WorldWideScience

Sample records for virtual reality 3d

  1. 3D Character Modeling in Virtual Reality

    NARCIS (Netherlands)

    Kiss, S.; Williams, A.

    2002-01-01

    The paper presents a virtual reality modeling system based on interactive web technologies. The system's goal is to provide a user-friendly virtual environment for the development of 3D characters with an articulated structure. The interface allows the modeling of both the character's joint

  2. 3D Flow visualization in virtual reality

    Science.gov (United States)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  3. A 3D virtual reality ophthalmoscopy trainer.

    Science.gov (United States)

    Wilson, Andrew S; O'Connor, Jake; Taylor, Lewis; Carruthers, David

    2017-04-12

    Performing eye examinations is an important clinical skill that medical students often find difficult to become proficient in. This paper describes the development and evaluation of an innovative 3D virtual reality (VR) training application to support learning these skills. The VR ophthalmoscope was developed by a clinical team and technologist using the unity game engine, smartphone and virtual reality headset. It has a series of tasks that include performing systematic eye examinations, identifying common eye pathologies and a knowledge quiz. As part of their clinical training, 15 fourth-year medical students were surveyed for their views on this teaching approach. The Technology Acceptance Model was used to evaluate perceived usefulness and ease of use. Data were also collected on the usability of the app, together with the students' written comments about it. Users agreed that the teaching approach improved their understanding of ophthalmoscopy (n = 14), their ability to identify landmarks in the eye (n = 14) and their ability to recognise abnormalities (n = 15). They found the app easy to use (n = 15), the teaching approach informative (n = 13) and that it would increase students' confidence when performing these tasks in future (n = 15). Performing eye examinations is an important clinical skill DISCUSSION: The evaluation showed that a VR app can successfully simulate the processes involved in performing eye examinations. The app was highly rated for all elements of perceived usefulness, ease of use and usability. Medical students stated that they would like to be taught other medical skills in this way in future. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  4. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Science.gov (United States)

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  5. Dynamic 3D echocardiography in virtual reality.

    NARCIS (Netherlands)

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. Vletter-McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic

  6. Augmented Reality versus Virtual Reality for 3D Object Manipulation.

    Science.gov (United States)

    Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu

    2018-02-01

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  7. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  8. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D

  9. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  10. True 3D digital holographic tomography for virtual reality applications

    Science.gov (United States)

    Downham, A.; Abeywickrema, U.; Banerjee, P. P.

    2017-09-01

    Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.

  11. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  12. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  13. Virtual reality 3D headset based on DMD light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  14. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    Science.gov (United States)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  15. A standardized set of 3-D objects for virtual reality research and applications.

    Science.gov (United States)

    Peeters, David

    2017-06-23

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  16. PAST AND FUTURE APPLICATIONS OF 3-D (VIRTUAL REALITY TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nigel Foreman

    2014-11-01

    Full Text Available Virtual Reality (virtual environment technology, VET has been widely available for twenty years. In that time, the benefits of using virtual environments (VEs have become clear in many areas of application, including assessment and training, education, rehabilitation and psychological research in spatial cognition. The flexibility, reproducibility and adaptability of VEs are especially important, particularly in the training and testing of navigational and way-finding skills. Transfer of training between real and virtual environments has been found to be reliable. However, input device usage can compromise spatial information acquisition from VEs, and distances in VEs are invariably underestimated. The present review traces the evolution of VET, anticipates future areas in which developments are likely to occur, and highlights areas in which research is needed to optimise usage.

  17. Dental impressions using 3D digital scanners: virtual becomes reality.

    Science.gov (United States)

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  18. Image fusion in craniofacial virtual reality modeling based on CT and 3dMD photogrammetry.

    Science.gov (United States)

    Xin, Pengfei; Yu, Hongbo; Cheng, Huanchong; Shen, Shunyao; Shen, Steve G F

    2013-09-01

    The aim of this study was to demonstrate the feasibility of building a craniofacial virtual reality model by image fusion of 3-dimensional (3D) CT models and 3 dMD stereophotogrammetric facial surface. A CT scan and stereophotography were performed. The 3D CT models were reconstructed by Materialise Mimics software, and the stereophotogrammetric facial surface was reconstructed by 3 dMD patient software. All 3D CT models were exported as Stereo Lithography file format, and the 3 dMD model was exported as Virtual Reality Modeling Language file format. Image registration and fusion were performed in Mimics software. Genetic algorithm was used for precise image fusion alignment with minimum error. The 3D CT models and the 3 dMD stereophotogrammetric facial surface were finally merged into a single file and displayed using Deep Exploration software. Errors between the CT soft tissue model and 3 dMD facial surface were also analyzed. Virtual model based on CT-3 dMD image fusion clearly showed the photorealistic face and bone structures. Image registration errors in virtual face are mainly located in bilateral cheeks and eyeballs, and the errors are more than 1.5 mm. However, the image fusion of whole point cloud sets of CT and 3 dMD is acceptable with a minimum error that is less than 1 mm. The ease of use and high reliability of CT-3 dMD image fusion allows the 3D virtual head to be an accurate, realistic, and widespread tool, and has a great benefit to virtual face model.

  19. Virtual Reality, 3D Stereo Visualization, and Applications in Robotics

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    The use of 3D stereoscopic visualization may provide a user with higher comprehension of remote environments in tele-operation when compared to 2D viewing. Works in the literature have demonstrated how stereo vision contributes to improve perception of some depth cues often for abstract tasks...

  20. Virtual-reality-based 3D simulation for ship steering and sea wave

    Science.gov (United States)

    Xu, Lili; Guo, Chen

    2004-03-01

    A typical Virtual Reality (VR) based ship steering simulation structure, which is helpful to test and modify control algorithms and parameters, is proposed in this paper. The 6-order mathematical model of ship steering is given. This paper focuses on how to develop the 3-D simulation system for ship steering and sea wave, which is essential to interactive visual simulation. A simulation scene including autopilot, rudder, propeller and other marine power plants is presented.

  1. Pembuatan Simulasi 3D Virtual Reality Berbasis Android Sebagai Alat Bantu Terapi Acrophobia

    Directory of Open Access Journals (Sweden)

    Ghali Adyo Putra

    2017-01-01

    dapat mengatasi masalah tersebut. Pembuatan simulasi 3D Virtual Reality sebagai alat bantu terapi acrophobia berbasis Android telah berhasil dibuat. Namun, diperlukan penelitian lebih lanjut untuk melihat dampak lebih lanjut pada bidang klinis.

  2. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    Science.gov (United States)

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  3. [Development and clinical application of 3D operative planning system of live in virtual reality environments].

    Science.gov (United States)

    Chen, Gang; Yang, Shi-zhong; Wu, Guo-qing; Wang, Yi; Fan, Gui-hua; Tan, Li-wen; Fang, Bin; Zhang, Shao-xiang; Dong, Jia-hong

    2009-11-01

    To explore and develop three-dimension (3D) virtual reality (VR) liver model and convert computed tomography data into a fully 3D VR environment for display, measure and manipulation. 3D-reconstruction of liver was restored from spiral computed tomography (CT) data by using LiVirtue software. Dextrobeam was used to view the 3D model in the VR environment. The liver and its anatomic structure were reconstructed to illuminate the location of the tumor and its related vessels. 3D models of liver, tumor and their relative vessels were reconstructed successfully. These models could be viewed and manipulated in the VR environment on personal computer.38 patients underwent liver resection, including 21 right hemihepatectomy, 14 left hemihepatectomy and 3 extended right hemihepatectomy. The intraoperative contrast with preoperative simulation confirmed the reliability of our 3D operative planning system. The preoperative simulation in 3D VR facilitated liver resection by the ability to view tumor and its relative vessels. This preoperative estimation from 3D model of liver benefits a lot to complicated liver resection.

  4. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality.

    Science.gov (United States)

    Borrel, Alexandre; Fourches, Denis

    2017-12-01

    There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online.

  5. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    Science.gov (United States)

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  6. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    Science.gov (United States)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  7. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    Science.gov (United States)

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  8. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    NARCIS (Netherlands)

    G. Bol-Raap (Goris); A.H.J. Koning (Anton); T.V. Scohy (Thierry); A.D.J. ten Harkel (Arend); F.J. Meijboom (Folkert); A.P. Kappetein (Arie Pieter); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2007-01-01

    textabstractBackground. This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D) echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD). Methods. 12

  9. Evaluation of Binocular Eye Trackers and Algorithms for 3D Gaze Interaction in Virtual Reality Environments

    OpenAIRE

    Pfeiffer, Thies; Marc E. Latoschik; Wachsmuth, Ipke

    2007-01-01

    Tracking user's visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user's visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of...

  10. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    Science.gov (United States)

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  11. Real-time 3D avatars for tele-rehabilitation in virtual reality.

    Science.gov (United States)

    Kurillo, Gregorij; Koritnik, Tomaz; Bajd, Tadej; Bajcsy, Ruzena

    2011-01-01

    We present work in progress on a tele-immersion system for telerehabilitation using real-time stereo vision and virtual environments. Stereo reconstruction is used to capture user's 3D avatar in real time and project it into a shared virtual environment, enabling a patient and therapist to interact remotely. Captured data can also be used to analyze the movement and provide feedback to the patient as we present in a preliminary study of stepping-in-place task. Such tele-presence system could in the future allow patients to interact remotely with remote physical therapist and virtual environment while objectively tracking their performance.

  12. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    Science.gov (United States)

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  13. Accuracy of fetal sex determination in the first trimester of pregnancy using 3D virtual reality ultrasound.

    Science.gov (United States)

    Bogers, Hein; Rifouna, Maria S; Koning, Anton H J; Husen-Ebbinge, Margreet; Go, Attie T J I; van der Spek, Peter J; Steegers-Theunissen, Régine P M; Steegers, Eric A P; Exalto, Niek

    2017-10-19

    Early detection of fetal sex is becoming more popular. The aim of this study was to evaluate the accuracy of fetal sex determination in the first trimester, using 3D virtual reality. Three-dimensional (3D) US volumes were obtained in 112 pregnancies between 9 and 13 weeks of gestational age. They were offline projected as a hologram in the BARCO I-Space and subsequently the genital tubercle angle was measured. Separately, the 3D US aspect of the genitalia was examined for having a male or female appearance. Although a significant difference in genital tubercle angles was found between male and female fetuses, it did not result in a reliable prediction of fetal gender. Correct sex prediction based on first trimester genital appearance was at best 56%. Our results indicate that accurate determination of the fetal sex in the first trimester of pregnancy is not possible, even using an advanced 3D US technique. © 2017 Wiley Periodicals, Inc.

  14. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    Science.gov (United States)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  15. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  16. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2016-10-02

    Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.

  17. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.

  18. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  19. A LOW-COST AND LIGHTWEIGHT 3D INTERACTIVE REAL ESTATE-PURPOSED INDOOR VIRTUAL REALITY APPLICATION

    Directory of Open Access Journals (Sweden)

    K. Ozacar

    2017-11-01

    Full Text Available Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  20. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    Science.gov (United States)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  1. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    Directory of Open Access Journals (Sweden)

    Kappetein A Pieter

    2007-02-01

    Full Text Available Abstract Background This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD. Methods 12 data sets from intraoperative epicardial echocardiographic studies in 5 operations (patient age at operation 3 weeks to 4 years and bodyweight at operation 3.8 to 17.2 kg after surgical closure of VSD were included in the study. The data sets were analysed as two-dimensional (2D images on the screen of the ultrasound system as well as holograms in an I-space virtual reality (VR system. The 2D images were assessed for tricuspid valve function. In the I-Space, a 6 degrees-of-freedom controller was used to create the necessary projectory positions and cutting planes in the hologram. The holograms were used for additional assessment of tricuspid valve leaflet mobility. Results All data sets could be used for 2D as well as holographic analysis. In all data sets the area of interest could be identified. The 2D analysis showed no tricuspid valve stenosis or regurgitation. Leaflet mobility was considered normal. In the virtual reality of the I-Space, all data sets allowed to assess the tricuspid leaflet level in a single holographic representation. In 3 holograms the septal leaflet showed restricted mobility that was not appreciated in the 2D echocardiogram. In 4 data sets the posterior leaflet and the tricuspid papillary apparatus were not completely included. Conclusion This report shows that dynamic holographic imaging of intraoperative postoperative echocardiographic data regarding tricuspid valve function after VSD closure is feasible. Holographic analysis allows for additional tricuspid valve leaflet mobility analysis. The large size of the probe, in relation to small size of the patient, may preclude a complete data set. At the moment the requirement of an I

  2. Spherical subjective refraction with a novel 3D virtual reality based system.

    Science.gov (United States)

    Pujol, Jaume; Ondategui-Parra, Juan Carlos; Badiella, Llorenç; Otero, Carles; Vilaseca, Meritxell; Aldaba, Mikel

    To conduct a clinical validation of a virtual reality-based experimental system that is able to assess the spherical subjective refraction simplifying the methodology of ocular refraction. For the agreement assessment, spherical refraction measurements were obtained from 104 eyes of 52 subjects using three different methods: subjectively with the experimental prototype (Subj.E) and the classical subjective refraction (Subj.C); and objectively with the WAM-5500 autorefractor (WAM). To evaluate precision (intra- and inter-observer variability) of each refractive tool independently, 26 eyes were measured in four occasions. With regard to agreement, the mean difference (±SD) for the spherical equivalent (M) between the new experimental subjective method (Subj.E) and the classical subjective refraction (Subj.C) was -0.034D (±0.454D). The corresponding 95% Limits of Agreement (LoA) were (-0.856D, 0.924D). In relation to precision, intra-observer mean difference for the M component was 0.034±0.195D for the Subj.C, 0.015±0.177D for the WAM and 0.072±0.197D for the Subj.E. Inter-observer variability showed worse precision values, although still clinically valid (below 0.25D) in all instruments. The spherical equivalent obtained with the new experimental system was precise and in good agreement with the classical subjective routine. The algorithm implemented in this new system and its optical configuration has been shown to be a first valid step for spherical error correction in a semiautomated way. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  3. An investigation of 3D images of the simultaneous-lightness-contrast illusion using a virtual-reality technique

    Directory of Open Access Journals (Sweden)

    Menshikova, G.Ya.

    2013-09-01

    Full Text Available This article investigates the problem of lightness perception. To clarify the role of depth in lightness perception two current models—the albedo hypothesis and the coplanar-ratio hypothesis—are discussed. To compare them the strength of the simultaneous-lightnesscontrast (SLC illusion was investigated as a function of three-dimensional (3D configurations of the test and background squares. In accordance with both hypotheses the changes in the depth arrangements of the test and background squares should result in changes in the illusory effect. However, the reasons for and the directions of these changes should be different. Five different types of 3D configurations were created in which the test squares were tilted at different angles to the background squares. A virtual-reality technique was used to present stereo pairs of different 3D configurations. Thirty-seven observers took part in the experiment. The method of constant stimuli was used to obtain psychometric functions. The displacements of these functions for 3D configurations in comparison with the 2D configuration allowed the estimation of illusion strength. The analysis of individual values of illusion strength revealed two groups of subjects. For the first group (38% of all participants the strength changed insignificantly depending on the 3D configurations. For the second group (62% of all participants significant differences were obtained for those configurations in which the test and background squares were perceived as differently illuminated. The changes in the SLC illusion strength for the second group were consistent with predictions made by the albedo hypothesis. Thus, it seems that the perceived illumination of a surface should be considered the main parameter for lightness estimations in 3D scenes.

  4. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.

    Science.gov (United States)

    Calì, Corrado; Baghabra, Jumana; Boges, Daniya J; Holst, Glendon R; Kreshuk, Anna; Hamprecht, Fred A; Srinivasan, Madhusudhanan; Lehväslaiho, Heikki; Magistretti, Pierre J

    2016-01-01

    Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. © 2015 Wiley Periodicals, Inc.

  5. Authoring Adaptive 3D Virtual Learning Environments

    Science.gov (United States)

    Ewais, Ahmed; De Troyer, Olga

    2014-01-01

    The use of 3D and Virtual Reality is gaining interest in the context of academic discussions on E-learning technologies. However, the use of 3D for learning environments also has drawbacks. One way to overcome these drawbacks is by having an adaptive learning environment, i.e., an environment that dynamically adapts to the learner and the…

  6. Virtual reality for engineering

    CERN Document Server

    De Gennaro, Silvano; CERN. Geneva

    1996-01-01

    Virtual Reality for Engineers. Virtual Reality is a very powerful visualization technique for 3D data, which can bring enormous benefits to engineering design. CAD models can be exported to a VR application and used as "Virtual Prototypes". Virtual Prototypes are an ideal replacement for wooden models as they can be generated automatically from most CAD products. They are totally reliable, they can be updated in a matter of minutes, and they allow designers to explore them from inside, on a one-to-one scale and using a 3D-stereo vision. Navigation can be performed using a number of instinctive tools, such as joysticks, spaceballs, VR helmets and 3D mice. The lectures will cover today's Virtual Reality products and methods, and describe how to transform CAD models into Virtual Prototypes. A "hands on" VR experience featuring the LHC detectors models can be organized for people interested.

  7. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    Science.gov (United States)

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  8. Virtual Reality

    Directory of Open Access Journals (Sweden)

    Dan L. Lacrãmã

    2007-01-01

    Full Text Available This paper is focused on the presentation of Virtual Reality principles together with the main implementation methods and techniques. An overview of the main development directions is included.

  9. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Science.gov (United States)

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  10. The use of a low-cost visible light 3D scanner to create virtual reality environment models of actors and objects

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    A low-cost 3D scanner has been developed with a parts cost of approximately USD $5,000. This scanner uses visible light sensing to capture both structural as well as texture and color data of a subject. This paper discusses the use of this type of scanner to create 3D models for incorporation into a virtual reality environment. It describes the basic scanning process (which takes under a minute for a single scan), which can be repeated to collect multiple positions, if needed for actor model creation. The efficacy of visible light versus other scanner types is also discussed.

  11. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  12. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.

    Science.gov (United States)

    Levin, Mindy F; Magdalon, Eliane C; Michaelsen, Stella M; Quevedo, Antonio A F

    2015-11-01

    Reaching and grasping parameters with and without haptic feedback were characterized in people with chronic post-stroke behaviors. Twelve (67 ± 10 years) individuals with chronic stroke and arm/hand paresis (Fugl-Meyer Assessment-Arm: ≥ 46/66 pts) participated. Three dimensional (3-D) temporal and spatial kinematics of reaching and grasping movements to three objects (can: cylindrical grasp; screwdriver: power grasp; pen: precision grasp) in a physical environment (PE) with and without additional haptic feedback and a 3-D virtual environment (VE) with haptic feedback were recorded. Participants reached, grasped and transported physical and virtual objects using similar movement strategies in all conditions. Reaches made in VE were less smooth and slower compared to the PE. Arm and trunk kinematics were similar in both environments and glove conditions. For grasping, stroke subjects preserved aperture scaling to object size but used wider hand apertures with longer delays between times to maximal reaching velocity and maximal grasping aperture. Wearing the glove decreased reaching velocity. Our results in a small group of subjects suggest that providing haptic information in the VE did not affect the validity of reaching and grasping movement. Small disparities in movement parameters between environments may be due to differences in perception of object distance in VE. Reach-to-grasp kinematics to smaller objects may be improved by better 3-D rendering. Comparable kinematics between environments and conditions is encouraging for the incorporation of high quality VEs in rehabilitation programs aimed at improving upper limb recovery.

  13. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    Science.gov (United States)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  14. CONSTRUCTION OF A 3D MEASURABLE VIRTUAL REALITY ENVIRONMENT BASED ON GROUND PANORAMIC IMAGES AND ORBITAL IMAGERY FOR PLANETARY EXPLORATION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. Di

    2012-08-01

    Full Text Available This paper presents a method of constructing a measurable virtual reality environment based on ground (lander/rover panoramic images and orbital imagery. Ground panoramic images acquired by a lander/rover at different azimuth and elevation angles are automatically registered, seamlessly mosaicked and projected onto a cylindrical surface. A specific function is developed for inverse calculation from the panorama back to the original images so that the 3D information associated with the original stereo images can be retrieved or computed. The three-dimensional measurable panorama is integrated into a globe viewer based on NASA World Wind. The techniques developed in this research can be used in visualization of and measuring the orbital and ground images for planetary exploration missions, especially rover missions.

  15. Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography.

    Science.gov (United States)

    Qiu, Tian-ming; Zhang, Yi; Wu, Jin-Song; Tang, Wei-Jun; Zhao, Yao; Pan, Zhi-Guang; Mao, Ying; Zhou, Liang-Fu

    2010-11-01

    Resection of gliomas invading primary motor cortex and subcortical motor pathway is difficult in both surgical decision-making and functional outcome prediction. In this study, magnetic resonance (MR) diffusion tensor imaging (DTI) data were used to perform tractography to visualize pyramidal tract (PT) along its whole length in a stereoscopic virtual reality (VR) environment. The potential value of its clinical application was evaluated. Both three-dimensional (3-D) magnetic resonance imaging (MRI) and DTI datasets were obtained from 45 eligible patients with suspected cerebral gliomas and then transferred to the VR system (Dextroscope; Volume Interactions Pte. Ltd., Singapore). The cortex and tumor were segmented and reconstructed via MRI, respectively, while the tractographic PTs were reconstructed via DTI. All those were presented in a stereoscopic 3-D display synchronously, for the purpose of patient-specific presurgical planning and surgical simulation in each case. The relationship between increasing amplitude of the number of effective fibers of PT (EPT) at affected sides and the patients' Karnofsky Performance Scale (KPS) at 6 months was addressed out. In VR presurgical planning for gliomas, surgery was aided by stereoscopic 3-D visualizing the relative position of the PTs and a tumor. There was no significant difference between pre- and postsurgical EPT in this population. A positive relationship was proved between EPT increasing amplitude and 6-month KPS. 3-D stereoscopic visualization of tractography in this VR environment enhances the operators to well understand the anatomic information of intra-axial tumor contours and adjacent PT, results in surgical trajectory optimization initially, and maximal safe tumor resection finally. In accordance to the EPT increasing amplitude, surgeon can predict the long-term motor functional outcome.

  16. See-through 3D technology for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  17. The Idaho Virtualization Laboratory 3D Pipeline

    Directory of Open Access Journals (Sweden)

    Nicholas A. Holmer

    2014-05-01

    Full Text Available Three dimensional (3D virtualization and visualization is an important component of industry, art, museum curation and cultural heritage, yet the step by step process of 3D virtualization has been little discussed. Here we review the Idaho Virtualization Laboratory’s (IVL process of virtualizing a cultural heritage item (artifact from start to finish. Each step is thoroughly explained and illustrated including how the object and its metadata are digitally preserved and ultimately distributed to the world.

  18. Augmented reality 3D display based on integral imaging

    Science.gov (United States)

    Deng, Huan; Zhang, Han-Le; He, Min-Yang; Wang, Qiong-Hua

    2017-02-01

    Integral imaging (II) is a good candidate for augmented reality (AR) display, since it provides various physiological depth cues so that viewers can freely change the accommodation and convergence between the virtual three-dimensional (3D) images and the real-world scene without feeling any visual discomfort. We propose two AR 3D display systems based on the theory of II. In the first AR system, a micro II display unit reconstructs a micro 3D image, and the mciro-3D image is magnified by a convex lens. The lateral and depth distortions of the magnified 3D image are analyzed and resolved by the pitch scaling and depth scaling. The magnified 3D image and real 3D scene are overlapped by using a half-mirror to realize AR 3D display. The second AR system uses a micro-lens array holographic optical element (HOE) as an image combiner. The HOE is a volume holographic grating which functions as a micro-lens array for the Bragg-matched light, and as a transparent glass for Bragg mismatched light. A reference beam can reproduce a virtual 3D image from one side and a reference beam with conjugated phase can reproduce the second 3D image from other side of the micro-lens array HOE, which presents double-sided 3D display feature.

  19. Computer Vision Assisted Virtual Reality Calibration

    Science.gov (United States)

    Kim, W.

    1999-01-01

    A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.

  20. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2013-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  1. Auditory and visual 3D virtual reality therapy as a new treatment for chronic subjective tinnitus: Results of a randomized controlled trial.

    Science.gov (United States)

    Malinvaud, D; Londero, A; Niarra, R; Peignard, Ph; Warusfel, O; Viaud-Delmon, I; Chatellier, G; Bonfils, P

    2016-03-01

    Subjective tinnitus (ST) is a frequent audiologic condition that still requires effective treatment. This study aimed at evaluating two therapeutic approaches: Virtual Reality (VR) immersion in auditory and visual 3D environments and Cognitive Behaviour Therapy (CBT). This open, randomized and therapeutic equivalence trial used bilateral testing of VR versus CBT. Adult patients displaying unilateral or predominantly unilateral ST, and fulfilling inclusion criteria were included after giving their written informed consent. We measured the different therapeutic effect by comparing the mean scores of validated questionnaires and visual analog scales, pre and post protocol. Equivalence was established if both strategies did not differ for more than a predetermined limit. We used univariate and multivariate analysis adjusted on baseline values to assess treatment efficacy. In addition of this trial, purely exploratory comparison to a waiting list group (WL) was provided. Between August, 2009 and November, 2011, 148 of 162 screened patients were enrolled (VR n = 61, CBT n = 58, WL n = 29). These groups did not differ at baseline for demographic data. Three month after the end of the treatment, we didn't find any difference between VR and CBT groups either for tinnitus severity (p = 0.99) or tinnitus handicap (p = 0.36). VR appears to be at least as effective as CBT in unilateral ST patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Eye-tracking and EMG supported 3D Virtual Reality - an integrated tool for perceptual and motor development of children with severe physical disabilities: a research concept.

    Science.gov (United States)

    Pulay, Márk Ágoston

    2015-01-01

    Letting children with severe physical disabilities (like Tetraparesis spastica) to get relevant motional experiences of appropriate quality and quantity is now the greatest challenge for us in the field of neurorehabilitation. These motional experiences may establish many cognitive processes, but may also cause additional secondary cognitive dysfunctions such as disorders in body image, figure invariance, visual perception, auditory differentiation, concentration, analytic and synthetic ways of thinking, visual memory etc. Virtual Reality is a technology that provides a sense of presence in a real environment with the help of 3D pictures and animations formed in a computer environment and enable the person to interact with the objects in that environment. One of our biggest challenges is to find a well suited input device (hardware) to let the children with severe physical disabilities to interact with the computer. Based on our own experiences and a thorough literature review we have come to the conclusion that an effective combination of eye-tracking and EMG devices should work well.

  3. Virtual Reality and Public Administration

    Directory of Open Access Journals (Sweden)

    István TÓZSA

    2013-02-01

    Full Text Available This study serves as an introduction to how virtual reality systems could be applied in public administration and what research tasks would be necessary to accomplish a project. E-government solutions began to emerge in public administration approximately a decade ago all over the developed world. Administration service facilities via the Internet did not attract many customers, because of the digital divide. E-government solutions were extended to mobile devices as well, but the expected breakthrough of usage has not ensued. The virtual reality form of public administration services recommended in this study has the most attractive outlay and the simplest navigation tools if compared to ‘traditional’ Internet based e-government. Thus, in accordance with the worldwide amazingly quick spread of the virtual reality systems of Second Life and 3 D types of entertainment, virtual reality applications in public administration could rely on a wide range of acceptance as well.

  4. Virtual reality exposure therapy

    OpenAIRE

    Rothbaum, BO; Hodges, L; Kooper, R

    1997-01-01

    It has been proposed that virtual reality (VR) exposure may be an alternative to standard in vivo exposure. Virtual reality integrates real-time computer graphics, body tracking devices, visual displays, and other sensory input devices to immerse a participant in a computer- generated virtual environment. Virtual reality exposure is potentially an efficient and cost-effective treatment of anxiety disorders. VR exposure therapy reduced the fear of heights in the first control...

  5. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  6. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  7. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  8. INTERACTIVE 3D SYSTEMS OF VIRTUAL REALITY AS ONE OF THE DIRECTIONS FOR EVOLUTION OF DISTANCE LEARNING TECHNOLOGIES IN HIGHER SCOOL

    Directory of Open Access Journals (Sweden)

    Д В Сенашенко

    2016-12-01

    Full Text Available The article describes history of 3D virtual interactive technology developing and gives story of it’s using for different business companies and universities. Statistical analysis of target audience is provided. Features of such systems are described. Particularly author mentions functionality and advantages of 3D-systmes as one of long-term distant learning technology during educational program realization and formulates arguments for introduction of this technology to distant education systems of Russian Higher school. Discusses usability of it for distance learning in high school.

  9. Virtual reality musical instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low cost technologies has created a wide interest in virtual reality (VR), but how to design and evaluate multisensory interactions in VR remains as a challenge. In this paper, we focus on virtual reality musical instruments, present an overview of our...

  10. Virtual realities and education

    OpenAIRE

    Curcio Igor D.D.; Dipace Anna; Norlund Anita

    2016-01-01

    The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are...

  11. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    Science.gov (United States)

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  12. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2016-08-01

    Full Text Available Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding

  13. Semi- and virtual 3D dosimetry in clinical practice

    DEFF Research Database (Denmark)

    Korreman, S. S.

    2013-01-01

    In this review, 3D dosimetry is divided in three categories; "true" 3D, semi-3D and virtual 3D. Virtual 3D involves the use of measurement arrays either before or after beam entry in the patient/phantom, whereas semi-3D involves use of measurement arrays in phantoms mimicking the patient. True 3D...

  14. Virtual Representations in 3D Learning Environments

    Science.gov (United States)

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  15. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  16. Virtual Reality for Sport Training

    OpenAIRE

    Stinson, Cheryl Ann

    2013-01-01

    Virtual reality (VR) has been successfully applied to a broad range of training domains; however, to date there is little research investigating its benefits for sport training. In this work we investigated the feasibility and usefulness of using VR for two sport subdomains: sport psychology and sport biomechanics. In terms of sport psychology training, high-fidelity VR systems could be used to display realistic 3D environments to induce anxiety, allowing resilience-training systems to prepar...

  17. Magnetic resonance urography by virtual reality modelling.

    Science.gov (United States)

    Beigi, Navid; Sangild, Thomas; Terkildsen, Søren Vorre; Deding, Dorthe; Stødkilde-Jørgensen, Hans; Pedersen, Michael

    2003-01-01

    The purpose of this study was to create a 3D visualization of the urinary tract by a novel virtual reality approach, and to evaluate the usefulness of this method for papillary classification as compared with 2D urogram obtained by maximum intensity projection (MIP). In one healthy pig, magnetic resonance urography was performed using a T1-weighted 3D gradient echo pulse sequence. Post-processing was performed by means of an MIP algorithm and by using 3D virtual reality modelling, followed by manual classification of papillae as being either simple or compound. The 2D MIP urogram demonstrated 6 simple and 6 compound papillae, whereas the 3D urogram demonstrated 5 simple and 7 compound papillae. In both urograms, some papillae were unsuccessfully classified. The possibility of using virtual reality devices allowed 3D rotation and offered additional diagnostic information. However, further studies should reveal its feasibility in diseased kidneys.

  18. Virtual realities and education

    Directory of Open Access Journals (Sweden)

    Curcio Igor D.D.

    2016-12-01

    Full Text Available The purpose of this article is to highlight the state of the art of virtual reality, augmented reality, mixed reality technologies and their applications in formal education. We also present a selected list of case studies that prove the utility of these technologies in the context of formal education. Furthermore, as byproduct, the mentioned case studies show also that, although the industry is able to develop very advanced virtual environment technologies, their pedagogical implications are strongly related to a well-designed theoretical framework.

  19. Transparent 3D display for augmented reality

    Science.gov (United States)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  20. Virtual reality representations in contemporary media

    CERN Document Server

    Chan, Melanie

    2014-01-01

    The idea of virtual realities has a long and complex historical trajectory, spanning from Plato's concept of the cave and the simulacrum, to artistic styles such as Trompe L'oeil, and more recently developments in 3D film, television and gaming. However, this book will pay particular attention to the time between the 1980s to the 1990s when virtual reality and cyberspace were represented, particularly in fiction, as a wondrous technology that enabled transcendence from the limitations of physical embodiment. The purpose of this critical historical analysis of representations of virtual reality

  1. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  2. Virtual reality systems

    Science.gov (United States)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  3. Virtual Reality Musical Instruments

    DEFF Research Database (Denmark)

    Serafin, Stefania; Erkut, Cumhur; Kojs, Juraj

    2016-01-01

    The rapid development and availability of low-cost technologies have created a wide interest in virtual reality. In the field of computer music, the term “virtual musical instruments” has been used for a long time to describe software simulations, extensions of existing musical instruments......, and ways to control them with new interfaces for musical expression. Virtual reality musical instruments (VRMIs) that include a simulated visual component delivered via a head-mounted display or other forms of immersive visualization have not yet received much attention. In this article, we present a field...... overview of VRMIs from the viewpoint of the performer. We propose nine design guidelines, describe evaluation methods, analyze case studies, and consider future challenges....

