Sample records for viking lander system

  1. Viking Lander Model (United States)


    NASA's Viking Project found a place in history when it became the first mission to land a spacecraft successfully on the surface of another planet and return both imaging and non-imaging data over an extended time period. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet's surface. The Viking 1 Lander touched down on the western slope of Chryse Planitia (the Plains of Gold) on July 20, 1976, while the Viking 2 lander settled down at Utopia Planitia on September 3, 1976. Besides taking photographs and collecting other science data on the Martian surface, the two landers conducted three biology experiments designed to look for possible signs of life. These experiments discovered unexpected and enigmatic chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms in soil near the landing sites. According to scientists, Mars is self-sterilizing. They believe the combination of solar ultraviolet radiation that saturates the surface, the extreme dryness of the soil and the oxidizing nature of the soil chemistry prevent the formation of living organisms in the Martian soil. The Viking mission was planned to continue for 90 days after landing. Each orbiter and lander operated far beyond its design lifetime. Viking Orbiter 1 functioned until July 25, 1978, while Viking Orbiter 2 continued for four years and 1,489 orbits of Mars, concluding its mission August 7, 1980. Because of the variations in available sunlight, both landers were powered by radioisotope thermoelectric generators -- devices that create electricity from heat given off by the natural decay of plutonium. That power source allowed long-term science investigations that otherwise would not have been possible. The last data from Viking Lander 2 arrived at Earth on April 11, 1980. Viking Lander 1 made its final

  2. Lander Locations, Mars Physical Ephemeris, and Solar System Parameters: Determination from Viking Lander Tracking Data (United States)

    Mayo, A. P.; Blackshear, W. T.; Tolson, R. H.; Michael, W. H., Jr.; Kelly, G. M.; Brenkle, J. P.; Komarek, T. A.


    Radio tracking data from the Viking landers have been analyzed to determine the parameters of the Mars physical ephemeris, the radii of Mars at the landing sites, and the lander locations. The orientation of the Mars rotation axis, referred to the 1950.0 earth mean equator, equinox, and epoch, was determined to be 317.340+/-0.003 degrees right ascension and 52.710+/-0.002degrees declination. The planet's rotation period was determined to be 24 h, 37 min, 22.663+/-0.002 s. Analyses indicate that the determination of the motions of the Mars rotation axis will require additional tracking data. The Mars radii at the sites of landers 1 and 2 are 3389.38+/-0.06 km and 3381.91+/-0.08 km, respectively. The areocentric location of lander 1 is 22.272+/-0.002 degrees N, 47.94+/-0.2 degrees W. The lander 2 location is 47.670+/-0.002 degrees N, 225.71+/-0.2 degrees W. The areocentric right ascensions of the landers are determined to be 277.314+/-0.002 degrees for lander 1 and 99.546+/-0.002degrees for lander 2 at 0000 hours, January 1, 1977 (Julian date 2443144.57). Possible determinations of relativity parameters, solar oblateness, asteroid mass, and variations of the universal gravitational constant, from their effects on the planetary motions, will require the additional tracking data of the Viking extended mission.

  3. Photogrammetry of the Viking Lander imagery (United States)

    Wu, S. S. C.; Schafer, F. J.


    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  4. Photogrammetry of the Viking-Lander imagery. (United States)

    Wu, S.S.C.; Schafer, F.J.


    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  5. Biological experiments - The Viking Mars Lander. (United States)

    Klein, H. P.; Lederberg, J.; Rich, A.


    From the biological point of view, the Viking 1975 mission might be regarded as a test of the Oparin-Haldane hypothesis concerning the chemical evolution of living systems. Mars is a planet whose early history was probably similar to that of the earth and whose present environmental conditions may be compatible with the maintenance of living organisms. Thus, the biological experiments aboard the Viking I spacecraft are primarily concerned with the question of whether chemical evolution on Mars took place, and, if so, whether the process reached a level of complexity characteristic of replicating systems.

  6. TAGS-85/2N RTG power for Viking Lander Capsule

    Energy Technology Data Exchange (ETDEWEB)



    Results of studies performed by Isotopes, Inc., Nuclear Systems Division, to optimize and baseline a TAGS-85/2N RTG for the Viking Lander Capsule prime electrical power source are presented. These studies generally encompassed identifying the Viking RTG mission profile and design requirements, and establishing a baseline RTG design consistent with these requirements.

  7. Viking Lander: subsurface water analyzing probe. [Mars subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, G.J.


    A small terradynamic (soil penetrating) vehicle, to be released from the Viking Lander at an altitude of between 5000 and 6000 feet before the terminal descent on the vernier rockets begins, will implant a sensor package 3 to 5 feet beneath the surface to measure water content of Mars subsoil. As it penetrates the soil, the vehicle separates into a probe which carries the primary instrumentation and a tail section which contains the power supply, secondary sensors, and transmitter and antenna assembly. The two sections remain linked by a hard wire umbilical which provides for power and data flow between the sections. After impact, a soil moisture subsystem would be activated to gather approximately 100 milligrams of soil at the depth of the penetrating probe. After the mass of the sample is measured, its water content would be determined by heating in a sealed known volume and measuring the dew point of the resulting water vapor with a specular reflection dew point indicator. The penetrating probe and the tail section each contain a pair of aluminum oxide hygrometer elements and one sensistor temperature sensor which, on request by an on-board programmer will measure temperature and absolute water content of the vapor phase in equilibrium with the surrounding soil. Once each 8 hours, the digitized output of the sensors would be transmitted by the RF link to the Lander. This apparatus is expected to measure the water vapor in equilibrium with the soil water in concentrations as low as 0.01 microgram per liter at --60/sup 0/C and absolute soil water in amounts as small as 10 micrograms per gram of soil. A radioisotope power supply would provide an expected life for this instrumentation package in excess of the proposed 90-day mission for the Mars Viking Lander.

  8. Three mars years: Viking lander 1 imaging observations (United States)

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.


    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  9. Spectrophotometric and color estimates of the Viking lander sites (United States)

    Huck, F. O.; Jobson, D. J.; Park, S. K.; Wall, S. D.; Arvidson, R. E.; Patterson, W. R.; Benton, W. D.


    The spectral radiance and color of the Martian sky and soil and the spectral reflectance of soil features are estimated from six-channel (0.4-1.0 micron) spectral data obtained with the Viking lander cameras. Images taken near local noon from the two landers reveal a sky that is brighter near the horizon than the soil but with a similar spectral radiance shape and color. The scenes are predominantly moderate yellowish brown in color with only subtle variations except for some dark grey rocks. Most spectral reflectance estimates are similar: they rise rapidly with increasing wavelength between 0.4 and 0.8 micron and with only a few exceptions exhibit a pronounced minimum centered about 0.93 micron. These characteristics are consistent with an abundance of Fe(3+)-rich weathering products, notably nontronite. However, the delineation of the number and abundances of total mineral phases requires further analyses and laboratory comparisons. Reflectance estimates for rocks have not been repeatable, probably because most rocks have irregular pitted surfaces that introduce significant shadowing components.

  10. Geologic map of the MTM 25047 and 20047 quadrangles, central Chryse Planitia/Viking 1 Lander site, Mars (United States)

    Crumpler, L.S.; Craddock, R.A.; Aubele, J.C.


    This map uses Viking Orbiter image data and Viking 1 Lander image data to evaluate the geologic history of a part of Chryse Planitia, Mars. The map area lies at the termini of the Maja and Kasei Valles outwash channels and includes the site of the Viking 1 Lander. The photomosaic base for these quadrangles was assembled from 98 Viking Orbiter frames comprising 1204 pixels per line and 1056 lines and ranging in resolution from 20 to 200 m/pixel. These orbital image data were supplemented with images of the surface as seen from the Viking 1 Lander, one of only three sites on the martian surface where planetary geologic mapping is assisted by ground truth.

  11. Evaluation of Viking Lander barometric pressure sensor. [performance related to Viking mission environments (United States)

    Mitchell, M.


    Variable reluctance type pressure sensors were evaluated to determine their performance characteristics related to Viking Mission environment levels. Static calibrations were performed throughout the evaluation over the full range of the sensors using two point contact manometer standards. From the beginning of the evaluation to the end of the evaluation, the zero shift in the two sensors was within 0.5 percent, and the sensitivity shift was 0.05 percent. The maximum thermal zero coefficient exhibited by the sensors was 0.032 percent over the temperature range of -28.89 C to 71.11 C. The evaluation results indicated that the sensors are capable of making high accuracy pressure measurements while being exposed to the conditions mentioned.

  12. Martian soil stratigraphy and rock coatings observed in color-enhanced Viking Lander images (United States)

    Strickland, E. L., III


    Subtle color variations of martian surface materials were enhanced in eight Viking Lander (VL) color images. Well-defined soil units recognized at each site (six at VL-1 and four at VL-2), are identified on the basis of color, texture, morphology, and contact relations. The soil units at the Viking 2 site form a well-defined stratigraphic sequence, whereas the sequence at the Viking 1 site is only partially defined. The same relative soil colors occur at the two sites, suggesting that similar soil units are widespread on Mars. Several types of rock surface materials can be recognized at the two sites; dark, relatively 'blue' rock surfaces are probably minimally weathered igneous rock, whereas bright rock surfaces, with a green/(blue + red) ratio higher than that of any other surface material, are interpreted as a weathering product formed in situ on the rock. These rock surface types are common at both sites. Soil adhering to rocks is common at VL-2, but rare at VL-1. The mechanism that produces the weathering coating on rocks probably operates planet-wide.

  13. Composition and stability of the condensate observed at the Viking Lander 2 site on Mars (United States)

    Hart, H. M.; Jakosky, B. M.


    Surface energy balance and near-surface temperature data from the Viking Lander 2 site taken during the first winter that condensated were observed and analyzed to determine the relative stability of CO2 and H2O frosts. The CO2 frost stability is calculated with an equilibrium surface energy balance model, i.e., the total energy incident on a frost surface is compared with the blackbody energy emitted by the surface. The energy sources considered were IR emission from the atmosphere, sunlight, and the sensible heat flux from the atmosphere. H2O stability was examined as a function of buoyant diffusion and turbulent mixing processes which could remove saturated near-surface gases. The CO2 frost is found to be sufficiently unstable at the time the condensate was observed on the ground, so all CO2 ice deposited at night would boil away in a few hours of sunlight. CO2 ice would not form during a dust storm. Water frost would be stable during the condensate observations, since sublimation would occur at a rate below 1 micron/day. A stable winter thickness of 10 microns is projected for the water ice.

  14. VIKING

    DEFF Research Database (Denmark)


    For the international VIKING exhibition at the Danish National Museum, British Museum and Neues Museum Berlin, we developed a short stylised animation showing the timeline of the Jelling Monuments....

  15. Viking orbiter and its Mariner inheritance (United States)


    Improvements to the design of the Mariner spacecraft resulted in the Viking spacecraft. The Viking spacecraft would consist of two major systems - an orbiter and a lander, while the lander would provide the means for safely delivering the scientific instruments to the surface, house, and provide the necessary power source and communication links for those experiments, the orbiter would transport the lander to Mars, rovide a platform for the Viking imaging system so that proposed landing sites could be surveyed and certified, relay lander science information back to Earth, and conduct scientific observations in its own right.

  16. Viking image processing. [digital stereo imagery and computer mosaicking (United States)

    Green, W. B.


    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  17. Telecommunications and data acquisition systems support for the Viking 1975 mission to Mars (United States)

    Mudgway, D. J.


    The background for the Viking Lander Monitor Mission (VLMM) is given, and the technical and operational aspects of the tracking and data acquisition support that the Network was called upon to provide are described. An overview of the science results obtained from the imaging, meteorological, and radio science data is also given. The intensive efforts that were made to recover the mission are described.

  18. Sensor systems for the Altair Lunar Lander:

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, R


    The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the

  19. Viking Orbiter 1975 thrust vector control system accuracy (United States)

    Mcglinchey, L. F.


    The thrust vector control (TVC) system of the Viking Orbiter 1975 is discussed. The purpose of the TVC system is to point the engine thrust at the vehicle center of mass and to maintain attitude stability during propulsive maneuvers. This is accomplished by mounting the engine in a two-axis gimbal system. The TVC system then controls the pointing of the engine by closed loop control of two linear actuators which extend or retract and rotate the engine in its gimbal system. The effect of the TVC on the velocity vector pointing error incurred during a propulsive maneuver is analyzed. Models for predicting the magnitude of the error for various propulsive maneuvers are developed.

  20. The Viking mortar - Design, development, and flight qualification. (United States)

    Brecht, J. P.; Pleasants, J. E.; Mehring, R. D.


    Approximately 25,400 ft above the local surface of Mars, a radar height sensor fires the Viking mortar, which ejects a 53-ft D sub o disk-gap-band (DGB) parachute. The parachute decelerates and stabilizes the Viking lander sufficiently for the terminal engine system to take over and effect a soft landing. The general design and environmental requirements for the mortar system are presented; various illustrations of the mortar components and how the mortar system functions also are presented. Primary emphasis is placed on manufacturing, developing, and qualification testing of the mortar system.

  1. Non-Cooled Power System for Venus Lander (United States)

    Salazar, Denise; Landis, Geoffrey A.; Colozza, Anthony J.


    The Planetary Science Decadal Survey of 2013-2022 stated that the exploration of Venus is of significant interest. Studying the seismic activity of the planet is of particular importance because the findings can be compared to the seismic activity of Earth. Further, the geological and atmospheric properties of Venus will shed light into the past and future of Earth. This paper presents a radioisotope power system (RPS) design for a small low-power Venus lander. The feasibility of the new power system is then compared to that of primary batteries. A requirement for the power source system is to avoid moving parts in order to not interfere with the primary objective of the mission - to collect data about the seismic activity of Venus using a seismometer. The target mission duration of the lander is 117 days, a significant leap from Venera 13, the longest-lived lander on the surface of Venus, which survived for 2 hours. One major assumption for this mission design is that the power source system will not provide cooling to the other components of the lander. This assumption is based on high-temperature electronics technology that will enable the electronics and components of the lander to operate at Venus surface temperature. For the proposed RPS, a customized General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHSRTG) is designed and analyzed. The GPHS-RTG is chosen primarily because it has no moving parts and it is capable of operating for long duration missions on the order of years. This power system is modeled as a spherical structure for a fundamental thermal analysis. The total mass and electrical output of the system are calculated to be 24 kilograms and 26 Watts, respectively. An alternative design for a battery-based power system uses Sodium Sulfur batteries. To deliver a similar electrical output for 117 days, the battery mass is calculated to be 234 kilograms. Reducing mission duration or power required will reduce the required battery mass

  2. Lander Technologies (United States)

    Chavers, Greg


    Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.

  3. Artist's drawing of Viking spacecraft (United States)


    The National Aeronautics and Space Administration is developing an unmanned spacecraft called Viking to continue the exploration of Mars in the mid-1970s. Two Viking spacecraft, each including an orbiter and a lander will be launched by TitanIII/Centaur launch vehicles in August and September 1975 from Cape Kennedy to reach Mars in mid-1976. They will perform scientific investigations both from orbit and on the surface of Mars, including a search for life form on the planet.

  4. Design and Analysis of Morpheus Lander Flight Control System (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.


    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  5. Thermal Management System for Long-Lived Venus Landers Project (United States)

    National Aeronautics and Space Administration — Long-lived Venus landers require power and cooling. Heat from the roughly 64 General Purpose Heat Source (GPHS) modules must be delivered to the convertor with...

  6. Integral design method for simple and small Mars lander system using membrane aeroshell (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi


    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  7. Thermal Management System for Long-Lived Venus Landers Project (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high-temperature passive thermal management system for the Radioisotope Power Conversion system that energizes the...

  8. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses (United States)

    Palaszewski, Bryan


    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. Analyses of orbital transfer vehicles (OTVs), landers, and the issues with in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. For analyses of round trip OTV flights from Uranus to Miranda or Titania, a 10- Megawatt electric (MWe) OTV power level and a 200 metricton (MT) lander payload were selected based on a relative short OTV trip time and minimization of the number of lander flights. A similar optimum power level is suggested for OTVs flying from low orbit around Neptune to Thalassa or Triton. Several moon base sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  9. A comparison of soil organic carbon stocks in Viking Age and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Kristensen, J. Aa.; Holst, M. K.


    in modern farmlands during thousands of years in relation to inputs of manure, fertilizers, liming and drainage. In this paper the SOC stocks from anaerobic soil horizons in two big loamy burial mounds from the Viking Age, representing the land use system 1000 years ago, are compared with results from...... ancient sandy soils, loamy soils surrounding the mounds and nation-wide soil surveys representing modern land use systems with low and high inputs of manure. Results show that within the upper 0.28 m of the soil, which is the average depth of present day plough-layers in Denmark, the carbon stock...

  10. Analysis and interpretation of Viking inorganic chemistry data (Mars data analysis program) (United States)

    Clark, B. C.


    Soil samples gathered by the Viking Lander from the surface of Mars were analyzed. The Martian fines were lower in aluminum, iron, sulfur, and chlorine than typical terrestrial continental soils or lunar mare fines. Sample variabilities were as great within a few meters as between lander locations (4500 km apart) implying the existence of a universal Martian regolith component of constant average composition.

  11. Pathfinder Lander Rover Recharge System, and MARCO POLO Controls and ACME Regolith Feed System Controls and Integration (United States)

    Tran, Sarah Diem


    This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.

  12. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.


    The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first...... FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from...... the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic...

  13. Landing System Development- Design and Test Prediction of a Lander Leg Using Nonlinear Analysis (United States)

    Destefanis, Stefano; Buchwald, Robert; Pellegrino, Pasquale; Schroder, Silvio


    Several mission studies have been performed focusing on a soft and precision landing using landing legs. Examples for such missions are Mars Sample Return scenarios (MSR), Lunar landing scenarios (MoonNEXT, Lunar Lander) and small body sample return studies (Marco Polo, MMSR, Phootprint). Such missions foresee a soft landing on the planet surface for delivering payload in a controlled manner and limiting the landing loads.To ensure a successful final landing phase, a landing system is needed, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, and insuring a controlled attitude after landing. Such requirements can be fulfilled by using landing legs with adequate damping.The Landing System Development (LSD) study, currently in its phase 2, foresees the design, analysis, verification, manufacturing and testing of a representative landing leg breadboard based on the Phase B design of the ESA Lunar Lander. Drop tests of a single leg will be performed both on rigid and soft ground, at several impact angles. The activity is covered under ESA contract with TAS-I as Prime Contractor, responsible for analysis and verification, Astrium GmbH for design and test and QinetiQ Space for manufacturing. Drop tests will be performed at the Institute of Space Systems of the German Aerospace Center (DLR-RY) in Bremen.This paper presents an overview of the analytical simulations (test predictions and design verification) performed, comparing the results produced by Astrium made multi body model (rigid bodies, nonlinearities accounted for in mechanical joints and force definitions, based on development tests) and TAS-I made nonlinear explicit model (fully deformable bodies).

  14. Mars: The Viking Discoveries. (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  15. Viking re-enactment

    DEFF Research Database (Denmark)

    Konzack, Lars


    In Chapter 4 we meet many different participants such as archaeology students, tradespeople, re-enactors, horseback riders, archers and many more who are all partaking in the same Viking market at Moesgaard Museum, Denmark. The purpose of this chapter is to present Moesgaard Viking Moot as a part......In Chapter 4 we meet many different participants such as archaeology students, tradespeople, re-enactors, horseback riders, archers and many more who are all partaking in the same Viking market at Moesgaard Museum, Denmark. The purpose of this chapter is to present Moesgaard Viking Moot...... as a participatory local heritage event with a diverse range of spectators and participants. Lars Konzack shows how the different participants have developed their interaction with and interpretation of the Viking age through the market’s 40-year history....

  16. Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System (United States)

    Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.


    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.

  17. Computer image processing - The Viking experience. [digital enhancement techniques (United States)

    Green, W. B.


    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  18. Surface composition of Mars: A Viking multispectral view (United States)

    Adams, John B.; Smith, Milton O.; Arvidson, Raymond E.; Dale-Bannister, Mary; Guinness, Edward A.; Singer, Robert; Adams, John B.


    A new method of analyzing multispectral images takes advantage of the spectral variation from pixel to pixel that is typical for natural planetary surfaces, and treats all pixels as potential mixtures of spectrally distinct materials. For Viking Lander images, mixtures of only three spectral end members (rock, soil, and shade) are sufficient to explain the observed spectral variation to the level of instrumental noise. It was concluded that a large portion of the Martian surface consists of only two spectrally distinct materials, basalt and palgonitic soil. It is emphasized, however, that as viewed through the three broad bandpasses of Viking Orbiter, other materials cannot be distinguished from the mixtures.

  19. Concurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Final Report: Advanced Long-Life Lander Investigating the Venus Environment (ALIVE) (United States)

    Oleson, Steven R.


    The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission.

  20. Overview of the Altair Lunar Lander Thermal Control System Design and the Impacts of Global Access (United States)

    Stephan, Ryan A.


    NASA's Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.

