WorldWideScience

Sample records for virus a43r gene

  1. Vaccinia virus A43R gene encodes an orthopoxvirus-specific late non-virion type-1 membrane protein that is dispensable for replication but enhances intradermal lesion formation.

    Science.gov (United States)

    Sood, Cindy L; Moss, Bernard

    2010-01-05

    The vaccinia virus A43R open reading frame encodes a 168-amino acid protein with a predicted N-terminal signal sequence and a C-terminal transmembrane domain. Although A43R is conserved in all sequenced members of the orthopoxvirus genus, no non-orthopoxvirus homolog or functional motif was recognized. Biochemical and confocal microscopic studies indicated that A43 is expressed at late times following viral DNA synthesis and is a type-1 membrane protein with two N-linked oligosaccharide chains. A43 was present in Golgi and plasma membranes but only a trace amount was detected in sucrose gradient purified mature virions and none in CsCl gradient purified enveloped virions. Prevention of A43R expression had no effect on plaque size or virus replication in cell culture and little effect on virulence after mouse intranasal infection. Although the A43 mutant produced significantly smaller lesions in skin of mice than the control, the amounts of virus recovered from the lesions were similar.

  2. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Experimental therapies: gene therapies and oncolytic viruses.

    Science.gov (United States)

    Hulou, M Maher; Cho, Choi-Fong; Chiocca, E Antonio; Bjerkvig, Rolf

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development. © 2016 Elsevier B.V. All rights reserved.

  4. Epstein–Barr virus latent genes

    Science.gov (United States)

    Kang, Myung-Soo; Kieff, Elliott

    2015-01-01

    Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized. PMID:25613728

  5. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    Science.gov (United States)

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  6. Do Viruses Exchange Genes across Superkingdoms of Life?

    Directory of Open Access Journals (Sweden)

    Shahana S. Malik

    2017-10-01

    Full Text Available Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.

  7. Viral microRNAs targeting virus genes promote virus infection in shrimp in vivo.

    Science.gov (United States)

    He, Yaodong; Yang, Kai; Zhang, Xiaobo

    2014-01-01

    Viral microRNAs (miRNAs), most of which are characterized in cell lines, have been found to play important roles in the virus life cycle to avoid attack by the host immune system or to keep virus in the latency state. Viral miRNAs targeting virus genes can inhibit virus infection. In this study, in vivo findings in Marsupenaeus japonicus shrimp revealed that the viral miRNAs could target virus genes and further promote the virus infection. The results showed that white spot syndrome virus (WSSV)-encoded miRNAs WSSV-miR-66 and WSSV-miR-68 were transcribed at the early stage of WSSV infection. When the expression of WSSV-miR-66 and WSSV-miR-68 was silenced with sequence-specific anti-miRNA oligonucleotides (AMOs), the number of copies of WSSV and the WSSV-infected shrimp mortality were significantly decreased, indicating that the two viral miRNAs had a great effect on virus infection. It was revealed that the WSSV wsv094 and wsv177 genes were the targets of WSSV-miR-66 and that the wsv248 and wsv309 genes were the targets of WSSV-miR-68. The data demonstrate that the four target genes play negative roles in the WSSV infection. The targeting of the four virus genes by WSSV-miR-66 and WSSV-miR-68 led to the promotion of virus infection. Therefore, our in vivo findings show a novel aspect of viral miRNAs in virus-host interactions.

  8. Expression of VP60 gene from rabbit haemorrhagic disease virus ...

    African Journals Online (AJOL)

    The VP60 gene from rabbit haemorrhagic disease virus (RHDV) YL strain in Northeast of China, under control of the ats1A promoter from Rubisco small subunit genes of Arabidopsis thaliana, was introduced into the transfer deoxyribonucleic acid (T-DNA) region of plant transfer vector pCAMBIA1300 and transferred to ...

  9. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  10. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    Science.gov (United States)

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  11. Mumps virus F gene and HN gene sequencing as a molecular tool to study mumps virus transmission.

    Science.gov (United States)

    Gouma, Sigrid; Cremer, Jeroen; Parkkali, Saara; Veldhuijzen, Irene; van Binnendijk, Rob S; Koopmans, Marion P G

    2016-11-01

    Various mumps outbreaks have occurred in the Netherlands since 2004, particularly among persons who had received 2 doses of measles, mumps, and rubella (MMR) vaccination. Genomic typing of pathogens can be used to track outbreaks, but the established genotyping of mumps virus based on the small hydrophobic (SH) gene sequences did not provide sufficient resolution. Therefore, we expanded the sequencing to include fusion (F) gene and haemagglutinin-neuraminidase (HN) gene sequences in addition to the SH gene sequences from 109 mumps virus genotype G strains obtained between 2004 and mid 2015 in the Netherlands. When the molecular information from these 3 genes was combined, we were able to identify separate mumps virus clusters and track mumps virus transmission. The analyses suggested that multiple mumps virus introductions occurred in the Netherlands between 2004 and 2015 resulting in several mumps outbreaks throughout this period, whereas during some local outbreaks the molecular data pointed towards endemic circulation. Combined analysis of epidemiological data and sequence data collected in 2015 showed good support for the phylogenetic clustering. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The immunomodulatory gene products of myxoma virus

    Indian Academy of Sciences (India)

    Unknown

    vity regulates innate immunity. Moreover, TNF-α is in- volved in the regulation of cell differentiation, prolifera- tion and apoptosis. Rabbit RL-5 T lymphocyte cells in- fected with an M-T2 knock-out myxoma virus undergo apoptosis, resulting in an aborted infection (Macen et al. 1996). These results suggest that the binding of ...

  13. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    Science.gov (United States)

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Virus-Induced Gene Silencing in Maize with a Foxtail mosaic virus Vector.

    Science.gov (United States)

    Mei, Yu; Whitham, Steven A

    2018-01-01

    Virus-induced gene silencing (VIGS) is a powerful technology for rapidly and transiently knocking down the expression of plant genes to study their functions. A VIGS vector for maize derived from Foxtail mosaic virus (FoMV), a positive-sense single-stranded RNA virus, was recently developed. A cloning site created near the 3' end of the FoMV genome enables insertion of 200-400 nucleotide fragments of maize genes targeted for silencing. The recombinant FoMV clones are inoculated into leaves of maize seedlings by biolistic particle delivery, and silencing is typically observed within 2 weeks after inoculation. This chapter provides a protocol for constructing FoMV VIGS clones and inoculating them into maize seedlings.

  15. A study of variability of capsid protein genes of Radish mosaic virus

    OpenAIRE

    HOLÁ, Marcela

    2008-01-01

    The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

  16. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  17. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.

    Science.gov (United States)

    Loskog, Angelica

    2015-11-06

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  18. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  19. Adeno-associated virus inverted terminal repeats stimulate gene editing

    OpenAIRE

    Hirsch, ML

    2014-01-01

    Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repea...

  20. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  1. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway

    Science.gov (United States)

    Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus

    2007-01-01

    Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165

  2. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  3. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    Conclusion: A method for determination of HBV genotypes using pol gene sequencing which simultaneously detects major drug resistance mutations has been established. HBV genetic diversity may play an important role in treatment decision. Keywords: Hepatitis B virus, nested PCR, genotype, sub-genotypes, YMDD ...

  4. Molecular characterisation of lumpy skin disease virus and sheeppox virus based on P32 gene

    Directory of Open Access Journals (Sweden)

    P.M.A.Rashid

    2017-06-01

    Full Text Available Lumpy skin disease virus (LSDV and sheeppox virus (SPV have a considerable economic impact on the cattle and small ruminant industry. They are listed in group A of contagious disease by the World Organization for Animal Health (OIE. This study addressed molecular characterisation of first LSDV outbreak and an endemic SPV in Kurdistan region of Iraq based on P32 gene. The results indicated that P32 gene can be successfully used for diagnosis of LSDV. The phylogenic and molecular analysis showed that there may be a new LSDV isolate circulating in Kurdistan which uniquely shared the same characteristic amino acid sequence with SPV and GPV, leucine at amino acid position 51 in P32 gene as well as few genetically distinct SPV causing pox disease in Kurdistan sheep. This study provided sequence information of P32 gene for several LSDV isolates, which positively affects the epidemiological study of Capripoxvirus

  5. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  6. Foamy virus for efficient gene transfer in regeneration studies.

    Science.gov (United States)

    Khattak, Shahryar; Sandoval-Guzmán, Tatiana; Stanke, Nicole; Protze, Stephanie; Tanaka, Elly M; Lindemann, Dirk

    2013-05-03

    Molecular studies of appendage regeneration have been hindered by the lack of a stable and efficient means of transferring exogenous genes. We therefore sought an efficient integrating virus system that could be used to study limb and tail regeneration in salamanders. We show that replication-deficient foamy virus (FV) vectors efficiently transduce cells in two different regeneration models in cell culture and in vivo. Injection of EGFP-expressing FV but not lentivirus vector particles into regenerating limbs and tail resulted in widespread expression that persisted throughout regeneration and reamputation pointing to the utility of FV for analyzing adult phenotypes in non-mammalian models. Furthermore, tissue specific transgene expression is achieved using FV vectors during limb regeneration. FV vectors are efficient mean of transferring genes into axolotl limb/tail and infection persists throughout regeneration and reamputation. This is a nontoxic method of delivering genes into axolotls in vivo/ in vitro and can potentially be applied to other salamander species.

  7. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses.

    Science.gov (United States)

    VanLeuven, James T; Ridenhour, Benjamin J; Gonzalez, Andres J; Miller, Craig R; Miura, Tanya A

    2017-01-01

    The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.

  8. Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.

    Science.gov (United States)

    Taylor, Louis J; Strebel, Klaus

    2017-01-07

    Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.

  9. GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application▿

    Science.gov (United States)

    Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.

    2007-01-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757

  10. Sheeppox Virus Kelch-Like Gene SPPV-019 Affects Virus Virulence▿

    Science.gov (United States)

    Balinsky, C. A.; Delhon, G.; Afonso, C. L.; Risatti, G. R.; Borca, M. V.; French, R. A.; Tulman, E. R.; Geary, S. J.; Rock, D. L.

    2007-01-01

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, ΔKLP, was derived from the pathogenic strain SPPV-SA. ΔKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). ΔKLP-infected cells exhibited a reduction in Ca2+-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, ΔKLP was markedly attenuated, since all ΔKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with ΔKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep. PMID:17686843

  11. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence.

    Science.gov (United States)

    Balinsky, C A; Delhon, G; Afonso, C L; Risatti, G R; Borca, M V; French, R A; Tulman, E R; Geary, S J; Rock, D L

    2007-10-01

    Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, DeltaKLP, was derived from the pathogenic strain SPPV-SA. DeltaKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). DeltaKLP-infected cells exhibited a reduction in Ca(2+)-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, DeltaKLP was markedly attenuated, since all DeltaKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with DeltaKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep.

  12. Involvement of the rabies virus phosphoprotein gene in neuroinvasiveness.

    Science.gov (United States)

    Yamaoka, Satoko; Ito, Naoto; Ohka, Seii; Kaneda, Shohei; Nakamura, Hiroko; Agari, Takahiro; Masatani, Tatsunori; Nakagawa, Keisuke; Okada, Kazuma; Okadera, Kota; Mitake, Hiromichi; Fujii, Teruo; Sugiyama, Makoto

    2013-11-01

    Rabies virus (RABV), which is transmitted via a bite wound caused by a rabid animal, infects peripheral nerves and then spreads to the central nervous system (CNS) before causing severe neurological symptoms and death in the infected individual. Despite the importance of this ability of the virus to spread from a peripheral site to the CNS (neuroinvasiveness) in the pathogenesis of rabies, little is known about the mechanism underlying the neuroinvasiveness of RABV. In this study, to obtain insights into the mechanism, we conducted comparative analysis of two fixed RABV strains, Nishigahara and the derivative strain Ni-CE, which cause lethal and asymptomatic infections, respectively, in mice after intramuscular inoculation. Examination of a series of chimeric viruses harboring the respective genes from Nishigahara in the genetic background of Ni-CE revealed that the Nishigahara phosphoprotein (P) gene plays a major role in the neuroinvasiveness by mediating infection of peripheral nerves. The results obtained from both in vivo and in vitro experiments strongly suggested that the Nishigahara P gene, but not the Ni-CE P gene, is important for stable viral replication in muscle cells. Further investigation based on the previous finding that RABV phosphoprotein counteracts the host interferon (IFN) system demonstrated that the Nishigahara P gene, but not the Ni-CE P gene, functions to suppress expression of the beta interferon (IFN-β) gene (Ifn-β) and IFN-stimulated genes in muscle cells. In conclusion, we provide the first data strongly suggesting that RABV phosphoprotein assists viral replication in muscle cells by counteracting the host IFN system and, consequently, enhances infection of peripheral nerves.

  13. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus.

    Science.gov (United States)

    Park, Sang-Ho; Choi, Hoseong; Kim, Semin; Cho, Won Kyong; Kim, Kook-Hyung

    2016-08-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the necrotic cell death on the infiltrated leaves. The p19 silencing suppressor of GALV was engineered to inactivate its expression and GFP was successfully expressed with unrelated silencing suppressor, HC-Pro, from soybean mosaic virus. The pGMG vector was used to knock down magnesium chelatase (ChlH) gene in N. benthamaina and the silencing phenotype was clearly observed on systemic leaves. Altogether, the GALV-derived vector is expected to be an attractive tool for useful gene expression and VIGS vectors in grapevine as well as N. benthamiana.

  14. Adeno-associated virus inverted terminal repeats stimulate gene editing.

    Science.gov (United States)

    Hirsch, M L

    2015-02-01

    Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.

  15. LINGUISTIC ANALYSIS OF THE NUCLEOPROTEIN GENE OF INFLUENZA A VIRUS

    Energy Technology Data Exchange (ETDEWEB)

    A. SKOURIKHINE; T. BURR

    2000-05-01

    We applied linguistic analysis approach, specifically N-grams, to classify nucleotide and amino acids sequences of nucleoprotein (NP) gene of the Influenza A virus isolated from a range of hosts and geographic regions. We considered letter frequency (1-grams), letter pairs frequency (2-grams) and triplets' frequency (3-grams). Classification trees based on 1,2,3-grams variables were constructed for the same NP nucleotide and amino acids strains and their classification efficiency were compared with the clustering obtained using phylogenetic analysis. The results have shown that disregarding positional information for a NP gene can provide the same level of recognition accuracy like alternative more complex classification techniques.

  16. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  17. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    Science.gov (United States)

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  18. Efficient Virus-Induced Gene Silencing in Solanum rostratum.

    Directory of Open Access Journals (Sweden)

    Lan-Huan Meng

    Full Text Available Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS and Chlorophyll H subunit (ChlH of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.

  19. Gene silencing and gene expression in phytopathogenic fungi using a plant virus vector.

    Science.gov (United States)

    Mascia, Tiziana; Nigro, Franco; Abdallah, Alì; Ferrara, Massimo; De Stradis, Angelo; Faedda, Roberto; Palukaitis, Peter; Gallitelli, Donato

    2014-03-18

    RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi.

  20. Reverse Genetics Plasmid for Cloning Unstable Influenza A Virus Gene Segments

    OpenAIRE

    Zhou, Bin; Jerzak, Greta; Scholes, Derek T.; Donnelly, Matthew E.; Li, Yan; Wentworth, David E.

    2011-01-01

    Reverse genetics approaches that enable the generation of recombinant influenza A viruses entirely from plasmids are invaluable for studies on virus replication, morphogenesis, pathogenesis, or transmission. Furthermore, influenza virus reverse genetics is now critical for the development of new vaccines for this human and animal pathogen. Periodically, influenza gene segments are unstable within plasmids in bacteria. The PB2 gene segment of a highly pathogenic avian H5 influenza virus A/Turk...

  1. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status.

    Science.gov (United States)

    Kim, M; Williamson, C T; Prudhomme, J; Bebb, D G; Riabowol, K; Lee, P W K; Lees-Miller, S P; Mori, Y; Rahman, M M; McFadden, G; Johnston, R N

    2010-07-08

    Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible that other tumor-specific signaling pathways may also contribute to viral discrimination between normal versus cancer cells. Because carcinogenesis is a multistep process involving the accumulation of both oncogene activations and the inactivation of tumor suppressor genes, we speculated that not only oncogenes but also tumor suppressor genes may have an important role in determining the tropism of these viruses for cancer cells. It has been previously shown that many cellular tumor suppressor genes, such as p53, ATM and Rb, are important for maintaining genomic stability; dysfunction of these tumor suppressors may disrupt intact cellular antiviral activity due to the accumulation of genomic instability or due to interference with apoptotic signaling. Therefore, we speculated that cells with dysfunctional tumor suppressors may display enhanced susceptibility to challenge with these oncolytic viruses, as previously seen with adenovirus. We report here that both reovirus and myxoma virus preferentially infect cancer cells bearing dysfunctional or deleted p53, ATM and Rb tumor suppressor genes compared to cells retaining normal counterparts of these genes. Thus, oncolysis by these viruses may be influenced by both oncogenic activation and tumor suppressor status.

  2. Adeno-associated virus (AAV) vectors in cancer gene therapy.

    Science.gov (United States)

    Santiago-Ortiz, Jorge L; Schaffer, David V

    2016-10-28

    Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Adeno-associated virus (AAV) gene therapy for neurological disease.

    Science.gov (United States)

    Weinberg, Marc S; Samulski, R Jude; McCown, Thomas J

    2013-06-01

    Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cellular unfolded protein response against viruses used in gene therapy

    Directory of Open Access Journals (Sweden)

    Dwaipayan eSen

    2014-05-01

    Full Text Available Viruses are excellent vehicles for gene therapy due to their natural ability to infect and deliver the cargo to specific tissues with high efficiency. Although such vectors are usually ‘gutted’ and are replication defective, they are subjected to clearance by the host cells by immune recognition and destruction. Unfolded protein response (UPR is a naturally evolved cyto-protective signaling pathway which is triggered due to endoplasmic reticulum (ER stress caused by accumulation of unfolded/misfolded proteins in its lumen. The UPR signaling consists of three signaling pathways, namely PKR-like ER kinase, activating transcription factor 6, and inositol-requiring protein-1. Once activated, UPR triggers the production of ER molecular chaperones and stress response proteins to help reduce the protein load within the ER. This occurs by degradation of the misfolded proteins and ensues in the arrest of protein translation machinery. If the burden of protein load in ER is beyond its processing capacity, UPR can activate pro-apoptotic pathways or autophagy leading to cell death. Viruses are naturally evolved in hijacking the host cellular translation machinery to generate a large amount of proteins. This phenomenon disrupts ER homeostasis and leads to ER stress. Alternatively, in the case of gutted vectors used in gene therapy, the excess load of recombinant vectors administered and encountered by the cell can trigger UPR. Thus, in the context of gene therapy, UPR becomes a major roadblock that can potentially trigger inflammatory responses against the vectors and reduce the efficiency of gene transfer.

  5. A potentially novel overlapping gene in the genomes of Israeli acute paralysis virus and its relatives

    Directory of Open Access Journals (Sweden)

    Price Nicholas

    2009-09-01

    Full Text Available Abstract The Israeli acute paralysis virus (IAPV is a honeybee-infecting virus that was found to be associated with colony collapse disorder. The IAPV genome contains two genes encoding a structural and a nonstructural polyprotein. We applied a recently developed method for the estimation of selection in overlapping genes to detect purifying selection and, hence, functionality. We provide evolutionary evidence for the existence of a functional overlapping gene, which is translated in the +1 reading frame of the structural polyprotein gene. Conserved orthologs of this putative gene, which we provisionally call pog (predicted overlapping gene, were also found in the genomes of a monophyletic clade of dicistroviruses that includes IAPV, acute bee paralysis virus, Kashmir bee virus, and Solenopsis invicta (red imported fire ant virus 1.

  6. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets

    National Research Council Canada - National Science Library

    Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S; Chen, Juan; Zhang, Yulong; Welsh, Michael J; Leno, Gregory H; Engelhardt, John F

    2008-01-01

    .... In this study, we describe the production of a CFTR gene-deficient model in the domestic ferret using recombinant adeno-associated virus-mediated gene targeting in fibroblasts, followed by nuclear transfer cloning...

  7. Comparison of the nucleoprotein genes of a chicken and a mink influenza A H 10 virus.

    Science.gov (United States)

    Reinhardt, U; Scholtissek, C

    1988-01-01

    The base sequences of the coding region of the nucleoprotein (NP) genes of two H 10 influenza A viruses, one avian (virus N) and one mink virus, have been determined by primer extension. When the NP genes and the NP sequences derived from the only open reading frame of the two H 10 viruses were compared with those of other human and avian influenza A viruses, it turned out that the mink virus NP was highly related to that of other avian strains, but differed from that of the human strains. Comparison of the NP genes of the mink and avian strains of European origin suggests a direct lineage between them. Since the NP plays a major role in species specificity, it is assumed that an avian influenza virus has directly invaded the mink population.

  8. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    Science.gov (United States)

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  9. Development of next-generation respiratory virus vaccines through targeted modifications to viral immunomodulatory genes

    Science.gov (United States)

    Stobart, Christopher C.; Moore, Martin L.

    2016-01-01

    Vaccines represent one of the greatest contributions of the scientific community to global health. Yet, many pathogens remain either unchallenged or inadequately hindered by commercially available vaccines. Respiratory viruses pose distinct and difficult challenges due to their ability to rapidly spread, adapt, and modify the host immune response. Considerable research has been directed to understand the role of respiratory virus immunomodulatory proteins and how they influence the host immune response. We review here efforts to develop next-generation vaccines through targeting these key immunomodulatory genes in influenza virus, coronaviruses, respiratory syncytial virus, measles virus, and mumps virus. PMID:26434947

  10. Sequence analysis of the capsid gene of Aichi viruses detected from Japan, Bangladesh, Thailand, and Vietnam.

    Science.gov (United States)

    Pham, Ngan Thi Kim; Trinh, Quang Duy; Khamrin, Pattara; Nguyen, Tuan Anh; Dey, Shuvra Kanti; Phan, Tung Gia; Hoang, Le Phuc; Maneekarn, Niwat; Okitsu, Shoko; Mizuguchi, Masashi; Ushijima, Hiroshi

    2008-07-01

    Sequence analysis of the capsid gene of Aichi viruses was performed on 12 strains detected in Japan, Bangladesh, Thailand, and Vietnam during 2002-2005. The phylogenetic tree constructed from 17 nucleotide sequences of the capsid gene of the strains studied and reference strains demonstrated that Aichi virus strains clustered into two branches. A classification of Aichi viruses based on the capsid gene was proposed, in which lineage I consists of the Aichi virus strains detected from Japan, Thailand, Vietnam, and Germany, and lineage II includes Bangladeshi strains and a Brazilian strain.

  11. Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum.

    Science.gov (United States)

    Várallyay, Eva; Giczey, Gábor; Burgyán, József

    2012-07-01

    Powdery mildew is one of the most important cereal diseases worldwide. Genetic analysis has revealed that mutant alleles of the Mlo gene cause broad-spectrum resistance against this pathogen in barley. In this study, the possibility of inducing broad-spectrum powdery mildew resistance against this pathogen by RNAi of the barley Mlo ortholog in wheat was examined using virus-induced gene silencing (VIGS). A clear correlation was found between resistance and accumulation of Mlo-specific siRNAs, raising the possibility of designing powdery mildew resistance in wheat by RNA silencing using both transgenic and non-transgenic approaches.

  12. Derepression of a novel class of vaccinia virus genes upon DNA replication

    NARCIS (Netherlands)

    Vos, J C; Stunnenberg, H.G.

    1988-01-01

    A novel class of vaccinia virus genes, called intermediate, is expressed immediately post-replication and prior to the onset of late gene transcription. Intermediate transcription is dependent on trans-acting factors which are present in an active state in virus-infected cells prior to the onset of

  13. Computational fitness landscape for all gene-order permutations of an RNA virus.

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2009-02-01

    Full Text Available How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV, a prototype RNA virus that encodes five genes (N-P-M-G-L, to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.

  14. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    OpenAIRE

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-01-01

    Abstract Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and...

  15. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes.

    Science.gov (United States)

    Bourquain, Daniel; Dabrowski, Piotr Wojtek; Nitsche, Andreas

    2013-02-20

    Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell's gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus infections in certain host species.

  16. Gene Technology for Papaya Ringspot Virus Disease Management

    Science.gov (United States)

    Azad, Md. Abul Kalam; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435

  17. Gene technology for papaya ringspot virus disease management.

    Science.gov (United States)

    Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  18. The p10 gene of Bombyx mori nucleopolyhedrosis virus encodes a ...

    Indian Academy of Sciences (India)

    In baculovirus-based high-level expression of cloned foreign genes, the viral very late gene promoters of polyhedrin (polh) and p10 are extensively exploited. Here we report the cloning and characterization of the p10 gene from a local isolate of Bombyx mori nucleopolyhedrosis virus (BmNPV). The gene harbours a 213-bp ...

  19. Epstein-Barr virus candidate genes and multiple sclerosis.

    Science.gov (United States)

    Claire Simon, Kelly; Schmidt, Hollie; Loud, Sara; Ascherio, Alberto

    2015-01-01

    Previous infection with Epstein-Barr virus (EBV) and a history of infectious mononucleosis (IM) have been previously associated with an increased risk of multiple sclerosis (MS). Whether there are common genetic factors that may partially explain these associations has not been thoroughly explored. To investigate whether select polymorphisms in genes associated with IM susceptibility are related to MS risk-a self-reported history of IM or antibody titer against Epstein-Barr virus nuclear antigen 1 (anti-EBNA1). A case-control study including 1213 MS cases and 454 controls enrolled in the Accelerated Cure Project for MS (ACP) Repository. Select polymorphisms in HLA-A, SH2D1A and IL15RA and anti-EBNA1 Ab titers were measured using stored blood samples provided by participants. Generalized linear models were used to assess the associations between select polymorphisms and odds of MS, odds of IM or anti-EBNA1 Ab titers. No significant associations were observed between the selected polymorphisms and odds of MS, odds of IM or anti-EBNA1 Ab titer. It is unlikely that any of the studied polymorphisms contribute to the explaining the association between anti-EBNA1 Ab titer or history of IM and MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene.

    OpenAIRE

    Wiktor, T. J.; Macfarlan, R I; Reagan, K J; Dietzschold, B; Curtis, P. J.; Wunner, W. H.; Kieny, M P; Lathe, R; Lecocq, J P; Mackett, M.

    1984-01-01

    Inoculation of rabbits and mice with a vaccinia-rabies glycoprotein recombinant (V-RG) virus resulted in rapid induction of high concentrations of rabies virus-neutralizing antibodies and protection from severe intracerebral challenge with several strains of rabies virus. Protection from virus challenge also was achieved against the rabies-related Duvenhage virus but not against the Mokola virus. Effective immunization by V-RG depended on the expression of a rabies glycoprotein that registere...

  1. Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum

    DEFF Research Database (Denmark)

    Grønlund, Mette; Olsen, Anne; Johansen, Elisabeth

    2010-01-01

    Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants, which are difficult to transform. The pea early-browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. However......, the available PEBV-VIGS protocols are inadequate for studying genes involved in the symbiosis with arbuscular mycorrhizal fungi (AMF). Here we describe a PEBV-VIGS protocol suitable for reverse genetics studies in pea of genes involved in the symbiosis with AMF and show its effectiveness in silencing genes...

  2. Simian virus 40 vectors for pulmonary gene therapy

    Directory of Open Access Journals (Sweden)

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  3. Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets.

    Science.gov (United States)

    Marsh, Glenn A; Virtue, Elena R; Smith, Ina; Todd, Shawn; Arkinstall, Rachel; Frazer, Leah; Monaghan, Paul; Smith, Greg A; Broder, Christopher C; Middleton, Deborah; Wang, Lin-Fa

    2013-03-25

    Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.

  4. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ezequiel Balmori Melian

    2014-11-01

    Full Text Available West Nile virus (WNV is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed -1 ribosomal frameshift (PRF resulting in production of an additional NS protein NS1'. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts.

  5. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Cheng Yuan

    Full Text Available Barley stripe mosaic virus (BSMV is a single-stranded RNA virus with three genome components designated alpha, beta, and gamma. BSMV vectors have previously been shown to be efficient virus induced gene silencing (VIGS vehicles in barley and wheat and have provided important information about host genes functioning during pathogenesis as well as various aspects of genes functioning in development. To permit more effective use of BSMV VIGS for functional genomics experiments, we have developed an Agrobacterium delivery system for BSMV and have coupled this with a ligation independent cloning (LIC strategy to mediate efficient cloning of host genes. Infiltrated Nicotiana benthamiana leaves provided excellent sources of virus for secondary BSMV infections and VIGS in cereals. The Agro/LIC BSMV VIGS vectors were able to function in high efficiency down regulation of phytoene desaturase (PDS, magnesium chelatase subunit H (ChlH, and plastid transketolase (TK gene silencing in N. benthamiana and in the monocots, wheat, barley, and the model grass, Brachypodium distachyon. Suppression of an Arabidopsis orthologue cloned from wheat (TaPMR5 also interfered with wheat powdery mildew (Blumeria graminis f. sp. tritici infections in a manner similar to that of the A. thaliana PMR5 loss-of-function allele. These results imply that the PMR5 gene has maintained similar functions across monocot and dicot families. Our BSMV VIGS system provides substantial advantages in expense, cloning efficiency, ease of manipulation and ability to apply VIGS for high throughput genomics studies.

  6. Identification, cloning, and expression analysis of three putative Lymantria dispar nuclear polyhedrosis virus immediate early genes

    Science.gov (United States)

    James M. Slavicek; Nancy Hayes-Plazolles

    1991-01-01

    Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...

  7. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range.

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J; Garnsey, Stephen M; Dawson, William O

    2011-10-18

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host-defense systems tend to be less conserved. Closteroviridae encode 1-5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus-plant interactions.

  8. Identification and characterization of the ecdysteroid UDPglucosyltransferase gene of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus

    Science.gov (United States)

    Christopher I. Riegel; Carita Lanner-Herrera; James M. Slavicek

    1994-01-01

    We have located, cloned, sequenced and characterized the ecdysteroid UDP-glucosyltransferase gene (egt) gene from the baculovirus Lymantria dispar multinucleocapsid nuclear polyhedrosis virus,(LdMNPV), which is specific for the gypsy moth (L. dispar). The egt gene from the related baculovirus Autographa californica...

  9. Optimized cDNA libraries for virus-induced gene silencing (VIGS using tobacco rattle virus

    Directory of Open Access Journals (Sweden)

    Page Jonathan E

    2008-01-01

    Full Text Available Abstract Background Virus-induced gene silencing (VIGS has emerged as a method for performing rapid loss-of-function experiments in plants. Despite its expanding use, the effect of host gene insert length and other properties on silencing efficiency have not been systematically tested. In this study, we probed the optimal properties of cDNA fragments of the phytoene desaturase (PDS gene for efficient VIGS in Nicotiana benthamiana using tobacco rattle virus (TRV. Results NbPDS inserts of between 192 bp and 1304 bp led to efficient silencing as determined by analysis of leaf chlorophyll a levels. The region of the NbPDS cDNA used for silencing had a small effect on silencing efficiency with 5' and 3' located inserts performing more poorly than those from the middle. Silencing efficiency was reduced by the inclusion of a 24 bp poly(A or poly(G homopolymeric region. We developed a method for constructing cDNA libraries for use as a source of VIGS-ready constructs. Library construction involved the synthesis of cDNA on a solid phase support, digestion with RsaI to yield short cDNA fragments lacking poly(A tails and suppression subtractive hybridization to enrich for differentially expressed transcripts. We constructed two cDNA libraries from methyl-jasmonate treated N. benthamiana roots and obtained 2948 ESTs. Thirty percent of the cDNA inserts were 401–500 bp in length and 99.5% lacked poly(A tails. To test the efficiency of constructs derived from the VIGS-cDNA libraries, we silenced the nicotine biosynthetic enzyme, putrescine N-methyltransferase (PMT, with ten different VIGS-NbPMT constructs ranging from 122 bp to 517 bp. Leaf nicotine levels were reduced by more than 90% in all plants infected with the NbPMT constructs. Conclusion Based on the silencing of NbPDS and NbPMT, we suggest the following design guidelines for constructs in TRV vectors: (1 Insert lengths should be in the range of ~200 bp to ~1300 bp, (2 they should be positioned in

  10. Mutations in the S gene region of hepatitis B virus genotype D in ...

    Indian Academy of Sciences (India)

    The gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the 'a'-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to ...

  11. Identification and phylogeny of a protein kinase gene of white spot syndrome virus

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a virus infecting shrimp and other crustaceans, which is unclassified taxonomically. A 2193 bp long open reading frame, encoding a putative protein kinase (PK), was found on a 8.4 kb EcoRI fragment of WSSV proximal to the gene for the major envelope protein

  12. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens

    Science.gov (United States)

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  13. Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene.

    Science.gov (United States)

    Urbasic, Ashlee S; Hynes, Stacy; Somrak, Amy; Contakos, Stacey; Rahman, Masmudur M; Liu, Jia; MacNeill, Amy L

    2012-08-01

    To determine the oncolytic efficacy of an attenuated form of myxoma virus lacking the serp2 gene in canine tumor cells. Primary cells were isolated from tumors that were surgically removed from dogs and from connective tissue obtained from the cadaver of a dog. Cells of various established cell lines from tumors and nontumorous tissues were obtained. Experiments were performed with cells in monolayer culture. Cell cultures were inoculated with wild-type myxoma viruses or myxoma viruses lacking the serp2 gene, and measures of cytopathic effects, viral growth kinetics, and cell death and apoptosis were determined. Myxoma viruses replicated in cells of many of the primary and established canine tumor cell lines. Canine tumor cells in which expression of activated protein kinase B was upregulated were more permissive to myxoma virus infection than were cells in which expression of activated protein kinase B was not upregulated. Myxoma viruses lacking the serp2 gene caused more cytopathic effects in canine tumor cells because of apoptosis than did wild-type myxoma viruses. Results of the present study indicated myxoma viruses lacking the serp2 gene may be useful for treatment of cancer in dogs. Impact for Human Medicine-Results of the present study may be useful for development of novel oncolytic treatments for tumors in humans.

  14. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and Tomato spotted wilt virus.

    Science.gov (United States)

    García-Marcos, Alberto; Pacheco, Remedios; Manzano, Aranzazu; Aguilar, Emmanuel; Tenllado, Francisco

    2013-05-01

    One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta.

  15. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Deshui Liu

    Full Text Available Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41 were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X. Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N

  16. Multi-gene detection and identification of mosquito-borne RNA viruses using an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    Full Text Available BACKGROUND: Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae, Alphavirus (Togaviridae, Orthobunyavirus (Bunyaviridae, and Phlebovirus (Bunyaviridae. METHODOLOGY/PRINCIPAL FINDINGS: The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish

  17. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  18. Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses

    Directory of Open Access Journals (Sweden)

    Wilkinson John

    2007-12-01

    Full Text Available Abstract The choice of an appropriate housekeeping gene for normalisation purposes has now become an essential requirement when designing QPCR experiments. This is of particular importance when using QPCR to measure viral and cellular gene transcription levels in the context of viral infections as viruses can significantly interfere with host cell pathways, the components of which traditional housekeeping genes often encode. In this study we have determined the reliability of 10 housekeeping genes in context of four heavily studied viral infections; human immunodeficiency virus type 1, herpes simplex virus type 1, cytomegalovirus and varicella zoster virus infections using a variety of cell types and virus strains. This provides researchers of these viruses with a shortlist of potential housekeeping genes to use as normalisers for QPCR experiments.

  19. Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors.

    Science.gov (United States)

    Navarro; Oudrhiri; Fabrega; Lehn

    1998-03-02

    Although most research in the field of somatic gene therapy has investigated the use of recombinant viruses for transferring genes into somatic target cells, various methods for nonviral gene delivery have also been proposed. Both types of gene delivery systems have advantages and drawbacks. Schematically, viral vectors are particularly efficient for gene delivery, whereas nonviral systems are free of the difficulties associated with the use of recombinant viruses but need to be further optimized to reach their full potential. In order to bridge the gap between viral vectors and synthetic reagents, we discuss here some specific features of the viral vector systems of today that could advantageously be taken into account for the design of improved nonviral gene delivery systems. Indeed, although nonviral systems differ fundamentally from viral systems, one possible approach towards enhanced artificial reagents aims at developing 'artificial viruses' that mimic the highly efficient processes of viral infection.

  20. Ebola Virus GP Gene Polyadenylation Versus RNA Editing.

    Science.gov (United States)

    Volchkova, Valentina A; Vorac, Jaroslav; Repiquet-Paire, Laurie; Lawrence, Philip; Volchkov, Viktor E

    2015-10-01

    Synthesis of Ebola virus (EBOV) surface glycoprotein (GP) is dependent on transcriptional RNA editing. Northern blot analysis of EBOV-infected cells using GP-gene-specific probes reveals that, in addition to full-length GP messenger RNAs (mRNAs), a shorter RNA is also synthesized, representing >40% of the total amount of GP mRNA. Sequence analysis demonstrates that this RNA is a truncated version of the full-length GP mRNA that is polyadenylated at the editing site and thus lacks a stop codon. An absence of detectable levels of protein synthesis in cellulo is consistent with the existence of tight regulation of the translation of such mRNA. However, nonstop GP mRNA was shown to be only slightly less stable than the same mRNA containing a stop codon, against the general belief in nonstop decay mechanisms aimed at detecting and destroying mRNAs lacking a stop codon. In conclusion, we demonstrate that the editing site indeed serves as a cryptic transcription termination/polyadenylation site, which rarely also functions to edit GP mRNA for expression of surface GP. This new data suggest that the downregulation of surface GP expression is even more dramatic than previously thought, reinforcing the importance of the GP gene editing site for EBOV replication and pathogenicity. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors

    National Research Council Canada - National Science Library

    Schuster, Benjamin S; Kim, Anthony J; Kays, Joshua C; Kanzawa, Mia M; Guggino, William B; Boyle, Michael P; Rowe, Steven M; Muzyczka, Nicholas; Suk, Jung Soo; Hanes, Justin

    2014-01-01

    .... We investigated whether CF sputum acts as a barrier to leading adeno-associated virus (AAV) gene vectors, including AAV2, the only serotype tested in CF clinical trials, and AAV1, a leading candidate for future trials...

  2. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  3. Adeno-associated virus-mediated gene transfer.

    Science.gov (United States)

    Srivastava, Arun

    2008-09-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system. (c) 2008 Wiley-Liss, Inc.

  4. Artificial virus as trump-card to resolve exigencies in targeted gene delivery.

    Science.gov (United States)

    Ajithkumar, K C; Pramod, K

    2017-05-28

    Viruses are potent pathogens that can effectively deliver the genetic material to susceptible host cells. This capability is beneficially utilized for successfully deliver the genetic material. However, the therapeutic use of viruses for gene delivery is controversial because, the potentially replicable genomes recombine or integrates with the cell DNA resulted with immunogenicity, ranging from inflammation to death. Thus, the need for potentially effective nonviral gene therapy vehicles arises and the non-viral vectors, protein only particles and virus like particles (VLP) can be engineered which contain all the required functional modules in single chain molecules. These are resembles to viruses called artificial virus. The artificial virus eliminates the disadvantages of the viral vectors but retain the beneficial effects of the viruses. Need for further functionalization can be avoided by this approach because independent elements such as cell ligands, membrane active peptides, etc can be incorporated in to the protein. The protein-DNA complexes appeared as tight and monodisperse spherical nanoparticles of nearly 80 nm size resemble bacterial inclusion bodies. The nucleic acids act as compacting, molecular glue that affects the conformation of the protein units, altering the α- helix structure, minimizing their aggregation tendency and promoting receptor mediated cell uptake and proper intracellular trafficking to the cell nucleus. Such tunable system mimics the activities of infected viruses and used for the safe and effective delivery of drugs and genetic material in gene therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  6. 40 CFR 174.513 - Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene); exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potato Leaf Roll Virus Resistance Gene... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.513 Potato Leaf Roll... protectant Potato Leaf Roll Virus Resistance Gene (also known as orf1/orf2 gene) in or on all food...

  7. The evolution of novel fungal genes from non-retroviral RNA viruses

    Directory of Open Access Journals (Sweden)

    Bruenn Jeremy

    2009-12-01

    Full Text Available Abstract Background Endogenous derivatives of non-retroviral RNA viruses are thought to be absent or rare in eukaryotic genomes because integration of RNA viruses in host genomes is impossible without reverse transcription. However, such derivatives have been proposed for animals, plants and fungi, often based on surrogate bioinformatic evidence. At present, there is little known of the evolution and function of integrated non-retroviral RNA virus genes. Here, we provide direct evidence of integration by sequencing across host-virus gene boundaries and carry out phylogenetic analyses of fungal hosts and totivirids (dsRNA viruses of fungi and protozoans. Further, we examine functionality by tests of neutral evolution, comparison of residues that are necessary for viral capsid functioning and assays for transcripts, dsRNA and viral particles. Results Sequencing evidence from gene boundaries was consistent with integration. We detected previously unknown integrated Totivirus-like sequences in three fungi (Candida parapsilosis, Penicillium marneffei and Uromyces appendiculatus. The phylogenetic evidence strongly indicated that the direction of transfer was from Totivirus to fungus. However, there was evidence of transfer of Totivirus-like sequences among fungi. Tests of selection indicated that integrated genes are maintained by purifying selection. Transcripts were apparent for some gene copies, but, in most cases, the endogenous sequences lacked the residues necessary for normal viral functioning. Conclusions Our findings reveal that horizontal gene transfer can result in novel gene formation in eukaryotes despite miniaturized genomic targets and a need for co-option of reverse transcriptase.