  4. An Innovative Direct-Interaction-Enabled Augmented-Reality 3D System

    Directory of Open Access Journals (Sweden)

    Sheng-Hsiung Chang

    2013-01-01

    Full Text Available Previous augmented-reality (AR applications have required users to observe the integration of real and virtual images on a display. This study proposes a novel concept regarding AR applications. By integrating AR techniques with marker identification, virtual-image output, imaging, and image-interaction processes, this study rendered virtual images that can interact with predefined markers in a real three-dimensional (3D environment.

  5. METHODOLOGY TO CREATE DIGITAL AND VIRTUAL 3D ARTEFACTS IN ARCHAEOLOGY

    Directory of Open Access Journals (Sweden)

    Calin Neamtu

    2016-12-01

    Full Text Available The paper presents a methodology to create 3D digital and virtual artefacts in the field of archaeology using CAD software solution. The methodology includes the following steps: the digitalization process, the digital restoration and the dissemination process within a virtual environment. The resulted 3D digital artefacts have to be created in files formats that are compatible with a large variety of operating systems and hardware configurations such as: computers, graphic tablets and smartphones. The compatibility and portability of these 3D file formats has led to a series of quality related compromises to the 3D models in order to integrate them on in a wide variety of application that are running on different hardware configurations. The paper illustrates multiple virtual reality and augmented reality application that make use of the virtual 3D artefacts that have been generated using this methodology.

  6. Virtual Reality in Neurorehabilitation

    OpenAIRE

    Stasieńko Agnieszka; Sarzyńska-Długosz Iwona

    2016-01-01

    This article includes current information on the use of modern IT solutions and virtual-reality (VR)-based technologies in medical rehabilitation. A review of current literature on VR-based interventions and their indications, benefits and limitations in patients with nervous system diseases was conducted. The popularity of VR-based training as a tool used for rehabilitation of patients with acute and chronic deficits in both sensory-motor and cognitive disorders is increasing. Still, there i...

  7. Virtual hand: a 3D tactile interface to virtual environments

    Science.gov (United States)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  8. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    2017-01-01

    virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  9. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  10. The Virtual Reality Modeling Language and Java

    OpenAIRE

    Brutzman, Don

    1998-01-01

    The Virtual Reality Modeling Language (VRML) and Java provide a standardized, portable and platform-independent way to render dynamic, interactive 3D scenes across the Internet. Integrating two powerful and portable software languages provides interactive 3D graphics plus complete programming capabilities plus network access. Intended for programmers and scene authors, this paper provides a VRML overview, synopsizes the open development history of the specification, provdes a condensed summ...

  11. Reality in Virtual Learning

    DEFF Research Database (Denmark)

    Lindberg, Frank; Pettersson, Michael

    The development of ITC has increased focus onto distance learning programs worldwide. Most universities today offer distance learning programs that are based on the Internet. This development represents a fundamental change in the very logic of being a university. It is no longer enough to rely...... characteristics of the program, however, it is particularly interesting to investigate the role that virtual studying serves in the construction of reality and meaning. Furthermore, as it is assumed that experiences cannot be separated from who one is (being-in-the world), the process of human change during...

  12. Virtual Reality in Neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Stasieńko Agnieszka

    2016-12-01

    Full Text Available This article includes current information on the use of modern IT solutions and virtual-reality (VR-based technologies in medical rehabilitation. A review of current literature on VR-based interventions and their indications, benefits and limitations in patients with nervous system diseases was conducted. The popularity of VR-based training as a tool used for rehabilitation of patients with acute and chronic deficits in both sensory-motor and cognitive disorders is increasing. Still, there is a need for large randomized trials to evaluate the efficacy and safety of VR-based rehabilitation techniques in different disease entities. .

  13. Virtual Reality for Anxiety Disorders

    Directory of Open Access Journals (Sweden)

    Elif Uzumcu

    2018-03-01

    Full Text Available Virtual reality is a relatively new exposure tool that uses three-dimensional computer-graphics-based technologies which allow the individual to feel as if they are physically inside the virtual environment by misleading their senses. As virtual reality studies have become popular in the field of clinical psychology in recent years, it has been observed that virtual-reality-based therapies have a wide range of application areas, especially on anxiety disorders. Studies indicate that virtual reality can be more realistic than mental imagery and can create a stronger feeling of ԰resenceԻ that it is a safer starting point compared to in vivo exposure; and that it can be applied in a more practical and controlled manner. The aim of this review is to investigate exposure studies based on virtual reality in anxiety disorders (specific phobias, panic disorder and agoraphobias, generalized anxiety disorder, social phobia, posttraumatic stress disorder and obsessive compulsive disorder.

  14. Assessing 3D Virtual World Disaster Training Through Adult Learning Theory

    Directory of Open Access Journals (Sweden)

    Lee Taylor-Nelms

    2014-10-01

    Full Text Available As role-play, virtual reality, and simulated environments gain popularity through virtual worlds such as Second Life, the importance of identifying best practices for education and emergency management training becomes necessary. Using a formal needs assessment approach, we examined the extent to which 3D virtual tornado simulation trainings follow the principles of adult learning theory employed by the Federal Emergency Management Agency's (FEMA National Training and Education Division. Through a three-fold methodology of observation, interviews, and reflection on action, 3D virtual world tornado trainings were analyzed for congruence to adult learning theory.

  15. Virtual Reality, Combat, and Communication.

    Science.gov (United States)

    Thrush, Emily Austin; Bodary, Michael

    2000-01-01

    Presents a brief examination of the evolution of virtual reality devices that illustrates how the development of this new medium is influenced by emerging technologies and by marketing pressures. Notes that understanding these influences may help prepare for the role of technical communicators in building virtual reality applications for education…

  16. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    Science.gov (United States)

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  17. Usability Evaluation of an Adaptive 3D Virtual Learning Environment

    Science.gov (United States)

    Ewais, Ahmed; De Troyer, Olga

    2013-01-01

    Using 3D virtual environments for educational purposes is becoming attractive because of their rich presentation and interaction capabilities. Furthermore, dynamically adapting the 3D virtual environment to the personal preferences, prior knowledge, skills and competence, learning goals, and the personal or (social) context in which the learning…

  18. VIRTUAL REALITY HYPNOSIS.

    Science.gov (United States)

    Askay, Shelley Wiechman; Patterson, David R; Sharar, Sam R

    2009-03-01

    Scientific evidence for the viability of hypnosis as a treatment for pain has flourished over the past two decades (Rainville, Duncan, Price, Carrier and Bushnell, 1997; Montgomery, DuHamel and Redd, 2000; Lang and Rosen, 2002; Patterson and Jensen, 2003). However its widespread use has been limited by factors such as the advanced expertise, time and effort required by clinicians to provide hypnosis, and the cognitive effort required by patients to engage in hypnosis.The theory in developing virtual reality hypnosis was to apply three-dimensional, immersive, virtual reality technology to guide the patient through the same steps used when hypnosis is induced through an interpersonal process. Virtual reality replaces many of the stimuli that the patients have to struggle to imagine via verbal cueing from the therapist. The purpose of this paper is to explore how virtual reality may be useful in delivering hypnosis, and to summarize the scientific literature to date. We will also explore various theoretical and methodological issues that can guide future research.In spite of the encouraging scientific and clinical findings, hypnosis for analgesia is not universally used in medical centres. One reason for the slow acceptance is the extensive provider training required in order for hypnosis to be an effective pain management modality. Training in hypnosis is not commonly offered in medical schools or even psychology graduate curricula. Another reason is that hypnosis requires far more time and effort to administer than an analgesic pill or injection. Hypnosis requires training, skill and patience to deliver in medical centres that are often fast-paced and highly demanding of clinician time. Finally, the attention and cognitive effort required for hypnosis may be more than patients in an acute care setting, who may be under the influence of opiates and benzodiazepines, are able to impart. It is a challenge to make hypnosis a standard part of care in this environment

  19. Virtual reality in posturography.

    Science.gov (United States)

    Tossavainen, Timo; Toppila, Esko; Pyykkö, Ilmari; Forsman, Pia M; Juhola, Martti; Starck, Jukka

    2006-04-01

    Balance dysfunctions are common, especially among elderly people. Present methods for the diagnosis and evaluation of severity of dysfuntion have limited value. We present a system that makes it easy to implement different visual and mechanical perturbations for clinical investigations of balance and visual-vestibular interaction. The system combines virtual reality visual stimulation with force platform posturography on a moving platform. We evaluate our contruction's utility in a classification task between 33 healthy controls and 77 patients with Ménière's disease, using a series of tests with different visual and mechanical stimuli. Responses of patients and controls differ significantly in parameters computed from stabilograms. We also show that the series of tests achieves a classification accuracy slightly over 80% between controls and patients.

  20. Augmented Virtual Reality Laboratory

    Science.gov (United States)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  1. Real-time 3D human capture system for mixed-reality art and entertainment.

    Science.gov (United States)

    Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu

    2005-01-01

    A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.

  2. Virtual reality and psychotherapy.

    Science.gov (United States)

    Botella, Cristina; Quero, Soledad; Baños, Rosa M; Perpiñá, Conxa; García Palacios, Azucena; Riva, Giuseppe

    2004-01-01

    Virtual Reality (VR) is a new technology consisting on a graphic environment in which the user, not only has the feeling of being physically present in a virtual world, but he/she can interact with it. The first VR workstations were designed for big companies in order to create environments that simulate certain situations to train professionals. However, at this moment a great expansion of this technology is taking place in several fields, including the area of health. Especially interesting for us is the use of VR as a therapeutic tool in the treatment of psychological disorders. Compared to the traditional treatments, VR has many advantages (e.g., it is a protected environment for the patient, he/she can re-experience many times the feared situation, etc.). There are already data on the effectiveness of this technology in the treatment of different psychological disorders; here anxiety disorders, eating disorders and sexual disorders are reviewed. Finally, this chapter ends with some words about the limitations of VR and future perspectives.

  3. Virtual reality in telemedicine.

    Science.gov (United States)

    Riva, G; Gamberini, L

    2000-01-01

    Virtual reality (VR) can be considered as the leading edge of a general evolution of present communication interfaces involving the television, computer, and telephone. The main characteristic of this evolution is the full immersion of the human sensorimotor channels into a vivid and global communication experience. Because telemedicine principally focuses on transmitting medical information, VR has the potential to enhance this function. Particularly, VR can be used in telemedicine as an advanced communication interface, which enables a more intuitive mode of interacting with information, and as a flexible environment that enhances the feeling of physical presence during the interaction. In this article, the state of the art in VR-based telemedicine applications is described. This technology is now used in remote or augmented surgery as well as surgical training, which are critically dependent on eye-hand coordination. Recently, however, different researchers have tried to use virtual environments in medical visualization and for assessment and rehabilitation in neuropsychology. This article also discusses technological, ergonomical, and human factor issues, and specific guidelines are presented for expanding the use of VR in telemedicine.

  4. Implementation of a 3D Virtual Drummer

    NARCIS (Netherlands)

    Magnenat-ThalmannThalmann, M.; Kragtwijk, M.; Nijholt, Antinus; Thalmann, D.; Zwiers, Jakob

    2001-01-01

    We describe a system for the automatic generation of a 3D animation of a drummer playing along with a given piece of music. The input, consisting of a sound wave, is analysed to determine which drums are struck at what moments. The Standard MIDI File format is used to store the recognised notes.

  5. Virtual reality for spherical images

    Science.gov (United States)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  6. The ethnography of virtual reality

    Directory of Open Access Journals (Sweden)

    Gavrilović Ljiljana 1

    2004-01-01

    Full Text Available This paper discusses possible application of ethnographic research in the realm of virtual reality, especially in the relationship between cultures in virtual communities. This represents an entirely new area of ethnographic research and therefore many adjustments in the research design are needed for example, a development of a specific method of data gathering and tools for their verification. A virtual, cyber space is a version of social space more or less synchronous with it, but without the, "real", that is, physical presence of the people who create it. This virtual reality, defined and bounded by virtual space, is in fact real - and though we are not able to observe real, physical parameters of its existence, we can perceive its consequences. In sum, an innovative ethnographic research method is fully applicable for exploring the realm of virtual reality; in order to do so we need to expand, in addition to the new research design and methods, the field of science itself.

  7. [Development of a software for 3D virtual phantom design].

    Science.gov (United States)

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  8. Physics Education in Virtual Reality: An Example

    OpenAIRE

    Hannes Kaufmann; Bernd Meyer

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths and other properties of objects before, during and after experiments. Innovative teaching content is presented thatexploits the strengths of the 3D...

  9. Solid Modelling Interaction with Sensors for Virtual Reality Welding

    Directory of Open Access Journals (Sweden)

    Bharath V. G.

    2018-01-01

    Full Text Available The imperative part of strong displaying in virtual reality framework is to improve the movement of a user with definitive movement control in genuine intelligent condition. In a real environment motion characteristic is based on sensors and servomechanisms where as in virtual reality systems the motion fundamentals are kinematic in nature. To achieve physically correct interactivity suitable dynamic constraints, should be imposed which can be obtained by augmented reality interface. Beyond input and output hardware, the underlying software plays a very important role in virtual reality systems. It is responsible for the managing of input/output devices, analysing incoming data and generating proper feedback. This research paper focusses on movement displaying for connection between CAD models and Virtual Reality Models using 3ds Max 2017 and Unity 3d softwares. The paper portrays different equipment arrangement of sensors and Arduino for virtual reality welding.

  10. Poster: Virtual reality interaction using mobile devices

    KAUST Repository

    Aseeri, Sahar A.

    2013-03-01

    In this work we aim to implement and evaluate alternative approaches for interacting with virtual environments on mobile devices for navigation, object selection and manipulation. Interaction with objects in virtual worlds using traditional input such as current state-of-the-art devices is often difficult and could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. We have developed new methods to perform different kinds of interactions using a mobile device (e.g. a smartphone) both as input device, performing selection and manipulation of objects, and as output device, utilizing the screen as an extra view (virtual camera or information display). Our hypothesis is that interaction via mobile devices facilitates simple tasks like the ones described within immersive virtual reality systems. We present here our initial implementation and result. © 2013 IEEE.

  11. ESL Teacher Training in 3D Virtual Worlds

    Science.gov (United States)

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  12. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  13. Game-Like Language Learning in 3-D Virtual Environments

    Science.gov (United States)

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  14. A Virtual Tomb for Kelvingrove: Virtual Reality, Archaeology and Education

    Directory of Open Access Journals (Sweden)

    Melissa M. Terras

    1999-11-01

    Full Text Available The use of computers as an educational resource in museums is becoming increasingly popular as more and more institutions realise that multimedia displays are very successful in imparting a broad variety of information. Although three-dimensional reconstructions of sites and structures have been used in archaeology for many years, the majority of museum computer installations have dealt with two-dimensional media because of the costs, equipment and labour involved in producing interactive 3D scenes. The birth of VRML (Virtual Reality Modeling Language has changed the way virtual reality is implemented and viewed. As an internet protocol, VRML can be used on most major platforms and implemented by anyone with a word-processing package, an internet browser, and the relevant plug-in. There is no reason why this new technology cannot be adopted by archaeologists and museums to produce virtual reality models of structures, sites and objects to aid the research of specialists and the education of the public. This project (undertaken at the Humanities Advanced Technology and Information Institute, University of Glasgow, Scotland, between May and October 1998 investigated the practicalities involved in using VRML to create a virtual reality model for use in a public space. A model of the Egyptian tomb of Sen-nedjem was developed for installation in the Egyptian Gallery of the Kelvingrove Museum and Art Gallery, Glasgow, in the hope that the introduction of this computer display would encourage the museum visitor's interest in the gallery's existing artefacts. Creation of the model would also investigate the possibility of using VRML to build accurate archaeological reconstructions cheaply and efficiently using publicly available software and existing archaeological resources. A fully functioning virtual reality model of the tomb of Sen-nedjem has been created, incorporating interactive elements, photorealistic representation, and animation, and this

  15. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  16. 3D Viewing: Odd Perception - Illusion? reality? or both?

    Science.gov (United States)

    Kisimoto, K.; Iizasa, K.

    2008-12-01

    We live in the three dimensional space, don't we? It could be at least four dimensions, but that is another story. In either way our perceptual capability of 3D-Viewing is constrained by our 2D-perception (our intrinsic tools of perception). I carried out a few visual experiments using topographic data to show our intrinsic (or biological) disability (or shortcoming) in 3D-recognition of our world. Results of the experiments suggest: (1) 3D-surface model displayed on a 2D-computer screen (or paper) always has two interpretations of the 3D- surface geometry, if we choose one of the interpretation (in other word, if we are hooked by one perception of the two), we maintain its perception even if the 3D-model changes its viewing perspective in time shown on the screen, (2) more interesting is that 3D-real solid object (e.g.,made of clay) also gives above mentioned two interpretations of the geometry of the object, if we observe the object with one-eye. Most famous example of this viewing illusion is exemplified by a magician, who died in 2007, Jerry Andrus who made a super-cool paper crafted dragon which causes visual illusion to one-eyed viewer. I, by the experiments, confirmed this phenomenon in another perceptually persuasive (deceptive?) way. My conclusion is that this illusion is intrinsic, i.e. reality for human, because, even if we live in 3D-space, our perceptional tool (eyes) is composed of 2D sensors whose information is reconstructed or processed to 3D by our experience-based brain. So, (3) when we observe the 3D-surface-model on the computer screen, we are always one eye short even if we use both eyes. One last suggestion from my experiments is that recent highly sophisticated 3D- models might include too many information that human perceptions cannot handle properly, i.e. we might not be understanding the 3D world (geospace) at all, just illusioned.

  17. Exploring the educational potential of 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Francesc Marc ESTEVE MON

    2013-12-01

    Full Text Available 3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to design educational complex activities to develop these key competences. For this purpose it’s necessary to set an appropriate teaching strategy to put this knowledge and skills into action, and design suitable mechanisms for registration and systematization. This paper analyzes the potential of these environments and presents two experiences in 3D virtual environments: (1 to develop teamwork and self-management skills, and (2 to assess digital literacy in preservice teachers.

  18. 3D modeling for the generation of virtual heritage

    Directory of Open Access Journals (Sweden)

    Francisco Díaz Gómez

    2015-10-01

    Full Text Available The present article is focused on the generation of virtual 3D contents from cultural heritage. Its main structure is divided in two well-defined blocks: the first one focused in the generation of 3D models, analyzing the most used technologies of 3D measuring in the cultural heritage, the most important software applications for the management of the 3D models obtained and the generation of the target contents; and a second block for exposing two case studies showing potential of these technologies, previously shown, for approaching the cultural heritage to both the general public and researchers, due to the development of the information and communication technologies.

  19. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  20. Integration of the virtual 3D model of a control system with the virtual controller

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  1. 3D virtual human rapid modeling method based on top-down modeling mechanism

    Directory of Open Access Journals (Sweden)

    LI Taotao

    2017-01-01

    Full Text Available Aiming to satisfy the vast custom-made character demand of 3D virtual human and the rapid modeling in the field of 3D virtual reality, a new virtual human top-down rapid modeling method is put for-ward in this paper based on the systematic analysis of the current situation and shortage of the virtual hu-man modeling technology. After the top-level realization of virtual human hierarchical structure frame de-sign, modular expression of the virtual human and parameter design for each module is achieved gradu-al-level downwards. While the relationship of connectors and mapping restraints among different modules is established, the definition of the size and texture parameter is also completed. Standardized process is meanwhile produced to support and adapt the virtual human top-down rapid modeling practice operation. Finally, the modeling application, which takes a Chinese captain character as an example, is carried out to validate the virtual human rapid modeling method based on top-down modeling mechanism. The result demonstrates high modelling efficiency and provides one new concept for 3D virtual human geometric mod-eling and texture modeling.

  2. Evaluation of Collaborative Learning Settings in 3D Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Vanessa Chang

    2009-11-01

    Full Text Available Virtual 3D worlds are gaining popularity among the general population and the virtual world environment is widely used particularly by the younger generations as a knowledge and social tool. In recent years, universities have conducted experiments with the use of virtual 3D worlds for teaching and learning. Virtual 3D worlds are no longer just for the stereotypical geek. By 2011 it is estimated that about 80% of active Internet users will have an “avatar” and/or a “second life” in some form of virtual world environment. This paper attempts to contextualize the evolution and generations of learners for learning in the 21st century. This paper presents a virtual learning environment created using Second Life equipped with four types of virtual space – collaborative area, common area, teacher-student meeting area, and social recreation area. An experiment is conducted involving university students who are enrolled in a unit with the aim of evaluating the use of Second Life for collaborative learning. A pre-survey evaluation was gathered followed by a post-survey evaluation. The positive results of these evaluations as well as lessons learned during the implementation phase are discussed in this paper.

  3. Augmented Reality sebagai Alat Pengenalan Hewan Purbakala dengan Animasi 3D menggunakan Metode Single Marker

    Directory of Open Access Journals (Sweden)

    Meyti Eka Apriyani

    2015-05-01

    Full Text Available Saat ini untuk mempelajari hewan purbakala melalui pelajaran sejarah di sekolah hanya dilakukan hanya melalui sebuah buku dan gambar yang terdapat pada buku-buku dan alat peraga biasa, tetapi dengan menggunakan teknologi augmented reality diharapkan dalam pembelajarannya dapat membuat pelajaran sejarah terutama mengenai hewan purbakala dapat lebih menarik dan menyenangkan karena augmented reality dapat menjadi sebuah alat peraga virtualisasi hewan purbakala dlam bentuk 3D. Aplikasi augmented reality ini sebagai media pengenalan hewan purbakala kepada anak-anak usia 13 sampai 18 tahun secara virtual menggunakan perangkat smartphone agar proses pengenalan Hewan purbakala dapat menjadi lebih menarik dan mudah diapliaksikan karena mudah dibawa serta tidak menggunakan alat peraga yang sulit didapat dan memiliki harga yang mahal. Virtualisasi Alat Peraga Pengenalan Hewan Purbakala menggunakan augmented reality dapat menampilkan Animasi Hewan purbakala dalam bentuk 3D. Dengan proses, pengguna menjalankan aplikasi kemudian aplikasi akan melakukan pelacakan marker, setelah marker dikenali sesuai data acuan yang terdapat didalam sistem aplikasi, maka aplikasi dapat menampilkan binatang Purbakala secara 3D pada layar smartphone.

  4. AL-HARM EXPANSION MOVIE BASED ON VIRTUAL REALITY

    OpenAIRE

    Alanoud Salem; Sara Musallam; El-Shaimaa Nada; Ahmed Ahmed

    2015-01-01

    Animated movies are excellent virtual environments for creating models in high quality. Animated movies can include 3D models, sounds and lights effects, and detailed maps. In this paper, a virtual reality movie is applied to Al-Haram Expansion stages including the future stage of expansion. 3DMAX program is used to rich the maximum benefits of using 3D modeling. Maps with details are built by using ARCGIS program in order to understand the real difference between the three dif...

  5. Intelligent web agents for a 3D virtual community

    Science.gov (United States)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  6. Molecular Rift: Virtual Reality for Drug Designers.

    Science.gov (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  7. Virtual Reality in Psychology

    Science.gov (United States)

    Foreman, Nigel

    2009-01-01

    The benefits of using virtual environments (VEs) in psychology arise from the fact that movements in virtual space, and accompanying perceptual changes, are treated by the brain in much the same way as those in equivalent real space. The research benefits of using VEs, in areas of psychology such as spatial learning and cognition, include…

  8. Virtual Reality in Education and Training.

    Science.gov (United States)

    Andolsek, Diane L.

    1995-01-01

    Provides an overview of virtual reality from an education perspective. Defines the technology in terms of equipment and participatory experience, examines the potential applications of virtual reality in education and training, and considers the concerns and limitations of the technology. Overall, research indicates that virtual reality offers…

  9. The Internet and medical collaboration using virtual reality.

    Science.gov (United States)

    Liang, Wen Yau; O'Grady, Peter

    2003-01-01

    Computed Tomography (CT) provides a large amount of data but the presentation of the data to a physician can be less than satisfactory. Ideally, the image data should be available to physicians in interactive 3D to allow for improved visualization, planning and diagnosis. A virtual reality representation that not only allows for the manipulation of the image but also allows for the user to, in effect, move inside the image remotely would be ideal. In this paper the research associated with virtual reality is discussed. A formalism is then presented to create, from the CT data, the virtual reality world in the Virtual Reality Modeling Language. An implementation is described of this formalism that uses the Internet to allow for users in remote locations to view and manipulate the virtual worlds.

  10. Virtual reality and planetary exploration

    Science.gov (United States)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  11. Virtual reality applied to teletesting

    NARCIS (Netherlands)

    Berg, T.W. van den; Smeenk, R.J.M.; Mazy, A.; Jacques, P.; Argüello, L.; Mills, S.

    2003-01-01

    The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company

  12. Virtual Reality: Ready or Not!

    Science.gov (United States)

    Lewis, Joan E.

    1994-01-01

    Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)

  13. COGNITIVE ASPECTS OF COLLABORATION IN 3D VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    V. Juřík

    2016-06-01

    Full Text Available Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators’ actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators’ responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators’ strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  14. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; Lange, Belinda; George, Stacey; Deutsch, Judith E; Saposnik, Gustavo; Crotty, Maria

    2017-11-20

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation with commercial gaming consoles in particular, being rapidly adopted in clinical settings. This is an update of a Cochrane Review published first in 2011 and then again in 2015. Primary objective: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity.Secondary objectives: to determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance, global motor function, cognitive function, activity limitation, participation restriction, quality of life, and adverse events. We searched the Cochrane Stroke Group Trials Register (April 2017), CENTRAL, MEDLINE, Embase, and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data, and assessed risk of bias. A third review author moderated disagreements when required. The review authors contacted investigators to obtain missing information. We included 72 trials that involved 2470 participants. This review includes 35 new studies in addition to the studies included in the previous version of this review. Study sample sizes were generally small and interventions varied in terms of both the goals of treatment and the virtual reality devices used. The risk of bias present in many studies was unclear due to poor reporting. Thus, while there are a large

  15. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    Science.gov (United States)

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  16. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    2017-01-01

    Many user studies are now conducted outside laboratories to increase the number and heterogeneity of participants. These studies are conducted in diverse settings, with the potential to give research greater external validity and statistical power at a lower cost. The feasibility of conducting...... virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body...

  17. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  18. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  19. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    Science.gov (United States)

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.

  20. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    Science.gov (United States)

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.

  1. Virtual Libraries: Service Realities.

    Science.gov (United States)

    Novak, Jan

    This paper discusses client service issues to be considered when transitioning to a virtual library situation. Themes related to the transitional nature of society in the knowledge era are presented, including: paradox and a contradictory nature; blurring of boundaries; networks, systems, and holistic thinking; process/not product, becoming/not…

  2. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  3. Virtual Reality in Denmark

    Science.gov (United States)

    2005-12-01

    the European Regional Development Fund (ERDF), Aalborg University, the National Survey and Cadastre – Denmark, Kampsax A/S, and Informi GIS A/S...National Survey and Cadastre Department. Everybody can go into the North Jutland County homepage, www.3d.nja.dk, and fly around in the county or you can...Fund (ERDF), Aalborg University, the National Survey and Cadastre – Denmark, Kampsax A/S, and Informi GIS A/S VR Media Lab = Military

  4. Direct Manipulation in Virtual Reality

    Science.gov (United States)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  5. Motor rehabilitation using virtual reality

    Directory of Open Access Journals (Sweden)

    Sveistrup Heidi

    2004-12-01

    Full Text Available Abstract Virtual Reality (VR provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs, haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.

  6. Motor rehabilitation using virtual reality.

    Science.gov (United States)

    Sveistrup, Heidi

    2004-12-10

    Virtual Reality (VR) provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs), haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.

  7. Virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, Kate E; George, Stacey; Thomas, Susie; Deutsch, Judith E; Crotty, Maria

    2015-02-12

    Virtual reality and interactive video gaming have emerged as recent treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles have been rapidly adopted in clinical settings. This is an update of a Cochrane Review published in 2011. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on upper limb function and activity. To determine the efficacy of virtual reality compared with an alternative intervention or no intervention on: gait and balance activity, global motor function, cognitive function, activity limitation, participation restriction and quality of life, voxels or regions of interest identified via imaging, and adverse events. Additionally, we aimed to comment on the feasibility of virtual reality for use with stroke patients by reporting on patient eligibility criteria and recruitment. We searched the Cochrane Stroke Group Trials Register (October 2013), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2013, Issue 11), MEDLINE (1950 to November 2013), EMBASE (1980 to November 2013) and seven additional databases. We also searched trials registries and reference lists. Randomised and quasi-randomised trials of virtual reality ("an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion") in adults after stroke. The primary outcome of interest was upper limb function and activity. Secondary outcomes included gait and balance function and activity, and global motor function. Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted investigators to obtain missing information. We included 37 trials that involved 1019 participants. Study sample sizes were generally small and interventions

  8. Virtual Reality based Learning Systems

    OpenAIRE

    Cheng, Yang

    2016-01-01

    This article is based on studies of the existing literature, focusing on the states-of-the-arts on virtual reality (VR) and its potential uses in learning. Different platforms have been used to improve the learning effects of VR that offers exciting opportunities in various fields. As more and more students want in a distance, part-time, or want to continue their education, VR has attracted considerable attention in learning, training, and traditional education. VR based learning enables oper...

  9. The 3D virtual environment online for real shopping

    OpenAIRE

    Khalil, Nahla

    2015-01-01

    The development of information technology and Internet has led to rapidly progressed in e-commerce and online shopping, due to the convenience that they provide consumers. E-commerce and online shopping are still not able to fully replace onsite shopping. In contrast, conventional online shopping websites often cannot provide enough information about a product for the customer to make an informed decision before checkout. 3D virtual shopping environment show great potential for enhancing e-co...

  10. A hitchhiker's guide to virtual reality

    CERN Document Server

    McMenemy , Karen

    2007-01-01

    A Hitchhiker's Guide to Virtual Reality brings together under one cover all the aspects of graphics, video, audio, and haptics that have to work together to make virtual reality a reality. Like any good guide, it reveals the practical things you need to know, from the viewpoint of authors who have been there. This two-part guide covers the science, technology, and mathematics of virtual reality and then details its practical implementation. The first part looks at how the interface between human senses and technology works to create virtual reality, with a focus on vision, the most important s

  11. Virtual reality and anthropology

    Energy Technology Data Exchange (ETDEWEB)

    Recheis, Wolfgang E-mail: wolfgang.recheis@uibk.ac.at; Weber, Gerhard W.; Schaefer, Katrin; Knapp, Rudolf; Seidler, Horst; Zur Nedden, Dieter

    1999-08-01

    Since the discovery of the Tyrolean Iceman in 1991 advanced imaging and post processing techniques were successfully applied in anthropology. Specific techniques include spiral computed tomography and 3-dimensional reconstructions including stereolithographic and fused deposition modeling of volume data sets. The Iceman's skull was the first to be reproduced using stereolithography, before this method was successfully applied in preoperative planning. With the advent of high-end graphics workstations and biomedical image processing software packages, 3-dimensional reconstructions were established as a routine tool for analyzing volume data sets. These techniques opened totally new insights in the field of physical anthropology. Computed tomography became the ideal research tool to access the internal structures of various precious fossils without damaging or even touching them. Many of the most precious specimens from the species Autralopithecus (1.8-3.5 Myears), Homo heidelbergensis (200-600 kyears) or Homo neanderthalensis (40-100 kyears) were scanned during the last 5 years. Often the fossils are filled with a stone matrix or other materials. During the postprocessing routines highly advanced algorithms were used to remove virtually these incrustations. Thus it was possible to visualize the morphological structures that lie beneath the matrix. Some specimens were partially destroyed, so the missing parts were reconstructed on computer screen in order to get estimations of the brain volume and endocranial morphology, both major fields of interest in physical anthropology. Moreover the computerized form of the data allows new descriptions of morphologic structures by the means of 'geometric morphometrics'. Some of the results may change aspects and interpretations in human evolution. The introduction of new imaging and post processing techniques created a new field of research: Virtual Anthropology.

  12. 3D multiplayer virtual pets game using Google Card Board

    Science.gov (United States)

    Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam

    2017-08-01

    Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.

  13. Interaksi pada Museum Virtual Menggunakan Pengindera Tangan dengan Penyajian Stereoscopic 3D

    Directory of Open Access Journals (Sweden)

    Gary Almas Samaita

    2017-01-01

    Full Text Available Kemajuan teknologi menjadikan museum mengembangkan cara penyajian koleksinya. Salah satu teknologi yang diadaptasi dalam penyajian museum virtual adalah Virtual Reality (VR dengan stereoscopic 3D. Sayangnya, museum virtual dengan teknik penyajian stereoscopic masih menggunakan keyboard dan mouse sebagai perangkat interaksi. Penelitian ini bertujuan untuk merancang dan menerapkan interaksi dengan pengindera tangan pada museum virtual dengan penyajian stereoscopic 3D. Museum virtual divisualisasikan dengan teknik stereoscopic side-by-side melalui Head Mounting Display (HMD berbasis Android. HMD juga memiliki fungsi head tracking dengan membaca orientasi kepala. Interaksi tangan diterapkan dengan menggunakan pengindera tangan yang ditempatkan pada HMD. Karena pengindera tangan tidak didukung oleh HMD berbasis Android, maka digunakan server sebagai perantara HMD dan pengindera tangan. Setelah melalui pengujian, diketahui bahwa rata-rata confidence rate dari pembacaan pengindera tangan pada pola tangan untuk memicu interaksi adalah sebesar 99,92% dengan rata-rata efektifitas 92,61%. Uji ketergunaan juga dilakukan dengan pendasaran ISO/IEC 9126-4 untuk mengukur efektifitas, efisiensi, dan kepuasan pengguna dari sistem yang dirancang dengan meminta partisipan untuk melakukan 9 tugas yang mewakili interaksi tangan dalam museum virtual. Hasil pengujian menunjukkan bahwa semua pola tangan yang dirancang dapat dilakukan oleh partisipan meskipun pola tangan dinilai cukup sulit dilakukan. Melalui kuisioner diketahui bahwa total 86,67% partisipan setuju bahwa interaksi tangan memberikan pengalaman baru dalam menikmati museum virtual.