  1. From Vikings to Welfare

    DEFF Research Database (Denmark)

    Gert Tinggaard, Svendsen; Svendsen, Gunnar Lind Haase

    The Scandinavian welfare states hold the highest social trust scores in the world. Why? Based on the stationary bandit model by Olson (1993), we first demonstrate that early state building during Viking Age facilitated public good provision and extensive trade. Social trust were probably not dest......The Scandinavian welfare states hold the highest social trust scores in the world. Why? Based on the stationary bandit model by Olson (1993), we first demonstrate that early state building during Viking Age facilitated public good provision and extensive trade. Social trust were probably...

  2. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.


    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  3. When the Viking Missions Discovered Life on the Red Planet (United States)

    Bianciardi, G.; Miller, J. D.; Straat, P. A.; Levin, G. V.


    The first (and only) dedicated life detection experiments on another planet were performed by the Viking Landers of 1976. In the Viking Labeled Release (LR) experiment of Levin and Straat, injections of organic compounds into Martian soil samples caused radioactive gas to evolve approaching plateaus of 10,000 - 15,000 cpm over several sols (Martian days). These "actives" were run at lander sites 1 and 2 with similar results. In contrast, the LR response to the 160o C control sample soils was very low. In conjunction with the active experiment results this negative result from the controls satisfied the pre-mission criteria for life. However, a controversy immediately arose concerning a biologic interpretation of the data. In an attempt to resolve this issue in the current work, we have employed complexity analysis of the Viking LR data for the initial six sols, and of terrestrial LR pilot studies using bacteria-laden, active soil (Biol 5) and sterilized soil (Biol 6). . Measures of mathematical complexity permitted a deep analysis of signal structure. Martian LR active response data were strongly superimposable upon the terrestrial biological time series, forming a welldefined cluster; and the heat-treated control samples, terrestrial and Martian, also clustered together, but distant from the active group, suggesting that the LR had, indeed, detected biological activity on Mars. The results presente herein are a key subset of the details published earlier by the same authors (IJASS, 13 (1), 14-26, 2012).

  4. The Viking mission search for life on Mars (United States)

    Klein, H. P.; Lederberg, J.; Rich, A.; Horowitz, N. H.; Oyama, V. I.; Levin, G. V.


    The scientific payload on the Viking Mars landers is described. Shortly after landing, two facsimile cameras capable of stereoscopic imaging will scan the landing site area in black and white, color, and infrared to reveal gross evidence of past or present living systems. A wide range mass spectrometer will record a complete mass spectrum for soil samples from mass 12 to mass 200 every 10.3 sec. Three experiments based on different assumptions on the nature of life on Mars, if it exists, will be carried out by the bio-lab. A pyrolytic release experiment is designed to measure photosynthetic or dark fixation of carbon dioxide or carbon monoxide into organic compounds. A labelled release experiment will test for metabolic activity during incubation of a surface sample moistened with a solution of radioactively labelled simple organic compounds. A gas exchange experiment will detect changes in the gaseous medium surrounding a soil sample as the result of metabolic activity. The hardware, function, and terrestrial test results of the bio-lab experiments are discussed.

  5. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): Data from three baited lander systems (United States)

    Linley, T. D.; Lavaleye, M.; Maiorano, P.; Bergman, M.; Capezzuto, F.; Cousins, N. J.; D'Onghia, G.; Duineveld, G.; Shields, M. A.; Sion, L.; Tursi, A.; Priede, I. G.


    Autonomous photographic landers are a low-impact survey method for the assessment of mobile fauna in situations where methods such as trawling are not feasible or ethical. Three institutions collaborated through the CoralFISH project, each using differing lander systems, to assess the effects of cold-water corals on fish diversity and density. The Biogenic Reef Ichthyofauna Lander (BRIL, Oceanlab), Autonomous Lander for Biological Experiments (ALBEX, NIOZ) and the Marine Environment MOnitoring system (MEMO, CoNISMa) were deployed in four CoralFISH European study regions covering the Arctic, NE Atlantic and Mediterranean, namely Northern Norway (275-310 m depth), Belgica Mound Province (686-1025 m depth), the Bay of Biscay (623-936 m depth), and Santa Maria di Leuca (547-670 m depth). A total of 33 deployments were carried out in the different regions. Both the time of first arrival (Tarr) and the maximum observed number of fish (MaxN) were standardised between the different lander systems and compared between coral and reference stations as indicators of local fish density. Fish reached significantly higher MaxN at the coral stations than at the reference stations. Fish were also found to have significantly lower Tarr in the coral areas in data obtained from the BRIL and MEMO landers. All data indicated that fish abundance is higher within the coral areas. Fish species diversity was higher within the coral areas of Atlantic Ocean while in Northern Norway and Santa Maria di Leuca coral areas, diversity was similar at coral and reference stations but a single dominant species (Brosme brosme and Conger conger respectively) showed much higher density within the coral areas. Indicating that, while cold-water coral reefs have a positive effect on fish diversity and/or abundance, this effect varies across Europe's reefs.

  6. Quantum Singwi-Tosi-Land-Sjölander approach for interacting inhomogeneous systems under electromagnetic fields: Comparison with exact results. (United States)

    Kosugi, Taichi; Matsushita, Yu-Ichiro


    For inhomogeneous interacting electronic systems under a time-dependent electromagnetic perturbation, we derive the linear equation for response functions in a quantum mechanical manner. It is a natural extension of the original semi-classical Singwi-Tosi-Land-Sjölander (STLS) approach for an electron gas. The factorization ansatz for the two-particle distribution is an indispensable ingredient in the STLS approaches for the determination of the response function and the pair correlation function. In this study, we choose an analytically solvable interacting two-electron system as the target for which we examine the validity of the approximation. It is demonstrated that the STLS response function reproduces well the exact one for low-energy excitations. The interaction energy contributed from the STLS response function is also discussed.

  7. Viking stranger kings

    DEFF Research Database (Denmark)

    Dobat, Andres S.


    Drawing on both historical and archaeological evidence, this paper investigates the significance of the foreign, and in particular the ‘stranger king’ concept in Viking Age Scandinavia. Focussing on the case of the Danish Jelling dynasty, the monumental complex at Jelling is reinterpreted...... as a materialization of a stranger king myth, with the ship‐setting reproducing the narrative of the founding of the dynasty by an immigrant forefather, and the burial mounds conveying the idea of the foreign king taking possession of the locals’ land. In a broader erspective, the stranger king concept and the special...

  8. Optical analysis of a compound quasi-microscope for planetary landers (United States)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.


    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  9. Testing the Hydrogen Peroxide-Water Hypothesis for Life on Mars with the TEGA instrument on the Phoenix Lander


    Schulze-Makuch, Dirk; Turse, Carol; Houtkooper, Joop; McKay, Chris


    Since Viking has conducted its life detection experiments on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the Martian surface chemistry and the Viking lander results remain puzzling. Non-biological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Quinn and Zent, 1999; Klein, 1999, Yen et al., 2000), but problems remain regarding the life time, source, and abundance of that oxidan...

  10. Linear Covariance Analysis for a Lunar Lander (United States)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael


    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  11. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system

    Directory of Open Access Journals (Sweden)

    Beth N. Orcutt


    Full Text Available Weathered crude oil sank to the seafloor following the 'Deepwater Horizon' disaster in 2010, removing this oil from further physical and photo-chemical degradation processes and leaving benthic processes as the mechanisms for altering and remediating this hydrocarbon source. To quantify potential microbial oil degradation rates at the seafloor, and associated changes in sediment microbial community structure and pore fluid composition, we used a benthic lander system to deploy novel sediment flow-through chambers at a natural hydrocarbon seep in the Gulf of Mexico (at a depth of 1226 m in lease block GC600 roughly 265 km southwest of the 'Deepwater Horizon' wellhead (at 1500 m depth. Sediment amended with 20% unweathered crude oil had elevated rates of sulfate reduction over the course of the 5-month-long experiment as compared to an unamended control, yielding potential rates of sulfate reduction (600–800 mmol m–2 d–1 among the highest measured in hydrocarbon-influenced seafloor sediment. Oil amendment also stimulated methane production towards the end of the experiment, and led to slightly higher cell densities without significant changes in microbial community structure, based on 16S rRNA gene sequence libraries and fatty acid profiles. Assuming a link between sulfate reduction and hydrocarbon degradation, these results suggest that electron acceptor availability may become limiting in heavily oiled deep-sea environments, resulting in minimal degradation of deposited oil. This study provides unique data on seafloor sediment responses to oil deposition, and reveals the value of using observatories to fill the gap in understanding deep-sea microbial processes, especially for ephemeral and stochastic events such as oil spills.

  12. Development of an Audio Microphone for the Mars Surveyor 98 Lander (United States)

    Delory, G. T.; Luhmann, J. G.; Curtis, D. W.; Friedman, L. D.; Primbsch, J. H.; Mozer, F. S.


    In December 1999, the next Mars Surveyor Lander will bring the first microphone to the surface of Mars. The Mars Microphone represents a joint effort between the Planetary Society and the University of California at Berkeley Space Sciences Laboratory and is riding on the lander as part of the LIDAR instrument package provided by the Russian Academy of Sciences in Moscow. The inclusion of a microphone on the Mars Surveyor Lander represents a unique opportunity to sample for the first time the acoustic environment on the surface, including both natural and lander-generated sounds. Sounds produced by martian meteorology are among the signals to be recorded, including wind and impacts of sand particles on the instrument. Photographs from the Viking orbiters as well as Pathfinder images show evidence of small tornado-like vortices that may be acoustically detected, along with noise generated by static discharges possible during sandstorms. Lander-generated sounds that will be measured include the motion and digging of the lander arm as it gathers soil samples for analysis. Along with these scientific objectives, the Mars Microphone represents a powerful tool for public outreach by providing sound samples on the Internet recorded during the mission. The addition of audio capability to the lander brings us one step closer to a true virtual presence on the Mars surface by complementing the visual capabilities of the Mars Surveyor cameras. The Mars Microphone is contained in a 5 x 5 x 1 cm box, weighs less than 50 g, and uses 0.1 W of power during its most active times. The microphone used is a standard hearing-aid electret. The sound sampling and processing system relies on an RSC-164 speech processor chip, which performs 8-bit A/ D sampling and sound compression. An onboard flight program enables several modes for the instrument, including varying sample ranges of 5 kHz and 20 kHz, and a selectable gain setting with 64x dynamic range. The device automatically triggers on

  13. Active Collision Avoidance for Planetary Landers (United States)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik


    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  14. NASA Facts, The Viking Mission. (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  15. SNC Meteorites, Organic Matter and a New Look at Viking (United States)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.


    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  16. Robotic Lunar Landers for Science and Exploration (United States)

    Cohen, B. A.; Bassler, J. A.; Hammond, M. S.; Harris, D. W.; Hill, L. A.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.


    The Moon provides an important window into the early history of the Earth, containing information about planetary composition, magmatic evolution, surface bombardment, and exposure to the space environment. Robotic lunar landers to achieve science goals and to provide precursor technology development and site characterization are an important part of program balance within NASA s Science Mission Directorate (SMD) and Exploration Systems Mission Directorate (ESMD). A Robotic Lunar Lan-der mission complements SMD's initiatives to build a robust lunar science community through R&A lines and increases international participation in NASA's robotic exploration of the Moon.

  17. Viking Software Data (United States)


    SWSG were then identified to be A.n Integration Contractor Software System Engineer (ICSSE), a NMC Software System Engineer (VLSSE), an Orbiter Software...resistance ohm V-A electromotive fort e volt W/A energy toleI k entropy toule per kelvin K force newton N k!:-Mls fre’quency heri Ilz (cycle~s illuminance

  18. Viking GC/MS mechanisms design and performance. [for analyzing samples of Martian surface (United States)

    Chase, C. P.; Weilbach, A. O.


    The Viking Lander gas chromatograph/mass spectrometer will analyze pyrolyzed samples of the Martian surface for organic content. The surface-sample loader and pyrolyzer assembly (SSPLA) is described, along with the major problems encountered during design and testing. Three mechanisms were developed to implement the required SSLPA functions: (1) a soil loader that forces soil from a filled rotating funnel into each of three ovens located on a carriage, (2) a Geneva drive for rotating and precisely indexing the ovens to receive sample, and (3) a toggle-clamp mechanism for sealing the ovens by forcing circular double knife edges into gold sealing surfaces.

  19. Constraints on Martian Soil Composition as Inferred from Viking XRFS and Pathfinder APXS and IMP Data (United States)

    Bridges, N. T.; Crisp, J. A.


    With the successful operation of the Alpha Proton X-Ray Spectrometer (APXS) during 1997's Mars Pathfinder (MPF) mission, geochemistry data are now available from three sites on Mars. APXS raw spectra for six soils and five rocks have been converted to compositional abundances. The Viking Lander X-Ray Fluorescence Spectrometer (XRFS) successfully measured elemental abundances of nine soils at Viking 1 and eight soils at Viking 2. Although the three landing sites are located in different parts of Mars, the soils exhibit broad similarities, with an iron-rich chemistry similar to that of palagonite. However, the Pathfinder sods show some significant differences from Viking soils, notably an enrichment in silica and depletion in sulfur. The XRFS samples consisted of near-surface and deep (up to 22 cm) soils acquired by a collector head at the cod of a retractable boom. It was possible to collect and analyze pebbles as large a 2 cm, but only sod, some in the form of consolidated clods, was sampled. In contrast, the APXS measured materials in situ. This resulted in MPF "rock" analyses that probably had a significant dust component and, as explored here, "soil" analyses that may have contained a rocky component We examine several possibilities to explain these differences and other attributes of the APXS and XRFS data sets: 1) The APXS soil measurements actually sampled a mixture of Viking-like soil and small bits of high-silica, low-sulfur rock, 2) The soils were derived from high-silica rocks mixed with a minor component of globally-homogenized dust; these soils are chemically distinct and have a separate geologic history from the Viking soils. 3) The weathering environment was different at the Pathfinder landing site compared to the Viking sites, and 4) Uncertainties in the XRFS and APXS measurements result in reported elemental abundances different than those that are actually present We show that none of the possibilities can be discounted, but that an MPF soil

  20. Robotic Lunar Landers For Science And Exploration (United States)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.


    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  1. Mars Polar Lander: The Search Continues (United States)


    [figure removed for brevity, see original site] (A) Polar Lander landing site ellipses. [figure removed for brevity, see original site] (B) MOC coverage (orange) to 17 Jan. 2000. [figure removed for brevity, see original site] (C) MOC image mosaic to 17 Jan. 2000. [figure removed for brevity, see original site] (D) Sample high resolution views from MOC mosaic. Since mid-December 1999, the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft has been taking pictures of Mars Polar Lander's landing zone near 76oS, 195oW, in hopes of finding some evidence as to the fate of the spacecraft that went missing during its December 3, 1999, landing attempt. To take these pictures, the MGS spacecraft is pointed a few degrees off its normal, nadir-looking (straight down) path. The first phase of imaging was completed December 24, 1999, but nothing was found. A second, expanded search was requested by the Mars Surveyor Operations Project and was begun in early January 2000.The MOC operations team at Malin Space Science Systems has been busy with the Mars Polar Lander search since December 3rd--initial efforts focused on the use of MOC as a buffer or 'storage space' for data relayed through the MGS Mars Relay (MR) system. It had been hoped that the Polar Lander would try to communicate to Earth using its UHF antenna to relay data through the MGS relay system. Data from the relay come through the MOC and are received at Malin Space Science Systems much in the same way that pictures from MOC are obtained. The relay effort was concluded on January 17, 2000, with no word from the Polar Lander. Meanwhile, the MOC operations team began to plan, command, retrieve, and analyze images designed to look for the Polar Lander. These pictures are taken at the highest spatial resolution possible for MOC, 1.5 meters (5 ft.) per pixel. At this resolution, the fuselage and wings of a jumbo jet can be distinguished, but a Polar Lander would only be a few pixels, at most, in

  2. Photogrammetric application of Viking orbital photography (United States)

    Wu, S. S. C.; Elassal, A. A.; Jordan, R.; Schafer, F. J.


    The paper describes special techniques for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras rules out compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experimental Data Record and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new techniques using a wide variety of Viking Orbiter photographs.

  3. Mars Solar Balloon Lander Project (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  4. A metallurgical study of some viking swords

    National Research Council Canada - National Science Library

    Williams, Alan


    While «pattern-welded» swords have been found all over Europe from sites dating from the Migration Period and into the Early Middle Ages, they were steadily supplanted during the Viking period by swords made out of a...

  5. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. (United States)

    Levin, Gilbert V; Straat, Patricia Ann


    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples. Key Words: Extant life on Mars-Viking Labeled Release experiment-Astrobiology-Extraterrestrial life-Mars. Astrobiology 16, 798-810.

  6. Power System Overview for the Small RPS Centaur Flyby and the Mars Polar Hard Lander NASA COMPASS Studies (United States)

    Cataldo, Robert L.


    The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.

  7. The World in the Viking Age

    DEFF Research Database (Denmark)

    the story of Viking-Age seafaring and voyages of exploration. The World in the Viking Age reveals a global history concerning ships, people and objects on the move. It is a story that challenges entrenched ideas about the past and present, and the skills and opportunities of previous generations.......The Viking Age was ignited by the art of building seaworthy sailing ships and the skills to sail them on the open sea. The growth in seafaring, trade, piracy, and exploration that began to gather momentum during the 8th century CE was not limited to Europe’s northern seas, however. Ships, laden...... with cargo and with seafarers who met foreign cultures, created unexpected connections between people from the Arctic Circle to the oceans south of the equator. Travel accounts have handed down glimpses of these voyages to the present day. However, it is archaeological discoveries in particular which uncover...

  8. The World in the Viking Age

    DEFF Research Database (Denmark)

    The Viking Age was ignited by the art of building seaworthy sailing ships and the skills to sail them on the open sea. The growth in seafaring, trade, piracy, and exploration that began to gather momentum during the 8th century CE was not limited to Europe’s northern seas, however. Ships, laden...

  9. Making Place for a Viking Fortress

    DEFF Research Database (Denmark)

    Brown, Hannah; Goodchild, Helen; Sindbæk, Søren Michael


    This article revisits the archaeology of the Viking-age settlement and ring fortress at Aggersborg, Denmark, based on a large-scale geophysical survey using magnetic gradiometry and ground-penetrating radar, as well as legacy excavation data. Late 10th-century Aggersborg, the largest known fortre...

  10. Did Viking discover life on Mars? (United States)

    Klein, H. P.


    A major argument in the claim that life had been discovered during the Viking mission to Mars is that the results obtained in the Labeled Release (LR) experiment are analogous to those observed with terrestrial microorganisms. This assertion is critically examined and found to be implausible.

  11. The World in the Viking Age

    DEFF Research Database (Denmark)

    The Viking Age was ignited by the art of building seaworthy sailing ships and the skills to sail them on the open sea. The growth in seafaring, trade, piracy, and exploration that began to gather momentum during the 8th century CE was not limited to Europe’s northern seas, however. Ships, laden w...

  12. Testing the H2O2-H2O Hypothesis for Life on Mars with the TEGA Instrument on the Phoenix Lander (United States)

    Schulze-Makuch, D.; Turse, Carol; Houtkooper, Joop M.; McKay, Christopher P.


    In the time since the Viking life-detection experiments were conducted on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the martian surface chemistry and the Viking lander results remain puzzling. Nonbiological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Plumb et al., 1989; Quinn and Zent, 1999; Klein, 1999; Yen et al., 2000), but problems remain regarding the lifetime, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis that favors the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report on laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix lander transmits its first results from the martian surface.

  13. Minimum-Jerk Guidance for Lunar Lander (United States)

    Uchiyama, Kenji; Shimada, Yuzo; Ogawa, Kazuhiro

    An optimal guidance law derived by solving the minimum-acceleration problem has been reported for control of a lunar lander. In our past work, the guidance law was proved to enable vertical/soft landing. However, it was not robust against disturbance because there was a constraint condition relative to initial conditions in order to satisfy optimality. Therefore, if the constraint is not satisfied, the lunar lander must be controlled to track the reference trajectory generated by the optimal guidance law in order to be robust against disturbance. The control system makes the landing system complex and fuel consumption is increased in comparison to a guidance law without tracking control. Consequently, this study restructures the optimal control problem as a minimum-jerk problem to solve it. Jerk is a physical quantity defined as the time derivative of acceleration. The new optimal guidance law obtained has no constraints on the initial conditions. The results of computer simulation confirm the usefulness of the proposed guidance law.

  14. Physical properties of the surface materials at the Viking landing sites on Mars (United States)

    Moore, H.J.; Hutton, R.E.; Clow, G.D.; Spitzer, C.R.


