cholesteryl ester transfer protein (CETP and galanin (GAL genes were significantly associated with weight loss. Conclusion A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction.

  2. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  3. THE COMPLIANCE CHRONIC RENAL FAILURE PATIENT ON RESTRICTIONS LIQUIDS IN HEMODIALYSIS THERAPY

    Directory of Open Access Journals (Sweden)

    Endang Sri P Ningsih

    2017-04-01

    Full Text Available Introduction: Nonadherence is a rampant problem among patients undergoing dialysis and can impact multiple aspects of patient care, including medications, and treatment regimens as well as dietary and fluid restriction. The purpose of this descriptive correlative research, on hemodyalysa patient with chronic renal failure was to know the influencing factors of compliance patient to fluid restriction. Method: This study used descriptive correlative design, Data was analysed by using distibution frequency and chi square for analysys relation between variable. Result: The result revealed there were nor significant statistic difference at p > 0.05 between age, gender, education level, frequency of hemodyalysa and health education from nurse to compliance patient to fluid restriction (p = 0.647; p = 0.717; p = 0.345; p = 0.774; p = 0.273. Discussion: Level of patient adherence to therapy not influenced by demographi factor but by the quality of interaction health workers and other factors. This study recommended for further analysis of the factors that influence the level of compliance of the patient as psychological factors (belieft , motivation, socio-economic, and social support.

  4. Smallpox virus destruction and the implications of a new vaccine.

    Science.gov (United States)

    Henderson, D A

    2011-06-01

    The World Health Assembly is scheduled to decide in May 2011 whether the 2 known remaining stockpiles of smallpox virus are to be destroyed or retained. In preparation for this, a WHO-appointed committee undertook a comprehensive review of the status of smallpox virus research from 1999 to 2010. It concluded that, considering the nature of the studies already completed with respect to vaccine, drugs, and diagnostics, there was no reason to retain live smallpox virus except to satisfy restrictive regulatory requirements. The committee advised that researchers and regulators define alternative models for testing the vaccines and drugs. Apart from other considerations, the costs of new products are significant and important. These include prospective expenditures required for the development, manufacture, testing, and storage of new products. This commentary provides approximations of these costs and the incremental contribution that a newly developed vaccine might make in terms of public health security.

  5. Feline Immunodeficiency Virus Cross-Species Transmission: Implications for Emergence of New Lentiviral Infections.

    Science.gov (United States)

    Lee, Justin; Malmberg, Jennifer L; Wood, Britta A; Hladky, Sahaja; Troyer, Ryan; Roelke, Melody; Cunningham, Mark; McBride, Roy; Vickers, Winston; Boyce, Walter; Boydston, Erin; Serieys, Laurel; Riley, Seth; Crooks, Kevin; VandeWoude, Sue

    2017-03-01

    Owing to a complex history of host-parasite coevolution, lentiviruses exhibit a high degree of species specificity. Given the well-documented viral archeology of human immunodeficiency virus (HIV) emergence following human exposures to simian immunodeficiency virus (SIV), an understanding of processes that promote successful cross-species lentiviral transmissions is highly relevant. We previously reported natural cross-species transmission of a subtype of feline immunodeficiency virus, puma lentivirus A (PLVA), between bobcats ( Lynx rufus ) and mountain lions ( Puma concolor ) for a small number of animals in California and Florida. In this study, we investigate host-specific selection pressures, within-host viral fitness, and inter- versus intraspecies transmission patterns among a larger collection of PLV isolates from free-ranging bobcats and mountain lions. Analyses of proviral and viral RNA levels demonstrate that PLVA fitness is severely restricted in mountain lions compared to that in bobcats. We document evidence of diversifying selection in three of six PLVA genomes from mountain lions, but we did not detect selection among 20 PLVA isolates from bobcats. These findings support the hypothesis that PLVA is a bobcat-adapted virus which is less fit in mountain lions and under intense selection pressure in the novel host. Ancestral reconstruction of transmission events reveals that intraspecific PLVA transmission has occurred among panthers ( Puma concolor coryi ) in Florida following the initial cross-species infection from bobcats. In contrast, interspecific transmission from bobcats to mountain lions predominates in California. These findings document outcomes of cross-species lentiviral transmission events among felids that compare to the emergence of HIV from nonhuman primates. IMPORTANCE Cross-species transmission episodes can be singular, dead-end events or can result in viral replication and spread in the new species. The factors that determine which

  6. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication

    NARCIS (Netherlands)

    Cleef, K.W.R. van; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.; Davidson, A.D.; Jacobs, M.; Neyts, J.; Kuppeveld, F.J.M. van; Rij, R.P. van

    2013-01-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV

  7. Increased concordance of severe respiratory syncytial virus infection in identical twins

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Stensballe, Lone Graff; Skytthe, Axel

    2008-01-01

    (concordance rate: 0.66 vs 0.53), which suggests genetic influences on disease severity. Genetic factors accounted for 16%, family environment for 73%, and nonshared environment for 11% of the individual susceptibility to develop severe respiratory syncytial virus infection. CONCLUSIONS: The severity...... of respiratory syncytial virus infection is determined partly by genetic factors. This result should stimulate the search for genetic markers of disease severity.......OBJECTIVE: We estimated differences in the severity of respiratory syncytial virus infection attributable to genetic and environmental factors. METHODS: Record linkage data on hospitalizations attributable to respiratory syncytial virus infection were gathered on all twins (12,346 pairs) born...

  8. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Science.gov (United States)

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection

  9. Cultural factors influencing dietary and fluid restriction behaviour: perceptions of older Chinese patients with heart failure.

    Science.gov (United States)

    Rong, Xiaoshan; Peng, Youqing; Yu, Hai-Ping; Li, Dan

    2017-03-01

    To explore the cultural factors related to dietary and fluid restriction behaviours among older Chinese patients. Excess dietary sodium and fluid intake are risk factors contributing to the worsening and rehospitalisation for heart failure in older patients. Managing the complex fluid and diet requirements of heart failure patients is challenging and is made more complicated by cultural variations in self-management behaviours in response to a health threat. Qualitative study using semi-structured in interviews and framework analysis. The design of this study is qualitative descriptive. Semi-structured in-depth interviews were conducted with 15 heart failure patients. Data were analysed through content analysis. Seven cultural themes emerged from the qualitative data: the values placed on health and illness, customary way of life, preference for folk care and the Chinese healthcare system, and factors related to kinship and social ties, religion, economics and education. Dietary change and management in response to illness, including heart failure, is closely related to individuals' cultural background. Healthcare providers should have a good understanding of cultural aspects that can influence patients' conformity to medical recommendations. Heart failure patients need support that considers their cultural needs. Healthcare providers must have a good understanding of the experiences of people from diverse cultural backgrounds. © 2016 John Wiley & Sons Ltd.