  14. Virtual reality: Avatars in human spaceflight training

    Science.gov (United States)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  15. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  16. Virtual Reality: Emerging Applications and Future Directions

    Science.gov (United States)

    Ludlow, Barbara L.

    2015-01-01

    Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…

  17. Unveiling Damnatio Memoriae. The use of 3D digital technologies for the virtual reconstruction of archaeological finds and artefacts

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2016-11-01

    The aim of this paper is to show how the possibility to acquire 3D reality-based data from archaeological finds allows to build 3D digital models that can be analysed and managed in a virtual environment and can be relocated, assembled or restored in order to suggest or graphically support archaeologists’ interpretations and reconstructions. The paper shows the methodology developed for the virtual restoration of the statue of Nero starting from the 3D digitization of the torso that was found 500 years ago by the Roman theatre of Bologna, Italy, the ancient Bononia.

  18. New Desktop Virtual Reality Technology in Technical Education

    Science.gov (United States)

    Ausburn, Lynna J.; Ausburn, Floyd B.

    2008-01-01

    Virtual reality (VR) that immerses users in a 3D environment through use of headwear, body suits, and data gloves has demonstrated effectiveness in technical and professional education. Immersive VR is highly engaging and appealing to technically skilled young Net Generation learners. However, technical difficulty and very high costs have kept…

  19. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    Science.gov (United States)

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  20. Application of Virtual Reality for Visual Presentation in the Mineral ...

    African Journals Online (AJOL)

    Computer Graphics (CG) and Virtual Reality (VR) are becoming very useful in the mineral industry as tools by which engineers, managers and planners can communicate complex engineering designs to the relevant end users in 3- dimensional (3D) presentations. Although 2-dimensional (2D) presentations of technical ...

  1. Virtual Reality: A Tool for Cartographic Visualization | Quaye-Ballard ...

    African Journals Online (AJOL)

    Visualization methods in the analysis of geographical datasets are based on static models, which restrict the visual analysis capabilities. The use of virtual reality, which is a three-dimensional (3D) perspective, gives the user the ability to change viewpoints and models dynamically overcomes the static limitations of ...

  2. Virtual Reality in Education The next challenge

    National Research Council Canada - National Science Library

    Jonathan Carlos Samaniego Villarroel

    2016-01-01

    Virtual reality is a very interesting topic, but quite far from us apparently the Latin American reality is too far to technological advances and therefore costs us understand how they serve educational purposes...

  3. Enhancing tourism with augmented and virtual reality

    OpenAIRE

    Jenny, Sandra

    2017-01-01

    Augmented and virtual reality are on the advance. In the last twelve months, several interesting devices have entered the market. Since tourism is one of the fastest growing economic sectors in the world and has become one of the major players in international commerce, the aim of this thesis was to examine how tourism could be enhanced with augmented and virtual reality. The differences and functional principles of augmented and virtual reality were investigated, general uses were described ...

  4. D3D augmented reality imaging system: proof of concept in mammography.

    Science.gov (United States)

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.

  5. Virtual Reality for Materials Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to research and develop materials through applied virtual reality to enable interactive "materials-by-design." Extensive theoretical and computational...

  6. Comparing 3D virtual methods for hemimandibular body reconstruction.

    Science.gov (United States)

    Benazzi, Stefano; Fiorenza, Luca; Kozakowski, Stephanie; Kullmer, Ottmar

    2011-07-01

    Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies. Copyright © 2011 Wiley-Liss, Inc.

  7. Enhanced LOD Concepts for Virtual 3d City Models

    Science.gov (United States)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  8. Speculations on the representation of architecture in virtual reality

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2017-01-01

    This paper discusses the present and future possibilities of representation models of architecture in new media such as virtual reality, seen in the broader context of tradition, perception, and neurology. Through comparative studies of real and virtual scenarios using eye tracking, the paper...... discusses if the constantly evolving toolset for architectural representation has in itself changed the core values of architecture, or if it is rather the level of skilful application of technology that can inflict on architecture and its quality. It is easy to contemplate virtual reality as an extension...... to the visual field of perception. However, this should not necessarily imply an acceptance of the dominance of vision over the other senses, and the much-criticized retinal architecture with its inherent loss of plasticity. Recent neurology studies indicate that 3D representation models in virtual reality...

  9. The Photogrammetric Survey Methodologies Applied to Low Cost 3d Virtual Exploration in Multidisciplinary Field

    Science.gov (United States)

    Palestini, C.; Basso, A.

    2017-11-01

    In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.

  10. THE PHOTOGRAMMETRIC SURVEY METHODOLOGIES APPLIED TO LOW COST 3D VIRTUAL EXPLORATION IN MULTIDISCIPLINARY FIELD

    Directory of Open Access Journals (Sweden)

    C. Palestini

    2017-11-01

    Full Text Available In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.

  11. ARLearn: augmented reality meets augmented virtuality

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland; Kalz, Marco; Van Ulzen, Patricia; Specht, Marcus

    2012-01-01

    Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., & Specht, M. (2012). ARLearn: augmented reality meets augmented virtuality [Special issue]. Journal of Universal Computer Science - Technology for learning across physical and virtual spaces, 18(15), 2143-2164.

  12. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    Science.gov (United States)

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  13. A virtual reality platform for assessment and rehabilitation of neglect using a kinect.

    Science.gov (United States)

    Cipresso, Pietro; Serino, Silvia; Pedroli, Elisa; Gaggioli, Andrea; Riva, Giuseppe

    2014-01-01

    Unilateral Spatial Neglect (USN) is normally assessed with paper-and-pencil tests. Virtual reality can be an effective neuropsychological tool for a more ecological and functional assessment and rehabilitation of neglect. We developed a 3D Virtual Reality platform - NeuroVirtual 3D - for the assessment and rehabilitation of cognitive deficits, in particular for USN. Within the virtual environments it is possible to interact with virtual objects and execute specific exercises using a Microsoft Kinect. Through the analysis of different grasping tasks it is possible to evaluate in an ecological way the patients' ability to find and handle objects in both sides of the virtual space.

  14. Virtual reality concepts and technologies

    CERN Document Server

    Fuchs, Philippe

    2011-01-01

    A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the user's needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providin

  15. ATLASrift - a Virtual Reality application

    CERN Document Server

    INSPIRE-00225336; Moyse, Edward; Bianchi, Riccardo Maria

    2015-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists - for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice - OculusRift VR system, the development environment - UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/virtual p...

  16. Generating classes of 3D virtual mandibles for AR-based medical simulation.

    Science.gov (United States)

    Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P

    2008-01-01

    Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.

  17. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  18. Virtual Reality and Its Potential Application in Education and Training.

    Science.gov (United States)

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  19. The virtual reality framework for engineering objects

    OpenAIRE

    Ivankov, Petr R.; Ivankov, Nikolay P.

    2006-01-01

    A framework for virtual reality of engineering objects has been developed. This framework may simulate different equipment related to virtual reality. Framework supports 6D dynamics, ordinary differential equations, finite formulas, vector and matrix operations. The framework also supports embedding of external software.

  20. Rationalizing virtual reality based on manufacturing paradigms

    NARCIS (Netherlands)

    Damgrave, Roy Gerhardus Johannes; Lutters, Diederick; Drukker, J. W.

    2014-01-01

    Comparing the evolvement of the manufacturing industry of the last century to the way virtual reality is used nowadays some remarkable similarities come to light. Current virtual reality equipment requires a high level of craftsmanship to achieve the maximum results, and often equipment is specially

  1. Visualizing Compound Rotations with Virtual Reality

    Science.gov (United States)

    Flanders, Megan; Kavanagh, Richard C.

    2013-01-01

    Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…

  2. Image-Based Virtual Tours and 3d Modeling of Past and Current Ages for the Enhancement of Archaeological Parks: the Visualversilia 3d Project

    Science.gov (United States)

    Castagnetti, C.; Giannini, M.; Rivola, R.

    2017-05-01

    The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy). The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  3. IMAGE-BASED VIRTUAL TOURS AND 3D MODELING OF PAST AND CURRENT AGES FOR THE ENHANCEMENT OF ARCHAEOLOGICAL PARKS: THE VISUALVERSILIA 3D PROJECT

    Directory of Open Access Journals (Sweden)

    C. Castagnetti

    2017-05-01

    Full Text Available The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy. The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  4. Virtual 3D planning of tracheostomy placement and clinical applicability of 3D cannula design: a three-step study.

    Science.gov (United States)

    de Kleijn, Bertram J; Kraeima, Joep; Wachters, Jasper E; van der Laan, Bernard F A M; Wedman, Jan; Witjes, M J H; Halmos, Gyorgy B

    2018-02-01

    We aimed to investigate the potential of 3D virtual planning of tracheostomy tube placement and 3D cannula design to prevent tracheostomy complications due to inadequate cannula position. 3D models of commercially available cannula were positioned in 3D models of the airway. In study (1), a cohort that underwent tracheostomy between 2013 and 2015 was selected (n = 26). The cannula was virtually placed in the airway in the pre-operative CT scan and its position was compared to the cannula position on post-operative CT scans. In study (2), a cohort with neuromuscular disease (n = 14) was analyzed. Virtual cannula placing was performed in CT scans and tested if problems could be anticipated. Finally (3), for a patient with Duchenne muscular dystrophy and complications of conventional tracheostomy cannula, a patient-specific cannula was 3D designed, fabricated, and placed. (1) The 3D planned and post-operative tracheostomy position differed significantly. (2) Three groups of patients were identified: (A) normal anatomy; (B) abnormal anatomy, commercially available cannula fits; and (C) abnormal anatomy, custom-made cannula, may be necessary. (3) The position of the custom-designed cannula was optimal and the trachea healed. Virtual planning of the tracheostomy did not correlate with actual cannula position. Identifying patients with abnormal airway anatomy in whom commercially available cannula cannot be optimally positioned is advantageous. Patient-specific cannula design based on 3D virtualization of the airway was beneficial in a patient with abnormal airway anatomy.

  5. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    Science.gov (United States)

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  6. Virtual reality excursions with programs in C

    CERN Document Server

    Watkins, Christopher D

    1994-01-01

    Virtual Reality Excursions with Programs in C provides the history, theory, principles and an account of the milestones in the development of virtual reality technology.The book is organized into five chapters. The first chapter explores the applications in the vast field of virtual reality. The second chapter presents a brief history of the field and its founders. Chapter 3 discusses human perception and how it works. Some interesting notes and much of the hot debate in the field are covered in Chapter 4. The fifth chapter describes many of the complexities involved in implementing virtual en

  7. Effects of Different Types of 3D Rest Frames on Reducing Cybersickness in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    KyungHun Han

    2011-10-01

    Full Text Available A virtual environment (VE presents several kinds of sensory stimuli for creating a virtual reality. Some sensory stimuli presented in the VE have been reported to provoke cybersickness, which is caused by conflicts between sensory stimuli, especially conflicts between visual and vestibular sensations. Application of a rest frame has been known to be effective on reducing cybersickness by alleviating sensory conflict. The form and the way rest frames are presented in 3D VEs have different effects on reducing cybersickness. In this study, two different types of 3D rest frames were created. For verifying the rest frames' effects in reducing cybersickness, twenty subjects were exposed to two different rest frame conditions and a non-rest frame condition after an interval of three days in 3D VE. We observed the characteristic changes in the physiology of cybersickness in terms of autonomic regulation. Psychophysiological signals including EEG, EGG, and HRV were recorded and a simulator sickness questionnaire (SSQ was used for measuring the intensity of the sickness before and after the exposure to the different conditions. In the results, the SSQ was reduced significantly in the rest frame conditions. Psychophysiological responses changed significantly in the rest frame conditions compared to the non-rest frame condition. The results suggest that the rest frame conditions have condition-specific effects on reducing cybersickness by differentially alleviating aspects of visual and vestibular sensory conflicts in 3D VE.

  8. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  9. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer.

    Science.gov (United States)

    Douglas, David B; Boone, John M; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice.

  10. Second Life, a 3-D Animated Virtual World: An Alternative Platform for (Art) Education

    Science.gov (United States)

    Han, Hsiao-Cheng

    2011-01-01

    3-D animated virtual worlds are no longer only for gaming. With the advance of technology, animated virtual worlds not only are found on every computer, but also connect users with the internet. Today, virtual worlds are created not only by companies, but also through the collaboration of users. Online 3-D animated virtual worlds provide a new…

  11. ATLASrift - a Virtual Reality application

    CERN Document Server

    Bianchi, Riccardo-Maria; The ATLAS collaboration

    2016-01-01

    We present ATLASrift - a Virtual Reality application that provides an interactive, immersive visit to ATLAS experiment. We envision it being used in two different ways: first as an educational and outreach tool - for schools, universities, museums and interested individuals, and secondly as an event viewer for ATLAS physicists – for them it will provide a much better spatial awareness of an event, track and jet directions, occupancies and interactions with detector structures. Using it, one can learn about the experiment as a whole, visit individual sub-detectors, view real interactions, or take a scripted walkthrough explaining questions physicists are trying to answer. We briefly describe our platform of choice – OculusRift VR system, the development environment – UnrealEngine, and, in detail, the numerous technically demanding requirements that had to be fulfilled in order to provide a comfortable user experience. Plans for future versions include making the experience social by adding multi-user/vir...

  12. Virtual reality and language work

    OpenAIRE

    Gallet-Blanchard, Liliane

    2014-01-01

    Pour la raison évidente, mais non rédhibitoire que la réalité virtuelle a la réputation d’être inabordable pour des universités peu argentées, pratiquement aucune investigation n’a été faite dans ce domaine. Après avoir pris part à diverses conférences au Centre Pompidou à Paris et lu Virtual Reality de Howard Rheingold, je pense que nous ne devons plus nous poser le problème de ce que nous pouvons faire, mais de ce que nous voulons faire désormais. De plus, au lieu de nous plaindre de la mau...

  13. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Directory of Open Access Journals (Sweden)

    Essig Harald

    2011-11-01

    Full Text Available Abstract The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor to oncologists, radiotherapists and pathologists.

  14. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy.

    Science.gov (United States)

    Essig, Harald; Rana, Majeed; Meyer, Andreas; Eckardt, André M; Kokemueller, Horst; von See, Constantin; Lindhorst, Daniel; Tavassol, Frank; Ruecker, Martin; Gellrich, Nils-Claudius

    2011-11-16

    The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists.

  15. Virtual Reality as an Educational and Training Tool for Medicine.

    Science.gov (United States)

    Izard, Santiago González; Juanes, Juan A; García Peñalvo, Francisco J; Estella, Jesús Mª Gonçalvez; Ledesma, Mª José Sánchez; Ruisoto, Pablo

    2018-02-01

    Until very recently, we considered Virtual Reality as something that was very close, but it was still science fiction. However, today Virtual Reality is being integrated into many different areas of our lives, from videogames to different industrial use cases and, of course, it is starting to be used in medicine. There are two great general classifications for Virtual Reality. Firstly, we find a Virtual Reality in which we visualize a world completely created by computer, three-dimensional and where we can appreciate that the world we are visualizing is not real, at least for the moment as rendered images are improving very fast. Secondly, there is a Virtual Reality that basically consists of a reflection of our reality. This type of Virtual Reality is created using spherical or 360 images and videos, so we lose three-dimensional visualization capacity (until the 3D cameras are more developed), but on the other hand we gain in terms of realism in the images. We could also mention a third classification that merges the previous two, where virtual elements created by computer coexist with 360 images and videos. In this article we will show two systems that we have developed where each of them can be framed within one of the previous classifications, identifying the technologies used for their implementation as well as the advantages of each one. We will also analize how these systems can improve the current methodologies used for medical training. The implications of these developments as tools for teaching, learning and training are discussed.

  16. Acoustic simulation in realistic 3D virtual scenes

    Science.gov (United States)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean

    2003-09-01

    The simulation workshop CHORALE developed in collaboration with OKTAL SE company for the French MoD is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain. The main operational reference for CHORALE is the assessment of the infrared guidance system of the Storm Shadow missile French version, called Scalp. The use of CHORALE workshop is now extended to the acoustic domain. The main objective is the simulation of the detection of moving vehicles in realistic 3D virtual scenes. This article briefly describes the acoustic model in CHORALE. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its sensitivity. The purpose of the acoustic simulation is to calculate the incoming acoustic pressure on microphone sensors. CHORALE is based on a generic ray tracing kernel. This kernel possesses original capabilities: computation time is nearly independent on the scene complexity, especially the number of polygons, databases are enhanced with precise physical data, special mechanisms of antialiasing have been developed that enable to manage very accurate details. The ray tracer takes into account the wave geometrical divergence and the atmospheric transmission. The sound wave refraction is simulated and rays cast in the 3D scene are curved according to air temperature gradient. Finally, sound diffraction by edges (hill, wall,...) is also taken into account.

  17. Virtual Reality Website of Indonesia National Monument and Its Environment

    Science.gov (United States)

    Wardijono, B. A.; Hendajani, F.; Sudiro, S. A.

    2017-02-01

    National Monument (Monumen Nasional) is an Indonesia National Monument building where located in Jakarta. This monument is a symbol of Jakarta and it is a pride monument of the people in Jakarta and Indonesia country. This National Monument also has a museum about the history of the Indonesian country. To provide information to the general public, in this research we created and developed models of 3D graphics from the National Monument and the surrounding environment. Virtual Reality technology was used to display the visualization of the National Monument and the surrounding environment in 3D graphics form. Latest programming technology makes it possible to display 3D objects via the internet browser. This research used Unity3D and WebGL to make virtual reality models that can be implemented and showed on a Website. The result from this research is the development of 3-dimensional Website of the National Monument and its objects surrounding the environment that can be displayed through the Web browser. The virtual reality of whole objects was divided into a number of scenes, so that it can be displayed in real time visualization.

  18. Ensenyament pràctic en 3D: judici virtual

    Directory of Open Access Journals (Sweden)

    Raquel Escutia Romero

    2011-06-01

    Full Text Available Aquest article descriu els resultats de l'aplicació de metaversos com a eina d'ensenyament en l'àmbit jurídic. L'activitat pedagògica realitzada s'ha dut a terme a través de la simulació d'un judici virtual a Second Life. L'enfocament donat a l'exercici del dret en un entorn virtual ha combinat les següents activitats: (1 l'anàlisi jurídica a través de fòrums de discussió, com una activitat obligatòria prèvia al judici. Aquesta tasca inicial es va dur a terme a través de la plataforma d'aprenentatge asincrònica en 2D Moodle (Aula Judicial; (2 el treball col.laboratiu a través de Google Docs per a preparar tots els documents legals pertinents (demanda, contestació i tramitació judicial; i (3 la immersió síncrona en una experiència 3D d'un judici a Second Life.

  19. Exploring Moral Action Using lmmersive Virtual Reality

    Science.gov (United States)

    2016-10-01

    Award Number: N62909-14-l-Nl 19 Exploring Moral Actions Using lmmersive Virtual Reality event LAB Entorns virtuals en neurociencias i tecnologia...Entornos virtua/es en neurociencias y tecnologfa Experimental virtual environments for neuroscience University of Barcelona, Barcelona, Spain

  20. 3D MODELLING AND MAPPING FOR VIRTUAL EXPLORATION OF UNDERWATER ARCHAEOLOGY ASSETS

    Directory of Open Access Journals (Sweden)

    F. Liarokapis

    2017-02-01

    Full Text Available This paper investigates immersive technologies to increase exploration time in an underwater archaeological site, both for the public, as well as, for researchers and scholars. Focus is on the Mazotos shipwreck site in Cyprus, which is located 44 meters underwater. The aim of this work is two-fold: (a realistic modelling and mapping of the site and (b an immersive virtual reality visit. For 3D modelling and mapping optical data were used. The underwater exploration is composed of a variety of sea elements including: plants, fish, stones, and artefacts, which are randomly positioned. Users can experience an immersive virtual underwater visit in Mazotos shipwreck site and get some information about the shipwreck and its contents for raising their archaeological knowledge and cultural awareness.

  1. Research of the Remote Experiment System Based on Virtual Reality

    Science.gov (United States)

    Lei, Liangyu; Liu, Jianjun; Yang, Xiufang

    The remote education based on Virtual Reality technology is one of the leading developmental ways in modern education. The present researching status of VR technology's application in the remote experiment is analyzed and the characteristics are summarized in this paper. Then the remote experiment system is designed and the learning mode of the 3-D virtual experiment, the virtual experiment model based on Internet, the functional modules of virtual experiment system are studied. The network-based system of remote virtual experiment is built with the programming languages VRML and JavaScript. Furthermore, the remote experiment system on fatigue test of the drive axle is developed and some key problems in the remote virtual experiment are realized.

  2. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    Science.gov (United States)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  3. Using Virtual Reality For Outreach Purposes in Planetology

    Science.gov (United States)

    Civet, François; Le Mouélic, Stéphane; Le Menn, Erwan; Beaunay, Stéphanie

    2016-10-01

    2016 has been a year marked by a technological breakthrough : the availability for the first time to the general public of technologically mature virtual reality devices. Virtual Reality consists in visually immerging a user in a 3D environment reproduced either from real and/or imaginary data, with the possibility to move and eventually interact with the different elements. In planetology, most of the places will remain inaccessible to the public for a while, but a fleet of dedicated spacecraft's such as orbiters, landers and rovers allow the possibility to virtually reconstruct the environments, using image processing, cartography and photogrammetry. Virtual reality can then bridge the gap to virtually "send" any user into the place and enjoy the exploration.We are investigating several type of devices to render orbital or ground based data of planetological interest, mostly from Mars. The most simple system consists of a "cardboard" headset, on which the user can simply use his cellphone as the screen. A more comfortable experience is obtained with more complex systems such as the HTC vive or Oculus Rift headsets, which include a tracking system important to minimize motion sickness. The third environment that we have developed is based on the CAVE concept, were four 3D video projectors are used to project on three 2x3m walls plus the ground. These systems can be used for scientific data analysis, but also prove to be perfectly suited for outreach and education purposes.

  4. Intelligent Open Data 3D Maps in a Collaborative Virtual World

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2015-05-01

    Full Text Available Three-dimensional (3D maps have many potential applications, such as navigation and urban planning. In this article, we present the use of a 3D virtual world platform Meshmoon to create intelligent open data 3D maps. A processing method is developed to enable the generation of 3D virtual environments from the open data of the National Land Survey of Finland. The article combines the elements needed in contemporary smart city concepts, such as the connection between attribute information and 3D objects, and the creation of collaborative virtual worlds from open data. By using our 3D virtual world platform, it is possible to create up-to-date, collaborative 3D virtual models, which are automatically updated on all viewers. In the scenes, all users are able to interact with the model, and with each other. With the developed processing methods, the creation of virtual world scenes was partially automated for collaboration activities.

  5. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    Science.gov (United States)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  6. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  7. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  8. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  9. Case study of virtual reality in CNC machine tool exhibition

    OpenAIRE

    Kao Yung-Chou; Lee Chung-Shuo; Liu Zhi-Ren; Lin Yu-Fu

    2017-01-01

    Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR) t...

  10. Interact: A Mixed Reality Virtual Survivor for Holocaust Testimonies

    OpenAIRE

    Ma, Minhua; Coward, Sarah; Walker, Chris

    2015-01-01

    In this paper we present Interact---a mixed reality virtual survivor for Holocaust education. It was created to preserve the powerful and engaging experience of listening to, and interacting with, Holocaust survivors, allowing future generations of audience access to their unique stories. Interact demonstrates how advanced filming techniques, 3D graphics and natural language processing can be integrated and applied to specially-recorded testimonies to enable users to ask questions and receive...

  11. Virtual reality - ja det er virkelig allerede en realitet

    DEFF Research Database (Denmark)

    Andersen, Tem Frank

    2016-01-01

    Allerede tilbage i 1980’erne kunne forskningen i medier og informationsteknologier fremvise de første prototyper på 3D virtual reality. Man kan spekulere længe over, hvad der egentligt motiverede forskningen på det tidspunkt. En motivation kunne være den ingeniørmæssige: Er det muligt at skabe en...

  12. Handbook for evaluation studies in virtual reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore; Koeffel, Christina

    2006-01-01

    Virtual reality (VR) applications are spreading and attract industries since VR technologies are becoming more affordable, powerful and robust. VR applications inherently call for human-computer interaction, which in turn calls for system and usability evaluations, typically through measurement...

  13. Data Visualization Using Immersive Virtual Reality Tools

    Science.gov (United States)

    Cioc, Alexandru; Djorgovski, S. G.; Donalek, C.; Lawler, E.; Sauer, F.; Longo, G.

    2013-01-01

    The growing complexity of scientific data poses serious challenges for an effective visualization. Data sets, e.g., catalogs of objects detected in sky surveys, can have a very high dimensionality, ~ 100 - 1000. Visualizing such hyper-dimensional data parameter spaces is essentially impossible, but there are ways of visualizing up to ~ 10 dimensions in a pseudo-3D display. We have been experimenting with the emerging technologies of immersive virtual reality (VR) as a platform for a scientific, interactive, collaborative data visualization. Our initial experiments used the virtual world of Second Life, and more recently VR worlds based on its open source code, OpenSimulator. There we can visualize up to ~ 100,000 data points in ~ 7 - 8 dimensions (3 spatial and others encoded as shapes, colors, sizes, etc.), in an immersive virtual space where scientists can interact with their data and with each other. We are now developing a more scalable visualization environment using the popular (practically an emerging standard) Unity 3D Game Engine, coded using C#, JavaScript, and the Unity Scripting Language. This visualization tool can be used through a standard web browser, or a standalone browser of its own. Rather than merely plotting data points, the application creates interactive three-dimensional objects of various shapes, colors, and sizes, and of course the XYZ positions, encoding various dimensions of the parameter space, that can be associated interactively. Multiple users can navigate through this data space simultaneously, either with their own, independent vantage points, or with a shared view. At this stage ~ 100,000 data points can be easily visualized within seconds on a simple laptop. The displayed data points can contain linked information; e.g., upon a clicking on a data point, a webpage with additional information can be rendered within the 3D world. A range of functionalities has been already deployed, and more are being added. We expect to make this

  14. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual Reality

    Science.gov (United States)

    Pantelidis, Veronica S.

    2009-01-01

    Many studies have been conducted on the use of virtual reality in education and training. This article lists examples of such research. Reasons to use virtual reality are discussed. Advantages and disadvantages of using virtual reality are presented, as well as suggestions on when to use and when not to use virtual reality. A model that can be…

  15. Physics and 3D in Flash Simulations: Open Source Reality

    Science.gov (United States)

    Harold, J. B.; Dusenbery, P.

    2009-12-01

    Over the last decade our ability to deliver simulations over the web has steadily advanced. The improvements in speed of the Adobe Flash engine, and the development of open source tools to expand it, allow us to deliver increasingly sophisticated simulation based games through the browser, with no additional downloads required. In this paper we will present activities we are developing as part of two asteroids education projects: Finding NEO (funded through NSF and NASA SMD), and Asteroids! (funded through NSF). The first activity is Rubble!, an asteroids deflection game built on the open source Box2D physics engine. This game challenges players to push asteroids in to safe orbits before they crash in to the Earth. The Box2D engine allows us to go well beyond simple 2-body orbital calculations and incorporate “rubble piles”. These objects, which are representative of many asteroids, are composed of 50 or more individual rocks which gravitationally bind and separate in realistic ways. Even bombs can be modeled with sufficient physical accuracy to convince players of the hazards of trying to “blow up” incoming asteroids. The ability to easily build games based on underlying physical models allows us to address physical misconceptions in a natural way: by having the player operate in a world that directly collides with those misconceptions. Rubble! provides a particularly compelling example of this due to the variety of well documented misconceptions regarding gravity. The second activity is a Light Curve challenge, which uses the open source PaperVision3D tools to analyze 3D asteroid models. The goal of this activity is to introduce the player to the concept of “light curves”, measurements of asteroid brightness over time which are used to calculate the asteroid’s period. These measurements can even be inverted to generate three dimensional models of asteroids that are otherwise too small and distant to directly image. Through the use of the Paper

  16. Virtual Reality and Simulation in Neurosurgical Training.

    Science.gov (United States)

    Bernardo, Antonio

    2017-10-01

    Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Virtual reality therapy in anxiety disorders].

    Science.gov (United States)

    Mitrousia, V; Giotakos, O

    2016-01-01

    During the last decade a number of studies have been conducted in order to examine if virtual reality exposure therapy can be an alternative form of therapy for the treatment of mental disorders and particularly for the treatment of anxiety disorders. Imaginal exposure therapy, which is one of the components of Cognitive Behavioral Therapy, cannot be easily applied to all patients and in cases like those virtual reality can be used as an alternative or a supportive psychotherapeutic technique. Most studies using virtual reality have focused on anxiety disorders, mainly in specific phobias, but some extend to other disorders such as eating disorders, drug dependence, pain control and palliative care and rehabilitation. Main characteristics of virtual reality therapy are: "interaction", "immersion", and "presence". High levels of "immersion" and "presence" are associated with increased response to exposure therapy in virtual environments, as well as better therapeutic outcomes and sustained therapeutic gains. Typical devices that are used in order patient's immersion to be achieved are the Head-Mounted Displays (HMD), which are only for individual use, and the computer automatic virtual environment (CAVE), which is a multiuser. Virtual reality therapy's disadvantages lie in the difficulties that arise due to the demanded specialized technology skills, devices' cost and side effects. Therapists' training is necessary in order for them to be able to manipulate the software and the hardware and to adjust it to each case's needs. Devices' cost is high but as technology continuously improves it constantly decreases. Immersion during virtual reality therapy can induce mild and temporary side effects such as nausea, dizziness or headache. Until today, however, experience shows that virtual reality offers several advantages. Patient's avoidance to be exposed in phobic stimuli is reduced via the use of virtual reality since the patient is exposed to them as many times as he

  18. Stereopsis, Visuospatial Ability, and Virtual Reality in Anatomy Learning

    Directory of Open Access Journals (Sweden)

    Jan-Maarten Luursema

    2017-01-01

    Full Text Available A new wave of virtual reality headsets has become available. A potential benefit for the study of human anatomy is the reintroduction of stereopsis and absolute size. We report a randomized controlled trial to assess the contribution of stereopsis to anatomy learning, for students of different visuospatial ability. Sixty-three participants engaged in a one-hour session including a study phase and posttest. One group studied 3D models of the anatomy of the deep neck in full stereoptic virtual reality; one group studied those structures in virtual reality without stereoptic depth. The control group experienced an unrelated virtual reality environment. A post hoc questionnaire explored cognitive load and problem solving strategies of the participants. We found no effect of condition on learning. Visuospatial ability however did impact correct answers at F(1=5.63 and p=.02. No evidence was found for an impact of cognitive load on performance. Possibly, participants were able to solve the posttest items based on visuospatial information contained in the test items themselves. Additionally, the virtual anatomy may have been complex enough to discourage memory based strategies. It is important to control the amount of visuospatial information present in test items.

  19. Cochrane review: virtual reality for stroke rehabilitation.

    Science.gov (United States)

    Laver, K; George, S; Thomas, S; Deutsch, J E; Crotty, M

    2012-09-01

    Virtual reality and interactive video gaming are innovative therapy approaches in the field of stroke rehabilitation. The primary objective of this review was to determine the effectiveness of virtual reality on motor function after stroke. The impact on secondary outcomes including activities of daily living was also assessed. Randomised and quasi-randomised controlled trials that compared virtual reality with an alternative or no intervention were included in the review. The authors searched the Cochrane Stroke Group Trials Register, the Cochrane Central Register of Controlled Trials, electronic databases, trial registers, reference lists, Dissertation Abstracts, conference proceedings and contacted key researchers and virtual reality manufacturers. Search results were independently examined by two review authors to identify studies meeting the inclusion criteria. Nineteen studies with a total of 565 participants were included in the review. Variation in intervention approaches and outcome data collected limited the extent to which studies could be compared. Virtual reality was found to be significantly more effective than conventional therapy in improving upper limb function (standardised mean difference, SMD) 0.53, 95% confidence intervals [CI] 0.25 to 0.81)) based on seven studies, and activities of daily living (ADL) function (SMD 0.81, 95% CI 0.39 to 1.22) based on three studies. No statistically significant effects were found for grip strength (based on two studies) or gait speed (based on three studies). Virtual reality appears to be a promising approach however, further studies are required to confirm these findings.