    This report summarizes the results of the Physical Properties Investigation of the Viking '75 Project, activities of the surface samplers, and relevant results from other investigations. The two Viking Landers operated for nearly four martian years after landing on July 20 (Lander 1) and Sept. 3 (Lander 2), 1976; Lander 1 acquired its last pictures on or about Nov. 5, 1982. Lander 1 rests on a smooth, cratered plain at the west edge of Chryse Planitia (22.5 ? N, 48.0? W), and Lander 2 rests 200 km west of the crater Mie in Utopia Planitia (48.0? N, 225.7? W). Lander 1 views showed that dune-like deposits of drift material were superposed on rock-strewn surfaces. Soil-like material from the rock-strewn areas was called blocky material. Lander 2 views also showed a rock-strewn surface. Polygonal to irregular features, etched by the wind, revealed crusty to cloddy material among rocks. Both landers descended to the surface along nearly vertical trajectories. Velocities at touchdown were about 2 m/s for both landers. Footpad 2 of Lander 1 penetrated drift material 0.165 m, and footpad 3 penetrated blocky material 0.036 m. The two visible footpads of Lander 2 struck rocks. Erosion by exhausts from the forward engines produced craters with rims of mixed fine-grained material and platy to equidimensional clods, crusts, and fragments. Comparison of engine-exhaust erosion on Mars with terrestrial data suggested that drift material behaved like a weakly cohesive material with a grain size less than 3-9 /-lm. Although not sand, blocky and crusty to cloddy materials eroded like sand-with grain sizes of 0.01 or 0.2 cm. The surface samplers accomplished an impressive number of tasks. All experiments that required samples received samples. Deep holes, as much as 0.22 m deep, were excavated by both landers. Lander 2 successfully pushed rocks and collected samples from areas originally beneath the rocks. Tasks specifically accomplished for the Physical Properties Investigation

  15. First-order optical analysis of a quasi-microscope for planetary landers (United States)

    Huck, F. O.; Sinclair, A. R.; Burcher, E. E.


    A first-order geometrical optics analysis of a facsimile camera augmented with an auxiliary lens as magnifier is presented. This concept, called quasi-microscope, bridges the gap between surface resolutions of the order of 1 to 10 mm which can be obtained directly with planetary lander cameras and resolutions of the order of 0.2 to 10 microns which can be obtained only with relatively complex microscopes. A facsimile camera was considered in the analysis; however, the analytical results can also be applied to television and film cameras. It was found that quasi-microscope resolutions in the range from 10 to 100 microns are obtainable with current state-of-the-art lander facsimile cameras. For the Viking lander camera having an angular resolution of 0.04 deg, which was considered as a specific example, the best achievable resolution would be about 20 microns. The preferred approach to increase the resolution of the quasi-microscope would be, if possible, through an increase in angular resolution of the camera. A twofold to threefold improvement in resolution could also be achieved with a special camera focus position, but this approach tends to require larger and heavier auxiliary optics.


    Directory of Open Access Journals (Sweden)

    Wladyslaw Duczko


    Full Text Available Movements of Scandinavians in period between late 8th AD to middle of 11th AD, called Viking Age, were combined military actions-piracy – and migrations with goal to colonize territories in the West Europe – mainly Insular world of Atlantic and British isles, but also in East Europe, among Finno-Ugrians and Slavs. This activity is seen as the recent, and last, of the Migration Period, the time of great movements of Germanic people in the 4th century AD.

  17. Mars 2001 Orbiter, Lander and Rover (United States)

    Saunders, R. S.


    The Mars 2001 mission is well equipped to analyze the surface of Mars. The mission: 1) completes MO objectives with gamma ray spectrometer elemental mapping, 2) explores a new region of the Martian surface, and 3) is the first in the combined Mars strategy of the Human Exploration and Development of Space (HEDS) and Space Science Enterprises of NASA. The mission demonstrates technologies and collects environmental data that provide the basis for permanent outposts or a decision to send humans to Mars. Potential sites include ancient crust and ancient aqueous environments. The orbiter carries the gamma ray spectrometer, a thermal emission spectrometer (THEMIS) and imager that will map the mineral abundance at selected sites and a radiation experiment, Marie, to assess radiation hazards. The lander carries a suite of Space Science and HEDS instruments including a robotic arm with camera. The arm will deploy a Moessbauer spectrometer to determine the state of iron in the soil. The arm will deploy the rover and dig up to 0.5 m to deliver soil to MECA, the soil and dust characterization experiments. The Mars In Situ Propellant Precursor Experiment (MIP) will assess in situ propellant production technology and produce oxygen from the Martian atmosphere. The landed Marie radiation experiment will assess radiation hazards on the surface. The lander carries a panoramic camera bore-sighted with a thermal emission spectrometer (PanCam/MiniTES) to allow comparison between mineralogical data and elemental data. The descent imaging system (MARDI) will image from parachute deployment to the surface. The rover is Sojourner class, with an upgraded Alpha Proton X-ray Spectrometer (APXS) experiment carefully calibrated on Earth and on Mars. The instruments will be operated in an integrated mode to provide maximum capability to explore and characterize a new region on Mars. MSP-01 is a NASA/JPL Mission.

  18. Viking-Age Sails: Form and Proportion (United States)

    Bischoff, Vibeke


    Archaeological ship-finds have shed much light on the design and construction of vessels from the Viking Age. However, the exact proportions of their sails remain unknown due to the lack of fully preserved sails, or other definite indicators of their proportions. Key Viking-Age ship-finds from Scandinavia—the Oseberg Ship, the Gokstad Ship and Skuldelev 3—have all revealed traces of rigging. In all three finds, the keelson—with the mast position—is preserved, together with fastenings for the sheets and the tack, indicating the breadth of the sail. The sail area can then be estimated based on practical experience of how large a sail the specific ship can carry, in conjunction with hull form and displacement. This article presents reconstructions of the form and dimensions of rigging and sail based on the archaeological finds, evidence from iconographic and written sources, and ethnographic parallels with traditional Nordic boats. When these sources are analysed, not only do the similarities become apparent, but so too does the relative disparity between the archaeological record and the other sources. Preferential selection in terms of which source is given the greatest merit is therefore required, as it is not possible to afford them all equal value.

  19. Photometry of Phobos and Deimos from Viking orbiter images (United States)

    Klaasen, K. P.; Duxbury, T. C.; Veverka, J.


    Images of Phobos and Deimos acquired by the Viking orbiter television system have been used to determine the photometric functions of the Martian moons. Data covering wavelengths from 445 nm to 593 nm and solar phase angles between 0.5 deg and 122 deg were used. Normal reflectances of 0.066 + or - 0.006 for Phobos and 0.069 + or - 0.006 for Deimos were determined. No variations in either photometric function or average normal albedo were observed over the wavelength range studied. The photometric functions demonstrate that the surface of Phobos and Deimos are intricate in texture brightness surges near opposition that are more pronounced than that of the moon.

  20. The Philae Lander: Science planning and operations (United States)

    Moussi, Aurélie; Fronton, Jean-François; Gaudon, Philippe; Delmas, Cédric; Lafaille, Vivian; Jurado, Eric; Durand, Joelle; Hallouard, Dominique; Mangeret, Maryse; Charpentier, Antoine; Ulamec, Stephan; Fantinati, Cinzia; Geurts, Koen; Salatti, Mario; Bibring, Jean-Pierre; Boehnhardt, Hermann


    Rosetta is an ambitious mission launched in March 2004 to study comet 67P/Churyumov-Gerasimenko. It is composed of a space probe (Rosetta) and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with short turnaround time, first time a lander has landed on a comet nucleus. In November 2014, once stabilized on the comet, Philae has performed its "First Science Sequence". Philae's aim was to perform detailed and innovative in-situ experiments on the comet's surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Center (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Center (LCC) located in DLR Cologne. The teams in charge of the Philae activity scheduling had to cope with considerable constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. Moreover the comet itself, its environment and the landing conditions remained unknown until separation time. The landing site was selected once the operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the lander activity scheduling had to face to fulfill the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario for the lander operation will also be detailed as well as the sequence performed on the comet to highlight the difficulties and challenges that the operational team faced.

  1. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update (United States)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide


    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  2. Orbiting Depot and Reusable Lander for Lunar Transportation (United States)

    Petro, Andrew


    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  3. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations (United States)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.


    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra

  4. Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell (United States)

    Liechty, Derek S.; Hollis, Brian R.; Edquist, Karl T.


    Several configurations, having a Viking aeroshell heritage and providing lift-to-drag required for precision landing, have been considered for a proposed Mars Smart Lander. An experimental aeroheating investigation of two configurations, one having a blended tab and the other a blended shelf control surface, has been conducted at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel to assess heating levels on these control surfaces and their effects on afterbody heating. The proposed Mars Smart Lander concept is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the forebody heat shield upon separation prior to entry into the Martian atmosphere. The effects these cavities will have on the heating levels experienced by the control surface and the afterbody were also examined. The effects of Reynolds number, angle-of-attack, and cavity location on aeroheating levels and distributions were determined and are presented. At the highest angle-of-attack, blended tab heating was increased due to transitional reattachment of the separated shear layer. The placement of cavities downstream of the control surface greatly influenced aeroheating levels and distributions. Forebody heat shield cavities had no effect on afterbody heating and the presence of control surfaces decreased leeward afterbody heating slightly.

  5. From Viking to Crusader. Scandinavia and Europe 800-1200

    DEFF Research Database (Denmark)

    1st edtion in Danish: Viking og Hvidekrist. Norden og Europa 800-1200, 1992; 2nd edition 1993. Swedish edition: Från Vikingar till Korsfarare, 1992. German edition: Wikinger Waräger Normannen. Die Skandinavier und Europa 800-1200, 1992. French edition with J.-P. Mohen & F.-X. Dillmann: Les Viking...

  6. Tracing Paths - A Study of Combs from Viking Age ICeland


    Eckhoff, Nicolai Andreas


    The present study is a technological and comparative analysis of combs from Viking Age Iceland. Recent research suggests that it was important for people in the Viking Age that the comb they caried was affiliated with their own culture; hence combs seem to have an inherent ability to portray cultural patterns. Such patterns are difficult to find in Iceland as few artefact studies have been completed in Icelandic archaeology. This thesis focuses on this fact, as the regional variations in the ...

  7. Aeroheating Environments for a Mars Smart Lander (United States)

    Edquist, Karl T.; Liechty, Derek S.; Hollis, Brian R.; Alter, Stephen J.; Loomis, Mark P.


    A proposed Mars Smart Lander is designed to reach the surface via lifting-body atmospheric entry (alpha = 16 deg) to within 10 km of the target site. CFD (computational fluid dynamics) predictions of the forebody aeroheating environments are given for a direct entry from a 2005 launch. The solutions were obtained using an 8-species gas in thermal and chemical nonequilibrium with a radiative-equilibrium wall temperature boundary condition. Select wind tunnel data are presented from tests at NASA Langley Research Center. Turbulence effects are included to account for both smooth body transition and turbulence due to heatshield penetrations. Natural transition is based on a momentum-thickness Reynolds number value of 200. The effects of heatshield penetrations on turbulence are estimated from wind tunnel tests of various cavity sizes and locations. Both natural transition and heatshield penetrations are predicted to cause turbulence prior to the nominal trajectory peak heating time. Laminar and turbulent CFD predictions along the trajectory are used to estimate heat rates and loads. The predicted peak turbulent heat rate of 63 W/sq cm on the heatshield leeward flank is 70% higher than the laminar peak. The maximum integrated heat load for a fully turbulent heat pulse is 38% higher than the laminar load on the heatshield nose. The predicted aeroheating environments with uncertainty factors will be used to design a thermal protection system.

  8. Wind Drifts at Viking 1 Landing Site (United States)


    This image is of so-called wind drifts seen at the Viking 1 landing site. These are somewhat different from the features seen at the Pathfinder site in two important ways. 1) These landforms have no apparent slip-or avalanche-face as do both terrestrial dunes and the Pathfinder features, and may represent deposits of sediment falling from the air, as opposed to dune sand, which 'hops' or saltates along the ground; 2) these features may indicate erosion on one side, because of the layering and apparent scouring on their right sides. They may, therefore have been deposited by a wind moving left to right, partly or weakly cemented or solidified by surface processes at some later time, then eroded by a second wind (right to left), exposing their internal structure.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  9. Preliminary design of a universal Martian lander (United States)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi


    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  10. Preliminary design of a universal Martian lander (United States)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  11. Fusion-Enabled Pluto Orbiter and Lander (United States)

    Thomas, Stephanie


    The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if

  12. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators (United States)

    Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid


    Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.

  13. Venus Lander Experiment Vessel Project (United States)

    National Aeronautics and Space Administration — NASA's program for Solar System Exploration will augment the current remote sensing approach to solar system exploration with a robust program that includes in situ...

  14. Resolution du probleme des instabilites sur le moteur Viking (United States)

    Dorville, G.; Lemoine, J. C.; Souchier, A.

    (Resolution of the instability problem on Viking motor)—This paper gives the experimental and theorical work program which has permitted one to resolve the Viking motor instability problems and to ensure the L03 launching, one year after the L02 launching failure. After an exploration phase of search for working anomalies, instabilities have been characterized, acceptation procedure has been ratified, and different modifications have been tried. Theoretical work associated with the synthesis of experimental results have led to the finishing touch of operation and stability representative models. The pointing out of specific parameters has influenced the research of some solutions and the orientation of future works.

  15. Viking Line'i lahkuva "kapteni" 9 põhimõtet / Nils-Erik Eklund

    Index Scriptorium Estoniae

    Eklund, Nils-Erik


    2009. aasta 1. juunil 50-aastaseks saanud laevakompanii Viking Line ametist lahkuv juht Nils-Erik Eklund vastab küsimustele, mis puudutavad oma isa, Viking Line'i asutaja Gunnar Eklundi jälgedes käimist, ettevõtte võimalikku laienemist teistesse tegevusaladesse, peamisi juhtimispõhimõtteid ning keerulisemaid hetki Viking Line'i ajaloos

  16. Viking Line pakub mugavat reisimisvõimalust / kommenteerinud Inno Borodenko, Piret Pääsik

    Index Scriptorium Estoniae


    1. juunil 2009 täitus 50 aastat laevakompanii Viking Line asutamisest ja 15 aastat Viking Line tulekust Eestisse. Viking Line Eesti OÜ tegevjuht Inno Borodenko ja turundusjuht Piret Pääsik tutvustavad laevafirma saamislugu, eesmärke ning tegevust.

  17. The Phoenix Mars Lander Robotic Arm (United States)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.


    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  18. Viking Line visandab oma laevadele purjeid / Sirje Rank

    Index Scriptorium Estoniae

    Rank, Sirje, 1966-


    Viking Line'i juht Nils-Erik Eklund leiab, et Tallinki uued laevad on pigem probleem kui konkurentsieelis, sest uue põlvkonna reisilaevad peaks liikuma osaliselt tuule- ja päikeseenergia jõul. Vt. samas: Tallinna-Helsingi liinil on tasakaal lähedal

  19. Rational bandits: Plunder, public goods, and the Vikings

    DEFF Research Database (Denmark)

    Kurrild-Klitgaard, Peter; Svendsen, Gert Tinggaard


    stationary banditry profitable. The most efficient bandits monopolize violence, begin to tax and provide some amounts of public goods in order to stimulate economic growth. The analysis demonstrates how the Vikings' activities and settlements are consistent with such an explanation, with the dynamics...

  20. Vike-Freiberga: capitalism is failing / Monika Hanley

    Index Scriptorium Estoniae

    Hanley, Monika


    Läti endine president Vaira Vike-Freiberga sõnas oma kõnes Ameerika Kaubanduskoja lõunal, et majandusliku olukorra parandamiseks tuleb muuta kapitalistlikku majandussüsteemi ning kutsus Läti poliitikuid üles võitlema raske situatsiooniga riigis

  1. Presidents bid farewell to Vike-Freiberga / Talis Saule Archdeacon

    Index Scriptorium Estoniae

    Archdeacon, Talis Saule


    Eesti president Toomas Hendrik Ilves ja Leedu president Valdas Adamkus jätsid 3. juulil 2007 Riias hüvasti ametist lahkuva Läti presidendi Vaira Vike-Freibergaga. Baltimaade liidrid arutasid koostöö küsimusi

  2. Possibilities for the detection of hydrogen peroxide-water-based life on Mars by the Phoenix Lander (United States)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk


    The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life. The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H 2O 2 and H 2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H 2O 2-H 2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H 2O 2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H 2O 2-H 2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.

  3. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  4. NEXT-Lunar Lander -an Opportunity for a Close Look at the Lunar South Pole (United States)

    Homeister, Maren; Thaeter, Joachim; Scheper, Marc; Apeldoorn, Jeffrey; Koebel, David

    The NEXT-Lunar Lander mission, as contracted by ESA and investigated by OHB-System and its industrial study team, has two main purposes. The first is technology demonstration for enabling technologies like propulsion-based soft precision landing for future planetary landing missions. This involves also enabling technology experiments, like fuel cell, life science and life support, which are embedded in the stationary payload of the lander. The second main and equally important aspect is the in-situ investigation of the surface of the Moon at the lunar South Pole by stationary payload inside the Lander, deployable payload to be placed in the vicinity of the lander and mobile payload carried by a rover. The currently assessed model payload includes 15 instruments on the lander and additional five on the rover. They are addressing the fields geophysics, geochemistry, geology and radio astronomy preparation. The mission is currently under investigation in frame of a phase A mission study contract awarded by ESA to two independent industrial teams, of which one is led by OHB-System. The phase A activities started in spring 2008 and were conducted until spring 2010. A phase B is expected shortly afterwards. The analysed mission architectures range from a Soyuz-based mission to a Shared-Ariane V class mission via different transfer trajectories. Depending on the scenario payload masses including servicing of 70 to 150 kg can be delivered to the lunar surface. The lander can offer different services to the payload. The stationary payload is powered and conditioned by the lander. Examples for embarked payloads are an optical camera system, a Radio Science Experiment and a radiation monitor. The lander surface payload is deployed to the lunar surface by a 5 DoF robotic arm and will be powered by the Lander. To this group of payloads belong seismometers, a magnetometer and an instrumented Mole. The mobile payload will be carried by a rover. The rover is equipped with its own

  5. Moon Express: Lander Capabilities and Initial Payload and Mission (United States)

    Spudis, P.; Richards, R.; Burns, J. O.


    Moon Express Inc. is developing a common lander design to support the commercial delivery of a wide variety of possible payloads to the lunar surface. Significant recent progress has been made on lander design and configuration and a straw man mission concept has been designed to return significant new scientific and resource utilization data from the first mission. The Moon Express lander is derived from designs tested at NASA Ames Research Center over the past decade. The MX-1 version is designed to deliver 26 kg of payload to the lunar surface, with no global restrictions on landing site. The MX-2 lander can carry a payload of 400 kg and can deliver an upper stage (designed for missions that require Earth-return, such as sample retrieval) or a robotic rover. The Moon Express lander is powered by a specially designed engine capable of being operated in either monoprop or biprop mode. The concept for the first mission is a visit to a regional pyroclastic deposit on the lunar near side. We have focused on the Rima Bode dark mantle deposits (east of crater Copernicus, around 13 N, 4 W). These deposits are mature, having been exposed to solar wind for at least 3 Ga, and have high Ti content, suggesting high concentrations of implanted hydrogen. Smooth areas near the vent suggest that the ash beds are several tens of meters thick. The projected payload includes an imaging system to document the geological setting of the landing area, an APX instrument to provide major element composition of the regolith and a neutron spectrometer to measure the bulk hydrogen composition of the regolith at the landing site. Additionally, inclusion of a next generation laser retroreflector would markedly improve measurements of lunar librations and thus, constrain the dimensions of both the liquid and solid inner cores of the Moon, as well as provide tests of General Relativity. Conops are simple, with measurements of the surface composition commencing immediately upon landing. APX

  6. Automated microbial metabolism laboratory. [Viking 75 entry vehicle and Mars (United States)


    The labeled release concept was advanced to accommodate a post- Viking mission designed to extend the search, to confirm the presence of, and to characterize any Martian life found, and to obtain preliminary information on control of the life detected. The advanced labeled release concept utilizes four test chambers, each of which contains either an active or heat sterilized sample of the Martian soil. A variety of C-14 labeled organic substrates can be added sequentially to each soil sample and the resulting evolved radioactive gas monitored. The concept can also test effects of various inhibitors and environmental parameters on the experimental response. The current Viking '75 labeled release hardware is readily adaptable to the advanced labeled release concept.

  7. The Philae lander mission and science overview (United States)

    Boehnhardt, Hermann; Bibring, Jean-Pierre; Apathy, Istvan; Auster, Hans Ulrich; Ercoli Finzi, Amalia; Goesmann, Fred; Klingelhöfer, Göstar; Knapmeyer, Martin; Kofman, Wlodek; Krüger, Harald; Mottola, Stefano; Schmidt, Walter; Seidensticker, Klaus; Spohn, Tilman; Wright, Ian


    The Philae lander accomplished the first soft landing and the first scientific experiments of a human-made spacecraft on the surface of a comet. Planned, expected and unexpected activities and events happened during the descent, the touch-downs, the hopping across and the stay and operations on the surface. The key results were obtained during 12-14 November 2014, at 3 AU from the Sun, during the 63 h long period of the descent and of the first science sequence on the surface. Thereafter, Philae went into hibernation, waking up again in late April 2015 with subsequent communication periods with Earth (via the orbiter), too short to enable new scientific activities. The science return of the mission comes from eight of the 10 instruments on-board and focuses on morphological, thermal, mechanical and electrical properties of the surface as well as on the surface composition. It allows a first characterization of the local environment of the touch-down and landing sites. Unique conclusions on the organics in the cometary material, the nucleus interior, the comet formation and evolution became available through measurements of the Philae lander in the context of the Rosetta mission. This article is part of the themed issue 'Cometary science after Rosetta'.