  10. Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms.

    Science.gov (United States)

    Kennedy, David A; Cairns, Christopher; Jones, Matthew J; Bell, Andrew S; Salathé, Rahel M; Baigent, Susan J; Nair, Venugopal K; Dunn, Patricia A; Read, Andrew F

    2017-06-01

    Marek's disease virus is a herpesvirus of chickens that costs the worldwide poultry industry more than US$1 billion annually. Two generations of Marek's disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a 3-yr surveillance study to assess the prevalence of Marek's disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative PCR was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in one of three broiler-breeder operations (companies), four of five broiler operations, and three of five egg layer operations. Marek's disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek's disease virus dynamics, which are potentially important to the evolution of the virus.

  11. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface.

    Directory of Open Access Journals (Sweden)

    Kevin R McCarthy

    2015-08-01

    Full Text Available The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity.

  12. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    Science.gov (United States)

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  13. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  14. Macrophages and cytokines in the early defence against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Ellermann-Eriksen Svend

    2005-08-01

    Full Text Available Abstract Herpes simplex virus (HSV type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites

  15. Growth of the parvovirus minute virus of mice MVMp3 in EL4 lymphocytes is restricted after cell entry and before viral DNA amplification: cell-specific differences in virus uncoating in vitro.

    Science.gov (United States)

    Previsani, N; Fontana, S; Hirt, B; Beard, P

    1997-10-01

    Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.

  16. Cyclophilin B facilitates the replication of Orf virus

    OpenAIRE

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-01-01

    Background Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the f...

  17. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  18. Risk factors for the introduction of high pathogenicity Avian Influenza virus into poultry farms during the epidemic in the Netherlands in 2003.

    Science.gov (United States)

    Thomas, M E; Bouma, A; Ekker, H M; Fonken, A J M; Stegeman, J A; Nielen, M

    2005-06-10

    An epidemic of high pathogenicity Avian Influenza (HPAI) occurred in the Netherlands in 2003. A census survey of 173 infected and 401 uninfected commercial poultry farms was carried out to identify factors associated with the introduction of the HPAI virus into poultry farms. Data on farm size, production characteristics, type of housing, presence of cattle and pigs were gathered by the National Inspection Service for Livestock and Meat from all farms included in this study. For each risk factor (RF) available for analysis, the Mantel-Haenszel odds ratio was calculated (stratified on farm size and housing type). We found an increased risk of HPAI virus introduction in layer finisher type poultry: OR = 2.05 (95% confidence interval, CI = 1.29-3.27). An explanation for this increased risk is the high number of contacts between these farms, especially via cardboard egg trays used for removal of eggs during the epidemic. Our analysis did not indicate significant differences between the infected and uninfected farms with regard to housing type, presence of cattle or pigs. Since layer finisher type farms are assumed to be at higher risk for HPAI virus introduction, more specific control measures might be applied in future outbreaks.

  19. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  20. Clinical Features of and Risk Factors for Fatal Ebola Virus Disease, Moyamba District, Sierra Leone, December 2014–February 2015

    Energy Technology Data Exchange (ETDEWEB)

    Haaskjold, Yngvar Lunde [Haukeland Univ. Hospital, Bergen (Norway); Bolkan, Hakon Angell [St. Olav Hospital, Trondheim (Norway); Krogh, Kurt Osthuus [St. Olav Hospital, Trondheim (Norway); Jongopi, James [Moyamba District Hospital (Sierra Leone); Lundeby, Karen Marie [Oslo Univ. Hospital (Norway); Mellesmo, Sindre [St. Olav Hospital, Trondheim (Norway); Garces, Pedro San Jose [Medicos del Mundo, Madrid (Spain); Josendal, Ola [Haukeland Univ. Hospital, Bergen (Norway); Opstad, Asmund [Haraldsplass Diaconal Hospital, Bergen (Norway); Svensen, Erling [Haukeland Univ. Hospital, Bergen (Norway); Univ. of Bergen (Norway); Fuentes, Luis Matias Zabala [Medicos del Mundo, Madrid (Spain); Kamara, Alfred Sandy [Moyamba District Hospital (Sierra Leone); Riera, Melchor [Hospital Son Espases, Palma de Mallorca (Spain); Izquierdo, Javier Arranz [Medicos del Mundo, Madrid (Spain); Inst. de Investigacion de Palma (Spain); Roberts, David P. [MRIGlobal, Rockville, MD (United States); Stamper, Paul D. [MRIGlobal, Rockville, MD (United States); Austin, Paula [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moosa, Alfredo J. [Moyamba District Hospital (Sierra Leone); Marke, Dennis [Moyamba District Hospital (Sierra Leone); Hassan, Shoaib [Public Health (Pakistan); Berg, Ase [Stavanger Univ. Hospital (Norway); Blomberg, Bjorn [Haukeland Univ. Hospital, Bergen (Norway); Univ. of Bergen (Norway)

    2016-09-01

    The current outbreak of Ebola virus disease (EVD) in West Africa has infected more than 28,000 people, killed more than 11,000 and disrupted social life. We studied retrospectively the clinical presentation and risk factors for fatal outcome among the 31 Ebola virus (EBV) positive patients admitted to the Ebola Treatment Center (ETC) in Moyamba District, Sierra Leone. We found a higher rate of bleeding manifestations than reported elsewhere during the current outbreak. Significant predictors for fatal outcome were shorter time from onset to admission, male sex, high viral load on initial lab test, severe pain, diarrhea, bloody stools, and development of other bleeding manifestations during hospital admission. Awareness of risk factors for fatal outcome could be used to identify patients in need of more intensive medical support. The lack of fever in as much as a third of EVD cases may have implications for temperature screening practices and case definitions.