  20. The Application of Virtual Reality on Distance Education

    Science.gov (United States)

    Zhan, Zehui

    The features and classifications of Virtual Reality Techniques have been summarized and recommendation of applying Virtual Reality on distance education has been made. Future research is needed on the design and implementation of virtual classroom and courseware.

  1. 3D-e-Chem-VM : Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    NARCIS (Netherlands)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; De Esch, Iwan J P; Lusher, Scott J.; Leurs, Rob; Ridder, Lars; Kooistra, Albert J.; Ritschel, Tina; de Graaf, C.

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools

  2. Integration of metabolic networks and gene expression in virtual reality.

    Science.gov (United States)

    Yang, Yuting; Engin, Levent; Wurtele, Eve Syrkin; Cruz-Neira, Carolina; Dickerson, Julie A

    2005-09-15

    Metabolic networks combine metabolism and regulation. These complex networks are difficult to understand and visualize due to the amount and diverse types of information that need to be represented. For example, pathway information gives indications of interactions. Experimental data, such as transcriptomics, proteomics and metabolomics data, give snapshots of the system state. Stereoscopic virtual environments provide a true three-dimensional representation of metabolic networks, which can be intuitively manipulated, and may help to manage the data complexity. MetNet3D, a 3D virtual reality system, allows a user to explore gene expression and metabolic pathway data simultaneously. Normalized gene expression data are processed in R and visualized as a 3D plot. Users can find a particular gene of interest or a cluster of genes that behave similarly and see how these genes function in metabolic networks from MetNetDB, a database of Arabidopsis metabolic networks, using animated network graphs. Interactive virtual reality, with its enhanced ability to display more information, makes such integration more effective by abstracting key relationships. MetNet3D and some sample datasets are available at http://www.vrac.iastate.edu/research/sites/metnet/Download/Download.htm. Color snapshots and movies are available at http://www.vrac.iastate.edu/research/sites/metnet/Bioinformatics/SupplementaryInformation.htm.

  3. Presence in Virtual Reality Exposure Therapy Systems

    NARCIS (Netherlands)

    Ling, Y.

    2014-01-01

    Experiencing anxiety is essential for virtual reality exposure therapy (VRET) to be effective in curing patients suffering from anxiety disorders. However, some patients drop out in VRET due to the lack of feeling anxiety. Presence - which refers to the feeling of being in the virtual environment -

  4. Introduction to Virtual Reality in Education

    Science.gov (United States)

    Dede, Chris

    2009-01-01

    As an emerging technology for learning, virtual reality (VR) dates back four decades, to early work by Ivan Sutherland in the late 1960s. At long last, interactive media are emerging that offer the promise of VR in everyday settings. Quasi-VR already is commonplace in 2-1/2-D virtual environments like Second Life and in massively multiplayer…

  5. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    Science.gov (United States)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  6. Enseñanza práctica en 3D: Juicio virtual Practical Teaching in 3D: Virtual Mock Trials Ensenyament pràctic en 3D: judici virtual

    Directory of Open Access Journals (Sweden)

    Esther Monterroso Casado

    2011-06-01

    Full Text Available Este artículo describe los resultados de la aplicación de metaversos como herramienta de enseñanza en el ámbito jurídico. La actividad pedagógica realizada se ha llevado a cabo a través de la simulación de un juicio virtual en Second Life. El enfoque dado al ejercicio del derecho en un entorno virtual combinó las siguientes actividades: (1 el análisis jurídico a través de foros de discusión, como una actividad obligatoria previa al juicio. Esta tarea inicial se llevó a cabo a través de la plataforma de aprendizaje asincrónica en 2D Moodle (Aula Judicial, (2 el trabajo colaborativo a través de Google Docs para preparar todos los documentos legales pertinentes (demanda, contestación y tramitación judicial, y (3 la inmersión síncrona en una experiencia 3D de un juicio en Second Life.

    This article describes the results of implementing metaverses as teaching tools in the academic field of law. It is based upon a pedagogical activity that was made possible by the use of a virtual reality court session developed in Second Life. Our approach to virtual law practice combined the following set of activities: (1 legal analysis through discussion forums, as a required pre-trial activity. This initial task was implemented trough the asynchronous learning platform Moodle (Aula Judicial; (2 collaborative work through Google Docs as to prepare all the relevant legal paperwork (claim, statement of defense, judicial proceedings; (3 synchronous inmersion in a Second Life trial experience.

    Aquest article descriu els resultats de l'aplicació de metaversos com a eina d'ensenyament en l'àmbit jurídic. L'activitat pedagògica realitzada s'ha dut a terme a través de la simulació d'un judici virtual a Second Life. L'enfocament donat a l'exercici del dret en un entorn virtual ha combinat les següents activitats: (1 l'anàlisi jurídica a través de fòrums de discussió, com una activitat obligatòria prèvia al judici. Aquesta

  7. ETeach3D: Designing a 3D Virtual Environment for Evaluating the Digital Competence of Preservice Teachers

    Science.gov (United States)

    Esteve-Mon, Francesc M.; Cela-Ranilla, Jose María; Gisbert-Cervera, Mercè

    2016-01-01

    The acquisition of teacher digital competence is a key aspect in the initial training of teachers. However, most existing evaluation instruments do not provide sufficient evidence of this teaching competence. In this study, we describe the design and development process of a three-dimensional (3D) virtual environment for evaluating the teacher…

  8. Development of a Virtual Museum Including a 4d Presentation of Building History in Virtual Reality

    Science.gov (United States)

    Kersten, T. P.; Tschirschwitz, F.; Deggim, S.

    2017-02-01

    In the last two decades the definition of the term "virtual museum" changed due to rapid technological developments. Using today's available 3D technologies a virtual museum is no longer just a presentation of collections on the Internet or a virtual tour of an exhibition using panoramic photography. On one hand, a virtual museum should enhance a museum visitor's experience by providing access to additional materials for review and knowledge deepening either before or after the real visit. On the other hand, a virtual museum should also be used as teaching material in the context of museum education. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has developed a virtual museum (VM) of the museum "Alt-Segeberger Bürgerhaus", a historic town house. The VM offers two options for visitors wishing to explore the museum without travelling to the city of Bad Segeberg, Schleswig-Holstein, Germany. Option a, an interactive computer-based, tour for visitors to explore the exhibition and to collect information of interest or option b, to immerse into virtual reality in 3D with the HTC Vive Virtual Reality System.

  9. Mobile Virtual Reality : A Solution for Big Data Visualization

    Science.gov (United States)

    Marshall, E.; Seichter, N. D.; D'sa, A.; Werner, L. A.; Yuen, D. A.

    2015-12-01

    Pursuits in geological sciences and other branches of quantitative sciences often require data visualization frameworks that are in continual need of improvement and new ideas. Virtual reality is a medium of visualization that has large audiences originally designed for gaming purposes; Virtual reality can be captured in Cave-like environment but they are unwieldy and expensive to maintain. Recent efforts by major companies such as Facebook have focussed more on a large market , The Oculus is the first of such kind of mobile devices The operating system Unity makes it possible for us to convert the data files into a mesh of isosurfaces and be rendered into 3D. A user is immersed inside of the virtual reality and is able to move within and around the data using arrow keys and other steering devices, similar to those employed in XBox.. With introductions of products like the Oculus Rift and Holo Lens combined with ever increasing mobile computing strength, mobile virtual reality data visualization can be implemented for better analysis of 3D geological and mineralogical data sets. As more new products like the Surface Pro 4 and other high power yet very mobile computers are introduced to the market, the RAM and graphics card capacity necessary to run these models is more available, opening doors to this new reality. The computing requirements needed to run these models are a mere 8 GB of RAM and 2 GHz of CPU speed, which many mobile computers are starting to exceed. Using Unity 3D software to create a virtual environment containing a visual representation of the data, any data set converted into FBX or OBJ format which can be traversed by wearing the Oculus Rift device. This new method for analysis in conjunction with 3D scanning has potential applications in many fields, including the analysis of precious stones or jewelry. Using hologram technology to capture in high-resolution the 3D shape, color, and imperfections of minerals and stones, detailed review and

  10. Sensorimotor Training in Virtual Reality: A Review

    OpenAIRE

    Adamovich, Sergei V.; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targete...

  11. Virtual reality and hallucination: a technoetic perspective

    Science.gov (United States)

    Slattery, Diana R.

    2008-02-01

    Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.

  12. Virtual reality, augmented reality?I call it i-Reality

    OpenAIRE

    Grossmann, Rafael J.

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  13. Enhancing Learning within the 3-D Virtual Learning Environment

    OpenAIRE

    Akbar Moazen Safaei; Shirin Shafieiyoun

    2013-01-01

    Today’s using of virtual learning environments becomes more remarkable in education. The potential of virtual learning environments has frequently been related to the expansion of sense of social presence which is obtained from students and educators. This study investigated the effectiveness of social presence within virtual learning environments and analysed the impact of social presence on increasing learning satisfaction within virtual learning environments. Second Life, as an example of ...

  14. 3D AutoSysLab Prototype - A Social, Immersive and Mixed Reality Approach for Collaborative Learning Environments

    National Research Council Canada - National Science Library

    Carlos Eduardo Pereira; Suenoni Paladini; Frederico Menine Schaf

    2012-01-01

    Recent evolutions of social networks, virtual environments, Web technologies and 3D virtual worlds motivate the adoption of new technologies in education, opening successive innovative possibilities...

  15. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    Science.gov (United States)

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  16. Rehabilitation after Stroke using Immersive User Interfaces in 3D Virtual and Augmented Gaming Environments

    Directory of Open Access Journals (Sweden)

    E. Vogiatzaki

    2015-05-01

    Full Text Available Stroke is one of most common diseases of our modern societies with high socio-economic impact. Hence, rehabilitation approach involving patients in their rehabilitation process while lowering costly involvement of specialised human personnel is needed. This article describes a novel approach, offering an integrated rehabilitation training for stroke patients using a serious gaming approach based on a Unity3D virtual reality engine combined with a range of advanced technologies and immersive user interfaces. It puts patients and caretakers in control of the rehabilitation protocols, while leading physicians are enabled to supervise the progress of the rehabilitation via Personal Health Record. Possibility to perform training in a familiar home environment directly improves the effectiveness of the rehabilitation. The work presented herein has been conducted within the "StrokeBack" project co-funded by the European Commission under the Framework 7 Program in the ICT domain.

  17. Development of real-time motion capture system for 3D on-line games linked with virtual character

    Science.gov (United States)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  18. Enabling scientific workflows in virtual reality

    Science.gov (United States)

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  19. From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy

    Science.gov (United States)

    Jang, Susan

    2010-01-01

    This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…

  20. Reliability of three-dimensional sonographic measurements in early pregnancy using virtual reality

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); W.C.J. Hop (Wim); M. Rousian (Melek); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractObjective: To establish the reliability of three-dimensional (3D) ultrasound measurements in early pregnancy using a virtual reality system (the Barco I-Space). Methods: The study included 28 pregnancies with gestational ages ranging from 6 to 14 (median, 10) weeks. 3D volumes were

  1. Virtual Reality and its Implementation in Transport Ergonomics

    Directory of Open Access Journals (Sweden)

    Jasna Jurum-Kipke

    2007-03-01

    Full Text Available The experience of our environment is based on the informationthat reach us by means of our sensory organs, andwhich are subsequently processed in our brains. Digital interpretationimplemented to mathematical models of the studiedsubjects brings us to the so-called virtual reality that allows us toreplace some natural human senses, in this case the visualones, by computer-generated infonnation. The procedure is expandedto three-dimensional (3D scanning i. e. searching ofthe special form of the obse1ved subject/object, then digital recordingof the space point cloud (pixels which correspond tothe item, then vectorisation of the fonn, rendering and finallyanimation. In this way, by watching the display, the impressionof the virtual environment can be generated in the human perception.Moreover, in this way the human model can be realizedin a characteristic way in such a virtual space. The implementationof this virtual reality, in accordance with the possibilitiesthat it provides, has been the subject of very intensive researchin the world, and in Croatia as well. The work presentssome possibilities of applying virtual reality in the field of ergonomicanalysis of the collision process of two vehicles.

  2. Virtual Reality: A Definition History - A Personal Essay

    OpenAIRE

    Bryson, Steve

    2013-01-01

    This essay, written in 1998 by an active participant in both virtual reality development and the virtual reality definition debate, discusses the definition of the phrase "Virtual Reality" (VR). I start with history from a personal perspective, concentrating on the debate between the "Virtual Reality" and "Virtual Environment" labels in the late 1980's and early 1990's. Definitions of VR based on specific technologies are shown to be unsatisfactory. I propose the following definition of VR, b...

  3. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    Science.gov (United States)

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  4. 3D Virtual Learning Environments in Education: A Meta-Review

    Science.gov (United States)

    Reisoglu, I.; Topu, B.; Yilmaz, R.; Karakus Yilmaz, T.; Göktas, Y.

    2017-01-01

    The aim of this study is to investigate recent empirical research studies about 3D virtual learning environments. A total of 167 empirical studies that involve the use of 3D virtual worlds in education were examined by meta-review. Our findings show that the "Second Life" platform has been frequently used in studies. Among the reviewed…

  5. Case study of virtual reality in CNC machine tool exhibition

    Directory of Open Access Journals (Sweden)

    Kao Yung-Chou

    2017-01-01

    Full Text Available Exhibition and demonstration are generally used in the promotion and sale-assistance of manufactured products. However, the transportation cost of the real goods from the vender factory to the exposition venue is generally expensive for huge and heavy commodity. With the advancement of computing, graphics, mobile apps, and mobile hardware the 3D visibility technology is getting more and more popular to be adopted in visual-assisted communication such as amusement games. Virtual reality (VR technology has therefore being paid great attention in emulating expensive small and/or huge and heavy equipment. Virtual reality can be characterized as 3D extension with Immersion, Interaction and Imagination. This paper was then be focused on the study of virtual reality in the assistance of CNC machine tool demonstration and exhibition. A commercial CNC machine tool was used in this study to illustrate the effectiveness and usability of using virtual reality for an exhibition. The adopted CNC machine tool is a large and heavy mill-turn machine with the width up to eleven meters and weighted about 35 tons. A head-mounted display (HMD was attached to the developed VR CNC machine tool for the immersion viewing. A user can see around the 3D scene of the large mill-turn machine and the operation of the virtual CNC machine can be actuated by bare hand. Coolant was added to demonstrate more realistic operation while collision detection function was also added to remind the operator. The developed VR demonstration system has been presented in the 2017 Taipei International Machine Tool Show (TIMTOS 2017. This case study has shown that young engineers and/or students are very impressed by the VR-based demonstration while elder persons could not adapt themselves easily to the VR-based scene because of eyesight issues. However, virtual reality has successfully being adopted and integrated with the CNC machine tool in an international show. Another machine tool on

  6. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    Science.gov (United States)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  7. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    Science.gov (United States)

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  8. Contextual EFL Learning in a 3D Virtual Environment

    Science.gov (United States)

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  9. Applied virtual reality at the Research Triangle Institute

    Science.gov (United States)

    Montoya, R. Jorge

    1994-01-01

    Virtual Reality (VR) is a way for humans to use computers in visualizing, manipulating and interacting with large geometric data bases. This paper describes a VR infrastructure and its application to marketing, modeling, architectural walk through, and training problems. VR integration techniques used in these applications are based on a uniform approach which promotes portability and reusability of developed modules. For each problem, a 3D object data base is created using data captured by hand or electronically. The object's realism is enhanced through either procedural or photo textures. The virtual environment is created and populated with the data base using software tools which also support interactions with and immersivity in the environment. These capabilities are augmented by other sensory channels such as voice recognition, 3D sound, and tracking. Four applications are presented: a virtual furniture showroom, virtual reality models of the North Carolina Global TransPark, a walk through the Dresden Fraunenkirche, and the maintenance training simulator for the National Guard.

  10. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  11. The photon: A virtual reality

    OpenAIRE

    Andrews, D.L.

    2008-01-01

    It has been observed that every photon is, in a sense, virtual - being emitted and then sooner or later absorbed. As the motif of a quantum radiation state, the photon shares these characteristics of any virtual state: that it is not directly observable; and that it can signify only one of a number of indeterminable intermediates, between matter states that are directly measurable. Nonetheless, other traits of real and virtual behavior are usually quite clearly differentiable. How 'real', the...

  12. Laparoscopic baseline ability assessment by virtual reality.

    Science.gov (United States)

    Madan, Atul K; Frantzides, Constantine T; Sasso, Lisa M

    2005-02-01

    Assessment of any surgical skill is time-consuming and difficult. Currently, there are no accepted metrics for most surgical skills, especially laparoscopic skills. Virtual reality has been utilized for laparoscopic training of surgical residents. Our hypothesis is that this technology can be utilized for laparoscopic ability metrics. This study involved medical students with no previous laparoscopic experience. All students were taken into a porcine laboratory in order to assess two operative tasks (measuring a piece of bowel and placing a piece of bowel into a laparoscopic bag). Then they were taken into an inanimate lab with a Minimally Invasive Surgery Trainer-Virtual Reality (MIST-VR). Each student repeatedly performed one task (placing a virtual reality ball into a receptacle). The students' scores and times from the animate lab were compared with average economy of movement and times from the MIST-VR. The MIST-VR scored both hands individually. Thirty-two first- and second-year medical students were included in the study. There was statistically significant (P reality trainer and operative tasks. While not all of the possible relationships demonstrated statistically significant correlation, the majority of the possible relationships demonstrated statistically significant correlation. Virtual reality may be an avenue for measuring laparoscopic surgical ability.

  13. 3D SURVEY AND AUGMENTED REALITY FOR CULTURAL HERITAGE. THE CASE STUDY OF AURELIAN WALL AT CASTRA PRAETORIA IN ROME

    Directory of Open Access Journals (Sweden)

    M. Canciani

    2016-06-01

    Full Text Available The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets and shareware software (in the case presented “Augment” it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic, are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image

  14. På rejse med Virtual Reality i billedkunst

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Lyk, Patricia

    2015-01-01

    , de skulle have. Fokus. I artiklen er der særligt fokus på hvordan læringscentrede designprocesser og Virtual Reality tilsammen kan understøtte erfaringslæring. Konklusion. Eleverne fik en større forståelse af teknologi og kreative designprocesser ved at fungere som informanter og designpartnere i...... designforløbet. Eleverne fik igennem design af de fysiske modeller og besøget i Virtual Reality formidlet to oplevelser af deres modeller, som styrkede grundlaget for erfaringsbaseret læring. Erfaringsbaseret læring kombinerer oplevelse, refleksion, abstraktion og aktiv eksperimenteren i en proces, som...

  15. Manually locating physical and virtual reality objects.

    Science.gov (United States)

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  16. VIRTUAL REALITY OF AL-HARAM AL-MAKKAI EXPANSIONS USING 3DMAX AND ARCGIS SOFTWARE

    OpenAIRE

    Alanoud Salem; Sara Musallam; El-Shaimaa Nada; Ahmed Ahmed

    2015-01-01

    Animated movies are excellent virtual environments for creating models in high quality. Animated movies can include 3D models, sounds and lights effects, and detailed maps. In this paper, a virtual reality movie is applied to Al-Haram Expansion stages including the future stage of expansion. 3DMAX program is used to rich the maximum benefits of using 3D modeling. Maps with details are built by using ARCGIS program in order to understand the real difference between the three differ...

  17. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  18. Virtual Reality and Special Needs

    Science.gov (United States)

    Jeffs, Tara L.

    2009-01-01

    The use of virtual environments for special needs is as diverse as the field of Special Education itself and the individuals it serves. Individuals with special needs often face challenges with attention, language, spatial abilities, memory, higher reasoning and knowledge acquisition. Research in the use of Virtual Learning Environments (VLE)…

  19. Virtual Reality Interaction Using Mobile Devices

    KAUST Repository

    Aseeri, Sahar A.

    2013-07-01

    With the use of an immersive display system such as CAVE system, the user is able to realize a 3D immersive virtual environment realistically. However, interacting with virtual worlds in CAVE systems using traditional input devices to perform easy operations such as manipulation, object selection, and navigation is often difficult. This difficulty could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. Our research aims to implement and evaluate alternative approaches of interaction with immersive virtual environments on mobile devices for manipulation and object selection tasks. As many researchers have noted, using a mobile device as an interaction device has a number of advantages, including built-in display, built-in control, and touch screen facility. These advantages facilitate simple tasks within immersive virtual environments. This research proposes new methods using mobile devices like Smart-phones to perform di↵erent kinds of interactions both as an input device, (e.g. performing selection and manipulation of objects) and as an output device (e.g. utilizing the screen as an extra view for a virtual camera or information display). Moreover, we developed a prototype system to demonstrate and informally evaluate these methods. The research conclusion suggests using mobile devices as a 3D-controller. This will be a more intuitive approach to interact within the virtual environment.

  20. Health Education capabilities Based on Virtual Reality

    OpenAIRE

    Paiva, Paulo Vinícius de Farias; Machado, Liliane dos Santos; Santos,Sérgio Ribeiro dos; Romero, Renata Olívia Gadelha

    2013-01-01

    The main goal of virtual reality is to create three-dimensional environments that users can explore and manipulate with the feeling of being immersed in realistic simulations. VR systems are mainly characterized by a high degree of realism in their simulation of real world experiences or even fictitious situations. Medicine and healthcare are benefiting from VR, especially the collaborative virtual environments for teaching various procedures that enable distance education as well as collabor...

  1. The social construction of virtual reality

    OpenAIRE

    Golubinskaya Anastasia Valerievna

    2016-01-01

    The article is aimed to rethinking the theory of social construction of P. Berger and T. Luckmann in the context of digital society. The conception of virtual reality helps to find new traits of the world in everyday life: intersubjectivity, temporality, schemes of typification and other social-constructivist concepts that receive new meanings. The author proposes to research the way of the world transformation “here and now” in the age of virtualization of social acts, and how these changes ...

  2. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  3. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

    Science.gov (United States)

    Bach, Benjamin; Sicat, Ronell; Beyer, Johanna; Cordeil, Maxime; Pfister, Hanspeter

    2018-01-01

    We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.

  4. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

    KAUST Repository

    Bach, Benjamin

    2017-08-29

    We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user\\'s real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.

  5. Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.

    Science.gov (United States)

    Thurman, Richard A.; Mattoon, Joseph S.

    1994-01-01

    Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…

  6. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    Science.gov (United States)

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  7. Visualizing Cumulus Clouds in Virtual Reality

    NARCIS (Netherlands)

    Griffith, E.J.

    2010-01-01

    This thesis focuses on interactively visualizing, and ultimately simulating, cumulus clouds both in virtual reality (VR) and with a standard desktop computer. The cumulus clouds in question are found in data sets generated by Large-Eddy Simulations (LES), which are used to simulate a small section

  8. Evaluation of Virtual Reality Training Using Affect

    Science.gov (United States)

    Tichon, Jennifer

    2012-01-01

    Training designed to support and strengthen higher-order mental abilities now often involves immersion in Virtual Reality (VR) where dangerous real world scenarios can be safely replicated. However, despite the growing popularity of VR to train cognitive skills such as decision-making and situation awareness, methods for evaluating their use rely…

  9. Virtual Reality for Training and Lifelong Learning

    Science.gov (United States)

    Mellet-d'Huart, Daniel

    2009-01-01

    This article covers the application of virtual reality (VR) to training and lifelong learning. A number of considerations concerning the design of VR applications are included. The introduction is dedicated to the more general aspects of applying VR to training. From multiple perspectives, we will provide an overview of existing applications with…

  10. Virtual Reality: theoretical basis, practical applications

    Directory of Open Access Journals (Sweden)

    Philip Barker

    1993-12-01

    Full Text Available Virtual reality (VR is a powerful multimedia visualization technique offering a range of mechanisms by which many new experiences can be made available. This paper deals with the basic nature of VR, the technologies needed to create it, and its potential, especially for helping disabled people. It also offers an overview of some examples of existing VR systems.

  11. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  12. Virtual Reality Training Environments: Contexts and Concerns.

    Science.gov (United States)

    Harmon, Stephen W.; Kenney, Patrick J.

    1994-01-01

    Discusses the contexts where virtual reality (VR) training environments might be appropriate; examines the advantages and disadvantages of VR as a training technology; and presents a case study of a VR training environment used at the NASA Johnson Space Center in preparation for the repair of the Hubble Space Telescope. (AEF)

  13. Are Learning Styles Relevant to Virtual Reality?

    Science.gov (United States)

    Chen, Chwen Jen; Toh, Seong Chong; Ismail, Wan Mohd Fauzy Wan

    2005-01-01

    This study aims to investigate the effects of a virtual reality (VR)-based learning environment on learners with different learning styles. The findings of the aptitude-by-treatment interaction study have shown that learners benefit most from the VR (guided exploration) mode, irrespective of their learning styles. This shows that the VR-based…

  14. Collaborative architectural design in virtual reality

    NARCIS (Netherlands)

    Hubers, J.C.

    2008-01-01

    In this PhD research a method and software prototype is developed for COLlaborative Architectural Design In VIRtual reality. The method consists of developing versions of a concept for a building and the evaluation of them with criteria. Every team member makes his own versions; otherwise they would

  15. Stencil cutouts for virtual reality inputs

    CSIR Research Space (South Africa)

    Ausmeier, Natalie J

    2017-02-01

    Full Text Available Virtual Reality (VR) is widely used in training simulators of dangerous or expensive vehicles such as aircraft or heavy mining machinery. The vehicles often have very complicated controls that users need to master before attempting to operate a real...

  16. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  17. Physics Education in Virtual Reality: An Example

    Science.gov (United States)

    Kaufmann, Hannes; Meyer, Bernd

    2009-01-01

    We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…

  18. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study...

  19. Revolutionizing Education: The Promise of Virtual Reality

    Science.gov (United States)

    Gadelha, Rene

    2018-01-01

    Virtual reality (VR) has the potential to revolutionize education, as it immerses students in their learning more than any other available medium. By blocking out visual and auditory distractions in the classroom, it has the potential to help students deeply connect with the material they are learning in a way that has never been possible before.…

  20. A manufactured past: virtual reality in archaeology

    Directory of Open Access Journals (Sweden)

    Glyn Goodrick

    2004-01-01

    Full Text Available Virtual reality and visualisation technologies developed over the past thirty years have been readily accessible to the archaeological community since the mid 1990s. Despite the high profile of virtual archaeology (Reilly 1991 both within the media and professional archaeology it has not been taken on board as a generally useful and standard technique by archaeologists. In this article we wish to discuss the technical and other issues which have resulted in a reluctance to adopt virtual archaeology and, more importantly, discuss ways forward that can enable us routinely to benefit from this technology in the diversity of archaeological practice.

  1. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  2. Controlling Social Stress in Virtual Reality Environments

    Science.gov (United States)

    Hartanto, Dwi; Kampmann, Isabel L.; Morina, Nexhmedin; Emmelkamp, Paul G. M.; Neerincx, Mark A.; Brinkman, Willem-Paul

    2014-01-01

    Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive) between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6) = 0.91, p = 0.002; r(6) = 0.76, p = 0.028 and r(6) = −0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes. PMID:24671006

  3. Controlling social stress in virtual reality environments.

    Directory of Open Access Journals (Sweden)

    Dwi Hartanto

    Full Text Available Virtual reality exposure therapy has been proposed as a viable alternative in the treatment of anxiety disorders, including social anxiety disorder. Therapists could benefit from extensive control of anxiety eliciting stimuli during virtual exposure. Two stimuli controls are studied in this study: the social dialogue situation, and the dialogue feedback responses (negative or positive between a human and a virtual character. In the first study, 16 participants were exposed in three virtual reality scenarios: a neutral virtual world, blind date scenario, and job interview scenario. Results showed a significant difference between the three virtual scenarios in the level of self-reported anxiety and heart rate. In the second study, 24 participants were exposed to a job interview scenario in a virtual environment where the ratio between negative and positive dialogue feedback responses of a virtual character was systematically varied on-the-fly. Results yielded that within a dialogue the more positive dialogue feedback resulted in less self-reported anxiety, lower heart rate, and longer answers, while more negative dialogue feedback of the virtual character resulted in the opposite. The correlations between on the one hand the dialogue stressor ratio and on the other hand the means of SUD score, heart rate and audio length in the eight dialogue conditions showed a strong relationship: r(6 = 0.91, p = 0.002; r(6 = 0.76, p = 0.028 and r(6 = -0.94, p = 0.001 respectively. Furthermore, more anticipatory anxiety reported before exposure was found to coincide with more self-reported anxiety, and shorter answers during the virtual exposure. These results demonstrate that social dialogues in a virtual environment can be effectively manipulated for therapeutic purposes.

  4. Virtual Reality as Innovative Approach to the Interior Designing

    Science.gov (United States)

    Kaleja, Pavol; Kozlovská, Mária

    2017-06-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  5. Virtual Reality in Education The next challenge

    Directory of Open Access Journals (Sweden)

    Jonathan Carlos Samaniego Villarroel

    2016-08-01

    Full Text Available Virtual reality is a very interesting topic, but quite far from us apparently the Latin American reality is too far to technological advances and therefore costs us understand how they serve educational purposes. This paper will seek to publicize what is virtual reality, how the peripherals used to use, works and of course educational implications in first world countries, and how we could in our country use these technologies with pilot programs that allow our children and young people supplement their knowledge. What role do smartphones in this concept and how companies like Google and Samsung are playing an important play in the popularization of these tools, although many see them as a game or fad, there is no doubt that within a few years will be very important in the educational field.

  6. Application of computer virtual simulation technology in 3D animation production

    Science.gov (United States)

    Mo, Can

    2017-11-01

    In the continuous development of computer technology, the application system of virtual simulation technology has been further optimized and improved. It also has been widely used in various fields of social development, such as city construction, interior design, industrial simulation and tourism teaching etc. This paper mainly introduces the virtual simulation technology used in 3D animation. Based on analyzing the characteristics of virtual simulation technology, the application ways and means of this technology in 3D animation are researched. The purpose is to provide certain reference for the 3D effect promotion days after.

  7. Virtual Reality Educational Tool for Human Anatomy.

    Science.gov (United States)

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  8. Mixed Structural Models for 3D Audio in Virtual Environments

    OpenAIRE

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  9. Robotics and Virtual Reality for Cultural Heritage Digitization and Fruition

    Science.gov (United States)

    Calisi, D.; Cottefoglie, F.; D'Agostini, L.; Giannone, F.; Nenci, F.; Salonia, P.; Zaratti, M.; Ziparo, V. A.

    2017-05-01

    In this paper we present our novel approach for acquiring and managing digital models of archaeological sites, and the visualization techniques used to showcase them. In particular, we will demonstrate two technologies: our robotic system for digitization of archaeological sites (DigiRo) result of over three years of efforts by a group of cultural heritage experts, computer scientists and roboticists, and our cloud-based archaeological information system (ARIS). Finally we describe the viewers we developed to inspect and navigate the 3D models: a viewer for the web (ROVINA Web Viewer) and an immersive viewer for Virtual Reality (ROVINA VR Viewer).

  10. A multi-viewer tiled autostereoscopic virtual reality display

    KAUST Repository

    Kooima, Robert

    2010-01-01

    Recognizing the value of autostereoscopy for 3D displays in public contexts, we pursue the goal of large-scale, high-resolution, immersive virtual reality using lenticular displays. Our contributions include the scalable tiling of lenticular displays to large fields of view and the use of GPU image interleaving and application optimization for real-time performance. In this context, we examine several ways to improve group-viewing by combining user tracking with multi-view displays. Copyright © 2010 by the Association for Computing Machinery, Inc.

  11. Virtual reality negotiation training system with virtual cognitions

    NARCIS (Netherlands)

    Ding, D.; Burger, F.; Brinkman, W.P.; Neerincx, M.A.

    2017-01-01

    A number of negotiation training systems have been developed to improve people’s performance in negotiation. They mainly focus on the skills development, and less on negotiation understanding and improving self-efficacy. We propose a virtual reality negotiation training system that exposes users to

  12. Laying the groundwork for socialisation and knowledge construction within 3D virtual worlds

    Directory of Open Access Journals (Sweden)

    Shailey Minocha

    2008-12-01

    Full Text Available The paper reports the theoretical underpinnings for the pedagogical role and rationale for adopting 3D virtual worlds for socialisation and knowledge creation in distance education. Socialisation or ‘knowing one another' in remote distributed environments can be achieved through synchronous technologies such as instant messaging, audio and video-conferencing. However, a 3D virtual world can provide an immersive experience where there is a visual presence and virtual proximity of the group members in terms of their 3D selves (avatars. We discuss the affordances of a 3D virtual world and its role in providing a platform for pedagogical design that engenders socialisation, synchronous communication and collaboration. We propose the use of a knowledge construction model as a framework for guiding the design of collaborative activities in a 3D virtual world for blended learning environments. We believe that this framework will also be useful for integrating 2D environments such as blogs, wikis and forums with a 3D learning environment. We consider the implications of this in the context of blended learning in distance education. This paper would be of interest to course designers, researchers, teachers, staff developers and policy-makers who are involved in integrating 3D virtual worlds within the curriculum of their programmes and institutions.

  13. Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine.