  8. Logistics impacts on lunar and Mars lander design (United States)

    Donahue, Benjamin

    The results of trade studies and evaluations done to determine the impact of accommodation and unloading of cargo on spacecraft design are reviewed. It is concluded that the effectiveness of the surface mission to moon or Mars is best accomplished by providing for undivided cargo delivery and for cargo unloading indirectly to earth surface without the aid of a surface system unloader, for immediate cargo drop during descent abort to orbit, for immediate cargo drop in case of need for an emergency ascent from the surface, and for contiguous placement of cab and surface habitat modules. For exploration architectures that include multiple site visits within as much as several hundred km of each other, use of excursion vehicles capable of short suborbital hops to secondary sites is much less expensive in terms of IMLEO than a strategy of using multiple landers or multiple missions.

  9. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.


    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  10. Review of: Ancient Scandinavia: An Archaeological History from the First Humans to the Vikings (Oxford University Press, Oxford, 2016) T. Douglas Price

    DEFF Research Database (Denmark)

    Løvschal, Mette


    Scandinavia is world-famous for its prehistoric archaeology, with exceptional finds of Mesolithic kitchen middens and submarine sites, Bronze Age oak-log coffins and rock carvings, Iron Age bog bodies and well-preserved settlement sites, Viking Age ships and burials, and thousands of field system...

  11. Household air pollution from wood burning in two reconstructed houses from the Danish Viking Age

    DEFF Research Database (Denmark)

    Christensen, Jannie Marie; Ryhl-Svendsen, M.


    During 13 winter weeks, an experimental archeology project was undertaken in two Danish reconstructed Viking Age houses with indoor open fireplaces. Volunteers inhabited the houses under living conditions similar to those of the Viking Age, including cooking and heating by wood fire. Carbon...... to the Viking house design, the volunteer’s lack of training in attending a fire maybe also played a role. Even so, when comparing to today’s issues arising from the use of open fires, it must be assumed that also during the Viking Age, the exposure to woodsmoke was a contributing factor to health problems....

  12. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.


    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  13. Individualistic Vikings: Culture, Economics and Iceland


    Már Wolfgang Mixa; Vlad Vaiman


    Icelandic culture has generally been considered to share many similarities to the Nordic cultures. However, the financial crisis in 2008 painted a completely different picture, with the Nordic nations faring much less worse than Iceland, which saw its banking system becoming almost entirely worthless. Looking at traditional cultural yardsticks in the vein of the most commonly used research in the field of business and organizational management, generally linked to Hofstede´s dimensional studi...

  14. Biomarkers of oxidative stress and inflammation after wood smoke exposure in a reconstructed Viking Age house

    DEFF Research Database (Denmark)

    Jensen, Annie; Karottki, Dorina Gabriela; Christensen, Jannie Marie


    Exposure to particles from combustion of wood is associated with respiratory symptoms, whereas there is limited knowledge about systemic effects. We investigated effects on systemic inflammation, oxidative stress and DNA damage in humans who lived in a reconstructed Viking Age house, with indoor...... expression levels of CD11b, CD49d, and CD62L on monocytes after the stay in the house. In conclusion, even a high inhalation exposure to wood smoke was associated with limited systemic effects on markers of oxidative stress, DNA damage, inflammation, and monocyte activation....... dehydrogenase, cholesterol, triglycerides, and high-density lipoproteins. The wood smoke exposure was associated with decreased serum levels of sICAM-1, and a tendency to decreased sVCAM-1 levels. There was a minor increase in the levels of circulating monocytes expressing CD31, whereas there were unaltered...

  15. Studies of Viking Age swords: metallography and archaeology

    Directory of Open Access Journals (Sweden)

    Elisabeth Astrup, Eva


    Full Text Available The paper is a comment on Alan Williams investigation ‘A Metallurgical Study of some Viking Swords’ published in Gladius XXIX. Williams’ paper comprise metallurgical investigations of 44 Viking Age Swords, all with ULFBERHT inscriptions. Such investigations, made by a well qualified metallurgist, are essential to archaeology. Unfortunately, this one has some serious limitations. In order to give a good description of the quality of a sword-blade, samples showing at least the section through both the edge and the central part of the blade are necessary. This is mostly not the case in Williams’ investigations, and he gives insufficient information about his samples. Other weak points are his group division and his interpretation of the production area for blades containing high-carbon steel.

    Este trabajo es un comentario sobre la investigación de Alan Williams ‘A Metallurgical Study of some Viking Swords` publicado en Gladius XXIX. El artículo de Williams incluye un estudio arqueometalúrgico de 44 espadas de época vikinga, todas ellas con la inscripción ULFBERHT. Estas investigaciones, realizadas por un arqueometalúrgico altamente cualificado, son esenciales en arqueología. Sin embargo, esta en concreto presenta algunas serias limitaciones. Para poder proporcionar una buena descripción de la calidad de la hoja de una espada, son necesarias muestras de al menos la sección desde el filo y hasta la parte central de la hoja. Este no es el caso de la mayoría de las muestras de Williams, quien proporciona insuficiente información sobre su toma de muestras. Otros puntos débiles son su clasificación en grupos y su interpretación del área de producción para las hojas que contienen un acero con elevado contenido de carbono.

  16. Inflight performance of the Viking visual imaging subsystem (United States)

    Klaasen, K. P.; Thorpe, T. E.; Morabito, L. A.


    Photography from the Viking Orbiter Visual Imaging Subsystem, taken while enroute to and in orbit about Mars, has been analyzed to determine the performance of the cameras. The cameras have remained in good focus. Random and coherent noise levels in flight were the same as measured prior to launch. A recalibration of each instrument allows photometric measurements to accuracies of less than 3% for relative measurements and 9% for absolute measurements. Geometric distortion remained close to the preflight levels of 4 pixels rms and 11 pixels maximum.

  17. Modal test - Measurement and analysis requirements. [for Viking Orbiter (United States)

    Wada, B. K.


    Data from the Viking Orbiter Modal Test Program are used to illustrate modal test measurement and analysis requirements. The test was performed using a multiple shake dwell technique where data were acquired one channel at a time and recorded on paper tape. Up to ten shakers were used simultaneously, with a complete set of data consisting of 290 strain-gage readings and 125 accelerometer readings. The data analysis provided information sufficient to minimize errors in the data. The list of analyses in order of value is orthogonality, residual mass, frequency sweep, data checks to assure good test data, multilevel trends, global kinetic energy, and global strain energy.

  18. IPL Processing of the Viking Orbiter Images of Mars (United States)

    Ruiz, R. M.; Elliott, D. A.; Yagi, G. M.; Pomphrey, R. B.; Power, M. A.; Farrell, W., Jr.; Lorre, J. J.; Benton, W. D.; Dewar, R. E.; Cullen, L. E.


    The Viking orbiter cameras returned over 9000 images of Mars during the 6-month nominal mission. Digital image processing was required to produce products suitable for quantitative and qualitative scientific interpretation. Processing included the production of surface elevation data using computer stereophotogrammetric techniques, crater classification based on geomorphological characteristics, and the generation of color products using multiple black-and-white images recorded through spectral filters. The Image Processing Laboratory of the Jet Propulsion Laboratory was responsible for the design, development, and application of the software required to produce these 'second-order' products.

  19. Individualistic Vikings: Culture, Economics and Iceland

    Directory of Open Access Journals (Sweden)

    Már Wolfgang Mixa


    Full Text Available Icelandic culture has generally been considered to share many similarities to the Nordic cultures. However, the financial crisis in 2008 painted a completely different picture, with the Nordic nations faring much less worse than Iceland, which saw its banking system becoming almost entirely worthless. Looking at traditional cultural yardsticks in the vein of the most commonly used research in the field of business and organizational management, generally linked to Hofstede´s dimensional studies, one would at first glance conclude that Icelanders would have behaved in a similar manner as people in the Nordic nations. By focusing on savings ratio, it is shown that Icelanders were much more risk-seeking during the prelude of the crisis. Many nations badly hit during the 2008 financial crisis have a high level of individualism inherent in their culture. Iceland fits this scenario. Thus while general cultural characteristics may lack explanatory power regarding economic behavior of people between cultures, the individual/collective cultural dimension may provide clues of what dangers (and possible strengths lurk within societies from a financial point of view. Such developments may affect the financial stability of nations, especially those with a high level of individualism where financial liberalization with possible abuses is occurring.

  20. Was it for walrus? Viking Age settlement and medieval walrus ivory trade in Iceland and Greenland

    DEFF Research Database (Denmark)

    Frei, Karin M.; Coutu, Ashley N.; Smiarowski, Konrad


    Walrus-tusk ivory and walrus-hide rope were highly desired goods in Viking Age north-west Europe. New finds of walrus bone and ivory in early Viking Age contexts in Iceland are concentrated in the south-west, and suggest extensive exploitation of nearby walrus for meat, hide and ivory during the ...

  1. Atlantic Deep-Water Canyons (Benthic Landers) 2013 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  2. Advanced Composite Thrust Chambers for the Altair Lunar Lander Project (United States)

    National Aeronautics and Space Administration — Radiation-cooled, bipropellant thrusters are being considered for the Ascent Module main engine of the Altair Lunar Lander. Currently, iridium-lined rhenium...

  3. SAEVe: A Long Duration Small Sat Class Venus Lander (United States)

    Kremic, T.; Ghail, R.; Gilmore, M.; Kiefer, W.; Limaye, S.; Hunter, G.; Tolbert, C.; Pauken, M.; Wilson, C.


    SAEVe is a small Venus lander concept selected for further study by the PSDS3 call. SAEVe is an innovative approach to achieving Venus surface science by exploiting recent developments in high temperature electronics and unique operations scheme.

  4. An Integrated Technology Approach for Low-Cost Landers Project (United States)

    National Aeronautics and Space Administration — The primary goal is to provide direction of the Low Cost Lander proposal elements and control of the development space. It would evaluate the proposed technologies...

  5. A Novel, Low-Cost Conformable Lander Project (United States)

    National Aeronautics and Space Administration — The primary focus of this activity will be to outline a preliminary mechanical design for this conforming lander. Salient issues to be worked include (1) determining...

  6. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander (United States)

    Manzo, Michelle A.


    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  7. Analysis and interpretation of Viking labeled release experimental results (United States)

    Levin, G. V.


    The Viking Labeled Release (LR) life detection experiment on the surface of Mars produced data consistent with a biological interpretation. In considering the plausibility of this interpretation, terrestrial life forms were identified which could serve as models for Martian microbial life. Prominent among these models are lichens which are known to survive for years in a state of cryptobiosis, to grow in hostile polar environments, to exist on atmospheric nitrogen as sole nitrogen source, and to survive without liquid water by absorbing water directly from the atmosphere. Another model is derived from the endolithic bacteria found in the dry Antarctic valleys; preliminary experiments conducted with samples of these bacteria indicate that they produce positive LR responses approximating the Mars results. However, because of the hositility of the Martian environment to life, and the failure to find organics on the surface of Mars, a number of nonbiological explanations were advanced to account for the Viking LR data. A reaction of the LR nutrient with putative surface hydrogen peroxide is the leading candidate. Other possibilities raised include reactions caused by or with ultraviolet irradiation, gamma-Fe2O3, metalloperoxides or superoxides.

  8. Future Plans for MetNet Lander Mars Missions (United States)

    Harri, A.-M.; Schmidt, W.; Guerrero, H.; Vázquez, L.


    For the next decade several Mars landing missions and the construction of major installations on the Martian surface are planned. To be able to bring separate large landing units safely to the surface in sufficiently close vicinity to one another, the knowledge of the Martian weather patterns, especially dust and wind, is important. The Finnish - Russian - Spanish low-mass meteorological stations are designed to provide the necessary observation data network which can provide the in-situ observations for model verification and weather forecasts. As the requirements for a transfer vehicle are not very extensive, the MetNet Landers (MNLs) [1] could be launched with any mission going to Mars. This could be a piggy-bag solution to a Martian orbiter from ESA, NASA, Russia or China or an add-on to a planned larger Martian Lander like ExoMars. Also a dedicated launch with several units from LEO is under discussion. The data link implementation uses the UHF-band with Proximity-1 protocol as other current and future Mars lander missions which makes any Mars-orbiting satellite a potential candidate for a data relay to Earth. Currently negotiations for possible opportunities with the European and the Chinese space agencies are ongoing aiming at a launch window in the 2015/16 time frame. In case of favorable results the details will be presented at the EGU. During 2011 the Mars MetNet Precursor Mission (MMPM) has completed all flight qualifications for Lander system and payload. At least two units will be ready for launch in the 2013/14 launch window or beyond. With an entry mass of 22.2kg per unit and 4kg payload allocation the MNL(s) can be easily deployed from a wide range of transfer vehicles. The simple structure allows the manufacturing of further units on short notice and to reasonable prices. The autonomous operations concept makes the implementation of complex commanding options unnecessary while offering a flexible adaptation to different operational scenarios. This

  9. Altair Lander Life Support: Design Analysis Cycles 4 and 5 (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan


    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  10. Identification of the Beagle 2 lander on Mars (United States)

    Bridges, J. C.; Clemmet, J.; Croon, M.; Sims, M. R.; Pullan, D.; Muller, J.-P.; Tao, Y.; Xiong, S.; Putri, A. R.; Parker, T.; Turner, S. M. R.; Pillinger, J. M.


    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  11. Structural design of liquid oxygen/liquid methane robotic lander JANUS (United States)

    Chaidez, Mariana

    As the attempt to send humans to Mars has gained momentum in the last decade, the need to find alternative propellants that are safer, less toxic, and yields a better performance has become apparent [1]. Liquid methane and oxygen have emerged as a suitable alternative. In addition, the incorporation of liquid methane/liquid oxygen into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the propulsion system. In an attempt to further understand the technologies that are possible to develop using liquid oxygen (LO 2) and liquid methane (LCH4), a preliminary design of a robotic lander JANUS is being completed by the Center for Space Exploration and Technology Research (cSTER). The structural design of the vehicle is important because it acts as the skeleton of the vehicle and dictates the maneuverability of the robotic lander. To develop the structure of the robotic lander, six different design vehicle concepts with varying tank configurations were considered. Finite Element Analysis (FEA) was completed on each model to optimize each vehicle. Trade studies were completed to choose the best design for JANUS. Upon completion of the trade studies the design for the first prototype of JANUS was initiated in which the tank and thrust modules were designed. This thesis will describe the design process for the structural design of the JANUS.

  12. Visualizing the Operations of the Phoenix Mars Lander (United States)

    Schwehr, K.; Andres, P.; Craig, J.; Deen, R.; de Jong, E.; Fortino, N.; Gorgian, Z.; Kuramura, K.; Lemmon, M.; Levoe, S.; Leung, C.; Lutz, N.; Ollerenshaw, R.; Smith, P.; Stetson, M.; Suzuki, S.; Phoenix Science Team


    With the successful landing of the Phoenix Mars Lander comes the task of visualizing the spacecraft, its operations and surrounding environment. The JPL Solar System Visualization team has brought together a wide range of talents and software to provide a suit of visualizations that shed light on the operations of this visitor to another world. The core set of tools range from web-based production tracking (Image Products Release Website), to custom 3D transformation software, through to studio quality 2D and 3D video production. We will demonstrate several of the key technologies that bring together these visualizations. Putting the scientific results of Phoenix in context requires managing the classic powers-of-10 problem. Everything from the location of polar dust storms down to the Atomic Force Microscope must be brought together in a context that communicates to both the scientific and public audiences. We used Lightwave to blend 2D and 3D visualizations into a continuous series of zooms using both simulations and actual data. Beyond the high-powered industrial strength solutions, we have strived to bring as much power down to the average computer user's standard view of the computer: the web browser. Zooming and Interactive Mosaics (ZIM) tool is a JavaScript web tool for displaying high-resolution panoramas in a spacecraft-centric view. This tool allows the user to pan and zoom through the mosaic, indentifying feature and target names, all the while maintaining a contextual frame-of-reference. Google Earth presents the possibility of taking hyperlinked web browser interaction into the 3D geo-browser modality. Until Google releases a Mars mode to Google Earth, we are forced to wrap the Earth in a Mars texture. However, this can still provide a suitable background for exploring interactive visualizations. These models range over both regional and local scales, with the lander positioned on Mars and the local environment mapped into pseudo-"Street View" modes

  13. The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars (United States)

    Harri, Ari-Matti; Pichkadze, Konstantin; Zeleny, Lev; Vazquez, Luis; Schmidt, Walter; Alexashkin, Sergey; Korablev, Oleg; Guerrero, Hector; Heilimo, Jyri; Uspensky, Mikhail; Finchenko, Valery; Linkin, Vyacheslav; Arruego, Ignacio; Genzer, Maria; Lipatov, Alexander; Polkko, Jouni; Paton, Mark; Savijärvi, Hannu; Haukka, Harri; Siili, Tero; Khovanskov, Vladimir; Ostesko, Boris; Poroshin, Andrey; Diaz-Michelena, Marina; Siikonen, Timo; Palin, Matti; Vorontsov, Viktor; Polyakov, Alexander; Valero, Francisco; Kemppinen, Osku; Leinonen, Jussi; Romero, Pilar


    Investigations of global and related local phenomena on Mars such as atmospheric circulation patterns, boundary layer phenomena, water, dust and climatological cycles and investigations of the planetary interior would benefit from simultaneous, distributed in situ measurements. Practically, such an observation network would require low-mass landers, with a high packing density, so a large number of landers could be delivered to Mars with the minimum number of launchers.The Mars Network Lander (MetNet Lander; MNL), a small semi-hard lander/penetrator design with a payload mass fraction of approximately 17 %, has been developed, tested and prototyped. The MNL features an innovative Entry, Descent and Landing System (EDLS) that is based on inflatable structures. The EDLS is capable of decelerating the lander from interplanetary transfer trajectories down to a surface impact speed of 50-70 m s-1 with a deceleration of design is ≈ 24 kg, with ≈ 4 kg of mass available for the payload.The EDLS is designed to orient the penetrator for a vertical impact. As the payload bay will be embedded in the surface materials, the bay's temperature excursions will be much less than if it were fully exposed on the Martian surface, allowing a reduction in the amount of thermal insulation and savings on mass.The MNL is well suited for delivering meteorological and atmospheric instruments to the Martian surface. The payload concept also enables the use of other environmental instruments. The small size and low mass of a MNL makes it ideally suited for piggy-backing on larger spacecraft. MNLs are designed primarily for use as surface networks but could also be used as pathfinders for high-value landed missions.

  14. The Female Vikings, a women's fan group in Denmark

    DEFF Research Database (Denmark)

    Mintert, Svenja-Maria; Pfister, Gertrud Ursula


    Traditionally, football and fandom have been male domains and celebrations of masculinity. So far there has been some sociological and historical research on women's football; however, little is known about women's fandom, in particular about its formation and development. This article focuses...... on the historical development of a Danish women-only fan group called 'The Female Vikings', which support a professional football club, Lyngby Boldklub (BK), in a city north of Copenhagen. The article explores the backgrounds and motivations of female fans, as well as their ways of staging femininity in a man......'s world. Drawing on available information about football and fans in Denmark, we have reconstructed the developments of both Lyngby BK and its supporters. Special focus was placed on the histories and cultures as well as the experiences of female fans in this club. Insights into the foundation...

  15. Vike-Freiberga on sunnitud kleite müüma / Harry Tuul

    Index Scriptorium Estoniae

    Tuul, Harry


    Läti endine president Vaira Vike-Freiberga kavatseb oma esindusriided eBays maha müüa. Koos abikaasa Imants Freibergsiga asutati konsultatsioonifirma VVF Consulting, mis annab nõu diplomaatia, poliitika ja läbirääkimiste kunstis. Ekspresidendi tulevikuplaanidest. Vaira Vike-Freiberga kohta avaldavad arvamust Eesti suursaadik Riias 2002-2006 Toomas Lukk ja president Toomas Hendrik Ilves. T.H. Ilvese sõnul on Vaira Vike-Freiberga Läti patrioot, kes oli ühtlasi rahvusvahelises rindes kõigi kolme Balti riigi eestkõneleja

  16. Lunar Lander Structural Design Studies at NASA Langley (United States)

    Wu, K. Chauncey; Antol, Jeffrey; Watson, Judith J.; Flick, John J.; Saucillo, Rudolph J.; Mazanek, Daniel D.; North, David D.


    The National Aeronautics and Space Administration is currently developing mission architectures, vehicle concepts and flight hardware to support the planned human return to the Moon. During Phase II of the 2006 Lunar Lander Preparatory Study, a team from the Langley Research Center was tasked with developing and refining two proposed Lander concepts. The Descent-Assisted, Split Habitat Lander concept uses a disposable braking stage to perform the lunar orbit insertion maneuver and most of the descent from lunar orbit to the surface. The second concept, the Cargo Star Horizontal Lander, carries ascent loads along its longitudinal axis, and is then rotated in flight so that its main engines (mounted perpendicular to the vehicle longitudinal axis) are correctly oriented for lunar orbit insertion and a horizontal landing. Both Landers have separate crew transport volumes and habitats for surface operations, and allow placement of large cargo elements very close to the lunar surface. As part of this study, lightweight, efficient structural configurations for these spacecraft were proposed and evaluated. Vehicle structural configurations were first developed, and preliminary structural sizing was then performed using finite element-based methods. Results of selected structural design and trade studies performed during this activity are presented and discussed.

  17. A lander mission to probe subglacial water on Saturn's moon Enceladus for life (United States)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger


    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  18. Design of a hydrophone for an Ocean World lander (United States)

    Smith, Heather D.; Duncan, Andrew G.