  1. HCMV spread and cell tropism are determined by distinct virus populations.

    Directory of Open Access Journals (Sweden)

    Laura Scrivano

    Full Text Available Human cytomegalovirus (HCMV can infect many different cell types in vivo. Two gH/gL complexes are used for entry into cells. gH/gL/pUL(128,130,131A shows no selectivity for its host cell, whereas formation of a gH/gL/gO complex only restricts the tropism mainly to fibroblasts. Here, we describe that depending on the cell type in which virus replication takes place, virus carrying the gH/gL/pUL(128,130,131A complex is either released or retained cell-associated. We observed that virus spread in fibroblast cultures was predominantly supernatant-driven, whereas spread in endothelial cell (EC cultures was predominantly focal. This was due to properties of virus released from fibroblasts and EC. Fibroblasts released virus which could infect both fibroblasts and EC. In contrast, EC released virus which readily infected fibroblasts, but was barely able to infect EC. The EC infection capacities of virus released from fibroblasts or EC correlated with respectively high or low amounts of gH/gL/pUL(128,130,131A in virus particles. Moreover, we found that focal spread in EC cultures could be attributed to EC-tropic virus tightly associated with EC and not released into the supernatant. Preincubation of fibroblast-derived virus progeny with EC or beads coated with pUL131A-specific antibodies depleted the fraction that could infect EC, and left a fraction that could predominantly infect fibroblasts. These data strongly suggest that HCMV progeny is composed of distinct virus populations. EC specifically retain the EC-tropic population, whereas fibroblasts release EC-tropic and non EC-tropic virus. Our findings offer completely new views on how HCMV spread may be controlled by its host cells.

  2. CD151, a novel host factor of nuclear export signaling in influenza virus infection.

    Science.gov (United States)

    Qiao, Yongkang; Yan, Yan; Tan, Kai Sen; Tan, Sheryl S L; Seet, Ju Ee; Arumugam, Thiruma Valavan; Chow, Vincent T K; Wang, De Yun; Tran, Thai

    2018-05-01

    Despite advances in our understanding of the mechanisms of influenza A virus (IAV) infection, the crucial virus-host interactions during the viral replication cycle still remain incomplete. Tetraspanin CD151 is highly expressed in the human respiratory tract, but its pathological role in IAV infection is unknown. We sought to characterize the functional role and mechanisms of action of CD151 in IAV infection of the upper and lower respiratory tracts with H1N1 and H3N2 strains. We used CD151-null mice in an in vivo model of IAV infection and clinical donor samples of in vitro-differentiated human nasal epithelial cells cultured at air-liquid interface. As compared with wild-type infected mice, CD151-null infected mice exhibited a significant reduction in virus titer and improvement in survival that is associated with pronounced host antiviral response and inflammasome activation together with accelerated lung repair. Interestingly, we show that CD151 complexes newly synthesized viral proteins with host nuclear export proteins and stabilizes microtubule complexes, which are key processes necessary for the polarized trafficking of viral progeny to the host plasma membrane for assembly. Our results provide new mechanistic insights into our understanding of IAV infection. We show that CD151 is a critical novel host factor of nuclear export signaling whereby the IAV nuclear export uses it to complement its own nuclear export proteins (a site not targeted by current therapy), making this regulation unique, and holds promise for the development of novel alternative/complementary strategies to reduce IAV severity. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Wild type measles virus attenuation independent of type I IFN

    Directory of Open Access Journals (Sweden)

    Horvat Branka

    2008-02-01

    Full Text Available Abstract Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt. Results The adaptation of a measles virus isolate (G954-PBL by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13 differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene. While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.

  4. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    Science.gov (United States)

    Shopan, Jannat; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-06-01

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the Potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Meat consumption is a major risk factor for hepatitis E virus infection

    NARCIS (Netherlands)

    Slot, Ed; Zaaijer, Hans L.; Molier, Michel; van den Hurk, Katja; Prinsze, Femmeke; Hogema, Boris M.

    2017-01-01

    The incidence of autochthonous hepatitis E virus genotype 3 (HEV gt3) infections in Western Europe is high. Although pigs are a major reservoir of the virus, the exact sources and transmission route(s) of HEV gt3 to humans remain unclear. To determine the role of meat consumption at a population

  6. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.

    Science.gov (United States)

    Riegger, David; Hai, Rong; Dornfeld, Dominik; Mänz, Benjamin; Leyva-Grado, Victor; Sánchez-Aparicio, Maria T; Albrecht, Randy A; Palese, Peter; Haller, Otto; Schwemmle, Martin; García-Sastre, Adolfo; Kochs, Georg; Schmolke, Mirco

    2015-02-01

    puzzled about molecular causes for such efficient crossing of the species barrier compared to other avian influenza viruses. Mx proteins are known restriction factors preventing influenza virus replication. Unfortunately, some viruses (e.g., human IAV) have developed some resistance, which is associated with specific amino acids in their nucleoproteins, the target of Mx function. Here, we demonstrate that the novel H7N9 bird IAV already carries a nucleoprotein that overcomes the inhibition of viral replication by human MxA. This is the first example of an avian IAV that is naturally less sensitive to Mx-mediated inhibition and might explain why H7N9 viruses transmitted efficiently to humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Restricting Factors at Modification of Parameters of Associative Engineering Objects

    Science.gov (United States)

    Horváth, László

    Advancements in product development have reached full integration of engineering activities and processes in product lifecycle management (PLM) systems. PLM systems are based on high-level modeling, simulation and data management. Despite significant development of modeling in PLM systems, a strong demand was recognized for improved decision assistance in product development. Decision assistance can be improved by application of methods from the area of computer intelligence. In order for a product development company to stay competitive, it is important for its modeling system to be relied on local even personal knowledge. The authors analyzed current PLM systems for shortcomings and possibilities for extended intelligence at decision-making during product development. They propose methods in order to increase suitability of current modeling systems to accommodate knowledge based IT at definition of sets of parameters of modeled objects and in the management of frequent changes of modeled objects. In the center of the proposed methodology, constrained parameters act as restricting factors at definition and modification of parameters of associative engineering objects. Paper starts with an outlook to modeling in current engineering systems and preliminary results by the authors. Following this, groups of essential information as handled by he proposed modeling are summarized and procedures for processing of that groups of information are detailed. Next, management of chains of changes along chains of associa-tive product objects and a new style of decision assistance in modeling systems are explained. Changes are created or verified by behavior analysis. Finally, behavior analysis, human intent combination, product data view creation, and change management are discussed as the proposed integrated and coordinated methodology for enhanced support of decision-making in product development.