    Science.gov (United States)

    Lee, S; Lee, J; Lee, A; Park, N; Lee, S; Song, S; Seo, A; Lee, H; Kim, J-I; Eom, K

    2013-05-01

    Augmented reality (AR) is a technology which enables users to see the real world, with virtual objects superimposed upon or composited with it. AR simulators have been developed and used in human medicine, but not in veterinary medicine. The aim of this study was to develop an AR intravenous (IV) injection simulator to train veterinary and pre-veterinary students to perform canine venipuncture. Computed tomographic (CT) images of a beagle dog were scanned using a 64-channel multidetector. The CT images were transformed into volumetric data sets using an image segmentation method and were converted into a stereolithography format for creating 3D models. An AR-based interface was developed for an AR simulator for IV injection. Veterinary and pre-veterinary student volunteers were randomly assigned to an AR-trained group or a control group trained using more traditional methods (n = 20/group; n = 8 pre-veterinary students and n = 12 veterinary students in each group) and their proficiency at IV injection technique in live dogs was assessed after training was completed. Students were also asked to complete a questionnaire which was administered after using the simulator. The group that was trained using an AR simulator were more proficient at IV injection technique using real dogs than the control group (P ≤ 0.01). The students agreed that they learned the IV injection technique through the AR simulator. Although the system used in this study needs to be modified before it can be adopted for veterinary educational use, AR simulation has been shown to be a very effective tool for training medical personnel. Using the technology reported here, veterinary AR simulators could be developed for future use in veterinary education. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. 3D Virtual Images and Forensic Identification Training

    Science.gov (United States)

    2010-08-04

    properly trained for these duties, as a minimum all Air Force Dental Residency programs (13 sites) require a course in forensic dentistry including...Nuinber: FKE20080002E 2. Title: ŗD Virtual Images and Forensic Identification Training" 3. Principal Investigator (PI): Stephanie A. Stouder, Lt Col...47XX identifies the requirement for initial and annual training in forensic identification for all AF Dentists. Currently, to ensure that dentists are

  15. The photon: a virtual reality

    Science.gov (United States)

    Andrews, David L.

    2005-08-01

    It has been observed that every photon is, in a sense, virtual - being emitted and then sooner or later absorbed. As the motif of a quantum radiation state, the photon shares these characteristics of any virtual state: that it is not directly observable; and that it can signify only one of a number of indeterminable intermediates, between matter states that are directly measurable. Nonetheless, other traits of real and virtual behavior are usually quite clearly differentiable. How 'real', then, is the photon? To address this and related questions it is helpful to look in detail at the quantum description of light emission and absorption. A straightforward analysis of the dynamic electric field, based on quantum electro-dynamics, reveals not only the entanglement of energy transfer mechanisms usually regarded as 'radiative' and 'radiationless'; it also gives significant physical insights into several other electromagnetic topics. These include: the propagating and non-propagating character in electromagnetic fields; near-zone and wave-zone effects; transverse and longitudinal character; the effects of retardation, manifestations of quantum uncertainty and issues of photon spin. As a result it is possible to gain a clearer perspective on when, or whether, the terms 'real' and 'virtual' are helpful descriptors of the photon.

  16. COMBINATION OF VIRTUAL TOURS, 3D MODEL AND DIGITAL DATA IN A 3D ARCHAEOLOGICAL KNOWLEDGE AND INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Koehl

    2012-08-01

    Full Text Available The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS. With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc., digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.. The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic

  17. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    Science.gov (United States)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  18. Collaborative Virtual 3D Environment for Internet-Accessible Physics Experiments

    Directory of Open Access Journals (Sweden)

    Bettina Scheucher

    2009-08-01

    Full Text Available Abstract—Immersive 3D worlds have increasingly raised the interest of researchers and practitioners for various learning and training settings over the last decade. These virtual worlds can provide multiple communication channels between users and improve presence and awareness in the learning process. Consequently virtual 3D environments facilitate collaborative learning and training scenarios. In this paper we focus on the integration of internet-accessible physics experiments (iLabs combined with the TEALsim 3D simulation toolkit in Project Wonderland, Sun's toolkit for creating collaborative 3D virtual worlds. Within such a collaborative environment these tools provide the opportunity for teachers and students to work together as avatars as they control actual equipment, visualize physical phenomenon generated by the experiment, and discuss the results. In particular we will outline the steps of integration, future goals, as well as the value of a collaboration space in Wonderland's virtual world.

  19. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    Science.gov (United States)

    ... to Detect Colon Cancer 3-D virtual screening now being used Past Issues / Spring 2009 Table of ... the colon wall, forming the basis for an electronic biopsy (medical test) of the entire colon surface. " ...

  20. The Perceptions of CEIT Postgraduate Students Regarding Reality Concepts: Augmented, Virtual, Mixed and Mirror Reality

    Science.gov (United States)

    Taçgin, Zeynep; Arslan, Ahmet

    2017-01-01

    The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…

  1. Virtual Reality for Research in Social Neuroscience

    Science.gov (United States)

    Parsons, Thomas D.; Gaggioli, Andrea; Riva, Giuseppe

    2017-01-01

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters—either driven by a human or by a computer—allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature. PMID:28420150

  2. Virtual Reality for Research in Social Neuroscience.

    Science.gov (United States)

    Parsons, Thomas D; Gaggioli, Andrea; Riva, Giuseppe

    2017-04-16

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters-either driven by a human or by a computer-allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature.

  3. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay.

    Science.gov (United States)

    Liao, Hongen; Inomata, Takashi; Sakuma, Ichiro; Dohi, Takeyoshi

    2010-06-01

    A 3-D augmented reality navigation system using autostereoscopic images was developed for MRI-guided surgery. The 3-D images are created by employing an animated autostereoscopic image, integral videography (IV), which provides geometrically accurate 3-D spatial images and reproduces motion parallax without using any supplementary eyeglasses or tracking devices. The spatially projected 3-D images are superimposed onto the surgical area and viewed via a half-silvered mirror. A fast and accurate spatial image registration method was developed for intraoperative i.v. image-guided therapy. Preliminary experiments showed that the total system error in patient-to-image registration was 0.90 +/- 0.21 mm, and the procedure time for guiding a needle toward a target was shortened by 75%. An animal experiment was also conducted to evaluate the performance of the system. The feasibility studies showed that augmented reality of the image overlay system could increase the surgical instrument placement accuracy and reduce the procedure time as a result of intuitive 3-D viewing.

  4. Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality.

    Science.gov (United States)

    Park, Youngmin; Lepetit, Vincent; Woo, Woontack

    2012-09-01

    The contribution of this paper is two-fold. First, we show how to extend the ESM algorithm to handle motion blur in 3D object tracking. ESM is a powerful algorithm for template matching-based tracking, but it can fail under motion blur. We introduce an image formation model that explicitly consider the possibility of blur, and shows its results in a generalization of the original ESM algorithm. This allows to converge faster, more accurately and more robustly even under large amount of blur. Our second contribution is an efficient method for rendering the virtual objects under the estimated motion blur. It renders two images of the object under 3D perspective, and warps them to create many intermediate images. By fusing these images we obtain a final image for the virtual objects blurred consistently with the captured image. Because warping is much faster than 3D rendering, we can create realistically blurred images at a very low computational cost.

  5. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto

    2017-01-01

    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  6. The Virtual Tablet: Virtual Reality as a Control System

    Science.gov (United States)

    Chronister, Andrew

    2016-01-01

    In the field of human-computer interaction, Augmented Reality (AR) and Virtual Reality (VR) have been rapidly growing areas of interest and concerted development effort thanks to both private and public research. At NASA, a number of groups have explored the possibilities afforded by AR and VR technology, among which is the IT Advanced Concepts Lab (ITACL). Within ITACL, the AVR (Augmented/Virtual Reality) Lab focuses on VR technology specifically for its use in command and control. Previous work in the AVR lab includes the Natural User Interface (NUI) project and the Virtual Control Panel (VCP) project, which created virtual three-dimensional interfaces that users could interact with while wearing a VR headset thanks to body- and hand-tracking technology. The Virtual Tablet (VT) project attempts to improve on these previous efforts by incorporating a physical surrogate which is mirrored in the virtual environment, mitigating issues with difficulty of visually determining the interface location and lack of tactile feedback discovered in the development of previous efforts. The physical surrogate takes the form of a handheld sheet of acrylic glass with several infrared-range reflective markers and a sensor package attached. Using the sensor package to track orientation and a motion-capture system to track the marker positions, a model of the surrogate is placed in the virtual environment at a position which corresponds with the real-world location relative to the user's VR Head Mounted Display (HMD). A set of control mechanisms is then projected onto the surface of the surrogate such that to the user, immersed in VR, the control interface appears to be attached to the object they are holding. The VT project was taken from an early stage where the sensor package, motion-capture system, and physical surrogate had been constructed or tested individually but not yet combined or incorporated into the virtual environment. My contribution was to combine the pieces of

  7. Generation and Dissemination of a National Virtual 3D City and Landscape Model for the Netherlands

    NARCIS (Netherlands)

    Oude Elberink, S.; Stoter, J.; Ledoux, H.; Commandeur, T.

    2013-01-01

    This paper describes the generation and dissemination of a national three-dimensional (3D) dataset representing the virtual and landscape model. The 3D model is produced automatically by fusing a two-dimensional (2D) national objectoriented database describing the physical landscape and the national

  8. Generation of a National Virtual 3D City and Landscape Model for the Netherlands

    NARCIS (Netherlands)

    Oude Elberink, S.; Stoter, J.; Ledoux, H.; Commandeur, T.

    2013-01-01

    This paper describes the generation of a national three-dimensional (3D) dataset representing the virtual and landscape model. The 3D model is produced automatically by fusing a two-dimensional (2D) national object-oriented database describing the physical landscape and the national high-resolution

  9. Preoperative Planning Using 3D Reconstructions and Virtual Endoscopy for Location of the Frontal Sinus

    Directory of Open Access Journals (Sweden)

    Abreu, João Paulo Saraiva

    2011-01-01

    Full Text Available Introduction: Computed tomography (TC generated tridimensional (3D reconstructions allow the observation of cavities and anatomic structures of our body with detail. In our specialty there have been attempts to carry out virtual endoscopies and laryngoscopies. However, such application has been practically abandoned due to its complexity and need for computers with high power of graphic processing. Objective: To demonstrate the production of 3D reconstructions from CTs of patients in personal computers, with a free specific program and compare them to the surgery actual endoscopic images. Method: Prospective study in which the CTs proper files of 10 patients were reconstructed with the program Intage Realia, version 2009, 0, 0, 702 (KGT Inc., Japan. The reconstructions were carried out before the surgeries and a virtual endoscopy was made to assess the recess and frontal sinus region. After this study, the surgery was digitally performed and stored. The actual endoscopic images of the recess and frontal sinus region were compared to the virtual images. Results: The 3D reconstruction and virtual endoscopy were made in 10 patients submitted to the surgery. The virtual images had a large resemblance with the actual surgical images. Conclusion: With relatively simple tools and personal computer, we demonstrated the possibility to generate 3D reconstructions and virtual endoscopies. The preoperative knowledge of the frontal sinus natural draining path location may generate benefits during the performance of surgeries. However, more studies must be developed for the evaluation of the real roles of such 3D reconstructions and virtual endoscopies.

  10. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  11. Utilization of virtual reality for reading the superheated emulsion detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos Sobrinho, Jose C.; Santo, Andre C.E.; Pereira, Claudio M.N.A.; Mol, Antonio C.A., E-mail: volksparati@hotmail.com, E-mail: cotelli.andre@gmail.com, E-mail: cmnap@ien.gov.br, E-mail: mol@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This paper presents a method based on Virtual Reality for reading the Superheated Emulsion Detector (Bubble Detector). The proposed method is an alternative to: automatic counters offered by the manufacturers of detectors, since they have a relatively high cost (acquisition, maintenance and periodic calibration), and visual counting of detectors, since it only has an advantage when there are a small number of bubbles. The method starts with the collection of detector's digital images in order to obtain a sequence of images to create an animation that is displayed with the help of Virtual Reality. To this end, it is modeled, using OpenGL graphics library, a virtual environment for visualizing and manipulating virtual detector. It is made, then a calibration of this virtual environment thus ensuring the correspondence of the model with reality. The reading of the detector (bubbles count) is made visually by the user with the assistance of stereo vision and a 3D cursor to navigation, marking and counting the bubbles. The user views a further auxiliary display that shows the three-dimensional cursor position, the labeled amount of bubbles and the measured dose. After testing, the following results were achieved: better precision in counting the bubbles compared with the 10% reported by the manufacturer of the automatic reader; achieving a low cost tool that requires no calibration constant in the process of maintenance and/or lifetime; minimizing the problem of manual counting for large number of bubbles and ease of use, because can be operated by a common user. (author)

  12. Virtual reality training for health-care professionals.

    Science.gov (United States)

    Mantovani, Fabrizia; Castelnuovo, Gianluca; Gaggioli, Andrea; Riva, Giuseppe

    2003-08-01

    Emerging changes in health-care delivery are having a significant impact on the structure of health-care professionals' education. Today it is recognized that medical knowledge doubles every 6-8 years, with new medical procedures emerging everyday. While the half-life of medical information is so short, the average physician practices 30 years and the average nurse 40 years. Continuing education thus represents an important challenge to face. Recent advances in educational technology are offering an increasing number of innovative learning tools. Among these, Virtual Reality represents a promising area with high potential of enhancing the training of health-care professionals. Virtual Reality Training can provide a rich, interactive, engaging educational context, thus supporting experiential learning-by-doing; it can, in fact, contribute to raise interest and motivation in trainees and to effectively support skills acquisition and transfer, since the learning process can be settled within an experiential framework. Current virtual training applications for health-care differ a lot as to both their technological/multimedia sophistication and to the types of skills trained, varying for example from telesurgical applications to interactive simulations of human body and brain, to virtual worlds for emergency training. Other interesting applications include the development of immersive 3D environments for training psychiatrists and psychologists in the treatment of mental disorders. This paper has the main aim of discussing the rationale and main benefits for the use of virtual reality in health-care education and training. Significant research and projects carried out in this field will also be presented, followed by discussion on key issues concerning current limitations and future development directions.

  13. The social construction of virtual reality

    Directory of Open Access Journals (Sweden)

    Golubinskaya Anastasia Valerievna

    2016-10-01

    Full Text Available The article is aimed to rethinking the theory of social construction of P. Berger and T. Luckmann in the context of digital society. The conception of virtual reality helps to find new traits of the world in everyday life: intersubjectivity, temporality, schemes of typification and other social-constructivist concepts that receive new meanings. The author proposes to research the way of the world transformation “here and now” in the age of virtualization of social acts, and how these changes effect human social nature and reflective processes.

  14. Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions

    DEFF Research Database (Denmark)

    Villa, C; Olsen, K B; Hansen, S H

    2017-01-01

    physiognomics and can be used to create whole-body 3D virtual animations. In such way, virtual reconstructions of the probable ante-mortem postures of victims can be constructed and contribute to understand the sequence of events. This procedure is demonstrated in two victims of gunshot injuries. Case #1...

  15. Simple virtual reality display of fetal volume ultrasound.

    Science.gov (United States)

    Tutschek, B

    2008-12-01

    Three-dimensional (3D) ultrasound volume acquisition, analysis and display of fetal structures have enhanced their visualization and greatly improved the general understanding of their anatomy and pathology. The dynamic display of volume data generally depends on proprietary software, usually supplied with the ultrasound system, and on the operator's ability to maneuver the dataset digitally. We have used relatively simple tools and an established storage, display and manipulation format to generate non-linear virtual reality object movies of prenatal images (including moving sequences and 3D-rendered views) that can be navigated easily and interactively on any current computer. This approach permits a viewing or learning experience that is superior to watching a linear movie passively. (c) 2008 ISUOG.

  16. Feedback from video for virtual reality Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, L V

    2000-10-27

    Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and a robust skin-color segmentation for accounting illumination variations.

  17. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... and quantitative methods at two different occasions and setups after the exhibition, both showing a high degree of immersion and experience of reality....

  18. Virtual reality for physical and motor rehabilitation

    CERN Document Server

    Weiss, Patrice L (Tamar); Levin, Mindy F

    2014-01-01

    While virtual reality (VR) has influenced fields as varied as gaming, archaeology, and the visual arts, some of its most promising applications come from the health sector. Particularly encouraging are the many uses of VR in supporting the recovery of motor skills following accident or illness. Virtual Reality for Physical and Motor Rehabilitation reviews two decades of progress and anticipates advances to come. It offers current research on the capacity of VR to evaluate, address, and reduce motor skill limitations, and the use of VR to support motor and sensorimotor function, from the most basic to the most sophisticated skill levels. Expert scientists and clinicians explain how the brain organizes motor behavior, relate therapeutic objectives to client goals, and differentiate among VR platforms in engaging the production of movement and balance. On the practical side, contributors demonstrate that VR complements existing therapies across various conditions such as neurodegenerative diseases, traumatic bra...

  19. Advances in Robotics and Virtual Reality

    CERN Document Server

    Hassanien, Aboul

    2012-01-01

    A beyond human knowledge and reach, robotics is strongly involved in tackling challenges of new emerging multidisciplinary fields. Together with humans, robots are busy exploring and working on the new generation of ideas and problems whose solution is otherwise impossible to find. The future is near when robots will sense, smell and touch people and their lives. Behind this practical aspect of human-robotics, there is a half a century spanned robotics research, which transformed robotics into a modern science. The Advances in Robotics and Virtual Reality is a compilation of emerging application areas of robotics. The book covers robotics role in medicine, space exploration and also explains the role of virtual reality as a non-destructive test bed which constitutes a premise of further advances towards new challenges in robotics. This book, edited by two famous scientists with the support of an outstanding team of fifteen authors, is a well suited reference for robotics researchers and scholars from related ...

  20. Building a virtual archive using brain architecture and Web 3D to deliver neuropsychopharmacology content over the Internet.

    Science.gov (United States)

    Mongeau, R; Casu, M A; Pani, L; Pillolla, G; Lianas, L; Giachetti, A

    2008-05-01

    The vast amount of heterogeneous data generated in various fields of neurosciences such as neuropsychopharmacology can hardly be classified using traditional databases. We present here the concept of a virtual archive, spatially referenced over a simplified 3D brain map and accessible over the Internet. A simple prototype (available at http://aquatics.crs4.it/neuropsydat3d) has been realized using current Web-based virtual reality standards and technologies. It illustrates how primary literature or summary information can easily be retrieved through hyperlinks mapped onto a 3D schema while navigating through neuroanatomy. Furthermore, 3D navigation and visualization techniques are used to enhance the representation of brain's neurotransmitters, pathways and the involvement of specific brain areas in any particular physiological or behavioral functions. The system proposed shows how the use of a schematic spatial organization of data, widely exploited in other fields (e.g. Geographical Information Systems) can be extremely useful to develop efficient tools for research and teaching in neurosciences.

  1. Virtual reality in the operating room of the future.

    Science.gov (United States)

    Müller, W; Grosskopf, S; Hildebrand, A; Malkewitz, R; Ziegler, R

    1997-01-01

    In cooperation with the Max-Delbrück-Centrum/Robert-Rössle-Klinik (MDC/RRK) in Berlin, the Fraunhofer Institute for Computer Graphics is currently designing and developing a scenario for the operating room of the future. The goal of this project is to integrate new analysis, visualization and interaction tools in order to optimize and refine tumor diagnostics and therapy in combination with laser technology and remote stereoscopic video transfer. Hence, a human 3-D reference model is reconstructed using CT, MR, and anatomical cryosection images from the National Library of Medicine's Visible Human Project. Applying segmentation algorithms and surface-polygonization methods a 3-D representation is obtained. In addition, a "fly-through" the virtual patient is realized using 3-D input devices (data glove, tracking system, 6-DOF mouse). In this way, the surgeon can experience really new perspectives of the human anatomy. Moreover, using a virtual cutting plane any cut of the CT volume can be interactively placed and visualized in realtime. In conclusion, this project delivers visions for the application of effective visualization and VR systems. Commonly known as Virtual Prototyping and applied by the automotive industry long ago, this project shows, that the use of VR techniques can also prototype an operating room. After evaluating design and functionality of the virtual operating room, MDC plans to build real ORs in the near future. The use of VR techniques provides a more natural interface for the surgeon in the OR (e.g., controlling interactions by voice input). Besides preoperative planning future work will focus on supporting the surgeon in performing surgical interventions. An optimal synthesis of real and synthetic data, and the inclusion of visual, aural, and tactile senses in virtual environments can meet these requirements. This Augmented Reality could represent the environment for the surgeons of tomorrow.

  2. Virtual Reality and Haptics for Product Assembly

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2012-01-01

    Full Text Available Haptics can significantly enhance the user's sense of immersion and interactivity. An industrial application of virtual reality and haptics for product assembly is described in this paper, which provides a new and low-cost approach for product assembly design, assembly task planning and assembly operation training. A demonstration of the system with haptics device interaction was available at the session of exp.at'11.

  3. Virtual reality environments for health professional education

    OpenAIRE

    Saxena, Nakul; Kyaw, Bhone M.; Všetečková, Jitka; Dev, Parvati; Paul, Pradeep; Lim, Kenneth Teck Kiat; Kononowicz, Andrezej; Masiello, Italo; Tudor Car, Lorainne; Nikolaou, Charoula K.; Zary, Nabil; Car, Josip

    2016-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the effects of virtual reality environment (VRE)-based educational interventions for health professionals on knowledge, skills, and participants??? attitude towards and satisfaction with the interventions. Additionally, this review will assess the interventions' economic impact (cost and cost effectiveness), patient-related outcomes and unintended adverse effects of VRE-based educational inter...

  4. Transcending the self in immersive virtual reality

    OpenAIRE

    Slater, Mel; Sánchez-Vives, María Victoria

    2014-01-01

    Cognitive neuroscientists have discovered various experimental setups that suggest that our body representation is surprisingly flexible, where the brain can easily be tricked into the illusion that a rubber hand is your hand or that a manikin body is your body. These multisensory illusions work well in immersive virtual reality (IVR). What is even more surprising is that such embodiment induces perceptual, attitudinal and behavioural changes that are concomitant with the displayed body type....

  5. Virtual reality disaster training: translation to practice.

    Science.gov (United States)

    Farra, Sharon L; Miller, Elaine T; Hodgson, Eric

    2015-01-01

    Disaster training is crucial to the mitigation of both mortality and morbidity associated with disasters. Just as clinical practice needs to be grounded in evidence, effective disaster education is dependent upon the development and use of andragogic and pedagogic evidence. Educational research findings must be transformed into useable education strategies. Virtual reality simulation is a teaching methodology that has the potential to be a powerful educational tool. The purpose of this article is to translate research findings related to the use of virtual reality simulation in disaster training into education practice. The Ace Star Model serves as a valuable framework to translate the VRS teaching methodology and improve disaster training of healthcare professionals. Using the Ace Star Model as a framework to put evidence into practice, strategies for implementing a virtual reality simulation are addressed. Practice guidelines, implementation recommendations, integration to practice and evaluation are discussed. It is imperative that health educators provide more exemplars of how research evidence can be moved through the various stages of the model to advance practice and sustain learning outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. International workshop on multimodal virtual and augmented reality (workshop summary)

    NARCIS (Netherlands)

    Hürst, W.O.; Iwai, Daisuke; Balakrishnan, Prabhakaran

    2016-01-01

    Virtual reality (VR) and augmented reality (AR) are expected by many to become the next wave of computing with significant impacts on our daily lives. Motivated by this, we organized a workshop on “Multimodal Virtual and Augmented Reality (MVAR)” at the 18th ACM International Conference on

  7. Virtual reality simulators and training in laparoscopic surgery.

    Science.gov (United States)

    Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos

    2015-01-01

    Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  8. Psychological benefits of virtual reality for patients in rehabilitation therapy.

    Science.gov (United States)

    Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow

    2009-05-01

    Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.

  9. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    Directory of Open Access Journals (Sweden)

    Youngjun Kim

    2017-05-01

    Full Text Available Recently, virtual reality (VR and augmented reality (AR have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  10. UNDERSTANDING HUMAN PERCEPTION OF BUILDING CATEGORIES IN VIRTUAL 3D CITIES - A USER STUDY

    Directory of Open Access Journals (Sweden)

    P. Tutzauer

    2016-06-01

    Full Text Available Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human’s cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc. from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  11. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    Science.gov (United States)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  12. Assessment of Virtual Reality Environments for designactivities

    OpenAIRE

    Trakunsaranakom, Channarong; Noël, Frédéric; Marin, Philippe,

    2014-01-01

    International audience; The aim of this research is the performance assessment of 3D visualization and interaction devices for designactivities. Experiments are expected to determine the virtual environments that best fit the dedicated activities.Classification of technologies is proposed on the basis of its apparent relevance to reach intuitive support tothe design activity but a method to provide a more complete and objective assessment is proposed. To checkthe proposed assessment method, a...

  13. Virtual Reality: A Dream Come True or a Nightmare.

    Science.gov (United States)

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  14. Avatars, Affordances, and Interfaces: Virtual Reality Tools for Learning.

    Science.gov (United States)

    McLellan, Hilary

    Virtual reality technology offers the promise of interaction with a computer-based environment that engages visual, auditory, and tactile perception. Three interrelated virtual reality design topics are particularly relevant to visual literacy. The first is the concept of avatars. Avatars are agents that appear in a virtual world representing the…

  15. Selected Applications of Virtual Reality in Manufacturing

    Science.gov (United States)

    Novak-Marcincin, Jozef

    2011-01-01

    Virtual reality (VR) has become an important and useful tool in science and engineering. VR applications cover a wide range of industrial areas from product design to analysis, from product prototyping to manufacturing. The design and manufacturing of a product can be viewed, evaluated and improved in a virtual environment before its prototype is made, which is an enormous cost saving. Virtual Manufacturing (VM) is the use of computer models and simulations of manufacturing processes to aid in the design and production of manufactured products. VM is the use of manufacturing-based simulations to optimize the design of product and processes for a specific manufacturing goal such as: design for assembly; quality; lean operations; and/or flexibility.

  16. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  17. Integration of virtual and real scenes within an integral 3D imaging environment

    Science.gov (United States)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  18. The use of virtual reality for the functional simulation of hepatic tumors (case control study)

    National Research Council Canada - National Science Library

    Chen, Gang; Li, Xue-cheng; Wu, Guo-qing; Wang, Yi; Fang, Bin; Xiong, Xiao-feng; Yang, Ri-gao; Tan, Li-wen; Zhang, Shao-xiang; Dong, Jia-hong

    2010-01-01

    ... hepatic mass in a virtual reality (VR) environment may facilitate preoperative planning and successful surgical removal of a hepatic tumor. 9,10 Our aim was to design a system that can seamlessly convert a patient's cross-sectional imaging data (computed tomography [CT] or magnetic resonance imaging [MRI]) into a three-dimensional (3D) VR ...

  19. Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization.

    Science.gov (United States)

    Sato, Y; Nakamoto, M; Tamaki, Y; Sasama, T; Sakita, I; Nakajima, Y; Monden, M; Tamura, S

    1998-10-01

    This paper describes augmented reality visualization for the guidance of breast-conservative cancer surgery using ultrasonic images acquired in the operating room just before surgical resection. By combining an optical three-dimensional (3-D) position sensor, the position and orientation of each ultrasonic cross section are precisely measured to reconstruct geometrically accurate 3-D tumor models from the acquired ultrasonic images. Similarly, the 3-D position and orientation of a video camera are obtained to integrate video and ultrasonic images in a geometrically accurate manner. Superimposing the 3-D tumor models onto live video images of the patient's breast enables the surgeon to perceive the exact 3-D position of the tumor, including irregular cancer invasions which cannot be perceived by touch, as if it were visible through the breast skin. Using the resultant visualization, the surgeon can determine the region for surgical resection in a more objective and accurate manner, thereby minimizing the risk of a relapse and maximizing breast conservation. The system was shown to be effective in experiments using phantom and clinical data.

  20. Viewing medium affects arm motor performance in 3D virtual environments

    Science.gov (United States)

    2011-01-01

    Background 2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Methods Two groups of subjects participated (healthy control, n = 10, aged 53.6 ± 17.2 yrs; stroke, n = 20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n = 10) and moderate-to-severe (n = 10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. Results For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to

  1. Viewing medium affects arm motor performance in 3D virtual environments.

    Science.gov (United States)

    Subramanian, Sandeep K; Levin, Mindy F

    2011-06-30

    2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Two groups of subjects participated (healthy control, n=10, aged 53.6 ± 17.2 yrs; stroke, n=20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n=10) and moderate-to-severe (n=10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Despite the similarity in

  2. Viewing medium affects arm motor performance in 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Subramanian Sandeep K

    2011-06-01

    Full Text Available Abstract Background 2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs are viewed using media like head mounted displays (HMDs and large screen projection systems (SPS which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Methods Two groups of subjects participated (healthy control, n = 10, aged 53.6 ± 17.2 yrs; stroke, n = 20, 66.2 ± 11.3 yrs. Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n = 10 and moderate-to-severe (n = 10 sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50 and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz. Upper limb motor performance (precision, velocity, trajectory straightness and movement pattern (elbow, shoulder ranges and trunk displacement outcomes were analyzed using repeated measures ANOVAs. Results For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub

  3. Applications and a Three-dimensional Desktop Environment for an Immersive Virtual Reality System

    OpenAIRE

    Kageyama, Akira; Masada, Youhei

    2013-01-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, th...

  4. Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality

    Science.gov (United States)

    Lee, I.-C.; Tsai, F.

    2015-05-01

    A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The

  5. The concept of strong and weak virtual reality

    OpenAIRE

    Lisewski, A. M.

    2003-01-01

    We approach the virtual reality phenomenon by studying its relationship to set theory, and we investigate the case where this is done using the wellfoundedness property of sets. Our hypothesis is that non-wellfounded sets (hypersets) give rise to a different quality of virtual reality than do familiar wellfounded sets. We initially provide an alternative approach to virtual reality based on Sommerhoff's idea of first and second order self-awareness; both categories of self-awareness are consi...

  6. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.

    Science.gov (United States)

    Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios

    2017-01-01

    To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient (r=0.808, Pvirtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.

  7. Virtual reality exposure on nicotine craving.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Baptista, André; Pereira, Edgar; Morais, Diogo; Saraiva, Tomaz; Santos, Nuno; Soares, Fábio

    2011-01-01

    Several forms of treatment for nicotine dependence that combine the classical smoking cessation strategies with new Virtual Reality (VR) exposure techniques to smoking-related cues are in development. In this line, the main goal of our study was to develop a virtual platform in order to induce cravings in smokers. Sixty undergraduate students were randomly assigned to two different virtual environments (high-arousal cues and low-arousal cues). Both environments were based on a three-room apartment with commercial music playing and virtual characters interacting in a social event. The assessment was carried out before and after exposure through psychophysiological activation and self-report data for craving and nicotine dependence levels. No statistical differences were observed between smokers and non-smokers in psychophysiological activation. As far as self-report data is concerned, smokers revealed a significant increase in craving after the VR exposure to high arousal environments. Overall results were in line with previous studies suggesting the use of virtual environments as a tool for the existing smoking cessation programs.

  8. Sensorimotor training in virtual reality: a review.

    Science.gov (United States)

    Adamovich, Sergei V; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization.Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait,upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer to real-world functional improvements.

  9. VIRTUAL REALITY IN WAKING AND DREAMING CONSCIOUSNESS

    Directory of Open Access Journals (Sweden)

    Allan eHobson

    2014-10-01

    Full Text Available This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity –becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM sleep dreaming, may provide the theatre for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness. In short, our premise or hypothesis is that the waking brain engages with the sensorium to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  10. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality.

    Science.gov (United States)

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. "DJINNI" is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient's state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.

  11. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality

    Directory of Open Access Journals (Sweden)

    Maher Ben-Moussa

    2017-04-01

    Full Text Available The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup.

  12. DJINNI: A Novel Technology Supported Exposure Therapy Paradigm for SAD Combining Virtual Reality and Augmented Reality

    Science.gov (United States)

    Ben-Moussa, Maher; Rubo, Marius; Debracque, Coralie; Lange, Wolf-Gero

    2017-01-01

    The present paper explores the benefits and the capabilities of various emerging state-of-the-art interactive 3D and Internet of Things technologies and investigates how these technologies can be exploited to develop a more effective technology supported exposure therapy solution for social anxiety disorder. “DJINNI” is a conceptual design of an in vivo augmented reality (AR) exposure therapy mobile support system that exploits several capturing technologies and integrates the patient’s state and situation by vision-based, audio-based, and physiology-based analysis as well as by indoor/outdoor localization techniques. DJINNI also comprises an innovative virtual reality exposure therapy system that is adaptive and customizable to the demands of the in vivo experience and therapeutic progress. DJINNI follows a gamification approach where rewards and achievements are utilized to motivate the patient to progress in her/his treatment. The current paper reviews the state of the art of technologies needed for such a solution and recommends how these technologies could be integrated in the development of an individually tailored and yet feasible and effective AR/virtual reality-based exposure therapy. Finally, the paper outlines how DJINNI could be part of classical cognitive behavioral treatment and how to validate such a setup. PMID:28503155

  13. SIG y Paisajes Virtuales en 3D. Posibilidades de divulgación de la Prehistoria Reciente de la Sierra de Atapuerca

    Directory of Open Access Journals (Sweden)

    Francisco Javier Marcos Sáiz

    2010-04-01

    Full Text Available Archaeology has developed several theoretical and methodological perspectives with the application of the Geographical Information Systems (GIS, Digital Terrain Models (DTM, Virtual Reality (VR and the 3D Modelling. In the spreading a gradual progress has begun for mapping the sites on its environmental context with the virtual generation of the topographic and ecological features. The aim of this paper is the analysis of the possibilities of spreading of the settlement patterns in the Late Prehistory around Sierra de Atapuerca (Burgos, VI to II millennium cal. BC-. The technical process is the modelling and 3D animation for video of Virtual Landscapes with GIS. The conclusion is that the Virtual Flying with GIS is a fundamental tool for the graphical spreading of the prehistoric settlement, especially with archaeological sites of surveys.