  8. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J.; Garnsey, Stephen M.; Dawson, William O.

    2011-01-01

    Viruses have evolved as combinations of genes whose products interact with cellular components to produce progeny virus throughout the plants. Some viral genes, particularly those that are involved in replication and assembly, tend to be relatively conserved, whereas other genes that have evolved for interactions with the specific host for movement and to counter host–defense systems tend to be less conserved. Closteroviridae encode 1–5 nonconserved ORFs. Citrus tristeza virus (CTV), a Closterovirus, possesses nonconserved p33, p18, and p13 genes that are expendable for systemic infection of the two laboratory hosts, Citrus macrophylla and Mexican lime. In this study, we show that the extended host range of CTV requires these nonconserved genes. The p33 gene was required to systemically infect sour orange and lemon trees, whereas either the p33 or the p18 gene was sufficient for systemic infection of grapefruit trees and the p33 or the p13 gene was sufficient for systemic infection of calamondin plants. Thus, these three genes are required for systemic infection of the full host range of CTV, but different genes were specific for different hosts. Remarkably, either of two genes was sufficient for infection of some citrus hybrids. These findings suggest that CTV acquired multiple nonconserved genes (p33, p18, and p13) and, as a result, gained the ability to interact with multiple hosts, thus extending its host range during the course of evolution. These results greatly extend the complexity of known virus–plant interactions. PMID:21987809

  9. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  10. Protection induced by virus-like particle vaccine containing tandem repeat gene of respiratory syncytial virus G protein.

    Science.gov (United States)

    Kim, Ah-Ra; Lee, Dong-Hun; Lee, Su-Hwa; Rubino, Ilaria; Choi, Hyo-Jick; Quan, Fu-Shi

    2018-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, young children and the elderly. However, there is no licensed vaccine available against RSV infection. In this study, we generated virus-like particle (VLP) vaccine and investigated the vaccine efficacy in a mouse model. For VLP vaccines, tandem gene (1-780 bp) for V1 VLPs and tandem repeat gene (repeated 450-780 bp) for V5 VLPs were constructed in pFastBacTM vectors, respectively. Influenza matrix protein 1 (M1) was used as a core protein in the VLPs. Notably, upon challenge infection, significantly lower virus loads were measured in the lung of mice immunized with V1 or V5 VLPs compared to those of naïve mice and formalin-inactivated RSV immunized control mice. In particular, V5 VLPs immunization showed significantly lower virus titers than V1 VLPs immunization. Furthermore, V5 VLPs immunization elicited increased memory B cells responses in the spleen. These results indicated that V5 VLP vaccine containing tandem repeat gene protein provided better protection than V1 VLPs with significantly decreased inflammation in the lungs. Thus, V5 VLPs could be a potential vaccine candidate against RSV.

  11. Mutations to A/Puerto Rico/8/34 PB1 gene improves seasonal reassortant influenza A virus growth kinetics.

    Science.gov (United States)

    Plant, Ewan P; Liu, Teresa M; Xie, Hang; Ye, Zhiping

    2012-12-17

    It is desirable for influenza vaccine virus strains to have phenotypes that include good growth and hemagglutinin (HA) protein yield. The quality of these characteristics varies among the vaccine viruses and is usually due to multigenic effects. Many influenza A virus vaccine viruses are made as reassortants of the high yield virus A/Puerto Rico/8/34 (PR/8) and a circulating seasonal virus. Co-infection of eggs with the two viruses, and selection of reassortants with the HA and neuraminidase (NA) segments from the seasonal virus, can result in viruses that contain a mixture of internal genes derived from both the high yield virus and the circulating virus. Segment 2 (PB1), which encodes the RNA-dependent RNA polymerase, frequently cosegregates with the seasonal HA and NA segments. We asked whether mutations based on the seasonal PB1 genes could improve vaccine virus strains. Here we report that mutations to the PR/8 PB1 gene, based on differences observed between seasonal and PR/8 PB1 genes, accelerate egg and cell culture based replication for a reassortant virus containing HA and NA segments from the low yield A/Wyoming/03/2003 (H3N2) vaccine virus. Published by Elsevier Ltd.

  12. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  13. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped.

  14. Comparison of the locations of homologous fowlpox and vaccinia virus genes reveals major genome reorganization.

    Science.gov (United States)

    Mockett, B; Binns, M M; Boursnell, M E; Skinner, M A

    1992-10-01

    We have derived a restriction enzyme map for the fowlpox virus FP9 strain. Sites for BamHI, PvuII, PstI and NcoI have been mapped mainly by Southern blotting. The size of the genome derived from the restriction maps (254 kb) corresponds to the figure of 260 +/- 8 kb determined from analysis of genomic DNA by pulsed-field electrophoresis. The map can be compared with a previously published map for a different strain of fowlpox virus using the PstI digest which is common to both studies. Some 65 kb of fowlpox virus sequence, in 11 blocks, as well as individual M13 clones have been aligned with the map. Where those blocks correspond with blocks of homologous genes in vaccinia virus, it is possible to compare the genomic locations for those genes in the two viruses. This comparison reveals that, whereas there are blocks of sequence within which genes exist in the same relative position in the two viruses, the genomic location of those sequence blocks differs widely between the two viruses.

  15. Patterns of evolution and host gene mimicry in influenza and other RNA viruses.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    2008-06-01

    Full Text Available It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has

  16. Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene.

    Science.gov (United States)

    Tabin, C J; Hoffmann, J W; Goff, S P; Weinberg, R A

    1982-01-01

    We investigated the feasibility of using retroviruses as vectors for transferring DNA sequences into animal cells. The thymidine kinase (tk) gene of herpes simplex virus was chosen as a convenient model. The internal BamHI fragments of a DNA clone of Moloney leukemia virus (MLV) were replaced with a purified BamHI DNA segment containing the tk gene. Chimeric genomes were created carrying the tk insert in both orientations relative to the MLV sequence. Each was transfected into TK- cells along with MLV helper virus, and TK+ colonies were obtained by selection in the presence of hypoxanthine, aminopterin, and thymidine (HAT). Virus collected from TK+-transformed, MLV producer cells passed the TK+ phenotype to TK- cells. Nonproducer cells were isolated, and TK+ transducing virus was subsequently rescued from them. The chimeric virus showed single-hit kinetics in infections. Virion and cellular RNA and cellular DNA from infected cells were all shown to contain sequences which hybridized to both MLV- and tk-specific probes. The sizes of these sequences were consistent with those predicted for the chimeric virus. In all respects studied, the chimeric MLV-tk virus behaved like known replication-defective retroviruses. These experiments suggest great general applicability of retroviruses as eucaryotic vectors. Images PMID:6180306

  17. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants.

    Science.gov (United States)

    Zhao, Fumei; Lim, Seungmo; Igori, Davaajargal; Yoo, Ran Hee; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-05-01

    We report here the development of tobacco ringspot virus (TRSV)-based vectors for the transient expression of foreign genes and for the analysis of endogenous gene function in plants using virus-induced gene silencing. The jellyfish green fluorescent protein (GFP) gene was inserted between the TRSV movement protein (MP) and coat protein (CP) regions, resulting in high in-frame expression of the RNA2-encoded viral polyprotein. GFP was released from the polyprotein via an N-terminal homologous MP-CP cleavage site and a C-terminal foot-and-mouth disease virus (FMDV) 2 A catalytic peptide in Nicotiana benthamiana. The VIGS target gene was introduced in the sense and antisense orientations into a SnaBI site, which was created by mutating the sequence following the CP stop codon. VIGS of phytoene desaturase (PDS) in N. benthamiana, Arabidopsis ecotype Col-0, cucurbits and legumes led to obvious photo-bleaching phenotypes. A significant reduction in PDS mRNA levels in silenced plants was confirmed by semi-quantitative RT-PCR. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Pradip B Ranaware

    Full Text Available The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV or the low pathogenic avian influenza virus (LPAIV infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011 and LPAI H9N2 (A/duck/India/249800/2010 viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG, cytokines (IL1B, IL18, IL22, IL13, and IL12B, chemokines (CCL4, CCL19, CCL10, and CX3CL1 and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  19. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    Energy Technology Data Exchange (ETDEWEB)

    Upton, C.; McFadden, G.

    1986-12-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively.

  20. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection.

    Science.gov (United States)

    Babu, Mohan; Griffiths, Jonathan S; Huang, Tyng-Shyan; Wang, Aiming

    2008-07-09

    Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q or = 2.5 fold) and downregulated (viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions.

  1. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    Science.gov (United States)

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  2. Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development.

    Science.gov (United States)

    Nogales, Aitor; Baker, Steven F; Ortiz-Riaño, Emilio; Dewhurst, Stephen; Topham, David J; Martínez-Sobrido, Luis

    2014-09-01

    Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of

  3. Analysis of the fusion protein gene of Newcastle disease viruses isolated in Japan.

    Science.gov (United States)

    Mase, Masaji; Murayama, Kazunori; Karino, Ayako; Inoue, Toshikazu

    2011-01-01

    The complete nucleotide sequences of the fusion (F) protein gene of Newcastle disease viruses (NDV) isolated in Japan from 1930 to 2007 (45 strains total) were determined and genetically analyzed. In the deduced amino acid sequences of fusion protein, the 5 potential asparagine-linked glycosylation sites and 10 cysteine residues were all conserved in the NDV examined in this study. The major epitopes involved in virus neutralization are conserved in most of the NDV strains isolated in Japan except a few strains. By virus neutralization test, no major antigenic differences were observed among representative strains of each genotype in Japan. All chickens vaccinated with the B1 strain survived without clinical signs after challenge with 2 NDV strains isolated in Japan (velogenic strains, JP/Ibaraki/2000 and JP/Kagoshima/91), which possess amino acids substitutions involved in virus neutralization in the F protein gene.

  4. Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato

    Science.gov (United States)

    Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...

  5. Enhancement or Attenuation of Disease by Deletion of Genes from Citrus Tristeza Virus

    Science.gov (United States)

    Tatineni, Satyanarayana

    2012-01-01

    Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development. PMID:22593155

  6. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus.

    Science.gov (United States)

    Tatineni, Satyanarayana; Dawson, William O

    2012-08-01

    Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.

  7. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Science.gov (United States)

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  8. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  9. Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco

    Directory of Open Access Journals (Sweden)

    Teppei Sugawara

    2016-11-01

    Full Text Available Abstract Background The apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus. Results Severe mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV, whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene. Conclusion We have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes.

  10. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    Science.gov (United States)

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-09

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata

    DEFF Research Database (Denmark)

    Grønlund, Mette; Kjær, Gabriela Didina Constantin; Piednoir, Elodie

    2008-01-01

    Virus-induced gene silencing (VIGS) has become an important reverse genetics tool for functional genomics. VIGS vectors based on Pea early browning virus (PEBV, genus Tobravirus) and Bean pod mottle virus (genus Comovirus) are available for the legume species Pisum sativum and Glycine max...

  12. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  13. Genetic variation in V gene of class II Newcastle disease virus.

    Science.gov (United States)

    Hao, Huafang; Chen, Shengli; Liu, Peng; Ren, Shanhui; Gao, Xiaolong; Wang, Yanping; Wang, Xinglong; Zhang, Shuxia; Yang, Zengqi

    2016-01-01

    The genetic variation and molecular evolution of the V gene of the class II Newcastle disease virus (NDV) isolates with genotypes I-XVIII were determined using bioinformatics. Results indicated that low homology existed in different genotype viruses, whereas high homology often for the same genotypes, exception may be existed within genotypes I, V, VI, and XII. Sequence analysis showed that the genetic variation of V protein was consistent with virus genotype, and specific signatures on the V protein for nine genotypes were identified. Phylogenetic analysis demonstrated that the phylogenetic trees were highly consistent between the V and F genes, with slight discrepancies in the sub-genotypes. Evolutionary rate analyses based on V and F genes revealed the evolution rates varied in genotypes. These data indicate that the genetic variation of V protein is genotype-related and will help in elucidating the molecular evolution of NDV. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses

    Science.gov (United States)

    Krupovic, Mart; Koonin, Eugene V.

    2014-06-01

    Single-stranded (ss)DNA viruses are extremely widespread, infect diverse hosts from all three domains of life and include important pathogens. Most ssDNA viruses possess small genomes that replicate by the rolling-circle-like mechanism initiated by a distinct virus-encoded endonuclease. However, viruses of the family Bidnaviridae, instead of the endonuclease, encode a protein-primed type B DNA polymerase (PolB) and hence break this pattern. We investigated the provenance of all bidnavirus genes and uncover an unexpected turbulent evolutionary history of these unique viruses. Our analysis strongly suggests that bidnaviruses evolved from a parvovirus ancestor from which they inherit a jelly-roll capsid protein and a superfamily 3 helicase. The radiation of bidnaviruses from parvoviruses was probably triggered by integration of the ancestral parvovirus genome into a large virus-derived DNA transposon of the Polinton (polintovirus) family resulting in the acquisition of the polintovirus PolB gene along with terminal inverted repeats. Bidnavirus genes for a receptor-binding protein and a potential novel antiviral defense modulator are derived from dsRNA viruses (Reoviridae) and dsDNA viruses (Baculoviridae), respectively. The unusual evolutionary history of bidnaviruses emphasizes the key role of horizontal gene transfer, sometimes between viruses with completely different genomes but occupying the same niche, in the emergence of new viral types.

  15. Gene-Specific Contributions to Mumps Virus Neurovirulence and Neuroattenuation ▿

    Science.gov (United States)

    Sauder, Christian J.; Zhang, Cheryl X.; Ngo, Laurie; Werner, Kellie; Lemon, Ken; Duprex, W. Paul; Malik, Tahir; Carbone, Kathryn; Rubin, Steven A.

    2011-01-01

    Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence. PMID:21543475

  16. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  17. Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Duch, Mogens R.; Carrasco, M L

    1999-01-01

    We describe replication competent retroviruses capable of expressing heterologous genes during multiple rounds of infection. An internal ribosome entry site (IRES) from encephalomyocarditis virus was inserted in the U3 region of Akv- and SL3-3-murine leukemia viruses (MLV) to direct translation...... of neo or the enhanced green fluorescence protein gene (EGFP). Akv-MLV's with IRES-neo and IRES-EGFP cassettes replicated with titers of about 10(6) infectious units/ml while SL3-3-MLV with IRES-neo gave about 10(3)-fold lower titers. Interestingly, RNA analysis showed a drastic reduction in the amount...

  18. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    sami siraj

    2012-09-13

    Sep 13, 2012 ... 2Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. 3Institute of Agricultural ... first report on the molecular characterization of full length PVX coat protein sequence infecting potato from Pakistan. ... sensitive and reliable detection methods (Salazar, 1994). Potato virus X ...

  19. Expression of the Epstein-Barr virus gp350/220 gene in rodent and primate cells.

    OpenAIRE

    Whang, Y.; Silberklang, M; Morgan, A; Munshi, S; Lenny, A B; Ellis, R.W.; Kieff, E

    1987-01-01

    The gene encoding the Epstein-Barr virus envelope glycoproteins gp350 and gp220 was inserted downstream of the cytomegalovirus immediate-early, Moloney murine leukemia virus, mouse mammary tumor virus, or varicella-zoster virus gpI promoters in vectors containing selectable markers. Host cell and recombinant vector systems were defined which enabled the isolation of rodent or primate cell clones which expressed gp350/220 in substantial quantities. Continued expression of gp350/220 required ma...

  20. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Directory of Open Access Journals (Sweden)

    Ichou Mohamed

    2010-07-01

    Full Text Available Abstract Monkeypox virus (MPV is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2 using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our

  1. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    Science.gov (United States)

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  2. Phylodynamics and molecular evolution of influenza A virus nucleoprotein genes in Taiwan between 1979 and 2009.

    Directory of Open Access Journals (Sweden)

    Jih-Hui Lin

    Full Text Available BACKGROUND: Many studies concentrate on variation in the hemagglutinin glycoprotein (HA because of its significance in host immune response, the evolution of this virus is even more complex when other genome segments are considered. Recently, it was found that cytotoxic T lymphocytes (CTL play an important role in immunity against influenza and most CTL epitopes of human influenza viruses were remarkably conserved. The NP gene has evolved independently in human and avian hosts after 1918 flu pandemic and it has been assigned a putative role as a determinant of host range. METHODS AND FINDINGS: Phylodynamic patterns of the genes encoding nucleoprotein (NP of influenza A viruses isolated from 1979-2009 were analyzed by applying the Bayesian Markov Chain Monte Carlo framework to better understand the evolutionary mechanisms of these Taiwanese isolates. Phylogenetic analysis of the NP gene showed that all available H3 worldwide isolates collected so far were genetically similar and divided into two major clades after the year 2004. We compared the deduced amino acid sequences of the NP sequences from human, avian and swine hosts to investigate the emergence of potential adaptive mutations. Overall, selective pressure on the NP gene of human influenza A viruses appeared to be dominated by purifying selection with a mean d(N/d(S ratio of 0.105. Site-selection analysis of 488 codons, however, also revealed 3 positively selected sites in addition to 139 negatively selected ones. CONCLUSIONS: The demographic history inferred by Bayesian skyline plot showed that the effective number of infections underwent a period of smooth and steady growth from 1998 to 2001, followed by a more recent rise in the rate of spread. Further understanding the correlates of interspecies transmission of influenza A virus genes from other host reservoirs to the human population may help to elucidate the mechanisms of variability among influenza A virus.

  3. Epstein-Barr virus latent gene sequences as geographical markers of viral origin: unique EBNA3 gene signatures identify Japanese viruses as distinct members of the Asian virus family.

    Science.gov (United States)

    Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J

    2011-05-01

    Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.

  4. Genetic Inactivation of COPI Coatomer Separately Inhibits Vesicular Stomatitis Virus Entry and Gene Expression

    Science.gov (United States)

    Burdeinick-Kerr, Rebeca

    2012-01-01

    Viruses coopt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatomer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early stage of vesicular stomatitis virus (VSV) replication. To dissect which replication stage(s) was affected by coatomer inactivation, we used visual and biochemical assays to independently measure the efficiency of viral entry and gene expression in hamster (ldlF) cells depleted of the temperature-sensitive ε-COP subunit. We show that ε-COP depletion for 12 h caused a primary block to virus internalization and a secondary defect in viral gene expression. Using brefeldin A (BFA), a chemical inhibitor of COPI function, we demonstrate that short-term (1-h) BFA treatments inhibit VSV gene expression, while only long-term (12-h) treatments block virus entry. We conclude that prolonged coatomer inactivation perturbs cellular endocytic transport and thereby indirectly impairs VSV entry. Our results offer an explanation of why COPI coatomer is frequently identified in screens for cellular factors that support cell invasion by microbial pathogens. PMID:22072764

  5. Chilli leaf curl virus-based vector for phloem-specific silencing of endogenous genes and overexpression of foreign genes.

    Science.gov (United States)

    Kushwaha, Nirbhay Kumar; Chakraborty, Supriya

    2017-03-01

    Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.

  6. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses.

    OpenAIRE

    Chang, E H; Gonda, M A; Ellis, R.W.; Scolnick, E M; Lowy, D R

    1982-01-01

    Harvey and Kirsten murine sarcoma viruses each encode a structurally and functionally related 21-kilodalton protein (p21), which is the transforming protein of each virus. Using probes from the 0.9-kilobase (kb) p21-coding region of each virus (called v-Ha-ras and v-Ki-ras, respectively), we have molecularly cloned from normal human genomic DNA the sequences that hybridize to these probes. Four evolutionarily divergent restriction endonuclease fragments were isolated. Two hybridized preferent...

  7. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  8. An AFLP marker linked to turnip mosaic virus resistance gene in pak ...

    African Journals Online (AJOL)

    Pak-choi is one of the most important vegetable crops in China. Turnip mosaic virus (TuMV) is one of its main pathogen. Screening the molecular marker linked to the TuMV resistance gene is an efficient method to improve pak-choi breeding. In this paper, a dominant gene, TuRBCH01, has been mapped. 180 F2 individuals ...

  9. Relationship between gene responses and symptoms induced by Rice grassy stunt virus

    Directory of Open Access Journals (Sweden)

    Kouji eSatoh

    2013-10-01

    Full Text Available Rice grassy stunt virus (RGSV is a serious threat to rice production in Southeast Asia. RGSV is a member of the genus Tenuivirus, and it induces leaf yellowing, stunting, and excess tillering on rice plants. Here we examined gene responses of rice to RGSV infection to gain insight into the gene responses which might be associated with the disease symptoms. The results indicated that 1 many genes related to cell wall synthesis and chlorophyll synthesis were predominantly suppressed by RGSV infection; 2 RGSV infection induced genes associated with tillering process; 3 RGSV activated genes involved in inactivation of gibberellic acid and indole-3-acetic acid ; and 4 the genes for strigolactone signaling were suppressed by RGSV. These results suggest that these gene responses to RGSV infection account for the excess tillering specific to RGSV infection as well as other symptoms by RGSV, such as stunting and leaf chlorosis.

  10. Effective inhibition of specific gene by adenoassociated virus (AAV ...

    African Journals Online (AJOL)

    RNA-interference is the mechanism of sequence-specific, post-transcriptional gene silencing, initiated by small interfering RNA (siRNA), homologous to the gene being suppressed. Several techniques are utilized to transfer siRNA into cultured cells or animal models, while every method has advantages and disadvantages.

  11. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  12. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Directory of Open Access Journals (Sweden)

    Kara McCormick

    Full Text Available Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling technology to create a panel of chimeric HA genes.Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129 was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129 and a A/swine/Texas/4199-2/98 backbone (TX98-129. When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates.This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  13. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses.

    Science.gov (United States)

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C; Hurtig, Heather R; Mabee, Leah M; Mingo, Mark; Li, Yanhua; Webby, Richard J; Huber, Victor C; Fang, Ying

    2015-01-01

    Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines.

  14. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system.

    Science.gov (United States)

    Kaneda, Yasufumi; Nakajima, Toshihiro; Nishikawa, Tomoyuki; Yamamoto, Seiji; Ikegami, Hiroyuki; Suzuki, Naho; Nakamura, Hitomi; Morishita, Ryuichi; Kotani, Hitoshi

    2002-08-01

    We have developed a simple method for converting the lipid envelope of an inactivated virus to a gene transfer vector. Hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector was constructed by incorporating plasmid DNA into inactivated HVJ particles. This HVJ envelope vector introduced plasmid DNA efficiently and rapidly into various cell lines, including cancer cells and several types of primary cell culture. Efficiency of gene transfer was greatly enhanced by protamine sulfate and centrifugation. Fluorescein isothiocyanate-labeled oligodeoxynucleotides (FITC-ODN) were also delivered to cells at > 95% efficiency. When HVJ envelope vector was injected into organs directly, reporter gene expression was observed in organs including liver, brain, skin, uterus, tumor masses, lung, and eye. When HVJ envelope vector containing luciferase gene was injected into mouse tail vein, luciferase gene expression was detected primarily in spleen. FITC-ODN were also delivered to spleen cells by intravenous injection of HVJ envelope. These results suggest that HVJ envelope vector will be useful for both ex vivo and in vivo gene therapy experiments.

  15. Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.

    Science.gov (United States)

    Vozárová, Z; Žilová, M; Šubr, Z

    2015-12-01

    Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.

  16. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system

    Directory of Open Access Journals (Sweden)

    Tuttle John

    2012-08-01

    Full Text Available Abstract Background We previously developed a virus-induced gene silencing (VIGS vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV. The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens. We also describe the construction of two low-cost particle inflow guns. Results The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV VIGS vector respectively. Conclusions These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns.

  17. Semliki Forest virus is an efficient and selective vector for gene delivery in infarcted rat heart

    NARCIS (Netherlands)

    Loot, AE; Henning, RH; Deelman, LE; Tio, RA; Schoen, P; Wilschut, JC; van Gijst, WH; Roks, AJM

    Gene therapy is emerging as a realistic addition to the therapeutic arsenal in heart failure, but the search for suitable vectors for cardiac transfection is still ongoing. In this study, we explore the applicability of recombinant Semliki Forest virus (SFV) in heart failure. SFV was intracoronarily

  18. Detection Of Caprine Arthritis Encephalitis Virus Gag-Gene By Rt ...

    African Journals Online (AJOL)

    Predominantly, cells of the monocyte-macrophage lineage were specifically infected by the virus as proviral DNA was detected in infected cultures by amplification of a 414 base-pair (bp) fragment of the viral gag-gene by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) technique. The present study revealed ...

  19. Molecular evolution of respiratory syncytial virus fusion gene, Canada, 2006-2010.

    Science.gov (United States)

    Papenburg, Jesse; Carbonneau, Julie; Hamelin, Marie-Ève; Isabel, Sandra; Bouhy, Xavier; Ohoumanne, Najwa; Déry, Pierre; Paes, Bosco A; Corbeil, Jacques; Bergeron, Michel G; De Serres, Gaston; Boivin, Guy

    2012-01-01

    To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006-2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.

  20. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene

    NARCIS (Netherlands)

    Chalmers, D; Ferrand, C; Apperley, JF; Melo, JV; Ebeling, S; Newton, [No Value; Duperrier, A; Hagenbeek, A; Garrett, E; Tiberghien, P; Garin, M

    Introduction of the Herpes simplex virus thymidine kinase (HSV-tk) gene into target cells renders them susceptible to killing by ganciclovir (GCV). We are studying the use of HSV-tk-transduced T lymphocytes in the context of hematopoietic stem cell transplantation. We have previously shown, in vitro

  1. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints

    NARCIS (Netherlands)

    Apparailly, F.; Khoury, M.; Vervoordeldonk, M. J. B.; Adriaansen, J.; Gicquel, E.; Perez, N.; Riviere, C.; Louis-Plence, P.; Noel, D.; Danos, O.; Douar, A.-M.; Tak, P. P.; Jorgensen, C.

    2005-01-01

    The potential for gene delivery to joints, using recombinant adeno-associated virus (rAAV) vectors for the treatment of rheumatoid arthritis ( RA), has received much attention. Different serotypes have different virion shell proteins and, as a consequence, vary in their tropism for diverse tissues.

  2. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Pompe-Novak, M.; Gruden, K.; Baebler, P.; Krecic-Stress, H.; Kovac, M.; Jongsma, M.A.; Ravnikar, M.

    2005-01-01

    The tuber necrotic strain of Potato virus Y (PVYNTN) causes potato tuber necrotic ringspot disease in sensitive potato cultivars. Gene expression in the disease response of the susceptible potato (Solanum tuberosum L.) cultivar Igor was investigated at different times after infection, using

  3. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene.

    NARCIS (Netherlands)

    X.W. Wang (Xin Wei); M.K. Gibson (Michael); W. Vermeulen (Wim); H. Yeh; K. Forrester; H.-W. Stürzbecher; J.H.J. Hoeijmakers (Jan); C.C. Harris

    1996-01-01

    textabstractThe p53 tumor suppressor gene product is a transcriptional transactivator and a potent apoptotic inducer. The fact that many of the DNA tumor virus oncoproteins bind to p53 and affect these p53 functions indicates that this interaction is an important step in oncogenic transformation. We

  4. Gene S characterization of Hantavirus species Seoul virus isolated from Rattus norvegicuson an Indonesian island

    Directory of Open Access Journals (Sweden)

    Dian Perwitasari

    2014-08-01

    Full Text Available AbstrakLatar belakang: Hantavirus hidup dan berkembang biak di tubuh hewan pengerat, salah satunya Rattus norvegicus yang banyak ditemukan di daerah kepulauan di Indonesia. Hantavirus spesies Seoul virus (SEOV adalah virus RNA negatif rantai tunggal yang termasuk dalam keluarga Bunyaviridae, mempunyai beberapa gen spesifik terutama gen S yang dapat dikembangkan untuk uji diagnostik. Tujuan penelitian ini ialah untuk mengetahui karakter dari gen S dari Hantavirus spesies Seoulvirus.Metode:Pada penelitian ini dilakukan sekuensing gen S yang berasal dari jaringan paru-paru rodensia.  Fragmen DNA yang disekuensing menggunakan primer DNA SEOS-28F danSEOS -360R,VNS-1501F dan VNS-CSR. Hasil sekuensing dianalisis menggunakan program seqscapedan dianalisis menggunakan program Bioedit dan Mega5. Analisis filogenetik untuk homologi nukleotida dan asam amino dari ketiga strain Kepulauan Seribu tersebut dibandingkan dengan spesies hantavirus lainnya yang diambil dari genebank. Hasil:Analisis Homologi nukleotida dan asam amino antara strain Kepulauan Seribu dengan SEOV menunjukkan homologi nukleotida tertinggi pada strain KS74 (88,4% dan terendah pada KS90 (87,2%, sedangkan homologi asam amino tertinggi adalah strain KS74 (91.3% dan terendah pada strain KS90 (89,5%. Kesimpulan:Karakter gen S virus yang ditemukan di Kepulauan Seribu sebanding dengan virus SEOV yang ditemukan di Singapura dan Korea.  (Health Science Indones 2014;1:1-6Kata kunci:Seoul virus, gen S, Kepulauan Seribu, IndonesiaAbstractBackground: Hantavirus lives and reproduces in the body of rodents. Rattus norvegicuswas one found in the Kepulauan Seribu islands of Indonesia. Hantavirus species Seoul virus (SEOV is a negative single chain RNA viruses included in the family Bunyaviridae. It has a few specific genes, especially genes S that can be developed for a diagnostic test. The aim of this study was to ascertain the character of gene S of hantavirus species Seoul virus. Methods: Gene

  5. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  6. Dengue Virus Induces Novel Changes in Gene Expression of Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Warke, Rajas V.; Xhaja, Kris; Martin, Katherine J.; Fournier, Marcia F.; Shaw, Sunil K.; Brizuela, Nathaly; de Bosch, Norma; Lapointe, David; Ennis, Francis A.; Rothman, Alan L.; Bosch, Irene

    2003-01-01

    Endothelial cells are permissive to dengue virus (DV) infection in vitro, although their importance as targets of DV infection in vivo remains a subject of debate. To analyze the virus-host interaction, we studied the effect of DV infection on gene expression in human umbilical vein endothelial cells (HUVECs) by using differential display reverse transcription-PCR (DD-RTPCR), quantitative RT-PCR, and Affymetrix oligonucleotide microarrays. DD identified eight differentially expressed cDNAs, including inhibitor of apoptosis-1, 2′-5′ oligoadenylate synthetase (OAS), a 2′-5′ OAS-like (OASL) gene, galectin-9, myxovirus protein A (MxA), regulator of G-protein signaling, endothelial and smooth muscle cell-derived neuropilin-like protein, and phospholipid scramblase 1. Microarray analysis of 22,000 human genes confirmed these findings and identified an additional 269 genes that were induced and 126 that were repressed more than fourfold after DV infection. Broad functional responses that were activated included the stress, defense, immune, cell adhesion, wounding, inflammatory, and antiviral pathways. These changes in gene expression were seen after infection of HUVECs with either laboratory-adapted virus or with virus isolated directly from plasma of DV-infected patients. Tumor necrosis factor alpha, OASL, and MxA and h-IAP1 genes were induced within the first 8 to 12 h after infection, suggesting a direct effect of DV infection. These global analyses of DV effects on cellular gene expression identify potentially novel mechanisms involved in dengue disease manifestations such as hemostatic disturbance. PMID:14557666

  7. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-05-01

    Full Text Available Abstract Phylogenetic analysis of three genes of Penguinpox virus, a novel Avipoxvirus isolated from African penguins, reveals its relationship to other poxviruses. The genes corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L were sequenced and phylogenetic trees (Neighbour-Joining and UPGMA constructed from MUSCLE nucleotide and amino acid alignments of the equivalent sequences from several different poxviruses. Based on this analysis, PEPV was confirmed to belong to the genus Avipoxvirus, specifically, clade A, subclade A2 and to be most closely related to Turkeypox virus (TKPV, Ostrichpox virus (OSPVand Pigeonpox virus (PGPV.

  8. Insertions in the gG Gene of Pseudorabies Virus Reduce Expression of the Upstream Us3 Protein and Inhibit Cell-to-Cell Spread of Virus Infection

    OpenAIRE

    Demmin, Gretchen L.; Clase, Amanda C.; Randall, Jessica A.; Enquist, L.W.; Banfield, Bruce W.

    2001-01-01

    The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar i...

  9. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    Science.gov (United States)

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  10. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus.

    Science.gov (United States)

    Liscombe, David K; O'Connor, Sarah E

    2011-11-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003-0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Reciprocal complementation of bovine parainfluenza virus type 3 lacking either the membrane or fusion gene.

    Science.gov (United States)

    Takada, Marina; Matsuura, Ryosuke; Kokuho, Takehiro; Tsuboi, Takamitsu; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2017-11-01

    Two defective bovine parainfluenza virus type 3 (BPIV3) strains were generated, one lacking the membrane (M) protein gene and expressing EGFP (ΔM-EGFP) and the other lacking the fusion (F) protein gene and expressing mStrawberry (ΔF-mSB), by supplying deficient proteins in trans. When Madin-Darby bovine kidney (MDBK) cells were co-infected with ΔM-EGFP and ΔF-mSB at a multiplicity of infection (MOI) of 0.1, complemented viruses were easily obtained. Complemented viruses grew as efficiently as wild-type BPIV3 and could be passaged in MDBK cell cultures even at an MOI of 0.01, possibly due to multiploid virus particles containing genomes of both ΔM-EGFP and ΔF-mSB. This reciprocal complementation method using two defective viruses would be useful to express large or multiple proteins in cell cultures using paramyxovirus vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Baczko, K.; Liebert, U.G.; Billeter, M.; Cattaneo, R.; Budka, H.; Ter Meulen, V.

    1986-08-01

    The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the bran sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.

  13. Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes

    Directory of Open Access Journals (Sweden)

    Brochier-Armanet Céline

    2008-01-01

    Full Text Available Abstract Background Although capable to evolve, viruses are generally considered non-living entities because they are acellular and devoid of metabolism. However, the recent publication of the genome sequence of the Mimivirus, a giant virus that parasitises amoebas, strengthened the idea that viruses should be included in the tree of life. In fact, the first phylogenetic analyses of a few Mimivirus genes that are also present in cellular lineages suggested that it could define an independent branch in the tree of life in addition to the three domains, Bacteria, Archaea and Eucarya. Results We tested this hypothesis by carrying out detailed phylogenetic analyses for all the conserved Mimivirus genes that have homologues in cellular organisms. We found no evidence supporting Mimivirus as a new branch in the tree of life. On the contrary, our phylogenetic trees strongly suggest that Mimivirus acquired most of these genes by horizontal gene transfer (HGT either from its amoebal hosts or from bacteria that parasitise the same hosts. The detection of HGT events involving different eukaryotic donors suggests that the spectrum of hosts of Mimivirus may be larger than currently known. Conclusion The large number of genes acquired by Mimivirus from eukaryotic and bacterial sources suggests that HGT has been an important process in the evolution of its genome and the adaptation to parasitism.

  14. Viruses, gene therapy and stem cells for the treatment of human glioma.

    Science.gov (United States)

    Kyritsis, A P; Sioka, C; Rao, J S

    2009-10-01

    Cancer gene therapy is based on the transfer of genetic material to cancer cells to modify a normal or abnormal cellular function, or to induce cell death. Modified viruses or stem cells have been used as carriers to transfer the genetic material to cancer cells avoiding trafficking through normal cells. However, although the current vectors have been successful in delivering genes in vitro and in vivo, little has been achieved with human cerebral gliomas. Poor transduction efficiency of viruses in human glioma cells and limited spread and distribution to the tumor limits our current expectations for successful gene therapy of central nervous system cancer until and if effective transfer vehicles are available. Nevertheless, continuing research in better vector development may overcome these limitations and offer a therapeutic advantage over the standard therapies for glioma.

  15. Genetic diversity and evolution of two capsid protein genes of citrus tristeza virus isolates from China.

    Science.gov (United States)

    Wu, Guan-Wei; Tang, Min; Wang, Guo-Ping; Jin, Feng-Yin; Yang, Zuo-Kun; Cheng, Li-Jing; Hong, Ni

    2015-03-01

    The genetic diversity and population structure of citrus tristeza virus (CTV) isolates from China were investigated based on partial sequences spanning the C-terminal end of p61 and the complete sequences of the CPm and CP genes. Phylogenetic analysis revealed five known groups (RB, T30, T36, HA and VT) and one new group (VI) consisting of only Chinese CTV isolates. Incongruent phylogenetic trees coupled with recombination analysis suggested several recombination events in the CPm gene. Positive selection was detected at codon 9 of CPm and codons 31, 41 and 68 of CP. The widespread CTV subpopulation AT-1 found in China has a unique amino acid insertion at the C-terminus of p61, which could increase CTV population complexity with implications for the evolutionary history of the virus. Our results suggest relevant roles for gene flow, purifying selection and recombination in shaping the CTV population in China.

  16. Stability of Barley stripe mosaic virus-induced gene silencing in barley

    DEFF Research Database (Denmark)

    Bruun-Rasmussen, Marianne; Madsen, Christian Toft; Jessing, Stine

    2007-01-01

    Virus-induced gene silencing (VIGS) can be used as a powerful tool for functional genomics studies in plants. With this approach, it is possible to target most genes and downregulate the messenger (m)RNA in a sequence-specific manner. Barley stripe mosaic virus (BSMV) is an established VIGS vector...... for barley and wheat; however, silencing using this vector is generally transient, with efficient silencing often being confined to the first two or three systemically infected leaves. To investigate this further, part of the barley Phytoene desaturase (PDS) gene was inserted into BSMV and the resulting...... photobleaching in infected barley plants was used as a reporter for silencing. In addition, downregulation of PDS mRNA was measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Using fragments of PDS ranging from 128 to 584 nucleotides in BSMV, we observed that insert length...

  17. Nucleotide bias of DCL and AGO in plant anti-virus gene silencing.

    Science.gov (United States)

    Ho, Thien; Wang, Liang; Huang, Linfeng; Li, Zhigang; Pallett, Denise W; Dalmay, Tamas; Ohshima, Kazusato; Walsh, John A; Wang, Hui

    2010-09-01

    Plant Dicer-like (DCL) and Argonaute (AGO) are the key enzymes involved in anti-virus post-transcriptional gene silencing (AV-PTGS). Here we show that AV-PTGS exhibited nucleotide preference by calculating a relative AV-PTGS efficiency on processing viral RNA substrates. In comparison with genome sequences of dicot-infecting Turnip mosaic virus (TuMV) and monocot-infecting Cocksfoot streak virus (CSV), viral-derived small interfering RNAs (vsiRNAs) displayed positive correlations between AV-PTGS efficiency and G+C content (GC%). Further investigations on nucleotide contents revealed that the vsiRNA populations had G-biases. This finding was further supported by our analyses of previously reported vsiRNA populations in diverse plant-virus associations, and AGO associated Arabidopsis endogenous siRNA populations, indicating that plant AGOs operated with G-preference. We further propose a hypothesis that AV-PTGS imposes selection pressure(s) on the evolution of plant viruses. This hypothesis was supported when potyvirus genomes were analysed for evidence of GC elimination, suggesting that plant virus evolution to have low GC% genomes would have a unique function, which is to reduce the host AV-PTGS attack during infections.

  18. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  19. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus.

    Science.gov (United States)

    Khan, Samiullah; Roberts, Juliet; Wu, Shu-Biao

    2017-10-27

    Ten reference genes were investigated for normalisation of candidate target gene expression data in the shell gland and spleen of laying hens challenged with two strains of infectious bronchitis virus (IBV). Data were analysed with geNorm, NormFinder and BestKeeper, and a comprehensive ranking (geomean) was calculated. In the combined data set of IBV challenged shell gland samples, the comprehensive ranking showed TATA-box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the two most stable, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) and albumin (ALB) as the two least stable reference genes. In the spleen, and in the combined data set of the shell gland and spleen, the two most stable and the two least stable reference genes were TBP and YWHAZ, and ribosomal protein L4 (RPL4) and ALB, respectively. Different ranking has been due to different algorithms. Validation studies showed that the use of the two most stable reference genes produced accurate and more robust gene expression data. The two most and least stable reference genes obtained in the study, were further used for candidate target gene expression data normalisation of the shell gland and spleen under an IBV infection model.

  20. Variation in the Genetic Repertoire of Viruses Infecting Micromonas pusilla Reflects Horizontal Gene Transfer and Links to Their Environmental Distribution.

    Science.gov (United States)

    Finke, Jan F; Winget, Danielle M; Chan, Amy M; Suttle, Curtis A

    2017-05-19

    Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae . This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla , other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla , viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla , but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes.

  1. Have we found an optimal insertion site in a Newcastle disease virus vector to express a foreign gene for vaccine and gene therapy purposes?

    Science.gov (United States)

    Using reverse genetics technology, many strains of Newcastle disease virus (NDV) have been developed as vectors to express foreign genes for vaccine and gene therapy purposes. The foreign gene is usually inserted into a non-coding region of the NDV genome as an independent transcription unit. Eval...