    For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.

  19. Accuracy Analysis of Lunar Lander Terminal Guidance Algorithm

    Directory of Open Access Journals (Sweden)

    E. K. Li


    Full Text Available This article studies a proposed analytical algorithm of the terminal guidance for the lunar lander. The analytical solution, which forms the basis of the algorithm, was obtained for a constant acceleration trajectory and thrust vector orientation programs that are essentially linear with time. The main feature of the proposed algorithm is a completely analytical solution to provide the lander terminal guidance to the desired spot in 3D space when landing on the atmosphereless body with no numerical procedures. To reach 6 terminal conditions (components of position and velocity vectors at the final time are used 6 guidance law parameters, namely time-to-go, desired value of braking deceleration, initial values of pitch and yaw angles and rates of their change. In accordance with the principle of flexible trajectories, this algorithm assumes the implementation of a regularly updated control program that ensures reaching terminal conditions from the current state that corresponds to the control program update time. The guidance law parameters, which ensure that terminal conditions are reached, are generated as a function of the current phase coordinates of a lander. The article examines an accuracy and reliability of the proposed analytical algorithm that provides the terminal guidance of the lander in 3D space through mathematical modeling of the lander guidance from the circumlunar pre-landing orbit to the desired spot near the lunar surface. A desired terminal position of the lunar lander is specified by the selenographic latitude, longitude and altitude above the lunar surface. The impact of variations in orbital parameters on the terminal guidance accuracy has been studied. By varying the five initial orbit parameters (obliquity, ascending node longitude, argument of periapsis, periapsis height, apoapsis height when the terminal spot is fixed the statistic characteristics of the terminal guidance algorithm error according to the terminal

  20. Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp. (United States)

    Skoglund, G; Nockert, M; Holst, B


    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  1. Aerodynamic behavior of the Viking entry vehicle - Ground test and flight results (United States)

    Kirk, D. B.; Intrieri, P. F.; Seiff, A.


    An extensive series of tests of the Viking entry vehicle flying in pure CO2 was conducted in a ballistic range at Ames Research Center. The primary purpose of these tests was to calibrate the aerodynamic lift and drag characteristics in order to allow the density, pressure, and temperature profiles of the Martian atmosphere to be determined from onboard instrumentation carried on Viking. Both the Viking 1 and Viking 2 entry vehicles performed flawlessly during entry and descent, and the atmosphere structure was deduced to an altitude of about 120 km. A description is given of the ballistic range tests and of the aerodynamic behavior of the full scale entry vehicles during entry into the Martian atmosphere. Some comparisons between ground test and flight results are shown.

  2. Vike-Freiberga calls on Russia to re-evaluate its history / Aaron Eglitis

    Index Scriptorium Estoniae

    Eglitis, Aaron


    Rahvusvahelisel holokausti uurimise konverentsil avaldas Läti president Vaira Vike-Freiberga kahetsust, et kuna Venemaa ei soovi tunnistada Läti okupeerimist Nõukogude Liidu poolt 1940. aasta juunis, tekitab see probleeme Läti-Vene suhetes

  3. Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake (United States)

    Gomberg, J.


    Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as

  4. Telltale wind indicator for the Mars Phoenix lander (United States)

    Gunnlaugsson, H. P.; Holstein-Rathlou, C.; Merrison, J. P.; Knak Jensen, S.; Lange, C. F.; Larsen, S. E.; Madsen, M. B.; Nørnberg, P.; Bechtold, H.; Hald, E.; Iversen, J. J.; Lange, P.; Lykkegaard, F.; Rander, F.; Lemmon, M.; Renno, N.; Taylor, P.; Smith, P.


    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale deflection allows the wind speed and direction to be quantified and image blur caused by its oscillations provides information about wind turbulence. The Telltale will primarily support surface operations by documenting the wind conditions to improve the efficiency of sample delivery to instruments on the lander deck. During the latter stages of the mission the Telltale investigation will focus on meteorological studies.

  5. Life Sciences Investigations for ESA's First Lunar Lander (United States)

    Carpenter, J. D.; Angerer, O.; Durante, M.; Linnarson, D.; Pike, W. T.


    Preparing for future human exploration of the Moon and beyond is an interdisciplinary exercise, requiring new technologies and the pooling of knowledge and expertise from many scientific areas. The European Space Agency is working to develop a Lunar Lander, as a precursor to future human exploration activities. The mission will demonstrate new technologies and perform important preparatory investigations. In the biological sciences the two major areas requiring investigation in advance of human exploration are radiation and its effects on human physiology and the potential toxicity of lunar dust. This paper summarises the issues associated with these areas and the investigations planned for the Lunar Lander to address them.

  6. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission (United States)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.


    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are

  7. Telecommunications Relay Support of the Mars Phoenix Lander Mission (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide


    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  8. Active Collision Avoidance for Planetary Landers Project (United States)

    National Aeronautics and Space Administration — Advancements in radar technology have resulted in commercial, automotive collision avoidance radars. These radar systems typically use 37GHz or 77GHz interferometry...

  9. Unconventional Oil Reserves Development in the Viking Play (Western Canada Using Horizontal Wells and Hydraulic Fracturing

    Directory of Open Access Journals (Sweden)

    T.B. Baishev


    Full Text Available Oil production from the Viking play in Saskatchewan province started in the 1950s and continues since that time. Horizontal drilling and multistage fracturing have caused resurgence in development of this play. Based on the production data from several fields, the comparative results of the Viking play development using vertical and horizontal wells are presented. Horizontal wells drilling made it possible to increase oil production in those formation zones that were previously considered predominantly gas-saturated, as well as in the zones affected by water injection using vertical wells in order to maintain reservoir pressure. Infill drilling combined with longer lateral completion length also positively affected the development of oil reserves from the Viking play.

  10. Mobile Asteroid Surface Scout (MASCOT) - An asteroid lander package for the Hayabusa-2 mission (United States)

    Lange, Caroline; Richter, Lutz; Dietze, Claudia; Ho, Tra-Mi; Lange, Michael; Sproewitz, Tom; Wagenbach, Susanne; Kroemer, Olaf; Witte, Lars; Braukhane, Andy


    The Hayabusa-2 mission is currently being studied by JAXA/JSPEC as a sample return mission to the C-type near-Earth asteroid 1999JU3. Hayabusa-2, with launch planned for 2014, would be the immediate successor to the currently flying Hayabusa mission. Originally in the context of the proposed ESA Cosmic Vision M-class mission Marco Polo, but then following an invitation by JAXA/JSPEC, the Institute of Space Systems of the German Aerospace Center (DLR) led a proposal for a separate lander package 'Mascot' (Mobile Asteroid Surface Scout) to be carried on the mission. A feasibility study was subsequently carried out that, upon consultation with the planetary science community, assessed different concepts for the lander that converged to a package with 3 kg of P/L, for a total mass of 10-15 kg. Presently, 'Mascot' enters the preliminary design phase while an Announcement of Opportunity for its payload complement is being prepared. The presentation will outline the current baseline design, with special consideration of how the highly demanding constraints that are being imposed on the system due to the general mission scenario, the asteroid environment and the tight budgetary limitations are being fulfilled in such a rather modest design, still offering an excellent science potential.

  11. The Vikings are coming! A modern Icelandic self-image in the light of the economic crisis

    Directory of Open Access Journals (Sweden)

    Ann-Sofie Nielsen Gremaud


    Full Text Available This article analyzes the connection between the economic crisis in Iceland in 2008 and the role of Viking imagery in the collective self-image of Iceland. This connection is informed by Iceland’s status as a Danish dependency for centuries – a condition that deeply affected the development of Icelandic self-perception and its cultural life. In recent years, the Viking has appeared as an image of central cultural significance in Iceland’s international relations with both Denmark and Great Britain in recent years. This article explores the connection between the sensational rise and fall of the so-called útrásarvíkingar (ex-pansion Vikings, or Icelandic businessmen, and the effect of Iceland being a former dependency of Denmark on the general function of the Viking image in Iceland’s collective identity. Thus, a postcolonial approach sheds light on how imagological representations of Vikings have affected modern Icelandic identity conceptualizations.

  12. La subsidence dans le Viking Graben (mer du Nord septentrionale Subsidence in the Viking Graben (Northern Part of the North Sea

    Directory of Open Access Journals (Sweden)

    Vially R.


    Full Text Available L'utilisation des modèles numériques de calcul de la subsidence nécessite une bonne connaissance géologique de la zone étudiée. Seule une étude détaillée de stratigraphie sismique le long de profils régionaux passant par des forages permet de contraindre les différents paramètres servant au calcul de la subsidence. L'étude de la subsidence du Viking Graben a mis en évidence trois épisodes : - phase de distension permo-triasique (saalienne ? dont l'axe de subsidence est décalé vers l'est par rapport à l'axe actuel du Viking Graben; - phase de distension jurassique supérieur (cimmérienne qui crée les structures majeures de cette zone; - phase paléocène correspondant au contrecoup de l'ouverture plus à l'ouest de l'Atlantique Nord. Cette phase est surtout sensible à l'ouest de la zone étudiée. Les cartes de subsidence pour les différentes époques font apparaître l'influence du bati calédonien. Deux directions principales apparaissent, une NE-SW correspondant aux directions structurales visibles à terre en Ecosse et une NW-SE discrète qui sépare le Southern Viking Graben du Northern Viking Graben. Cette dernière direction pourrait se calquer sur la suture (au Silurien d'un diverticule de l'océan lapétus, la Tornquist Sea. The use of numerical models for computing subsidence requires a good geological understanding of the zone being examined. Detailed seismic stratigraphy along regional profiles going via boreholes is the only way to determine the different parameters required for computing subsidence. An investigation of the subsidence of the Viking Graben in the North Sea has revealed three episodes:(a The Permo-Triassic (Saalian ? distension phase during which the axis of subsidence lay to the east of the present axis of the Viking Graben. (b The later Jurassic (Kimmerian distension phase which created the major structures in this zone. (c The Paleocene phase corresponding to the backlash of the westward

  13. Lunar lander stage requirements based on the Civil Needs Data Base (United States)

    Mulqueen, John A.


    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  14. GLXP BMT: Lunar Lander Mission Definition & Opportunistic Science during Nominal Operations (United States)

    Colmenarejo, P.; Mammarella, M.; Zaballa, M.; Claramunt, X.; García, C.; Martínez, A.


    The GLXP BMT "MoonRaise" mission is the Barcelona Moon Team Lunar Lander and Lunar exploration mission within the GLXP initiative. GMV is the mission technical leader and is in charge of the primary mission analysis that will later derive into the different mission subsystems and elements requirements and specifications for design and manufacturing. The classical scientific missions pivot around the scientific requirement and most of the mission elements design have the final purpose of fulfilling with the scientific requirements. This has the advantage of producing a dedicated mission to cope with all the scientific objectives (design-toperformance). The main drawback being the usually high mission complexity and cost. The GLXP BMT "MoonRaise" mission is a low cost mission and, thus, design-to-cost approach is used instead. Even if the "MoonRaise" mission will have some dedicated scientific objectives and dedicated resources, the maximization of the scientific content of the mission is a challenge in itself, and emphasis has to be placed in the imagination and achievement of opportunistic science while in nominal (nonscientific) operational phases. This paper presents the GLXP BMT "MoonRaise" mission architecture and mission approach and will identify potential opportunistic science targets with minimum impact on the Lunar Lander module and Rover module systems and at quasi-zero cost. The first section/s will be devoted to analyse the mission aspects, while the later section/s will be devoted to identification of interesting opportunistic science.

  15. Asteroid Redirection Mission Evaluation Using Multiple Landers (United States)

    Bazzocchi, Michael C. F.; Emami, M. Reza


    In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.

  16. Les Vikings . . . . Les Scandinaves et l'Europe 800-1200

    DEFF Research Database (Denmark)

    Dansk 1. udgave: Viking og Hvidekrist. Norden og Europa 800-1200, 1992; sm. anden udgave 1993. Svensk udgave: Från Vikingar till Korsfarare, 1992. Tysk udgave: Wikinger Waräger Normannen. Die Skandinavier und Europa 800-1200, 1992. Engelske og amerikanske udgaver i samarbejde med D.M. Wilson: Fro...

  17. 75 FR 70106 - Airworthiness Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc... (United States)


    ... (TR) listed in Chapter 5 of the Viking Dash 7 Series 1/100 Aircraft Maintenance Manual (AMM), PSM 1-7... done by inserting copies of the TRs identified in paragraph (g) of this AD in the AMM. When these TRs have been included in general revisions of the AMM, the general revisions may be inserted in the AMM...

  18. Household air pollution from wood burning in two reconstructed houses from the Danish Viking Age. (United States)

    Christensen, J M; Ryhl-Svendsen, M


    During 13 winter weeks, an experimental archeology project was undertaken in two Danish reconstructed Viking Age houses with indoor open fireplaces. Volunteers inhabited the houses under living conditions similar to those of the Viking Age, including cooking and heating by wood fire. Carbon monoxide (CO) and particulate matter (PM2.5 ) were measured at varying distances to the fireplace. Near the fireplaces CO (mean) was 16 ppm. PM2.5 (mean) was 3.40 mg/m(3) , however, measured in one house only. The CO:PM mass ratio was found to increase from 6.4 to 22 when increasing the distance to the fire. Two persons carried CO sensors. Average personal exposure was 6.9 ppm, and from this, a personal PM2.5 exposure of 0.41 mg/m(3) was estimated. The levels found here were higher than reported from modern studies conducted in dwellings using biomass for cooking and heating. While this may be due to the Viking house design, the volunteer's lack of training in attending a fire maybe also played a role. Even so, when comparing to today's issues arising from the use of open fires, it must be assumed that also during the Viking Age, the exposure to woodsmoke was a contributing factor to health problems. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2 (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.


    and those made by the in-situ measurements. The MasCam is mounted inside the lander slightly tilted, such that the center of its 54.8° square field-of-view is directed towards the surface at an angle of 22° with respect to the surface plane. This is to ensure that both the surface close to the lander and the horizon are observable. The camera optics is designed according to the Scheimpflug principle, thus that the entire scene along the camera's depth of field (150 mm to infinity) is in focus. The camera utilizes a 1024×1024 pixel CMOS sensor sensitive in the 400-1000 nm wavelength range, peaking at 600-700 nm. Together with the f-16 optics, this yields a nominal ground resolution of 150 micron/px at 150 mm distance (diffraction limited). The camera flight model has undergone standard radiometric and geometric calibration both at the component and system (lander) level. MasCam relies on the use of wavelet compression to maximize data return within stringent mission downlink limits. All calibration and flight data products will be generated and archived in the Planetary Data System in PDS image format.

  20. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration (United States)

    Laurini, Kathleen C.; Connolly, John F.


    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  1. Small Lunar Lander - A Near Term Precursor Mission (United States)

    Soppa, Uwe; Kyr, Peter; Bolz, Joerg; Bischof, Bernd

    In preparation of the Ministerial Conference in November 2008, the European Space Agency is currently developing a roadmap leading to the capability to sustain long term planetary exploration missions and manned missions to Moon and Mars. Embedded in the cornerstone missions of today's European planetary exploration program, which are marked by the two robotic Exo-Mars and Mars Sample Return missions, ESA has defined a Small Lunar Landing Mission serving as a precursor mission allowing to validate key enabling technologies for planetary exploration, while providing a scientific platform to Lunar exploration at the same time. In reply for the call for missions fitting into the mission time frame ranging from 2014 through 2016, EADS Astrium has proposed a Lunar Lander which can be launched by a Soyuz Fregat, combined with a programmatic planning with the goal being ready to fly within the given time. In the meantime, a European lunar exploration program has gained momentum such that the goals of the proposed mission have been expanded towards the preparation of technologies required for the logistics of lunar exploration including transportation to the Moon and back, building and supporting large scale outposts up to permanently manned bases. These key functions are the capability of autonomous, soft and precision landing, the Rendez-Vous in lunar orbit, plus the provision of surface mobility for science and logistic operations. The paper will first present the concept of the proposed Lunar Landing mission, describe the technical design and programmatic planning, and put it into context of the Mars Sample Return mission. The spacecraft shall be launched into the GTO by a Soyuz Fregat from the Kourou Space Center, and travel to the Moon from there on direct, 5 days transfer trajectory. The spacecraft is a single stage lander with the capability to autonomously perform all operations from launcher separation down to the lunar surface. A lunar rover shall provide

  2. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.


    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale...... deflection allows the wind speed and direction to be quantified and image blur caused by its oscillations provides information about wind turbulence. The Telltale will primarily support surface operations by documenting the wind conditions to improve the efficiency of sample delivery to instruments...

  3. Growth of a tectonic ridge during the Landers earthquake (United States)

    Fleming, R.W.; Johnson, A.M.


    The formation of tectonic ridges by localized vertical uplift along strike-slip faults has long been suspected, but the actual growth of a tectonic ridge during an earthquake has never been documented. During the 1992 Landers, California, earthquake sequence, an awl-shaped, dome-like topographic ridge along the Emerson fault zone increased its height at least 1 m concurrently with 3 m of right-lateral shift across the fault zone containing the ridge. Five deformation vectors within the ridge reveal dilatant behavior in addition to the uplift and shift on boundary faults.

  4. Planetary Data Systems (PDS) Imaging Node Atlas II (United States)

    Stanboli, Alice; McAuley, James M.


    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  5. Impact and Crashworthiness Characteristics of Venera Type Landers for Future Venus Missions (United States)

    Schroeder, Kevin; Bayandor, Javid; Samareh, Jamshid


    In this paper an in-depth investigation of the structural design of the Venera 9-14 landers is explored. A complete reverse engineering of the Venera lander was required. The lander was broken down into its fundamental components and analyzed. This provided in-sights into the hidden features of the design. A trade study was performed to find the sensitivity of the lander's overall mass to the variation of several key parameters. For the lander's legs, the location, length, configuration, and number are all parameterized. The size of the impact ring, the radius of the drag plate, and other design features are also parameterized, and all of these features were correlated to the change of mass of the lander. A multi-fidelity design tool used for further investigation of the parameterized lander was developed. As a design was passed down from one level to the next, the fidelity, complexity, accuracy, and run time of the model increased. The low-fidelity model was a highly nonlinear analytical model developed to rapidly predict the mass of each design. The medium and high fidelity models utilized an explicit finite element framework to investigate the performance of various landers upon impact with the surface under a range of landing conditions. This methodology allowed for a large variety of designs to be investigated by the analytical model, which identified designs with the optimum structural mass to payload ratio. As promising designs emerged, investigations in the following higher fidelity models were focused on establishing their reliability and crashworthiness. The developed design tool efficiently modelled and tested the best concepts for any scenario based on critical Venusian mission requirements and constraints. Through this program, the strengths and weaknesses inherent in the Venera-Type landers were thoroughly investigated. Key features identified for the design of robust landers will be used as foundations for the development of the next generation of

  6. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations (United States)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.


    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  7. Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander (United States)

    Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph


    We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.

  8. Reconstruction of the flight and attitude of Rosetta's lander Philae (United States)

    Heinisch, Philip; Auster, Hans-Ulrich; Plettemeier, Dirk; Kofman, Wlodek; Herique, Alain; Statz, Christoph; Hahnel, Ronny; Rogez, Yves; Richter, Ingo; Hilchenbach, Martin; Jurado, Eric; Garmier, Romain; Martin, Thierry; Finke, Felix; Güttler, Carsten; Sierks, Holger; Glassmeier, Karl-Heinz


    Since Rosetta's lander Philae touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014, many tools have been applied to reconstruct Philae's flight path and attitude between separation, the touchdowns, collision and the final landing at Abydos. In addition to images from the cameras onboard both orbiter and lander (;OSIRIS;, ;CIVA; and ;ROLIS;), radio tracking results, solar array and radio data link housekeeping data, one of the major sources for timing and attitude information were two point magnetic field measurements by the magnetometers ;ROMAP; and ;RPC-MAG; aboard Philae and Rosetta. In this study all the different results are combined to determine in further detail what happened to Philae during its travel above the surface of 67P/Churyumov-Gerasimenko. In addition to a description of the descent dynamics and the attitude during rebound, the approximate coordinates for the collision at 16:20 UTC with the rim of the Hatmehit crater and the second touchdown are estimated. It is also shown, that Philae did not change attitude between the end of the first-science sequence and September 2, 2016.


    National Aeronautics and Space Administration — The imaging system on the Viking Landers consisted of two identical cameras. These cameras operated throughout the mission and returned nearly 6600 images. This...

  10. Was the C282Y mutation an Irish Gaelic mutation that the Vikings helped disseminate?

    DEFF Research Database (Denmark)

    Olsson, Karl Sigvard; Konar, Jan; Dufva, Inge Hoegh


    The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses.......The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses....