  14. Using virtual reality to analyze sports performance.

    Science.gov (United States)

    Bideau, Benoit; Kulpa, Richard; Vignais, Nicolas; Brault, Sébastien; Multon, Franck; Craig, Cathy

    2010-01-01

    Improving performance in sports can be difficult because many biomechanical, physiological, and psychological factors come into play during competition. A better understanding of the perception-action loop employed by athletes is necessary. This requires isolating contributing factors to determine their role in player performance. Because of its inherent limitations, video playback doesn't permit such in-depth analysis. Interactive, immersive virtual reality (VR) can overcome these limitations and foster a better understanding of sports performance from a behavioral-neuroscience perspective. Two case studies using VR technology and a sophisticated animation engine demonstrate how to use information from visual displays to inform a player's future course of action.

  15. Virtual reality in neuroscience research and therapy.

    Science.gov (United States)

    Bohil, Corey J; Alicea, Bradly; Biocca, Frank A

    2011-11-03

    Virtual reality (VR) environments are increasingly being used by neuroscientists to simulate natural events and social interactions. VR creates interactive, multimodal sensory stimuli that offer unique advantages over other approaches to neuroscientific research and applications. VR's compatibility with imaging technologies such as functional MRI allows researchers to present multimodal stimuli with a high degree of ecological validity and control while recording changes in brain activity. Therapists, too, stand to gain from progress in VR technology, which provides a high degree of control over the therapeutic experience. Here we review the latest advances in VR technology and its applications in neuroscience research.

  16. Communication in the age of virtual reality

    CERN Document Server

    Biocca, Frank

    2013-01-01

    This volume addresses virtual reality (VR) -- a tantalizing communication medium whose essence challenges our most deeply held notions of what communication is or can be. The editors have gathered an expert team of engineers, social scientists, and cultural theorists for the first extensive treatment of human communication in this exciting medium. The first part introduces the reader to VR's state-of-the-art as well as future trends. In the next section, leading research scientists discuss how knowledge of communication can be used to build more effective and exciting communication applicati

  17. Virtual reality in rehabilitation after stroke

    Directory of Open Access Journals (Sweden)

    Krasnova-Goleva V.V.

    2016-01-01

    Full Text Available After a stroke many people have serious problems in motion activity, decline in cognitive activity, as well as a number of psychological problems that may accompany the man for many years. Motivational rehabilitation component plays a decisive role in the process of recovery after suffering a stroke. At present one of the most successful methods of rehabilitation is considered to be a recovery through "observation-imitation”, because this method enhances the plasticity of the brain and, as a result, rehabilitation potential. Modern rehabilitation using virtual reality had demonstrated good results to improve motor and cognitive skills, as well as the psychological condition

  18. Showing Complex Astrophysical Settings Through Virtual Reality

    Science.gov (United States)

    Green, Joel; Smith, Denise; Smith, Louis Chad; Lawton, Brandon; Lockwood, Alexandra; Jirdeh, Hussein

    2018-01-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in spring 2019, will routinely showcase astrophysical concepts that will challenge the public's understanding. Emerging technologies such as virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. For example, we imagine a spacefarer inside a protoplanetary disk, seeing the accretion process directly. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before.

  19. Virtual reality simulation of basic pulmonary procedures

    DEFF Research Database (Denmark)

    Konge, Lars; Arendrup, Henrik; von Buchwald, Christian

    2011-01-01

    Background: Virtual reality (VR) bronchoscopy simulators have been available for more than a decade, and have been recognized as an important aid in bronchoscopy training. The existing literature has only examined the role of VR simulators in diagnostic bronchoscopy. The aim of this study...... procedures, each on a VR bronchoscopy simulator. They performed 3 diagnostic bronchoscopies, 2 bronchoalveolar lavages, and 3 procedures in which they used all the available biopsy tools (needle, brush, and forceps) that could be used for tumors of increasing procedural difficulty. After the procedures...

  20. 3D BUILDING RECONSTRUCTION BY MULTIVIEW IMAGES AND THE INTEGRATED APPLICATION WITH AUGMENTED REALITY

    Directory of Open Access Journals (Sweden)

    J.-T. Hwang

    2016-10-01

    Full Text Available This study presents an approach wherein photographs with a high degree of overlap are clicked using a digital camera and used to generate three-dimensional (3D point clouds via feature point extraction and matching. To reconstruct a building model, an unmanned aerial vehicle (UAV is used to click photographs from vertical shooting angles above the building. Multiview images are taken from the ground to eliminate the shielding effect on UAV images caused by trees. Point clouds from the UAV and multiview images are generated via Pix4Dmapper. By merging two sets of point clouds via tie points, the complete building model is reconstructed. The 3D models are reconstructed using AutoCAD 2016 to generate vectors from the point clouds; SketchUp Make 2016 is used to rebuild a complete building model with textures. To apply 3D building models in urban planning and design, a modern approach is to rebuild the digital models; however, replacing the landscape design and building distribution in real time is difficult as the frequency of building replacement increases. One potential solution to these problems is augmented reality (AR. Using Unity3D and Vuforia to design and implement the smartphone application service, a markerless AR of the building model can be built. This study is aimed at providing technical and design skills related to urban planning, urban designing, and building information retrieval using AR.

  1. Virtual Application of Darul Arif Palace from Serdang Sultanate using Virtual Reality

    Science.gov (United States)

    Syahputra, M. F.; Annisa, T.; Rahmat, R. F.; Muchtar, M. A.

    2017-01-01

    Serdang Sultanate is one of Malay Sultanate in Sumatera Utara. In the 18th century, many Malay Aristocrats have developed in Sumatera Utara. Social revolution has happened in 1946, many sultanates were overthrown and member of PKI (Communist Party of Indonesia) did mass killing on members of the sultanate families. As the results of this incident, many cultural and historical heritage destroyed. The integration of heritage preservation and the digital technology has become recent trend. The digital technology is not only able to record, preserve detailed documents and information of heritage completely, but also effectively bring the value-added. In this research, polygonal modelling techniques from 3D modelling technology is used to reconstruct Darul Arif Palace of Serdang Sultanate. After modelling the palace, it will be combined with virtual reality technology to allow user to explore the palace and the environment around the palace. Virtual technology is simulation of real objects in virtual world. The results in this research is that virtual reality application can run using Head-Mounted Display.

  2. Virtual reality for automotive design evaluation

    Science.gov (United States)

    Dodd, George G.

    1995-01-01

    A general description of Virtual Reality technology and possible applications was given from publicly available material. A video tape was shown demonstrating the use of multiple large-screen stereoscopic displays, configured in a 10' x 10' x 10' room, to allow a person to evaluate and interact with a vehicle which exists only as mathematical data, and is made only of light. The correct viewpoint of the vehicle is maintained by tracking special glasses worn by the subject. Interior illumination was changed by moving a virtual light around by hand; interior colors are changed by pointing at a color on a color palette, then pointing at the desired surface to change. We concluded by discussing research needed to move this technology forward.

  3. 3D Character Centred Online Editing Modalities for VRML-based Virtual Environments

    NARCIS (Netherlands)

    Kiss, Szilárd; Kiss, S.

    2003-01-01

    The subject of this thesis belongs to the area of computer graphics, particularly, to the domain of graphics modelling. This thesis presents experiments in graphics modelling, namely in the application of graphics modelling principles to virtual reality (VR), with an interaction approach that is

  4. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Science.gov (United States)

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  5. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Software Documentation]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  6. ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games

    NARCIS (Netherlands)

    Ternier, Stefaan; Klemke, Roland

    2012-01-01

    Ternier, S., & Klemke, R. (2011). ARLearn and StreetLearn software for virtual reality and augmented reality multi user learning games (Version 1.0) [Computer software]. Heerlen, The Netherlands: Open Universiteit in the Netherlands.

  7. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  8. Approach to Constructing 3d Virtual Scene of Irrigation Area Using Multi-Source Data

    Science.gov (United States)

    Cheng, S.; Dou, M.; Wang, J.; Zhang, S.; Chen, X.

    2015-10-01

    For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS), remote sensing (RS) technology. Based on multi-source data such as Google Earth (GE) high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  9. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    Science.gov (United States)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  10. Suitability of digital camcorders for virtual reality image data capture

    Science.gov (United States)

    D'Apuzzo, Nicola; Maas, Hans-Gerd

    1998-12-01

    Today's consumer market digital camcorders offer features which make them appear quite interesting devices for virtual reality data capture. The paper compares a digital camcorder with an analogue camcorder and a machine vision type CCD camera and discusses the suitability of these three cameras for virtual reality applications. Besides the discussion of technical features of the cameras, this includes a detailed accuracy test in order to define the range of applications. In combination with the cameras, three different framegrabbers are tested. The geometric accuracy potential of all three cameras turned out to be surprisingly large, and no problems were noticed in the radiometric performance. On the other hand, some disadvantages have to be reported: from the photogrammetrists point of view, the major disadvantage of most camcorders is the missing possibility to synchronize multiple devices, limiting the suitability for 3-D motion data capture. Moreover, the standard video format contains interlacing, which is also undesirable for all applications dealing with moving objects or moving cameras. Further disadvantages are computer interfaces with functionality, which is still suboptimal. While custom-made solutions to these problems are probably rather expensive (and will make potential users turn back to machine vision like equipment), this functionality could probably be included by the manufacturers at almost zero cost.

  11. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    Science.gov (United States)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  12. Virtual Reality as Innovative Approach to the Interior Designing

    Directory of Open Access Journals (Sweden)

    Kaleja Pavol

    2017-06-01

    Full Text Available We can observe significant potential of information and communication technologies (ICT in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study. A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools for designing in virtual reality we can achieve still more realistic virtual environment. The contribution presented proposal of an innovative approach of interior designing in virtual reality, using the latest software and hardware ICT virtual reality technologies

  13. Virtual reality simulator for vitreoretinal surgery.

    Science.gov (United States)

    Verma, D; Wills, D; Verma, M

    2003-01-01

    To develop computer simulation of steps in vitreoretinal surgery using virtual reality technology. A workstation with three-dimensional position tracking stylus was attached to a Pentium II desktop PC with a graphic accelerator. Computer algorithms were developed using Open GL and Microsoft Visual C++ languages to control the interaction and update the visual feedback tracking the instruments. Soft tissue computer modelling was carried out to mimic the removal of a vitreous opacity. Lens touch with the instruments was also detected. Mathematical modelling to allow for lens distortion was taken into account. A virtual reality computer model has been developed that can simulate initial steps of vitreoretinal surgery. Soft tissue modelling of the vitreous opacity and its removal by the vitrector was successfully simulated. The movements of the active and passive instruments in the dummy eye corresponded to the movements on the computer screen. On evaluation of the system, there was a minimal but discernable time lag between the stylus movement and the visual feedback. There was no tactile feedback when the lens touch was simulated. No further complex vitreoretinal surgery simulation was possible at this stage.

  14. Immersive Virtual Reality for Pediatric Pain

    Science.gov (United States)

    Won, Andrea Stevenson; Bailey, Jakki; Bailenson, Jeremy; Tataru, Christine; Yoon, Isabel A.; Golianu, Brenda

    2017-01-01

    Children must often endure painful procedures as part of their treatment for various medical conditions. Those with chronic pain endure frequent or constant discomfort in their daily lives, sometimes severely limiting their physical capacities. With the advent of affordable consumer-grade equipment, clinicians have access to a promising and engaging intervention for pediatric pain, both acute and chronic. In addition to providing relief from acute and procedural pain, virtual reality (VR) may also help to provide a corrective psychological and physiological environment to facilitate rehabilitation for pediatric patients suffering from chronic pain. The special qualities of VR such as presence, interactivity, customization, social interaction, and embodiment allow it to be accepted by children and adolescents and incorporated successfully into their existing medical therapies. However, the powerful and transformative nature of many VR experiences may also pose some risks and should be utilized with caution. In this paper, we review recent literature in pediatric virtual reality for procedural pain and anxiety, acute and chronic pain, and some rehabilitation applications. We also discuss the practical considerations of using VR in pediatric care, and offer specific suggestions and information for clinicians wishing to adopt these engaging therapies into their daily clinical practice. PMID:28644422

  15. Language-driven anticipatory eye movements in virtual reality.

    Science.gov (United States)

    Eichert, Nicole; Peeters, David; Hagoort, Peter

    2017-08-08

    Predictive language processing is often studied by measuring eye movements as participants look at objects on a computer screen while they listen to spoken sentences. This variant of the visual-world paradigm has revealed that information encountered by a listener at a spoken verb can give rise to anticipatory eye movements to a target object, which is taken to indicate that people predict upcoming words. The ecological validity of such findings remains questionable, however, because these computer experiments used two-dimensional stimuli that were mere abstractions of real-world objects. Here we present a visual-world paradigm study in a three-dimensional (3-D) immersive virtual reality environment. Despite significant changes in the stimulus materials and the different mode of stimulus presentation, language-mediated anticipatory eye movements were still observed. These findings thus indicate that people do predict upcoming words during language comprehension in a more naturalistic setting where natural depth cues are preserved. Moreover, the results confirm the feasibility of using eyetracking in rich and multimodal 3-D virtual environments.

  16. Intelligent Virtual Reality and its Impact on Spatial Skills and Academic Achievements

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2005-08-01

    Full Text Available It is known that the training of intelligent virtual reality, through the use of computer games, can improve spatial skills especially visualization and enhances academic achievements. Through an experiment of using Tetris software, two objectives were achieved: developing spatial as well as intelligence skills and enhancing academic achievements, focusing on mathematics. This study followed studies dealing with the impact on putting the learner into action in 3d space software. During teaching a transition from 2d to 3d spatial perception and operation occurred. A positive transfer from 3d virtual reality rotation training to structural induction skills, by means of mental imaging, was also achieved. At the same time the motivation for learning was enhanced, without using extrinsic reinforcements. The duration of concentration while using the intelligent software increased gradually up to 60 minutes.

  17. Reduced Mental Load in Learning a Motor Visual Task with Virtual 3D Method

    Science.gov (United States)

    Dan, A.; Reiner, M.

    2018-01-01

    Distance learning is expanding rapidly, fueled by the novel technologies for shared recorded teaching sessions on the Web. Here, we ask whether 3D stereoscopic (3DS) virtual learning environment teaching sessions are more compelling than typical two-dimensional (2D) video sessions and whether this type of teaching results in superior learning. The…

  18. Laying the Groundwork for Socialisation and Knowledge Construction within 3D Virtual Worlds

    Science.gov (United States)

    Minocha, Shailey; Roberts, Dave

    2008-01-01

    The paper reports the theoretical underpinnings for the pedagogical role and rationale for adopting 3D virtual worlds for socialisation and knowledge creation in distance education. Socialisation or "knowing one another" in remote distributed environments can be achieved through synchronous technologies such as instant messaging, audio and…

  19. Avatar-mediation and Transformation of Practice in a 3D Virtual World

    DEFF Research Database (Denmark)

    Riis, Marianne

    The purpose of this study is to understand and conceptualize the transformation of a particular community of pedagogical practice based on the implementation of the 3D virtual world, Second Life™. The community setting is a course at the Master's programme on ICT and Learning (MIL), Aalborg...

  20. Representing 3D virtual objects: interaction between visuo-spatial ability and type of exploration

    NARCIS (Netherlands)

    Meijer, F.; van den Broek, Egon

    2010-01-01

    We investigated individual differences in interactively exploring previous term3D virtual objects.next term 36 participants explored 24 simple and 24 difficult previous objects (composed of respectively three and five Biederman geons) actively, passively, or not at all. Both their previous

  1. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    Directory of Open Access Journals (Sweden)

    Shashidhar Patil

    2015-06-01

    Full Text Available In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor.

  2. Adaptive 3D Virtual Learning Environments--A Review of the Literature

    Science.gov (United States)

    Scott, Ezequiel; Soria, Alvaro; Campo, Marcelo

    2017-01-01

    New ways of learning have emerged in the last years by using computers in education. For instance, many Virtual Learning Environments have been widely adopted by educators, obtaining promising outcomes. Recently, these environments have evolved into more advanced ones using 3D technologies and taking into account the individual learner needs and…

  3. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    Science.gov (United States)

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  4. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  5. Applying virtual reality to remote control of mobile robot

    Directory of Open Access Journals (Sweden)

    Chen Chin-Shan

    2017-01-01

    Full Text Available The purpose of this research is based on virtual reality to assisted pick and place tasks. Virtual reality can be utilized to control remote robot for pick and place element. The operator monitored and controlled the situation information of working site by Human Machine Interface. Therefore, we worked in harsh or dangerous environments that thing can be avoided. The procedure to operate mobile robot in virtual reality describes as follow: An experiment site with really experimental equipment is first established. Then, the experimental equipment and scene modeling are input to virtual reality for establishing a environment similar to the reality. Finally, the remote mobile robot is controlled to operate pick and place tasks through wireless communication by the object operation in virtual reality. The robot consists of a movable robot platform and robotic arm. The virtual reality is constructed by EON software; the Human Machine Interface is established by Visual Basic. The wireless connection is equipped the wireless Bluetooth, which is set the PC and PLC controller. With experimental tests to verify the robot in virtual reality and the wireless remote control, the robot could be operated and controlled to successfully complete pick and place tasks in reality by Human Machine Interface.

  6. SYNTHETIC DESIGN AND THE ART OF VIRTUAL REALITY IN ...

    African Journals Online (AJOL)

    influence modern design in both theatre and film productions. This paper is of the view that Virtual Reality, as an operational phrase in modern and post- modern theatre and film, has become a .... lights and colour to graphically produce architecture or sculptural images. In a similar development, most current Virtual Reality ...

  7. Treatment of Complicated Grief Using Virtual Reality: A Case Report

    Science.gov (United States)

    Botella, C.; Osma, J.; Palacios, A. Garcia; Guillen, V.; Banos, R.

    2008-01-01

    This is the first work exploring the application of new technologies, concretely virtual reality, to facilitate emotional processing in the treatment of Complicated Grief. Our research team has designed a virtual reality environment (EMMA's World) to foster the expression and processing of emotions. In this study the authors present a description…

  8. The ethics of representation and action in virtual reality

    NARCIS (Netherlands)

    Brey, Philip A.E.

    1999-01-01

    This essay addresses ethical aspects of the design and use of virtual reality (VR) systems, focusing on the behavioral options made available in such systems and the manner in which reality is represented or simulated in them. An assessment is made of the morality of immoral behavior in virtual

  9. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    Science.gov (United States)

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  10. Planning and analyzing robotized TMS using virtual reality.

    Science.gov (United States)

    Matthäus, Lars; Giese, Alf; Wertheimer, Daniel; Schweikard, Achim

    2006-01-01

    Transcranial Magnetic Stimulation (TMS) is a powerful method to examine the brain and non-invasively treat disorders of the central nervous system. Magnetic stimulation of the motor cortex results in the activation of corresponding muscle groups. Hereby, accurate placement of the TMS coil to the patient's head is crucial to successful stimulation. We developed a way to position the TMS coil using a robot and navigate it in virtual reality based on an online registration of the cranium relative to 3D magnetic resonance imaging data. By tracking the head and robotic motion compensation, fixation of the patient's head becomes obsolete. Furthermore, a novel method for motor cortex mapping is presented. The robotized TMS system is used to obtain the characteristic field of a TMS coil. This field is registered to the field of motor evoked potential measurements at the patient's head to yield a prediction of the motoric center of a target muscle.

  11. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    Science.gov (United States)

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  12. Role of virtual reality simulation in endoscopy training

    Science.gov (United States)

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-01-01

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895

  13. Role of virtual reality simulation in endoscopy training.

    Science.gov (United States)

    Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen

    2015-12-10

    Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.

  14. Virtual Reality Stroop Task for neurocognitive assessment.

    Science.gov (United States)

    Parsons, Thomas D; Courtney, Christopher G; Arizmendi, Brian; Dawson, Michael

    2011-01-01

    Given the prevalence of traumatic brain injury (TBI), and the fact that many mild TBIs have no external marker of injury, there is a pressing need for innovative assessment technology. The demand for assessment that goes beyond traditional paper-and-pencil testing has resulted in the use of automated cognitive testing for increased precision and efficiency; and the use of virtual environment technology for enhanced ecological validity and increased function-based assessment. To address these issues, a Virtual Reality Stroop Task (VRST) that involves the subject being immersed in a virtual Humvee as Stroop stimuli appear on the windshield was developed. This study is an initial validation of the VRST as an assessment of neurocognitive functioning. When compared to the paper-and-pencil, as well as Automated Neuropsychological Assessment Metrics versions of the Stroop, the VRST appears to have enhanced capacity for providing an indication of a participant's reaction time and ability to inhibit a prepotent response while immersed in a military relevant simulation that presents psychophysiologically arousing high and low threat stimuli.

  15. Using voice input and audio feedback to enhance the reality of a virtual experience

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1994-04-01

    Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantages and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.

  16. Virtual reality, augmented reality…I call it i-Reality.

    Science.gov (United States)

    Grossmann, Rafael J

    2015-01-01

    The new term improved reality (i-Reality) is suggested to include virtual reality (VR) and augmented reality (AR). It refers to a real world that includes improved, enhanced and digitally created features that would offer an advantage on a particular occasion (i.e., a medical act). I-Reality may help us bridge the gap between the high demand for medical providers and the low supply of them by improving the interaction between providers and patients.

  17. Recent advances in head-mounted light field displays for virtual and augmented reality (Conference Presentation)

    Science.gov (United States)

    Hua, Hong

    2017-02-01

    Head-mounted light field displays render a true 3D scene by sampling either the projections of the 3D scene at different depths or the directions of the light rays apparently emitted by the 3D scene and viewed from different eye positions. They are capable of rendering correct or nearly correct focus cues and addressing the very well-known vergence-accommodation mismatch problem in conventional virtual and augmented reality displays. In this talk, I will focus on reviewing recent advancements of head-mounted light field displays for VR and AR applications. I will demonstrate examples of HMD systems developed in my group.

  18. [Preliminary study on force feedback of acupuncture in virtual reality based on the visible human].

    Science.gov (United States)

    Cheng, Zhuo; Wang, Hai-sheng; Min, You-jiang; Yan, Zhen-guo; Hong, Z Tan; Zhuang, Tian-ge

    2007-01-01

    This paper discusses the application of virtual reality technology in the 3-D visible human body and acupuncture research. Based on the 3-D visible human fused with the localization information and hierarchy of acupoints, the paper analyzes the force against the needle and haptic rendering during the needle manipulation according to the physical properties of different tissues. A haptic model is constructed to demonstrate the force behaviors during acupuncture, and the force will be produced and passed to the manipulator by a force feedback device. It enriches the contents of 3-D visible human project, provides a dynamic simulation instrument for acupuncture teaching, and supplies a platform for acupuncture research.

  19. Walkable self-overlapping virtual reality maze and map visualization demo: public virtual reality setup for asymmetric collaboration

    DEFF Research Database (Denmark)

    Serubugo, Sule; Skantarova, Denisa; Evers, Nicolaj

    2017-01-01

    This paper describes our demonstration of a walkable self-overlapping maze and its corresponding map to facilitate asymmetric collaboration for room-scale virtual reality setups in public places.......This paper describes our demonstration of a walkable self-overlapping maze and its corresponding map to facilitate asymmetric collaboration for room-scale virtual reality setups in public places....

  20. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.

    Science.gov (United States)

    Nakata, Norio; Suzuki, Naoki; Hattori, Asaki; Hirai, Naoya; Miyamoto, Yukio; Fukuda, Kunihiko

    2012-01-01

    Although widely used as a pointing device on personal computers (PCs), the mouse was originally designed for control of two-dimensional (2D) cursor movement and is not suited to complex three-dimensional (3D) image manipulation. Augmented reality (AR) is a field of computer science that involves combining the physical world and an interactive 3D virtual world; it represents a new 3D user interface (UI) paradigm. A system for 3D and four-dimensional (4D) image manipulation has been developed that uses optical tracking AR integrated with a smartphone remote control. The smartphone is placed in a hard case (jacket) with a 2D printed fiducial marker for AR on the back. It is connected to a conventional PC with an embedded Web camera by means of WiFi. The touch screen UI of the smartphone is then used as a remote control for 3D and 4D image manipulation. Using this system, the radiologist can easily manipulate 3D and 4D images from computed tomography and magnetic resonance imaging in an AR environment with high-quality image resolution. Pilot assessment of this system suggests that radiologists will be able to manipulate 3D and 4D images in the reading room in the near future. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.324115086/-/DC1.

  1. 3D Interactions between Virtual Worlds and Real Life in an E-Learning Community

    Directory of Open Access Journals (Sweden)

    Ulrike Lucke

    2011-01-01

    Full Text Available Virtual worlds became an appealing and fascinating component of today's internet. In particular, the number of educational providers that see a potential for E-Learning in such new platforms increases. Unfortunately, most of the environments and processes implemented up to now do not exceed a virtual modelling of real-world scenarios. In particular, this paper shows that Second Life can be more than just another learning platform. A flexible and bidirectional link between the reality and the virtual world enables synchronous and seamless interaction between users and devices across both worlds. The primary advantages of this interconnection are a spatial extension of face-to-face and online learning scenarios and a closer relationship between virtual learners and the real world.

  2. Virtual Reality as a Complementary Therapy to Sexual Addiction Treatment

    OpenAIRE

    Cismaru Inescu, Adina; Andrianne, Robert; Triffaux, Jean-Marc

    2013-01-01

    Virtual reality has gained traction as a research, education and treatment tool. Virtual reality is a system that immerses people in virtual worlds and improves clinicians’ traditional treatments for addictive disorders, eating disorders, phobias, and stroke rehabilitation. Sex addiction is a dysregulation of sexual desire, characterized by excessive sexual behavior (between 5-15 sexual activities/day, for more than 6 months, after the age of 15). Hypersexuality highlights disturbances in hum...

  3. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    Science.gov (United States)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  4. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.

    Science.gov (United States)

    Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo

    2010-01-01

    Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.

  5. fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media

    Science.gov (United States)

    Yoshida, Shunsuke

    2012-06-01

    A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.

  6. A virtual reality scenario for all seasons: the virtual classroom.

    Science.gov (United States)

    Rizzo, Albert A; Bowerly, Todd; Buckwalter, J Galen; Klimchuk, Dean; Mitura, Roman; Parsons, Thomas D

    2006-01-01

    Treatment and rehabilitation of the cognitive, psychological, and motor sequelae of central nervous system dysfunction often relies on assessment instruments to inform diagnosis and to track changes in clinical status. Typically, these assessments employ paper-and-pencil psychometrics, hands-on analog/computer tests, and rating of behavior within the context of real-world functional environments. Virtual reality offers the option to produce and distribute identical "standard" simulation environments in which performance can be measured and rehabilitated. Within such digital scenarios, normative data can be accumulated for performance comparisons needed for assessment/diagnosis and for treatment/rehabilitation purposes. In this manner, reusable archetypic virtual environments constructed for one purpose can also be applied for applications addressing other clinical targets. This article will provide a review of such a retooling approach using a virtual classroom simulation that was originally developed as a controlled stimulus environment in which attention processes could be systematically assessed in children with attention-deficit/hyperactivity disorder. This system is now being applied to other clinical targets including the development of tests that address other cognitive functions, eye movement under distraction conditions, social anxiety disorder, and the creation of an earthquake safety training application for children with developmental and learning disabilities.

  7. Distributed augmented reality with 3-D lung dynamics--a planning tool concept.

    Science.gov (United States)

    Hamza-Lup, Felix G; Santhanam, Anand P; Imielińska, Celina; Meeks, Sanford L; Rolland, Jannick P

    2007-01-01

    Augmented reality (AR) systems add visual information to the world by using advanced display techniques. The advances in miniaturization and reduced hardware costs make some of these systems feasible for applications in a wide set of fields. We present a potential component of the cyber infrastructure for the operating room of the future: a distributed AR-based software-hardware system that allows real-time visualization of three-dimensional (3-D) lung dynamics superimposed directly on the patient's body. Several emergency events (e.g., closed and tension pneumothorax) and surgical procedures related to lung (e.g., lung transplantation, lung volume reduction surgery, surgical treatment of lung infections, lung cancer surgery) could benefit from the proposed prototype.

  8. New maritime information browsing and service system based on 3D virtual Earth

    Science.gov (United States)

    Sui, Haigang; Gao, Xiaorong; Hua, Li; Zhang, Anmin

    2007-11-01

    Maritime information is very important to ensure traffic safety on the sea. In recent years the maritime information browsing and service system is widely used. However, most of the traditional systems are based on 2D electronic charts and are not satisfied with people's multi-dimension and multi-viewpoint way to observe the world. So it is necessary and urgent to research and develop the maritime information service in 3D virtual environment. Aiming at this, a new idea for maritime information browsing and service based on 3D virtual earth is presented in this paper. Corresponding key technologies including integrated creation of underwater and land terrain, creation of 3D maritime model based on the integration of GIS and CAD, spatial information extraction from nonspatial data, organization and management of terrain data and 3D maritime models, moving object management based on orbit positioning algorithm, 3D visualization of different information are discussed in detail. At last, a system named 3DMBINS is developed and obtained initial application in maritime administration.

  9. Dissociation in virtual reality: depersonalization and derealization

    Science.gov (United States)

    Garvey, Gregory P.

    2010-01-01

    This paper looks at virtual worlds such as Second Life7 (SL) as possible incubators of dissociation disorders as classified by the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition3 (also known as the DSM-IV). Depersonalization is where "a person feels that he or she has changed in some way or is somehow unreal." Derealization when "the same beliefs are held about one's surroundings." Dissociative Identity Disorder (DID), previously known as multiple personality disorder fits users of Second Life who adopt "in-world" avatars and in effect, enact multiple distinct identities or personalities (known as alter egos or alters). Select questions from the Structured Clinical Interview for Depersonalization (SCI-DER)8 will be discussed as they might apply to the user's experience in Second Life. Finally I would like to consider the hypothesis that rather than a pathological disorder, dissociation is a normal response to the "artificial reality" of Second Life.

  10. Virtual reality for freely moving animals.

    Science.gov (United States)

    Stowers, John R; Hofbauer, Maximilian; Bastien, Renaud; Griessner, Johannes; Higgins, Peter; Farooqui, Sarfarazhussain; Fischer, Ruth M; Nowikovsky, Karin; Haubensak, Wulf; Couzin, Iain D; Tessmar-Raible, Kristin; Straw, Andrew D

    2017-10-01

    Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.

  11. Surgical Navigation Technology Based on Augmented Reality and Integrated 3D Intraoperative Imaging

    Science.gov (United States)

    Elmi-Terander, Adrian; Skulason, Halldor; Söderman, Michael; Racadio, John; Homan, Robert; Babic, Drazenko; van der Vaart, Nijs; Nachabe, Rami

    2016-01-01

    Study Design. A cadaveric laboratory study. Objective. The aim of this study was to assess the feasibility and accuracy of thoracic pedicle screw placement using augmented reality surgical navigation (ARSN). Summary of Background Data. Recent advances in spinal navigation have shown improved accuracy in lumbosacral pedicle screw placement but limited benefits in the thoracic spine. 3D intraoperative imaging and instrument navigation may allow improved accuracy in pedicle screw placement, without the use of x-ray fluoroscopy, and thus opens the route to image-guided minimally invasive therapy in the thoracic spine. Methods. ARSN encompasses a surgical table, a motorized flat detector C-arm with intraoperative 2D/3D capabilities, integrated optical cameras for augmented reality navigation, and noninvasive patient motion tracking. Two neurosurgeons placed 94 pedicle screws in the thoracic spine of four cadavers using ARSN on one side of the spine (47 screws) and free-hand technique on the contralateral side. X-ray fluoroscopy was not used for either technique. Four independent reviewers assessed the postoperative scans, using the Gertzbein grading. Morphometric measurements of the pedicles axial and sagittal widths and angles, as well as the vertebrae axial and sagittal rotations were performed to identify risk factors for breaches. Results. ARSN was feasible and superior to free-hand technique with respect to overall accuracy (85% vs. 64%, P < 0.05), specifically significant increases of perfectly placed screws (51% vs. 30%, P < 0.05) and reductions in breaches beyond 4 mm (2% vs. 25%, P < 0.05). All morphometric dimensions, except for vertebral body axial rotation, were risk factors for larger breaches when performed with the free-hand method. Conclusion. ARSN without fluoroscopy was feasible and demonstrated higher accuracy than free-hand technique for thoracic pedicle screw placement. Level of Evidence: N/A PMID:27513166

  12. Utilization of Virtual Reality Content in Grade 6 Social Studies Using Affordable Virtual Reality Technology

    Directory of Open Access Journals (Sweden)

    Lee Steven O. Zantua

    2017-05-01

    Full Text Available Virtual Reality is fast becoming a breakthrough in education technology and is headed towards a path where learning has become immersive. Virtual reality (VR offers both learners and educators a great opportunity to bridge gaps in the pedagogical sense. With the emergence of the Google Cardboard (GCB platform, a low-cost, virtual reality gadget comes a wide range of opportunities for educators and institutions to bring about an immersive type of learning environment for the 21st-century learner. Using Grade 6 Middle school students, this research explores the learning outcomes and student reactions using the GCB and Google Expeditions application. The study showed no significant difference in pre-test scores of the control and experimental group. There is however, a significant difference in the scores of the experimental group compared to the control group after post-test. Utilizing t-test in comparing the two groups, it was found that the mean of the post-test scores for Group A (experimental was significantly higher than Group B(control. The result of the independent samples t-test was significant, t(18 = 2.33, p = .032, suggesting that the mean of posttest score was significantly different between Groups A and B. This difference in score performance gives light to how VR can be used as a tool that enhances the learning experience. By using VR technology that is low cost and effective, more institutions will be able to help students learn better.