  8. Manipulation of host factors optimizes the pathogenesis of western equine encephalitis virus infections in mice for antiviral drug development

    Science.gov (United States)

    Blakely, Pennelope K.; Delekta, Phillip C.; Miller, David J.; Irani, David N.

    2014-01-01

    While alphaviruses spread naturally via mosquito vectors, some can also be transmitted as aerosols making them potential bioterrorism agents. One such pathogen, western equine encephalitis virus (WEEV), causes fatal human encephalitis via multiple routes of infection and thus presumably via multiple mechanisms. Although WEEV also produces acute encephalitis in non-human primates, a small animal model that recapitulates features of human disease would be useful for both pathogenesis studies and to evaluate candidate antiviral therapies. We have optimized conditions to infect mice with a low passage isolate of WEEV, thereby allowing detailed investigation of virus tropism, replication, neuroinvasion, and neurovirulence. We find that host factors strongly influence disease outcome, and in particular that age, gender and genetic background all have significant effects on disease susceptibility independent of virus tropism or replication within the central nervous system. Our data show that experimental variables can be adjusted in mice to recapitulate disease features known to occur in both non-human primates and humans, thus aiding further study of WEEV pathogenesis and providing a realistic therapeutic window for antiviral drug delivery. PMID:25361697

  9. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    OpenAIRE

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  10. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  11. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Uhlin, Michael; Wikell, Helena; Sundin, Mikael; Blennow, Ola; Maeurer, Markus; Ringden, Olle; Winiarski, Jacek; Ljungman, Per; Remberger, Mats; Mattsson, Jonas

    2014-02-01

    Allogeneic hematopoietic stem cell transplantation is a successful treatment for hematologic malignancies and a variety of genetic and metabolic disorders. In the period following stem cell transplantation, the immune-compromised milieu allows opportunistic pathogens to thrive. Epstein-Barr virus-associated post-transplant lymphoproliferative disease can be a life-threatening complication for transplanted patients because of suppressed T-cell-mediated immunity. We analyzed possible risk factors associated with post-transplant lymphoproliferative disease in a cohort of over 1,000 patients. The incidence of post-transplant lymphoproliferative disease was 4%. Significant risk factors identified by multivariate analysis were: human leukocyte antigen-mismatch (PEpstein-Barr virus mismatch recipient-/donor+ (Pdisease grade II to IV (P=0.006), pre-transplant splenectomy (P=0.008) and infusion of mesenchymal stromal cells (P=0.015). The risk of post-transplant lymphoproliferative disease has increased in more recent years, from less than 2% before 1998 to more than 6% after 2011. Additionally, we show that long-term survival of patients with post-transplant lymphoproliferative disease is poor despite initial successful treatment. The 3-year survival rate among the 40 patients with post-transplant lymphoproliferative disease was 20% as opposed to 62% among patients without post-transplant lymphoproliferative disease (Pdisease after transplantation in need of pre-emptive measures.

  12. Autophagy in Measles Virus Infection

    Directory of Open Access Journals (Sweden)

    Aurore Rozières

    2017-11-01

    Full Text Available Autophagy is a biological process that helps cells to recycle obsolete cellular components and which greatly contributes to maintaining cellular integrity in response to environmental stress factors. Autophagy is also among the first lines of cellular defense against invading microorganisms, including viruses. The autophagic destruction of invading pathogens, a process referred to as xenophagy, involves cytosolic autophagy receptors, such as p62/SQSTM1 (Sequestosome 1 or NDP52/CALCOCO2 (Nuclear Dot 52 KDa Protein/Calcium Binding And Coiled-Coil Domain 2, which bind to microbial components and target them towards growing autophagosomes for degradation. However, most, if not all, infectious viruses have evolved molecular tricks to escape from xenophagy. Many viruses even use autophagy, part of the autophagy pathway or some autophagy-associated proteins, to improve their infectious potential. In this regard, the measles virus, responsible for epidemic measles, has a unique interface with autophagy as the virus can induce multiple rounds of autophagy in the course of infection. These successive waves of autophagy result from distinct molecular pathways and seem associated with anti- and/or pro-measles virus consequences. In this review, we describe what the autophagy–measles virus interplay has taught us about both the biology of the virus and the mechanistic orchestration of autophagy.

  13. High throughput generation and characterization of replication-competent clade C transmitter-founder simian human immunodeficiency viruses.

    Directory of Open Access Journals (Sweden)

    Debashis Dutta

    Full Text Available Traditional restriction endonuclease-based cloning has been routinely used to generate replication-competent simian-human immunodeficiency viruses (SHIV and simian tropic HIV (stHIV. This approach requires the existence of suitable restriction sites or the introduction of nucleotide changes to create them. Here, using an In-Fusion cloning technique that involves homologous recombination, we generated SHIVs and stHIVs based on epidemiologically linked clade C transmitted/founder HIV molecular clones from Zambia. Replacing vif from these HIV molecular clones with vif of SIVmac239 resulted in chimeric genomes used to generate infectious stHIV viruses. Likewise, exchanging HIV env genes and introducing N375 mutations to enhance macaque CD4 binding site and cloned into a SHIVAD8-EO backbone. The generated SHIVs and stHIV were infectious in TZMbl and ZB5 cells, as well as macaque PBMCs. Therefore, this method can replace traditional methods and be a valuable tool for the rapid generation and testing of molecular clones of stHIV and SHIV based on primary clinical isolates will be valuable to generate rapid novel challenge viruses for HIV vaccine/cure studies.

  14. Mutations Conferring Resistance to Viral DNA Polymerase Inhibitors in Camelpox Virus Give Different Drug-Susceptibility Profiles in Vaccinia Virus

    Czech Academy of Sciences Publication Activity Database

    Duraffour, S.; Andrei, G.; Topalis, D.; Krečmerová, Marcela; Crance, J. M.; Garin, D.; Snoeck, R.

    2012-01-01

    Roč. 86, č. 13 (2012), s. 7310-7325 ISSN 0022-538X Institutional support: RVO:61388963 Keywords : camelpox virus * CMLV * vaccinia virus VACV * acyclic nucleoside phosphonates * HPMPDAP * cidofovir * drug resistance Subject RIV: CC - Organic Chemistry Impact factor: 5.076, year: 2012

  15. Comparative physicochemical and biological properties of two strains of Kilham rat virus, a non-defective parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.; Snyder, C.E.; Bates, R.C.; Banerjee, P.T.