  11. The ESA Lunar Lander and the search for Lunar Volatiles (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.


    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  12. Victorian Imag(ining of the Pagan Pyre: Frank Dicksee's 'Funeral of a Viking'

    Directory of Open Access Journals (Sweden)

    Nancy Rose Marshall


    Full Text Available Victorians drew on imagery of Druid and Viking funeral pyres as a way of exploring alternative narratives of death and burial, generating a collective attention to what happened to a body after death. I set Frank Dicksee’s oil painting, 'Funeral of a Viking' (1893, against the background of the emergent cremation movement and accounts of the neo-Druid William Price, a proponent for the legalization of cremation in the 1880s, in order to glimpse the work performed by the visualization of the ritualized burning of human beings in the pagan past. Fire produces metamorphosis in the objects it encounters, and Dicksee’s portrayal underscores the notion of a clearly delineated human body transforming into amorphous flame. Moreover, the Viking dissolves into pigment itself, mere aesthetic effect taking the place of a recognizable figure. In fictional accounts such as Paul Du Chaillu’s novel 'Ivar the Viking '(1893, the pyre as a narrative tool similarly forced attention to the body as dematerializing thing and to the language articulating this dissipation. I suggest that the Victorian fascination with pagan fire-death allowed for alternate visions of form–matter relationships that in turn might produce new aesthetic possibilities. As the Christian world insisted on the resurrection of the body in a way that clung fiercely to tangibility and bounded form even in the face of belief in the immortality of the saved soul, the modern moment might be seen, in contrast, as characterized by an embrace of an aesthetic of dissolving form or formlessness.

  13. Martian Dynamical Phenomena During June-November 1976: Viking Orbiter Imaging Results (United States)

    Briggs, G.; Klaasen, K.; Thorpe, T.; Wellman, J.; Baum, W.


    A summary is presented of the orbital imaging observations of dynamical phenomena on Mars during the Viking primary mission. Clouds in the Tharsis/Amazonis regions are examined and the observation of an area of unusually high brightness to the southwest of Arsia Mons is considered. Attention is given to clouds and surface frost in the south polar region, the north polar cap, and aspects of dust storm activity.

  14. [Efficacy of dolutegravir in treatment-experienced patients: the SAILING and VIKING trials]. (United States)

    Moreno, Santiago; Berenguer, Juan


    Dolutegravir is an HIV integrase inhibitor with a high genetic barrier to resistance and is active against raltegravir- and/or elvitegravir-resistant strains. The clinical development of dolutegravir for HIV infection rescue therapy is based on 3 clinical trials. In the SAILING trial, dolutegravir (5 mg once daily) in combination with 2 other antiretroviral agents was well tolerated and showed greater virological effect than raltegravir (400 mg twice daily) in the treatment of integrase inhibitor-naïve adults with virological failure infected with HIV strains with at least two-class drug resistance. The VIKING studies were designed to evaluate the efficacy of dolutegravir as rescue therapy in treatment-experienced patients infected with HIV strains with resistance mutations to raltegravir and/or elvitegravir. VIKING-1-2 was a dose-ranging phase IIb trial. VIKING-3 was a phase III trial in which dolutegravir (50 mg twice daily) formed part of an optimized regimen and proved safe and effective in this difficult-to-treat group of patients. Dolutegravir is the integrase inhibitor of choice for rescue therapy in multiresistant HIV infection, both in integrase inhibitor-naïve patients and in those previously treated with raltegravir or elvitegravir. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  15. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. (United States)

    Star, Bastiaan; Boessenkool, Sanne; Gondek, Agata T; Nikulina, Elena A; Hufthammer, Anne Karin; Pampoulie, Christophe; Knutsen, Halvor; André, Carl; Nistelberger, Heidi M; Dierking, Jan; Petereit, Christoph; Heinrich, Dirk; Jakobsen, Kjetill S; Stenseth, Nils Chr; Jentoft, Sissel; Barrett, James H


    Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod ( Gadus morhua ) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.

  16. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany (United States)

    Star, Bastiaan; Boessenkool, Sanne; Gondek, Agata T.; Nikulina, Elena A.; Hufthammer, Anne Karin; Pampoulie, Christophe; Knutsen, Halvor; André, Carl; Nistelberger, Heidi M.; Dierking, Jan; Petereit, Christoph; Heinrich, Dirk; Jakobsen, Kjetill S.; Stenseth, Nils Chr.; Jentoft, Sissel


    Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15–46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800–1066 CE) and subsequent medieval (1066–1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age. PMID:28784790

  17. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander (United States)

    Mercer, Carolyn R.


    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  18. Wave-influenced deltaic sandstone bodies and offshore deposits in the Viking Formation, Hamilton Lake area, south-central Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dafoe, L.T.; Gingras, M.K.; Pemberton, S.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences


    This analytical study incorporated sedimentological, ichnological and stratigraphic data to provide a framework for both deltaic and offshore deposition in the Hamilton Lake (HL) area in south-central Alberta. Fourty-one drill cores were logged within the area to conduct a comprehensive facies analysis of the Cretaceous Viking deposits at HL to refine the depositional history. The Viking deposits include a delta front, prodelta, upper offshore, lower offshore, shelf, slump and transgressive lag deposits. Various bioturbate textures proved useful in interpreting the paleoenvironment. Particular facies within HL strata contain physical and biogenic indicators of riverine discharge, and are considered to be deltaic in origin. This study focused on distinguishing between these deltaic deposits and strata reflecting normal-marine depositional conditions and relating facies within the stratigraphic framework. Four major bounding discontinuities and 2 major transgressive flooding surfaces separate units reflecting predominantly deltaic deposition, strictly offshore deposition, and mixed offshore and deltaic deposition. The implications of this study for petroleum exploration and development include better recognition of wave-influenced deltaic deposits in ancient successions. This paper presented a model that provided a better understanding of the nature of potential reservoirs in terms of lithology and morphology. In contrast to wave-dominated deltas or shoreface strata, sandy deposits in these wave-influenced systems are expected to contain higher proportions of mud, particularly mudstone laminae that reduce overall permeability between sandstone beds. 55 refs., 2 tabs., 15 figs.

  19. Light-Toned, Layered Outcrops of Northern Terra Meridiani Mars: Viking, Phobos 2, and Mars Global Surveyor Observations (United States)

    Edgett, Kenneth S.


    System (PDS). The main body of data examined were Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images acquired through 30 September 2002. The data also 2 include Viking orbiter images, a Phobos 2 Termoscan image, MGS Mars Orbiter Laser Altimeter (MOLA) topographic observations, and the products of published Viking Infrared Thermal Mapper (IRTM) and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) analyses. Through September 2002, over 126,000 MOC images had been acquired, and greater than 600 of the MOC narrow angle (1.5-12 m/pixel) images occur within the portions of Terra Meridiani and southwestern Arabia Terra.

  20. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals

    National Research Council Canada - National Science Library

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor


    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather...

  1. A First Look at Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric C02 by the Phoenix Lander (United States)

    Niles, P.B.; Ming, D.W.; Boynton, W.V.; Hamara, D.; Hoffman, J.H.


    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated 13C values measured in carbonates in martian meteorites it has been supposed that the martian atmosphere was enriched in delta(sup 13)C. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in delta(sup 13)C relative to CO2 in the terrestrial atmosphere. The spectroscopic measurements performed by Krasnopolsky et al. were reported with approx.2% uncertainties which are much smaller than the Viking measurements, but still remain very large in comparison to the magnitude of carbon and oxygen isotope fractionations under martian surface conditions. The Thermal Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander included a magnetic sector mass spectrometer (EGA) which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature magnetic sector instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils. Ions produced in the ion source are drawn out by a high voltage and focused by a magnetic field onto a set of collector slits. Four specific trajectories are selected to cover the mass ranges, 0.7 - 4, 7 - 35, 14 - 70, and 28 - 140 Da. Using four channels reduces the magnitude of the mass scan and provides simultaneous coverage of the mass ranges. Channel electron multiplier (CEM

  2. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman


    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  3. Lander Concept: Surface Analysis of Venus' Atmosphere and Geophysical Events (SAVAGE) (United States)

    Antoine, A. F.; Bianco, S. J.; Jakuszeit, C. A.; Sievers, B. T.; Tiffin, D. J.; Kremic, T.; Balcerski, J. A.; Hunter, G. W.


    This lander/orbiter concept builds on LLISSE and was designed to demonstrate the capabilities of high temperature sensors and electronics while obtaining the first long term in situ data on the climate and geophysical activity of Venus.

  4. Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot. (United States)

    Tortora, Giuseppe; Glass, Paul; Wood, Nathan; Aksak, Burak; Menciassi, Arianna; Sitti, Metin; Riviere, Cameron


    HeartLander is a medical robot proposed for minimally invasive epicardial intervention on the beating heart. To date, all prototypes have used suction to gain traction on the epicardium. Gecko-foot-inspired micro-fibers have been proposed for repeatable adhesion to surfaces. In this paper, a method for improving the traction of HeartLander on biological tissue is presented. The method involves integration of gecko-inspired fibrillar adhesives on the inner surfaces of the suction chambers of HeartLander. Experiments have been carried out on muscle tissue ex vivo assessing the traction performance of the modified HeartLander with bio-inspired adhesive. The adhesive fibers are found to improve traction on muscle tissue by 57.3 %.

  5. A retrospective comparative forecast test on the 1992 Landers sequence (United States)

    Woessner, J.; Hainzl, S.; Marzocchi, W.; Werner, M. J.; Lombardi, A. M.; Catalli, F.; Enescu, B.; Cocco, M.; Gerstenberger, M. C.; Wiemer, S.


    We perform a retrospective forecast experiment on the 1992 Landers sequence comparing the predictive power of commonly used model frameworks for short-term earthquake forecasting. We compare a modified short-term earthquake probability (STEP) model, six realizations of the epidemic-type aftershock sequence (ETAS) model, and four models that combine Coulomb stress changes calculations and rate-and-state theory to generate seismicity rates (CRS models). We perform the experiment under the premise of a controlled environment with predefined conditions for the testing region and data for all modelers. We evaluate the forecasts with likelihood tests to analyze spatial consistency and the total amount of forecasted events versus observed data. We find that (1) 9 of the 11 models perform superior compared to a simple reference model, (2) ETAS models forecast the spatial evolution of seismicity best and perform best in the entire test suite, (3) the modified STEP model matches best the total number of events, (4) CRS models can only compete with empirical statistical models by introducing stochasticity in these models considering uncertainties in the finite-fault source model, and (5) resolving Coulomb stress changes on 3-D optimally oriented planes is more adequate for forecasting purposes than using the specified receiver fault concept. We conclude that statistical models perform generally better than the tested physics-based models and parameter value updates using the occurrence of aftershocks generally improve the predictive power in particular for the purely statistical models in space and time.

  6. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    Energy Technology Data Exchange (ETDEWEB)


    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  7. Navigation Strategy for the Mars 2001 Lander Mission (United States)

    Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.


    The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will

  8. A simultaneous estimation of the mass of Mars and its natural satellites, Phobos and Deimos, from the orbital perturbations on the Mariner 9, Viking 1, and Viking 2 orbiters (United States)

    Lemoine, F. G.; Smith, D. E.; Fricke, S. K.; Mccarthy, J. J.


    The natural satellites of Mars, Phobos and Deimos, caused perturbations on the orbits of the Mariner 9, and the Viking spacecraft that were used to estimate the satellite masses. The Viking spacecraft were specifically targeted to make close flybys (within a few hundred kilometers) of Phobos in February 1977 and of Deimos in October 1977. These close encounters were used to estimate the moon's gravitational constant, GM (the universal constant of gravitation multiplied by the satellite mass). However, the Viking and Mariner 9 spacecraft made numerous flybys of Phobos and Deimos at distances of a few thousand kilometers. The tracking data from these more 'distant' encounters were processed to estimate the masses of Mars, Phobos, and Deimos.

  9. Mars atmospheric dust properties: A synthesis of Mariner 9, Viking, and PHOBOS observations (United States)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    We have modified a doubling-and-adding code to reanalyze the Mariner 9 IRIS spectra of Mars atmospheric dust as well as Viking IRTM EPF sequences in the 7, 9, and 20 micron channels. The code is capable of accurate emission/ absorption/scattering radiative transfer calculations over the 5-30 micron wavelength region for variable dust composition and particle size inputs, and incorporates both the Viking IRTM channel weightings and the Mariner 9 IRIS wavelength resolution for direct comparisons to these datasets. We adopt atmospheric temperature profiles according to the algorithm of Martin (1986) in the case of the Viking IRTM comparisons, and obtained Mariner 9 IRIS temperature retrievals from the 15 micron CO2 band for the case of the IRIS comparisons. We consider palagonite as the primary alternative to the montmorillonite composition of Mars atmospheric dust, based on several considerations. Palagonite absorbs in the ultraviolet and visible wavelength region due to its Fe content. Palagonite is also, in principal, consistent with the observed lack of clays on the Mars surface. Furthermore, palagonite does not display strong, structured absorption near 20 microns as does montmorillonite (in conflict with the IRIS observations). We propose that a palagonite composition with particle sizes roughly one-half that of the Toon et al. (1977) determination provide a much improved model to Mars atmospheric dust. Since palagonite is a common weathering product of terrrestrial basalts, it would not be unreasonable for palagonite to be a major surface component for Mars. The lack of even a minor component of Al-rich clays on the surface of Mars could be consistent with a palagonite composition for Mars dust if the conditions for basalt weathering on Mars were sufficiently anhydrous. Variations in palagonite composition could also lead to the inability of the modeled palagonite to fit the details of the 9 micron absorbtion indicated by the IRIS observations.

  10. Fabrication of a graphite/epoxy antenna for the Viking Orbiter spacecraft (United States)

    Stonier, R. A.; Hillesland, H. L.


    A graphite/epoxy composite high-gain antenna has been developed for the Viking Orbiter 1975 spacecraft. A thin-skin honeycomb sandwich construction was used for the reflector structure. The antenna has been designed, and several have been fabricated and successfully tested and qualified under simulated launch and space environments. The graphite/epoxy material was used primarily because of the weight saving over a more conventional aluminum honeycomb construction and because of its low expansion characteristics. The low coefficient of thermal expansion of the graphite composite results in a dimensionally stable antenna structure under the extreme thermal environment to be encountered in this Mars mission.

  11. A Possible Biogenic Origin for Hydrogen Peroxide on Mars: The Viking Results Reinterpreted


    Houtkooper, Joop M.; Schulze-Makuch, Dirk


    The adaptability of extremophiles on Earth raises the question of what strategies putative life might have used to adapt to the present conditions on Mars. Here, we hypothesize that organisms might utilize a water-hydrogen peroxide (H2O-H2O2) mixture rather than water as an intracellular liquid. This adaptation would have the particular advantages in the martian environment of providing a low freezing point, a source of oxygen, and hygroscopicity. The findings by the Viking experiments are re...

  12. An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers (United States)

    Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al


    In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.

  13. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation (United States)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.


    The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG) is a subgroup of the Project Science Group that has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this report we cover one element of the SOWG planning activities, the development of a plan that maximizes the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is -very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site

  14. Composition and structure of Mars' upper atmosphere - Results from the neutral mass spectrometers on Viking 1 and 2 (United States)

    Nier, A. O.; Mcelroy, M. B.


    The upper atmospheric mass spectrometers flown on Viking 1 and 2 are described, and results obtained for the composition and structure of Mars' upper atmosphere are summarized. Carbon dioxide is the major constituent of the atmosphere at all heights below 180 km. The thermal structure of the upper atmosphere is complex and variable with average temperatures below 200 K for both Viking 1 and 2. The atmosphere is mixed to heights in excess of 120 km. The isotopic composition of carbon and oxygen in the Martian atmosphere is similar to that in the terrestrial atmosphere: N-15 is enriched in Mars' atmosphere by a factor of 1.62 + or - 0.16.

  15. MASCOT2, a Lander to Characterize the Target of an Asteroid Kinetic Impactor Deflection Test (AIM) Mission (United States)

    Biele, J.; Ulamec, S.; Krause, C.; Cozzoni, B.; Lange, C.; Grundmann, J. T.; Grimm, C.; Ho, T.-M.; Herique, A.; Plettemeier, D.; Grott, M.; Auster, H.-U.; Hercik, D.; Carnelli, I.; Galvez, A.; Philippe, C.; Küppers, M.; Grieger, B.; Gil Fernandez, J.; Grygorczuk, J.


    In the course of the AIDA/AIM mission studies [1,2] a lander, MASCOT2, has been studied to be deployed on the moon of the binary Near-Earth Asteroid system, (65803) Didymos. The AIDA technology demonstration mission, composed of a kinetic impactor, DART, and an observing spacecraft, AIM, has been designed to deliver vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. This will enable derivation of the impact response of the object as a function of its physical properties, a crucial quantitative point besides the qualitative proof that the asteroid has been deflected at all. A landed asset on the target asteroid greatly supports analyzing its dynamical state, mass, geophysical properties, surface and subsurface structure. The lander's main instrument is a bistatic, low frequency radar (LFR) [3a,b] to sound the interior structure of the asteroid. It is supported by a camera (MasCAM) [4], a radiometer (MARA)[5], an accelerometer (DACC [9]), and, optionally regarding the science case, also a magnetometer (MasMAG)[6].

  16. COBALT: Development of a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets (United States)

    Carson, John M., III; Seubert, Carl R.; Amzajerdian, Farzin; Bergh, Chuck; Kourchians, Ara; Restrepo, Carolina I.; Villapando, Carlos Y.; O'Neal, Travis V.; Robertson, Edward A.; Pierrottet, Diego; hide


    The NASA COBALT Project (CoOperative Blending of Autonomous Landing Technologies) is developing and integrating new precision-landing Guidance, Navigation and Control (GN&C) technologies, along with developing a terrestrial fight-test platform for Technology Readiness Level (TRL) maturation. The current technologies include a third- generation Navigation Doppler Lidar (NDL) sensor for ultra-precise velocity and line- of-site (LOS) range measurements, and the Lander Vision System (LVS) that provides passive-optical Terrain Relative Navigation (TRN) estimates of map-relative position. The COBALT platform is self contained and includes the NDL and LVS sensors, blending filter, a custom compute element, power unit, and communication system. The platform incorporates a structural frame that has been designed to integrate with the payload frame onboard the new Masten Xodiac vertical take-o, vertical landing (VTVL) terrestrial rocket vehicle. Ground integration and testing is underway, and terrestrial fight testing onboard Xodiac is planned for 2017 with two flight campaigns: one open-loop and one closed-loop.

  17. ExoGeoLab Pilot Project for Landers, Rovers and Instruments (United States)

    Foing, Bernard


    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group, ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  18. Radio astronomy with the European Lunar Lander: Opening up the last unexplored frequency regime (United States)

    Klein Wolt, Marc; Aminaei, Amin; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino


    The Moon is a unique location in our solar system and provides important information regarding the exposure to free space that is essential for future human space exploration to mars and beyond. The active broadband (100 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the Moon, that are essential for future lunar human and science exploration. In addition, the Lunar South Pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the South (or North) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the Big Bang and into the period where the first stars formed. A detection of the 21 cm line from the Moon at these frequencies would allow for the first time a clue on the distribution and evolution on mass in the early universe between the Epoch of Recombination and Epoch of Reionization (EoR). Next to providing a cosmological breakthrough, a single lunar radio antenna would allow for studies of the effect of solar flares and coronal mass ejections (CMEs) on the solar wind at distances close to Earth (space weather) and would open up the study of low frequency radio events (flares and pulses) from planets such as Jupiter and Saturn, which are known to emit bright (kJy-MJy) radio emission below 30 MHz (Jester and Falcke, 2009). Finally, a single radio antenna on the lunar lander would pave the way for a future large lunar radio interferometer; not only will it demonstrate the possibilities for lunar radio science and open up the

  19. The Vikings

    DEFF Research Database (Denmark)

    Roesdahl, Else

    Translation of 'Vikingernes verden', 1987. Paperback 1992 (Penguin Books). Book club editions in England, Australia and other countries. 2nd revised edition 1998.......Translation of 'Vikingernes verden', 1987. Paperback 1992 (Penguin Books). Book club editions in England, Australia and other countries. 2nd revised edition 1998....

  20. Mars atmospheric phenomena during major dust storms, as measured at surface (United States)

    Ryan, J. A.; Henry, R. M.


    Meteorological instrumentation aboard the Viking Mars Landers measures wind, temperature, and pressure. Two global dust storms occurred during northern autumn and winter, observed both by the orbiters and by the landers. The meteorological data from the landers has been analyzed for the period just before first storm arrival to just after second storm arrival, with the objectives of defining the meteorological phenomena during the storm period, determining those associated with storm and dust arrival, and evaluating the effects on synoptic conditions and the general circulation. Times of dust arrival over the sites could be defined fairly closely from optical and pressure (solar tide) data, and dust arrival was also accompanied by changes in diurnal temperature range, temperature maxima, and temperature minima. The arrivals of the storms at Viking Lander 1 were accompanied by significant increases in wind speed and pressure. No such changes were observed at Viking Lander 2. It is possible that surface material could have been raised locally at Viking Lander 1. Throughout the period except for the time following the second dust storm the synoptic picture at Viking Lander 2 was one of eastward moving cyclonic and anticyclonic systems. These disappeared following the second storm, a phenomenon which may be related to the storm.

  1. Characterization of Regolith Volatile Transport and Storage Properties by The MECA MSP 2001 Lander Payload (United States)

    Clifford, S. M.; Marshall, J.