  13. Instrument Motion Metrics for Laparoscopic Skills Assessment in Virtual Reality and Augmented Reality.

    Science.gov (United States)

    Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A

    2016-11-01

    To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.

  14. From stereoscopic recording to virtual reality headsets: Designing a new way to learn surgery.

    Science.gov (United States)

    Ros, M; Trives, J-V; Lonjon, N

    2017-03-01

    To improve surgical practice, there are several different approaches to simulation. Due to wearable technologies, recording 3D movies is now easy. The development of a virtual reality headset allows imagining a different way of watching these videos: using dedicated software to increase interactivity in a 3D immersive experience. The objective was to record 3D movies via a main surgeon's perspective, to watch files using virtual reality headsets and to validate pedagogic interest. Surgical procedures were recorded using a system combining two side-by-side cameras placed on a helmet. We added two LEDs just below the cameras to enhance luminosity. Two files were obtained in mp4 format and edited using dedicated software to create 3D movies. Files obtained were then played using a virtual reality headset. Surgeons who tried the immersive experience completed a questionnaire to evaluate the interest of this procedure for surgical learning. Twenty surgical procedures were recorded. The movies capture a scene which is extended 180° horizontally and 90° vertically. The immersive experience created by the device conveys a genuine feeling of being in the operating room and seeing the procedure first-hand through the eyes of the main surgeon. All surgeons indicated that they believe in pedagogical interest of this method. We succeeded in recording the main surgeon's point of view in 3D and watch it on a virtual reality headset. This new approach enhances the understanding of surgery; most of the surgeons appreciated its pedagogic value. This method could be an effective learning tool in the future. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Virtual, augmented reality and serious games for healthcare

    CERN Document Server

    Jain, Lakhmi; Anderson, Paul

    2014-01-01

    There is a tremendous interest among researchers for the development of virtual, augmented reality and games technologies due to their widespread applications in medicine and healthcare. To date the major applications of these technologies include medical simulation, telemedicine, medical and healthcare training, pain control, visualisation aid for surgery, rehabilitation in cases such as stroke, phobia, and trauma therapies. Many recent studies have identified the benefits of using Virtual Reality, Augmented Reality, or serious games in a variety of medical applications.   This research volume on Virtual, Augmented Reality and Serious Games for Healthcare 1 offers an insightful introduction to the theories, development and applications of virtual, augmented reality and digital games technologies in medical and clinical settings and healthcare in general. It is divided into six sections: section one presents a selection of applications in medical education and healthcare management; Section two relates to th...

  16. A computer-based training system combining virtual reality and multimedia

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, S.A.

    1993-04-28

    Training new users of complex machines is often an expensive and time-consuming process. This is particularly true for special purpose systems, such as those frequently encountered in DOE applications. This paper presents a computer-based training system intended as a partial solution to this problem. The system extends the basic virtual reality (VR) training paradigm by adding a multimedia component which may be accessed during interaction with the virtual environment: The 3D model used to create the virtual reality is also used as the primary navigation tool through the associated multimedia. This method exploits the natural mapping between a virtual world and the real world that it represents to provide a more intuitive way for the student to interact with all forms of information about the system.

  17. Possible Application of Virtual Reality in Geography Teaching

    Directory of Open Access Journals (Sweden)

    Ivan Stojšić

    2017-03-01

    Full Text Available Virtual reality represents simulated three-dimensional environment created by hardware and software, which providing realistic experience and possibility of interaction to the end-user. Benefits provided by immersive virtual reality in educational setting were recognised in the past decades, however mass application was left out due to the lack of development and high price. Intensive development of new platforms and virtual reality devices in the last few years started up with Oculus Rift, and subsequently accelerated in the year 2014 by occurrence of Google Cardboard. Nowadays, for the first time in history, immersive virtual reality is available to millions of people. In the mid 2015 Google commenced developing Expeditions Pioneer Program aiming to massively utilise the Google Cardboard platform in education. Expeditions and other VR apps can enhance geography teaching and learning. Realistic experience acquired by utilisation of virtual reality in teaching process significantly overcome possibilities provided by images and illustrations in the textbook. Besides literature review on usage of virtual reality in education this paper presents suggestion of VR mobile apps that can be used together with the Google Cardboard head mounted displays (HMDs in geography classes, thereby emphasising advantages and disadvantages as well as possible obstacles which may occur in introducing the immersive virtual reality in the educational process.

  18. ENGEMBANGAN VIRTUAL CLASS UNTUK PEMBELAJARAN AUGMENTED REALITY BERBASIS ANDROID

    Directory of Open Access Journals (Sweden)

    Rifiana Arief

    2015-02-01

    Full Text Available ABSTRACT Augmanted Reality for android handphone has been a trend among collage students of computer department who join New Media course. To develop this application, the knowladge about visual presentation theory and case study of Augmanted Reality on android phoneneed to be conducted. Learning media through virtual class can facilitate the students’ needs in learning and developing Augmanted Reality. The method of this study in developing virtual class for Augmented Reality learning were: a having preparation to arrange learning unit, b analyzing and developing the content of learning materials, c designing storyboard or scenario of the virtual class, d making website of virtual class, e implementing the website as facility of online learning for Augmanted Reality. The available facilities in virtual class were to check learning units, to choose and download the material in the forms of e-book and presentation slides, to open the relevant website link for material enrichment as well as students’ practice with pre-test and post-test for measuring students’ understanding. By implementing virtual class for Augmanted Reality learning based Android, it is expected to provide alternative learning strategies for students that are interesting and easy to understand. The students are expected to be able to utilize this facility optimally in order to achieve the purposes of learning process and graduates’ competence. Keywords: VirtualClass, Augmented Reality (AR

  19. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.

    Science.gov (United States)

    Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y

    2009-05-01

    To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.

  20. Simulating hemispatial neglect with virtual reality

    Directory of Open Access Journals (Sweden)

    Yoshizawa Makoto

    2007-07-01

    Full Text Available Abstract Background Hemispatial neglect is a cognitive disorder defined as a lack of attention for stimuli contra-lateral to the brain lesion. The assessment is traditionally done with basic pencil and paper tests and the rehabilitation programs are generally not well adapted. We propose a virtual reality system featuring an eye-tracking device for a better characterization of the neglect that will lead to new rehabilitation techniques. Methods This paper presents a comparison of eye-gaze patterns of healthy subjects, patients and healthy simulated patients on a virtual line bisection test. The task was also executed with a reduced visual field condition hoping that fewer stimuli would limit the neglect. Results We found that patients and healthy simulated patients had similar eye-gaze patterns. However, while the reduced visual field condition had no effect on the healthy simulated patients, it actually had a negative impact on the patients. We discuss the reasons for these differences and how they relate to the limitations of the neglect simulation. Conclusion We argue that with some improvements the technique could be used to determine the potential of new rehabilitation techniques and also help the rehabilitation staff or the patient's relatives to better understand the neglect condition.

  1. Simulating hemispatial neglect with virtual reality.

    Science.gov (United States)

    Baheux, Kenji; Yoshizawa, Makoto; Yoshida, Yasuko

    2007-07-19

    Hemispatial neglect is a cognitive disorder defined as a lack of attention for stimuli contra-lateral to the brain lesion. The assessment is traditionally done with basic pencil and paper tests and the rehabilitation programs are generally not well adapted. We propose a virtual reality system featuring an eye-tracking device for a better characterization of the neglect that will lead to new rehabilitation techniques. This paper presents a comparison of eye-gaze patterns of healthy subjects, patients and healthy simulated patients on a virtual line bisection test. The task was also executed with a reduced visual field condition hoping that fewer stimuli would limit the neglect. We found that patients and healthy simulated patients had similar eye-gaze patterns. However, while the reduced visual field condition had no effect on the healthy simulated patients, it actually had a negative impact on the patients. We discuss the reasons for these differences and how they relate to the limitations of the neglect simulation. We argue that with some improvements the technique could be used to determine the potential of new rehabilitation techniques and also help the rehabilitation staff or the patient's relatives to better understand the neglect condition.

  2. Using virtual reality to assess user experience.

    Science.gov (United States)

    Rebelo, Francisco; Noriega, Paulo; Duarte, Emília; Soares, Marcelo

    2012-12-01

    The aim of this article is to discuss how user experience (UX) evaluation can benefit from the use of virtual reality (VR). UX is usually evaluated in laboratory settings. However, considering that UX occurs as a consequence of the interaction between the product, the user, and the context of use, the assessment of UX can benefit from a more ecological test setting. VR provides the means to develop realistic-looking virtual environments with the advantage of allowing greater control of the experimental conditions while granting good ecological validity. The methods used to evaluate UX, as well as their main limitations, are identified.The currentVR equipment and its potential applications (as well as its limitations and drawbacks) to overcome some of the limitations in the assessment of UX are highlighted. The relevance of VR for UX studies is discussed, and a VR-based framework for evaluating UX is presented. UX research may benefit from a VR-based methodology in the scopes of user research (e.g., assessment of users' expectations derived from their lifestyles) and human-product interaction (e.g., assessment of users' emotions since the first moment of contact with the product and then during the interaction). This article provides knowledge to researchers and professionals engaged in the design of technological interfaces about the usefulness of VR in the evaluation of UX.

  3. Personality traits and virtual reality performance.

    Science.gov (United States)

    Rosenthal, Rachel; Schäfer, Juliane; Hoffmann, Henry; Vitz, Martina; Oertli, Daniel; Hahnloser, Dieter

    2013-01-01

    Surgeons' personalities have been described as different from those of the general population, but this was based on small descriptive studies limited by the choice of evaluation instrument. Furthermore, although the importance of the human factor in team performance has been recognized, the effect of personality traits on technical performance is unknown. This study aimed to compare surgical residents' personality traits with those of the general population and to evaluate whether an association exists between their personality traits and technical performance using a virtual reality (VR) laparoscopy simulator. In this study, 95 participants (54 residents with basic, 29 with intermediate laparoscopic experience, and 12 students) underwent personality assessment using the NEO-Five Factor Inventory and performed five VR tasks of the Lap Mentor™ basic tasks module. The residents' personality traits were compared with those of the general population, and the association between VR performance and personality traits was investigated. Surgical residents showed personality traits different from those of the general population, demonstrating lower neuroticism, higher extraversion and conscientiousness, and male residents showed greater openness. In the multivariable analysis, adjusted for gender and surgical experience, none of the personality traits was found to be an independent predictor of technical performance. Surgical residents present distinct personality traits that differ from those of the general population. These traits were not found to be associated with technical performance in a virtual environment. The traits may, however, play an important role in team performance, which in turn is highly relevant for optimal surgical performance.

  4. Expanding the Interaction Lexicon for 3D Graphics

    National Research Council Canada - National Science Library

    Pierce, Jeffrey S

    2001-01-01

    .... This research makes several contributions to 3D interaction and virtual reality. The Voodoo Dolls technique is a new technique for manipulating objects in immersive 3D environments in which users manipulate hand-held copies of objects...

  5. Augmented reality 3D display using head-mounted projectors and transparent retro-reflective screen

    Science.gov (United States)

    Soomro, Shoaib R.; Urey, Hakan

    2017-02-01

    A 3D augmented reality display is proposed that can provide glass-free stereo parallax using a highly transparent projection screen. The proposed display is based on a transparent retro-reflective screen and a pair of laser pico projectors placed close to the viewer's head. The retro-reflective screen directs incident light towards its source with little scattering so that each of the viewer's eyes only perceives the content projected by the associated projector. Each projector displays one of the two components (left or right channel) of stereo content. The retro-reflective nature of screen provides high brightness compared to the regular diffused screens. The partially patterned retro-reflective material on clear substrate introduces optical transparency and facilitates the viewer to see the real-world scene on the other side of screen. The working principle and design of the proposed see-through 3D display are presented. A tabletop prototype consisting of an in-house fabricated 60×40cm2 see-through retro-reflective screen and a pair of 30 lumen pico-projectors with custom 3D printed housings is demonstrated. Geometric calibration between projectors and optimal viewing conditions (eye box size, eye-to-projector distance) are discussed. The display performance is evaluated by measuring the brightness and crosstalk for each eye. The screen provides high brightness (up to 300 cd/m2 per eye) using 30 lumens mobile projectors while maintaining the 75% screen transparency. The crosstalk between left and right views is measured as <10% at the optimum distance of 125-175 cm, which is within acceptable range.

  6. How 3D Interaction Metaphors Affect User Experience in Collaborative Virtual Environment

    Directory of Open Access Journals (Sweden)

    Hamid Hrimech

    2011-01-01

    Full Text Available In this paper we presents the results of our experimental study which aims to understand the impact of three interaction 3D metaphors (ray casting, GoGo, and virtual hand on the user experience in a semi-immersive collaborative virtual environment (the Braccetto System. For each session, participants are grouped in twos to reconstruct a puzzle by an assemblage of cubes. The puzzle to reconstruct corresponds to a gradient of colors. We found that there is a significant difference in the user experience by changing the interaction metaphor on the copresence, awareness, involvement, collaborative effort, satisfaction usability, and preference. These findings provide a basis for designing 3D navigation techniques in a CVE.

  7. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy.

    Science.gov (United States)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-19

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available.

  8. Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science.

    Science.gov (United States)

    Cipresso, Pietro; Serino, Silvia; Riva, Giuseppe

    2016-03-19

    Virtual Reality has been extensively used in a wide range of psychological experiments. In this study, we aimed to introduce NeuroVirtual 3D, a platform that clinicians could use free of charge. The platform we developed relies on NeuroVR software, but we extended it to apply to experiments. The software is available free of charge to researchers and clinical practitioners who can also use a large number of virtual environments and objects already developed. The platform has been developed to connect to virtually every device ever produced by the means of Virtual-Reality Peripheral Network (VRPN) protocols; however, a number of these have already been included and tested in the platform. Among the available devices, the Microsoft Kinect low-cost sensor has already been configured for navigation through the virtual environments and to trigger specific action (sounds, videos, images, and the like) when a specific gesture is recognized, e.g., a step forward or an arm up. A task for neglect and a task for spatial abilities assessment were already implemented within the platform. Moreover, NeuroVirtual 3D integrated a TCP-IP-based module (bridge) to collect the data from virtually any existent biosensor (Thought-Technology, Zephyr and StarStim devices have already been included in the platform). It is able to record any psychophysiological signal during any experiment using also the computed indices in real time. NeuroVirtual 3D is able to record external and internal (e.g., coordinates, keys-press, timestamp) data with a millisecond precision, representing de facto the most advanced technology for experimental psychology using virtual environments available without the needs to program code.

  9. Effect of virtual reality training on laparoscopic surgery

    DEFF Research Database (Denmark)

    Larsen, Christian R; Soerensen, Jette L; Grantcharov, Teodor P

    2009-01-01

    -14 minutes) and in the control group was 24 (20-29) minutes (Pincreased in a clinically relevant manner using proficiency based virtual reality simulator training. The performance level of novices......OBJECTIVE: To assess the effect of virtual reality training on an actual laparoscopic operation. DESIGN: Prospective randomised controlled and blinded trial. SETTING: Seven gynaecological departments in the Zeeland region of Denmark. PARTICIPANTS: 24 first and second year registrars specialising...... in gynaecology and obstetrics. INTERVENTIONS: Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). MAIN OUTCOME MEASURE: The main outcome measure was technical performance assessed by two independent observers blinded to trainee...

  10. The cognitive apprenticeship theory for the teaching of mathematics in an online 3D virtual environment

    Science.gov (United States)

    Bouta, Hara; Paraskeva, Fotini

    2013-03-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective. To this end, we propose a pedagogical framework based on the cognitive apprenticeship for deriving principles and guidelines to inform the design, development and use of a 3D virtual environment. This study examines how the use of a 3D virtual world facilitates the teaching of mathematics in primary education by combining design principles and guidelines based on the Cognitive Apprenticeship Theory and the teaching methods that this theory introduces. We focus specifically on 5th and 6th grade students' engagement (behavioral, affective and cognitive) while learning fractional concepts over a period of two class sessions. Quantitative and qualitative analyses indicate considerable improvement in the engagement of the students who participated in the experiment. This paper presents the findings regarding students' cognitive engagement in the process of comprehending basic fractional concepts - notoriously hard for students to master. The findings are encouraging and suggestions are made for further research.

  11. Elderly healthcare monitoring using an avatar-based 3D virtual environment.

    Science.gov (United States)

    Pouke, Matti; Häkkilä, Jonna

    2013-12-17

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients' preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  12. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    Directory of Open Access Journals (Sweden)

    Matti Pouke

    2013-12-01

    Full Text Available Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  13. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    Science.gov (United States)

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  14. A Dynamic Platform for Developing 3D Facial Avatars in a Networked Virtual Environment

    Directory of Open Access Journals (Sweden)

    Anis Zarrad

    2016-01-01

    Full Text Available Avatar facial expression and animation in 3D collaborative virtual environment (CVE systems are reconstructed through a complex manipulation of muscles, bones, and wrinkles in 3D space. The need for a fast and easy reconstruction approach has emerged in the recent years due to its application in various domains: 3D disaster management, virtual shopping, and military training. In this work we proposed a new script language based on atomic parametric action to easily produce real-time facial animation. To minimize use of the game engine, we introduced script-based component where the user introduces simple short script fragments to feed the engine with a new animation on the fly. During runtime, when an embedded animation is required, an xml file is created and injected into the game engine without stopping or restarting the engine. The resulting animation method preserves the real-time performance because the modification occurs not through the modification of the 3D code that describes the CVE and its objects but rather through modification of the action scenario that rules when an animation happens or might happen in that specific situation.

  15. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    Science.gov (United States)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  16. 3D virtual character reconstruction from projections: a NURBS-based approach

    Science.gov (United States)

    Triki, Olfa; Zaharia, Titus B.; Preteux, Francoise J.

    2004-05-01

    This work has been carried out within the framework of the industrial project, so-called TOON, supported by the French government. TOON aims at developing tools for automating the traditional 2D cartoon content production. This paper presents preliminary results of the TOON platform. The proposed methodology concerns the issues of 2D/3D reconstruction from a limited number of drawn projections, and 2D/3D manipulation/deformation/refinement of virtual characters. Specifically, we show that the NURBS-based modeling approach developed here offers a well-suited framework for generating deformable 3D virtual characters from incomplete 2D information. Furthermore, crucial functionalities such as animation and non-rigid deformation can be also efficiently handled and solved. Note that user interaction is enabled exclusively in 2D by achieving a multiview constraint specification method. This is fully consistent and compliant with the cartoon creator traditional practice and makes it possible to avoid the use of 3D modeling software packages which are generally complex to manipulate.

  17. Virtual reality training for surgical trainees in laparoscopic surgery.

    Science.gov (United States)

    Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R

    2013-08-27

    Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared

  18. Role of virtual reality in congenital heart disease.

    Science.gov (United States)

    Ong, Chin Siang; Krishnan, Aravind; Huang, Chen Yu; Spevak, Philip; Vricella, Luca; Hibino, Narutoshi; Garcia, Juan R; Gaur, Lasya

    2018-02-05

    New platforms for patient imaging present opportunities for improved surgical planning in complex congenital heart disease (CHD). Virtual reality (VR) allows for interactive manipulation of high-resolution representations of patient-specific imaging data, as a supplement to traditional 2D visualizations and 3D printed heart models. We present the novel use of VR for the presurgical planning of cardiac surgery in two infants with complex CHD to demonstrate interactive real-time views of complex intra and extracardiac anatomy. The use of VR for cardiac presurgical planning is feasible using existing imaging data. The software was evaluated by both pediatric cardiac surgeons and pediatric cardiologists, and felt to be reliable and operated with a very short learning curve. VR with controller-based interactive capability allows for interactive viewing of 3D models with complex intra and extracardiac anatomy. This serves as a useful complement to traditional preoperative planning methods in terms of its potential for group based collaborative discussion, user defined illustrative views, cost-effectiveness, and facility of use. © 2018 Wiley Periodicals, Inc.

  19. The Dark Shadow of Virtual Reality

    Directory of Open Access Journals (Sweden)

    Claire Su-Yeon Park

    2018-01-01

    Full Text Available Virtual Reality (VR technology are entering nursing education at a rapid speed (Foronda et al., 2017. VR has been reported in the nursing literature to significantly improve students’ performance (Jenson & Forsyth, 2012; Park, 2016; Foronda et al., 2017 even though the body of evidence in terms of the number and research quality of peer reviewed research papers is not yet substantial enough to identify VR technology’s effectiveness. However, VR is not actually reality. VR may not actually reflect reality. Young people (and even adults may not perceive the different between reality and VR. They may not yet be mature enough to distinguish the difference. However, VR technology are going much further than traditional educational methods by allowing humans to experience a much higher level of immersion through a virtual image. Even the gap between advances in VR technology and its application to education science is widening, causing serious concern. The advance in VR technology is value-neutral. As with all things, whether something is good or bad depends on how humans use it. VR can be useful, for example, when it enables scholars to attend an international conference without traveling to the physical convention center. VR provides the ability to speak, listen, and discuss in real time. Those using VR can choose to view a featured or real-time image of the other participants as if they were actually at the conference. Further, remote participants can feel touch through electronic sensors attached to their body. How amazing! The problem with VR lies in the fact that we are not ready to cope with any possible harmful influences caused by advances in VR technology. But what is the “Dark Shadow of VR,” and why does it cause concern, particularly in pedagogy? Luc Besson’s 2017 film Valerian and the City of a Thousand Plants showed an exceptional VR world, “Big Market,” a shopping-focused VR platform. But such a world is no longer strictly

  20. Towards augmented reality: The dialectics of physical and virtual space

    Directory of Open Access Journals (Sweden)

    Guga Jelena

    2015-01-01

    Full Text Available Spaces generated by new media technologies, no matter how abstract they may be, represent a qualitatively new form of the media environment. Moreover, they are integrated into everyday life in a way that they have become the constituents of social reality. Based on dualistic Cartesian understanding of real and virtual space, virtuality still carries a connotation of 'other' world, which is ontologically and phenomenologically different from 'reality'. However, virtuality as a characteristic of new media technologies should neither be equated with illusion, deception or fiction nor set in opposition to reality, given that it embodies real interactions. Instead, we could say that there are different types or levels of reality and that the virtual exists as reality qualitatively different from that of physical reality. Today, when every place on the planet, as well as social, political, and cultural activities, have their digital manifestations, can we still talk about virtual space as an isolated phenomenon? The ubiquitous use of new media technologies such as smartphones or wearables has profoundly transformed the experience of modern man. It is more and more determined by technologically mediated reality, i.e. augmented reality. In this regard, the key issues that will be addressed in this article are the ways technologically mediated spaces redefine not only the social relationships, but also the notions of identity, embodiment, and the self.

  1. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    Science.gov (United States)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  2. CT virtual endoscopy and 3D stereoscopic visualisation in the evaluation of coronary stenting

    Science.gov (United States)

    Sun, Z; Lawrence-Brown

    2009-01-01

    The aim of this case report is to present the additional value provided by CT virtual endoscopy and 3D stereoscopic visualisation when compared with 2D visualisations in the assessment of coronary stenting. A 64-year old patient was treated with left coronary stenting 8 years ago and recently followed up with multidetector row CT angiography. An in-stent restenosis of the left coronary artery was suspected based on 2D axial and multiplanar reformatted images. 3D virtual endoscopy was generated to demonstrate the smooth intraluminal surface of coronary artery wall, and there was no evidence of restenosis or intraluminal irregularity. Virtual fly-through of the coronary artery was produced to examine the entire length of the coronary artery with the aim of demonstrating the intraluminal changes following placement of the coronary stent. In addition, stereoscopic views were generated to show the relationship between coronary artery branches and the coronary stent. In comparison with traditional 2D visualisations, virtual endoscopy was useful for assessment of the intraluminal appearance of the coronary artery wall following coronary stent implantation, while stereoscopic visualisation improved observers’ understanding of the complex cardiac structures. Thus, both methods could be used as a complementary tool in cardiac imaging. PMID:21610990

  3. Visualization of three-dimensional ultra-high resolution OCT in virtual reality.

    Science.gov (United States)

    Schulze, Jürgen P; Schulze-Döbold, Claudia; Erginay, Ali; Tadayoni, Ramin

    2013-01-01

    Three-dimensional reconstruction of optical coherence tomography (OCT) images is a modern technique that helps interpret the images and understand the underlying disease. However, the 3D reconstruction displayed on commercial devices is of limited quality: images are shown on 2D screens and it is difficult or impossible to adjust the view point and capture the data set from a meaningful perspective. We did a preliminary study to evaluate the applicability of a novel, 3D TV-based virtual reality system with interactive volume rendering software to clinical diagnostics and present a workflow, which can incorporate virtual reality technology at various levels of immersion into the daily medical practice, from interactive VR systems to printed media.

  4. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technology.

    Science.gov (United States)

    Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie

    2015-01-01

    This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P increased significantly (P increased significantly (P increased significantly (P < 0.05). The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM.

  5. Assistive technologies and advantageous themes for collaboration, learning & teaching within 3D Virtual Learning\\ud Environments

    OpenAIRE

    Saleeb, Noha; Dafoulas, George

    2010-01-01

    E-learning assisted through 3D Virtual Worlds such as Second Life, extending the more traditional 2D Virtual Learning Environments, presents advantageous motifs for collaboration,\\ud learning and teaching online. These main motifs include enriching communication and teaching means through 3D environments and game-like interaction, and enhancing the learning experience through avatar and virtual persona engagement. This paper aims to provide evidence from practice for the afore mentioned motif...

  6. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects.

    Science.gov (United States)

    Tetsworth, Kevin; Block, Steve; Glatt, Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case. © The Authors, published by EDP Sciences, 2017.

  7. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    Science.gov (United States)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  8. Virtual facial reconstruction based on accurate registration and fusion of 3D facial and MSCT scans.

    Science.gov (United States)

    Zhou, Zhongwei; Li, Peng; Ren, Jiayin; Guo, Jixiang; Huang, Yongqing; Tian, Weidong; Tang, Wei

    2016-03-01

    Accurate registration and feasible fusion of a three-dimensional (3D) photorealistic surface images (captured using the FaceSCAN3D® Scientific Photo Lab) from multislice spiral computed tomography (MSCT) images is important to achieve optimal craniomaxillofacial surgery outcomes; thus, the aim of this work was to optimize this process. MSCT and 3D facial scans were acquired from 37 randomly selected patients. Using the Invesalius software package, skin and bone tissue models were reconstructed. The 3D photorealistic surface images were then constructed. Four image registration processes were performed using Geomagic Studio software: manual Procrustes and semi-automatic registration (global modified ICP) using both 7 and 15 anthropometric landmarks. The statistical differences were assessed using one-way ANOVA and LSD tests. P values registration methods. Statistical differences were observed between the manual and semi-automatic registration groups (according to 7 and 15 anthropometric landmarks, respectively). Image registration errors for the entire virtual face were registration groups. Employing the Procrustes registration system using seven anthropometric landmarks together with global registration allows accurate registration and feasible fusion of 3D facial scans with reconstructed 3D MSCT image data.

  9. Impact of Spatial Reference Frames on Human Performance in Virtual Reality User Interfaces

    OpenAIRE

    Marc Bernatchez; Jean-Marc Robert

    2008-01-01

    The design of virtual reality user interfaces (VRUI) is still an open field of research and development. One category of VRUI is the 3D floating menus that can be manipulated by users in free space. These menus can contain various controls such as buttons, sliders, and text. This article presents an experimental study that aims at testing the impact of five spatial reference frames on human performance with VRUI. Fifteen subjects participated in the study. Wearing a head-mounted display (HMD)...

  10. INTERACTIVE MOTION PLATFORMS AND VIRTUAL REALITY FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Evžen Thöndel

    2017-12-01

    Full Text Available Interactive motion platforms are intended for vehicle simulators, where the direct interaction of the human body is used for controlling the simulated vehicle (e.g. bicycle, motorbike or other sports vehicles. The second use of interactive motion platforms is for entertainment purposes or fitness. The development of interactive motion platforms reacts to recent calls in the simulation industry to provide a device, which further enhances the virtual reality experience, especially with connection to the new and very fast growing business in virtual reality glasses. The paper looks at the design and control of an interactive motion platform with two degrees of freedom to be used in virtual reality applications. The paper provides the description of the control methods and new problems related to the virtual reality sickness are discussed here.

  11. Leveraging Virtual Reality for the Benefit of Lunar Exploration

    Science.gov (United States)

    McCandless, R. S.; Burke, E. D.; McGinley, V. T.

    2017-10-01

    Virtual reality (VR) and related technologies will assist scientists with lunar exploration and public engagement. We will present the future exponential impact of VR on lunar activities over the coming decades.

  12. Meditation experts try Virtual Reality Mindfulness: A pilot study evaluation of the feasibility and acceptability of Virtual Reality to facilitate mindfulness practice in people attending a Mindfulness conference.

    Science.gov (United States)

    Navarro-Haro, María V; López-Del-Hoyo, Yolanda; Campos, Daniel; Linehan, Marsha M; Hoffman, Hunter G; García-Palacios, Azucena; Modrego-Alarcón, Marta; Borao, Luis; García-Campayo, Javier

    2017-01-01

    Regular mindfulness practice benefits people both mentally and physically, but many populations who could benefit do not practice mindfulness. Virtual Reality (VR) is a new technology that helps capture participants' attention and gives users the illusion of "being there" in the 3D computer generated environment, facilitating sense of presence. By limiting distractions from the real world, increasing sense of presence and giving people an interesting place to go to practice mindfulness, Virtual Reality may facilitate mindfulness practice. Traditional Dialectical Behavioral Therapy (DBT®) mindfulness skills training was specifically designed for clinical treatment of people who have trouble focusing attention, however severe patients often show difficulties or lack of motivation to practice mindfulness during the training. The present pilot study explored whether a sample of mindfulness experts would find useful and recommend a new VR Dialectical Behavioral Therapy (DBT®) mindfulness skills training technique and whether they would show any benefit. Forty four participants attending a mindfulness conference put on an Oculus Rift DK2 Virtual Reality helmet and floated down a calm 3D computer generated virtual river while listening to digitized DBT® mindfulness skills training instructions. On subjective questionnaires completed by the participants before and after the VR DBT® mindfulness skills training session, participants reported increases/improvements in state of mindfulness, and reductions in negative emotional states. After VR, participants reported significantly less sadness, anger, and anxiety, and reported being significantly more relaxed. Participants reported a moderate to strong illusion of going inside the 3D computer generated world (i.e., moderate to high "presence" in VR) and showed high acceptance of VR as a technique to practice mindfulness. These results show encouraging preliminary evidence of the feasibility and acceptability of using VR to

  13. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  14. Real decisions in virtual worlds : Team collaboration and decision making in 3D virtual environments

    NARCIS (Netherlands)

    Schouten, A.P.; van den Hooff, B.; Feldberg, F.

    2015-01-01

    This study investigates how three-dimensional virtual environments (3DVEs) support shared understanding and group decision making. Based on media synchronicity theory, we pose that the shared environment and avatar-based interaction allowed by 3DVEs aid convergence processes in teams working on a

  15. Virtual Team Work: Group Decision Making in 3D Virtual Environments

    NARCIS (Netherlands)

    Schouten, A.P.; van den Hooff, B.J.; Feldberg, J.F.M.