  2. The F Gene of Rodent Brain-Adapted Mumps Virus Is a Major Determinant of Neurovirulence▿

    Science.gov (United States)

    Lemon, Ken; Rima, Bertus K.; McQuaid, Stephen; Allen, Ingrid V.; Duprex, W. Paul

    2007-01-01

    Prior to the introduction of live-attenuated vaccines, mumps virus (MuV) was the leading cause of virus-induced meningitis. Although vaccination has been effective at controlling the disease, the use of insufficiently attenuated strains has been associated with high rates of aseptic meningitis in vaccinees. The molecular basis of MuV attenuation is poorly understood, and no reliable molecular markers of virulence have been identified. In this study, reverse genetics has been used to identify molecular determinants of MuV neuropathogenesis. Recombinant viruses, containing the envelope-associated genes from the Kilham (MuVKH) rodent brain-adapted strain of MuV, were generated in the Jeryl Lynn 5 (MuVJL5) vaccine strain background. The syncytium phenotypes of the recombinant viruses on Vero cells differed depending on the source of the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins, with heterologous combinations showing either an increase or a decrease in the level of cell fusion compared to that of the homologous parental combinations. This was confirmed by transiently cotransfecting eukaryotic F and HN glycoprotein expression constructs. A Lewis rat model that discriminates between neurovirulent and nonneurovirulent MuV strains based on the extent of hydrocephalus induced in the rat brain after intracerebral inoculation was used to assess the phenotype of the recombinant viruses. Expression of the matrix (M), small hydrophobic (SH), or HN gene in isolation did not confer a neurovirulent phenotype. Expression of the F gene of the neurovirulent strain alone was sufficient to induce significant levels of hydrocephalus. Coexpression of the homologous HN gene led to a marginal increase in the level of hydrocephalus. PMID:17475640

  3. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses.

    Directory of Open Access Journals (Sweden)

    Tom A Williams

    Full Text Available Mimivirus is a nucleocytoplasmic large DNA virus (NCLDV with a genome size (1.2 Mb and coding capacity ( 1000 genes comparable to that of some cellular organisms. Unlike other viruses, Mimivirus and its NCLDV relatives encode homologs of broadly conserved informational genes found in Bacteria, Archaea, and Eukaryotes, raising the possibility that they could be placed on the tree of life. A recent phylogenetic analysis of these genes showed the NCLDVs emerging as a monophyletic group branching between Eukaryotes and Archaea. These trees were interpreted as evidence for an independent "fourth domain" of life that may have contributed DNA processing genes to the ancestral eukaryote. However, the analysis of ancient evolutionary events is challenging, and tree reconstruction is susceptible to bias resulting from non-phylogenetic signals in the data. These include compositional heterogeneity and homoplasy, which can lead to the spurious grouping of compositionally-similar or fast-evolving sequences. Here, we show that these informational gene alignments contain both significant compositional heterogeneity and homoplasy, which were not adequately modelled in the original analysis. When we use more realistic evolutionary models that better fit the data, the resulting trees are unable to reject a simple null hypothesis in which these informational genes, like many other NCLDV genes, were acquired by horizontal transfer from eukaryotic hosts. Our results suggest that a fourth domain is not required to explain the available sequence data.

  4. Attenuation of Recombinant Vesicular Stomatitis Virus-Human Immunodeficiency Virus Type 1 Vaccine Vectors by Gene Translocations and G Gene Truncation Reduces Neurovirulence and Enhances Immunogenicity in Mice▿

    Science.gov (United States)

    Cooper, David; Wright, Kevin J.; Calderon, Priscilla C.; Guo, Min; Nasar, Farooq; Johnson, J. Erik; Coleman, John W.; Lee, Margaret; Kotash, Cheryl; Yurgelonis, Irene; Natuk, Robert J.; Hendry, R. Michael; Udem, Stephen A.; Clarke, David K.

    2008-01-01

    Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made. PMID:17942549

  5. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    Science.gov (United States)

    Liu, Xiaohui; Yang, Youtian; Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines.

  6. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley.

    Science.gov (United States)

    Hein, Ingo; Barciszewska-Pacak, Maria; Hrubikova, Katarina; Williamson, Sandie; Dinesen, Malene; Soenderby, Ida E; Sundar, Suresh; Jarmolowski, Artur; Shirasu, Ken; Lacomme, Christophe

    2005-08-01

    We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley.

  7. Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley1

    Science.gov (United States)

    Hein, Ingo; Barciszewska-Pacak, Maria; Hrubikova, Katarina; Williamson, Sandie; Dinesen, Malene; Soenderby, Ida E.; Sundar, Suresh; Jarmolowski, Artur; Shirasu, Ken; Lacomme, Christophe

    2005-01-01

    We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and systemic movement without causing excessive symptoms. Phytoene desaturase silencing leading to photobleaching was used as a phenotypic marker alongside reverse transcription-PCR data to characterize the silencing response at the molecular level. Barley cultivar Clansman, harboring the Mla13 resistance gene, was chosen as the most suitable host for BSMV-VIGS-based functional characterization of Rar1, Sgt1, and Hsp90 in the Mla-mediated resistance toward powdery mildew. BSMV-induced gene silencing of these candidate genes, which are associated in many but not all race-specific pathways, proved to be robust and could be detected at both mRNA and protein levels for up to 21 d postinoculation. Systemic silencing was observed not only in the newly developed leaves from the main stem but also in axillary shoots. By examining fungal development from an incompatible mildew strain carrying the cognate Avr13 gene on plants BSMV silenced for Rar1, Sgt1, and Hsp90, a resistance-breaking phenotype was observed, while plants infected with BSMV control constructs remained resistant. We demonstrate that Hsp90 is a required component for Mla13-mediated race-specific resistance and that BSMV-induced VIGS is a powerful tool to characterize genes involved in pathogen resistance in barley. PMID:16040663

  8. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  9. Cloning and analysis of the Epstein-Barr virus glycoprotein 350 genes.

    Science.gov (United States)

    Chang, S H; Kim, S H; Lee, W K; Kim, H J; Choi, S H; Park, J H; Jang, H S; Chung, G H; Kwon, T H; Kim, D H; Yang, M S; Jang, Y S

    1998-10-31

    Membrane glycoprotein 350 (gp350) of the Epstein-Barr virus (EBV) is considered as a major target for vaccine development, since the gp350 has been identified as the virus' mediator for receptor interaction and as an inducer of specific in vitro virus-neutralizing antibodies. In an initial attempt to develop an effective DNA vaccine against an EBV infection, gp350 genes were isolated from SNU-20 and SNU-1103 which are the EBV-infected lymphoblastoid cell lines established in Korea. In addition, the nucleotide sequences of the gp350 genes were determined and compared with those of other EBV strains such as B95-8, P3HR-1/AG876 and M81. Sequence analysis showed that similar high degrees of homology between 2 EBV strains derived from African Burkitt's lymphoma, P3HR-1 and AG876, was shown between the gp350 genes isolated from 2 EBV-infected lymphoblastoid cell lines established in Korea. Furthermore, these 2 Korean and 2 African strains displayed nearly identical patterns of sequence variations from B95-8. In addition, the sequence of the isolated gp350 genes, which have been reported to be associated with the biology of EBV infection, is analyzed.

  10. Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications.

    Science.gov (United States)

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2015-09-01

    Adeno-associated virus (AAV) vectors are the most widely used vehicle systems for neuronal gene transfer. This popularity is based on the non-pathogenic nature of AAVs and their versatility making them a multifunctional vector system for basic research and clinical applications. AAVs are successfully applied in clinical and pre-clinical gene therapy studies for inherited retinal disorders. Their excellent transduction profile and efficiency also boosted the use of AAV vectors in basic research. The AAV vector system can be easily modified and adjusted at multiple levels to allow for optimized and specific gene expression in target cells. Here, we will provide an overview on the AAV vector system and its applications focusing on gene transfer into retinal cells. Furthermore, we will outline and discuss strategies for the optimization of AAV gene transfer by modifications to the AAV vector expression cassette, the AAV capsid or the routes of vector administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Adeno-associated virus-mediated delivery of genes to mouse spermatogonial stem cells.

    Science.gov (United States)

    Watanabe, Satoshi; Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Matoba, Shogo; Ogura, Atsuo; Shinohara, Takashi

    2017-01-01

    Spermatogenesis is a complicated process that originates from spermatogonial stem cells (SSCs), which have self-renewal activity. Because SSCs are the only stem cells in the body that transmit genetic information to the next generation, they are an attractive target for germline modification. Although several virus vectors have been successfully used to transduce SSCs, cell toxicity or insertional mutagenesis of the transgene has limited their usage. Adeno-associated virus (AAV) is unique among virus vectors because of its target specificity and low toxicity in somatic cells, and clinical trials have shown that it has promise for gene therapy. However, there are conflicting reports on the possibility of germline integration of AAV into the genome of male germ cells, including SSCs. Here, we examined the usefulness of AAV vectors for exploring germline gene modification in SSCs. AAV1 infected cultured SSCs without apparent toxicity. Moreover, SSCs that were infected in fresh testis cells generated normal appearing spermatogenic colonies after spermatogonial transplantation. A microinsemination experiment produced offspring that underwent excision of the floxed target gene by AAV1-mediated Cre expression. Analysis of the offspring DNA showed no evidence of AAV integration, suggesting a low risk of germline integration by AAV infection. Although more extensive experiments are required to assess the risk of germline integration, our results show that AAV1 is useful for genetic manipulation of SSCs, and gene transduction by AAV will provide a useful approach to overcome potential problems associated with previous virus vector-mediated gene transduction. © The Authors 2016. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Roll of hemagglutinin gene in the biology of avian inflenza virus

    Directory of Open Access Journals (Sweden)

    Masoud Soltanialvar

    2016-06-01

    Full Text Available The hemagglutinin (HA, the major envelope glycoprotein of influenza, plays an important role during the early stage of infection, and changes in the HA gene prior to the emergence of pathogenic avian influenza viruses. The HA protein controls viral entry through membrane fusion of the viral envelope with the host cell membrane and allows the genetic information released to initiate new virus synthesis. Sharp antigenic variation of HA remains the critical challenge to the development of effective vaccines. Therefore, we highlight the role of HA in need of review: structure of HA, the fusion process and the HA receptor binding specificity in interspecies transmission and the impact of multiple mutations at antigenic sites and host antibodies to the parental virus, and the host susceptibility to productive infection by the drift strains.

  13. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  14. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  15. Directed evolution of adeno-associated virus (AAV) as vector for muscle gene therapy.

    Science.gov (United States)

    Yang, Lin; Li, Juan; Xiao, Xiao

    2011-01-01

    Adeno-associated virus (AAV) is emerging as a vector of choice for muscle gene therapy because of its effective and stable transduction in striated muscles. AAV naturally evolve into multiple serotypes with diverse capsid gene sequences that are apparently the determinants of their tissue tropism and infectivity. Certain AAV serotypes show robust gene transfer upon direct intramuscular injection, while others are effective in crossing the endothelial barrier to reach muscle when delivered intravenously. Muscular dystrophy gene therapy requires efficient body-wide muscle gene transfer. However, preferential liver transduction by nearly all natural AAV serotypes could be an undesirable feature for muscle-directed applications, especially by means of systemic gene delivery. Here we describe a method of in vitro evolution and in vivo selection of AAV capsids that target striated muscles and detarget the liver. Using DNA shuffling technology, we have generated a capsid gene library by in vitro scrambling and shuffling the capsid genes of natural AAV1 to AAV9. To minimize the bias and limitation of in vitro screening on culture cells, we performed direct in vivo panning in adult mice after intravenous injection of the shuffled capsid library that packaged their own coding sequences. The AAV variants enriched in the heart and muscle are retrieved by capsid gene PCR and subsequently characterized for their tissue tropisms. This directed evolution and in vivo selection method should be useful in generating novel gene therapy vectors for muscle and heart and other tissues.

  16. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    Science.gov (United States)

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  18. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene.

    Science.gov (United States)

    MacKenzie, D J; Ellis, P J

    1992-01-01

    A recombinant plasmid containing the entire tomato spotted with virus (TSWV) nucleocapsid gene, with the exception of nucleotide encoding three N-terminal amino acids, was isolated by screening a complementary DNA library, prepared against random primed viral RNA, using a specific monoclonal antibody. The insert contained in plasmid pTSW1 was repaired and amplified by polymerase chain reaction, and the complete nucleocapsid protein gene was introduced into Nicotiana tabacum 'Samsun' by leaf disk transformation using Agrobacterium tumefaciens. Transgenic plants expressing the viral nucleocapsid protein were resistant to subsequent infection following mechanical inoculation with TSWV as indicated by a lack of systemic symptoms and little or no systemic accumulation of virus as determined by double antibody sandwich enzyme-liked immunosorbent assay. These results further extend the applicability of coat protein-mediated resistance, as previously demonstrated for a number of simple plant viruses composed of a positive-sense RNA genome encapsidated with a single species of coat protein, to a membrane-encapsidated, multi-component, negative-sense RNA virus.

  19. RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.

    Science.gov (United States)

    Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. DNA microarray global gene expression analysis of influenza virus-infected chicken and duck cells

    Directory of Open Access Journals (Sweden)

    Suresh V. Kuchipudi

    2015-06-01

    Full Text Available The data described in this article pertain to the article by Kuchipudi et al. (2014 titled “Highly Pathogenic Avian Influenza Virus Infection in Chickens But Not Ducks Is Associated with Elevated Host Immune and Pro-inflammatory Responses” [1]. While infection of chickens with highly pathogenic avian influenza (HPAI H5N1 virus subtypes often leads to 100% mortality within 1 to 2 days, infection of ducks in contrast causes mild or no clinical signs. The rapid onset of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggests underlying differences in their innate immune mechanisms. We used Chicken Genechip microarrays (Affymetrix to analyse the gene expression profiles of primary chicken and duck lung cells infected with a low pathogenic avian influenza (LPAI H2N3 virus and two HPAI H5N1 virus subtypes to understand the molecular basis of host susceptibility and resistance in chickens and ducks. Here, we described the experimental design, quality control and analysis that were performed on the data set. The data are publicly available through the Gene Expression Omnibus (GEOdatabase with accession number GSE33389, and the analysis and interpretation of these data are included in Kuchipudi et al. (2014 [1].

  1. [Phylogenetic analysis of envelope gene of dengue virus serotype 2 in Guangzhou, 2001-2015].

    Science.gov (United States)

    Liu, Y; Jiang, L Y; Luo, L; Cao, Y M; Jing, Q L; Yang, Z C

    2017-01-10

    Objective: To investigate the molecular characteristics of dengue virus serotype 2 (DENV2) in Guangzhou during 2001-2015, and analyze the E gene of the strains isolated, the phylogenetic tree and molecular clock were constructed to know about the evolution of the strains. Methods: The serum samples of the patients were detected by real time PCR, and positive samples were used to isolate dengue virus by using C6/36 cells. The E gene of the isolated strains were sequenced. The phylogenetic tree was constructed by using software Mega 4.0, and the molecular clock was drawn by using software BEASTv1.8.2. Results: Twenty-six dengue virus strains were isolated between 2001 and 2015. They were all clustered into 2 genotypes, i.e. cosmopolitan genotype and Asian genotype Ⅰ. The strains isolated in Guangzhou shared high homology with Southeast Asian strains. The cosmopolitan genotype was divided into 2 sub-genotype at about 46 and 35 years ago. The substitution rate of dengue virus serotype 2 in Guangzhou was 7.1 × 10(-4) per year per site. Conclusions: There were close relationship between the Guangzhou strains and Southeast Asian strains. Guangzhou was at high risk of imported dengue fever, outbreak of dengue hemorrhagic fever and dengue shock syndrome. There might be two ways of introduction of cosmopolitan genotype. The substitution rate of the strains in Guangzhou was similar to that in the neighbor countries.

  2. Effects of poliovirus 2A(pro) on vaccinia virus gene expression.

    Science.gov (United States)

    Feduchi, E; Aldabe, R; Novoa, I; Carrasco, L

    1995-12-15

    The effects of transient expression of poliovirus 2A(pro) on p220 cleavage in COS cells have been analyzed. When 2A(pro) was cloned in plasmid pTM1 and transiently expressed in COS cells, efficient cleavage of p220 occurred after infection of these cells with a recombinant vaccinia virus bearing phage T7 RNA polymerase. High numbers of COS cells were transfected with pTM1-2A, as judged by p220 cleavage, thereby allowing an analysis of the effects of poliovirus 2A(pro) on vaccinia virus gene expression. A 40-50% cleavage of p220 by transfected poliovirus 2A(pro) was observed ten hours post infection and cleavage was almost complete (80-90%) 20-25 hours post infection with vaccinia virus. Profound inhibition of vaccinia virus protein synthesis was detectable ten hours post infection and was maximal 20-25 hours post infection. This inhibition resulted from neither a blockade of transcription of vaccinia virus nor a lack of translatability of the mRNAs present in cells that synthesize poliovirus 2A(pro). Addition of ara-C inhibited the replication of vaccinia virus and allowed the continued synthesis of cellular proteins. Under these conditions, 2A(pro) is expressed and blocks cellular translation. Finally, p220 cleavage by 2A(pro) did not inhibit the translation of a mRNA encoding poliovirus protein 2C, as directed by the 5' leader sequences of encephalomiocarditis virus. Therefore, these findings show a correlation between p220 cleavage and inhibition of translation from newly made mRNAs. Our results are discussed in the light of present knowledge of p220 function, and new approaches are considered that might provide further insights into the function(s) of initiation factor eIF-4F.

  3. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase genes...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  4. Virus-derived gene expression and RNA interference vector for grapevine.

    Science.gov (United States)

    Kurth, Elizabeth G; Peremyslov, Valera V; Prokhnevsky, Alexey I; Kasschau, Kristin D; Miller, Marilyn; Carrington, James C; Dolja, Valerian V

    2012-06-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.

  5. T-cell receptor gene rearrangement in Epstein-Barr virus infectious mononucleosis.

    Science.gov (United States)

    Marbello, L; Riva, M; Veronese, S; Nosari, A M; Ravano, E; Colosimo, A; Paris, L; Morra, E

    2012-09-01

    This report describes the case of a previously healthy young man who presented with fever, pharyngitis, cervical lymphadenopathy, lymphocytosis, and severe thrombocytopenia. Serological tests for Epstein-Barr virus were diagnostic of a primary Epstein-Barr virus infectious mononucleosis but severe thrombocytopenia aroused the suspicion of a lymphoproliferative disease. T-cell receptor gene analysis performed on peripheral and bone marrow blood revealed a T-cell receptor γ-chain rearrangement without the evidence of malignancy using standard histologic and immunophenotype studies. Signs and symptoms of the infectious disease, blood count, and T-cell receptor gene rearrangement resolved with observation without the evidence of emergence of a lymphoproliferative disease. In the contest of a suspected lymphoproliferative disease, molecular results should be integrated with all available data for an appropriate diagnosis.

  6. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  7. Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis

    Directory of Open Access Journals (Sweden)

    Skjaeret Camilla

    2006-12-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is a major cause of viral bronchiolitis in infants worldwide, and environmental, viral and host factors are all of importance for disease susceptibility and severity. To study the systemic host response to this disease we used the microarray technology to measure mRNA gene expression levels in whole blood of five male infants hospitalised with acute RSV, subtype B, bronchiolitis versus five one year old male controls exposed to RSV during infancy without bronchiolitis. The gene expression levels were further evaluated in a new experiment using quantitative real-time polymerase chain reaction (QRT-PCR both in the five infants selected for microarray and in 13 other infants hospitalised with the same disease. Results Among the 30 genes most differentially expressed by microarray nearly 50% were involved in immunological processes. We found the highly upregulated interferon, alpha-inducible protein 27 (IFI27 and the highly downregulated gene Charcot-Leyden crystal protein (CLC to be the two most differentially expressed genes in the microarray study. When performing QRT-PCR on these genes IFI27 was upregulated in all but one infant, and CLC was downregulated in all 18 infants, and similar to that given by microarray. Conclusion The gene IFI27 is upregulated and the gene CLC is downregulated in whole blood of infants hospitalised with RSV, subtype B, bronchiolitis and is not reported before. More studies are needed to elucidate the specificity of these gene expressions in association with host response to this virus in bronchiolitis of moderate severity.

  8. The Vpr gene polymorphism of human immunodeficiency virus type 1 in China and its clinical significance.

    Science.gov (United States)

    Chen, Xia; Zheng, Yuhuang; Li, Hui; Mamadou, Diallo; Zhang, Chunying; He, Yan; Zhou, Huaying; Chen, Zi; Liu, Meng

    2011-07-01

    Recent studies have explored that mutated Human immunodeficiency virus type 1(HIV-1) Vpr genes likely influence clinical manifestations of HIV infected patients. However, the relationship between the mutation sites on HIV Vpr gene and subsequent function changes is still not clear. In this study we investigated such relationship in analyzing the Vpr genes of HIV-1 viruses isolated from 208 HIV-1 infected patients from different regions in China. Reverse transcription polymerase chain reaction (RT-PCR) and nested PCR were used to amplify HIV-1 Vpr gene extracted from plasma of 208 HIV-1 infected patients and 153 isolates displayed the target gene sequences. Biological analysis software analyzed the deduced amino acid sequence, and identified the characteristics of the polymorphism of HIV-1 Vpr gene and its clinical significance. Results show the sequence subtypes as follows: CRF01-AE is 51.63%, subtype C is 24.84%, ubtype B is 17.65%, CRF03-AB is 3.92% and CRF08-BC is 1.31%. This paper revealed for the first time the HIV-1 Vpr gene polymorphism in HIV-1 positive individuals in China.: the subtype CRF01-AE is the main Vpr gene subtype in this region. The mutations in the C-terminal were more obvious than those observed in the N-terminal. It was also discovered that in the 77th position, 84.3% of the 153 amino acid sequences were glutamine (Q), which differ from overseas reports. Our data showed that the mutations 63, 70, 85, 86, 89 and 94 of the Vpr gene were possibly correlated with the clinical manifestations of the HIV-1 infected individuals.

  9. [Construction and identification of recombinant avian adeno-associated virus expressing GFP reporter gene].

    Science.gov (United States)

    Wang, An-ping; Sun, Huai-chang; Wang, Jian-ye; Wang, Yong-juan; Yuan, Wei-feng

    2007-07-01

    To generate recombinant avian adeno-associated virus (rAAAV) for gene transfer studies in avian cells, the recombinant plasmid containing the whole genome of AAAV was digested with restriction enzymes to remove the Rep and Cap genes, resulting in AAAV transfer vector pAITR. GFP-expressing cassette was amplified by PCR and inserted into the AAAV transfer vector. The Rep-Cap gene of AAAV amplified by high fidelity PCR was subcloned into eukaryotic expression vector pcDNA3, resulting in an AAAV helper vector pcDNA-ARC. The Rep and Cap genes amplified by high fidelity PCR were subcloned separately into the co-expression vector pVITRO2-mcs, resulting in another AAAV helper vector pVITRO2-ARC. Using calcium phosphate precipitation method, rAAAV-GFP was generated by co-transfecting AAV-293 cells with a cocktail of pAITR-GFP, pcDNA-ARC or pVITRO2-ARC, and adenovirus helper vector pHelper. The three structural proteins VP1, VP2 and VP3 of correct molecular masses were detected by SDS-PAGE and the GFP reporter gene was detected by PCR in purified rAAAV-GFP virions. Chicken embryonic fibroblast (CEF) cells and CEL cell line were transduced with the recombinant virus, the GFP-positive cells were easily observed under fluorescent microscope, expression of which lasted for at least two weeks. These data demonstrate that an efficient helper virus-free packaging system has been established for generating recombinant AAAV particles for gene transfer studies in avian cells and for development of recombinant vaccines against avian diseases.

  10. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    OpenAIRE

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Abstract Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated...

  11. A complete analysis of HA and NA genes of influenza A viruses.

    LENUS (Irish Health Repository)

    Shi, Weifeng

    2010-12-01

    More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza.

  12. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance.

    Science.gov (United States)

    Padgett, H S; Beachy, R N

    1993-05-01

    The genome of Ob, a tobamovirus that overcomes the N gene-mediated hypersensitive response (HR), was cloned as a cDNA, and its nucleotide sequence was determined. The genomic organization of Ob is similar to that of other tobamoviruses, consisting of 6506 nucleotides and containing at least four open reading frames. These open reading frames encode a 126-kD polypeptide with a 183-kD readthrough product, a 30.6-kD movement protein, and an 18-kD coat protein. A bacteriophage T7 promoter sequence was fused to the full-length cDNA clone to obtain infectious RNA transcripts. These transcripts, when inoculated onto tobacco plants, induced disease symptoms indistinguishable from plants inoculated with Ob viral RNA. To determine which viral factor is responsible for the resistance-breaking character of Ob, a recombinant virus was constructed in which the movement protein gene of tobacco mosaic virus was replaced with that of Ob. Cultivar Xanthi NN tobacco plants infected with this virus responded with an HR, indicating that the Ob movement protein alone does not act to overcome the N gene-mediated response. Following mutagenesis of the infectious Ob cDNA clone with hydroxylamine, populations of transcripts from the mutagenized DNA were inoculated onto Xanthi NN tobacco, and a variant that induced the HR was identified. The mutant was analyzed and found to contain a single nucleotide change in the 126-kD gene. Recreating the mutation in the Ob cDNA clone by site-directed mutagenesis resulted in a virus that caused symptoms identical to the chemically induced mutant.

  13. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    Science.gov (United States)

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  14. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  15. Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery.

    Science.gov (United States)

    Unzueta, Ugutz; Saccardo, Paolo; Domingo-Espín, Joan; Cedano, Juan; Conchillo-Solé, Oscar; García-Fruitós, Elena; Céspedes, María Virtudes; Corchero, José Luis; Daura, Xavier; Mangues, Ramón; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther

    2014-04-01

    By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Michael R. Strand

    2012-01-01

    Full Text Available Symbiosis is a common phenomenon in which associated organisms can cooperate in ways that increase their ability to survive, reproduce, or utilize hostile environments. Here, we discuss polydnavirus symbionts of parasitic wasps. These viruses are novel in two ways: (1 they have become non-autonomous domesticated entities that cannot replicate outside of wasps; and (2 they function as a delivery vector of genes that ensure successful parasitism of host insects that wasps parasitize. In this review we discuss how these novelties may have arisen, which genes are potentially involved, and what the consequences have been for genome evolution.

  17. Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production.

    Science.gov (United States)

    Masud, H M Abdullah Al; Watanabe, Takahiro; Yoshida, Masahiro; Sato, Yoshitaka; Goshima, Fumi; Kimura, Hiroshi; Murata, Takayuki

    2017-09-13

    Epstein-Barr virus (EBV), a member of human gammaherpesvirus, infects mainly B cells. EBV has two alternative life cycles, latent and lytic, and is reactivated occasionally from the latent stage to the lytic cycle. To combat EBV-associated disorders, understanding the molecular mechanisms of the EBV lytic replication cycle is also important. Here, we focused on an EBV lytic gene, BKRF4. Using our anti-BKRF4 antibody, we revealed that the BKRF4 gene product is expressed during the lytic cycle with late kinetics. To characterize the role of BKRF4, we constructed BKRF4-knockout mutants using the bacterial artificial chromosome (BAC) and CRISPR/Cas9 systems. While disruption of the BKRF4 gene had almost no effect on viral protein expression and DNA synthesis, it significantly decreased progeny virion levels in HEK293 and Akata cells. Furthermore, we show that BKRF4 is involved not only in production of progeny virions but also in increasing the infectivity of the virus particles. Immunoprecipitation assays revealed that BKRF4 interacted with a virion protein, BGLF2. We showed that the C-terminal region of BKRF4 was critical for this interaction and for efficient progeny production. Immunofluorescence analysis revealed that BKRF4 partially colocalized with BGLF2 in the nucleus and perinuclear region. Finally, we showed that BKRF4 is a phosphorylated, possible tegument protein and that the EBV protein kinase BGLF4 may be important for this phosphorylation. Taken together, our data suggest that BKRF4 is involved in the production of infectious virions.IMPORTANCE While the latent genes of EBV have been studied extensively, the lytic genes are less well characterized. This study focused on one such lytic gene, BKRF4, which is conserved only among gammaherpesviruses (ORF45 of Kaposi's sarcoma-associated herpesvirus or murine herpesvirus-68). After preparing the BKRF4 knockout virus using B95-8 EBV-BAC, we demonstrated that the BKRF4 gene was involved in infectious progeny

  18. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.

    Science.gov (United States)

    McMillen, Cynthia M; Beezhold, Donald H; Blachere, Francoise M; Othumpangat, Sreekumar; Kashon, Michael L; Noti, John D

    2016-10-01

    Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy. Published by Elsevier Inc.

  19. Design of potential siRNA molecules for hepatitis delta virus gene silencing

    Science.gov (United States)

    Singh, Sarita; Gupta, Sunil Kumar; Nischal, Anuradha; Khattri, Sanjay; Nath, Rajendra; Pant, Kamlesh Kumar; Seth, Prahlad Kishore

    2012-01-01

    Hepatitis D is a liable reason of mortality and morbidity worldwide. It is caused by an RNA virus known as Hepatitis Delta Virus (HDV). Genetic studies of HDV have shown that delta antigen protein is responsible for replication of genome and play a foremost role in viral infection. Therefore, delta antigen protein may be used as suitable target for disease diagnosis. Viral activity can be restrained through RNA interference (RNAi) technology, an influential method for post transcriptional gene silencing in a sequence specific manner. However, there is a genetic variability in different viral isolates; it is a great challenge to design potential siRNA molecules which can silence the respective target genes rather than any other viral gene simultaneously. In current study two effective siRNA molecules for silencing of HDV were rationally designed and validated using computational methods, which may lead to knockdown the activity of virus. Thus, this approach may provide an insight for the chemical synthesis of antiviral RNA molecule for the treatment of hepatitis D, at genome level. PMID:23055625

  20. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection

    Directory of Open Access Journals (Sweden)

    Griffiths Jonathan S

    2008-07-01

    Full Text Available Abstract Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV. To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05 up- (≥ 2.5 fold and downregulated (≤ -2.5 fold, respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes

  1. PCR array analysis of gene expression profiles in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Murakami, Masanao; Hashida, Yumiko; Imajoh, Masayuki; Maeda, Akihiko; Kamioka, Mikio; Senda, Yasutaka; Sato, Tetsuya; Fujieda, Mikiya; Wakiguchi, Hiroshi; Daibata, Masanori

    2014-07-01

    To determine the host cellular gene expression profiles in chronic active Epstein-Barr virus infection (CAEBV), peripheral blood samples were obtained from three patients with CAEBV and investigated using a PCR array analysis that focused on T-cell/B-cell activation. We identified six genes with expression levels that were tenfold higher in CAEBV patients compared with those in healthy controls. These results were verified by quantitative reverse transcription-PCR. We identified four highly upregulated genes, i.e., IL-10, IL-2, IFNGR1, and INHBA. These genes may be involved in inflammatory responses and cell proliferation, and they may contribute to the development and progression of CAEBV. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene

    Directory of Open Access Journals (Sweden)

    Seong-Han Sohn

    2015-09-01

    Full Text Available Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS. To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG comparing with wild-type. Eight lines of transgenic plants (T0 were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

  3. Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes

    Directory of Open Access Journals (Sweden)

    Siré Christelle

    2008-03-01

    Full Text Available Abstract Background The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. Results The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica, and partially resistant Azucena (O. s. japonica. This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters were regulated throughout the kinetics of infection and differentiated susceptible and

  4. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Tsujimoto, Hitoshi; Hanley, Kathryn A; Sundararajan, Anitha; Devitt, Nicholas P; Schilkey, Faye D; Hansen, Immo A

    2017-01-01

    The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal. We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses. Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.

  5. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Hitoshi Tsujimoto

    Full Text Available The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal.We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses.Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.

  6. Identification of Influenza A/H7N9 Virus Infection-Related Human Genes Based on Shortest Paths in a Virus-Human Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2014-01-01

    Full Text Available The recently emerging Influenza A/H7N9 virus is reported to be able to infect humans and cause mortality. However, viral and host factors associated with the infection are poorly understood. It is suggested by the “guilt by association” rule that interacting proteins share the same or similar functions and hence may be involved in the same pathway. In this study, we developed a computational method to identify Influenza A/H7N9 virus infection-related human genes based on this rule from the shortest paths in a virus-human protein interaction network. Finally, we screened out the most significant 20 human genes, which could be the potential infection related genes, providing guidelines for further experimental validation. Analysis of the 20 genes showed that they were enriched in protein binding, saccharide or polysaccharide metabolism related pathways and oxidative phosphorylation pathways. We also compared the results with those from human rhinovirus (HRV and respiratory syncytial virus (RSV by the same method. It was indicated that saccharide or polysaccharide metabolism related pathways might be especially associated with the H7N9 infection. These results could shed some light on the understanding of the virus infection mechanism, providing basis for future experimental biology studies and for the development of effective strategies for H7N9 clinical therapies.

  7. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes.

    Science.gov (United States)

    Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo

    2017-09-01

    Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  8. De novo foliar transcriptome of Chenopodium amaranticolor and analysis of its gene expression during virus-induced hypersensitive response.

    Science.gov (United States)

    Zhang, Yongqiang; Pei, Xinwu; Zhang, Chao; Lu, Zifeng; Wang, Zhixing; Jia, Shirong; Li, Weimin

    2012-01-01

    The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10(-5). Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization to dissect the molecular mechanisms and regulatory

  9. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  10. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  11. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    Science.gov (United States)

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  12. Molecular Function Analysis of Rabies Virus RNA Polymerase L Protein by Using an L Gene-Deficient Virus.

    Science.gov (United States)

    Nakagawa, Kento; Kobayashi, Yuki; Ito, Naoto; Suzuki, Yoshiyuki; Okada, Kazuma; Makino, Machiko; Goto, Hideo; Takahashi, Tatsuki; Sugiyama, Makoto

    2017-10-15

    While the RNA-dependent RNA polymerase L protein of rabies virus (RABV), a member of the genus Lyssavirus of the family Rhabdoviridae, has potential to be a therapeutic target for rabies, the molecular functions of this protein have remained largely unknown. In this study, to obtain a novel experimental tool for molecular function analysis of the RABV L protein, we established by using a reverse genetics approach an L gene-deficient RABV (Nishi-ΔL/Nluc), which infects, propagates, and correspondingly produces NanoLuc luciferase in cultured neuroblastoma cells transfected to express the L protein. trans-Complementation with wild-type L protein, but not that with a functionally defective L protein mutant, efficiently supported luciferase production by Nishi-ΔL/Nluc, confirming its potential for function analysis of the L protein. Based on the findings obtained from comprehensive genetic analyses of L genes from various RABV and other lyssavirus species, we examined the functional importance of a highly conserved L protein region at positions 1914 to 1933 by a trans-complementation assay with Nishi-ΔL/Nluc and a series of L protein mutants. The results revealed that the amino acid sequence at positions 1929 to 1933 (NPYNE) is functionally important, and this was supported by other findings that this sequence is critical for binding of the L protein with its essential cofactor, P protein, and thus also for L protein's RNA polymerase activity. Our findings provide useful information for the development of an anti-RABV drug targeting the L-P protein interaction.IMPORTANCE To the best of our knowledge, this is the first report on the establishment of an L gene-deficient, reporter gene-expressing virus in all species of the order Mononegavirales, also highlighting its applicability to a trans-complementation assay, which is useful for molecular function analyses of their L proteins. Moreover, this study revealed for the first time that the NPYNE sequence at positions

  13. Gene signature in Alzheimer's disease and environmental factors: the virus chronicle.

    Science.gov (United States)

    Licastro, Federico; Carbone, Ilaria; Ianni, Manuela; Porcellini, Elisa

    2011-01-01

    Genome wide association investigations from large cohorts of patients with Alzheimer's disease (AD) and non demented controls (CTR) showed that a limited set of genes were associated (p > 10-5) with the disease. A very recent study from our group showed that an additional limited group of SNP in selected genes were associated with AD. In this report we argue that the association of these genes with AD is suggestive of a pivotal role of environmental factors in the pathogenesis of the disease and one of these factors is virus infection. In other words, the genetic signature revealed by genome wide association (GWA) studies discloses a network of genes that might influence the ability of the central nervous system to cope with and fight against the invasion by virus of the herpes family. In fact, Nectin-2 (NC-2); apolipoprotein E (APOE); glycoprotein carcinoembryonic antigen related cell adhesion molecule-16 (CEACAM-16); B-cell lymphoma-3 (Bcl-3); translocase of outer mitochondrial membrane 40 homolog (T0MM-40); complement receptor-1 (CR-l); APOJ or clusterin and C-type lectin domain A family-16 member (CLEC-16A); Phosphatidyl inositol- binding clathrin assembly protein gene (PICALM); ATP-bonding cassette, sub family A, member 7 (ABCA7); membrane spanning A4 (MSA4); CD2 associated protein (CD2AP); cluster of differentiation 33 (CD33); and ephrin receptor A1 (EPHA1) result in a genetic signature that might affect individual brain susceptibility to infection by the herpes virus family during aging, leading to neuronal loss, inflammation, and amyloid deposition.

  14. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  15. [Analysis on VP1 gene variation of Coxsackie virus B5 for aseptic meningitis isolated from Zhejiang Province in 2008].

    Science.gov (United States)

    Ge, Qiong; Yan, Ju-Ying; Gong, Li-Ming

    2010-02-01

    Study meningoencephalitis virus isolated from the Coxsackie B5 virus(CVB5 virus) VP1 gene characteristics of Zhejiang Province in 2008 and compare with other countries CVB5 prototype isolates, and to explore the relationship of variation of the Virus VP1 areas and epidemic viral meningoencephalitis Hep-2 and RD cells in cerebrospinal fluid and stool specimens for virus isolation, positive isolates combination with intestinal type of serum. On the separation of virus extracted RNA, and then RT-PCR amplified VP, gene CVB5 virus fragments, and purification of sequencing products, using DNAMAN and Bioedit analytical processing software. The VP1 gene of CVB5 isolated from Zhejiang province meningoencephalitis viral in 2008 was 735bp. There were no missing and insertion of nucleotide . Strains isolated from ZJ/12/02 with the nucleotide and amino acid sequence of the highest phylogenetic tree showed that they were not the same branch. The mutation caused by viral meningoencephalitis virus CVB5 Zhejiang province in 2008 was smaller. Viral meningoencephalitis distributed in some areas in the province had no significant prevalence.

  16. Moloney murine sarcoma virus MuSVts110 DNA: cloning, nucleotide sequence, and gene expression.

    Science.gov (United States)

    Huai, L; Chiocca, S M; Gilbreth, M A; Ainsworth, J R; Bishop, L A; Murphy, E C

    1992-09-01

    We have cloned Moloney murine sarcoma virus (MuSV) MuSVts110 DNA by assembly of polymerase chain reaction (PCR)-amplified segments of integrated viral DNA from infected NRK cells (6m2 cells) and determined its complete sequence. Previously, by direct sequencing of MuSVts110 RNA transcribed in 6m2 cells, we established that the thermosensitive RNA splicing phenotype uniquely characteristic of MuSVts110 results from a deletion of 1,487 nucleotides of progenitor MuSV-124 sequences. As anticipated, the sequence obtained in this study contained precisely this same deletion. In addition, several other unexpected sequence differences were found between MuSVts110 and MuSV-124. For example, in the noncoding region upstream of the gag gene, MuSVts110 DNA contained a 52-nucleotide tract typical of murine leukemia virus rather than MuSV-124, suggesting that MuSVts110 originated as a MuSV-helper murine leukemia virus recombinant during reverse transcription rather than from a straightforward deletion within MuSV-124. In addition, both MuSVts110 long terminal repeats contained head-to-tail duplications of eight nucleotides in the U3 region. Finally, seven single-nucleotide substitutions were found scattered throughout MuSVts110 DNA. Three of the nucleotide substitutions were in the gag gene, resulting in one coding change in p15 and one in p30. All of the remaining nucleotide changes were found in the noncoding region between the 5' long terminal repeat and the gag gene. In NIH 3T3 cells transfected with the cloned MuSVts110 DNA, the pattern of viral RNA expression conformed with that observed in cells infected with authentic MuSVts110 virus in that viral RNA splicing was 30 to 40% efficient at growth temperatures between 28 and 33 degrees C but reduced to trace levels above 37 degrees C.

  17. Attempts to enhance cross-protection against porcine reproductive and respiratory syndrome viruses using chimeric viruses containing structural genes from two antigenically distinct strains.