    1982-01-01

    Two antigenically indistinguishable strains, 171 and 308, of Kilham rat virus (KRV) have distinct host ranges and contain capsid proteins of identical size, but with different isoelectric points. The single-stranded DNA genomes of the viruses are also the same size but appear to have different secondary and tertiary structures. The genomes of the two strains have nearly identical cleavage maps for 11 restriction endonucleases. However, there is a lack of extended heteroloy in the nucleotide sequence of the two virus genomes, as judged by electron microscopic analysis of the heteroduplex of the two virus DNAs. This suggests that very subtle differences in the sequences of the genome, and possibly of the capsid proteins, may play a role in the host specificity without affecting the antigenic similarity of KRV strains.

  16. Partial genetic characterization of Sedlec virus (Orthobunyavirus, Bunyaviridae)

    Czech Academy of Sciences Publication Activity Database

    Bakonyi, T.; Kolodziejek, J.; Rudolf, Ivo; Berčič, R.; Nowotny, N.; Hubálek, Zdeněk

    2013-01-01

    Roč. 19, October (2013), s. 244-249 ISSN 1567-1348 Institutional support: RVO:68081766 Keywords : Sedlec virus * Leanyer virus * Simbu group * Orthobunyavirus * Acrocephalus Subject RIV: EE - Microbiology, Virology Impact factor: 3.264, year: 2013

  17. Recipient micro-environment does not dictate the Igh-V restriction specificity of T cell suppressor inducer factor (TsiF) from allogeneic bone marrow chimera in mice

    International Nuclear Information System (INIS)

    Noguchi, M.; Ogasawara, M.; Iwabuchi, K.; Osgasawara, K.; Ishihara, T.; Good, R.A.; Morikawa, K.; Onoe, K.

    1985-01-01

    The authors have ascertained previously from a study of fully allogeneic irradiation chimeras in mice that the H-2 restriction of the suppressor factor (Ly-2 T suppressor factor) is determined by the post-thymic environment protected by the donor cells, rather than by the thymic environment of the recipient. In the present study, the author analyzed differentiation influences that determine the Igh restriction specificities of the suppressor inducer T cell factor(s) (TsiF) that are produced by Ly-1+ splenic T cells in fully allogeneic bone marrow chimeras in mice. AKR mice that had been lethally irradiated and reconstituted with B10 marrow cells, [B10----AKR] chimeras, produced Ly-1 TsiF after hyper-immunization with sheep erythrocytes (SRBC) which suppressed antigen--specifically the primary antibody responses to SRBC that were generated in cells of the same Igh-Vb haplotype of donor strain and not those generated in cells of the recipient Igh-Va type. Similar results were obtained when Ly-1 TsiF from [B6----BALB/c] and [BALB/c----B6] chimeras were analyzed. Furthermore, the Ly-1 TsiF from [BALB/c----B6] chimeras suppressed the primary antibody responses of both BALB/c [H-2d, Igh-Va, Igh-Ca] and BAB-14 (H-2d, Igh-Va, Igh-Cb), but not those of CAL-20 (H-2d, Igh-Vd, Igh-Cd). These results demonstrate clearly that the Ly-1 TsiF from allogeneic bone marrow chimeras are donor Igh-V-restricted and are not influenced by the recipient micro-environment, presumably that were provided by the thymuses of the recipient mice

  18. Epidemiology and Risk Factors of Incident Hepatitis E Virus Infections in Rural Bangladesh

    Science.gov (United States)

    Labrique, Alain B.; Zaman, K.; Hossain, Zahid; Saha, Parimalendu; Yunus, Mohammad; Hossain, Anowar; Ticehurst, John R.; Nelson, Kenrad E.

    2010-01-01

    Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis in the world. Most of South Asia is HEV endemic, with frequent seasonal epidemics of hepatitis E and continuous sporadic cases. This author group's epidemiologic work and clinical reports suggest that Bangladesh is HEV endemic, but there have been few population-based studies of this country's HEV burden. The authors calculated HEV infection rates, over an 18-month interval between 2003 and 2005, by following a randomly selected cohort of 1,134 subjects between the ages of 1 and 88 years, representative of rural communities in southern Bangladesh. Baseline prevalence of antibody to hepatitis E virus (anti-HEV) was 22.5%. Seroincidence was 60.3 per 1,000 person-years during the first 12 months and 72.4 per 1,000 person-years from >12 to 18 months (during the monsoon season), peaking by age 50 years and with low rates during childhood. Few of the seroconverting subjects reported hepatitis-like illness. Overall incidence was calculated to be 64 per 1,000 person-years, with 1,172 person-years followed. No significant associations were found between anti-HEV incidence and demographic or socioeconomic factors for which data were available. This is the first study to document annual HEV infection rates among “healthy” and very young to elderly subjects in a rural Bangladeshi population. PMID:20801864

  19. The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus

    Science.gov (United States)

    Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua

    2014-01-01

    Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069

  20. Bullous pemphigoid associated with chronic hepatitis C virus infection in a hepatitis B virus endemic area: A case report.

    Science.gov (United States)

    Jang, Hyunil; Jin, Young-Joo; Yoon, Chang Hwi; Kim, Cheol-Woo; Kim, Lucia

    2018-04-01

    Bullous pemphigoid is a type of acute or chronic autoimmune disease that involves subepidermal skin lesions with bulla formation. Although viral infections, such as, human herpes virus (HHV), human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, HHV-6, hepatitis B virus (HBV), and hepatitis C virus (HCV), are known factors of bullous pemphigoid, HCV infection has only been rarely associated factor, especially in HBV endemic area. A 78-year-old man was admitted to our hospital due to erythematous bulla of onset 3 months before presentation affecting his entire body. Pathologic findings, that is, subepidermal bullae containing eosinophils and neutrophils with superficial perivascular lymphocytic and eosinophilic infiltration, were consistent with bullous pemphigoid. Anti-HCV was positive and HCV quantitative real-time polymerase chain reaction (PCR) was 1.25 x 10 IU/mL. HCV genotype was 2a. After a diagnosis of bullous pemphigoid associated with chronic HCV infection was reached, he was treated with oral methylprednisolone for bullous pemphigoid, and his skin lesions improved. Oral direct-acting antiviral agents (sofosbuvir plus ribavirin) were prescribed for chronic hepatitis C, and sustained viral response was achieved. The authors report a rare case of bullous pemphigoid associated with chronic HCV infection in a HBV endemic area and advise that HCV should be considered in the differential diagnosis of factors precipitating bullous pemphigoid, even in HBV endemic areas.