    The diffusive and adsorptive properties of the Martian regolith influence the exchange of volatiles between the atmosphere and subsurface. Our quantitative knowledge of these properties is extremely poor -introducing substantial uncertainties in efforts to model long-term evolution of ground ice and diurnal, seasonal, and climatic cycles of CO2 and H20. This situation should significantly improve upon arrival of the 2001 Mars Surveyor Lander in 2002. In support of the Human Exploration and Development of Space (HEDS) enterprise, the 2001 mission will include a suite of instruments to characterize the nature of the Martian environment and assess whether it contains hazards that may threaten future human exploration. A major element of this effort is the Mars Environmental Compatibility Assessment (MECA) payload, which consists an optical microscopy system incorporating electrostatic, magnetic, and scratch-hardness materials testing palets, an atomic force microscope with imaging capabilities comparable to an SEM, a wet chemistry laboratory with four independent test cells, an electrometer on the robotic arm, material test patches, a camera also mounted on the arm, and a soil scoop for excavating down to about 50 cm into the soil. Although conceived to address the needs of HEDS, MECA payload is a sophisticated soil science laboratory that should provide a wealth of new data relevant to the volatile transport and storage properties of the regolith. Additional information os contained in the original.

  2. Lunar Dust Environment and Plasma Package for Lunar Lander - Definition Study (United States)

    Laifr, J.; Auster, U.; Bale, S. D.; Delory, G. T.; Devoto, P.; Farrell, W. M.; Glassmeier, K.; Guicking, L.; Halekas, J. S.; Hellinger, P.; Hercik, D.; Horanyi, M.; Kataria, D.; Kozacek, Z.; Mazelle, C. X.; Omura, Y.; Owen, C. J.; Pavelka, R.; Plaschke, F.; Rucker, H. O.; Saito, Y.; Sternovsky, Z.; Stverak, S.; Travnicek, P. M.; Turin, P.; Vana, P.


    Dust, the charged lunar surface, and the ambient plasma form a closely coupled system. The lunar surface is permanently under the influence of charging effects such as UV radiation or energetic solar wind and magnetospheric particles. The surface charging effects result in strong local electric fields which in turn may lead to mobilization and transport of charged dust particles. Furthermore, the environment can become even more complex in the presence of local crustal magnetic anomalies or due to sunlight/shadow transitions. A detail understanding of these phenomena and their dependence on external influences is a key point for future robotic and human lunar exploration and requires an appropriately tuned instrumentation for in-situ measurements. Here we present results from the concept and design phase A - a study of the Lunar Dust Environment and Plasma Package (L-DEPP), which has been proposed as one of model instrument payloads for the planned Lunar Lander mission of the European Space Agency. Focus is held on scientific objectives and return of the mission with respect to environmental and mission technology constraints and requirements. L-DEPP is proposed to consist of the following instruments: ELDA - Electrostatic Lunar Dust Analyser, LPM - Langmuir Probe and Magnetometer, LRU - Broadband radio receiver and electric field antennae and LEIA - Lunar Electron and Ion Analyser. In addition to the dust and plasma measurements the RADIO experiment will provide a site survey testing for future radio astronomy observations. Lunar Dust Environment and Plasma Package CAD Model

  3. Opto-mechanisms design of extreme-ultraviolet camera onboard Chang E lunar lander. (United States)

    Li, Zhaohui; Chen, Bo; Song, Kefei; Wang, Xiaodong; Liu, Shijie; Yang, Liang; Hu, Qinglong; Qiao, Ke; Zhang, Liping; Wu, Guodong; Yu, Ping


    The extreme-ultraviolet camera mounted on the Lander of China Chang-E lunar exploration project launched in 2013 is the first instrument used to imaging from the lunar surface to the whole plasmasphere around the earth. Taking into account both the lunar environment conditions and the weight and volume constraints, a single spherical mirror and a spherical microchannel plate detector make up the compact optical system. An optimized opto-mechanical design was presented using Finite Element Analysis Model, and the detail design for the important assemblies of the 2-axis platform, the primary mirror, the aperture door mechanism and MCP detector were all specially addressed for their environmental adaptability and reliability. Tests of mechanical characteristics have demonstrated that the position and pointing accuracy and its stability meets the operation requirements of 2'. Vibration results have shown that the EUVC has adequate stiffness and strength safety margin to survive in launch and the moon environments. The imaging performance with the resolution of 0.08° is measured after vibration, in agreement with the predicted performance.

  4. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission (United States)

    Cupples, Michael


    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  5. Full-Circle Color Panorama of Phoenix Lander Deck and Landing Site on Northern Mars, Animation (United States)


    [figure removed for brevity, see original site] Click on image to view the animation This view combines more than 500 images taken after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars. This movie makes a slow tour around highlights of the image including the landscape and the spacecraft's science deck. The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama. This view comprises more than 100 different Stereo Surface Imager camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. From Scandinavia to Spain: a Viking-Age reliquary in León and its meaning

    DEFF Research Database (Denmark)

    Roesdahl, Else


    Presentation and discussion of a small box, which is highly decorated in the Scandinavian Mammen style and preserved in the treasury of the Church of San Isodoro in León, in northern Spain. This is the only Viking objects so far identified in Spain. The box, which is from the late 10th century an...

  7. CO2 water-alternating-gas flooding optimization of the Chigwell Viking I pool in the Western Canadian sedimentary basin

    NARCIS (Netherlands)

    Hewson, C.W.; Leeuwenburgh, O.


    An ensemble-based production optimization technique is applied to a simulation model of OMERS Energy's Chigwell Viking Pool in order to determine optimal CO2-WAG cycle length, injection rates and production bottom hole pressures (BHPs). An ensemble-based approximate gradient calculation is used in

  8. Characterisation of the Polyethylene Glycol Impregnation of the Swedish Warship Vasa and one of the Danish Skuldelev Viking Ships

    DEFF Research Database (Denmark)

    Mortensen, M.N.; Egsgaard, Helge; Hvilsted, Søren


    The Swedish l7th century warship Vasa and the Danish Skuldelev Viking ships from the 1 lth century were impregnated with polyethylene glycol (PEG) in the 1960s. The molecular weight, amount and integrity of this PEG were investigated at a range of depths below the wood surface. Large amounts of P...... is hygroscopic....

  9. Where Worlds Collide : A typological and compositional analysis of the copper-alloy mounts from Viking Age Walcheren

    NARCIS (Netherlands)

    Roxburgh, Marcus A.; IJssennagger, Nelleke; Huisman, Hans D.J.; Van Os, Bertil J.H.


    In this article we present a new typological analysis, supported by compositional data gathered using Hand-Held X-Ray Fluorescence Spectrometry (HH-XRF), for a large group of Viking-Age mounts, found in and around the North Sea coastal town of Domburg (Walcheren, The Netherlands). This new data

  10. Radio Telescopes to Keep Sharp Eye on Mars Lander (United States)


    As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion

  11. Making Place for a Viking Fortress. An archaeological and geophysical reassessment of Aggersborg, Denmark

    Directory of Open Access Journals (Sweden)

    Hannah Brown


    Full Text Available This article revisits the archaeology of the Viking-age settlement and ring fortress at Aggersborg, Denmark, based on a large-scale geophysical survey using magnetic gradiometry and ground-penetrating radar, as well as legacy excavation data. Late 10th-century Aggersborg, the largest known fortress in Viking-age Scandinavia, commanded a key position at the narrow strait of the Limfjord, a principal sailing route between the Baltic and the North Sea. Previous excavations established that this location was on the site of an earlier settlement, which was burned-down prior to the construction of the fortress. The character and extent of this prior activity, however, have hitherto remained ill-defined. The geophysical survey identifies previously unknown elements of the fortress structures and elucidates the extent and character of the earlier settlement. The analysis is combined with a comprehensive reconsideration of primary data from early excavations, and demonstrates how this evidence can guide the interpretation of geophysical data to yield a detailed reassessment of spatial structure, and even suggest chronological phasing. The excavation trenches show dense traces of occupation with a large number of sunken-featured buildings (SFBs. Anomalies consistent with similar features are mapped in the geophysical surveys, and their distribution is shown to complement results from the excavations, demonstrating the important contribution of non-invasive survey to our knowledge of scheduled monuments. The surveys suggest that the total number of SFBs may be as high as 350, equal to or exceeding the largest number of such buildings previously identified at any site in Scandinavia. The ring fortress, by implication, must have replaced a site of particular function or importance, albeit of a very different organisation. An interpretation of the communication landscape is combined with a visibility analysis to argue that the long-term significance of the

  12. Relativistic time transfer for a Mars lander: from Areocentric Coordinate Time to Barycentric Coordinate Time (United States)

    Yang, Wen-Zheng; Xu, De-Wang; Yu, Qing-Shan; Liu, Jie; Xie, Yi


    As the second step of relativistic time transfer for a Mars lander, we investigate the transformation between Areocentric Coordinate Time (TCA) and Barycentric Coordinate Time (TCB) in the framework of IAU Resolutions. TCA is a local time scale for Mars, which is analogous to the Geocentric Coordinate Time (TCG) for Earth. This transformation has two parts: contributions associated with gravitational bodies and those depending on the position of the lander. After setting the instability of an onboard clock to 10-13 and considering that the uncertainty in time is about 3.2 microseconds after one Earth year, we find that the contributions of the Sun, Mars, Jupiter and Saturn in the leading term associated with these bodies can reach a level exceeding the threshold and must be taken into account. Other terms can be safely ignored in this transformation for a Mars lander.

  13. Orbital trim by velocity factoring with applications to the Viking mission. (United States)

    Kibler, J. F.; Green, R. N.; Young, G. R.


    An orbital trim technique has been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The technique utilizes a time-open two-impulse transfer from a specified initial orbit to a final orbit which satisfies all geometrical constraints. Each of the two impulses may then be factored, or split, into two or more vectorially equivalent impulses. The periods of the resulting intermediate orbits may be varied along with the number of revolutions in each orbit to satisfy the intermediate and final timing constraints. Factors in the range 0 to 1 result in rendezvous at the same cost as that of the two-impulse transfer. The technique is applied to the Viking mission to Mars although a similar procedure could be utilized for rendezvous operations about any planet.

  14. The Viking Great Army and its Legacy: plotting settlement shift using metal-detected finds

    Directory of Open Access Journals (Sweden)

    Dave Haldenby


    Full Text Available Investigation of the Anglian and Anglo-Scandinavian settlement at Burrow House Farm, Cottam, East Yorkshire from 1993-95 was a pioneering collaboration between archaeologists and metal-detectorists, and led to the identification of a new form of Anglo-Scandinavian farmstead. It was also one of the first investigations ever undertaken of a 'productive site', so-called because of the large quantities of early medieval metalwork recovered by metal-detecting. The project provided an important demonstration of the effects of the reorganisation of land ownership following the Scandinavian settlement of Northumbria. Excavation demonstrated that the abandonment of an Anglian 'Butterwick-type' enclosure in the late 9th century was closely followed by the construction of the new Anglo-Scandinavian farmstead some 100m to the north, reinforced by the pattern seen in the horizontal stratigraphy of dated metalwork derived from metal-detecting (Richards 1999a; 2001a. Subsequently, metal-detecting has continued at the site, almost doubling the quantity of artefacts. This has led to further breakthroughs in the interpretation of the chronological and spatial development of the settlement, as well as some substantial revisions to the typology and dating of early medieval artefacts, with important implications for the chronology of the period. It allows some significant new conclusions to be drawn about settlement development at Cottam, identifying the changing function of the settlements, as well as their location: There are two phases of Anglian activity, with a transition from an 8th/9th-century estate centre to a 9th-century market, echoing the similar transitions being recorded in Scandinavia at sites such as Tissø. This is the first time such a configuration has been identified in England, and it throws important new light on the nature of 'productive sites'. There are also two phases of Viking activity, with an initial phase of looting, probably linked to

  15. MSFC Robotic Lunar Lander Testbed and Current Status of the International Lunar Network (ILN) Anchor Nodes Mission (United States)

    Cohen, Barbara; Bassler, Julie; Harris, Danny; Morse, Brian; Reed, Cheryl; Kirby, Karen; Eng, Douglas


    The lunar lander robotic exploration testbed at Marshall Spaceflight Center provides a test environment for robotic lander test articles, components and algorithms to reduce the risk on the airless body designs during lunar landing. Also included is a chart comparing the two different types of Anchor nodes for the International Lunar Network (ILN): Solar/Battery and the Advanced Stirling Radioisotope generator (ARSG.)

  16. Space Systems Failures Disasters and Rescues of Satellites, Rockets and Space Probes

    CERN Document Server

    Harland, David M


    In the 1960s and 1970s deep space missions were dispatched in pairs in case one was lost in launch or failed during its journey. Following the triumphs of the Viking landings on Mars in 1976 and both Voyagers spacecraft successfully surveying the outer giant planets of the Solar System, it was decided by NASA to cut costs and send out just a single probe. Although Magellan successfully mapped Venus by radar, it suffered from problems during the flight. Then came the loss of Mars Observer, whose engine exploded as it was preparing to enter Mars’ orbit because it was using technology designed for Earth’s satellites and the engine was not suited to spending several months in space. Later came the high-profile losses of Mars Climate Observer and Mars Polar Lander - a consequence of the faster, better, cheaper philosophy introduced by Dan Goldin in 1993. Even the highly successful Galileo mission suffered a major setback when its high-gain antenna (also based on satellite mission suffered a major setback when ...

  17. Remote Operation of the ExoGeoLab Lander at ESTEC and Lunares Base (United States)

    Lillo, A.; Foing, B. H.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.


    The ExoGeoLab Lander is a prototype developed to demonstrate joint use of remote operation and EVA astronaut work in analogue lunar environment. It was recently deployed in the new analogue base Lunares in Poland and controlled from ESA ESTEC center.

  18. Matte Svart Kristiansen & Kate Giles (eds., Dwellings, Identities and Homes. European Housing Culture from the Viking Age to the Renaissance (Hojbjerg: Jutland Archeological Society, 2014

    Directory of Open Access Journals (Sweden)

    Thomas Hoeren


    Full Text Available Book review of: Matte Svart Kristiansen & Kate Giles (eds., Dwellings, Identities and Homes. European Housing Culture from the Viking Age to the Renaissance (Hojbjerg: Jutland Archeological Society, 2014

  19. Viking entry vehicle aerodynamics at m equals 2 in air and some preliminary test data for flight in CO2 (United States)

    Sammonds, R. I.; Kruse, R. L.


    The static and dynamic aerodynamic characteristics of the Viking entry vehicle were determined experimentally in free flight in air at a Mach number near 2. Preliminary results were also obtained in CO2 at M infinity = 11. The low speed tests in air confirmed a region of dynamic instability previously observed. The instability was greatest at the smallest pitch amplitudes but decreased with increasing amplitude until a limit cycle was reached at about 8 deg. The tests in CO2 indicated increased drag coefficients of 3 percent with respect to those in air. Errors in the drag coefficient of this magnitude would significantly affect the reconstruction of the Martian atmosphere during entry of the Viking spacecraft.

  20. Analysis and interpretation of a unique Arabic finger ring from the Viking Age town of Birka, Sweden. (United States)

    Wärmländer, Sebastian K T S; Wåhlander, Linda; Saage, Ragnar; Rezakhani, Khodadad; Hamid Hassan, Saied A; Neiß, Michael


    In this work we used non-destructive SEM imaging and EDS analysis to characterize the material composition of an Arabic finger ring, which was found in a 9(th) c. woman's grave at the Viking Age (A.D. 793-1066) trading center of Birka, Sweden. The ring is set with a violet stone inscribed with Arabic Kufic writing, here interpreted as reading "il-la-lah", i.e. "For/to Allah". The stone was previously thought to be an amethyst, but the current results show it to be coloured glass. The ring has been cast in a high-grade silver alloy (94.5/5.5 Ag/Cu) and retains the post-casting marks from the filing done to remove flash and mold lines. Thus, the ring has rarely been worn, and likely passed from the silversmith to the woman buried at Birka with few owners in between. The ring may therefore constitute material evidence for direct interactions between Viking Age Scandinavia and the Islamic world. Being the only ring with an Arabic inscription found at a Scandinavian archaeological site, it is a unique object among Swedish Viking Age material. The technical analysis presented here provides a better understanding of the properties and background of this intriguing piece of jewelry. © Wiley Periodicals, Inc.

  1. Rosetta Lander Batteries Experience During All Operation Phases

    Directory of Open Access Journals (Sweden)

    Cénac-Morthé Céline


    Firstly, this paper will describe the Philae mission. In a second part, the batteries system will be presented. The ground strategy will be detailed. Finally, the operations of Philae batteries system will be described.

  2. The prospects for life on Mars - A pre-Viking assessment (United States)

    Sagan, C.; Lederberg, J.


    The paper considers implications of the Mariner 9 findings for the investigation of Martian biology in the next decade, beginning with the Viking mission. Previous claims for observations of Martian biological activity are reviewed and refuted or reinterpreted. The question is raised of whether there are combinations of environmental temperature and water activity on Mars that are suitable for a conceivable Martian biology. Four possible classes of Martian organisms associated with temperature/water ecological niches in the external environment are proposed: organisms requiring high temperatures and high water activity, those inhabiting niches with low temperatures and high water activity, those inhabiting niches of high temperature and low water activity, and those which can survive under conditions of low temperature and low water activity. It is noted that organisms of the last two classes may extract water from minerals or from ice and may be of large dimensions. The possible surface distribution of Martian organisms is discussed along with future search strategies for life on Mars.

  3. SmallSat Spinning Lander with a Raman Spectrometer Payload for Future Ocean Worlds Exploration Missions (United States)

    Ridenoure, R.; Angel, S. M.; Aslam, S.; Gorius, N.; Hewagama, T.; Nixon, C. A.; Sharma, S.


    We describe an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA)-class SmallSat spinning lander concept for the exploration of Europa or other Ocean World surfaces to ascertain the potential for life. The spinning lander will be ejected from an ESPA ring from an orbiting or flyby spacecraft and will carry on-board a standoff remote Spatial Heterodyne Raman spectrometer (SHRS) and a time resolved laser induced fluorescence spectrograph (TR-LIFS), and once landed and stationary the instruments will make surface chemical measurements. The SHRS and TR-LIFS have no moving parts have minimal mass and power requirements and will be able to characterize the surface and near-surface chemistry, including complex organic chemistry to constrain the ocean composition.

  4. ExoMars Lander Radioscience LaRa, a Space Geodesy Experiment to Mars. (United States)

    Dehant, V.; Le Maistre, S.; Baland, R. M.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Rivoldini, A.; Van Hoolst, T.


    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the ExoMars lander and Earth over at least one Martian year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information / constraints on the Martian interior, and on the sublimation / condensation cycle of atmospheric CO2. Rotational variations will allow us to constrain the moment of inertia of the entire planet, including its mantle and core, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps.

  5. How Do You Answer the Life on Mars Question? Use Multiple Small Landers Like Beagle 2 (United States)

    Gibson, Everett K.; Pillinger, C. T.; Wright, I. P.; Hurst, S. J.; Richter, L.; Sims, M. R.


    To address one of the most important questions in planetary science Is there life on Mars? The scientific community must turn to less costly means of exploring the surface of the Red Planet. The United Kingdom's Beagle 2 Mars lander concept was a small meter-size lander with a scientific payload constituting a large proportion of the flown mass designed to supply answers to the question about life on Mars. A possible reason why Beagle 2 did not send any data was that it was a one-off attempt to land. As Steve Squyres said at the time: "It's difficult to land on Mars - if you want to succeed you have to send two of everything".

  6. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan


    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  7. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report (United States)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.


    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  8. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; hide


    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  9. Preliminary Characterization of the Altair Lunar Lander Slosh Dynamics and Some Implications for the Thrust Vector Control Design (United States)

    Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Arturo


    This paper describes a conceptual design of the Thrust Vector Control (TVC) system and preliminary modeling of propellant slosh, for the Altair Lunar Lander. Altair is a vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. One key GN&C function is the commanding of effectors that control attitude and impart delta V on the vehicle, utilizing both reaction control system (RCS) thrusters and throttling and TVC gimbaling of the vehicle main engine. Both the Altair descent and ascent modules carry fuel tanks. During thrusting maneuvers, the sloshing of liquid fuels in partially filled tanks can interact with the controlled system in such a way as to cause the overall system to be unstable. These fuel tanks must be properly placed, relative to the spacecraft's c.m., to avoid any unstable interactions. Following this will be a discussion of propellant slosh modeling work performed for the present vehicle configuration, including slosh frequency and participatory fluid mass predictions. Knowing the range of slosh mode frequencies over mission phases, the TVC bandwidth must be carefully selected so as not to excite the slosh modes at those frequencies. The likely need to increase the damping factor of slosh modes via baffles will also be discussed. To conclude, a discussion of operations procedures aimed at minimizing TVC-slosh interactions will be given.

  10. Novel fracture technology proves marginal Viking prospect economic, part I: Implementation of fracture treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rylance, M.; Haidar, S.; Sykes, G.; Pyecroft, J.