    Science.gov (United States)

    Sun, Dong; Khatun, Amina; Kim, Won-Il; Cooper, Vickie; Cho, Yong-Il; Wang, Chong; Choi, Eun-Jin; Yoon, Kyoung-Jin

    2016-08-05

    Due to significant antigenic variations between field isolates of porcine reproductive and respiratory syndrome virus (PRRSV), suboptimal cross-protection between different viruses impedes the effective control of PRRS via vaccination. Our previous study showed that chimeric viruses containing mixed structural genes from two distinct strains (VR2332 and JA142) of PRRSV were highly susceptible to the viral neutralizing activity of antisera generated against both parental strains. In this study, three chimeric viruses (JAP5, JAP56 and JAP2-6) were constructed by replacing ORF5, ORFs 5 and 6, and ORFs 2-6 of VR2332 with the corresponding genes of JA142, respectively, and their ability to confer cross-protection against challenge with the VR2332 and JA142 strains was evaluated in vivo. A total of 114 pigs were divided into 6 groups, and each group was intramuscularly injected with one of the 3 chimeric viruses (n=16 pigs per group), VR2332 (n=24), JA142 (n=24), or sham inoculum (n=18). At 44days post-inoculation (dpi), these pigs were further divided into 15 groups (n=6 or 8 pigs per group) and intranasally challenged with VR2332, JA142, or sham inoculum. All pigs inoculated with one of the chimeric viruses prior to challenge had lower viremia levels than the challenge control pigs. Prior inoculation with JAP56 markedly decreased viremia to nearly undetectable levels in pigs challenged with either VR2332 or JA142. These results suggest that chimeric viruses harboring mixed structural genes from two distinct PRRSV strains can provide protection against both donor viruses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Positive Selection on Hemagglutinin and Neuraminidase Genes of H1N1 Influenza Viruses

    LENUS (Irish Health Repository)

    Li, Wenfu

    2011-04-21

    Abstract Background Since its emergence in March 2009, the pandemic 2009 H1N1 influenza A virus has posed a serious threat to public health. To trace the evolutionary path of these new pathogens, we performed a selection-pressure analysis of a large number of hemagglutinin (HA) and neuraminidase (NA) gene sequences of H1N1 influenza viruses from different hosts. Results Phylogenetic analysis revealed that both HA and NA genes have evolved into five distinct clusters, with further analyses indicating that the pandemic 2009 strains have experienced the strongest positive selection. We also found evidence of strong selection acting on the seasonal human H1N1 isolates. However, swine viruses from North America and Eurasia were under weak positive selection, while there was no significant evidence of positive selection acting on the avian isolates. A site-by-site analysis revealed that the positively selected sites were located in both of the cleaved products of HA (HA1 and HA2), as well as NA. In addition, the pandemic 2009 strains were subject to differential selection pressures compared to seasonal human, North American swine and Eurasian swine H1N1 viruses. Conclusions Most of these positively and\\/or differentially selected sites were situated in the B-cell and\\/or T-cell antigenic regions, suggesting that selection at these sites might be responsible for the antigenic variation of the viruses. Moreover, some sites were also associated with glycosylation and receptor-binding ability. Thus, selection at these positions might have helped the pandemic 2009 H1N1 viruses to adapt to the new hosts after they were introduced from pigs to humans. Positive selection on position 274 of NA protein, associated with drug resistance, might account for the prevalence of drug-resistant variants of seasonal human H1N1 influenza viruses, but there was no evidence that positive selection was responsible for the spread of the drug resistance of the pandemic H1N1 strains.

  19. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  20. Detection of coat protein gene of nervous necrosis virus using loop-mediated isothermal amplification.

    Science.gov (United States)

    Hwang, Jinik; Suh, Sung-Suk; Park, Mirye; Oh, Myung-Joo; Kim, Jong-Oh; Lee, Sukchan; Lee, Taek-Kyun

    2016-03-01

    To establish a novel and highly specific loop-mediated isothermal amplification (LAMP) assay for the identification of nervous necrosis virus (NNV) infection. A set of synthesized primers was used to match the sequences of a specific region of the nnv gene from the National Center for Biotechnology Information database, not originating from NNV-infected fish, the efficiency and specificity of LAMP were measured dependent on the concentration of DNA polymerase and the reaction temperature and time. In addition, to determine species-specific LAMP primers, cross reactivity testing was applied to the reaction between NVV and other virus families including viral hemorrhagic septicemia virus and marine birnavirus. The optimized LAMP reaction carried out at 64 °C for 60 min, and above 4 U Bst DNA polymerase. The sensitivity of LAMP for the detection of nnv was thus about 10 times greater than the sensitivity of polymerase chain reaction. The LAMP assay primers were specific for the detection NNV infection in Epinephelus septemfasciatus. The development of LAMP primers based on genetic information from a public database, not virus-infected samples, may provide a very simple and convenient method to identify viral infection in aquatic organisms. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  1. Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene.

    Science.gov (United States)

    Scorza, R; Ravelonandro, M; Callahan, A M; Cordts, J M; Fuchs, M; Dunez, J; Gonsalves, D

    1994-11-01

    Plum hypocotyl slices were transformed with the coat protein (CP) gene of plum pox virus (PPV-CP) following cocultivation with Agrobacterium tumefaciens containing the plasmid pGA482GG/PPVCP-33. This binary vector carries the PPV-CP gene construct, as well as the chimeric neomycin phosphotransferase and β-glucuronidase genes. Integration and expression of the transferred genes into regenerated plum plants was verified through kan resistance, GUS assays, and PCR amplification of the PPV-CP gene. Twenty-two transgenic clones were identified from approximately 1800 hypocotyl slices. DNA, mRNA, and protein analyses of five transgenic plants confirmed the integration of the engineered CP gene, the accumulation of CP mRNA and of PPV-CP-immunoreactive protein. CP mRNA levels ranged from high to undetectable levels, apparently correlated with gene structure, as indicated by DNA blot analysis. Western analysis showed that transgenic plants produced amounts of CP which generally correlated with amounts of detected mRNA.

  2. Phylogenetic analysis of Indian rabies virus isolates targeting the complete glycoprotein gene.

    Science.gov (United States)

    Cherian, Susan; Singh, Rajendra; Singh, K P; Manjunatha Reddy, G B; Anjaneya; Ravi Kumar, G V P P S; Sumithra, T G; Singh, R P

    2015-12-01

    Rabies a fatal viral zoonosis is endemic in India. There is no report on phylogenetic study of Indian rabies virus isolates based on the complete G gene. In the present study, a total of 25 rabies positive brain samples collected during 2001-2014 from North India (UP, MP, Delhi, Rajasthan), South India (Kerala and Karnataka) and Gujarat states belonging to six different host species were subjected to G gene amplification by RT-PCR as three overlapping fragments of 881 bp, 991 bp and 618 bp. Phylogenetic analysis revealed that all Indian rabies virus isolates are genetically closely related with Arctic-like 1a lineage viruses. However, two distinct clusters were identified namely, India South and India North. All the Indian rabies isolates had 95.5-100% homology related to geography, but not to host species. Deduced amino acids on comparison revealed two amino acid changes, aa 356 in ECTO; N→K and aa 458; M→I, which were found to distinguish between the India South and India North isolates. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms

    Science.gov (United States)

    Mundell, Nathan A.; Beier, Kevin T.; Pan, Y. Albert; Lapan, Sylvain W.; Göz Aytürk, Didem; Berezovskii, Vladimir K.; Wark, Abigail R.; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T.; Schier, Alexander F.

    2015-01-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV‐G) or its own glycoprotein (VSV‐G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. J. Comp. Neurol. 523:1639–1663, 2015. © 2015 Wiley Periodicals, Inc. PMID:25688551

  4. NS1 gene based molecular characteristics of Aleutian mink disease virus circulating in Poland

    Directory of Open Access Journals (Sweden)

    Reichert Michał

    2014-06-01

    Full Text Available The aim of this study was to characterise the genetic variability of the Aleutian mink disease virus (AMDV circulating among mink farmed in Poland and to compare Polish isolates with AMDV variants available in the GenBank database. For this purpose PCR amplification and analysis of the 429 bp DNA fragment of the AMDV NS1 gene from 13 randomly selected AMDV infected mink was performed. A comparison showed that all tested amplicons were closely related to the sequence of the NS1 gene of AMDV and showed high (94%-97% homology to virus variants from American mink (Neovison vison isolated in Canada in 2007-2008. Eleven samples showing a high percentage (95%-97% of sequence similarity together with three similar isolates originating from Canada formed one clade (monophyletic group. Two variants showing a lower percentage (about 94%- 95% of sequence similarity to isolates from Canada formed a separate clade. Polish viruses can be subdivided into two main groups with a putative ancestor common to both Polish and three Canadian isolates. This result confirms the literature data indicating the occurrence of American mink in Eastern Europe (including Poland from the 1950s when the animals were imported for breeding purposes. In conclusion, we provide for the first time a report on the genetic characteristics of the AMDV variants circulating in the Polish population of farmed mink and their relationship with previously known AMDV variants isolated and described abroad.

  5. Generation of Targeted Adeno-Associated Virus (AAV) Vectors for Human Gene Therapy.

    Science.gov (United States)

    Liu, Yarong; Siriwon, Natnaree; Rohrs, Jennifer A; Wang, Pin

    2015-01-01

    Adeno-associated virus (AAV) vectors are promising human gene delivery vehicles due to their ability to establish long-term gene expression in a wide variety of target tissues; however, the broad native viral tropism raises concerns over the feasibility and safety of their systemic administration. To overcome this issue, much effort has been made to redirect AAVs toward specific tissues. This review presents several design strategies that have been applied to generate AAVs that target specific tissues and cells while inhibiting the transduction of non-target tissues. Multiple methods of vector capsid engineering have shown promise in vitro, including indirect targeting by adaptor systems and direct targeting by the insertion of antibodies or receptor-specific small peptide motifs. Other strategies, including creating mosaic or chimeric capsids and directed evolution, have also been used to successfully retarget AAV vectors. This research will further expand the clinical applications of AAV vectors by enhancing the control over tissue-specific gene delivery.

  6. Efficient gene transfer into neurons in monkey brain by adeno-associated virus 8.

    Science.gov (United States)

    Masamizu, Yoshito; Okada, Takashi; Ishibashi, Hidetoshi; Takeda, Shin'ichi; Yuasa, Shigeki; Nakahara, Kiyoshi

    2010-04-21

    Although the adeno-associated virus (AAV) vector is a promising tool for gene transfer into neurons, especially for therapeutic purposes, neurotropism in primate brains is not fully elucidated for specific AAV serotypes. Here, we injected AAV serotype 8 (AAV8) vector carrying the enhanced green fluorescent protein (EGFP) gene under a ubiquitous promoter into the cerebral cortex, striatum and substantia nigra of common marmosets. Robust neuronal EGFP expression was observed at all injected sites. Cell typing with immunohistochemistry confirmed efficient AAV8-mediated gene transfer into the pyramidal neurons in the cortex, calbindin-positive medium spiny neurons in the striatum and dopaminergic neurons in the substantia nigra. The results indicate a preferential tropism of AAV8 for subsets of neurons, but not for glia, in monkey brains.

  7. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Leisner, Jørgen; Cohn, Marianne Thorup

    2016-01-01

    Prophages are quiescent viruses located in the chromosomes of bacteria. In the human pathogen, Staphylococcus aureus, prophages are omnipresent and are believed to be responsible for the spread of some antibiotic resistance genes. Here we demonstrate that release of phages from a subpopulation of S...... of such particles to the prophage-containing population can drive the transfer of genes encoding potentially useful traits such as antibiotic resistance. This process, which can be viewed as ‘auto-transduction’, allows S. aureus to efficiently acquire antibiotic resistance both in vitro and in an in vivo virulence...... model (wax moth larvae) and enables it to proliferate under strong antibiotic selection pressure. Our results may help to explain the rapid exchange of antibiotic resistance genes observed in S. aureus....

  8. [High-yield reassortant virus containing hemagglutinin and neuraminidase genes of pandemic influenza A/Moscowl/01/2009 (H1N1) virus].

    Science.gov (United States)

    Ignat'eva, A V; Rudneva, I A; Timofeeva, T A; Shilov, A A; Zaberezhnyĭ, A D; Aliper, T I; Kaverin, N V; L'vov, D K

    2011-01-01

    The crossing of influenza A/Moscow/01/2009 (H1N1) virus and reassortant strain X31 (H3N2) containing the genes of internal and non-structural proteins of A/Puerto Rico/8/34 (H1N1) strain gave rise to reassortant virus ReM8. The reassortant contained hemagglutinin (HA) and neuraminidase (NA) genes of pandemic 2009 influenza virus and 6 genes of high-yield A/Puerto Rico/8/34 (H1N1) strain. The reassortant ReM8 produced higher yields in the embryonated chicken eggs than the parent pandemic virus, as suggested by infectivity and HA activity titration as well as by ELISA and the measurement of HA protein content by scanning electrophoresis in polyacrylamide gel slabs. High immunogenicity of ReM8 reassortant was demonstrated by immune protection studies in mice. The reassortant virus ReM8 is suitable as a candidate strain for the production of inactivated and subunit influenza vaccines.

  9. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jason Lamontagne

    2016-02-01

    Full Text Available Globally, a chronic hepatitis B virus (HBV infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  10. Filaggrin gene polymorphism associated with Epstein-Barr virus-associated tumors in China.

    Science.gov (United States)

    Yang, Yang; Liu, Wen; Zhao, Zhenzhen; Zhang, Yan; Xiao, Hua; Luo, Bing

    2017-08-01

    Mutations of filaggrin gene (FLG) have been identified as the cause of ichthyosis vulgaris, while recently FLG mutations were found to be associated with gastric cancer. This study aimed to investigate the association of filaggrin polymorphism with Epstein-Barr virus-associated tumors in China. A total of 200 patients with three types of tumors and 117 normal control samples were genotyped at three common FLG mutation loci (rs3126085, K4671X, R501X) by using Sequenom MassARRAY technique. The χ 2 test was used to evaluate the relationship between the mutation and the three kinds of tumors. A two-sided P value of Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) and EBV-negative gastric carcinoma (EBVnGC), respectively. Furthermore, allele distributions in EBVaGC and EBVnGC were verified to be different in both SNP loci.

  11. Porcine epidemic diarrhoea virus with a recombinant S gene detected in Hungary, 2016.

    Science.gov (United States)

    Valkó, Anna; Biksi, Imre; Cságola, Attila; Tuboly, Tamás; Kiss, Krisztián; Ursu, Krisztina; Dán, Ádám

    2017-06-01

    Porcine epidemic diarrhoea virus (PEDV) can cause a severe enteric disease affecting pigs of all ages. In January 2016, diarrhoea with occasional vomiting was observed in a small pig farm in Hungary. All animals became affected, while mortality (of up to 30%) was only seen in piglets. Samples from different age groups and the carcass of a piglet were examined by various methods including pathology, bacteriology and molecular biology. PEDV was confirmed by PCR and its whole genome sequence was determined. The sequence PEDV HUN/5031/2016 showed high identity with recently reported European viruses. Differences were found mostly in the S gene, where recombination was detected with a newly identified and already recombinant swine enteric coronavirus (Se-CoV) from Italy. The present report describes the first porcine epidemic diarrhoea outbreak in Hungary after many years and gives an insight into the genetics of the Hungarian PEDV.

  12. Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR and Incremental Feature Selection (IFS methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.

  13. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees.

    Science.gov (United States)

    Tatineni, Satyanarayana; Robertson, Cecile J; Garnsey, Stephen M; Bar-Joseph, Moshe; Gowda, Siddarame; Dawson, William O

    2008-07-05

    Citrus tristeza virus (CTV), a member of the Closteroviridae, possesses a 19.3-kb positive-stranded RNA genome that is organized into twelve open reading frames (ORFs). The CTV genome contains two sets of conserved genes, which are characteristic of this virus group, the replication gene block (ORF 1a and 1b) and the quintuple gene block (p6, HSP70 h, p61, CPm, and CP). With the exception of the p6 gene, they are required for replication and virion assembly. CTV contains five additional genes, p33, p18, p13, p20 and p23, in the 3' half of the genome, some of which (p33, p18 and p13) are not conserved among other members of this virus group, and have been proposed to have evolved for specific interactions with the citrus host. In the present study, the requirements for systemic infection of citrus trees of p33, p6, p18, p13 and p20 were examined. Viral mutants with a deletion in the p6 or the p20 ORF failed to infect citrus plants systemically, suggesting their possible roles in virus translocation/systemic infection. However, we found that deletions within the p33, p18 or p13 ORF individually resulted in no significant loss of ability of the virus to infect, multiply, and spread throughout citrus trees. Furthermore, deletions in the p33, p18 and p13 genes in all possible combinations including deletions in all three genes allowed the virus to systemically invade citrus trees. Green fluorescent protein-tagged CTV variants with deletions in the p33 ORF or the p33, p18 and p13 ORFs demonstrated that the movement and distribution of these deletion mutants were similar to that of the wild-type virus.

  14. Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes

    Directory of Open Access Journals (Sweden)

    Dresang Lindsay R

    2011-12-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV and Epstein-Barr virus (EBV are related human tumor viruses that cause primary effusion lymphomas (PEL and Burkitt's lymphomas (BL, respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  15. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  16. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum

    NARCIS (Netherlands)

    Lanfermeijer, FC; Dijkhuis, J; Sturre, MJG; de Haan, P; Hille, J

    In tomato, infections by tomato mosaic virus are controlled by durable Tm-2(2) resistance. In order to gain insight into the processes underlying disease resistance and its durability, we cloned and analysed the Tm-2(2) resistance gene and the susceptible allele, tm-2. The Tm-2(2) gene was isolated

  17. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  18. [Sequencing and analysis of N gene of street rabies virus isolated from different hosts in Zhejiang province].

    Science.gov (United States)

    Wang, Xiaoguang; Lei, Yongliang; Tao, Xiaoyan; Li, Hao; Shen, Xinxin; Yu, Pengcheng; Yin, Cuiping; Meng, Shengli; Wang, Xinying; Tang, Qing

    2014-07-01

    To elucidate the characteristics of genetic variability and its relationship with prevalence, through sequencing and analysis of N gene among street rabies virus isolated from different hosts (homo sapiens, ferret badger, dog) in Zhejiang province. Samples were screened and confirmed by direct fluorescence assay and reverse transcript PCR. Sequences were analyzed using bio-information software. Eighteen street rabies virus strains were identified, including 2 from homo sapiens, 5 from ferret badger, and 11 from dog. Similarities of N gene and N protein were calculated to be 89.7%-100.0% and 98.4%-100.0% respectively. Mutations occurred in N gene were almost non-sense mutations. In addition,Data from phylogenetic analysis showed that all these strains could be classified into traditional genotype 1. The prevalence of rabies viruses among different hosts in Zhejiang province had certain regional properties. Rabies viruses isolated from the same kind of host or from the same/adjacent county/counties had the closest relationship. However, the characteristics of rabies virus prevalent in homo sapiens were somewhat complicated. In summary, the transmission of street rabies virus in Zhejiang province was from dogs to ferret badgers and homo sapiens, and the virus could circulate and cross-regional transmit among dogs and ferret badgers.

  19. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid.

    Science.gov (United States)

    Harper, S J; Killiny, N; Tatineni, S; Gowda, S; Cowell, S J; Shilts, T; Dawson, W O

    2016-12-01

    Vector transmission is an important part of the viral infection cycle, yet for many viruses little is known about this process, or how viral sequence variation affects transmission efficacy. Here we examined the effect of substituting genes from the highly transmissible FS577 isolate of citrus tristeza virus (CTV) in to the poorly transmissible T36-based infectious clone. We found that introducing p65 or p61 sequences from FS577 significantly increased transmission efficacy. Interestingly, replacement of both genes produced a greater increase than either gene alone, suggesting that CTV transmission requires the concerted action of co-evolved p65 and p61 proteins.

  20. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status

    OpenAIRE

    Kim, M.; Williamson, CT; Prudhomme, J.; Bebb, DG; Riabowol, K; Lee, PWK; Lees-Miller, SP; Mori, Y; Rahman, MM; McFadden, G; Johnston, RN

    2010-01-01

    Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible t...

  1. Genetic diversity of avian infectious bronchitis viruses in Japan based on analysis of s2 glycoprotein gene.

    Science.gov (United States)

    Mase, Masaji; Inoue, Toshikazu; Yamaguchi, Shigeo; Imada, Tadao

    2009-03-01

    To understand the genetic diversity of the S2 gene of infectious bronchitis viruses (IBV) isolated in Japan, we determined the nucleotide sequences of these IBVs using the reverse transcriptase polymerase chain reaction method coupled with direct sequencing. IBV isolated in Japan were classified into six different groups by phylogenetic analysis based on the S2 gene. However, the classification based on the S2 gene of IBV isolated in Japan was different for some of the strains from those obtained with our previous analysis of the S1 gene. This suggested that genetic recombination between the virus strains classified into different genetic groups had occurred in poultry, and that recombinant viruses might be epidemic in Japan.

  2. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens

    Directory of Open Access Journals (Sweden)

    Rodríguez-Padilla Cristina

    2011-09-01

    Full Text Available Abstract Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. Conclusion In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18% of the lung carcinomas and 1 out of 7 (14% of acute inflamatory lung infiltrate specimens studied of a Mexican Population.

  3. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  4. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus.

    Science.gov (United States)

    Forbes, S C; Bish, L T; Ye, F; Spinazzola, J; Baligand, C; Plant, D; Vandenborne, K; Barton, E R; Sweeney, H L; Walter, G A

    2014-04-01

    In this study, we tested the feasibility of non-invasively measuring phosphoarginine (PArg) after gene delivery of arginine kinase (AK) using an adeno-associated virus (AAV) to murine hindlimbs. This was achieved by evaluating the time course, regional distribution and metabolic flux of PArg using (31)phosphorus magnetic resonance spectroscopy ((31)P-MRS). AK gene was injected into the gastrocnemius of the left hindlimb of C57Bl10 mice (age 5 weeks, male) using self-complementary AAV, type 2/8 with desmin promoter. Non-localized (31)P-MRS data were acquired over 9 months after injection using 11.1-T and 17.6-T Bruker Avance spectrometers. In addition, (31)P two-dimensional chemical shift imaging and saturation transfer experiments were performed to examine the spatial distribution and metabolic flux of PArg, respectively. PArg was evident in each injected mouse hindlimb after gene delivery, increased until 28 weeks, and remained elevated for at least 9 months (P<0.05). Furthermore, PArg was primarily localized to the injected posterior hindimb region and the metabolite was in exchange with ATP. Overall, the results show the viability of AAV gene transfer of AK gene to skeletal muscle, and provide support of PArg as a reporter that can be used to non-invasively monitor the transduction of genes for therapeutic interventions.

  5. Benchmarking selected computational gene network growing tools in context of virus-host interactions.

    Science.gov (United States)

    Taye, Biruhalem; Vaz, Candida; Tanavde, Vivek; Kuznetsov, Vladimir A; Eisenhaber, Frank; Sugrue, Richard J; Maurer-Stroh, Sebastian

    2017-07-19

    Several available online tools provide network growing functions where an algorithm utilizing different data sources suggests additional genes/proteins that should connect an input gene set into functionally meaningful networks. Using the well-studied system of influenza host interactions, we compare the network growing function of two free tools GeneMANIA and STRING and the commercial IPA for their performance of recovering known influenza A virus host factors previously identified from siRNA screens. The result showed that given small (~30 genes) or medium (~150 genes) input sets all three network growing tools detect significantly more known host factors than random human genes with STRING overall performing strongest. Extending the networks with all the three tools significantly improved the detection of GO biological processes of known host factors compared to not growing networks. Interestingly, the rate of identification of true host factors using computational network growing is equal or better to doing another experimental siRNA screening study which could also be true and applied to other biological pathways/processes.

  6. Polyinosinic Acid Blocks Adeno-Associated Virus Macrophage Endocytosis In Vitro and Enhances Adeno-Associated Virus Liver-Directed Gene Therapy In Vivo

    NARCIS (Netherlands)

    van Dijk, Remco; Montenegro-Miranda, Paula S.; Riviere, Christel; Schilderink, Ronald; ten Bloemendaal, Lysbeth; van Gorp, Jacqueline; Duijst, Suzanne; de Waart, Dirk R.; Beuers, Ulrich; Haisma, Hidde J.; Bosma, Piter J.

    2013-01-01

    Adeno-associated virus serotype 8 (AAV8) has been demonstrated to be effective for liver-directed gene therapy in humans. Although hepatocytes are the main target cell for AAV8, there is a loss of the viral vector because of uptake by macrophages and Kupffer cells. Reducing this loss would increase

  7. Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

    Directory of Open Access Journals (Sweden)

    Athar Alishiri

    2013-09-01

    Full Text Available The incidence and distribution of Tobacco mosaic virus (TMV and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100% among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each sub-group was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

  8. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells

    Directory of Open Access Journals (Sweden)

    Canto Tomas

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi in animals and post-transcriptional gene silencing (PTGS in plants are related phenomena whose functions include the developmental regulation of gene expression and protection from transposable elements and viruses. Plant viruses respond by expressing suppressor proteins that interfere with the PTGS system. Results Here we demonstrate that both transient and constitutive expression of the Tobacco etch virus HC-Pro silencing suppressor protein, which inhibits the maintenance of PTGS in plants, prevents dsRNA-induced RNAi of a lacZ gene in cultured Drosophila cells. Northern blot analysis of the RNA present in Drosophila cells showed that HC-Pro prevented degradation of lacZ RNA during RNAi but that there was accumulation of the short (23nt RNA species associated with RNAi. A mutant HC-Pro that does not suppress PTGS in plants also does not affect RNAi in Drosophila. Similarly, the Cucumber mosaic virus 2b protein, which inhibits the systemic spread of PTGS in plants, does not suppress RNAi in Drosophila cells. In addition, we have used the Drosophila system to demonstrate that the 16K cysteine-rich protein of Tobacco rattle virus, which previously had no known function, is a silencing suppressor protein. Conclusion These results indicate that at least part of the process of RNAi in Drosophila and PTGS in plants is conserved, and that plant virus silencing suppressor proteins may be useful tools to investigate the mechanism of RNAi.

  9. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B.

    Science.gov (United States)

    Kimura, Hirokazu; Nagasawa, Koo; Kimura, Ryusuke; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Hirano, Eiko; Ishiwada, Naruhiko; Misaki, Takako; Oishi, Kazunori; Kuroda, Makoto; Ryo, Akihide

    2017-08-01

    In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10(-4)substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression.

    Directory of Open Access Journals (Sweden)

    James J Zhu

    Full Text Available Foot-and-mouth disease virus (FMDV targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions and long-term persistence at some primary replication sites. Although integrin αVβ6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVβ6 heterodimeric receptor (FMDV receptor, fibronectin (ligand of the receptor, IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1 FMDV receptor availability and accessibility, (2 type I interferon-inducible immune response, and (3 ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.

  11. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus

    Directory of Open Access Journals (Sweden)

    Jaramillo Alfonso

    2008-08-01

    Full Text Available Abstract Background Tobacco etch potyvirus (TEV has been extensively used as model system for the study of positive-sense RNA virus infecting plants. TEV ability to infect Arabidopsis thaliana varies among ecotypes. In this study, changes in gene expression of A. thaliana ecotype Ler infected with TEV have been explored using long-oligonucleotide arrays. A. thaliana Ler is a susceptible host that allows systemic movement, although the viral load is low and syndrome induced ranges from asymptomatic to mild. Gene expression profiles were monitored in whole plants 21 days post-inoculation (dpi. Microarrays contained 26,173 protein-coding genes and 87 miRNAs. Results Expression analysis identified 1727 genes that displayed significant and consistent changes in expression levels either up or down, in infected plants. Identified TEV-responsive genes encode a diverse array of functional categories that include responses to biotic (such as the systemic acquired resistance pathway and hypersensitive responses and abiotic stresses (droughtness, salinity, temperature, and wounding. The expression of many different transcription factors was also significantly affected, including members of the R2R3-MYB family and ABA-inducible TFs. In concordance with several other plant and animal viruses, the expression of heat-shock proteins (HSP was also increased. Finally, we have associated functional GO categories with KEGG biochemical pathways, and found that many of the altered biological functions are controlled by changes in basal metabolism. Conclusion TEV infection significantly impacts a wide array of cellular processes, in particular, stress-response pathways, including the systemic acquired resistance and hypersensitive responses. However, many of the observed alterations may represent a global response to viral infection rather than being specific of TEV.

  12. CPm gene diversity in field isolates of Citrus tristeza virus from Colombia.

    Science.gov (United States)

    Oliveros-Garay, Oscar Arturo; Martinez-Salazar, Natalhie; Torres-Ruiz, Yanneth; Acosta, Orlando

    2009-01-01

    The nucleotide sequence diversity of the CPm gene from 28 field isolates of Citrus tristeza virus (CTV) was assessed by SSCP and sequence analyses. These isolates showed two major shared haplotypes, which differed in distribution: A1 was the major haplotype in 23 isolates from different geographic regions, whereas R1 was found in isolates from a discrete region. Phylogenetic reconstruction clustered A1 within an independent group, while R1 was grouped with mild isolates T30 from Florida and T385 from Spain. Some isolates contained several minor haplotypes, which were very similar to, and associated with, the major haplotype.

  13. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma

    OpenAIRE

    Zekri, Abdel-Rahman N.; Bahnasy, Abeer A.; Shoeab, Fatma elzahraa M.; Mohamed, Waleed S.; El-Dahshan, Dina H.; Ali, Fahmey T.; Sabry, Gilane M.; Dasgupta, Nairajana; Daoud, Sayed S.

    2013-01-01

    We studied promoter methylation (PM) of 11 genes in Peripheral Blood Lymphocytes (PBLs) and tissues of hepatitis C virus (HCV) associated hepatocellular carcinoma (HCC) and chronic hepatitis (CH) Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT) samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O6MGMT was assessed by methylation-specific PCR (MSP). APC and O6-MGMT protein expression was assessed...

  14. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain.

    Science.gov (United States)

    Kawaoka, Y; Nestorowicz, A; Alexander, D J; Webster, R G

    1987-05-01

    Comparative sequence analysis of the hemagglutinin (HA) genes of a highly virulent H5N8 virus isolated from turkeys in Ireland in 1983 and a virus of the same subtype detected simultaneously in healthy ducks showed only four amino acid differences between these strains. Partial sequencing of six of the other genes and antigenic similarity of the neuraminidases established the overall genetic similarity of these two viruses. Comparison of the complete sequence of two H5 gene sequences and partial sequences of other virulent and avirulent H5 viruses provides evidence for at least two different lineages of H5 influenza virus in the world, one in Europe and the other in North America, with virulent and avirulent members in each group. In vivo studies in domestic ducks showed that all of the H5 viruses that are virulent in chickens and turkeys replicate in the internal organs of ducks but did not produce any disease signs. Additionally, both viruses isolated from turkeys and ducks in Ireland were detected in the blood. These studies provide the first conclusive evidence for the possibility that fully virulent influenza viruses in domestic poultry can arise directly from viruses in wild aquatic birds. Studies on the cleavability of the HA of virulent and avirulent H5 viruses showed that the principles established for H7 viruses (F. X. Bosch, M. Orlich, H. D. Klenk, and R. Rott, 1979, Virology 95, 197-207; F. X. Bosch, W. Garten, H. D. Klenk, and R. Rott, 1981, Virology 113, 725-735) also apply to the H5 subtype. These are (1) only the HAs of virulent influenza viruses were cleaved in tissue culture in the absence of trypsin and (2) virulent H5 influenza viruses contain a series of basic amino acids at the cleavage site of the HA, whereas avirulent strains contain only a single arginine with the exception of the avirulent Chicken/Pennsylvania virus. Thus, a series of basic amino acids at the cleavage site probably forms a recognition site for the enzyme(s) responsible for

  15. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    Science.gov (United States)

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  16. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  17. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses.

    Science.gov (United States)

    Berthet, F X; Zeller, H G; Drouet, M T; Rauzier, J; Digoutte, J P; Deubel, V

    1997-09-01

    We compared the sequence of an envelope protein gene fragment from 21 temporally distinct West Nile (WN) virus strains, isolated in nine African countries and in France. Alignment of nucleotide sequences defined two groups of viruses which diverged by up to 29%. The first group of subtypes is composed of nine WN strains from France and Africa. The Austral-Asian Kunjin virus was classified as a WN subtype in this first group. The second group includes 12 WN strains from Africa and Madagascar. Four strains harboured a 12 nucleotide in-frame deletion. The loss of the corresponding four amino acids resulted in the loss of the potential glycosylation site present in several WN strains. The distribution of virus subtypes into two lineages did not correlate with host preference or geographical origin. The isolation of closely related subtypes in distant countries is consistent with WN viruses being disseminated by migrating birds.

  18. Construction of a fusion gene containing hepatitis B virus L gene ...

    African Journals Online (AJOL)

    The results of SDS-PAGE and Western blot showed that the recombinant protein was induced by methanol and stably expressed in P. pastoris, while it has specific reaction with the serum containing anti-HbsAg or anti-Ag85B. However, the successful construction of a recombinant yeast expression vector containing gene ...

  19. H3N2 canine influenza virus with the matrix gene from the pandemic A/H1N1 virus: infection dynamics in dogs and ferrets.

    Science.gov (United States)

    Moon, H; Hong, M; Kim, J K; Seon, B; Na, W; Park, S J; An, D J; Jeoung, H Y; Kim, D J; Kim, J M; Kim, S H; Webby, R J; Webster, R G; Kang, B K; Song, D

    2015-03-01

    After an outbreak of pandemic influenza A/H1N1 (pH1N1) virus, we had previously reported the emergence of a recombinant canine influenza virus (CIV) between the pH1N1 virus and the classic H3N2 CIV. Our ongoing routine surveillance isolated another reassortant H3N2 CIV carrying the matrix gene of the pH1N1 virus from 2012. The infection dynamics of this H3N2 CIV variant (CIV/H3N2mv) were investigated in dogs and ferrets via experimental infection and transmission. The CIV/H3N2mv-infected dogs and ferrets produced typical symptoms of respiratory disease, virus shedding, seroconversion, and direct-contact transmissions. Although indirect exposure was not presented for ferrets, CIV/H3N2mv presented higher viral replication in MDCK cells and more efficient transmission was observed in ferrets compared to classic CIV H3N2. This study demonstrates the effect of reassortment of the M gene of pH1N1 in CIV H3N2.

  20. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  1. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    Science.gov (United States)

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  2. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints.

    Science.gov (United States)

    Apparailly, F; Khoury, M; Vervoordeldonk, M J B; Adriaansen, J; Gicquel, E; Perez, N; Riviere, C; Louis-Plence, P; Noel, D; Danos, O; Douar, A-M; Tak, P P; Jorgensen, C

    2005-04-01

    The potential for gene delivery to joints, using recombinant adeno-associated virus (rAAV) vectors for the treatment of rheumatoid arthritis (RA), has received much attention. Different serotypes have different virion shell proteins and, as a consequence, vary in their tropism for diverse tissues. The aim of this study was to compare the transduction efficiency of different AAV serotypes encoding murine secreted alkaline phosphatase (mSEAP) or Escherichia coli beta-galactosidase for intraarticular gene delivery in an experimental model of arthritis. The vectors contained AAV2 terminal repeats flanking the reporter gene in an AAV1, AAV2, or AAV5 capsid, producing the pseudotypes rAAV-2/1, rAAV-2/2, and rAAV-2/5. Left knee joints of mice with collagen-induced arthritis were injected and transgene expression was analyzed by chemiluminescence or direct in situ staining of frozen sections. We show for the first time that intraarticular gene transfer with AAV- 2/5 was far more efficient than with the other serotypes tested. Transgene expression was detectable as early as 7 days after injection, reached a maximum at 21 days, and was stably expressed for at least 130 days, whereas AAV-2/1- and AAV-2/2-mediated expression levels were barely detectable. These findings provide a practical application for future local AAV-mediated gene therapy trials in RA.

  3. Intracutaneous DNA Vaccination with the E8 Gene of Cottontail Rabbit Papillomavirus Induces Protective Immunity against Virus Challenge in Rabbits

    OpenAIRE

    Hu, Jiafen; Han, Ricai; Cladel, Nancy M.; Pickel, Martin D; Christensen, Neil D.

    2002-01-01

    The cottontail rabbit papillomavirus (CRPV)-rabbit model has been used in several studies for testing prophylactic and therapeutic papillomavirus vaccines. Earlier observations had shown that the CRPV nonstructural genes E1, E2, and E6 induced strong to partial protective immunity against CRPV infection. In this study, we found that CRPV E8 immunization eliminated virus-induced papillomas in EIII/JC inbred rabbits (100%) and provided partial protection (55%) against virus challenge in outbred...

  4. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses.

    Science.gov (United States)

    Work, Lorraine M; Büning, Hildegard; Hunt, Ela; Nicklin, Stuart A; Denby, Laura; Britton, Nicola; Leike, Kristen; Odenthal, Margarete; Drebber, Uta; Hallek, Michael; Baker, Andrew H

    2006-04-01

    Virus-mediated gene delivery is restricted by the infectivity profile of the chosen vector. Targeting the vascular endothelium via systemic delivery has been attempted using peptides isolated in vitro (using either phage or vector display) and implicit reliance on target receptor expression in vivo. This has limited application since endothelial cells in vitro and in vivo differ vastly in receptor profiles and because of the existence of complex endothelial "zip codes" in vivo. We therefore tested whether in vivo phage display combined with adeno-associated virus (AAV) capsid modifications would allow in vivo homing to the endothelium residing in defined organs. Extensive in vivo biopanning in rats identified four consensus peptides homing to the lung or brain. Each was incorporated into the VP3 region of the AAV-2 capsid to display the peptide at the virion surface. Peptides that conferred heparan independence were shown to retarget virus to the expected vascular bed in vivo in a preferential manner, determined 28 days post-systemic injection by both virion DNA and transgene expression profiling. Our findings significantly impact the design of viral vectors for targeting individual vascular beds in vivo.

  5. VIRUSES

    Indian Academy of Sciences (India)

    and-mouth disease in livestock was an infectious particle smaller than any bacteria. This was the first clue to the nature of viruses, genetic entities that lie somewhere in the gray area between living and non-living states.

  6. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression

    OpenAIRE

    Sanna M Mäkelä; Österlund, Pamela; Westenius, Veera; Latvala, Sinikka; Diamond, Michael S.; Gale, Michael; Julkunen, Ilkka

    2015-01-01

    Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechan...

  7. Nucleotide sequence of the coat protein gene of the Skierniewice isolate of plum pox virus (PPV)

    Energy Technology Data Exchange (ETDEWEB)

    Wypijewski, K.; Musial, W.; Augustyniak, J. [Uniwersytet Adama Mickiewicza, Poznan (Poland); Malinowski, T. [Research Institute of Pomology and Floriculture, Skierniewice (Poland)

    1994-12-31

    The coat protein (CP) gene of the Skierniewice isolate of plum pox virus (PPV-S) has been amplified using the reverse transcription - polymerase chain reaction (RT-PCR), cloned and sequenced. The nucleotide sequence of the gene and the deduced amino-acid sequences of PPV-S CP were compared with those of other PPV strains. The nucleotide sequence showed very high homology to most of the published sequences. The motif: Asp-Ala-Gly (DAG), important for the aphid transmissibility, was present in the amino-acid sequence. Our isolate did not react in ELISA with monoclonal antibodies MAb06 supposed to be specific for PPV-D. (author). 32 refs, 1 fig., 2 tabs.

  8. Assembly of pseudorabies virus genome-based transfer vehicle carrying major antigen sites of S gene of transmissible gastroenteritis virus: potential perspective for developing live vector vaccines.

    Science.gov (United States)

    Yin, Jiechao; Ren, Xiaofeng; Tian, Zhijun; Li, Yijing

    2007-03-01

    Two severe porcine infectious diseases, pseudorabies (PR) and transmissible gastroenteritis (TGE) caused by pseudorabies virus (PRV) and transmissible gastroenteritis virus (TGEV) respectively often result in serious economic loss in animal husbandry worldwide. Vaccination is the important prevention means against both infections. To achieve a PRV genome-based virus live vector, aiming at further TGEV/PRV bivalent vaccine development, a recombinant plasmid pUG was constructed via inserting partial PK and full-length gG genes of PRV strain Bartha K-61 amplified into pUC119 vector. In parallel, another recombinant pHS was generated by introducing a fragment designated S1 encoding the major antigen sites of S gene from TGEV strain TH-98 into a prokaryotic expression vector pP(RO)EX HTc. The SV40 polyA sequence was then inserted into the downstream of S1 fragment of pHS. The continuous region containing S1fragment, SV40 polyA and four single restriction enzyme sites digested from pHS was subcloned into the downstream of gG promoter of pUG. In addition, a LacZ reporter gene was introduced into the universal transfer vector named pUGS-LacZ. Subsequently, a PRV genome-based virus live vector was generated via homologous recombination. The functionally effective vector was purified and partially characterized. Moreover, the potential advantages of this system are discussed.

  9. Comparative genetic diversity of potato virus Y populations based on coat protein gene.

    Science.gov (United States)

    Hosseini, H; Mehrvar, M; Zakiaghl, M; Siampour, M

    Potato virus Y (PVY) is an important plant pathogen with a wide host range including economically important crops of potato, tobacco, tomato, and pepper. The coat protein gene has been commonly used in studying molecular biology of plant viruses including PVY. In this study, we used a large dataset of CP sequences from isolates collected across the world to assess the detailed molecular evolution of PVY populations with a focus on the Iranian PVY population. Phylogenetic analysis showed that the world PVY population had two major lineages (O:C and N:NTN); each comprising several divergent sublineages. Results showed that the Iranian PVY isolates were distributed across the tree suggesting polyphyletic origin of the Iranian PVY population. Statistical analysis revealed great genetic differences between pairs of the PVY phylogenetic populations. Host populations and also geographical populations of PVY were genetically differentiated. The extent of the genetic diversification among PVY host and geographical populations were mild or moderate. Purifying selection was detected on the CP gene sequences of the PVY populations, suggesting that most of the mutations in the gene were harmful, thereby were eliminated by natural selection. We also detected a variety of recombination patterns to occur along the CP gene of the PVY strains. A significant number of the Iranian PVY isolates were found to be recombinant. Different analyses suggest that Iranian PVY population is highly diverse. In conclusion, results of this study demonstrated that different factors including mutation, host adaptation, geographical distinction and selection pressure shaped the genetic structure of the PVY populations.