  1. Molecular Mechanisms of White Spot Syndrome Virus Infection and Perspectives on Treatments

    Directory of Open Access Journals (Sweden)

    Bas Verbruggen

    2016-01-01

    Full Text Available Since its emergence in the 1990s, White Spot Disease (WSD has had major economic and societal impact in the crustacean aquaculture sector. Over the years shrimp farming alone has experienced billion dollar losses through WSD. The disease is caused by the White Spot Syndrome Virus (WSSV, a large dsDNA virus and the only member of the Nimaviridae family. Susceptibility to WSSV in a wide range of crustacean hosts makes it a major risk factor in the translocation of live animals and in commodity products. Currently there are no effective treatments for this disease. Understanding the molecular basis of disease processes has contributed significantly to the treatment of many human and animal pathogens, and with a similar aim considerable efforts have been directed towards understanding host–pathogen molecular interactions for WSD. Work on the molecular mechanisms of pathogenesis in aquatic crustaceans has been restricted by a lack of sequenced and annotated genomes for host species. Nevertheless, some of the key host–pathogen interactions have been established: between viral envelope proteins and host cell receptors at initiation of infection, involvement of various immune system pathways in response to WSSV, and the roles of various host and virus miRNAs in mitigation or progression of disease. Despite these advances, many fundamental knowledge gaps remain; for example, the roles of the majority of WSSV proteins are still unknown. In this review we assess current knowledge of how WSSV infects and replicates in its host, and critique strategies for WSD treatment.

  2. Replication of simian virus 40 in simian virus 40-transformed hamster kidney cells induced by mitomycin C or 60Co γ irradiation

    International Nuclear Information System (INIS)

    Rakusanova, T.; Smales, W.P.; Kaplan, J.C.; Black, P.H.

    1978-01-01

    Several clones of simian virus 40 (SV40)-transformed hamster kidney cells, which are heterogeneous for induction of infectious SV40, have been studied. SV40 yields are low after induction with 60 Co γ irradiation or mitomycin C. In order to clarify the mechanism(s) by which virus is produced in induced cells, we analyzed the replication of viral DNA and production of virion (V) antigen and infectious virus after induction in various clones as well as in lytically infected permissive cells. Cells replicating SV40 DNA or synthesizing V antigen were visualized by in situ hybridization and immunofluorescence techniques, respectively. Only some cells in induced cultures were found to produce SV40 and those which did were less efficient than lytically infected monkey cells. Mitomycin C or 60 Co γ irradiation acted by inducing more cells to replicate virus rather than by increasing the amount of SV40 released from individual cells. A greater proportion of cells could be induced to replicate SV40 DNA than to synthesize V antigen in all induced clones studied. Also, SV40 DNA replication was induced at lower doses of γ irradiation than the production of either V antigen or infectious virus suggesting that synthesis of late virus protein is more restricted in induced cells than is replication of SV40 DNA. These findings indicate that one of the effects of induction treatments on SV40-transformed hamster cells is an enhancement of the cells' capacity to support SV40 replication

  3. Generation of a human immunodeficiency virus type 1 chronically infected monkey B cell line expressing low levels of endogenous TRIM5alpha.

    Science.gov (United States)

    Ridolfi, Barbara; Catone, Stefania; Sgarbanti, Marco; Sernicola, Leonardo; Battistini, Angela; Parolin, Cristina; Titti, Fausto; Borsetti, Alessandra

    2009-12-01

    Several innate cellular antiviral factors exist in mammalian cells that prevent the replication of retroviruses. Among them, the tripartite motif protein (TRIM)5alpha has been shown to block human immunodeficiency virus type 1 (HIV-1) infection in several types of Old World monkey cells. Here we report a novel HIV-1 chronically infected monkey B cell line, F6/HIV-1, characterized by very low levels of TRIM5alpha expression that allows HIV-1 to overcome the restriction. Virus produced by F6/HIV-1 cells fails to infect monkey cells but retains the ability to infect human peripheral blood mononuclear cells (PBMCs) and T cell lines, although with a reduced infectivity compared to the input virus. Ultrastructural analyses revealed the presence of budding virions at the F6/HIV-1 cells plasma membrane characterized by a typical conical core shell. To our knowledge F6/HIV-1 is the first monkey cell line chronically infected by HIV-1 and able to release infectious particles thus representing a useful tool to gain further insights into the molecular mechanisms of HIV-1 pathogenesis.

  4. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-01-01

    Full Text Available Mx proteins are interferon (IFN-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA, overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  5. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    Abujamra, Ana L.; Faller, Douglas V.; Ghosh, Sajal K.

    2003-01-01

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  6. KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, induces intrauterine growth restriction in mice.

    Science.gov (United States)

    Abe, Naomichi; Nakahara, Tsutomu; Morita, Akane; Wada, Yoshiko; Mori, Asami; Sakamoto, Kenji; Nagamitsu, Tohru; Ishii, Kunio

    2013-08-01

    We previously reported that treatment with KRN633, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, during mid-pregnancy caused intrauterine growth restriction resulting from impairment of blood vessel growth in the labyrinthine zone of the placenta and fetal organs. However, the relative sensitivities of blood vessels in the placenta and fetal organs to vascular endothelial growth factor (VEGF) inhibitors have not been determined. In this study, we aimed to examine the effects of KRN633 on the vasculatures of organs in mother mice and their newborn pups by immunohistochemical analysis. Pregnant mice were treated daily with KRN633 (5 mg/kg) either from embryonic day 13.5 (E13.5) to E17.5 or from E13.5 to the day of delivery. The weights of the pups of KRN633-treated mice were lower than those of the pups of vehicle-treated mothers. However, no significant difference in body weight was observed between the vehicle- and KRN633-treated mice. The vascular development in the organs (the pancreas, kidney, and intestine) and intestinal lymphatic formation of the pups of KRN633-treated mothers was markedly impaired. In contrast, the KRN633 treatment showed no significant effect on the vascular beds in the organs, including the labyrinthine zone of the placenta, of the mother mice. These results suggest that blood vessels in fetal organs are likely to be more sensitive to reduced VEGF signaling than those in the mother. A partial loss of VEGF function during pregnancy could suppress vascular growth in the fetus without affecting the vasculature in the mother mouse, thereby increasing the risk of intrauterine growth restriction. © 2013 Wiley Periodicals, Inc.