    2016-01-01

    This study investigates how three-dimensional virtual environments (3DVEs) support shared understanding and group decision making. Based on media synchronicity theory, we pose that the shared environment and avatar-based interaction allowed by 3DVEs aid convergence processes in teams working on a

  16. Virtual Team Work : Group Decision Making in 3D Virtual Environments

    NARCIS (Netherlands)

    Schouten, Alexander P.; van den Hooff, Bart; Feldberg, Frans

    This study investigates how three-dimensional virtual environments (3DVEs) support shared understanding and group decision making. Based on media synchronicity theory, we pose that the shared environment and avatar-based interaction allowed by 3DVEs aid convergence processes in teams working on a

  17. User Interface for Volume Rendering in Virtual Reality Environments

    OpenAIRE

    Klein, Jonathan; Reuling, Dennis; Grimm, Jan; Pfau, Andreas; Lefloch, Damien; Lambers, Martin; Kolb, Andreas

    2013-01-01

    Volume Rendering applications require sophisticated user interaction for the definition and refinement of transfer functions. Traditional 2D desktop user interface elements have been developed to solve this task, but such concepts do not map well to the interaction devices available in Virtual Reality environments. In this paper, we propose an intuitive user interface for Volume Rendering specifically designed for Virtual Reality environments. The proposed interface allows transfer function d...

  18. Exploring Urban Environments Using Virtual and Augmented Reality

    OpenAIRE

    Liarokapis, Fotis; Brujic-Okretic, Vesna; Papakonstantinou, Stelios

    2006-01-01

    In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location ...

  19. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library.

    Science.gov (United States)

    Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S

    2015-06-01

    Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Creation of virtual reality stimulus for a psychophysiological body balance measurement

    Directory of Open Access Journals (Sweden)

    Tero Alatalo

    2008-11-01

    Full Text Available Tero Alatalo1, Martti Juhola1, Veikko Surakka1,2, Timo Tossavainen11Department of Computer Sciences, University of Tampere, Tampere, Finland; 2Department of Clinical Neurophysiology, Tampere University Hospital, Tampere, FinlandAbstract: Virtual reality methods and equipment can be used to create stimulations for several psychophysiological measurements. Such stimulations can be flexibly modified and their versatility is wide; in principle even such could be prepared that are not possible in the real physical world like virtual flying in the space. For the generation of virtual reality stimulations we constructed a three-dimensional (3D graphics engine to measure body balance variations in response to emotional stimulation. The stimulation was implemented as a virtual reality scene, where the subject watched a street view with a human figure approaching the subject at a constant speed. The functioning of the system was tested by measuring body balance variations while the approaching figure’s facial expression was angry, neutral, or happy. The results showed that our young, healthy subjects were slightly, but still statistically significantly affected by the stimulation of the approaching figure. Thus, the whole system offers a tool for controlled experimental studies for analyzing body balance, for example, during stimulating approach-withdrawal behavior. There are several opportunities to further develop new visual psychophysiological stimulations and test forms.Keywords: virtual reality stimulations, signal analysis, body balance measurements, approachwithdrawal behavior, emotions

  1. The Usability of Online Geographic Virtual Reality for Urban Planning

    Science.gov (United States)

    Zhang, S.; Moore, A. B.

    2013-08-01

    Virtual reality (VR) technology is starting to become widely and freely available (for example the online OpenSimulator tool), with potential for use in 3D urban planning and design tasks but still needing rigorous assessment to establish this. A previous study consulted with a small group of urban professionals, who concluded in a satisfaction usability test that online VR had potential value as a usable 3D communication and remote marketing tool but acknowledged that visual quality and geographic accuracy were obstacles to overcome. This research takes the investigation a significant step further to also examine the usability aspects of efficiency (how quickly tasks are completed) and effectiveness (how successfully tasks are completed), relating to OpenSimulator in an urban planning situation. The comparative study pits a three-dimensional VR model (with increased graphic fidelity and geographic content to address the feedback of the previous study) of a subdivision design (in a Dunedin suburb) against 3D models built with GIS (ArcGIS) and CAD (BricsCAD) tools, two types of software environment well established in urban professional practice. Urban professionals participated in the study by attempting to perform timed tasks correctly in each of the environments before being asked questions about the technologies involved and their perceived importance to their professional work. The results reinforce the positive feedback for VR of the previous study, with the graphical and geographic data issues being somewhat addressed (though participants stressed the need for accurate and precise object and terrain modification capabilities in VR). Ease-ofuse and associated fastest task completion speed were significant positive outcomes to emerge from the comparison with GIS and CAD, pointing to a strong future for VR in an urban planning context.

  2. Integrating Virtual Reality (VR) into traditional instructional design ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-12-01

    Dec 1, 2015 ... on a robot. This model is useful for performing operations in dangerous and risky environments such as control of nuclear plants and celestial exploration. Fig. 1: Example of Telepresence VR system. •. Mixed Reality(Augmented Reality). This model involves the seamless merging of real space and virtual ...

  3. Role of virtual reality for cerebral palsy management.

    Science.gov (United States)

    Weiss, Patrice L Tamar; Tirosh, Emanuel; Fehlings, Darcy

    2014-08-01

    Virtual reality is the use of interactive simulations to present users with opportunities to perform in virtual environments that appear, sound, and less frequently, feel similar to real-world objects and events. Interactive computer play refers to the use of a game where a child interacts and plays with virtual objects in a computer-generated environment. Because of their distinctive attributes that provide ecologically realistic and motivating opportunities for active learning, these technologies have been used in pediatric rehabilitation over the past 15 years. The ability of virtual reality to create opportunities for active repetitive motor/sensory practice adds to their potential for neuroplasticity and learning in individuals with neurologic disorders. The objectives of this article is to provide an overview of how virtual reality and gaming are used clinically, to present the results of several example studies that demonstrate their use in research, and to briefly remark on future developments. © The Author(s) 2014.

  4. HERRAMIENTAS EN 3D PARA EL MODELADO DE ESCENARIOS VIRTUALES BASADOS EN LOGO. ESTADO DEL ARTE

    Directory of Open Access Journals (Sweden)

    Luz Santamaría Granados

    2009-01-01

    Full Text Available Este artículo revisa la comprobada fundamentación pedagógica de LOGO (Papert, 2003 que a su vez ofrece interesantes estrategias de motivación para los niños, en aspectos tales como el desarrollo de habilidades espaciales a través de su propia exploración de mundos virtuales. La metodología original fue propuesta por Seymour Papert para escenarios en dos dimensiones (2D. Por lo tanto, se analiza la posibilidad de integrar las ventajas pedagógicas de LOGO con una interfaz gráfica en tres dimensiones (3D, al aprovechar la tecnología contemplada en los estándares del consorcio Web3D. Además menciona los componentes X3D que permiten el uso de avatares (humanoides para facilitar la interacción de los usuarios en mundos virtuales dinámicos, al disponer de personajes adicionales al de la tortuga de LOGO.

  5. Augmented reality based on fast deformable 2D-3D registration for image-guided surgery

    Science.gov (United States)

    Scheuering, Michael; Rezk-Salama, Christof; Barfufl, Helmut; Schneider, Armin; Greiner, Guenther

    2002-05-01

    Augmented reality systems (ARS) allow the transparent projection of preoperative CT images onto the physicians view. A significant problem in this context is the registration between the patient and the tomographic images, especially in the case of soft tissue deformation. The basis of our ARS is a volume rendering component on standard PC platform, which allows interactive volumetric deformation as a supplement to the 3D-texture based approaches. The volume is adaptively subdivided into a hierarchy of sub-cubes, each of which is deformed linearly. In order to approximate the Phong illumination model, our system allows pre-calculated gradients to be deformed efficiently. The registration is realized by the introduction of a two-stage procedure. Firstly, we compute a rigid pre-registration by the use of fiducial markers in combination with an electromagnetic navigation system. The second step accounts for the nonlinear deformation. For this purpose, several views of an object are captured and compared with its corresponding synthetic renderings in an optimization method using mutual information as metric. Throughout the experiments with our approach, several tests of the rigid registration has been carried out in a real laparoscopic intervention setup as a supplement to the actual clinical routine. In order to evaluate the nonlinear part of the registration, up until now several dummy objects (synthetically deformed datasets) have been successfully examined.

  6. 3D augmented reality for improving social acceptance and public participation in wind farms planning

    Science.gov (United States)

    Grassi, S.; Klein, T. M.

    2016-09-01

    Wind energy is one of the most important source of renewable energy characterized by a significant growth in the last decades and giving a more and more relevant contribution to the energy supply. One of the main disadvantages of a faster integration of wind energy into the energy mix is related to the visual impact of wind turbines on the landscape. In addition, the siting of new massive infrastructures has the potential to threaten a community's well-being if new projects are perceived being unfair. The public perception of the impact of wind turbines on the landscape is also crucial for their acceptance. The implementation of wind energy projects is hampered often because of a lack of planning or communication tools enabling a more transparent and efficient interaction between all stakeholders involved in the projects (i.e. developers, local communities and administrations, NGOs, etc.). Concerning the visual assessment of wind farms, a critical gap lies in effective visualization tools to improve the public perception of alternative wind turbines layouts. In this paper, we describe the advantages of a 3D dynamical and interactive visualization platform for an augmented reality to support wind energy planners in order to enhance the social acceptance of new wind energy projects.

  7. Virtual Reality As an Effective Simulation Tool for OSH Education on Robotized Workplace

    Directory of Open Access Journals (Sweden)

    Janak Miroslav

    2016-01-01

    Full Text Available In last decade, the virtual reality became a huge trend in the field of visualization not only for simple elements, but also for complex devices, their actions and processes, rooms and entire areas. This contribution focuses on the possibilities of utilization of the elements of virtual reality for educational purposes regarding the potential employees and their OSH (Occupational Safety and Health training at the specialized workplaces. It points to the possibility of using the applications and simulations of the workplaces and the processes for better understanding of potential danger and eventual prevention options. Such an application simulates the real workplace including the technological processes and provides the user with a motion in 3D environment of virtual scene observing and interacting in actual work zones

  8. VIRTUAL WOLVERHAMPTON: RECREATING THE HISTORIC CITY IN VIRTUAL REALITY

    Directory of Open Access Journals (Sweden)

    Eleanor Ramsey

    2017-11-01

    Full Text Available While many towns and cities have historic origins, the modern urban landscape is often unrecognisable from the past. Over the last two thousand years innumerable changes have occurred, from the Roman period to the Industrial Revolution, culminating in wide scale development and redevelopment of towns and cities during the 19th and 20th centuries. Fragments of the past survive as extant buildings, monuments, and areas, and are offered protection through mechanisms such as the National Heritage List for England. However, these buildings are part of a dynamic and changing environment, and their place within their original landscape not always visible. Meanwhile, the advent of mainstream and accessible immersive virtual reality offers opportunities to recreate and explore the past, and to disseminate a deeper understanding of the history and historic context of our heritage assets to a broader audience via new technologies. This paper discusses a project based on Wolverhampton that aims to create immersive and 360° experiences of the historic city that allows the user or viewer to explore how the city might have been in the past from a ‘first person’ perspective. It uses multiple approaches to gather, verify and validate archival data, records, maps and building style information. The project itself is a work-in-progress, with various approaches being explored. It looks at sources of information used to inform the virtual world; software and methodologies used to create the model; different forms of VR output; potential forms of funding for wider dissemination; and problems encountered so far.

  9. Applications and a Three-dimensional Desktop Environment for an Immersive Virtual Reality System

    CERN Document Server

    Kageyama, Akira

    2013-01-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, the user can jump back into Multiverse's VR desktop environment in the CAVE.

  10. Applications and a three-dimensional desktop environment for an immersive virtual reality system

    Science.gov (United States)

    Kageyama, Akira; Masada, Youhei

    2013-08-01

    We developed an application launcher called Multiverse for scientific visualizations in a CAVE-type virtual reality (VR) system. Multiverse can be regarded as a type of three-dimensional (3D) desktop environment. In Multiverse, a user in a CAVE room can browse multiple visualization applications with 3D icons and explore movies that float in the air. Touching one of the movies causes "teleportation" into the application's VR space. After analyzing the simulation data using the application, the user can jump back into Multiverse's VR desktop environment in the CAVE.

  11. 3D virtual world remote laboratory to assist in designing advanced user defined DAQ systems based on FlexRIO and EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Carpeño, A., E-mail: antonio.cruiz@upm.es [Universidad Politécnica de Madrid UPM, Madrid (Spain); Contreras, D.; López, S.; Ruiz, M.; Sanz, D.; Arcas, G. de; Esquembri, S. [Universidad Politécnica de Madrid UPM, Madrid (Spain); Vega, J.; Castro, R. [Laboratorio Nacional de Fusión CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • Assist in the design of FPGA-based data acquisition systems using EPICS and FlexRIO. • Virtual Reality technologies are highly effective at creating rich training scenarios. • Virtual actions simulate the behavior of a real system to enhance the training process. • Virtual actions can make real changes remotely in the physical ITER’s Fast Controller. - Abstract: iRIO-3DLab is a platform devised to assist developers in the design and implementation of intelligent and reconfigurable FPGA-based data acquisition systems using EPICS and FlexRIO technologies. Although these architectures are very powerful in defining the behavior of DAQ systems, this advantage comes at the price of greater difficulty in understanding how the system works, and how it should be configured and built according to the hardware available and the processing demanded by the requirements of the diagnostics. In this regard, Virtual Reality technologies are highly effective at creating rich training scenarios due to their ability to provide immersive training experiences and collaborative environments. The designed remote laboratory is based on a 3D virtual world developed in Opensim, which is accessible through a standard free 3D viewer. Using a client-server architecture, the virtual world connects with a service running in a Linux-based computer executing EPICS. Through their avatars, users interact with virtual replicas of this equipment as they would in real-life situations. Some actions can be used to simulate the behavior of a real system to enhance the training process, while others can be used to make real changes remotely in the physical system.

  12. Preventing teen smoking with virtual reality.

    Science.gov (United States)

    Nemire, K; Beil, J; Swan, R W

    1999-01-01

    Smoking incidence is rising among adolescents but not adults. Although many prevention programs are effective, there is room for improvement. This pilot project combined the welldocumented benefits of Life Skills Training (LST) with the unique multisensory, 3D qualities of virtual environment (VE) technology to address some of the disadvantages of traditional prevention programs. In an 8-week pilot study, 72 seventh-grade students were randomly assigned to either LST, VE, or nonintervention control groups. The VE system included goggles, synthesized speech, spatial trackers on head and hand, a hand-held controller, and a speech recognition system. Questionnaires measured participants' smoking knowledge, attitudes, and behavior. A bogus pipeline procedure was used to increase reliability of the self-report measures. Pre-exposure data showed no significant differences between groups on the questionnaire. Post-exposure data indicated improvements in attitudes in the LST and VE groups. In addition, the VE group showed more accurate information concerning peer and adult cigarette use and more likelihood of using coping and refusal skills. Usability and acceptability questionnaire data showed ease of use and learning and that participants would use VE technology frequently if it were available to them at school. These data indicated that this VE application is a promising tool for keeping teens healthy.

  13. Katalog Penjualan Rumah Berbasis Android Menggunakan Teknologi Augmented Reality dan Virtual Reality

    Directory of Open Access Journals (Sweden)

    Alders Paliling

    2017-02-01

    Full Text Available Penerapan teknologi augmented reality kian diminati oleh pihak produsen untuk memasarkan produk  yang dihasilkan. Teknologi augmented reality mampu meproyeksikan objek dua dimensi ataupun tiga dimensi kedalam lingkungan nyata. Teknologi virtual reality mampu membawa pengguna masuk kedalam lingkungan virtual sehingga pengguna merasa berada dalam lingkungan virtual. Penelitian ini menggunakan teknologi augmented reality yang mampu memproyeksikan objek tiga dimensi rumah sehingga katalog menjadi lebih nyata,  dan teknologi virtual reality yang membuat pengguna berinteraksi langsung dengan objek tiga dimensi rumah dan merasa berada di dalam rumah. Aplikasi yang dibangun memanfaatkan sensor accelerometer yang tertanam dalam perangkat mobile android yang memungkinkan pengguna melihat seisi ruangan dengan memiringkan perangkat mobile android kekiri dan kekanan. Jumlah kamera virtual yang digunakan berjumlah lima yang diletakkan di ruang tamu, ruang keluarga, ruang kamar utama, ruang kamar anak, dan ruang dapur. Aplikasi ini berjalan pada platform android dan menggunakan personal komputer sebagai server yang menyimpan data informasi rumah. Dengan adanya aplikasi ini pengguna dapat merasakan suasana berbeda dalam melihat sebuah katalog. . Kata kunci—Augmentd Reality, Virtual Reality, Katalog, Android

  14. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays.

    Science.gov (United States)

    Dan, Alex; Reiner, Miriam

    2017-12-01

    Interacting with 2D displays, such as computer screens, smartphones, and TV, is currently a part of our daily routine; however, our visual system is built for processing 3D worlds. We examined the cognitive load associated with a simple and a complex task of learning paper-folding (origami) by observing 2D or stereoscopic 3D displays. While connected to an electroencephalogram (EEG) system, participants watched a 2D video of an instructor demonstrating the paper-folding tasks, followed by a stereoscopic 3D projection of the same instructor (a digital avatar) illustrating identical tasks. We recorded the power of alpha and theta oscillations and calculated the cognitive load index (CLI) as the ratio of the average power of frontal theta (Fz.) and parietal alpha (Pz). The results showed a significantly higher cognitive load index associated with processing the 2D projection as compared to the 3D projection; additionally, changes in the average theta Fz power were larger for the 2D conditions as compared to the 3D conditions, while alpha average Pz power values were similar for 2D and 3D conditions for the less complex task and higher in the 3D state for the more complex task. The cognitive load index was lower for the easier task and higher for the more complex task in 2D and 3D. In addition, participants with lower spatial abilities benefited more from the 3D compared to the 2D display. These findings have implications for understanding cognitive processing associated with 2D and 3D worlds and for employing stereoscopic 3D technology over 2D displays in designing emerging virtual and augmented reality applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. TV-view-into-reality metaphor: introducing computer vision into virtual worlds

    Science.gov (United States)

    Freund, Eckhard; Knoche, Horst; Rossmann, Juergen

    1998-10-01

    Smart man machine interfaces turn out to be a key technology for service robots, for automation applications in industrial environments as well as in future scenarios for applications in space. For either field, the use of virtual reality (VR) techniques showed a great potential. At the IRF a virtual reality system was developed and implemented which allows the intuitive control of a multi-robot system and different automation systems under one unified VR framework. As the developed multi-robot system is also employed for space application, the intuitive commanding of inspection and teleoperation sequences is of great interest. In order to facilitate teleoperation and inspection, we make use of several metaphors and a vision system as an `intelligent sensor'. One major metaphor to be presented in the paper is the `TV-view into reality', where a TV-set is displayed in the virtual world with images of the real world being mapped onto the screen as textures. The user can move the TV-set in the virtual world and, as the image generating camera is carried by a robot, the camera-viewpoint changes accordingly. Thus the user can explore the physical world `behind' the virtual world, which is ideal for inspection and teleoperation tasks. By means of real world images and with different measurement-services provided by the underlying 3D vision system, the user can thus interactively build up or refine the virtual world according to the physical world he is watching through the TV-set.

  16. GE3D: A Virtual Campus for Technology-Enhanced Distance Learning

    Directory of Open Access Journals (Sweden)

    Jean Grieu

    2010-09-01

    Full Text Available A lot of learning systems platforms are used all over the world. But these conventional E-learning platforms aim at students who are used to work on their own. Our students are young (19 years old – 22 years old, and in their first year at the university. Following extensive interviews with our students, we have designed GE3D, an E-learning platform, according to their expectations and our criteria. In this paper, we describe the students’ demands, resulting from the interviews. Then, we describe our virtual campus. Even if our platform uses some elements coming from the 3D games world, it is always a pedagogical tool. Using this technology, we developed a 3D representation of the real world. GE3D is a multi-users tool, with a synchronous technology, an intuitive interface for end-users and an embedded Intelligent Tutoring System to support learners. We also describe the process of a lecture on the Programmable Logic Controllers (PLC’s in this new universe.

  17. ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains.

    Science.gov (United States)

    Ronneberger, Olaf; Liu, Kun; Rath, Meta; Rueβ, Dominik; Mueller, Thomas; Skibbe, Henrik; Drayer, Benjamin; Schmidt, Thorsten; Filippi, Alida; Nitschke, Roland; Brox, Thomas; Burkhardt, Hans; Driever, Wolfgang

    2012-06-17

    Precise three-dimensional (3D) mapping of a large number of gene expression patterns, neuronal types and connections to an anatomical reference helps us to understand the vertebrate brain and its development. We developed the Virtual Brain Explorer (ViBE-Z), a software that automatically maps gene expression data with cellular resolution to a 3D standard larval zebrafish (Danio rerio) brain. ViBE-Z enhances the data quality through fusion and attenuation correction of multiple confocal microscope stacks per specimen and uses a fluorescent stain of cell nuclei for image registration. It automatically detects 14 predefined anatomical landmarks for aligning new data with the reference brain. ViBE-Z performs colocalization analysis in expression databases for anatomical domains or subdomains defined by any specific pattern; here we demonstrate its utility for mapping neurons of the dopaminergic system. The ViBE-Z database, atlas and software are provided via a web interface.

  18. Using Immersive Virtual Reality for Electrical Substation Training

    Science.gov (United States)

    Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana

    2015-01-01

    Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…

  19. An Interactive Mixed Reality Framework for Virtual Humans

    NARCIS (Netherlands)

    Egges, A.; Papagiannakis, G.; Magnenat-Thalmann, M.

    2006-01-01

    In this paper, we present a simple and robust Mixed Reality (MR) framework that allows for real-time interaction with Virtual Humans in real and virtual environments under consistent illumination. We will look at three crucial parts of this system: interaction, animation and global

  20. Intelligent Decision-Support in Virtual Reality Healthcare & Rehabilitation

    DEFF Research Database (Denmark)

    Lewis Brooks, Anthony

    2011-01-01

    and the ‘Hermeneutic Action Research Recursive Reflection’ model have emerged from a body of virtual reality research called SoundScapes. The work targets all ages and all abilities through gesture-control of responsive multimedia within Virtual Interactive Space (VIS). VIS is an interactive information environment...

  1. Using Virtual Reality to Help Students with Social Interaction Skills

    Science.gov (United States)

    Beach, Jason; Wendt, Jeremy

    2016-01-01

    The purpose of this study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity to…

  2. Virtual Reality as a Tool in the Education

    Science.gov (United States)

    Piovesan, Sandra Dutra; Passerino, Liliana Maria; Pereira, Adriana Soares

    2012-01-01

    The virtual reality is being more and more used in the education, enabling the student to find out, to explore and to build his own knowledge. This paper presents an Educational Software for presence or distance education, for subjects of Formal Language, where the student can manipulate virtually the target that must be explored, analyzed and…

  3. Markov queue game with virtual reality strategies | Nwobi-Okoye ...

    African Journals Online (AJOL)

    A non cooperative markov game with several unique characteristics was introduced. Some of these characteristics include: the existence of a single phase multi server queuing model and markovian transition matrix/matrices for each game, introduction of virtual situations (virtual reality) or dummies to improve the chances ...

  4. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    Science.gov (United States)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  5. A virtual erection simulation system for a steel structure based on 3-D measurement data

    Science.gov (United States)

    Kim, Deok Eun; Chen, Tuo Han

    2012-03-01

    The virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.

  6. Rapid prototyping and 3D-virtual models for operative dentistry education in Brazil.

    Science.gov (United States)

    Soares, Paulo Vinícius; de Almeida Milito, Giovana; Pereira, Fabrícia Araújo; Reis, Bruno Rodrigues; Soares, Carlos José; de Sousa Menezes, Murilo; de Freitas Santos-Filho, Paulo César

    2013-03-01

    Many dental students struggle for visual recognition when first exposed to the study of tooth cavity preparation in the operative dentistry laboratory. Rapid prototypes and virtual models of different cavity preparations were developed for the incoming first-year class of 2010 at the Dental School of Federal University of Uberlândia, Brazil, to help them to visualize the subtle differences in cavity preparations and are described in this article. Rapid prototyping techniques have been used in dental therapy, mainly for the fabrication of models to ease surgical planning in implantology, orthodontics, and maxillofacial prostheses. On the other hand, the application of these technologies associated with 3D-virtual models in dental education is waiting to be exploited, once they have significant potential to complement conventional training methods in dentistry.

  7. RECOMMENDATIONS FOR USING THE 3D VIRTUAL ENVIRONMENTS FOR TEACHING: Why, How and Use cases

    Directory of Open Access Journals (Sweden)

    Maja PIVEC

    2011-08-01

    Full Text Available The AVATAR project included a global course for teachers, which was delivered remotely over a period of four months. The course had nine modules, distributed via e-learning and v-learning platforms. One module supports creation of new teaching material by course participants and its piloting with their students. The course was created in English language, however to support the learning curve of multilingual and international groups, several modules were moderated in national groups. This paper details the rational behind the course, documents two case studies of completed projects within a virtual world, highlights the challenges and notes the successes, and culminates with conclusions and recommendations of running courses and lessons within an online 3D virtual world.

  8. Implementing Virtual Reality Technology as an Effective Web Based Kiosk: Darulaman's Teacher Training College Tour (Ipda Vr Tour)

    Science.gov (United States)

    Fadzil, Azman

    2006-01-01

    At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…

  9. Valorisation of Cultural Heritage Through Virtual Visit and Augmented Reality: the Case of the Abbey of Epau (france)

    Science.gov (United States)

    Simonetto, E.; Froment, C.; Labergerie, E.; Ferré, G.; Séchet, B.; Chédorge, H.; Cali, J.; Polidori, L.

    2013-07-01

    Terrestrial Laser Scanning (TLS), 3-D modeling and its Web visualization are the three key steps needed to perform storage and grant-free and wide access to cultural heritage, as highlighted in many recent examples. The goal of this study is to set up 3-D Web resources for "virtually" visiting the exterior of the Abbaye de l'Epau, an old French abbey which has both a rich history and delicate architecture. The virtuality is considered in two ways: the flowing navigation in a virtual reality environment around the abbey and a game activity using augmented reality. First of all, the data acquisition consists in GPS and tacheometry survey, terrestrial laser scanning and photography acquisition. After data pre-processing, the meshed and textured 3-D model is generated using 3-D Reshaper commercial software. The virtual reality visit and augmented reality animation are then created using Unity software. This work shows the interest of such tools in bringing out the regional cultural heritage and making it attractive to the public.

  10. Pre-clinical validation of virtual bronchoscopy using 3D Slicer.

    Science.gov (United States)

    Nardelli, Pietro; Jaeger, Alexander; O'Shea, Conor; Khan, Kashif A; Kennedy, Marcus P; Cantillon-Murphy, Pádraig

    2017-01-01

    Lung cancer still represents the leading cause of cancer-related death, and the long-term survival rate remains low. Computed tomography (CT) is currently the most common imaging modality for lung diseases recognition. The purpose of this work was to develop a simple and easily accessible virtual bronchoscopy system to be coupled with a customized electromagnetic (EM) tracking system for navigation in the lung and which requires as little user interaction as possible, while maintaining high usability. The proposed method has been implemented as an extension to the open-source platform, 3D Slicer. It creates a virtual reconstruction of the airways starting from CT images for virtual navigation. It provides tools for pre-procedural planning and virtual navigation, and it has been optimized for use in combination with a [Formula: see text] of freedom EM tracking sensor. Performance of the algorithm has been evaluated in ex vivo and in vivo testing. During ex vivo testing, nine volunteer physicians tested the implemented algorithm to navigate three separate targets placed inside a breathing pig lung model. In general, the system proved easy to use and accurate in replicating the clinical setting and seemed to help choose the correct path without any previous experience or image analysis. Two separate animal studies confirmed technical feasibility and usability of the system. This work describes an easily accessible virtual bronchoscopy system for navigation in the lung. The system provides the user with a complete set of tools that facilitate navigation towards user-selected regions of interest. Results from ex vivo and in vivo studies showed that the system opens the way for potential future work with virtual navigation for safe and reliable airway disease diagnosis.

  11. Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit

    OpenAIRE

    Juan Mateu; María José Lasala; Xavier Alamán

    2015-01-01

    © 2015 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, ab...

  12. Virtual Reality: When “Real” Becomes Real

    OpenAIRE

    Whittinghill, David

    2016-01-01

    Virtual reality has moved out of the lab and into our living rooms. With it comes an entire new medium for entertainment, simulation, and social interaction. Its potential impact on humanity, however, is actually far more profound. VR provides not just a new digital content delivery platform. It creates, in literal fact, an entire new class of human experience. A virtual experience is only virtual according to our intellects, but to every other fiber of our perceptual system, the experience i...

  13. Virtual Reality as Innovative Approach to the Interior Designing

    OpenAIRE

    Kaleja Pavol; Kozlovská Mária

    2017-01-01

    We can observe significant potential of information and communication technologies (ICT) in interior designing field, by development of software and hardware virtual reality tools. Using ICT tools offer realistic perception of proposal in its initial idea (the study). A group of real-time visualization, supported by hardware tools like Oculus Rift HTC Vive, provides free walkthrough and movement in virtual interior with the possibility of virtual designing. By improving of ICT software tools ...

  14. Disguising Rotational Gain for Redirected Walking in Virtual Reality

    DEFF Research Database (Denmark)

    Paludan, Anders Glud; Elbaek, Jacob; Mortensen, Mathias Helmuth

    2016-01-01

    In virtual reality environments that allow users to walk freely, the area of the virtual environment (VE) is constrained to the size of the tracking area. By using redirection techniques, this problem can be partially circumvented; one of the techniques involves rotating the user more or less...... in the virtual world than in the physical world; this technique is referred to as rotational gain. This paper seeks to further investigate this area, examining the effect of visual density in the VE....

  15. Spatial augmented reality merging real and virtual worlds

    CERN Document Server

    Bimber, Oliver

    2005-01-01

    Like virtual reality, augmented reality is becoming an emerging platform in new application areas for museums, edutainment, home entertainment, research, industry, and the art communities using novel approaches which have taken augmented reality beyond traditional eye-worn or hand-held displays. In this book, the authors discuss spatial augmented reality approaches that exploit optical elements, video projectors, holograms, radio frequency tags, and tracking technology, as well as interactive rendering algorithms and calibration techniques in order to embed synthetic supplements into the real

  16. Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks

    Science.gov (United States)

    Gavish, Nirit; Gutiérrez, Teresa; Webel, Sabine; Rodríguez, Jorge; Peveri, Matteo; Bockholt, Uli; Tecchia, Franco

    2015-01-01

    The current study evaluated the use of virtual reality (VR) and augmented reality (AR) platforms, developed within the scope of the SKILLS Integrated Project, for industrial maintenance and assembly (IMA) tasks training. VR and AR systems are now widely regarded as promising training platforms for complex and highly demanding IMA tasks. However,…

  17. Towards a Transcription System of Sign Language for 3D Virtual Agents

    Science.gov (United States)

    Do Amaral, Wanessa Machado; de Martino, José Mario

    Accessibility is a growing concern in computer science. Since virtual information is mostly presented visually, it may seem that access for deaf people is not an issue. However, for prelingually deaf individuals, those who were deaf since before acquiring and formally learn a language, written information is often of limited accessibility than if presented in signing. Further, for this community, signing is their language of choice, and reading text in a spoken language is akin to using a foreign language. Sign language uses gestures and facial expressions and is widely used by deaf communities. To enabling efficient production of signed content on virtual environment, it is necessary to make written records of signs. Transcription systems have been developed to describe sign languages in written form, but these systems have limitations. Since they were not originally designed with computer animation in mind, in general, the recognition and reproduction of signs in these systems is an easy task only to those who deeply know the system. The aim of this work is to develop a transcription system to provide signed content in virtual environment. To animate a virtual avatar, a transcription system requires explicit enough information, such as movement speed, signs concatenation, sequence of each hold-and-movement and facial expressions, trying to articulate close to reality. Although many important studies in sign languages have been published, the transcription problem remains a challenge. Thus, a notation to describe, store and play signed content in virtual environments offers a multidisciplinary study and research tool, which may help linguistic studies to understand the sign languages structure and grammar.

  18. E-learning en mundos virtuales 3D. Una experiencia educativa en Second Life

    Directory of Open Access Journals (Sweden)

    Teresa C. Rodríguez García

    2011-05-01

    Full Text Available Normal 0 21 El diseño de actividades educativas en entornos inmersivos (mundos virtuales 3D es una perspectiva emergente en el ámbito de la práctica y la investigación de la comunidad e-learning. Una de las propuestas que apoyan esta línea de trabajo es que el entorno inmersivo, con su capacidad de interacción en tiempo real y de sensación de presencialidad, aporta una dimensión social al proceso de enseñanza-aprendizaje on line similar al producido en la educación presencial lo que enriquece, dinamiza y mejora el conjunto de la propuesta educativa a distancia. En este trabajo presentamos el diseño y aplicación de una estrategia educativa on line, de nivel universitario, realizada en un mundo virtual 3D (Second Life con dos objetivos esenciales: explorar si una actividad de aprendizaje inmersiva era eficaz para mejorar la comunicación alumno-profesor y alumno-alumno y establecer la posible eficacia de este tipo de e-actividades como elemento de mejora de la experiencia educativa del estudiante on line.

  19. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    Science.gov (United States)

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  20. Designing an Augmented Reality Board Games with children: The BattleBoard 3D experience

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kristensen, Sune; Andersen, Troels L.

    2004-01-01

    This paper discusses the design of Battleboard 3D (BB3D) which is an ARToolkit based game prototype, featuring the use of LEGO bricks for the physical and digital pieces. BB3D is a novel type of an AR game augmenting traditional board games with features from computer games. The initial experiments...