  10. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures

    Directory of Open Access Journals (Sweden)

    Issac Aneesh

    2011-07-01

    Full Text Available Abstract Background The human hepatitis B virus (HBV, a member of the hepadna viridae, causes acute or chronic hepatitis B, and hepatocellular carcinoma (HCC. The duck hepatitis B virus (DHBV infection, a dependable and reproducible model for hepadna viral studies, does not result in HCC unlike chronic HBV infection. Information on differential gene expression in DHBV infection might help to compare corresponding changes during HBV infection, and to delineate the reasons for this difference. Findings A subtractive hybridization cDNA library screening of in vitro DHBV infected, cultured primary duck hepatocytes (PDH identified cDNAs of 42 up-regulated and 36 down-regulated genes coding for proteins associated with signal transduction, cellular respiration, transcription, translation, ubiquitin/proteasome pathway, apoptosis, and membrane and cytoskeletal organization. Those coding for both novel as well as previously reported proteins in HBV/DHBV infection were present in the library. An inverse modulation of the cDNAs of ten proteins, reported to play role in human HCC, such as that of Y-box binding protein1, Platelet-activating factor acetylhydrolase isoform 1B, ribosomal protein L35a, Ferritin, α-enolase, Acid α-glucosidase and Caspase 3, copper-zinc superoxide dismutase (CuZnSOD, Filamin and Pyruvate dehydrogenase, was also observed in this in vitro study. Conclusions The present study identified cDNAs of a number of genes that are differentially modulated in in vitro DHBV infection of primary duck hepatocytes. Further correlation of this differential gene expression in in vivo infection models would be valuable to understand the little known aspects of the hepadnavirus biology.

  11. Polymerase chain reaction (PCR) amplification of a nucleoprotein gene sequence of infectious hematopoietic necrosis virus

    Science.gov (United States)

    Arakawa, C.K.; Deering, R.E.; Higman, K.H.; Oshima, K.H.; O'Hara, P.J.; Winton, J.R.

    1990-01-01

    The polymerase chain reaction [PCR) was used to amplify a portion of the nucleoprotein [NI gene of infectious hematopoietic necrosis virus (IHNV). Using a published sequence for the Round Butte isolate of IHNV, a pair of PCR pnmers was synthesized that spanned a 252 nucleotide region of the N gene from residue 319 to residue 570 of the open reading frame. This region included a 30 nucleotide target sequence for a synthetic oligonucleotide probe developed for detection of IHNV N gene messenger RNA. After 25 cycles of amplification of either messenger or genomic RNA, the PCR product (DNA) of the expected size was easily visible on agarose gels stained with ethidium bromide. The specificity of the amplified DNA was confirmed by Southern and dot-blot analysis using the biotinylated oligonucleotide probe. The PCR was able to amplify the N gene sequence of purified genomic RNA from isolates of IHNV representing 5 different electropherotypes. Using the IHNV primer set, no PCR product was obtained from viral hemorrhagic septicemia virus RNA, but 2 higher molecular weight products were synthesized from hirame rhabdovirus RNA that did not hybridize with the biotinylated probe. The PCR could be efficiently performed with all IHNV genomic RNA template concentrations tested (1 ng to 1 pg). The lowest level of sensitivity was not determined. The PCR was used to amplify RNA extracted from infected cell cultures and selected tissues of Infected rainbow trout. The combination of PCR and nucleic acid probe promises to provide a detection method for IHNV that is rapid, h~ghly specific, and sensitive.

  12. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  13. Improved microarray gene expression profiling of virus-infected cells after removal of viral RNA

    Directory of Open Access Journals (Sweden)

    Rottier Peter JM

    2008-05-01

    Full Text Available Abstract Background Sensitivity and accuracy are key points when using microarrays to detect alterations in gene expression under different conditions. Critical to the acquisition of reliable results is the preparation of the RNA. In the field of virology, when analyzing the host cell's reaction to infection, the often high representation of viral RNA (vRNA within total RNA preparations from infected cells is likely to interfere with microarray analysis. Yet, this effect has not been investigated despite the many reports that describe gene expression profiling of virus-infected cells using microarrays. Results In this study we used coronaviruses as a model to show that vRNA indeed interferes with microarray analysis, decreasing both sensitivity and accuracy. We also demonstrate that the removal of vRNA from total RNA samples, by means of virus-specific oligonucleotide capturing, significantly reduced the number of false-positive hits and increased the sensitivity of the method as tested on different array platforms. Conclusion We therefore recommend the specific removal of vRNA, or of any other abundant 'contaminating' RNAs, from total RNA samples to improve the quality and reliability of microarray analyses.

  14. The Effect of West Nile Virus Infection on the Midgut Gene Expression of Culex pipiens quinquefasciatus Say (Diptera: Culicidae).

    Science.gov (United States)

    Smartt, Chelsea T; Shin, Dongyoung; Anderson, Sheri L

    2016-12-19

    The interaction of the mosquito and the invading virus is complex and can result in physiological and gene expression alterations in the insect. The association of West Nile virus (WNV) and Culex pipiens quinquefasciatus mosquitoes results in measurable changes in gene expression; 22 gene products were shown previously to have altered expression. Sequence analysis of one product, CQ G1A1, revealed 100% amino acid identity to gram negative bacteria binding proteins (CPQGBP) in Cx. p. quinquefasciatus, Aedes aegypti (70%) and Anopheles gambiae (63%) that function in pathogen recognition. CQ G1A1 also was differentially expressed following WNV infection in two populations of Cx. p. quinquefasciatus colonized from Florida with known differences in vector competence for WNV and showed spatial and temporal gene expression differences in midgut, thorax, and carcass tissues. These data suggest gene expression of CQ G1A1 is influenced by WNV infection and the WNV infection-controlled expression differs between populations and tissues.

  15. Partial antiviral activities detection of chicken Mx jointing with neuraminidase gene (NA against Newcastle disease virus.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available As an attempt to increase the resistance to Newcastle Disease Virus (NDV and so further reduction of its risk on the poultry industry. This work aimed to build the eukaryotic gene co-expression plasmid of neuraminidase (NA gene and myxo-virus resistance (Mx and detect the gene expression in transfected mouse fibroblasts (NIH-3T3 cells, it is most important to investigate the influence of the recombinant plasmid on the chicken embryonic fibroblasts (CEF cells. cDNA fragment of NA and mutant Mx gene were derived from pcDNA3.0-NA and pcDNA3.0-Mx plasmid via PCR, respectively, then NA and Mx cDNA fragment were inserted into the multiple cloning sites of pVITRO2 to generate the eukaryotic co-expression plasmid pVITRO2-Mx-NA. The recombinant plasmid was confirmed by restriction endonuclease treatment and sequencing, and it was transfected into the mouse fibroblasts (NIH-3T3 cells. The expression of genes in pVITRO2-Mx-NA were measured by RT-PCR and indirect immunofluorescence assay (IFA. The recombinant plasmid was transfected into CEF cells then RT-PCR and the micro-cell inhibition tests were used to test the antiviral activity for NDV. Our results showed that co-expression vector pVITRO2-Mx-NA was constructed successfully; the expression of Mx and NA could be detected in both NIH-3T3 and CEF cells. The recombinant proteins of Mx and NA protect CEF cells from NDV infection until after 72 h of incubation but the individually mutagenic Mx protein or NA protein protects CEF cells from NDV infection till 48 h post-infection, and co-transfection group decreased significantly NDV infection compared with single-gene transfection group (P<0. 05, indicating that Mx-NA jointing contributed to delaying the infection of NDV in single-cell level and the co-transfection of the jointed genes was more powerful than single one due to their synergistic effects.

  16. The Cuticle Protein Gene MPCP4 of Myzus persicae (Homoptera: Aphididae) Plays a Critical Role in Cucumber Mosaic Virus Acquisition.

    Science.gov (United States)

    Liang, Yan; Gao, Xi-Wu

    2017-06-01

    Myzus persicae (Sulzer) (Homoptera: Aphididae) is one of the most important agricultural pests worldwide. In addition to sucking phloem sap, M. persicae also transmits Cucumber mosaic virus (CMV) as a vector in a nonpersistent manner. At present, the infection mechanism remains unclear, especially the process of aphid virus acquisition. In this study, we isolated four M. persicae cuticle protein genes (MPCP1, MPCP2, MPCP4, and MPCP5) from M. persicae. The relative amount of the gene encoding Cucumber mosaic virus capsid protein (CMV CP) and the transcript levels of these four cuticle protein genes were investigated in aphid virus acquisition by feeding the tobacco preinfested by CMV. The relative expression of MPCP1, MPCP2, and MPCP4 were significantly higher than MPCP5 at 24 h after aphids feeding on virus-infested tobacco. Yeast two-hybrid assays demonstrated that the protein encoded by MPCP4 gene was closely associated with the CMV CP through the direct interaction. Moreover, the ability of M. persicae to acquire CMV was suppressed by RNA interference of MPCP4. All these lines of evidence indicate that MPCP4, as a viral putative receptor in the stylet of aphid, plays an important role in aphid acquisition of CMV. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Dendritic cell subtypes from lymph nodes and blood show contrasted gene expression programs upon Bluetongue virus infection.

    Science.gov (United States)

    Ruscanu, Suzana; Jouneau, Luc; Urien, Céline; Bourge, Mickael; Lecardonnel, Jérôme; Moroldo, Marco; Loup, Benoit; Dalod, Marc; Elhmouzi-Younes, Jamila; Bevilacqua, Claudia; Hope, Jayne; Vitour, Damien; Zientara, Stéphan; Meyer, Gilles; Schwartz-Cornil, Isabelle

    2013-08-01

    Human and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases.

  18. Characterization of the neuraminidase genes from human influenza A viruses circulating in Iran from 2010 to 2015.

    Science.gov (United States)

    Moasser, Elham; Behzadian, Farida; Moattari, Afagh; Fotouhi, Fatemeh; Zaraket, Hassan

    2017-10-31

    Characterization of influenza viruses is critical for detection of new emerging variants. Herein, we analyzed the genetic diversity and drug susceptibility of the neuraminidase gene (NAs) expressed by influenza A/H1N1pdm09 and A/H3N2 viruses circulating in Iran from 2010 to 2015. We genetically analyzed the NAs of 38 influenza A/H1N1pdm09 and 35 A/H3N2 isolates. The Iranian A/H1N1pdm09 viruses belonged to seven genogroups/subgenogroups, with the dominant groups being genogroups 6B and 6C. The A/H3N2 isolates fell into six gneogroups/subgenogroups, with the dominant genogroups being 3C and 3C.2a. The most common mutations detected among the A/H1N1pdm09 viruses included N44S, V106I, N200S, and N248D. All H1N1pdm09 viruses were genetically susceptible to the NAIs. However, one A/H1N1pdm09 virus from the 2013-2014 season possessed an NA-S247N mutation, which reduces the susceptibility to oseltamivir. In case of H3N2, none of the analyzed Iranian strains carried a substitution that might affect its susceptibility to NAIs. The ongoing evolution of influenza viruses and the detect of influenza viruses with reduced susceptibility to NAIs warrants continuous monitoring of the circulating strains.

  19. On revealing the gene targets of Ebola virus microRNAs involved in the human skin microbiome

    Directory of Open Access Journals (Sweden)

    Pei-Chun Hsu

    2018-01-01

    Full Text Available Ebola virus, a negative-sense single-stranded RNA virus, causes severe viral hemorrhagic fever and has a high mortality rate. Histopathological and immunopathological analyses of Ebola virus have revealed that histopathological changes in skin tissue are associated with various degrees of endothelial cell swelling and necrosis. The interactions of microbes within or on a host are a crucial for the skin immune shield. The discovery of microRNAs (miRNAs in Ebola virus implies that immune escape, endothelial cell rupture, and tissue dissolution during Ebola virus infection are a result of the effects of Ebola virus miRNAs. Keratinocytes obtained from normal skin can attach and spread through expression of the thrombospondin family of proteins, playing a role in initiation of cell-mediated immune responses in the skin. Several miRNAs have been shown to bind the 3′ untranslated region of thrombospondin mRNA, thereby controlling its stability and translational activity. In this study, we discovered short RNA sequences that may act as miRNAs from Propionibacterium acnes using a practical workflow of bioinformatics methods. Subsequently, we deciphered the common target gene. These RNA sequences tended to bind to the same thrombospondin protein, THSD4, emphasizing the potential importance of the synergistic binding of miRNAs from Ebola virus, Propionibacterium acnes, and humans to the target. These results provide important insights into the molecular mechanisms of thrombospondin proteins and miRNAs in Ebola virus infection.

  20. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms.

    Directory of Open Access Journals (Sweden)

    Shanyi Chen

    Full Text Available To understand the molecular basis of viral diseases, transcriptome profiling has been widely used to correlate host gene expression change patterns with disease symptoms during viral infection in many plant hosts. We used infection of apple by Apple stem grooving virus (ASGV, which produces no disease symptoms, to assess the significance of host gene expression changes in disease development. We specifically asked the question of whether such asymptomatic infection is attributed to limited changes in host gene expression. Using RNA-seq, we identified a total of 184 up-regulated and 136 down-regulated genes in apple shoot cultures permanently infected by ASGV in comparison with virus-free shoot cultures. As in most plant hosts showing disease symptoms during viral infection, these differentially expressed genes encode known or putative proteins involved in cell cycle, cell wall biogenesis, response to biotic and abiotic stress, development and fruit ripening, phytohormone function, metabolism, signal transduction, transcription regulation, translation, transport, and photosynthesis. Thus, global host gene expression changes do not necessarily lead to virus disease symptoms. Our data suggest that the general approaches to correlate host gene expression changes under viral infection conditions to specific disease symptom, based on the interpretation of transcription profiling data and altered individual gene functions, may have limitations depending on particular experimental systems.

  1. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms.

    Science.gov (United States)

    Chen, Shanyi; Ye, Ting; Hao, Lu; Chen, Hui; Wang, Shaojie; Fan, Zaifeng; Guo, Liyun; Zhou, Tao

    2014-01-01

    To understand the molecular basis of viral diseases, transcriptome profiling has been widely used to correlate host gene expression change patterns with disease symptoms during viral infection in many plant hosts. We used infection of apple by Apple stem grooving virus (ASGV), which produces no disease symptoms, to assess the significance of host gene expression changes in disease development. We specifically asked the question of whether such asymptomatic infection is attributed to limited changes in host gene expression. Using RNA-seq, we identified a total of 184 up-regulated and 136 down-regulated genes in apple shoot cultures permanently infected by ASGV in comparison with virus-free shoot cultures. As in most plant hosts showing disease symptoms during viral infection, these differentially expressed genes encode known or putative proteins involved in cell cycle, cell wall biogenesis, response to biotic and abiotic stress, development and fruit ripening, phytohormone function, metabolism, signal transduction, transcription regulation, translation, transport, and photosynthesis. Thus, global host gene expression changes do not necessarily lead to virus disease symptoms. Our data suggest that the general approaches to correlate host gene expression changes under viral infection conditions to specific disease symptom, based on the interpretation of transcription profiling data and altered individual gene functions, may have limitations depending on particular experimental systems.

  2. Adenoassociated virus serotype 9-mediated gene therapy for x-linked adrenoleukodystrophy.

    Science.gov (United States)

    Gong, Yi; Mu, Dakai; Prabhakar, Shilpa; Moser, Ann; Musolino, Patricia; Ren, JiaQian; Breakefield, Xandra O; Maguire, Casey A; Eichler, Florian S

    2015-05-01

    X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD.

  3. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  4. Regulation of gene expression in adeno-associated virus vectors in the brain.

    Science.gov (United States)

    Haberman, Rebecca P; McCown, Thomas J

    2002-10-01

    Regulated adeno-associated virus (AAV) vectors have broad utility in both experimental and applied gene therapy, and to date, several regulation systems have exhibited a capability to control gene expression from viral vectors over two orders of magnitude. The tetracycline responsive system has been the most used in AAV, although other regulation systems such as RU486- and rapamycin-responsive systems are reasonable options. AAV vectors influence how regulation systems function by several mechanisms, leading to increased background gene expression and restricted induction. Methods to reduce background expression continue to be explored and systems not yet tried in AAV may prove quite functional. Although regulated promoters are often assumed to exhibit ubiquitous expression, the tropism of different neuronal subtypes can be altered dramatically by changing promoters in recombinant AAV vectors. Differences in promoter-directed tropism have significant consequences for proper expression of gene products as well as the utility of dual vector regulation. Thus regulated vector systems must be carefully optimized for each application. Copyright 2002 Elsevier Science (USA)

  5. Recoding of the vesicular stomatitis virus L gene by computer-aided design provides a live, attenuated vaccine candidate.

    Science.gov (United States)

    Wang, Bingyin; Yang, Chen; Tekes, Gergely; Mueller, Steffen; Paul, Aniko; Whelan, Sean P J; Wimmer, Eckard

    2015-03-31

    Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5'-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1(sdmax) and L1(min), respectively. Analysis revealed that recombinant VSV containing the L1(min) sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1(sdmax) virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus in the order Mononegavirales. A wide range of human pathogens belong to this family. Using a unique computer algorithm and large-scale genome synthesis, we attempted to develop a live attenuated vaccine strain for VSV, which could be used as an antigen delivery platform for humans. Recombinant VSVs with distinct codon pair biases were rationally designed, constructed, and

  6. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis.

    Science.gov (United States)

    Cao, Mengji; Du, Peng; Wang, Xianbing; Yu, Yun-Qi; Qiu, Yan-Hong; Li, Wanxiang; Gal-On, Amit; Zhou, Changyong; Li, Yi; Ding, Shou-Wei

    2014-10-07

    Antiviral immunity controlled by RNA interference (RNAi) in plants and animals is thought to specifically target only viral RNAs by the virus-derived small interfering RNAs (siRNAs). Here we show that activation of antiviral RNAi in Arabidopsis plants is accompanied by the production of an abundant class of endogenous siRNAs mapped to the exon regions of more than 1,000 host genes and rRNA. These virus-activated siRNAs (vasiRNAs) are predominantly 21 nucleotides long with an approximately equal ratio of sense and antisense strands. Genetically, vasiRNAs are distinct from the known plant endogenous siRNAs characterized to date and instead resemble viral siRNAs by requiring Dicer-like 4 and RNA-dependent RNA polymerase 1 (RDR1) for biogenesis. However, loss of exoribonuclease4/thylene-insensitive5 enhances vasiRNA biogenesis and virus resistance without altering the biogenesis of viral siRNAs. We show that vasiRNAs are active in directing widespread silencing of the target host genes and that Argonaute-2 binds to and is essential for the silencing activity of vasiRNAs. Production of vasiRNAs is readily detectable in Arabidopsis after infection by viruses from two distinct supergroups of plant RNA virus families and is targeted for inhibition by the silencing suppressor protein 2b of Cucumber mosaic virus. These findings reveal RDR1 production of Arabidopsis endogenous siRNAs and identify production of vasiRNAs to direct widespread silencing of host genes as a conserved response of plants to infection by diverse viruses. A possible function for vasiRNAs to confer broad-spectrum antiviral activity distinct to the virus-specific antiviral RNAi by viral siRNAs is discussed.

  7. Evaluation of single and dual siRNAs targeting rabies virus glycoprotein and nucleoprotein genes for inhibition of virus multiplication in vitro.

    Science.gov (United States)

    Meshram, Chetan D; Singh, Niraj K; Sonwane, Arvind A; Pawar, Sachin S; Mishra, B P; Chaturvedi, V K; Saini, Mohini; Singh, R P; Gupta, Praveen K

    2013-11-01

    Small interfering RNAs (siRNAs) targeting rabies virus (RV) glycoprotein (G) and nucleoprotein (N) genes were evaluated as antiviral agents against rabies virus in vitro in BHK-21 cells. To select effective siRNAs targeting RV-G, a plasmid-based transient co-transfection approach was used. In this, siRNAs were expressed as short hairpin RNAs (shRNAs), and their ability to inhibit RV-G gene expression was evaluated in cells transfected with a plasmid expressing RV-G. The nine different siRNAs designed to target RV-G exhibited varying degrees of knockdown of RV-G gene expression. One siRNA (si-G7) with considerable effect in knockdown of RV-G expression also demonstrated significant inhibition of RV multiplication in BHK-21 cells after in vitro challenge with the RV Pasteur virus-11 (PV-11) strain. A decrease in the number of fluorescent foci in siRNA-treated cells and a reduction (86.8 %) in the release of RV into infected cell culture supernatant indicated the anti-rabies potential of siRNA. Similarly, treatment with one siRNA targeting RV-N resulted in a decrease in the number of fluorescent foci and a reduction (85.9 %) in the release of RV. As a dual gene silencing approach where siRNAs targeting RV-G and RV-N genes were expressed from single construct, the anti-rabies-virus effect was observed as an 87.4 % reduction in the release of RV. These results demonstrate that siRNAs targeting RV-G and N, both in single and dual form, have potential as antiviral agent against rabies.

  8. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes

    Science.gov (United States)

    Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little information exists on how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (T...

  9. Formation of virus-like particles from O-type foot-and-mouth disease virus in insect cells using codon-optimized synthetic genes.

    Science.gov (United States)

    Cao, Yimei; Sun, Pu; Fu, Yuanfang; Bai, Xingwen; Tian, Feipen; Liu, Xiangtao; Lu, Zengjun; Liu, Zaixin

    2010-09-01

    A recombinant baculovirus was constructed to simultaneously express codon-optimized virus-like particles (VLP), A VP1-2A-VP3 and VP0 of serotype O foot-and-mouth disease virus (FMDV), from individual promoters. The target proteins were expressed in insect cells at high level, as shown by indirect sandwich ELISA; and the expressed VP1-2A-VP3 could autocatalytically be cleaved into the individual proteins, VP1-2A and VP3, as shown by Western-blot analyses. In addition, in the insect cells, the structural proteins, VP0, VP3 and VP1-2A, self-assembled into virus-like particles resembling the authentic FMDV particles. This information should prove useful for the development of more efficient VLP assembly using shorter genes.

  10. Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Wang, Chengbao; Meng, Han; Gao, Yujin; Gao, Hui; Guo, Kangkang; Almazan, Fernando; Sola, Isabel; Enjuanes, Luis; Zhang, Yanming; Abrahamyan, Levon

    2017-08-10

    In order to gain insight into the role of the transcription regulatory sequences (TRSs) in the regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus (PRRSV), the enhanced green fluorescent protein (EGFP) gene, under the control of the different structural gene TRSs, was inserted between the N gene and 3'-UTR of the PRRSV genome and EGFP expression was analyzed for each TRS. TRSs of all the studied structural genes of PRRSV positively modulated EGFP expression at different levels. Among the TRSs analyzed, those of GP2, GP5, M, and N genes highly enhanced EGFP expression without altering replication of PRRSV. These data indicated that structural gene TRSs could be an extremely useful tool for foreign gene expression using PRRSV as a vector.

  11. Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen

    2018-01-01

    two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. Conclusions: The viruses harboring the 245–248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures...... to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were...

  12. Expression and characterization of duck enteritis virus gI gene

    Directory of Open Access Journals (Sweden)

    Zhu Dekang

    2011-05-01

    Full Text Available Abstract Background At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein. Results The special 1221-bp fragment containing complete open reading frame(ORF of duck enteritis virus(DEV gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+, resulting in pET-32a(+-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+-gI was transformed into E.coli BL21(DE3 competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG. SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs, the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively. Conclusions The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by E.coli BL21(DE3 and maintained its antigenicity very well. The basic information of the transcription and intracellular

  13. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV

    Directory of Open Access Journals (Sweden)

    Dayton Andrew I

    2001-11-01

    Full Text Available Abstract Background Toward the goals of providing an additional vector to add to the armamentarium available to HIV vaccinologists and of creating a bivalent vaccine effective against dengue virus and HIV, we have attempted to create vectors which express dengue virus non-structural proteins and HIV immunogens. Previously we reported the successful construction of dengue virus replicons which lack structural genes necessary for virion release and spreading infection in culture but which can replicate intracellularly and abundantly produce dengue non-structural proteins. Here we attempted to express heterologous genetic material from these replicons. Results We cloned into a Δpre-M/E dengue virus replicon genes for either green fluorescent protein (GFP, HIV gp160 or HIV gp120 and tested the ability of these constructs to express dengue virus proteins as well as the heterologous proteins in tissue culture after transfection of replicon RNA. Conclusions Heterologous proteins were readily expressed from these constructs. GFP and gp120 demonstrated minimal or no toxicity. Gp160 expressing replicons were found to express proteins abundantly at 36 hours post transfection, but after 50 hrs of transfection, few replicon positive cells could be found despite the presence of cellular debris positive for replicon proteins. This suggested that gp160 expressed from dengue virus replicons is considerably more toxic than either GFP or gp120. The successful expression of heterologous proteins, including HIV gp120 for long periods in culture suggests this vector system may be useful as a vaccine vector, given appropriate delivery methods.

  14. Evaluation of the impact of ul54 gene-deletion on the global transcription and DNA replication of pseudorabies virus.

    Science.gov (United States)

    Csabai, Zsolt; Takács, Irma F; Snyder, Michael; Boldogkői, Zsolt; Tombácz, Dóra

    2017-09-01

    Pseudorabies virus (PRV) is an animal alphaherpesvirus with a wide host range. PRV has 67 protein-coding genes and several non-coding RNA molecules, which can be classified into three temporal groups, immediate early, early and late classes. The ul54 gene of PRV and its homolog icp27 of herpes simplex virus have a multitude of functions, including the regulation of viral DNA synthesis and the control of the gene expression. Therefore, abrogation of PRV ul54 function was expected to exert a significant effect on the global transcriptome and on DNA replication. Real-time PCR and real-time RT-PCR platforms were used to investigate these presumed effects. Our analyses revealed a drastic impact of the ul54 mutation on the genome-wide expression of PRV genes, especially on the transcription of the true late genes. A more than two hour delay was observed in the onset of DNA replication, and the amount of synthesized DNA molecules was significantly decreased in comparison to the wild-type virus. Furthermore, in this work, we were able to successfully demonstrate the utility of long-read SMRT sequencing for genotyping of mutant viruses.

  15. De novo foliar transcriptome of Chenopodium amaranticolor and analysis of its gene expression during virus-induced hypersensitive response.

    Directory of Open Access Journals (Sweden)

    Yongqiang Zhang

    Full Text Available BACKGROUND: The hypersensitive response (HR system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons. BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10(-5. Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. CONCLUSIONS: To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further

  16. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.

    OpenAIRE

    Yoshioka, Mikio; Kikuta, Hideaki; Ishiguro, Nobuhisa; Ma, Xiaoming; Kobayashi, Kunihiko

    2003-01-01

    Chronic active Epstein–Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein–Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in al...

  17. TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function.

    Science.gov (United States)

    Tian, Ji; Pei, Haixia; Zhang, Shuai; Chen, Jiwei; Chen, Wen; Yang, Ruoyun; Meng, Yonglu; You, Jie; Gao, Junping; Ma, Nan

    2014-01-01

    Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3' terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV-GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV-GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV-GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75-80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants.

  18. TRV–GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function

    Science.gov (United States)

    Tian, Ji; Pei, Haixia; Ma, Nan

    2014-01-01

    Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3’ terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV–GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV–GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV–GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75–80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants. PMID:24218330

  19. Coevolution and hierarchical interactions of Tomato mosaic virus and the resistance gene Tm-1.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Ishibashi

    Full Text Available During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV, and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on

  20. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells.

    Science.gov (United States)

    Lo, Michael K; Harcourt, Brian H; Mungall, Bruce A; Tamin, Azaibi; Peeples, Mark E; Bellini, William J; Rota, Paul A

    2009-02-01

    The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.

  1. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    Science.gov (United States)

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  2. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus.

    Science.gov (United States)

    O'Donnell, Vivian; Holinka, Lauren G; Gladue, Douglas P; Sanford, Brenton; Krug, Peter W; Lu, Xiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R; Borca, Manuel V

    2015-06-01

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been developed using genetically modified live attenuated ASFVs where viral genes involved in virus virulence were removed from the genome. Multigene family 360 (MGF360) and MGF505 represent a group of genes sharing partial sequence and structural identities that have been connected with ASFV host range specificity, blocking of the host innate response, and virus virulence. Here we report the construction of a recombinant virus (ASFV-G-ΔMGF) derived from the highly virulent ASFV Georgia 2007 isolate (ASFV-G) by specifically deleting six genes belonging to MGF360 or MGF505: MGF505-1R, MGF360-12L, MGF360-13L, MGF360-14L, MGF505-2R, and MGF505-3R. ASFV-G-ΔMGF replicates as efficiently in primary swine macrophage cell cultures as the parental virus. In vivo, ASFV-G-ΔMGF is completely attenuated in swine, since pigs inoculated intramuscularly (i.m.) with either 10(2) or 10(4) 50% hemadsorbing doses (HAD50) remained healthy, without signs of the disease. Importantly, when these animals were subsequently exposed to highly virulent parental ASFV-G, no signs of the disease were observed, although a proportion of these animals harbored the challenge virus. This is the first report demonstrating the role of MGF genes acting as independent determinants of ASFV virulence. Additionally, ASFV-G-ΔMGF is the first experimental vaccine reported to induce protection in pigs challenged with highly virulent and epidemiologically relevant ASFV-G. The main problem for controlling ASF is the lack of vaccines. Studies focusing on understanding ASFV virulence led to the production of genetically modified recombinant viruses that, while attenuated, are able to confer protection in pigs

  3. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009.

    Science.gov (United States)

    Xu, Songtao; Zhang, Yan; Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J; Rota, Paul A; Xu, Wenbo

    2013-01-01

    China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.

  4. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  5. Dynamic Epstein-Barr Virus Gene Expression on the Path to B-Cell Transformation

    Science.gov (United States)

    Price, Alexander M.; Luftig, Micah A.

    2016-01-01

    Epstein-Barr Virus is an oncogenic human herpesvirus in the γ-herpesvirinae sub-family that contains a 170–180 kb double stranded DNA genome. In vivo, EBV commonly infects B and epithelial cells and persists for the life of the host in a latent state in the memory B cell compartment of the peripheral blood. EBV can be reactivated from its latent state leading to increased expression of lytic genes that primarily encode for enzymes necessary to replicate the viral genome as well as structural components of the virion. Lytic cycle proteins also aid in immune evasion, inhibition of apoptosis, and the modulation of other host responses to infection. In vitro, EBV has the potential to infect primary human B cells and induce cellular proliferation to yield effectively immortalized lymphoblastoid cell lines, or LCLs. EBV immortalization of B cells in vitro serves as a model system for studying EBV-mediated lymphomagenesis. While much is known about the steady state viral gene expression within EBV immortalized LCLs and other EBV-positive cell lines, relatively little is known about the early events after primary B-cell infection. It was previously thought that upon latent infection EBV only expressed the well-characterized latency associated transcripts found in LCLs. However, recent work has characterized the early, but transient, expression of lytic genes necessary for efficient transformation as well as delayed responses in the known latency genes. This review summarizes these recent findings that show how dynamic and controlled expression of multiple EBV genes can control the activation of B cells, entry into the cell cycle, inhibition of apoptosis, and control of innate and adaptive immune responses. PMID:24373315

  6. Inhalation of Nebulized Perfluorochemical Enhances Recombinant Adenovirus and Adeno-Associated Virus-Mediated Gene Expression in Lung Epithelium

    OpenAIRE

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J.; Wang, Lili; Gao, Guang Ping; Kolls, Jay K.; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J.

    2012-01-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Reco...

  7. Polymerase read-through at the first transcription termination site contributes to regulation of borna disease virus gene expression.

    Science.gov (United States)

    Poenisch, Marion; Wille, Sandra; Staeheli, Peter; Schneider, Urs

    2008-10-01

    An unusually long noncoding sequence is located between the N gene of Borna disease virus (BDV) and the genes for regulatory factor X and polymerase cofactor P. Most of these nucleotides are transcribed and seem to control translation of the bicistronic X/P mRNA. We report here that Vero cells persistently infected with mutant viruses containing minor alterations in this control region showed almost normal levels of N, X, and P proteins but exhibited greatly reduced levels of mRNAs coding for these viral gene products. Surprisingly, cells infected with these BDV mutants accumulated a viral transcript 1.9 kb in length that represents a capped and polyadenylated mRNA containing the coding regions of the N, X, and P genes. Cells infected with wild-type BDV also contained substantial amounts of this read-through mRNA, which yielded both N and P protein when translated in vitro. Viruses carrying mutations that promoted read-through transcription at the first gene junction failed to replicate in the brain of adult rats. In the brains of newborn rats, these mutant viruses were able to replicate after acquiring second-site mutations in or near the termination signal located downstream of the N gene. Thus, sequence elements adjacent to the core termination signal seem to regulate the frequency by which the polymerase terminates transcription after the N gene. We conclude from these observations that BDV uses read-through transcription for fine-tuning the expression of the N, X, and P genes which, in turn, influence viral polymerase activity.

  8. Polymerase Read-Through at the First Transcription Termination Site Contributes to Regulation of Borna Disease Virus Gene Expression ▿

    Science.gov (United States)

    Poenisch, Marion; Wille, Sandra; Staeheli, Peter; Schneider, Urs

    2008-01-01

    An unusually long noncoding sequence is located between the N gene of Borna disease virus (BDV) and the genes for regulatory factor X and polymerase cofactor P. Most of these nucleotides are transcribed and seem to control translation of the bicistronic X/P mRNA. We report here that Vero cells persistently infected with mutant viruses containing minor alterations in this control region showed almost normal levels of N, X, and P proteins but exhibited greatly reduced levels of mRNAs coding for these viral gene products. Surprisingly, cells infected with these BDV mutants accumulated a viral transcript 1.9 kb in length that represents a capped and polyadenylated mRNA containing the coding regions of the N, X, and P genes. Cells infected with wild-type BDV also contained substantial amounts of this read-through mRNA, which yielded both N and P protein when translated in vitro. Viruses carrying mutations that promoted read-through transcription at the first gene junction failed to replicate in the brain of adult rats. In the brains of newborn rats, these mutant viruses were able to replicate after acquiring second-site mutations in or near the termination signal located downstream of the N gene. Thus, sequence elements adjacent to the core termination signal seem to regulate the frequency by which the polymerase terminates transcription after the N gene. We conclude from these observations that BDV uses read-through transcription for fine-tuning the expression of the N, X, and P genes which, in turn, influence viral polymerase activity. PMID:18653450

  9. Antagonistic Effects of Cellular Poly(C) Binding Proteins on Vesicular Stomatitis Virus Gene Expression ▿

    Science.gov (United States)

    Dinh, Phat X.; Beura, Lalit K.; Panda, Debasis; Das, Anshuman; Pattnaik, Asit K.

    2011-01-01

    Immunoprecipitation and subsequent mass spectrometry analysis of the cellular proteins from cells expressing the vesicular stomatitis virus (VSV) P protein identified the poly(C) binding protein 2 (PCBP2) as one of the P protein-interacting proteins. To investigate the role of PCBP2 in the viral life cycle, we examined the effects of depletion or overexpression of this protein on VSV growth. Small interfering RNA-mediated silencing of PCBP2 promoted VSV replication. Conversely, overexpression of PCBP2 in transfected cells suppressed VSV growth. Further studies revealed that PCBP2 negatively regulates overall viral mRNA accumulation and subsequent genome replication. Coimmunoprecipitation and immunofluorescence microscopic studies showed that PCBP2 interacts and colocalizes with VSV P protein in virus-infected cells. The P-PCBP2 interaction did not result in reduced levels of protein complex formation with the viral N and L proteins, nor did it induce degradation of the P protein. In addition, PCBP1, another member of the poly(C) binding protein family with homology to PCBP2, was also found to interact with the P protein and inhibit the viral mRNA synthesis at the level of primary transcription without affecting secondary transcription or genome replication. The inhibitory effects of PCBP1 on VSV replication were less pronounced than those of PCBP2. Overall, the results presented here suggest that cellular PCBP2 and PCBP1 antagonize VSV growth by affecting viral gene expression and highlight the importance of these two cellular proteins in restricting virus infections. PMID:21752917

  10. Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression.

    Directory of Open Access Journals (Sweden)

    Emily A Gomme

    Full Text Available Rabies virus (RABV is a highly neurotropic pathogen that typically leads to mortality of infected animals and humans. The precise etiology of rabies neuropathogenesis is unknown, though it is hypothesized to be due either to neuronal death or dysfunction. Analysis of human brains post-mortem reveals surprisingly little tissue damage and neuropathology considering the dramatic clinical symptomology, supporting the neuronal dysfunction model. However, whether or not neurons survive infection and clearance and, provided they do, whether they are functionally restored to their pre-infection phenotype has not been determined in vivo for RABV, or any neurotropic virus. This is due, in part, to the absence of a permanent "mark" on once-infected cells that allow their identification long after viral clearance. Our approach to study the survival and integrity of RABV-infected neurons was to infect Cre reporter mice with recombinant RABV expressing Cre-recombinase (RABV-Cre to switch neurons constitutively expressing tdTomato (red to expression of a Cre-inducible EGFP (green, permanently marking neurons that had been infected in vivo. We used fluorescence microscopy and quantitative real-time PCR to measure the survival of neurons after viral clearance; we found that the vast majority of RABV-infected neurons survive both infection and immunological clearance. We were able to isolate these previously infected neurons by flow cytometry and assay their gene expression profiles compared to uninfected cells. We observed transcriptional changes in these "cured" neurons, predictive of decreased neurite growth and dysregulated microtubule dynamics. This suggests that viral clearance, though allowing for survival of neurons, may not restore them to their pre-infection functionality. Our data provide a proof-of-principle foundation to re-evaluate the etiology of human central nervous system diseases of unknown etiology: viruses may trigger permanent neuronal

  11. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers.

    Science.gov (United States)

    Yan, Huijun; Shi, Shaochuan; Ma, Nan; Cao, Xiaoqian; Zhang, Hao; Qiu, Xianqin; Wang, Qigang; Jian, Hongying; Zhou, Ningning; Zhang, Zhao; Tang, Kaixue

    2018-01-01

    Rose has emerged as a model ornamental plant for studies of flower development, senescence, and morphology, as well as the metabolism of floral fragrances and colors. Virus-induced gene silencing (VIGS) has long been used in functional genomics studies of rose by vacuum infiltration of cuttings or seedlings with an Agrobacterium suspension carrying TRV-derived vectors. However, VIGS in rose flowers remains a challenge because of its low efficiency and long time to establish silencing. Here we present a novel and rapid VIGS method that can be used to analyze gene function in rose, called 'graft-accelerated VIGS', where axillary sprouts are cut from the rose plant and vacuum infiltrated with Agrobacterium. The inoculated scions are then grafted back onto the plants to flower and silencing phenotypes can be observed within 5 weeks, post-infiltration. Using this new method, we successfully silenced expression of the RhDFR1, RhAG, and RhNUDX1 in rose flowers, and affected their color, petal number, as well as fragrance, respectively. This grafting method will facilitate high-throughput functional analysis of genes in rose flowers. Importantly, it may also be applied to other woody species that are not currently amenable to VIGS by conventional leaf or plantlet/seedling infiltration methods. © 2017 Institute of Botany, Chinese Academy of Sciences.

  12. Inhibition of hepatitis B virus gene expression and replication by ribonuclease P.

    Science.gov (United States)

    Xia, Chuan; Chen, Yuan-Chuan; Gong, Hao; Zeng, Wenbo; Vu, Gia-Phong; Trang, Phong; Lu, Sangwei; Wu, Jianguo; Liu, Fenyong

    2013-05-01

    Nucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts. Furthermore, an attenuated Salmonella strain was constructed and used for delivery of anti-HBV EGS in cells and in mice. Substantial reduction in the levels of HBV gene expression and viral DNA was detected in cells treated with the Salmonella vector carrying the functional EGS construct. Furthermore, oral inoculation of Salmonella carrying the EGS construct led to an inhibition of ~95% in the levels of HBV gene expression and a reduction of ~200,000-fold in viral DNA level in the livers and sera of the treated mice transfected with a HBV plasmid. Our results suggest that EGSs are effective in inhibiting HBV replication in cultured cells and mammalian livers, and demonstrate the use of Salmonella-mediated delivery of EGS as a promising therapeutic approach for human diseases including HBV infection.

  13. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  14. [Detection and differentiation of the bovine parainfluenza-3 virus strains studied by amplification and sequencing of the HN gene].

    Science.gov (United States)

    Vecherov, A E; Aianot, P K; Timina, A M; Lisitsin, V V

    2003-01-01

    A possibility of using the amplification of gene HN fragment in combination with nucleotide cDNA sequencing for the purpose of identification and strain differentiation of bovine parainfluenza-3 virus was demonstrated. A comparative analysis of the primary structure in the studied HN gene fragment revealed 2 genetic groups among the investigated virus' strains and isolates. Group 1 is made up of Northern American viral strains and of Russian isolates, whose primary structure has a high level of homology to the primary SF-4/32 strain structure; group 2 comprises the virus' Russian isolates with a high level of homology to the mentioned strains to Japanese strains' sequences. The biggest differences between the studied strains and the viral isolates amounted to around 8%, when the nucleotide sequences were compared, and to around 4%, when the corresponding amino-acid sequences were compared.

  15. Capripoxvirus G-protein-coupled chemokine receptor: a host-range gene suitable for virus animal origin discrimination.