  7. The genomes of four novel begomoviruses and a new Sida micrantha mosaic virus strain from Bolivian weeds.

    Science.gov (United States)

    Wyant, Patrícia Soares; Gotthardt, Diether; Schäfer, Benjamin; Krenz, Björn; Jeske, Holger

    2011-02-01

    Begomovirus is the largest genus within the family Geminiviridae and includes economically important plant DNA viruses infecting a broad range of plant species and causing devastating crop diseases, mainly in subtropical and tropical countries. Besides cultivated plants, many weeds act as virus reservoirs. Eight begomovirus isolates from Bolivian weeds were examined using rolling-circle amplification (RCA) and restriction fragment length polymorphism (RFLP). An efficient, novel cloning strategy using limited Sau3A digestion to obtain tandem-repeat inserts allowed the sequencing of the complete genomes. The viruses were classified by phylogenetic analysis as typical bipartite New World begomoviruses. Four of them represented distinct new virus species, for which the names Solanum mosaic Bolivia virus, Sida mosaic Bolivia virus 1, Sida mosaic Bolivia virus 2, and Abutilon mosaic Bolivia virus are proposed. Three were variants of a new strain of Sida micrantha mosaic virus (SimMV), SimMV-rho[BoVi07], SimMV-rho[Bo:CF1:07] and SimMV-rho[Bo:CF2:07], and one was a new variant of a previously described SimMV, SimMV-MGS2:07-Bo.

  8. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  9. HIV-related travel restrictions: trends and country characteristics.

    Science.gov (United States)

    Chang, Felicia; Prytherch, Helen; Nesbitt, Robin C; Wilder-Smith, Annelies

    2013-06-03

    medicine providers alike. Despite international pressure to remove travel restrictions, many countries continue to implement these restrictions for HIV-positive individuals on entry and stay. Since 2010, the United States and China have engaged in high profile removals. This may be indicative of an increasing trend, facilitated by various factors, including international advocacy and the setting of a UNAIDS goal to halve the number of countries with restrictions by 2015.

  10. Conservation and variability of dengue virus proteins: implications for vaccine design.

    Directory of Open Access Journals (Sweden)

    Asif M Khan

    2008-08-01

    Full Text Available Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses. Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted. RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and therapeutic purposes.We describe a large-scale identification and analysis of evolutionarily highly conserved amino acid sequences of the entire dengue virus (DENV proteome, with a focus on sequences of 9 amino acids or more, and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI Entrez protein database in 2005 (9,512 sequences and again in 2007 (12,404 sequences. Forty-four (44 sequences (pan-DENV sequences, mainly those of nonstructural proteins and representing approximately 15% of the DENV polyprotein length, were identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 ( approximately 77% were present in >or=95% of sequences of each DENV type, and 27 ( approximately 61% were conserved in other Flaviviruses. The frequencies of variants of the pan-DENV sequences were low (0 to approximately 5%, as compared to variant frequencies of approximately 60 to approximately 85% in the non pan-DENV sequence regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained numerous predicted human leukocyte antigen (HLA supertype-restricted peptide sequences, and 26 contained T-cell determinants identified by

  11. Genetic and antigenic relatedness of bovine herpesvirus-1 and pseudorabies virus

    International Nuclear Information System (INIS)

    Bush, C.E.

    1985-01-01

    The DNA sequence homology between the genomes of bovine herpesvirus-1 (BHV-1) and pseudorabies virus (PRV) was examined. Reciprocal cross hybridization of viral DNA labeled by nick translation to Southern blots of Kpnl, BamH1, EcoR1, and HindIII restriction endonuclease digested DNA, detected homologous sequences dispersed throughout the genomes of the two viruses. The DNA-DNA hybrids were found to be stable under high stringency wash conditions. Sequences of a 32 P-labeled PRV DNA A fragment probe were found to hybridize only to the BHV-1 HindIII G fragment. This indicated that the sequence homology detected between these two viruses was not simply due to fortuitous hybridization of guanine plus cytosine rich sequences. The homology between BHV-1 and PRV was determined by liquid reassociation. It was found that the hybridization rates between 32 P-labeled PRV DNA and unlabeled BHV-1 DNA and 32 P-labeled BHV-1 DNA and unlabeled PRV DNA corresponded to approximately 8% reassociation. The antigenic relatedness between BHV-1 and PRV was also examined. Eighty percent plaque reduction serum neutralization tests showed that BHV-1 rabbit hyperimmune antiserum neutralized BHV-1 virus at a serum neutralization titer (SNT) of 1:256 and PRV virus at an (SNT) of 1:8. PRV rabbit hyperimmune antiserum neutralized PRV virus at an SNT of 1:4 and BHV-1 virus at an SNT of 1:2

  12. An Epstein-Barr virus encoded inhibitor of Colony Stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection.

    Directory of Open Access Journals (Sweden)

    Makoto Ohashi

    2012-12-01

    Full Text Available Acute Epstein-Barr virus (EBV infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1 signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV, naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1. Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.

  13. Prevalence and risk factors for H1N1 and H3N2 influenza A virus infections in Minnesota turkey premises.

    Science.gov (United States)

    Corzo, Cesar A; Gramer, Marie; Lauer, Dale; Davies, Peter R

    2012-09-01

    Influenza virus infections can cause respiratory and systemic disease of variable severity and also result in economic losses for the turkey industry. Several subtypes of influenza can infect turkeys, causing diverse clinical signs. Influenza subtypes of swine origin have been diagnosed in turkey premises; however, it is not known how common these infections are nor the likely routes of transmission. We conducted a cross-sectional study to estimate the prevalence of influenza viruses and examine factors associated with infection on Minnesota turkey premises. Results from influenza diagnostic tests and turkey and pig premise location data were obtained from the Minnesota Poultry Testing Laboratory and the Minnesota Board of Animal Health, respectively, from January 2007 to September 2008. Diagnostic data from 356 premises were obtained, of which 17 premises tested positive for antibodies to influenza A virus by agar gel immunodiffusion assay and were confirmed as either H1N1 or H3N2 influenza viruses by hemagglutination and neuraminidase inhibition assays. Influenza infection status was associated with proximity to pig premises and flock size. The latter had a sparing effect on influenza status. This study suggests that H1N1 and H3N2 influenza virus infections of turkey premises in Minnesota are an uncommon event. The route of influenza virus transmission could not be determined; however, the findings suggest that airborne transmission should be considered in future studies.