    Science.gov (United States)

    Le Goff, Christian; Lamien, Charles Euloge; Fakhfakh, Emna; Chadeyras, Amélie; Aba-Adulugba, Elexpeter; Libeau, Geneviève; Tuppurainen, Eeva; Wallace, David B; Adam, Tajelser; Silber, Roland; Gulyaz, Vely; Madani, Hafsa; Caufour, Philippe; Hammami, Salah; Diallo, Adama; Albina, Emmanuel

    2009-08-01

    The genus Capripoxvirus within the family Poxviridae comprises three closely related viruses, namely goat pox, sheep pox and lumpy skin disease viruses. This nomenclature is based on the animal species from which the virus was first isolated, respectively, goat, sheep and cattle. Since capripoxviruses are serologically identical, their specific identification relies exclusively on the use of molecular tools. We describe here the suitability of the G-protein-coupled chemokine receptor (GPCR) gene for use in host-range grouping of capripoxviruses. The analysis of 58 capripoxviruses showed three tight genetic clusters consisting of goat pox, sheep pox and lumpy skin disease viruses. However, a few discrepancies exist with the classical virus-host origin nomenclature: a virus isolated from sheep is grouped in the goat poxvirus clade and vice versa. Intra-group diversity was further observed for the goat pox and lumpy skin disease virus isolates. Despite the presence of nine vaccine strains, no genetic determinants of virulence were identified on the GPCR gene. For sheep poxviruses, the addition or deletion of 21 nucleic acids (7 aa) was consistently observed in the 5' terminal part of the gene. Specific signatures for each cluster were also identified. Prediction of the capripoxvirus GPCR topology, and its comparison with other known mammalian GPCRs and viral homologues, revealed not only a classical GPCR profile in the last three-quarters of the protein but also unique features such as a longer N-terminal end with a proximal hydrophobic alpha-helix and a shorter serine-rich C-tail.

  16. Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors.

    Science.gov (United States)

    Lo, Shyh-Ching; Pripuzova, Natalia; Li, Bingjie; Komaroff, Anthony L; Hung, Guo-Chiuan; Wang, Richard; Alter, Harvey J

    2010-09-07

    Chronic fatigue syndrome (CFS) is a serious systemic illness of unknown cause. A recent study identified DNA from a xenotropic murine leukemia virus-related virus (XMRV) in peripheral blood mononuclear cells (PBMCs) from 68 of 101 patients (67%) by nested PCR, as compared with 8 of 218 (3.7%) healthy controls. However, four subsequent reports failed to detect any murine leukemia virus (MLV)-related virus gene sequences in blood of CFS patients. We examined 41 PBMC-derived DNA samples from 37 patients meeting accepted diagnostic criteria for CFS and found MLV-like virus gag gene sequences in 32 of 37 (86.5%) compared with only 3 of 44 (6.8%) healthy volunteer blood donors. No evidence of mouse DNA contamination was detected in the PCR assay system or the clinical samples. Seven of 8 gag-positive patients tested again positive in a sample obtained nearly 15 y later. In contrast to the reported findings of near-genetic identity of all XMRVs, we identified a genetically diverse group of MLV-related viruses. The gag and env sequences from CFS patients were more closely related to those of polytropic mouse endogenous retroviruses than to those of XMRVs and were even less closely related to those of ecotropic MLVs. Further studies are needed to determine whether the same strong association with MLV-related viruses is found in other groups of patients with CFS, whether these viruses play a causative role in the development of CFS, and whether they represent a threat to the blood supply.

  17. [Gene modification in the genome of Epstein-Barr virus cloned as a bacterial artificial chromosome].

    Science.gov (United States)

    Lu, Jianhong; Tang, Yunlian; Zhou, Ming; Wu, Minghua; Ouyang, Jue; Gao, Jianming; Zhang, Liming; Li, Dan; Chen, Qiong; Xiong, Wei; Li, Xiaoling; Tang, Ke; Li, Guiyuan

    2008-03-01

    Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with a variety of malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma (NPC). Functions of most EBV genes have not been determined. The use of bacterial artificial chromosome (BAC) to clone and modify the genome of EBV has enhanced the gene function study in the context of genome. Infectious clones of EBV were previously established by using EBV-BAC plasmid p2089. In order to further investigate EBV mutant biology, an easy and efficient method for gene modification in EBV-BAC was developed and detailed. The kanamycin gene (kan) flanked by recombinase FLP recognition targets (FRTs) was amplified from plasmid pKD13 and inserted into the vector of pcDNA3.1(+). Through the introduction of restriction endonuclease BsmB I in PCR primers, NPC-derived LMP1 gDNA containing the full-length ORF was then precisely ligated with kan on pcDNA3.1(+). The linear DNA segment of kan-LMP1 was transformed into E. coli DH10B cells containing p2089 and plasmid pKD46, homologous recombination was subsequently mediated by redalphabetagamma system from bacteriophage lambda. By this linear transformation and ET cloning, the full-length LMP1 in EBV-BAC (p2089) was replaced by the kan-LMP1. The introduced kan gene in EBV-BAC genome was eliminated specifically by the recombinase FLP when transformed by plasmid pCP20, leaving an FRT scar of 69 bp. The mutant could be identified by antibiotic screening and PCR amplification on bacteria medium. This method allows the gene of interest to be easily modified alone and then to be introduced into EBV-BAC genome. Following this example of gene substitution, other mutations such as deletion, insertion and point mutation become convenient work, and this improved method can be a potential use of gene modification in other BAC-based herpesvirus genome.

  18. The efficacy and safety of gene transfer into the porcine liver in vivo by HVJ (Sendai virus) liposome.

    Science.gov (United States)

    Kawashita, Yujo; Fujioka, Hikaru; Ohtsuru, Akira; Kaneda, Yasufumi; Kamohara, Yukio; Kawazoe, Yasushi; Yamashita, Shunichi; Kanematsu, Takashi

    2005-12-15

    Gene transfer systems using viral vectors are efficient; however, most viral vectors also tend to evoke immunologic reactions, thereby clinically causing serial side effects. HVJ-liposome vector is a hybrid vector consisting of liposome and an inactivated Sendai virus (Hemmagglutinating Virus of Japan [HVJ]), which has been reported to be less immunogenic and can also be repeatedly administered. We examined the usefulness of this vector for hepatic gene therapy in a pig model. Genes encoding beta-galactosidase and luciferase were used as reporter genes. The pigs were injected with the reporter gene loaded-HVJ-liposome into the portal vein under total vascular exclusion of the liver. The transfection efficiencies were then assessed by beta-galactosidase staining, a luciferase assay, and RT-PCR for LacZ mRNA. Biochemical and histologic analyses were performed to evaluate tissue toxicity after gene transfer. The luciferase gene expression in the liver reached its highest level at 7 days after transfection. It continued to be detected up to 28 days after transfection, while all pigs remained healthy throughout the observation period. The transfection efficiency was 15% in the hepatocytes according to beta-galactosidase staining. Extrahepatic transgene expression was slightly observed in the lung and kidney, but not in the spleen or ovary. These data suggest for the first time that the use of the HVJ-liposome vector is a safe and feasible modality for liver-directed gene transfer in pigs, and it might therefore be suitable for clinical gene therapy trials.

  19. F-18-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression : in-vitro comparison with other PET tracers

    NARCIS (Netherlands)

    Buursma, AR; Rutgers, [No Value; Hospers, GAP; Mulder, NH; Vaalburg, W; de Vries, EFJ

    Objective The herpes simplex virus thymidine kinase (HSVtk) gene has frequently been applied as a reporter gene for monitoring transgene expression in animal models. In clinical gene therapy protocols, however, extremely low expression levels of the transferred gene are generally observed.

  20. [Experimental study on hepatitis B-virus X gene expression in adenoid cystic carcinoma].

    Science.gov (United States)

    Xie, Ling; Wang, Weihong; Xu, Biao; Liu, Yu

    2014-08-01

    To explore the expression of hepatitis B-virus X gene (HBX) in adenoid cystic carcinoma (ACC) and determine its clinical significance. Between June 2008 and October 2012, in-hospital patients with salivary gland tumors who were treated at the Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, were enrolled to this study. HBeAb-positive patients were defined as those exposed to hepatitis B virus (HBV) or harboring persistent HBV infection regardless of being HBeAg positive or negative. According to the pathological results, all patients were divided into ACC group and control group. Immunohistochemical staining and polymerase chain reaction (PCR) were used to detect HBX expression in ACC group and control group. HBX expression was mostly detected in the cytoplasm of ACC cells. Minimal HBX expression was detected in the nucleus. HBX expression was significantly higher in ACC than in Warthin's tumor. A significant difference was observed between the two groups. HBX is expressed in ACC and may be associated with the development of ACC. HBX might serve important functions in the carcinogenesis and development of ACC.

  1. Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma.

    Science.gov (United States)

    Takehara, Yuki; Satoh, Takahiro; Nishizawa, Aya; Saeki, Kazumi; Nakamura, Masataka; Masuzawa, Mikio; Kaneda, Yasufumi; Katayama, Ichiro; Yokozeki, Hiroo

    2013-10-01

    Cutaneous angiosarcoma is a life-threatening tumor that is resistant to conventional therapies. The therapeutic effects of Sendai virus particles (hemagglutinating virus of Japan envelope: HVJ-E) carrying IL-2 gene (HVJ-E/IL-2) were examined in a mouse model of angiosarcoma. Intra-tumoral injection of HVJ-E/IL-2 effectively inhibited the growth of angiosarcoma cells (ISOS-1) inoculated in mice and improved tumor-free rates. HVJ-E/IL-2 stimulated local accumulation of CD8 (+) T cells and NK cells and reduced regulatory T cells in regional lymph nodes. Notably, the prevalence of myeloid-derived suppressor cells was lower in HVJ-E/IL-2-treated mice than in HVJ-E-treated mice. HVJ-E/IL-2 treatment promoted IFN-γ production from CD8 (+) T cells in response to tumor cells, more significantly than HVJ-E treatment. Greatly improved tumor-free rates were obtained when sunitinib, a tyrosine kinase inhibitor, was administered in combination with HVJ-E/IL-2. Immunogene therapy with HVJ-E/IL-2 with or without sunitinib could be a promising therapeutic option for cutaneous angiosarcoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Molecular epidemiology of Chikungunya virus: mutation in E1 gene region.

    Science.gov (United States)

    Singh, Rishi K; Tiwari, Sarika; Mishra, Virendra K; Tiwari, Ruchi; Dhole, Tapan N

    2012-11-01

    Chikungunya virus is a mosquito-transmitted RNA virus and emerging as a pathogen that has a major public health impact because of the high morbidity including high fever, headache, rash, nausea, vomiting, myalgia, arthralgia with or without neurological manifestation or fulminant hepatitis. One hundred fifty-one patient samples were analyzed during the years 2006-2008, and compared conventional tests and CCRT-PCR (cell culture RT PCR). The conventional tests included ELISA, inoculation into C6/36 cell line and CPE were examined by PCR after RNA extraction. A total of 20/151 (13.2%), 8/151 (5.29%) and 7/151 (4.6%) samples were found to be positive by ELISA, cell culture and PCR, respectively. While 7/20 (35%) of the samples were positive by CCRT_PCR when ELISA 20 positive samples were detected. A total of 5/7 positive strains were sequenced in the E1 gene region. Remarkable changes (M269V, D284E, P294L, S295F, A316V, V322A, and C328W) were observed in the membrane fusion glycoprotein E1. These unique molecular features of the isolates with the continuing epidemic demonstrated high evolutionary potential and thereby indicating higher virulence. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Identifying protective host gene expression signatures within the spleen during West Nile virus infection in the collaborative cross model

    Directory of Open Access Journals (Sweden)

    Richard Green

    2016-12-01

    Full Text Available Flaviviruses are hematophagous arthropod-viruses that pose global challenges to human health. Like Zika virus, West Nile Virus (WNV is a flavivirus for which no approved vaccine exists [1]. The role host genetics play in early detection and response to WNV still remains largely unexplained. In order to capture the impact of genetic variation on innate immune responses, we studied gene expression following WNV infection using the collaborative cross (CC. The CC is a mouse genetics resource composed of hundreds of independently bred, octo-parental recombinant inbred mouse lines [2]. To accurately capture the host immune gene expression signatures of West Nile infection, we used the nanostring platform to evaluate expression in spleen tissue isolated from CC mice infected with WNV over a time course of 4, 7, and 12 days' post-infection [3]. Nanostring is a non-amplification based digital method to quantitate gene expression that uses color-coded molecular barcodes to detect hundreds of transcripts in a sample. Using this approach, we identified unique gene signatures in spleen tissue at days 4, 7, and 12 following WNV infection, which delineated distinct differences between asymptomatic and symptomatic CC lines. We also identified novel immune genes. Data was deposited into the Gene Expression Omnibus under accession GSE86000.

  4. Identifying protective host gene expression signatures within the spleen during West Nile virus infection in the collaborative cross model.

    Science.gov (United States)

    Green, Richard; Wilkins, Courtney; Thomas, Sunil; Sekine, Aimee; Ireton, Renee C; Ferris, Martin T; Hendrick, Duncan M; Voss, Kathleen; de Villena, Fernando Pardo-Manuel; Baric, Ralph; Heise, Mark; Gale, Michael

    2016-12-01

    Flaviviruses are hematophagous arthropod-viruses that pose global challenges to human health. Like Zika virus, West Nile Virus (WNV) is a flavivirus for which no approved vaccine exists [1]. The role host genetics play in early detection and response to WNV still remains largely unexplained. In order to capture the impact of genetic variation on innate immune responses, we studied gene expression following WNV infection using the collaborative cross (CC). The CC is a mouse genetics resource composed of hundreds of independently bred, octo-parental recombinant inbred mouse lines [2]. To accurately capture the host immune gene expression signatures of West Nile infection, we used the nanostring platform to evaluate expression in spleen tissue isolated from CC mice infected with WNV over a time course of 4, 7, and 12 days' post-infection [3]. Nanostring is a non-amplification based digital method to quantitate gene expression that uses color-coded molecular barcodes to detect hundreds of transcripts in a sample. Using this approach, we identified unique gene signatures in spleen tissue at days 4, 7, and 12 following WNV infection, which delineated distinct differences between asymptomatic and symptomatic CC lines. We also identified novel immune genes. Data was deposited into the Gene Expression Omnibus under accession GSE86000.

  5. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines

    NARCIS (Netherlands)

    van 't Wout, Angélique B.; Lehrman, Ginger K.; Mikheeva, Svetlana A.; O'Keeffe, Gemma C.; Katze, Michael G.; Bumgarner, Roger E.; Geiss, Gary K.; Mullins, James I.

    2003-01-01

    The expression levels of approximately 4,600 cellular RNA transcripts were assessed in CD4(+)-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1(BRU)) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1(BRU)

  6. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Madsen, Christian M; Arfelt, Kristine N

    2013-01-01

    The Epstein-Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK...

  7. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183)

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Norn, Christoffer; Laurent, Stephane

    2012-01-01

    , the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about...

  8. Sequence analysis of the Epstein-Barr virus (EBV) latent membrane protein-1 gene and promoter region

    DEFF Research Database (Denmark)

    Sandvej, K; Gratama, J W; Munch, M

    1997-01-01

    Sequence variations in the Epstein-Barr virus (EBV) encoded latent membrane protein-1 (LMP-1) gene have been described in a Chinese nasopharyngeal carcinoma-derived isolate (CAO), and in viral isolates from various EBV-associated tumors. It has been suggested that these genetic changes, which...

  9. GADD45ß, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens

    Science.gov (United States)

    Avian leukosis virus subgroup J (ALV-J) is a retrovirus that induces neoplasia, hepatomegaly, immunosuppression and poor performance in chickens. The tumorigenic and pathogenic mechanisms of ALV-J remain a hot topic. To explore anti-tumor genes that confer genetic resistance to ALV-J infection in ch...

  10. A novel major gene on chromosome 6H for resistance of barley against the barley yellow dwarf virus

    NARCIS (Netherlands)

    Niks, R.E.; Habekuss, A.; Bekele, B.; Ordon, F.

    2004-01-01

    In a mapping population derived from the Ethiopian barley line L94 x Vada, natural infection by barley yellow dwarf virus (BYDV) occurred. While line L94 hardly showed symptoms, Vada was severely affected. The 103 recombinant inbred lines segregated bimodally. The major gene responsible for this

  11. Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins

    NARCIS (Netherlands)

    Lim, H.S.; Lee, M.Y.; Moon, J.S.; Moon, J.K.; Yu, Y.M.; Cho, I.S.; Bae, H.; Boer, de S.M.; Ju, H.; Hammond, J.; Jackson, A.O.

    2013-01-01

    Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells

  12. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection.

    Science.gov (United States)

    Behura, Susanta K; Gomez-Machorro, Consuelo; Harker, Brent W; deBruyn, Becky; Lovin, Diane D; Hemme, Ryan R; Mori, Akio; Romero-Severson, Jeanne; Severson, David W

    2011-11-01

    The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito. To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways. Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV

  13. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    2011-11-01

    Full Text Available The mosquito Aedes aegypti is the primary vector of dengue virus (DENV infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway, MAPK (Mitogen-activated protein kinase, mTOR (mammalian target of rapamycin and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription pathways.Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical

  14. Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Jiang, Liang; Xia, Qingyou

    2016-04-01

    Viruses and high temperature (HT) are the primary threats to silkworms. Changes in the expression of stress-response genes can be measured using quantitative polymerase chain reaction (qPCR) after exposure to viruses or HT. However, appropriate reference genes (RGs) for qPCR data normalization have not been established in this organism. In this study, we summarized the RGs used in the previous silkworm studies after infection with Bombyx mori nucleopolyhedrovirus (BmNPV), B. mori cytoplasmic polyhedrosis virus (BmCPV), or B. mori densovirus (BmDNV) or after HT treatment. The expression levels of these RGs were extracted from silkworm transcriptome data to screen for candidate RGs that were unaffected by the experimental conditions. Actin-1 (A1), actin-3 (A3), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and translation initiation factor 4a (TIF-4A) were selected for further qPCR verification. The results of RNA-seq and qPCR showed that GAPDH and TIF-4A were suitable RGs after BmNPV challenge or HT stress, whereas TIF-4A was an appropriate RG for BmCPV or BmDNV-Z challenge in silkworms. These results suggested that TIF-4A may be the most appropriate RG for gene expression analysis after challenge with viruses or HT in silkworms.

  15. Origin and characteristics of internal genes affect infectivity of the novel avian-origin influenza A (H7N9) virus.

    Science.gov (United States)

    Feng, Yan; Mao, Haiyan; Xu, Changping; Jiang, Jianmin; Chen, Yin; Yan, Juying; Gao, Jian; Li, Zhen; Xia, Shichang; Lu, Yiyu

    2013-01-01

    Human infection with a novel avian-origin influenza A (H7N9) virus occurred continuously in China during the first half of 2013, with high infectivity and pathogenicity to humans. In this study, we investigated the origin of internal genes of the novel H7N9 virus and analyzed the relationship between internal genes and infectivity of the virus. We tested the environmental specimens using real-time RT-PCR assays and isolated five H9N2 viruses from specimens that were positive for both H7 and H9. Results of recombination and phylogeny analysis, performed based on the entire sequences of 221 influenza viruses, showed that one of the Zhejiang avian H9N2 isolates, A/environment/Zhejiang/16/2013, shared the highest identities on the internal genes with the novel H7N9 virus A/Anhui/1/2013, ranging from 98.98% to 100%. Zhejiang avian H9N2 isolates were all reassortant viruses, by acquiring NS gene from A/chicken/Dawang/1/2011-like viruses and other five internal genes from A/brambling/Beijing/16/2012-like viruses. Compared to A/Anhui/1/2013 (H7N9), the homology on the NS gene was 99.16% with A/chicken/Dawang/1/2011, whereas only 94.27-97.61% with A/bramnling/Beijing/16/2012-like viruses. Analysis on the relationship between internal genes and the infectivity of novel H7N9 viruses were performed by comparing amino acid sequences with the HPAI H5N1 viruses, the H9N2 and the earlier H7N9 avian influenza viruses. There were nine amino acids on the internal genes found to be possibly associated with the infectivity of the novel H7N9 viruses. These findings indicate that the internal genes, sharing the highest similarities with A/environment/Zhejiang/16/2013-like (H9N2) viruses, may affect the infectivity of the novel H7N9 viruses.

  16. INFUENCE OF GENE POLIMORPHISM ON THE COURSE OF EPSTEIN-BARR VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Sorokina O.G.

    2017-06-01

    Full Text Available Introduction. Currently, infectious diseases occupy a dominant place in human pathology. The relevance of the Epstein-Barr virus infection (VEB is due to a high degree of infection of the population around the world, as well as specific antibodies to this virus, detected in almost 95% of the adult population. Material and methods. We have examined 96 patients with chronic VEB infection, the main clinical manifestations of which were various immunopathological and immunodeficiency states, as well as 10 patients who had undergone a history of VEB without any complaints at the moment. The comparison group consisted of 10 clinically healthy people who had no record of infectious mononucleosis. Polymorphism of the genes was determined using the RFLP method (polymorphism of the length of restriction fragments and the real-time PCR method using the Corbett Research Rotor-Gene-3000 and the DNA-detecting DT-96 amplifier. To detect the polymorphisms under study, amplification of certain sections of the corresponding genes was carried out. To determine the allelic variation of the IL28B gene, a commercial DNA-technology test system was used. SNP 39743165T> G (rs8099917 and SNP 39738787C> T (rs 2979860 of the IL-28B gene were used to detect point mutations using polymerase chain reaction and polymorphism of restriction fragment lengths. As a material for the study, DNA obtained from leukocytes was used with commercial reagents to extract DNA from the clinical material "Cytolysin" by AmpliSens (Russia. Statistical processing of the results of the study was carried out in accordance with the recommendations for statistical processing of biomedical data. The statistical software package STATISTICA 10.0 was used. Results and discussion. A group of patients with a record of VEB who do not currently have any complaints, and also in the comparison group for the IL-28B gene, found the CC genotype at the locus rs12979860, and the TT genotype at the locus rs8099917

  17. A mechanism for negative gene regulation in Autographa californica multinucleocapsid nuclear polyhedrosis virus

    Science.gov (United States)

    Leisy, D.J.; Rasmussen, C.; Owusu, E.O.; Rohrmann, G.F.

    1997-01-01

    The Autographa californica multinucleocapsid nuclear polyhedrosis virus (AcMNPV) ie-1 gene product (IE-1) is thought to play a central role in stimulating early viral transcription. IE-1 has been demonstrated to activate several early viral gene promoters and to negatively regulate the promoters of two other AcMNPV regulatory genes, ie-0 and ie-2. Our results indicate that IE-1 negatively regulates the expression of certain genes by binding directly, or as part of a complex, to promoter regions containing a specific IE-1-binding motif (5'-ACBYGTAA-3') near their mRNA start sites. The IE-1 binding motif was also found within the palindromic sequences of AcMNPV homologous repeat (hr) regions that have been shown to bind IE-1. The role of this IE-1 binding motif in the regulation of the ie-2 and pe-38 promoters was examined by introducing mutations in these promoters in which the central 6 bp were replaced with Bg/II sites. GUS reporter constructs containing ie-2 and pe-38 promoter fragments with and without these specific mutations were cotransfected into Sf9 cells with various amounts of an ie-1-containing plasmid (ple-1). Comparisons of GUS expression produced by the mutant and wild-type constructs demonstrated that the IE-1 binding motif mediated a significant decrease in expression from the ie-2 and pe-38 promoters in response to increasing pIe-1 concentrations. Electrophoretic mobility shift assays with pIe-1-transfected cell extracts and supershift assays with IE-1- specific antiserum demonstrated that IE-1 binds to promoter fragments containing the IE-1 binding motif but does not bind to promoter fragments lacking this motif.

  18. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq.

    Science.gov (United States)

    Rubio, Manuel; Rodríguez-Moreno, Luis; Ballester, Ana Rosa; de Moura, Manuel Castro; Bonghi, Claudio; Candresse, Thierry; Martínez-Gómez, Pedro

    2015-02-01

    Differences in gene expression were studied after Plum pox virus (PPV, sharka disease) infection in peach GF305 leaves with and without sharka symptoms using RNA-Seq. For each sample, more than 80% of 100-nucleotide paired-end (PE) Illumina reads were aligned on the peach reference genome. In the symptomatic sample, a significant proportion of reads were mapped to PPV reference genomes (1.04% compared with 0.00002% in non-symptomatic leaves), allowing for the ultra-deep assembly of the complete genome of the PPV isolate used (9775 nucleotides, missing only 11 nucleotides at the 5' genome end). In addition, significant alternative splicing events were detected in 359 genes and 12 990 single nucleotide polymorphisms (SNPs) were identified, 425 of which could be annotated. Gene ontology annotation revealed that the high-ranking mRNA target genes associated with the expression of sharka symptoms are mainly related to the response to biotic stimuli, to lipid and carbohydrate metabolism and to the negative regulation of catalytic activity. A greater number of differentially expressed genes were observed in the early asymptomatic phase of PPV infection in comparison with the symptomatic phase. These early infection events were associated with the induction of genes related to pathogen resistance, such as jasmonic acid, chitinases, cytokinin glucosyl transferases and Lys-M proteins. Once the virus had accumulated, the overexpression of Dicer protein 2a genes suggested a gene silencing plant response that was suppressed by the virus HCPro and P1 proteins. These results illustrate the dynamic nature of the peach-PPV interaction at the transcriptome level and confirm that sharka symptom expression is a complex process that can be understood on the basis of changes in plant gene expression. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  19. General and family-specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Jørgensen, H. B. H.; Sørensen, P.; Cooper, G. A.

    2011-01-01

    tested it by examining gene expression levels in the head kidney of trout at a genome-wide scale with a 16K cDNA microarray for salmonids. Expression levels were recorded during 16 days following bath challenge. The challenge experiment included a relatively low susceptibility (32% survival following...... challenge) and a relatively high susceptibility (18% survival following challenge) trout family that were both split into a group exposed to virus and a non-exposed control group. In total, 939 genes were differentially expressed between infected and non-infected fish (FDR p = 0.05). Five groups of Gene...... over-represented among the 642 differentially expressed genes in the low-susceptibility trout family but not among the 556 differentially expressed genes in the high-susceptibility trout family. Expression profiles for most immune genes discussed showed increased transcription from day 3 post-challenge...

  20. Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs.

    Science.gov (United States)

    Tian, Debin; Ni, Yan-Yan; Zhou, Lei; Opriessnig, Tanja; Cao, Dianjun; Piñeyro, Pablo; Yugo, Danielle M; Overend, Christopher; Cao, Qian; Lynn Heffron, C; Halbur, Patrick G; Pearce, Douglas S; Calvert, Jay G; Meng, Xiang-Jin

    2015-11-01

    The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs.

    Science.gov (United States)

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A; Richt, Jürgen A; Ma, Wenjun

    2015-03-01

    At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5

  2. Analysis of E2 gene integrity in HPV16 and HPV58 viruses isolated from women with cervical pathology

    Directory of Open Access Journals (Sweden)

    María del R González-Losa

    Full Text Available Integration of human papillomavirus (HPV DNA into human cells accompanied by the disruption of the viral genome has been described as a prerequisite for cancer development. This study aimed to investigate E2 gene integrity of HPV16 and HPV58 viruses isolated from infected women with cervical lesions. Forty-two HPV16- and 31 HPV58-positive samples were analysed. E2 integrity was assumed when all fragments covering the E2 gene were amplified with specific polymerase chain reaction primers. Overall, in 59% of the samples, at least one fragment was not amplified in HPV16- (57% and HPV58-positive samples (61%. Samples from high-grade squamous intraepithelial lesions had the highest frequency of E2 gene disruptions (73%, followed by samples from low-grade squamous intraepithelial lesions (63% and, finally, samples from invasive cervical cancer (35%. Association between the integrity status of the E2 gene, and lesion grade was assessed by the chi-squared test applied to the combined set of viruses (p = 0.6555 or to populations of the same virus type (HPV58, p = 0.3101; HPV16, p = 0.3024. In conclusion, in this study, no association was found between the presence of E2 gene disruptions and the grade of cervical lesions caused by HPV16 and HPV58.

  3. Analysis of E2 gene integrity in HPV16 and HPV58 viruses isolated from women with cervical pathology.

    Science.gov (United States)

    González-Losa, María Del R; Puerto-Solis, Marylin; Tenorio Ruiz, Juan; Rosado-López, Ariel I; Hau-Aviles, Oscar; Ayora-Talavera, Guadalupe; Cisneros-Cutz, Isidro; Conde-Ferráez, Laura

    2016-12-01

    Integration of human papillomavirus (HPV) DNA into human cells accompanied by the disruption of the viral genome has been described as a prerequisite for cancer development. This study aimed to investigate E2 gene integrity of HPV16 and HPV58 viruses isolated from infected women with cervical lesions. Forty-two HPV16- and 31 HPV58-positive samples were analysed. E2 integrity was assumed when all fragments covering the E2 gene were amplified with specific polymerase chain reaction primers. Overall, in 59% of the samples, at least one fragment was not amplified in HPV16- (57%) and HPV58-positive samples (61%). Samples from high-grade squamous intraepithelial lesions had the highest frequency of E2 gene disruptions (73%), followed by samples from low-grade squamous intraepithelial lesions (63%) and, finally, samples from invasive cervical cancer (35%). Association between the integrity status of the E2 gene, and lesion grade was assessed by the chi-squared test applied to the combined set of viruses (p = 0.6555) or to populations of the same virus type (HPV58, p = 0.3101; HPV16, p = 0.3024). In conclusion, in this study, no association was found between the presence of E2 gene disruptions and the grade of cervical lesions caused by HPV16 and HPV58.

  4. Inhibition of hepatitis B virus surface gene expression by antisense oligodeoxynucleotides in a human hepatoma cell line.

    Science.gov (United States)

    Reinis, M; Reinisová, M; Korec, E; Hlozánek, I

    1993-01-01

    We have studied the inhibitory effect of antisense oligodeoxynucleotides on the expression of hepatitis B virus surface antigens. Human hepatoma cell line PLC/PRF/5 harbors several integrated copies of the HBV genome and produces and secretes hepatitis B virus surface antigen (HBsAg) to the medium. Synthetic antisense oligodeoxynucleotides complementary to various regions of the surface antigen gene were synthesized and their ability to block its expression was tested. Oligodeoxynucleotides (17- and 21-mers) complementary to regions covering ATG codons of both preS2 and S genes significantly inhibited preS2 and S protein production. Less efficient inhibition was achieved when the oligonucleotide complementary to the inside S gene region was assayed.

  5. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective.

    Science.gov (United States)

    Hastie, Eric; Samulski, R Jude

    2015-05-01

    Fifty years after the discovery of adeno-associated virus (AAV) and more than 30 years after the first gene transfer experiment was conducted, dozens of gene therapy clinical trials are in progress, one vector is approved for use in Europe, and breakthroughs in virus modification and disease modeling are paving the way for a revolution in the treatment of rare diseases, cancer, as well as HIV. This review will provide a historical perspective on the progression of AAV for gene therapy from discovery to the clinic, focusing on contributions from the Samulski lab regarding basic science and cloning of AAV, optimized large-scale production of vectors, preclinical large animal studies and safety data, vector modifications for improved efficacy, and successful clinical applications.

  6. Sequence analysis of the core gene of 14 hepatitis C virus genotypes.

    Science.gov (United States)

    Bukh, J; Purcell, R H; Miller, R H

    1994-01-01

    We previously sequenced the 5' noncoding region of 44 isolates of hepatitis C virus (HCV), as well as the envelope 1 (E1) gene of 51 HCV isolates, and provided evidence for the existence of at least 6 major genetic groups consisting of at least 12 minor genotypes of HCV (i.e., genotypes I/1a, II/1b, III/2a, IV/2b, 2c, V/3a, 4a-4d, 5a, and 6a). We now report the complete nucleotide sequence of the putative core (C) gene of 52 HCV isolates that represent all of these 12 genotypes as well as two additional genotypes provisionally designated 4e and 4f that we identified in this study. The phylogenetic analysis of the C gene sequences was in agreement with that of the E1 gene sequences. A major division in the genetic distance was observed between HCV isolates of genotype 2 and those of the other genotypes in analysis of both the E1 and C genes. The C gene sequences of 9 genotypes have not been reported previously (i.e., genotypes 2c, 4a-4f, 5a, and 6a). Our analysis indicates that the C gene-based methods currently used to determine the HCV genotype, such as PCR with genotype-specific primers, should be revised in light of these data. We found that the predicted C gene was exactly 573 nt long in all 52 HCV isolates, with an N-terminal start codon and no in-frame stop codons. The nucleotide and predicted amino acid identities of the C gene sequences were in the range of 79.4-99.0% and 85.3-100%, respectively. Furthermore, we mapped universally conserved, as well as genotype-specific, nucleotide and deduced amino acid sequences of the C gene. The predicted C proteins of the different HCV genotypes shared the following features: (i) high content of proline residues, (ii) high content of arginine and lysine residues located primarily in three domains with 10 such residues invariant at positions 39-62, (iii) a cluster of 5 conserved tryptophan residues, (iv) two nuclear localization signals and a DNA-binding motif, (v) a potential phosphorylation site with a serine

  7. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis.

    Science.gov (United States)

    van der Linde, Karina; Doehlemann, Gunther

    2013-01-01

    While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.

  8. A Viable Recombinant Rhabdovirus Lacking Its Glycoprotein Gene and Expressing Influenza Virus Hemagglutinin and Neuraminidase Is a Potent Influenza Vaccine

    Science.gov (United States)

    Ryder, Alex B.; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian

    2014-01-01

    ABSTRACT The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell

  9. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine.

    Science.gov (United States)

    Ryder, Alex B; Buonocore, Linda; Vogel, Leatrice; Nachbagauer, Raffael; Krammer, Florian; Rose, John K

    2015-03-01

    The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a

  10. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    To determine the mechanism by which non-MHC genes control the rate of virus clearance in mice infected with lymphocytic choriomeningitis virus, a segregating backcross population was studied. Thirty BC1 animals were infected with virus, and virus-specific delayed-type hypersensitivity (DTH......) was followed by measurement of footpad swelling. Ten days after virus inoculation, the animals were sacrificed and spleen virus titer together with splenic Tc activity was measured. With regard to all three parameters a continuous distribution was observed in this backcross population. However, using cutoff...... values based on parental and F1 animals tested in parallel, 11/30 animals were assigned Tc responders, 23/30 DTH responders and 10/30 cleared virus with maximal efficiency. Comparison of responder status with regard to the different parameters revealed a strong correlation between Tc responsiveness...

  11. SF2/ASF binding region within JC virus NCCR limits early gene transcription in glial cells.

    Science.gov (United States)

    Uleri, Elena; Regan, Patrick; Dolei, Antonina; Sariyer, Ilker Kudret

    2013-05-14

    Patients undergoing immune modulatory therapies for the treatment of autoimmune diseases such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS patients, are in the high risk group of developing progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the white matter caused by human neurotropic polyomavirus, JC virus. It is now widely accepted that pathologic strains of JCV shows unique rearrangements consist of deletions and insertions within viral NCCR. While these kinds of rearrangements are related to viral tropism and pathology of the disease, their roles in molecular regulation of JCV gene expression and replication are unclear. We have previously identified SF2/ASF as a negative regulator of JCV gene expression in glial cells. This negative impact of SF2/ASF was dependent on its ability to bind a specific region mapped to the tandem repeat within viral promoter. In this report, functional role of SF2/ASF binding region in viral gene expression and replication was investigated by using deletion mutants of viral regulatory sequences. The second 98-base-pair tandem repeat on Mad1 strain was first mutated by deletion and named Mad1-(1X98). In addition to this mutant, the CR3 region which served the binding side for SF2/ASF was also mutated and named Mad1-ΔCR3 (1X73). Both mutations were tested for SF2/ASF binding by ChIP assay. While SF2/ASF was associated with Mad1-WT and Mad1-(1X98), its interaction was completely abolished on Mad1-ΔCR3 (1X73) construct as expected. Surprisingly, reporter gene analysis of Mad1-(1X98) and Mad1-ΔCR3 (1X73) early promoter sequences showed two and three fold increase in promoter activities, respectively. The impact of "CR3" region on JCV propagation was also tested on the viral background. While replication of Mad1-(1X98) strain in glial cells was similar to Mad1-WT strain, propagation of Mad1-ΔCR3 (1X73) was less productive. Further analysis of the

  12. Cloning and expression of human papilloma virus type 6b-L1 gene

    Directory of Open Access Journals (Sweden)

    Lie-hua DENG

    2011-03-01

    Full Text Available Objective To investigate the expression of green fluorescent protein plasmid of human papilloma virus 6b L1 gene(HPV6bL1 in eukaryotic cells.Methods The L1 gene of PQE40-HPV6bL1 was amplified by PCR,purified by restriction enzyme digestion,and then connected to eukaryotic expression plasmid PEGFP-C1.The recombinant expression vector was then transformed into E.coli DH5a,which was identified by BamH Ⅰ and Hand Ⅲ digestion and the positive vector was selected.The recombinant plasmid PEGFP-HPV6bL1 was transfected into COS-7 cells by liposomal transfection technique and the expression of fusion protein was observed under fluorescence microscope.The generation of HPV6bL1 mRNA was detected by RT-PCR.Results Identification of PEGFP-HPV6bL1 by enzyme digestion and sequencing showed that the length,direction and inserted location of target,which was inserted into the recombinant,was correct and the expression of EGFP in transfected cell was observed.Conclusions A new type of green fluorescent HPV6bL1 eukaryotic expression system has been established.It may provide a research foundation for the study of the protein.

  13. Gene expression profiles associated with lymphocystis disease virus (LCDV) in experimentally infected Senegalese sole (Solea senegalensis).

    Science.gov (United States)

    Carballo, Carlos; Castro, Dolores; Borrego, Juan J; Manchado, Manuel

    2017-07-01

    In the present study, the pathogenesis of lymphocystis disease virus (LCDV) and the immune gene expression patterns associated with this viral infection were determined in the flatfish Senegalese sole. The results indicate that LCDV spreads rapidly from the peritoneal cavity through the bloodstream to reach target organs such as kidney, gut, liver, and skin/fin. The viral load was highest in kidney and reduced progressively thorough the experiment in spite of the viral major capsid protein gene was transcribed. The LCDV injection activated a similar set of differentially expressed transcripts in kidney and intestine although with some differences in the intensity and time-course response. This set included antiviral-related transcripts (including the mx and interferon-related factors irf1, irf2, irf3, irf7, irf8, irf9, irf10), cytokines (il1b, il6, il8, il12 and tnfa) and their receptors (il1r, il8r, il10r, il15ra, il17r), chemokines (CXC-type, CC-type and IL-8), prostaglandins (cox-2), g-type lysozymes, hepcidin, complement fractions (c2, c4-1 and c4-2) and the antigen differentiation factors cd4, cd8a, and cd8b. The expression profile observed indicated that the host triggered a systemic defensive response including inflammation able to cope with the viral challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease.

    Science.gov (United States)

    Gray-Edwards, Heather L; Randle, Ashley N; Maitland, Stacy A; Benatti, Hector R; Hubbard, Spencer M; Canning, Peter F; Vogel, Matthew B; Brunson, Brandon L; Hwang, Misako; Ellis, Lauren E; Bradbury, Allison M; Gentry, Atoska S; Taylor, Amanda R; Wooldridge, Anne A; Wilhite, Dewey R; Winter, Randolph L; Whitlock, Brian K; Johnson, Jacob A; Holland, Merilee; Salibi, Nouha; Beyers, Ronald J; Sartin, James L; Denney, Thomas S; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2017-09-18

    Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 1013 vector genomes) or low (4.2 × 1012 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.

  15. Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract.

    Science.gov (United States)

    Kurosaki, F; Uchibori, R; Mato, N; Sehara, Y; Saga, Y; Urabe, M; Mizukami, H; Sugiyama, Y; Kume, A

    2017-05-01

    An efficient adeno-associated virus (AAV) vector was constructed for the treatment of respiratory diseases. AAV serotypes, promoters and routes of administration potentially influencing the efficiency of gene transfer to airway cells were examined in the present study. Among the nine AAV serotypes (AAV1-9) screened in vitro and four serotypes (AAV1, 2, 6, 9) evaluated in vivo, AAV6 showed the strongest transgene expression. As for promoters, the cytomegalovirus (CMV) early enhancer/chicken β-actin (CAG) promoter resulted in more robust transduction than the CMV promoter. Regarding delivery routes, intratracheal administration resulted in strong transgene expression in the lung, whereas the intravenous and intranasal administration routes yielded negligible expression. The combination of the AAV6 capsid and CAG promoter resulted in sustained expression, and the intratracheally administered AAV6-CAG vector transduced bronchial cells and pericytes in the lung. These results suggest that AAV6-CAG vectors are more promising than the previously preferred AAV2 vectors for airway transduction, particularly when administered into the trachea. The present study offers an optimized strategy for AAV-mediated gene therapy for lung diseases, such as cystic fibrosis and pulmonary fibrosis.

  16. Interleukin-10 and Interferon Gamma Gene Polymorphisms and Hepatitis C Virus-Related Liver Cirrhosis Risk.

    Science.gov (United States)

    Sheneef, Abeer; Esmat, Mamdouh M; Mohammad, Asmaa N; Mahmoud, Aida A; Moghazy, Hoda M; Noureldin, Amal K

    2017-04-01

    The aim of the study was to evaluate the association between the gene polymorphisms in interleukin-10 (IL-10) and interferon gamma (IFN-γ) genes with susceptibility and severity of hepatitis C virus (HCV) infection among Egyptian patients. Interleukin-10 -592 A/C, -1082 G/A and IFN-γ +874 T/A genotypes were determined in 100 chronic HCV patients and 50 healthy controls using restriction fragment length polymorphism (RFLP) and the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) respectively. IL-10 -592 A/C polymorphism genotyping revealed that the frequency of CC genotype was significantly higher in chronic HCV patients than in controls (58% versus 30%, P IL-10 -1082 G/A polymorphism genotyping, a higher frequency of GG genotype was found in chronic HCV patients compared to controls (31% versus 10%, P IL-10 -592 A/C, -1082 G/A, and IFN-γ +874 T/A polymorphisms had a strong association with susceptibility to HCV infection. However, no significant association was observed between the cytokines (IL-10 and IFN-γ) genotypes profile and HCV-liver cirrhosis risk in the studied population, except for the high frequency of IFN-γ +874 T allele in cirrhotic patients.

  17. The BFRF1 Gene of Epstein-Barr Virus Encodes a Novel Protein

    Science.gov (United States)

    Farina, Antonella; Santarelli, Roberta; Gonnella, Roberta; Bei, Roberto; Muraro, Raffaella; Cardinali, Giorgia; Uccini, Stefania; Ragona, Giuseppe; Frati, Luigi; Faggioni, Alberto; Angeloni, Antonio

    2000-01-01

    Computer analysis of the Epstein-Barr virus (EBV) genome indicates there are ∼100 open reading frames (ORFs). Thus far about 30 EBV genes divided into the categories latent and lytic have been identified. The BamHI F region of EBV is abundantly transcribed during lytic replication. This region is highly conserved among herpesviruses, thus suggesting that some common function could be retained in the ORFs encompassed within this viral fragment. To identify putative novel proteins and possible new markers for viral replication, we focused our attention on the first rightward ORF in the BamHI F region (BFRF1). Histidine and glutathione S-transferase-tagged BFRF1 fusion proteins were synthesized to produce a mouse monoclonal antibody (MAb). Analysis of human sera revealed a high seroprevalence of antibodies to BFRF1 in patients affected by nasopharyngeal carcinoma or Burkitt's lymphoma, whereas no humoral response to BFRF1 could be detected among healthy donors. An anti-BFRF1 MAb recognizes a doublet migrating at 37 to 38 kDa in cells extracts from EBV-infected cell lines following lytic cycle activation and in an EBV-negative cell line (DG75) transfected with a plasmid expressing the BFRF1 gene. Northern blot analysis allowed the detection of a major transcript of 3.7 kb highly expressed in EBV-positive lytic cycle-induced cell lines. Treatment with inhibitors of viral DNA polymerase, such as phosphonoacetic acid and acyclovir, reduced but did not abolish the transcription of BFRF1, thus indicating that BFRF1 can be classified as an early gene. Cell fractionation experiments, as well as immunolocalization by immunofluorescence microscopy, immunohistochemistry, and immunoelectron microscopy, showed that BFRF1 is localized on the plasma membrane and nuclear compartments of the cells and is a structural component of the viral particle. Identification of BFRF1 provides a new marker with which to monitor EBV infection and might help us better understand the biology of

  18. The combination of major histocompatibility complex (MHC) and non-MHC genes influences murine lymphocytic choriomeningitis virus pathogenesis

    DEFF Research Database (Denmark)

    Eyler, Y L; Pfau, C J; Broomhall, K S

    1989-01-01

    Resistance to the acute lethal disease caused by the docile strain of lymphocytic choriomeningitis (LCM) virus varies widely between different mouse strains. In order to study the inheritance of host influence on susceptibility to this strain of LCM virus, we crossed the F1 to the parent...... susceptibility to the disease. When the parental strains carried similar MHC haplotypes but dissimilar background genes (B10.BR; CBA), 78% of the backcross mice succumbed, indicating that at least two non-MHC loci influenced disease susceptibility. It is unlikely, however, that the same two non-MHC loci...

  19. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    Energy Technology Data Exchange (ETDEWEB)

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-03-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.

  20. Selection of reference genes for gene expression analysis by real-time qPCR in avian cells infected with infectious bronchitis virus.

    Science.gov (United States)

    Batra, Ambalika; Maier, Helena J; Fife, Mark S

    2017-04-01

    Infectious bronchitis virus (IBV) causes infectious bronchitis in poultry, a respiratory disease that is a source of major economic loss to the poultry industry. Detection and the study of the molecular pathogenesis of the virus often involve the use of real-time quantitative PCR assays (qPCR). To account for error within the experiments, the levels of target gene transcription are normalized to that of suitable reference genes. Despite publication of the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines in 2009, single un-tested reference genes are often used for normalization of qPCR assays in avian research studies. Here, we use the geNorm algorithm to identify suitable reference genes in different avian cell types during infection with apathogenic and pathogenic strains of IBV. We discuss the importance of selecting an appropriate experimental sample subset for geNorm analysis, and show the effect that this selection can have on resultant reference gene selection. The effects of inappropriate normalization on the transcription pattern of a cellular signalling gene, AKT1, and the interferon-inducible, MX1, were studied. We identify the possibility of the misinterpretation of qPCR data when an inappropriate normalization strategy is employed. This is most notable when measuring the transcription of AKT1, where changes are minimal during infection.

  1. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance.

    Directory of Open Access Journals (Sweden)

    Santosh Nanda

    Full Text Available Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3 and cytotoxic granule-associated RNA binding protein (TIA1, associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a "danger signal" leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.

  2. Real-Time qPCR Identifies Suitable Reference Genes for Borna Disease Virus-Infected Rat Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Lujun Zhang

    2014-11-01

    Full Text Available Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.

  3. Real-time qPCR identifies suitable reference genes for Borna disease virus-infected rat cortical neurons.

    Science.gov (United States)

    Zhang, Lujun; Liu, Siwen; Zhang, Liang; You, Hongmin; Huang, Rongzhong; Sun, Lin; He, Peng; Chen, Shigang; Zhang, Hong; Xie, Peng

    2014-11-26

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements.

  4. IN VITRO INTERACTION OF INFLUENZA VIRUS A(H1N1pdm09 WITH MONOCYTIC MACROPHAGES: INDIVIDUAL RESPONSES OF TLR7 AND RIG1 RECEPTOR GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2017-01-01

    Full Text Available In vitro differentiation of donor blood monocytes to macrophages (Mph following GM-CSF treatment was accompanied by a significant increase in the levels of gene transcription signaling receptors TLR7 or RIG1. The levels of intracellular viral RNA (M1 gene in Mph remained high upon infection by influenza virus A H1N1pdm (Moscow 2009 for 24-96 hours. The innate immunity reactions caused by influenza virus show individual features: they are decreased in Mph from donor 1 which had initially high level of endosomal TLR7 gene activity, and it increased by influenza virus in MPh from donor 2 who had a very low level of TLR7 gene expression. The influenza H1N1pdm virus weakly stimulated expression of gene RIG1 and production of inflammatory cytokines in Mf in donor 1. The differences may be connected with individual sensitivity of the donors to influenza infection.

  5. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene.

    Science.gov (United States)

    Kamlangdee, Attapon; Kingstad-Bakke, Brock; Anderson, Tavis K; Goldberg, Tony L; Osorio, Jorge E

    2014-11-01

    A critical failure in our preparedness for an influenza pandemic is the lack of a universal vaccine. Influenza virus strains diverge by 1 to 2% per year, and commercially available vaccines often do not elicit protection from one year to the next, necessitating frequent formulation changes. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. We have constructed a recombinant modified vaccinia virus Ankara (MVA) that expresses an H5N1 mosaic hemagglutinin (H5M) (MVA-H5M). This mosaic was generated in silico using 2,145 field-sourced H5N1 isolates. A single dose of MVA-H5M provided 100% protection in mice against clade 0, 1, and 2 avian influenza viruses and also protected against seasonal H1N1 virus (A/Puerto Rico/8/34). It also provided short-term (10 days) and long-term (6 months) protection postvaccination. Both neutralizing antibodies and antigen-specific CD4(+) and CD8(+) T cells were still detected at 5 months postvaccination, suggesting that MVA-H5M provides long-lasting immunity. Influenza viruses infect a billion people and cause up to 500,000 deaths every year. A major problem in combating influenza is the lack of broadly effective vaccines. One solution from the field of human immunodeficiency virus vaccinology involves a novel in silico mosaic approach that has been shown to provide broad and robust protection against highly variable viruses. Unlike a consensus algorithm which picks the most frequent residue at each position, the mosaic method chooses the most frequent T-cell epitopes and combines them to form a synthetic antigen. These studies demonstrated that a mosaic influenza virus H5 hemagglutinin expressed by a viral vector can elicit full protection against diverse H5N1 challenges as well as induce broader immunity than a wild-type hemagglutinin. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Seroprevalence and S7 gene characterization of bluetongue virus in the West of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Khezri

    Full Text Available Aim: The objective of this study was conducted to determine the seroprevalence and S7 gene characterization of BTV of sheep in the West of Iran, during 2007-2008. Materials and Methods: A total 372 sheep blood samples were collected from known seropositive regions in the West of Iran. Anti-BTV antibodies were detected in the serum samples by group specific, c-ELISA. Extractions of the dsRNA from whole blood samples were carried out. The One-step RT-PCR kit was used for the detection of S7 BTV gene in the blood samples. PCR products of the first amplification (RT-PCR were used; template in the nested PCR. Products were separated by 1.2% Agarose gel electrophoresis. Nested PCR products of S7 segment from positive samples and the reference strain; BTV1 (RSA vvvv/01 were prepared for sequencing. All sequences were subjected to multiple sequence alignments and phylogenetic analysis. Results: The results showed widespread presence of the anti-BTV antibodies in the province's sheep population, where 46.77% of the tested sera were positive on ELISA. Bluetongue viruses were diagnosed in some animals by RT-PCR and nested PCR, by targeting S7 segment. This genome segment was sequenced and analyzed in four samples as a conserved gene in BTV serogroup. This group was very similar to the West BTV strains from US, Africa and Europe. This clustered was categorized with BTV4 from Turkey. Conclusion: Increases in epidemic disease may constitute a serious problem for Iran's rural economy in future, and the situation is likely to worsen in the next few years as the proportion of unvaccinated livestock increases. [Vet World 2012; 5(9.000: 549-555

  7. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  8. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal.

    Directory of Open Access Journals (Sweden)

    Massamba Sylla

    Full Text Available Aedes aegypti, the "yellow fever mosquito", is the primary vector to humans of the four serotypes of dengue viruses (DENV1-4 and yellow fever virus (YFV and is a known vector of Chikungunya virus. There are two recognized subspecies of Ae. aegypti sensu latu (s.l.: the presumed ancestral form, Ae. aegypti formosus (Aaf, a primarily sylvan mosquito in sub-Saharan Africa, and Ae. aegypti aegypti (Aaa, found globally in tropical and subtropical regions typically in association with humans. The designation of Ae. aegypti s.l. subspecies arose from observations made in East Africa in the late 1950s that the frequency of pale "forms" of Ae. aegypti was higher in populations in and around human dwellings than in those of the nearby bush. But few studies have been made of Ae. aegypti s.l. in West Africa. To address this deficiency we have been studying the population genetics, subspecies composition and vector competence for DENV-2 of Ae. aegypti s.l. in Senegal.A population genetic analysis of gene flow was conducted among 1,040 Aedes aegypti s.l. from 19 collections distributed across the five phytogeographic regions of Senegal. Adults lacking pale scales on their first abdominal tergite were classified as Aedes aegypti formosus (Aaf following the original description of the subspecies and the remainder were classified as Aedes aegypti aegypti (Aaa. There was a clear northwest-southeast cline in the abundance of Aaa and Aaf. Collections from the northern Sahelian region contained only Aaa while southern Forest gallery collections contained only Aaf. The two subspecies occurred in sympatry in four collections north of the Gambia in the central Savannah region and Aaa was a minor component of two collections from the Forest gallery area. Mosquitoes from 11 collections were orally challenged with DENV-2 virus. In agreement with the early literature, Aaf had significantly lower vector competence than Aaa. Among pure Aaa collections, the disseminated

  9. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    Science.gov (United States)

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  10. Expression and characterization of UL16 gene from duck enteritis virus

    Directory of Open Access Journals (Sweden)

    Wang Mingshu

    2011-08-01

    Full Text Available Abstract Background Previous studies have indicated that the UL16 protein and its homologs from herpesvirus were conserved and played similar roles in viral DNA packaging, virion assembly, budding, and egress. However, there was no report on the UL16 gene product of duck enteritis virus (DEV. In this study, we analyzed the amino acid sequence of UL16 using bioinformatics tools and expressed in Escherichia coli Rosetta (DE3 induced by isopropy1-β-D-thiogalactopyranoside (IPTG. The recombinant protein was produced, purified using a Ni-NTA column and used to generate the polyclonal antibody against UL16. The intracellular distribution of the DEV UL16 product was carried out using indirect immunofluorescence assay. Results In our study, UL16 gene of DEV was composed of 1089 nucleotides, which encoded 362 amino acids. Multiple sequence alignment suggested that the UL16 gene was highly conserved in herpesvirus family. The UL16 gene was cloned into a pET prokaryotic expression vector and transformed into Escherichia coli Rossetta (DE3 induced by IPTG. A 60kDa fusion protein band corresponding to the predicted size was produced on the SDS-PAGE, purified using a Ni-NTA column. Anti-UL16 polyclonal sera was prepared by immunizing rabbits, and reacted with a band in the IPTG induced cell lysates with an apparent molecular mass of 60 kDa. In vivo expression of the UL16 protein in DEV infected duck embryo fibroblast cells (DEFs was localized mostly around perinuclear cytoplasmic area and in cytosol using indirect immunofluorescence assay. Conclusions The UL16 gene of DEV was successfully cloned, expressed and detected in DEV infected DEFs for the first time. The UL16 protein localized mostly around perinuclear cytoplasmic area and in cytosol in DEV infected DEFs. DEV UL16 shared high similarity with UL16 family members, indicating that DEV UL16 many has similar function with its homologs. All these results may provide some insight for further research about

  11. [Study on evolutionary origin of influenza A virus (H1N1) based on HA gene].

    Science.gov (United States)

    Lu, Yi-Han; Ju, Li-Wen; Jiang, Lu-Fang; Yang, Ji-Xing; Shi, Qiang; Jiang, Qing-Wu

    2009-07-01

    To determine the evolutionary rate and divergence time of influenza A virus HA gene isolated recently worldwide pandemic and explore the origin and its transmission. A total of 344 H1 sequences available in the GenBank (including 248 isolated from human, 84 from swine, 11 from avian, and 1 from ferret) and 7 isolated in Shanghai were collected. The nucleotide substitution rate and time to most recent common ancestor (tMRCA) was calculated using molecular clock theory and Bayesian Skyline Plot (BSP) based on Markov chain Monte Carlo. Then genetic phylogeny was constructed referring to posterior distribution. It was found that H1 sequences in the US from human, swine and avian were clustered significantly with swine H1 ones from Asia phylogenetically (Cluster US). The second cluster (Cluster Eurasian Human) nearly consisted of human H1 sequences isolated in other regions. The third cluster (Cluster Eurasian Animal) consisted of swine and avian H1 sequences from China and Italy respectively. As for all the H1 sequences, the evolutionary rate was of 2.57 x 10(-3) substitutions/site per year averagely (95% Highest Posterior Density: 1.96 x 10(-3) - 3.03 x 10(-3)/site per year). The estimated dates for tMRCA of human H1 in Europe and swine H1 in the mainland of China were the earliest, with the corresponding rates of 6.46 x 10(-3)/site per year and 0.97 x 10(-3)/site per year respectively. The tMRCAs of human and swine H1 sequences from the US were similar, with the rates of 5.86 x 10(-3)/site per year and 5.02 x 10(-3)/site per year. The present flu outbreak was possibly induced by long-term circulation of influenza A virus (H1N1) in human population and swine herds in America. There was no evidence proving that influenza virus in China involved in the present outbreak.

  12. The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus

    Science.gov (United States)

    Denzler, Karen L; Rice, Amanda D; MacNeill, Amy L; Fukushima, Nobuko; Lindsey, Scott F; Wallace, Greg; Burrage, Andrew M; Smith, Andrew J; Manning, Brandi R; Swetnam, Daniele M; Gray, Stacey A; Moyer, RW; Jacobs, Bertram L

    2011-01-01

    Vaccinia virus deleted for the innate immune evasion gene, E3L, has been shown to be highly attenuated and yet induces a protective immune response against challenge by homologous virus in a mouse model. In this manuscript the NYCBH vaccinia virus vaccine strain was compared to NYCBH vaccinia virus deleted for E3L (NYCBHΔE3L) in a rabbitpox virus (RPV) challenge model. Upon scarification, both vaccines produced a desired skin lesion, although the lesion produced by NYCBHΔE3L was smaller. Both vaccines fully protected rabbits against lethal challenge by escalating doses of RPV, from 10 LD50 to 1,000 LD50. A single dose of NYCBHΔE3L protected rabbits from weight loss, fever, and clinical symptoms following the lowest dose challenge of 10 LD50, however it allowed a moderate level of RPV replication at the challenge site, some spread to external skin and mucosal surfaces, and increased numbers of secondary lesions as compared to vaccination with NYCBH. Alternately, two doses of NYCBHΔE3L fully protected rabbits from weight loss, fever, and clinical symptoms, following challenge with 100 to 1,000 LD50 RPV, and it prevented development of secondary lesions similar to protection seen with NYCBH. Finally, vaccination with either one or two doses of NYCBHΔE3L resulted in similar neutralizing antibody titers following RPV challenge as compared to titers obtained by vaccination with NYCBH. These results support the efficacy of the attenuated NYCBHΔE3L in protection against an orthologous poxvirus challenge. PMID:21840358

  13. Total vascular exclusion safely facilitates liver specific gene transfer by the HVJ (sendai virus)-liposome method in rats.

    Science.gov (United States)

    Kawashita, Yujo; Fujioka, Hikaru; Ohtsuru, Akira; Kuroda, Hiroaki; Eguchi, Susumu; Kaneda, Yasufumi; Yamashita, Shunichi; Kanematsu, Takashi

    2006-05-01

    Most virus mediated transfection systems are efficient; however, their highly immunogenic properties do tend to cause clinical problems. HVJ-liposome vector is a hybrid vector consisting of liposome and inactivated sendai virus (hemagglutinating virus of Japan HVJ), which has been reported to be have a low immunogenicity, while it can also be repeatedly administered. To enhance the transfection efficiency, especially in the liver, we investigated the efficacy of total vascular exclusion (TVE) during the portal vein injection (PVI) of the vectors. beta-galactosidase and luciferase expression were used as reporter genes. Wistar rats were injected with HVJ-liposome through PVI without TVE (PVI group, n = 10) or PVI with TVE (PVI + TVE group, n = 10). The control rats were infused with equal volumes of saline through the portal vein (control group n = 12). The transfection efficiencies were assessed by beta-galactosidase staining and a luciferase assay. Biochemical and histological analyses were performed to evaluate the tissue toxicity after gene transfer. The reporter genes expression in the liver dramatically increased after PVI + TVE in comparison to after PVI alone (1.2 x 10(5)versus 1.5 x 10(4) RLU/mg protein, P HVJ-liposome method and this modality might also be applicable to other gene transfer systems.

  14. Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat

    Directory of Open Access Journals (Sweden)

    Nilsson Lena

    2010-11-01

    Full Text Available Abstract Background Gene silencing vectors based on Barley stripe mosaic virus (BSMV are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species have created a need for tools to study gene function in these species. Results Here we demonstrate the successful BSMV-mediated virus induced gene silencing (VIGS of three different genes in barley roots, i.e. the barley homologues of the IPS1, PHR1, and PHO2 genes known to participate in Pi uptake and reallocation in Arabidopsis. Attempts to silence two other genes, the Pi transporter gene HvPht1;1 and the endo-β-1,4-glucanase gene HvCel1, in barley roots were unsuccessful, probably due to instability of the plant gene inserts in the viral vector. In B. distachyon leaves, significant silencing of the PHYTOENE DESATURASE (BdPDS gene was obtained as shown by photobleaching as well as quantitative RT-PCR analysis. On the other hand, only very limited silencing of the oat AsPDS gene was observed in both hexaploid (A. sativa and diploid (A. strigosa oat. Finally, two modifications of the BSMV vector are presented, allowing ligation-free cloning of DNA fragments into the BSMV-γ component. Conclusions Our results show that BSMV can be used as a vector for gene silencing in barley roots and in B. distachyon leaves and possibly roots, opening up possibilities for using VIGS to study cereal root biology and to exploit the wealth of genome information in the new cereal model plant B. distachyon. On the other hand, the silencing induced by BSMV in oat seemed too

  15. Assessing the tobacco-rattle-virus-based vectors system as an efficient gene silencing technique in Datura stramonium (Solanaceae).

    Science.gov (United States)

    Eftekhariyan Ghamsari, Mohammad Reza; Karimi, Farah; Mousavi Gargari, Seyed Latif; Hosseini Tafreshi, Seyed Ali; Salami, Seyed Alireza

    2014-12-01

    Datura stramonium is a well-known medicinal plant, which is important for its alkaloids. There are intrinsic limitations for the natural production of alkaloids in plants; metabolic engineering methods can be effectively used to conquer these limitations. In order for this the genes involved in corresponding pathways need to be studied. Virus-Induced Gene Silencing is known as a functional genomics technique to knock-down expression of endogenous genes. In this study, we silenced phytoene desaturase as a marker gene in D. stramonium in a heterologous and homologous manner by tobacco-rattle-virus-based VIGS vectors. Recombinant TRV vector containing pds gene from D. stramonium (pTRV2-Dspds) was constructed and injected into seedlings. The plants injected with pTRV2-Dspds showed photobleaching 2 weeks after infiltration. Spectrophotometric analysis demonstrated that the amount of chlorophylls and carotenoids in leaves of the bleached plants decreased considerably compared to that of the control plants. Semi-Quantitative RT-PCR results also confirmed that the expression of pds gene in the silenced plants was significantly reduced in comparison with the control plants. The results showed that the viral vector was able to influence the levels of total alkaloid content in D. stramonium. Our results illustrated that TRV-based VIGS vectors are able to induce effective and reliable functional gene silencing in D. stramonium as an alternative tool for studying the genes of interest in this plant, such as the targeted genes in tropane alkaloid biosynthetic pathway. The present work is the first report of establishing VIGS as an efficient method for transient silencing of any gene of interest in D. stramonium.

  16. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  17. Subgenotypes and Mutations in the S and Polymerase Genes of Hepatitis B Virus Carriers in the West Bank, Palestine

    Science.gov (United States)

    Abdelnabi, Zakeih; Saleh, Niveen; Baraghithi, Sabri; Glebe, Dieter; Azzeh, Maysa

    2014-01-01

    The mutation rate and genetic variability of hepatitis B virus (HBV) are crucial factors for efficient treatment and successful vaccination against HBV. Until today, genetic properties of this virus among the Palestinian population remain unknown. Therefore, we performed genetic analysis of the overlapping S and polymerase genes of HBV, isolated from 40 Palestinian patients' sera. All patients were HBsAg positive and presented with a viral load above 105 HBV genome copies/ml. The genotyping results of the S gene demonstrated that HBV D1 was detected in 90% of the samples representing the most prominent subgenotype among Palestinians carrying HBV. Various mutations existed within the S gene; in five patients four known escape mutations including the common G145R and D144E were found. Furthermore, a ratio of 4.25 of non-synonymous to synonymous mutations in the S gene indicated a strong selection pressure on the HBs antigen loops of HBV strains circulating in those Palestinian patients. Although all patients were treatment-naïve, with the exception of one, several mutations were found in the HBV polymerase gene, but none pointed to drug resistance. The study presented here is the first report to address subgenotypes and mutation analyses of HBV S and polymerase genes in Palestine. PMID:25503289

  18. Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus

    Science.gov (United States)

    Wang, Minghong; Wang, Yong; Sun, Xiangzhong; Cheng, Jiasen; Fu, Yanping; Liu, Huiquan; Jiang, Daohong; Ghabrial, Said A.

    2015-01-01

    ABSTRACT Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5′-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized

  19. Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus.

    Science.gov (United States)

    Wang, Minghong; Wang, Yong; Sun, Xiangzhong; Cheng, Jiasen; Fu, Yanping; Liu, Huiquan; Jiang, Daohong; Ghabrial, Said A; Xie, Jiatao

    2015-08-01

    Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5'-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus

  20. Analysis of the nucleoprotein gene identifies three distinct lineages of viral haemorrhagic septicemia virus (VHSV) within the European marine environment

    Science.gov (United States)

    Snow, M.; Cunningham, C.O.; Melvin, W.T.; Kurath, G.

    1999-01-01

    A ribonuclease (RNase) protection assay (RPA) has been used to detect nucleotide sequence variation within the nucleoprotein gene of 39 viral haemorrhagic septicaemia virus (VHSV) isolates of European marine origin. The classification of VHSV isolates based on RPA cleavage patterns permitted the identification of ten distinct groups of viruses based on differences at the molecular level. The nucleotide sequence of representatives of each of these groupings was determined and subjected to phylogenetic analysis. This revealed grouping of the European marine isolates of VHSV into three genotypes circulating within distinct geographic areas. A fourth genotype was identified comprising isolates originating from North America. Phylogenetic analyses indicated that VHSV isolates recovered from wild caught fish around the British Isles were genetically related to isolates responsible for losses in farmed turbot. Furthermore, a relationship between naturally occurring marine isolates and VHSV isolates causing mortality among rainbow trout in continental Europe was demonstrated. Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res. 63, 35-44. Available from: 

  1. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum).

    Science.gov (United States)

    Ahmad, S; Mahmood, K; Hanif, M; Nazeer, W; Malik, W; Qayyum, A; Hanif, K; Mahmood, A; Islam, N

    2011-10-07

    Cotton is under the constant threat of leaf curl virus, which is a major constraint for successful production of cotton in the Pakistan. A total of 3338 cotton genotypes belonging to different research stations were screened, but none were found to be resistant against the Burewala strain of cotton leaf curl virus (CLCuV). We explored the possibility of transferring virus-resistant genes from Gossypium arboreum (2n = 26) into G. hirsutum (2n = 52) through conventional breeding techniques. Hybridization was done manually between an artificial autotetraploid of G. arboreum and an allotetraploid G. hirsutum, under field conditions. Boll shedding was controlled by application of exogenous hormones, 50 mg/L gibberellic acid and 100 mg/L naphthalene acetic acid. Percentage pollen viability in F(1) hybrids was 1.90% in 2(G. arboreum) x G. hirsutum and 2.38% in G. hirsutum x G. arboreum. Cytological studies of young buds taken from the F(1) hybrids confirmed that they all were sterile. Resistance against CLCuV in the F(1) hybrids was assessed through grafting, using the hybrid plant as the scion; the stock was a virus susceptible cotton plant, tested under field and greenhouse conditions. All F(1) cotton hybrids showed resistance against CLCuV, indicating that it is possible to transfer resistant genes from the autotetraploid of the diploid donor specie G. arboreum into allotetraploid G. hirsutum through conventional breeding, and durable resistance against CLCuV can then be deployed in the field.

  2. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma.

    Science.gov (United States)

    Zekri, Abdel-Rahman N; Bahnasy, Abeer A; Shoeab, Fatma Elzahraa M; Mohamed, Waleed S; El-Dahshan, Dina H; Ali, Fahmey T; Sabry, Gilane M; Dasgupta, Nairajana; Daoud, Sayed S

    2014-01-01

    We studied promoter methylation (PM) of 11 genes in Peripheral Blood Lymphocytes (PBLs) and tissues of hepatitis C virus (HCV) associated hepatocellular carcinoma (HCC) and chronic hepatitis (CH) Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT) samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O(6)MGMT was assessed by methylation-specific PCR (MSP). APC and O6-MGMT protein expression was assessed by immunohistochemistry (IHC) in the studied HCC and CH (20 samples each) as well as in a different HCC and CH set for confirmation of MSP results. PM was associated with progression from CH to HCC. Most genes showed high methylation frequency (MF) and the methylation index (MI) increased with disease progression. MF of p14, p73, RASSF1A, CDH1 and O(6)MGMT was significantly higher in HCC and their ANT. MF of APC was higher in CH. We reported high concordance between MF in HCC and their ANT, MF in PBL and CH tissues as well as between PM and protein expression of APC and O(6)MGMT. A panel of 4 genes (APC, p73, p14, O(6)MGMT) classifies the cases independently into HCC and CH with high accuracy (89.9%), sensitivity (83.9%) and specificity (94.7%). HCV infection may contribute to hepatocarcinogenesis through enhancing PM of multiple genes. PM of APC occurs early in the cascade while PM of p14, p73, RASSF1A, RARB, CDH1 and O(6)MGMT are late changes. A panel of APC, p73, p14, O6-MGMT could be used in monitoring CH patients for early detection of HCC. Also, we found that, the methylation status is not significantly affected by whether the tissue was from the liver or PBL, indicating the possibility of use PBL as indicator to genetic profile instead of liver tissue regardless the stage of disease.

  3. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Abdel-Rahman N. Zekri

    2014-01-01

    Full Text Available We studied promoter methylation (PM of 11 genes in Peripheral Blood Lymphocytes (PBLs and tissues of hepatitis C virus (HCV associated hepatocellular carcinoma (HCC and chronic hepatitis (CH Egyptian patients. The present study included 31 HCC with their ANT, 38 CH and 13 normal hepatic tissue (NHT samples. In all groups, PM of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A, O6MGMT was assessed by methylation-specific PCR (MSP. APC and O6-MGMT protein expression was assessed by immunohistochemistry (IHC in the studied HCC and CH (20 samples each as well as in a different HCC and CH set for confirmation of MSP results. PM was associated with progression from CH to HCC. Most genes showed high methylation frequency (MF and the methylation index (MI increased with disease progression. MF of p14, p73, RASSF1A, CDH1 and O6MGMT was significantly higher in HCC and their ANT. MF of APC was higher in CH. We reported high concordance between MF in HCC and their ANT, MF in PBL and CH tissues as well as between PM and protein expression of APC and O6MGMT. A panel of 4 genes (APC, p73, p14, O6MGMT classifies the cases independently into HCC and CH with high accuracy (89.9%, sensitivity (83.9% and specificity (94.7%. HCV infection may contribute to hepatocarcinogenesis through enhancing PM of multiple genes. PM of APC occurs early in the cascade while PM of p14, p73, RASSF1A, RARB, CDH1 and O6MGMT are late changes. A panel of APC, p73, p14, O6-MGMT could be used in monitoring CH patients for early detection of HCC. Also, we found that, the methylation status is not significantly affected by whether the tissue was from the liver or PBL, indicating the possibility of use PBL as indicator to genetic profile instead of liver tissue regardless the stage of disease.

  4. Amplicon based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants

    Science.gov (United States)

    An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...

  5. The Tomato Yellow Leaf Curl Virus Resistance Genes Ty-1 and Ty-3 Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases

    NARCIS (Netherlands)

    Verlaan, M.G.; Hutton, S.F.; Ibrahem, R.M.; Kormelink, R.J.M.; Visser, R.G.F.; Scott, J.W.; Edwards, J.D.; Bai, Y.

    2013-01-01

    Tomato Yellow Leaf Curl Virus Disease incited by Tomato yellow leaf curl virus (TYLCV) causes huge losses in tomato production worldwide and is caused by different related begomovirus species. Breeding for TYLCV resistance has been based on the introgression of multiple resistance genes originating

  6. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors

    Directory of Open Access Journals (Sweden)

    Maria R. Mendoza

    2017-11-01

    Full Text Available Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV referred to as TG, and Tobacco mosaic virus (TMV annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  7. Expression of the Epstein-Barr virus gp350/220 gene in rodent and primate cells.

    Science.gov (United States)

    Whang, Y; Silberklang, M; Morgan, A; Munshi, S; Lenny, A B; Ellis, R W; Kieff, E

    1987-06-01

    The gene encoding the Epstein-Barr virus envelope glycoproteins gp350 and gp220 was inserted downstream of the cytomegalovirus immediate-early, Moloney murine leukemia virus, mouse mammary tumor virus, or varicella-zoster virus gpI promoters in vectors containing selectable markers. Host cell and recombinant vector systems were defined which enabled the isolation of rodent or primate cell clones which expressed gp350/220 in substantial quantities. Continued expression of gp350/220 required maintenance of cells under positive selection for linked markers and periodic cloning. gp350/220 expressed in various host cells varied slightly in electrophoretic mobility, probably reflecting differences in glycosylation. Insertion of a stop codon into the gp350/220 open reading frame, upstream of the putative membrane anchor sequence, resulted in efficient secretion of truncated gp350 and gp220 from rat pituitary (GH3) cells. gp350/220 expressed in mammalian cells is highly immunogenic and elicits virus-neutralizing antibodies when administered to mice.

  8. Expression of Separate Proteins in the Same Plant Leaves and Cells Using Two Independent Virus-Based Gene Vectors.

    Science.gov (United States)

    Mendoza, Maria R; Payne, Alexandria N; Castillo, Sean; Crocker, Megan; Shaw, Brian D; Scholthof, Herman B

    2017-01-01

    Plant viral vectors enable the expression of proteins at high levels in a relatively short time. For many purposes (e.g., cell biological interaction studies) it may be desirable to express more than one protein in a single cell but that is often not feasible when using a single virus vector. Such a co-expression strategy requires the simultaneous delivery by two compatible and non-competitive viruses that can co-exist to each express a separate protein. Here, we report on the use of two agro-launchable coat-protein gene substitution GFP-expressing virus vector systems based on Tomato bushy stunt virus (TBSV) referred to as TG, and Tobacco mosaic virus (TMV) annotated as TRBO-G. TG expressed GFP in Nicotiana benthamiana, tomato, lettuce and cowpea, whereas expression from TRBO-G was detected only in the first two species. Upon co-infiltration of the two vectors co-expression was monitored by: molecular detection of the two slightly differently sized GFPs, suppressor-complementation assays, and using TG in combination with TRBO-RFP. All the results revealed that in N. benthamiana and tomato the TBSV and TMV vectors accumulated and expressed proteins in the same plants, the same leaves, and in the same cells. Therefore, co-expression by these two vectors provides a platform for fast and high level expression of proteins to study their cell biology or other properties.

  9. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  10. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  11. Fine mapping of RYMV3: a new resistance gene to Rice yellow mottle virus from Oryza glaberrima.

    Science.gov (United States)

    Pidon, Hélène; Ghesquière, Alain; Chéron, Sophie; Issaka, Souley; Hébrard, Eugénie; Sabot, François; Kolade, Olufisayo; Silué, Drissa; Albar, Laurence

    2017-04-01

    A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.

  12. Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression.

    Science.gov (United States)

    Rode, Kathrin; Döhner, Katinka; Binz, Anne; Glass, Mandy; Strive, Tanja; Bauerfeind, Rudolf; Sodeik, Beate

    2011-05-01

    Incoming capsids of herpes simplex virus type 1 (HSV-1) enter the cytosol by fusion of the viral envelopes with host cell membranes and use microtubules and microtubule motors for transport to the nucleus. Upon docking to the nuclear pores, capsids release their genomes into the nucleoplasm. Progeny genomes are replicated in the nucleoplasm and subsequently packaged into newly assembled capsids. The minor capsid protein pUL25 of alphaherpesviruses is required for capsid stabilization after genome packaging and for nuclear targeting of incoming genomes. Here, we show that HSV-1 pUL25 bound to mature capsids within the nucleus and remained capsid associated during assembly and nuclear targeting. Furthermore, we tested potential interactions between parental pUL25 bound to incoming HSV-1 capsids and host factors by competing for such interactions with an experimental excess of cytosolic pUL25. Overexpression of pUL25, GFPUL25, or UL25GFP prior to infection reduced gene expression of HSV-1. Electron microscopy and in situ hybridization studies revealed that an excess of GFPUL25 or UL25GFP prevented efficient nuclear import and/or transcription of parental HSV-1 genomes, but not nuclear targeting of capsids or the uncoating of the incoming genomes at the nuclear pore. Thus, the uncoating of HSV-1 genomes could be uncoupled from their nuclear import and gene expression. Most likely, surplus pUL25 competed with important interactions between the parental capsids, and possibly between authentic capsid-associated pUL25, and cytosolic or nuclear host factors required for functional interaction of the incoming genomes with the nuclear machinery.

  13. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  14. Replicon-Helper Systems from Attenuated Venezuelan Equine Encephalitis Virus: Expression of Heterologous Genes in Vitro and Immunization Against Heterologous Pathogens in Vivo

    National Research Council Canada - National Science Library

    Pushko, Peter

    1997-01-01

    ...) or the Lassa virus nucleocapsid (N) gene, and upon transfection into eukaryotic cells by electroportation, these replicon RNAs directed the efficient, high-level synthesis of the HA or N proteins...

  15. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    Science.gov (United States)

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  16. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases.

    Science.gov (United States)

    Jerusalinsky, Diana; Baez, María Verónica; Epstein, Alberto Luis

    2012-01-01

    Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures

  17. Screening and genetic analysis of resistance to peanut stunt virus in soybean: identification of the putative Rpsv1 resistance gene

    OpenAIRE

    Saruta, Masayasu; TAKADA, Yoshitake; KIKUCHI, Akio; Yamada, Tetsusya; Komatsu,Kunihiko; Sayama, Takashi; Ishimoto, Masao; Okabe, Akinori

    2012-01-01

    The peanut stunt virus (PSV) causes yield losses in soybean and reduced seed quality due to seed mottling. The objectives of this study were to determine the phenotypic reactions of soybean germplasms to inoculation with two PSV isolates (PSV-K, PSV-T), the inheritance of PSV resistance in soybean cultivars, and the locus of the PSV resistance gene. We investigated the PSV resistance of 132 soybean cultivars to both PSV isolates; of these, 73 cultivars exhibited resistance to both PSV isolate...

  18. Variant evidence of three genes of Potato vein yellow virus infecting Solanum tubersosum sp. using single strand conformational polymorphism.

    OpenAIRE

    CUBILLOS ABELLO, Karen Andrea; María Mónica GUZMÁN BARNEY

    2014-01-01

    Potato yellow vein virus (PYVV) with tripartite RNA (ss+) genome is classified as Crinivirus within the family Closteoviridae. PYVV is the causal agent of potato yellow vein disease (PYVD) with yield effect. Single strand conformational polymorphism (SSCP) was reported to estimate variability in eukaryotes and different viruses’ species. In this study, the molecular variability of PYVV was analyzed by SSCP patterns regarding three genes: major capsid protein (CP), minor capsid protein (CPm), ...

  19. Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses.

    Science.gov (United States)

    Bankamp, B; Lopareva, E N; Kremer, J R; Tian, Y; Clemens, M S; Patel, R; Fowlkes, A L; Kessler, J R; Muller, C P; Bellini, W J; Rota, P A

    2008-08-01

    The sequences of the nucleoprotein (N) and hemagglutinin (H) genes are routinely used for molecular epidemiologic studies of measles virus (MV). However, the amount of genetic diversity contained in other genes of MV has not been thoroughly evaluated. In this report, the nucleotide sequences of the phosphoprotein (P) genes from 34 wild-type strains representing 15 genotypes of MV were analyzed and found to be almost as variable as the H genes but less variable than the N genes. Deduced amino acid sequences of the three proteins encoded by the P gene, P, V and C, demonstrated considerably higher variability than the H proteins. Phylogenetic analysis showed the same tree topography for the P gene sequences as previously seen for the N and H genes. RNA editing of P gene transcripts affects the relative ratios of P and V proteins, which may have consequences for pathogenicity. Wild-type isolates produced more transcripts with more than one G insertion; however, there was no significant difference in the use of P and V open reading frames, suggesting that the relative amounts of P and V proteins in infected cells would be similar for both vaccine and wild-type strains.

  20. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    Science.gov (United States)

    2010-07-28

    2 days before infection with MPV. Culture medium was removed and cells were inoculated with crude monkey- pox virus-Katako Kombe strain (MPV-KK) at...morphology, cellular develop- ment, small molecule biochemistry, and posttransla- tional modification (Fig. 4B). The expression of histones exhibited...modulation have been described pre- viously, as in the indirect consequences of Ras, Rho, and Rab small GTPases regulation [87], its effect on viral

  1. Characterization of a replication-incompetent pseudorabies virus mutant lacking the sole immediate early gene IE180.

    Science.gov (United States)

    Wu, Brendan W; Engel, Esteban A; Enquist, Lynn W

    2014-11-11

    The alphaherpesvirus pseudorabies virus (PRV) encodes a single immediate early gene called IE180. The IE180 protein is a potent transcriptional activator of viral genes involved in DNA replication and RNA transcription. A PRV mutant with both copies of IE180 deleted was constructed 20 years ago (S. Yamada and M. Shimizu, Virology 199:366-375, 1994, doi:10.1006/viro.1994.1134), but propagation of the mutant depended on complementing cell lines that expressed the toxic IE180 protein constitutively. Recently, Oyibo et al. constructed a novel set of PRV IE180 mutants and a stable cell line with inducible IE180 expression (H. Oyibo, P. Znamenskiy, H. V. Oviedo, L. W. Enquist, A. Zador, Front. Neuroanat. 8:86, 2014, doi:10.3389/fnana.2014.00086), which we characterized further here. These mutants failed to replicate new viral genomes, synthesize immediate early, early, or late viral proteins, and assemble infectious virions. The PRV IE180-null mutant did not form plaques in epithelial cell monolayers and could not spread from primary infected neurons to second-order neurons in culture. PRV IE180-null mutants lacked the property of superinfection exclusion. When PRV IE180-null mutants infected cells first, subsequent superinfecting viruses were not blocked in cell entry and formed replication compartments in epithelial cells, fibroblasts, and neurons. Cells infected with PRV IE180-null mutants survived as long as uninfected cells in culture while expressing a fluorescent reporter gene. Transcomplementation with IE180 in epithelial cells restored all mutant phenotypes to wild type. The conditional expression of PRV IE180 protein enables the propagation of replication-incompetent PRV IE180-null mutants and will facilitate construction of long-term single-cell-infecting PRV mutants for precise neural circuit tracing and high-capacity gene delivery vectors. Pseudorabies virus (PRV) is widely used for neural tracing in animal models. The virus replicates and spreads between

  2. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver.