  14. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism

    International Nuclear Information System (INIS)

    Cihak, J.; Lehmann-Grube, F.

    1978-01-01

    Experiments are described aimed at analysing the mechanism responsible for the absence of cell-mediated immunity against LCM virus-infected cells in neonatally established LCM virus carrier mice. Virus-specific cell-mediated immunity was assessed by 51 Cr release and target cell reduction assays. Attempts to demonstrate cells in spleens of CBA/J carrier mice able to suppress in syngeneic recipients the induction or the effector phase of the cytotoxic T-cell response against LCM virus-infected cells were unsuccessful. Also, no factors were detected in CBA/J and C57BL/6J carrier mice, either spleen cell-associated or free in the circulation, which would block the activity of cytotoxic T-lymphocytes against LCM virus-infected syngeneic target cells. The results indicate that inability of LCM virus carrier mice to act immunologically against virus-infected target cells is due to deletion or irreversible inactivation of T lymphocytes carrying receptors for virally altered cell membrane antigens. (author)

  15. Hepatitis C virus risk factors in blood donors from Sohag governorate, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamad Abdelaziz

    2017-11-01

    Full Text Available Egypt has the highest prevalence of hepatitis C virus (HCV worldwide. Most of data came from lower Egypt regions (Cairo and northern to it. So, we decided to study risk factors and prevalence of HCV transmission in our governorate. In this cross sectional study, we recruited 631 blood donors from April, 2011 to March 2012 who were tested for anti-HCV, HBs Ag, anti- HBc and anti-HIV. Fifty seven donors were excluded as they are HBs Ag and anti-HBc positive. We found 138 (24% HCV seropositive participants. Logistic regression final model demonstrated that endoscopy, hospital admission, socioeconomic status, IV drug use and age made a significant contribution to prediction (P=0.0001. The level of education also made significant contribution to prediction (P=0.014. In conclusion, it is wise to determine high HCV prevalence areas and risk factors for its seropositivity then build up a governorate suitable infection control program concentrating upon prevention more than treatment of HCV patients. Also, the introduction of pre-test and post-test counseling in blood banks will help in better donor selection and early detection of patients.

  16. Factors other than hepatitis B virus responsible for hepatocellular carcinomas in lower social class

    International Nuclear Information System (INIS)

    Pervez, T.; Anwar, M.S.

    2002-01-01

    Objective: To find out the role of other etiological agents besides hepatitis B virus in the genesis of Hepatocellular carcinoma (HCC) in our social classes. Design: A hospital-based observational study. Place and Duration of Study: The study was conducted in oncology department of services Hospital, Lahore from December 1997 to February 2001. Patients and Methods: One hundred patients of hepatocellular carcinoma ware divided into three groups based on monthly income. Lower socioeconomic group had monthly income less than 3,000 Pakistani rupees. Middle socioeconomic group had monthly income between 3,000-1,000 Pakistani rupees and upper socioeconomic group heard monthly income of more than 10,000 Pakistani rupees. Percentages of HCC patients positive for HbsAg in different socioeconomic groups in our population were compared to assess the social class difference, the possibility and correlation of other factors present in our classes for the formation of hepatocellular carcinoma besides hepatitis B virus. Results: We found that there was no significant difference in HbsAg positively in different classes. Conclusion: If HBV was only responsible for this disease than there should have been consistency in the outcome. But as there is a higher prevalence of HCC in poor class, this reflects that other etiological agents are also operating. This needs further evaluation. (author)

  17. Chimeric HCMV/HSV-1 and Δγ134.5 oncolytic herpes simplex virus elicit immune mediated antigliomal effect and antitumor memory

    Directory of Open Access Journals (Sweden)

    Mohammed G. Ghonime

    2018-02-01

    Full Text Available Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.

  18. Virus and Infections 2010 - BIT's first world congress.

    Science.gov (United States)

    Garkavenko, Olga

    2010-10-01

    The World Congress of Virus and Infections, held in Busan, South Korea, included topics reviewing the field of zoonoses. This conference report highlights selected presentations on surveillance, epidemiology and measures for the control and prevention of zoonotic diseases. Topics discussed include human factors influencing zoonoses, the molecular epidemiology of Crimean-Congo hemorrhagic fever, the emerging Nipah virus, and the re-emergence of cowpox virus.

  19. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients.

    Science.gov (United States)

    Machado, Mariana V; Oliveira, António G; Cortez-Pinto, Helena

    2011-09-01

    Although hepatic steatosis (HS) has an association with hepatitis C virus (HCV) infection, an association with hepatitis B virus (HBV) is controversial. We performed a meta-analysis to evaluate HS prevalence and risk factors, in HBV infection. Standard guidelines for performance of meta-analyses were followed. Studies with HS assessed by histology were included. Pooled odd ratios (OR) and standardized mean differences (SMD) were obtained with the random-effects model and DerSimonian-Laid method. Seventeen out of 21 studies were included, comprising 4100 HBV infected patients. Overall HS prevalence was 29.6%. Eight studies also included 945 HCV infected patients, showing decreased risk of HS in HBV versus HCV patients (OR 0.55, 95%CI [0.45-0.67], P SMD 2.17, 95%CI [1.23, 3.11], P SMD 0.84, 95%CI [0.00, 1.67], P = 0.049), triglycerides (SMD 1.18, 95%CI [0.48, 1.89], P = 0.001), cholesterol (SMD 0.88, 95%CI [0.31, 1.45], P = 0.003), moderate alcohol consumption (OR 1.54, 95%CI [1.10-2.15], P = 0.011) and negatively with HBV DNA (SMD -74.12, 95%CI [-82.93, -65.31], P infected patients, relating to metabolic factors but not with hepatic histology severity. A puzzling strong negative association between viral load and HS, may even suggest a protective effect of the virus on HS. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  20. Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors.

    Directory of Open Access Journals (Sweden)

    Jennifer M Binning

    2018-01-01

    Full Text Available The lentiviral protein Viral Infectivity Factor (Vif counteracts the antiviral effects of host APOBEC3 (A3 proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.