    Science.gov (United States)

    Loiler, S A; Conlon, T J; Song, S; Tang, Q; Warrington, K H; Agarwal, A; Kapturczak, M; Li, C; Ricordi, C; Atkinson, M A; Muzyczka, N; Flotte, T R

    2003-09-01

    Human pancreatic islet cells and hepatocytes represent the two most likely target cells for genetic therapy of type I diabetes. However, limits to the efficiency of rAAV serotype 2 (rAAV2)-mediated gene transfer have been reported for both of these cell targets. Here we report that nonserotype 2 AAV capsids can mediate more efficient transduction of islet cells, with AAV1 being the most efficient serotype in murine islets, suggesting that receptor abundance could be limiting. In order to test this, we generated rAAV particles that display a ligand (ApoE) that targets the low-density lipoprotein receptor, which is present on both of these cell types. The rAAV/ApoE viruses greatly enhanced the efficiency of transduction of both islet cells ex vivo and murine hepatocytes in vivo when compared to native rAAV2 serotype (220- and four-fold, respectively). The use of receptor-targeted rAAV particles may circumvent the lower abundance of receptors on certain nonpermissive cell types.

  3. Evidence for positive selection on the E2 gene of bovine viral diarrhoea virus type 1.

    Science.gov (United States)

    Tang, Fangqiang; Zhang, Chuyu

    2007-12-01

    Despite the growing interest in the molecular epidemiology of pestivirus, there have been few attempts to determine which regions of the pestivirus genome are subject to positive selection, although this may be a key indicator of the nature of the interaction between host and virus. By using likelihood-based methods for phylogenetic inference, the positive selection pressure of BVDV-1 E2 gene were assessed and a site-by-site analysis of the dN/dS ratio was performed, to identify specific codons undergoing diversifying positive selection. The overall omega was 0.20, indicating that most sites were subject to strong purifying selection and five positively selected sites (886, 888, 905, 944, and 946) were identified. It is surprising to find that all the potential positively selected sites fall within the C-terminal of E2, and out of the N-terminal of E2 which is thought to be surface-exposed and therefore prime targets for host antibody response. In conclusion, these results suggest that selection favoring avoidance of antibody recognition has not been a major factor in the history of BVDV-1. Further analysis is necessary to see if amino acid substitutions in the BVDV-1 positively selected sites can lead to change of host tropism or\\and escape from epitope-specific CD8 T-cell response.

  4. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    Science.gov (United States)

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. Conclusions Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China. PMID

  5. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009.

    Directory of Open Access Journals (Sweden)

    Songtao Xu

    Full Text Available BACKGROUND: China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H gene of MeV, the major target for virus neutralizing antibodies. PRINCIPAL FINDINGS: Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn, which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3 substitutions per site per year, and the ratio of dN to dS (dN/dS was <1 indicating the absence of selective pressure. CONCLUSIONS: Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in

  6. Analysis of E2 gene integrity in HPV16 and HPV58 viruses isolated from women with cervical pathology

    OpenAIRE

    González-Losa,María del R; Puerto-Solis,Marylin; Tenorio Ruiz,Juan; Rosado-López,Ariel I; Hau-Aviles,Oscar; Ayora-Talavera,Guadalupe; Cisneros-Cutz,Isidro; Conde-Ferráez,Laura

    2016-01-01

    Integration of human papillomavirus (HPV) DNA into human cells accompanied by the disruption of the viral genome has been described as a prerequisite for cancer development. This study aimed to investigate E2 gene integrity of HPV16 and HPV58 viruses isolated from infected women with cervical lesions. Forty-two HPV16- and 31 HPV58-positive samples were analysed. E2 integrity was assumed when all fragments covering the E2 gene were amplified with specific polymerase chain reaction primers. Ove...

  7. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving...... expression of a codon-optimized wild-type human FIX gene. This multi-national, open-label study included ten adults with hemophilia B (FIX ≤2% of normal) and severe-bleeding phenotype. No participants tested positive for AAV5-neutralizing antibodies using a green-fluorescent protein-based assay and all 10...

  8. Transcriptomic analyses of genes differentially expressed by high-risk and low-risk human papilloma virus E6 oncoproteins

    OpenAIRE

    Ganguly, Pooja; Ganguly, Niladri

    2015-01-01

    Human papilloma virus is the causative agent for cervical cancer with 99 % of cervical cancer cases containing HPV. The high risk HPV-16, 18 and 31 are the major causative agents. The low risk HPV-6, 11 have been reported to cause penile, laryngeal, bronchogenic and oesophageal cancer. Since E6 oncoprotein is frequently over expressed in cancers, we did gene expression studies to compare between the E6 genes of high-risk (HPV18) or low-risk (HPV11)stably transfected in epithelial cell line EP...

  9. iTRAQ and virus-induced gene silencing revealed three proteins involved in cold response in bread wheat.

    Science.gov (United States)

    Zhang, Ning; Zhang, Lingran; Zhao, Lei; Ren, Yan; Cui, Dangqun; Chen, Jianhui; Wang, Yongyan; Yu, Pengbo; Chen, Feng

    2017-08-08

    By comparing the differentially accumulated proteins from the derivatives (UC 1110 × PI 610750) in the F10 recombinant inbred line population which differed in cold-tolerance, altogether 223 proteins with significantly altered abundance were identified. The comparison of 10 cold-sensitive descendant lines with 10 cold-tolerant descendant lines identified 140 proteins that showed decreased protein abundance, such as the components of the photosynthesis apparatus and cell-wall metabolism. The identified proteins were classified into the following main groups: protein metabolism, stress/defense, carbohydrate metabolism, lipid metabolism, sulfur metabolism, nitrogen metabolism, RNA metabolism, energy production, cell-wall metabolism, membrane and transportation, and signal transduction. Results of quantitative real-time PCR of 20 differentially accumulated proteins indicated that the transcriptional expression patterns of 10 genes were consistent with their protein expression models. Virus-induced gene silencing of Hsp90, BBI, and REP14 genes indicated that virus-silenced plants subjected to cold stress had more severe drooping and wilting, an increased rate of relative electrolyte leakage, and reduced relative water content compared to viral control plants. Furthermore, ultrastructural changes of virus-silenced plants were destroyed more severely than those of viral control plants. These results indicate that Hsp90, BBI, and REP14 potentially play vital roles in conferring cold tolerance in bread wheat.

  10. Risk assessment of gene flow from genetically engineered virus resistant cassava to wild relatives in Africa: an expert panel report.

    Science.gov (United States)

    Hokanson, Karen E; Ellstrand, Norman C; Dixon, Alfred G O; Kulembeka, Heneriko P; Olsen, Kenneth M; Raybould, Alan

    2016-02-01

    The probability and consequences of gene flow to wild relatives is typically considered in the environmental risk assessment of genetically engineered crops. This is a report from a discussion by a group of experts who used a problem formulation approach to consider existing information for risk assessment of gene flow from cassava (Manihot esculenta) genetically engineered for virus resistance to the 'wild' (naturalized) relative M. glaziovii in East Africa. Two environmental harms were considered in this case: (1) loss of genetic diversity in the germplasm pool, and (2) loss of valued species, ecosystem resources, or crop yield and quality due to weediness or invasiveness of wild relatives. Based on existing information, it was concluded that gene flow will occur, but it is not likely that this will reduce the genetic diversity in the germplasm pool. There is little existing information about the impact of the virus in natural populations that could be used to inform a prediction about whether virus resistance would lead to an increase in reproduction or survival, hence abundance of M. glaziovii. However, an increase in the abundance of M. glaziovii should be manageable, and would not necessarily lead to the identified environmental harms.

  11. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis.

    Science.gov (United States)

    Lv, Chunwei; Su, Qunshu; Liang, Yupei; Hu, Jinqing; Yuan, Sujing

    2016-07-15

    Lung cancer has an especially high incidence rate worldwide, and its resistance to cell death and chemotherapeutic drugs increases its intractability. The vaccinia virus has been shown to destroy neoplasm within a short time and disseminate rapidly and extensively as an enveloped virion throughout the circulatory system, and this virus has also demonstrated a strong ability to overexpress exogenous genes. Interleukin-24 (IL-24/mda-7) is an important cytokine that belongs to the activating caspase family and facilitates the inhibition of STAT3 when a cell enters the apoptosis pathway. In this study, we constructed a cancer-targeted vaccinia virus carrying the IL-24 gene knocked in the region of the viral thymidine kinase (TK) gene (VV-IL-24). Our results showed that VV-IL-24 efficiently infected and destroyed lung cancer cells via caspase-dependent apoptosis and decreased the expression of STAT3. In vivo, VV-IL-24 expressed IL-24 at a high level in the transplanted tumour, reduced STAT3 activity, and eventually led to apoptosis. In conclusion, we demonstrated that vv-IL-24 has the potential for use as a new human lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana.

    Science.gov (United States)

    Pagny, Gaëlle; Paulstephenraj, Pauline S; Poque, Sylvain; Sicard, Ophélie; Cosson, Patrick; Eyquard, Jean-Philippe; Caballero, Mélodie; Chague, Aurélie; Gourdon, Germain; Negrel, Lise; Candresse, Thierry; Mariette, Stéphanie; Decroocq, Véronique

    2012-11-01

    Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  13. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Yu Cui

    Full Text Available The ND18 strain of Barley stripe mosaic virus (BSMV infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7 recombinant inbred line (RIL population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1. We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.

  14. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  15. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.

    Science.gov (United States)

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh; Ideris, Aini

    2016-03-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.

  16. Quantitative analysis of Epstein-Barr virus (EBV)-related gene expression in patients with chronic active EBV infection.

    Science.gov (United States)

    Iwata, Seiko; Wada, Kaoru; Tobita, Satomi; Gotoh, Kensei; Ito, Yoshinori; Demachi-Okamura, Ayako; Shimizu, Norio; Nishiyama, Yukihiro; Kimura, Hiroshi

    2010-01-01

    Chronic active Epstein-Barr virus (CAEBV) infection is a systemic Epstein-Barr virus (EBV)-positive lymphoproliferative disorder characterized by persistent or recurrent infectious mononucleosis-like symptoms in patients with no known immunodeficiency. The detailed pathogenesis of the disease is unknown and no standard treatment regimen has been developed. EBV gene expression was analysed in peripheral blood samples collected from 24 patients with CAEBV infection. The expression levels of six latent and two lytic EBV genes were quantified by real-time RT-PCR. EBV-encoded small RNA 1 and BamHI-A rightward transcripts were abundantly detected in all patients, and latent membrane protein (LMP) 2 was observed in most patients. EBV nuclear antigen (EBNA) 1 and LMP1 were detected less frequently and were expressed at lower levels. EBNA2 and the two lytic genes were not detected in any of the patients. The pattern of latent gene expression was determined to be latency type II. EBNA1 was detected more frequently and at higher levels in the clinically active patients. Quantifying EBV gene expression is useful in clarifying the pathogenesis of CAEBV infection and may provide information regarding a patient's disease prognosis, as well as possible therapeutic interventions.

  17. The Effect of West Nile Virus Infection on the Midgut Gene Expression of Culex pipiens quinquefasciatus Say (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Chelsea T. Smartt

    2016-12-01

    Full Text Available The interaction of the mosquito and the invading virus is complex and can result in physiological and gene expression alterations in the insect. The association of West Nile virus (WNV and Culex pipiens quinquefasciatus mosquitoes results in measurable changes in gene expression; 22 gene products were shown previously to have altered expression. Sequence analysis of one product, CQ G1A1, revealed 100% amino acid identity to gram negative bacteria binding proteins (CPQGBP in Cx. p. quinquefasciatus, Aedes aegypti (70% and Anopheles gambiae (63% that function in pathogen recognition. CQ G1A1 also was differentially expressed following WNV infection in two populations of Cx. p. quinquefasciatus colonized from Florida with known differences in vector competence for WNV and showed spatial and temporal gene expression differences in midgut, thorax, and carcass tissues. These data suggest gene expression of CQ G1A1 is influenced by WNV infection and the WNV infection-controlled expression differs between populations and tissues.

  18. CHLORELLA VIRUSES

    Science.gov (United States)

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  19. Analyses of Evolutionary Characteristics of the Hemagglutinin-Esterase Gene of Influenza C Virus during a Period of 68 Years Reveals Evolutionary Patterns Different from Influenza A and B Viruses

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    2016-11-01

    Full Text Available Infections with the influenza C virus causing respiratory symptoms are common, particularly among children. Since isolation and detection of the virus are rarely performed, compared with influenza A and B viruses, the small number of available sequences of the virus makes it difficult to analyze its evolutionary dynamics. Recently, we reported the full genome sequence of 102 strains of the virus. Here, we exploited the data to elucidate the evolutionary characteristics and phylodynamics of the virus compared with influenza A and B viruses. Along with our data, we obtained public sequence data of the hemagglutinin-esterase gene of the virus; the dataset consists of 218 unique sequences of the virus collected from 14 countries between 1947 and 2014. Informatics analyses revealed that (1 multiple lineages have been circulating globally; (2 there have been weak and infrequent selective bottlenecks; (3 the evolutionary rate is low because of weak positive selection and a low capability to induce mutations; and (4 there is no significant positive selection although a few mutations affecting its antigenicity have been induced. The unique evolutionary dynamics of the influenza C virus must be shaped by multiple factors, including virological, immunological, and epidemiological characteristics.

  20. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus

    Directory of Open Access Journals (Sweden)

    Wen Su

    2015-09-01

    Full Text Available Since 2013, avian influenza A(H7N9 viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.

  1. Inhalation of nebulized perfluorochemical enhances recombinant adenovirus and adeno-associated virus-mediated gene expression in lung epithelium.

    Science.gov (United States)

    Beckett, Travis; Bonneau, Laura; Howard, Alan; Blanchard, James; Borda, Juan; Weiner, Daniel J; Wang, Lili; Gao, Guang Ping; Kolls, Jay K; Bohm, Rudolf; Liggitt, Denny; Weiss, Daniel J

    2012-04-01

    Use of perfluorochemical liquids during intratracheal vector administration enhances recombinant adenovirus and adeno-associated virus (AAV)-mediated lung epithelial gene expression. We hypothesized that inhalation of nebulized perfluorochemical vapor would also enhance epithelial gene expression after subsequent intratracheal vector administration. Freely breathing adult C57BL/6 mice were exposed for selected times to nebulized perflubron or sterile saline in a sealed Plexiglas chamber. Recombinant adenoviral vector was administered by transtracheal puncture at selected times afterward and mice were killed 3 days after vector administration to assess transgene expression. Mice tolerated the nebulized perflubron without obvious ill effects. Vector administration 6 hr after nebulized perflubron exposure resulted in an average 540% increase in gene expression in airway and alveolar epithelium, compared with that with vector alone or saline plus vector control (pliquid perflubron, safely enhances lung gene expression.

  2. Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax

    DEFF Research Database (Denmark)

    Chen, Li; Ma, Shiliang; Li, Bo

    2003-01-01

    Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101...... was persistently expressed in HTLV-I-infected cells but not in HTLV-I uninfected cells. Expression of ETR101 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9 and also in Jurkat cells transiently transfected with Tax-expressing vectors. Tax transactivated the ETR101 gene promoter...... in a transient transfection assay. A series of deletion and mutation analyses of the ETR101 gene promoter indicated that a 35 bp region immediately upstream of the TATA-box sequence, which contains a consensus cAMP response element (CRE) and a G+C-rich sequence, is the critical responsive element for Tax...

  3. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Felipe L Assis

    Full Text Available Since 1999, several Vaccinia virus (VACV isolates, the etiological agents of bovine vaccinia (BV, have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005 molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  4. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo, E-mail: libochen888@hotmail.com [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Guo Guoying [Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Liu Tianjing; Guo Lihe [Division of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-07-15

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated {sup 125}I{sup -} up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T{sub 1/2eff} of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or {sup 131}I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%{+-}2.5%, 43.4%{+-}2.8% and 8.6%{+-}1.2% after exposure to {sup 131}I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  5. Combination of targeting gene-viro therapy with recombinant Fowl-pox viruses with HN and VP3 genes on mouse osteosarcoma.

    Science.gov (United States)

    Zhang, Z-Y; Wang, L-Q; Fu, C-F; Li, X; Cui, Z-L; Zhang, J-Y; Xue, S-H; Sun, N; Xu, F

    2013-03-01

    Osteosarcoma is an aggressive cancerous neoplasm arising from primitive transformed cells of mesenchymal origin that exhibit osteoblastic differentiation and produce malignant osteoid. With the rapid development of tumor molecular biology, gene and viral therapy, a highly promising strategy for the treatment, has shown some therapeutic effects. To study the strategy of cooperative cancer gene therapy, previously, we explored the antitumor effects of recombinant Fowl-pox viruses (FPVs) with both HN (hemagglutinin-neuramidinase) and VP3 genes on mouse osteosarcoma. We constructed vFV-HN, vFV-VP3 and vFV-HN-VP3 inserting CAV VP3 gene, NDV HN gene into fowlpox virus. S180 osteosarcoma were transfected with Recombinant Fowl-pox viruses (FPVs). These cell lines stably expressing tagged proteins were selected by culturing in medium containing puromycin (2 µg/ml) and confirmed by immunoblotting and immunostaining. S180 osteosarcoma model with BALB/c mice and nude mice were established and the vFPV viruses as control, vFV-HN, vFV-VP3, vFV-HN-VP3 were injected into the tumor directly. The rate of tumor growth, tumor suppression and the sialic acid levels in serum were examined and the tumor tissues were analyzed by the method of immunohistochemistry. Flow cytometric analysis was performed using a FACSCalibur flow cytometer. A total of 100,000 events were analyzed for each sample and the experiment was repeated at least twice. Our data indicated that vFV-HN, vFV-VP3 and vFV-HN-VP3 all had growth inhibition effects, the inhibition rate of vFV-HN-VP3 group was 51.7%, which was higher than that of vFV-HN, vFV-VP3 group and control group (p genes into mouse osteosarcoma cancer cells can cause cell a specificity anti-tumor immune activity, suppress tumor growth, and increase the survival rate of the tumor within host.

  6. Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant Nicotiana tabacum.

    Science.gov (United States)

    Chen, Shuai; Li, Fengxia; Liu, Dan; Jiang, Caihong; Cui, Lijie; Shen, Lili; Liu, Guanshan; Yang, Aiguo

    2017-02-01

    Dynamic transcriptional changes of the host early responses genes were detected in PVY-resistant tobacco varieties infected with Potato virus Y; PVY resistance is a complex process that needs series of stress responses. Potato virus Y (PVY) causes a severe viral disease in cultivated crops, especially in Solanum plants. To understand the molecular basis of plant responses to the PVY stress, suppression subtractive hybridization (SSH) and microarray approaches were combined to identify the potentially important or novel genes that were involved in early stages (12 h, 1, 2, 3, 5, 8 days) of tobacco response to PVY infection. Dynamic changes of the host plant early responses to PVY infection on a transcriptional level were detected. In total, 167 different expressed ESTs were identified. The majority of genes involved in the metabolic process were found to be down-regulated at 12 h and 1 day, and then up-regulated at least one later period. Genes related to signaling and transcriptions were almost up-regulated at 12 h, 1 or 2 days, while stress response genes were almost up-regulated at a later stage. Genes involved in transcription, transport, cell wall, and several stress responses were found to have changed expression during the PVY infection stage, and numbers of these genes have not been previously reported to be associated with tobacco PVY infection. The diversity expression of these genes indicated that PVY resistance is a complex process that needs a series of stress responses. To resist the PVY infection, the tobacco plant has numerous active and silent responses.

  7. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  8. Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.

    Science.gov (United States)

    Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J

    2017-08-01

    Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases.IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known

  9. Association of TNF-Alpha gene polymorphisms and susceptibility to hepatitis B virus infection in Egyptians.

    Science.gov (United States)

    Talaat, Roba M; Abdelkhalek, Mohamed S; El-Maadawy, Eman A; Abdel-Mageed, Wael S; El-Shenawy, Soha Z; Osman, Mohamed A

    2017-11-01

    Tumor necrosis factor alpha (TNF-α) is one of the important cytokine in generating an immune response against hepatitis B virus (HBV). Genetic polymorphisms might influence gene transcription, leading to disturbance in cytokine production. We hypothesized that single nucleotide polymorphism (SNPs) in TNF-α gene could affect the pathogenesis of HBV. To test this hypothesis, we investigated the role of TNF-α polymorphism [-863C/A (rs1800630), -308G/A (rs1800629), -376G/A (rs1800750), -857C/T (rs1799724) and +489G/A (rs1800610)] in the susceptibility to chronic hepatitis B (CHB) infection. Polymorphisms of the TNF-α (-863C/A (rs1800630), -308G/A) were analyzed by Polymerase chain reaction sequence specific primer (PCR-SSP) while TNF-α (-376G/A, -857C/T and +489G/A) by PCR-restriction fragment length polymorphism (PCR-RFLP) in 104 patients with CHB and 104 healthy controls. The plasma level of TNF-α was measured using Enzyme-linked immunosorbent assay (ELISA). The study showed a significant increase in the frequency of -863CC, -376GA, -857CC, -857TT and +489GA genotypes and -863C, -376A, -857C, and +489A alleles in CHB patients compared to controls. In addition, CAGCG haplotype had a highest frequency in CHB patients. A strong Linkage Disequilibrium (LD) between TNF-α -863C/A (rs1800630) and -376G/A (D' = 0.7888, r 2  = 0.0200); -308G/A and -857C/T (D' = 0.9213, r 2  = 0.1770); -308G/A and +489G/A (D' = 0.9088, r 2  = 0.1576) was demonstrated. CHB patients had significantly lower levels of TNF-α compared to controls. In conclusion, our preliminary results suggest that -863C/A (rs1800630), -308G/A, -376G/A, and +489G/A of the TNF-α gene may play a role in HBV susceptibility in Egyptians. The significant reduction in TNF-α in CHB patient was independent of any particular genotype/haplotype in TNF-α. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  10. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime.

    Science.gov (United States)

    Fagoaga, Carmen; López, Carmelo; de Mendoza, Alfonso Hermoso; Moreno, Pedro; Navarro, Luis; Flores, Ricardo; Peña, Leandro

    2006-01-01

    Previously, we have shown that most Mexican limes (Citrus aurantifolia (Christ.) Swing.) expressing the p23 gene of Citrus tristeza virus (CTV) exhibit aberrations resembling viral leaf symptoms. Here we report that five independent transgenic lines having normal phenotype displayed characteristics typical of post-transcriptional gene silencing (PTGS): multiple copies of the transgene, low levels of the corresponding mRNA, methylation of the silenced transgene, and accumulation of p23-specific small interfering RNAs (siRNAs). When graft- or aphid-inoculated with CTV, some propagations of these silenced lines were immune: they neither expressed symptoms nor accumulated virions and viral RNA as estimated by DAS-ELISA and Northern blot hybridization, respectively. Other propagations were moderately resistant because they became infected later and showed attenuated symptoms compared to controls. The susceptible propagations, in addition to symptom expression and elevated virus titer, accumulated p23-specific siRNAs at levels significantly higher than immune or non-inoculated propagations, and showed transgene demethylation. This variable response among clonal transformants indicates that factors other than the genetic background of the transgenic plants play a key role in PTGS-mediated resistance.

  11. Transcriptional profiling of Epstein–Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection

    Science.gov (United States)

    Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K

    2006-01-01

    Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999

  12. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  13. Reassortant H9N2 Influenza Viruses Containing H5N1-Like PB1 Genes Isolated from Black-Billed Magpies in Southern China

    Science.gov (United States)

    Wang, Chengmin; Wu, Bin; Luo, Jing; Zhang, Hong; Nolte, Dale Louis; Deliberto, Thomas Jude; Duan, Mingxing; Ji, Guangju; He, Hongxuan

    2011-01-01

    H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica) in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses). Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94) HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98) PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1) PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46) discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds. PMID:21980538

  14. Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq.

    Science.gov (United States)

    Concha, Monica; Wang, Xia; Cao, Subing; Baddoo, Melody; Fewell, Claire; Lin, Zhen; Hulme, William; Hedges, Dale; McBride, Jane; Flemington, Erik K

    2012-02-01

    Using an enhanced RNA-Seq pipeline to analyze Epstein-Barr virus (EBV) transcriptomes, we investigated viral and cellular gene expression in the Akata cell line following B-cell-receptor-mediated reactivation. Robust induction of EBV gene expression was observed, with most viral genes induced >200-fold and with EBV transcripts accounting for 7% of all mapped reads within the cell. After induction, hundreds of candidate splicing events were detected using the junction mapper TopHat, including a novel nonproductive splicing event at the gp350/gp220 locus and several alternative splicing events at the LMP2 locus. A more detailed analysis of lytic LMP2 transcripts showed an overall lack of the prototypical type III latency splicing events. Analysis of nuclear versus cytoplasmic RNA-Seq data showed that the lytic forms of LMP2, EBNA-2, EBNA-LP, and EBNA-3A, -3B, and -3C have higher nuclear-to-cytoplasmic accumulation ratios than most lytic genes, including classic late genes. These data raise the possibility that at least some lytic transcripts derived from these latency gene loci may have unique, noncoding nuclear functions during reactivation. Our analysis also identified two previously unknown genes, BCLT1 and BCRT2, that map to the BamHI C-region of the EBV genome. Pathway analysis of cellular gene expression changes following B-cell receptor activation identified an inflammatory response as the top predicted function and ILK and TREM1 as the top predicted canonical pathways.

  15. Influence of white spot syndrome virus infection on hepatopancreas gene expression of `Huanghai No. 2' shrimp ( Fenneropenaeus chinensis)

    Science.gov (United States)

    Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng

    2017-10-01

    To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.

  16. Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains.

    Science.gov (United States)

    Setoh, Yin Xiang; Prow, Natalie A; Rawle, Daniel J; Tan, Cindy Si En; Edmonds, Judith H; Hall, Roy A; Khromykh, Alexander A

    2015-06-01

    A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent. © 2015 The Authors.

  17. Change in the responsiveness of interferon-stimulated genes during early pregnancy in cows with Borna virus-1 infection.

    Science.gov (United States)

    Takino, Tadashi; Okamura, Taku; Ando, Tatsuya; Hagiwara, Katsuro

    2016-11-14

    Borna disease virus is a neurotropic pathogen and infects the central nervous system. This virus infected a variety of animal species including cows. The most of cows infected with Borna disease virus 1 (BoDV-1) exhibit subclinical infection without any neurological symptoms throughout their lifetime. We previously reported on the low conception rates in-seropositive cows. Interferon-τ (IFN-τ) plays an important role in stable fertilization, and is produced from the fetal side following embryo growth at 15-40 days of pregnancy. IFN-τ induces the expression of interferon-stimulated gene (ISG) 15 and Mx2 in peripheral blood mononuclear cells (PBMCs). To understand the embryo growth and maternal reaction during early pregnancy in cows with BoDV-1 infection, we aimed to assess the gene expression of ISG15 and Mx2 from PBMCs in BoDV-1-seropositive cows. None of the cows showed any clinical and neurological symptoms. Among the cows that conceived, the expressions of the ISG15 and Mx2 genes were greater in the BoDV-1-seropositive cows than in the BoDV-1-seronegative cows; the difference was significant between the cows that conceived and those that did not (P < 0.05). The expression of ISG15 and Mx2 genes during early pregnancy significantly increased in the BoDV-1-seropositive cows and may be important for the maintenance of stable pregnancy in BoDV-1-infected cows. In contrast, the gene expression levels of ISG15 and Mx2 did not significantly increase during early pregnancy in BoDV-1-seronegative cows. Thus, BoDV-1 infection may lead to instability in the maintenance of early pregnancy by interfering with INF-τ production.

  18. Vat, an amazing gene conferring resistance to aphids and viruses they carry: from molecular structure to field effects

    Directory of Open Access Journals (Sweden)

    Nathalie Boissot

    2016-09-01

    Full Text Available We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant aphid/interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction. Resistance to viruses is qualitative and local.Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops

  19. Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs.

    OpenAIRE

    Howe, J G; Shu, M D

    1988-01-01

    Genes for the Epstein-Barr virus-encoded RNAs (EBERs), two low-molecular-weight RNAs encoded by the human gammaherpesvirus Epstein-Barr virus (EBV), hybridize to two small RNAs in a baboon cell line that contains a similar virus, herpesvirus papio (HVP). The genes for the HVP RNAs (HVP-1 and HVP-2) are located together in the small unique region at the left end of the viral genome and are transcribed by RNA polymerase III in a rightward direction, similar to the EBERs. There is significant si...

  20. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice.

    Directory of Open Access Journals (Sweden)

    Wenfei Zhu

    Full Text Available Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1, A/Sichuan/1/2009 (SC, were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.

  1. Computer-aided codon-pairs deoptimization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Ni, Yan-Yan; Zhao, Zhao; Opriessnig, Tanja; Subramaniam, Sakthivel; Zhou, Lei; Cao, Dianjun; Cao, Qian; Yang, Hanchun; Meng, Xiang-Jin

    2014-02-01

    Synthetic attenuated virus engineering (SAVE) is an emerging technology that enables rapid attenuation of viruses. In this study, by using SAVE we demonstrated rapid attenuation of an arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV). The major envelope GP5 gene of PRRSV was codon-pair deoptimized aided by a computer algorithm. The codon-pair deoptimized virus, designated as SAVE5 with a deoptimized GP5 gene, was successfully rescued in vitro. The SAVE5 virus replicated at a lower level in vitro with a significant decrease of GP5 protein expression compared to the wild-type PRRSV VR2385 virus. Pigs experimentally infected with the SAVE5 virus had significantly lower viremia level up to 14 days post-infection as well as significantly reduced gross and histological lung lesions when compared to wild-type PRRSV VR2385 virus-infected pigs, indicating the attenuation of the SAVE5 virus. This study proved the feasibility of rapidly attenuating PRRSV by SAVE. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in Medicinal Plant, Withania somnifera.

    Science.gov (United States)

    Agarwal, Aditya Vikram; Singh, Deeksha; Dhar, Yogeshwar Vikram; Michael, Rahul; Gupta, Parul; Chandra, Deepak; Trivedi, Prabodh Kumar

    2017-11-20

    Withanolides are a collection of naturally occurring, pharmacologically active, secondary metabolites synthesised in medicinally important plant, Withania somnifera. These bioactive molecules are C28-steroidal lactone triterpenoids and their synthesis is proposed to take place via the mevalonate (MVA) and 2-C-methyl-D-erythritol-4-phosphate (MEP) pathways through the sterol pathway using 24-methylene cholesterol as substrate flux. Although the phytochemical profiles as well as pharmaceutical activities of Withania extracts have been well studied, limited genomic information and difficult genetic transformation have been major bottleneck towards understanding the participation of specific genes in withanolide biosynthesis. In this study, we used Tobacco Rattle Virus (TRV)-mediated Virus-Induced Gene Silencing (VIGS) approach to study the participation of key genes from MVA, MEP and triterpenoid biosynthesis for their involvement in withanolide biosynthesis. TRV-infected W. somnifera plants displayed unique phenotypic characteristics and differential accumulation of total chlorophyll as well as carotenoid content for each silenced gene apprehending a reduction in overall isoprenoid synthesis. Comprehensive expression analysis of putative genes of withanolide biosynthesis revealed transcriptional modulations conferring the presence of a complex regulatory mechanisms leading to withanolide biosynthesis. In addition, silencing of genes exhibited modulated total and specific withanolide accumulation, at different levels, as compared to control plants. Comparative analysis also suggests major role of MVA pathway as compared to MEP pathway in providing substrate flux for withanolide biosynthesis. These results demonstrate that transcriptional regulation of selected Withania genes of the triterpenoid biosynthetic pathway critically affects withanolide biosynthesis providing new horizons to further explore this process, in planta. © The Author 2017. Published by Oxford

  3. De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance.

    Science.gov (United States)

    Zhang, Zhijun; Zhang, Pengjun; Li, Weidi; Zhang, Jinming; Huang, Fang; Yang, Jian; Bei, Yawei; Lu, Yaobin

    2013-05-01

    The western flower thrips (WFT), Frankliniella occidentalis, a world-wide invasive insect, causes agricultural damage by directly feeding and by indirectly vectoring Tospoviruses, such as Tomato spotted wilt virus (TSWV). We characterized the transcriptome of WFT and analyzed global gene expression of WFT response to TSWV infection using Illumina sequencing platform. We compiled 59,932 unigenes, and identified 36,339 unigenes by similarity analysis against public databases, most of which were annotated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Within these annotated transcripts, we collected 278 sequences related to insecticide resistance. GO and KEGG analysis of different expression genes between TSWV-infected and non-infected WFT population revealed that TSWV can regulate cellular process and immune response, which might lead to low virus titers in thrips cells and no detrimental effects on F. occidentalis. This data-set not only enriches genomic resource for WFT, but also benefits research into its molecular genetics and functional genomics. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    Science.gov (United States)

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  5. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Meleri Jones

    2014-01-01

    Full Text Available Varicella zoster virus (VZV is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.

  6. Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich.

    Science.gov (United States)

    Schurdi-Levraud Escalettes, Valérie; Hullot, Clémence; Wawrzy'nczak, Danuta; Mathieu, Elodie; Eyquard, Jean-Philippe; Le Gall, Olivier; Decroocq, Véronique

    2006-06-07

    We investigated the changes in the expression profiles of the partially resistant apricot (Prunus armeniaca L.) cultivar Goldrich following inoculation with Plum pox virus (PPV) using cDNA-amplification fragment length polymorphism (AFLP). Altered expression patterns were detected and twenty-one differentially expressed cDNA had homologies with genes in databases coding for proteins involved in metabolism, signal transduction, defense, stress and intra/intercellular connections. Seven of the modified expressed patterns were further investigated by semi-quantitative RT-PCR or Northern blotting. The expression patterns of five of these genes were confirmed in the partially resistant P. armeniaca cv. 'Goldrich' and assessed in a susceptible genotype. One of these cDNAs, coding for a putative class III chitinase, appeared to be repressed in infected plants of the partially resistant genotype and expressed in the susceptible one which could be related to the partially resistant phenotype. On the contrary, the expression patterns of the genes coding for a transketolase, a kinesin-like and an ankyrin-like protein, were clearly linked to the susceptible interaction. These candidate genes could play a role either in the compatible interaction leading to virus invasion or to the quantitative resistance of apricot to PPV.

  7. Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential.

    Science.gov (United States)

    Tsukamoto, Kenji; Ashizawa, Hisayoshi; Nakanishi, Koji; Kaji, Noriyuki; Suzuki, Kotaro; Okamatsu, Masatoshi; Yamaguchi, Shigeo; Mase, Masaji

    2008-09-01

    Serious concern about the worldwide transmission of the Asian H5N1 highly pathogenic (HP) avian influenza (AI) virus by migratory birds surrounds the importance of the AI global surveillance in wild aquatic birds and underscores the requirement for a reliable subtyping method of AI viruses. PCR is advantageous due to its simplicity, lower cross-reactivity, and unlimited reagent supply. Currently, the only available hemagglutinin (HA) subtyping primer set that can subtype H1 through H15 is not fully evaluated and, since it only targets HA1, is unavailable for molecular pathotyping of AI viruses. Our preliminary experiments found that these primer sets were cross-reactive and missed some recent AI viruses. In this study, we developed new primer sets against HA cleavage sites for subtyping H1 to H15 genes and for molecular pathotyping. Our primer sets were subtype specific and detected 99% of previously identified HA genes (115/116, 1949 to March 2006), and the correct amplifications of HA genes were confirmed by sequence analyses of all 115 PCR products. The primer sets successfully subtyped most of the recent AI viruses isolated in Japan (96% [101/105], October 2006 to March 2007). Taken together, our primer sets could efficiently detect HA genes (98% [216/221]) of both previously and recently identified HA genes or of both American (29/29) and Eurasian (187/192) lineages. All 38 H5 and 13 H7 viruses were molecularly pathotyped by sequencing analyses of the HA cleavage site. In contrast, despite efficient detection of previously identified strains (98% [114/116]), the published primer sets exhibited lower specificity and lower detection efficiency against recent AI viruses (80% [84 of 105]). These results indicate that our primers are useful not only for HA subtyping but also for molecular pathotyping of both previous and recent AI viruses. These advancements will enable general diagnostic laboratories to subtype AI viruses for the surveillance in wild aquatic birds.

  8. Subtyping of Avian Influenza Viruses H1 to H15 on the Basis of Hemagglutinin Genes by PCR Assay and Molecular Determination of Pathogenic Potential▿

    Science.gov (United States)

    Tsukamoto, Kenji; Ashizawa, Hisayoshi; Nakanishi, Koji; Kaji, Noriyuki; Suzuki, Kotaro; Okamatsu, Masatoshi; Yamaguchi, Shigeo; Mase, Masaji

    2008-01-01

    Serious concern about the worldwide transmission of the Asian H5N1 highly pathogenic (HP) avian influenza (AI) virus by migratory birds surrounds the importance of the AI global surveillance in wild aquatic birds and underscores the requirement for a reliable subtyping method of AI viruses. PCR is advantageous due to its simplicity, lower cross-reactivity, and unlimited reagent supply. Currently, the only available hemagglutinin (HA) subtyping primer set that can subtype H1 through H15 is not fully evaluated and, since it only targets HA1, is unavailable for molecular pathotyping of AI viruses. Our preliminary experiments found that these primer sets were cross-reactive and missed some recent AI viruses. In this study, we developed new primer sets against HA cleavage sites for subtyping H1 to H15 genes and for molecular pathotyping. Our primer sets were subtype specific and detected 99% of previously identified HA genes (115/116, 1949 to March 2006), and the correct amplifications of HA genes were confirmed by sequence analyses of all 115 PCR products. The primer sets successfully subtyped most of the recent AI viruses isolated in Japan (96% [101/105], October 2006 to March 2007). Taken together, our primer sets could efficiently detect HA genes (98% [216/221]) of both previously and recently identified HA genes or of both American (29/29) and Eurasian (187/192) lineages. All 38 H5 and 13 H7 viruses were molecularly pathotyped by sequencing analyses of the HA cleavage site. In contrast, despite efficient detection of previously identified strains (98% [114/116]), the published primer sets exhibited lower specificity and lower detection efficiency against recent AI viruses (80% [84 of 105]). These results indicate that our primers are useful not only for HA subtyping but also for molecular pathotyping of both previous and recent AI viruses. These advancements will enable general diagnostic laboratories to subtype AI viruses for the surveillance in wild aquatic birds

  9. Identification of two major virion protein genes of white spot syndrome virus of shrimp

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Westenberg, M.; Goodall, S.D.; Vlak, J.M.

    2000-01-01

    White Spot Syndrome Virus (WSSV) is an invertebrate virus, causing considerable mortality in shrimp. Two structural proteins of WSSV were identified. WSSV virions are enveloped nucleocapsids with a bacilliform morphology with an approximate size of 275 x 120 nm, and a tail-like extension at one end.

  10. Three functionally diverged major White Spot Syndrome Virus structural proteins evolved by gene duplication

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Goldbach, R.W.; Vlak, J.M.

    2000-01-01

    White spot syndrome virus (WSSV) is an invertebrate virus causing considerable mortality in penaeid shrimp. The oval-to-bacilliform shaped virions, isolated from infected Penaeus monodon, contain four major proteins: VP28, VP26, VP24 and VP19 (28, 26, 24 and 19 kDa, respectively). VP26 and VP24 are

  11. Genetic variability in coat protein gene of sugarcane mosaic virus in ...

    African Journals Online (AJOL)

    Sugarcane mosaic virus (SCMV) is one of the three causative viruses of mosaic in sugarcane, a sugar crop widely grown under tropical and subtropical conditions worldwide. Although molecular characterization of SCMV strains was reported from many countries, strain occurring in Pakistan, a major sugarcane producer ...

  12. Evolutionary trajectory of the VP1 gene of human enterovirus 71 genogroup B and C viruses

    NARCIS (Netherlands)

    S.M.G. van der Sanden (Sabine); H.G.A.M. van der Avoort (Harrie); P. Lemey (Philippe); G. Uslu (Gökhan); M.P.G. Koopmans D.V.M. (Marion)

    2010-01-01

    textabstractFrom 1963 to 1986, human enterovirus 71 (HEV71) infections in the Netherlands were successively caused by viruses of subgenogroups B0, B1 and B2. A genogroup shift occurred in 1987, after which viruses of subgenogroups C1 and C2 were detected exclusively. This is in line with HEV71

  13. Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    Science.gov (United States)

    Zhang, Qingxun; Liu, Xinsheng; Fang, Yuzhen; Pan, Li; Lv, Jianliang; Zhang, Zhongwang; Zhou, Peng; Ding, Yaozhong; Chen, Haotai; Shao, Junjun; Zhao, Furong; Lin, Tong; Chang, Huiyun; Zhang, Jie; Wang, Yonglu; Zhang, Yongguang

    2015-01-01

    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown. PMID:25793223

  14. Peripheral Blood Mononuclear Cell Gene Expression Remains Broadly Altered Years after Successful Interferon-Based Hepatitis C Virus Treatment

    Directory of Open Access Journals (Sweden)

    Paul Ravi Waldron

    2015-01-0