    This paper describes the implementation of a twin propped fracture stimulation treatment, carried out on the 49/17-12 exploration well of the Viking Wx structure, in the Southern North Sea (SNS). Initial appraisal of the potential field development was disappointing, the well flowing at a rate of only 8.5 MM.scf/d, indicating a field development to be uneconomic. Stimulation by a joint Conoco/BPX team, employing novel fracturing technology, provided dramatic increases in production to ca. 43.5 MM.scf/d with less applied drawdown. The design approaches employed during these treatments could have potential for widespread application to other SNS gas fields. In this paper critical pre-treatment testing and reasoning behind operational decisions are discussed. In a companion paper the post stimulation rates/testing and well clean-up are described. Several key aspects of these treatments included: the use of two stacked fractures in order to successfully place proppant across the entire 830 ft reservoir section; the use of a Step Down Test (SDT) to identify the nature of high near wellbore pressure losses and subsequent removal using sand slugs; the use of a newly developed dual-coat partially curable Resin Coated Proppant (RCP) product, never previously utilized in the field, to minimize the opportunity for prolonged proppant back production and a seawater Mini-Frac to attempt to help identify the true in-situ permeability. Finally, the use of a Surface Read-Out (SRO) gauge enabled real-time decision making to optimize the treatment schedule.

  11. Development of The Viking Speech Scale to classify the speech of children with cerebral palsy. (United States)

    Pennington, Lindsay; Virella, Daniel; Mjøen, Tone; da Graça Andrada, Maria; Murray, Janice; Colver, Allan; Himmelmann, Kate; Rackauskaite, Gija; Greitane, Andra; Prasauskiene, Audrone; Andersen, Guro; de la Cruz, Javier


    Surveillance registers monitor the prevalence of cerebral palsy and the severity of resulting impairments across time and place. The motor disorders of cerebral palsy can affect children's speech production and limit their intelligibility. We describe the development of a scale to classify children's speech performance for use in cerebral palsy surveillance registers, and its reliability across raters and across time. Speech and language therapists, other healthcare professionals and parents classified the speech of 139 children with cerebral palsy (85 boys, 54 girls; mean age 6.03 years, SD 1.09) from observation and previous knowledge of the children. Another group of health professionals rated children's speech from information in their medical notes. With the exception of parents, raters reclassified children's speech at least four weeks after their initial classification. Raters were asked to rate how easy the scale was to use and how well the scale described the child's speech production using Likert scales. Inter-rater reliability was moderate to substantial (k>.58 for all comparisons). Test-retest reliability was substantial to almost perfect for all groups (k>.68). Over 74% of raters found the scale easy or very easy to use; 66% of parents and over 70% of health care professionals judged the scale to describe children's speech well or very well. We conclude that the Viking Speech Scale is a reliable tool to describe the speech performance of children with cerebral palsy, which can be applied through direct observation of children or through case note review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Landing instrument packages on regolith in micro gravity: point designs for passive, self-righting landers (United States)

    Movshovitz, N.; Asphaug, E. I.


    A small asteroid is likely to be the target of the next human exploration mission. Undoubtedly, a robotic mission will precede, whose main objective will be to characterize the target; this would have to include deployment of sensory instruments on the surface. The surface properties of small bodies are largely unknown, and this makes it essential to have detailed models for package deployment. We evaluate low cost, low risk, lander designs by considering 'pods' that have no moving parts, no guidance or thrust, that are designed to be thrown to the surface from the orbiting spacecraft. The design goal is to "encourage" the pods to land upright regardless of surface properties. With no need for guidance or articulation, these pods can be made and deployed to the surface at low cost and low risk. The challenge, of course, is to design the pods to land right-side-up, consistently, in a low gravity environment. In such an environment a body may experience cohesive forces comparable to its weight. These forces will effectively modify the physical parameters controlling a mechanical system, primarily the coefficients of friction and restitution. To make things worse, gravity will not always be pointing "down", as the presence of mass concentrations will tilt the gravity acceleration vector in unpredictable directions. We consider three point designs: (1) a weighted ellipsoidal shape, the bottom several times as dense as the top, analogous to the children's toy; (2) a pod with one side elastic and the other side inelastic; and (3) a combination of both weight distribution and material properties. We have used a discrete element model based on NVIDIA's PhysX library to design a simulation software suitable for modeling astrophysical rubble (Movshovitz, Asphaug and Korycansky, submitted). We then deploy different pod designs onto a numerical regolith testbed. Initial studies are very promising, although to date we have not included forces such as cohesion, and the effect of

  13. High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two-stage Viking gasifier product gas

    DEFF Research Database (Denmark)

    Hofmann, P.; Schweiger, A.; Fryda, L.


    and tar traces. The chosen SOFC was electrolyte supported with a nickel/gadolinium-doped cerium oxide (Ni-GDC) anode, known for its carbon deposition resistance. Through humidification the steam to carbon ratio (S/C) was adjusted to 0.5, which results in a thermodynamically carbon free condition......This paper presents the results from a 150 h test of a commercial high temperature single planar solid oxide fuel cell (SOFC) operating on wood gas from the Viking two-stage fixed-bed downdraft gasifier, which produces an almost tar-free gas, that was further cleaned for particulates, sulphur...

  14. Properties of dust and clouds in the Mars atmosphere: Analysis of Viking IRTM emission phase function sequences (United States)

    Clancy, R. T.; Lee, S. W.


    An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.

  15. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.


    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  16. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.


    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  17. Application of ATR-spectroscopy aboard landers: the MATROS experiment (United States)

    Grigoriev, A.; Coradini, A.; Korablev, O.; Korzhenevskaya, T.; Korolev, Yu.; Gusev, M.; Garbuz, A.; Moshkin, E.; Piccioni, G.; Bellucci, G.; Dibs/Pasteur Team

    We propose to implement the technique of Attenuated Total Reflection (ATR) spectroscopy for in situ studies of planets and small bodies. This method is well-known in laboratory practice (especially in microbiological studies), but so far was not used in space. During descend in an atmosphere an ATR-spectrometer allows investigation of suspended particles -- both solid and liquid. After landing, it can be used for mineralogical studies; on potentially habitable bodies (Mars, Europe) ATR-spectroscopy can be focused on direct detection of living cells. The primary goal of Exo-Mars Pasteur program (2009) is the search for Martian life. We propose for Pasteur the MATROS (Martian Attenuated Total Reflection Optical Spectroscopy) investigation in synergy with DIBS (Drill-Integrated spectrometer) and MIMA (Infrared spectrometer) -- two experiments rated as ``very good'' during preliminary selection. MATROS will perform mineralogical analysis and search for primitive forms of Martian life. Soil samples will be provided from the drill's distribution system. MATROS' hardware consists of a dedicated Mineralogical-Biological Unit (MBU) with multiple hermetic lid and an internal source of radiation (micro-globar). The spectrum of this globar at the output of MATROS modified by ATR absorption will be analyzed by DIBS near infrared spectrometer (0.7-2.8 μ m) and by MIMA Fourier-spectrometer (2.5-20 μ m). Thus the ATR absorption spectra will be measured in the spectral range as wide as 0.7-20 μ m. The measuring sequence is as follows: first, MBU is sterilized by heating up to 100C or more. Then, a sample (actually a bit of mineral powder) will be put into the MBU and analyzed to obtain mineralogical information, including possibly the oxidation degree. After this, some water will be added, and a modification of the ATR spectrum may indicate the presence of clay minerals. Finally, we set up the conditions optimal for culturing of anaerobic autotrophic bacteria (proper temperature


    Directory of Open Access Journals (Sweden)

    K. J. Kim


    Full Text Available As part of the national space promotion plan and presidential national agendas South Korea’s institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander – currently in pre-phase A – is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today’s accumulated volume and quality of available data returned from the Moon’s surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi- automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches – including methods and tools – for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of

  19. Design and logistics of integrated spacecraft/lander lunar habitat concepts (United States)

    Hypes, Warren D.; Wright, Robert L.; Gould, Marston J.; Lovelace, U. M.


    Integrated spacecraft/lander combinations have been designed to provide a support structure for thermal and galactic radiation shielding for three initial lunar habitat concepts. Integrating the support structure with the habitat reduces the logistics requirements for the implantation of the initial base. The designs are simple, make use of existing technologies, and minimize the amount of lunar surface preparation and crew activity. The design facilitates continued use of all elements in the development of a permanent lunar base and precludes the need for an entirely different structure of larger volume and increased complexity of implantation. This design philosophy, coupled with the reduced logistics, increases overall cost effectiveness.

  20. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.


    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  1. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility


    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route and in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.

  2. The dynamic cusp at low altitudes: a case study utilizing Viking, DMSP-F7, and Sondrestrom incoherent scatter radar observations

    Directory of Open Access Journals (Sweden)

    J. Watermann

    Full Text Available Coincident multi-instrument magnetospheric and ionospheric observations have made it possible to determine the position of the ionospheric footprint of the magnetospheric cusp and to monitor its evolution over time. The data used include charged particle and magnetic field measurements from the Earth-orbiting Viking and DMSP-F7 satellites, electric field measurements from Viking, interplanetary magnetic field and plasma data from IMP-8, and Sondrestrom incoherent scatter radar observations of the ionospheric plasma density, temperature, and convection. Viking detected cusp precipitation poleward of 75.5° invariant latitude. The ionospheric response to the observed electron precipitation was simulated using an auroral model. It predicts enhanced plasma density and elevated electron temperature in the upper E- and F-regions. Sondrestrom radar observations are in agreement with the predictions. The radar detected a cusp signature on each of five consecutive antenna elevation scans covering 1.2 h local time. The cusp appeared to be about 2° invariant latitude wide, and its ionospheric footprint shifted equatorward by nearly 2° during this time, possibly influenced by an overall decrease in the IMF Bz component. The radar plasma drift data and the Viking magnetic and electric field data suggest that the cusp was associated with a continuous, rather than a patchy, merging between the IMF and the geomagnetic field.

  3. An analytical study of the interaction of technological and administrative decision-making in the defining of Mars Project Viking. Ph.D. Thesis - Union College (United States)

    Mcnulty, J. F.


    An analysis of the history and background of the Mars Project Viking is presented. The organization and functions of the engineering group responsible for the project are defined. The design and configuration of the proposed space vehicle are examined. Illustrations and tables of data are provided to complete the coverage of the project.

  4. Pattern-Recognition System for Approaching a Known Target (United States)

    Huntsberger, Terrance; Cheng, Yang


    A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the

  5. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in viking-age settlement

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Nejsum, Peter; Fredensborg, Brian Lund


    Ancient parasite eggs were recovered from environmental samples collected at a Viking-age settlement in Viborg, Denmark, dated 1018-1030 A.D. Morphological examination identified Ascaris sp., Trichuris sp., and Fasciola sp. eggs, but size and shape did not allow species identification. By carefully...... the Ascaris sp. 18S rRNA gene in recent isolates from humans and pigs of global distribution and show that this is not a suited marker for species-specific identification. Finally, we discuss ancient parasitism in Denmark and the implementation of aDNA analysis methods in paleoparasitological studies. We...... argue that when employing species-specific identification, soil samples offer excellent opportunities for studies of human parasite infections and of human and animal interactions of the past....

  6. Geomorphic classification of Icelandic and Martian volcanoes: Limitations of comparative planetology research from LANDSAT and Viking orbiter images (United States)

    Williams, R. S., Jr.


    Some limitations in using orbital images of planetary surfaces for comparative landform analyses are discussed. The principal orbital images used were LANDSAT MSS images of Earth and nominal Viking Orbiter images of Mars. Both are roughly comparable in having a pixel size which corresponds to about 100 m on the planetary surface. A volcanic landform on either planet must have a horizontal dimension of at least 200 m to be discernible on orbital images. A twofold bias is directly introduced into any comparative analysis of volcanic landforms on Mars versus those in Iceland because of this scale limitation. First, the 200-m cutoff of landforms may delete more types of volcanic landforms on Earth than on Mars or vice versa. Second, volcanic landforms in Iceland, too small to be resolved or orbital images, may be represented by larger counterparts on Mars or vice versa.

  7. Evidence of authentic DNA from Danish Viking Age skeletons untouched by humans for 1,000 years

    DEFF Research Database (Denmark)

    Melchior, Linea; Kivisild, Toomas; Lynnerup, Niels


    , pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. METHODOLOGY/PRINCIPAL FINDINGS: We avoided some of these obstacles by analyzing DNA from ten Viking......BACKGROUND: Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however......-PCR work was carried out in a "clean- laboratory" dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained...

  8. Evidence of Authentic DNA from Danish Viking Age Skeletons Untouched by Humans for 1,000 Years (United States)

    Melchior, Linea; Kivisild, Toomas; Lynnerup, Niels; Dissing, Jørgen


    Background Given the relative abundance of modern human DNA and the inherent impossibility for incontestable proof of authenticity, results obtained on ancient human DNA have often been questioned. The widely accepted rules regarding ancient DNA work mainly affect laboratory procedures, however, pre-laboratory contamination occurring during excavation and archaeological-/anthropological handling of human remains as well as rapid degradation of authentic DNA after excavation are major obstacles. Methodology/Principal Findings We avoided some of these obstacles by analyzing DNA from ten Viking Age subjects that at the time of sampling were untouched by humans for 1,000 years. We removed teeth from the subjects prior to handling by archaeologists and anthropologists using protective equipment. An additional tooth was removed after standard archaeological and anthropological handling. All pre-PCR work was carried out in a “clean- laboratory” dedicated solely to ancient DNA work. Mitochondrial DNA was extracted and overlapping fragments spanning the HVR-1 region as well as diagnostic sites in the coding region were PCR amplified, cloned and sequenced. Consistent results were obtained with the “unhandled” teeth and there was no indication of contamination, while the latter was the case with half of the “handled” teeth. The results allowed the unequivocal assignment of a specific haplotype to each of the subjects, all haplotypes being compatible in their character states with a phylogenetic tree drawn from present day European populations. Several of the haplotypes are either infrequent or have not been observed in modern Scandinavians. The observation of haplogroup I in the present study (<2% in modern Scandinavians) supports our previous findings of a pronounced frequency of this haplogroup in Viking and Iron Age Danes. Conclusion The present work provides further evidence that retrieval of ancient human DNA is a possible task provided adequate precautions

  9. Rosetta Lander - Philae: Operations on comet 67P/Churyumov-Gerasimenko, analysis of wake-up activities and final state (United States)

    Ulamec, Stephan; O'Rourke, Laurence; Biele, Jens; Grieger, Björn; Andrés, Rafael; Lodiot, Sylvain; Muñoz, Pablo; Charpentier, Antoine; Mottola, Stefano; Knollenberg, Jörg; Knapmeyer, Martin; Kührt, Ekkehard; Scholten, Frank; Geurts, Koen; Maibaum, Michael; Fantinati, Cinzia; Küchemann, Oliver; Lommatsch, Valentina; Delmas, Cedric; Jurado, Eric; Garmier, Romain; Martin, Thierry


    The Lander Philae, part of the ESA Rosetta mission successfully landed on comet 67P/Churyumov- Gerasimenko on November 12th, 2014. After several (unplanned) bounces it performed a First Scientific Sequence (FSS), based on the energy stored in its on board batteries. All ten instruments of the payload aboard Philae have been operated at least once. Due to the fact that the final landing site was poorly illuminated, Philae went into hibernation on November 15th. Signals from the Lander were received again in June and July 2015, which indicated multiple awakening episodes of the lander. However, various attempts to re-establish reliable and stable communications links failed. Based on the analysis of the data gained during FSS, and during the contacts in June and July 2015 we draw conclusions on the state of Philae. In addition, images from the OSIRIS camera aboard the Rosetta Orbiter have allowed the identification of the exact position of Philae and its attitude, relative to the local surface terrain. This paper also gives an overview of the implications of Philae results for future engineering comet models, required particularly for the design of in-situ (landing) or sample return missions. Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae Lander is provided by a consortium led by DLR, MPS, CNES and ASI with additional contributions from Hungary, UK, Finland, Ireland and Austria.

  10. Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm (United States)

    Burt, Adam O.; Hull, Patrick V.


    This paper presents a design automation process using optimization via a genetic algorithm to design the conceptual structure of a Lunar Pallet Lander. The goal is to determine a design that will have the primary natural frequencies at or above a target value as well as minimize the total mass. Several iterations of the process are presented. First, a concept optimization is performed to determine what class of structure would produce suitable candidate designs. From this a stiffened sheet metal approach was selected leading to optimization of beam placement through generating a two-dimensional mesh and varying the physical location of reinforcing beams. Finally, the design space is reformulated as a binary problem using 1-dimensional beam elements to truncate the design space to allow faster convergence and additional mechanical failure criteria to be included in the optimization responses. Results are presented for each design space configuration. The final flight design was derived from these results.

  11. ExoGeoLab Test Bench for Landers, Rovers and Instruments (United States)

    Foing, B. H.


    In the frame of ESTEC technology and research pilot project, we have started a small pilot facility with a ExoGeoLab and a mini-Habitat, supported by two design and control offices in the European Space Incubator (ESI), as well as infrastructure support and manpower. We have in addition to contribution on external instruments and manpower from partner institutes. From this test bench and kit of ExoGeoLab instruments, we plan to operate comprehensive instruments packages that could help in the technical research and science preparation of lander/rover missions studied in the frame of Cosmic Vision or the Exploration programme. The ExoGeoLab research incubator project includes a sequence of activities: - Data analysis and interpretation of remote sensing data (MEX, SMART-1, VEX, Cassini-Huygens) and in-situ (Huygens, MER) , and merging of multi-scale data sets - Procurement and integration of geophysical, geochemical and astrobiological breadboard instruments in an surface station and rover (ExoGeoLab) - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations (Moon, Mars, NEO, Titan) - Contribution to the exploitation of surface lander results (MER, Phenix, MSL, preparation Exomars) - Scientific simulation of planetary surfaces using laboratory and modelling tools - Support research for definition and design of science surface packages on the Moon, Mars, NEO, Titan - Research support to community preparation of payload for surface lander opportunities Specific goals and methods of ESTEC ExoGeoLab: we have started to integrate instruments in an ExoGeoLab crossing various techniques. The methodic steps for this hands-on research are: 1) We have procured and adapted instruments to equip a mid-size ExoGeoRover (made available in collaboration with ESTEC robotics section), and a small surface station. 2) This terrestrial payload (instruments, sensors, data handling) will be deployed, operated and used as collaborative research

  12. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment. (United States)

    Bernáth, Balázs; Farkas, Alexandra; Száz, Dénes; Blahó, Miklós; Egri, Adám; Barta, András; Akesson, Susanne; Horváth, Gábor


    Vikings routinely crossed the North Atlantic without a magnetic compass and left their mark on lands as far away as Greenland, Newfoundland and Baffin Island. Based on an eleventh-century dial fragment artefact, found at Uunartoq in Greenland, it is widely accepted that they sailed along chosen latitudes using primitive Sun compasses. Such instruments were tested on sea and proved to be efficient hand-held navigation tools, but the dimensions and incisions of the Uunartoq find are far from optimal in this role. On the basis of the sagas mentioning sunstones, incompatible hypotheses were formed for Viking solar navigation procedures and primitive skylight polarimetry with dichroic or birefringent crystals. We describe here a previously unconceived method of navigation based on the Uunartoq artefact functioning as a 'twilight board', which is a combination of a horizon board and a Sun compass optimized for use when the Sun is close to the horizon. We deduced an appropriate solar navigation procedure using a twilight board, a shadow-stick and birefringent crystals, which bring together earlier suggested methods in harmony and provide a true skylight compass function. This could have allowed Vikings to navigate around the clock, to use the artefact dial as a Sun compass during long parts of the day and to use skylight polarization patterns in the twilight period. In field tests, we found that true north could be appointed with such a medieval skylight compass with an error of about ±4° when the artificially occluded Sun had elevation angles between +10° and -8° relative to the horizon. Our interpretation allows us to assign exact dates to the gnomonic lines on the artefact and outlines the schedule of the merchant ships that sustained the Viking colony in Greenland a millennium ago.

  13. Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers (United States)

    Graybeal, Sarah R.; Kranzusch, Kara M.


    The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very

  14. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S.; Rylance, M.; Tybero, G. [and others


    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flow rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.

  15. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander (United States)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.


    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  16. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. (United States)

    Barger, Laura K; Sullivan, Jason P; Vincent, Andrea S; Fiedler, Edna R; McKenna, Laurence M; Flynn-Evans, Erin E; Gilliland, Kirby; Sipes, Walter E; Smith, Peter H; Brainard, George C; Lockley, Steven W


    To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Operational field study. PML Science Operations Center. Scientific and technical personnel supporting PML mission. Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

  17. Learning to Live on a Mars Day: Fatigue Countermeasures during the Phoenix Mars Lander Mission (United States)

    Barger, Laura K.; Sullivan, Jason P.; Vincent, Andrea S.; Fiedler, Edna R.; McKenna, Laurence M.; Flynn-Evans, Erin E.; Gilliland, Kirby; Sipes, Walter E.; Smith, Peter H.; Brainard, George C.; Lockley, Steven W.


    Study Objectives: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Design: Operational field study. Setting: PML Science Operations Center. Participants: Scientific and technical personnel supporting PML mission. Interventions: Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Measurements and Results: Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P SLEEP 2012;35(10):1423-1435. PMID:23024441

  18. Lunar Infrared Spectrometer to Characterize the Hydration of Regolith in the Vicinity of a Lander (United States)

    Ivanov, Andrey; Fedorova, Anna; Korablev, Oleg; Mantsevich, Sergey; Stepanov, Alexander; Kalinnikov, Yury

    Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Globe (Luna 25) and Luna-Resurce (Luna 27) Russian surface missions. It is a pencil-beam spectrometer to be pointed by a robotic arm of the landing module, and is intended for study of the lunar surface composition in the vicinity of the lander. The instrument’s field of view (FOV) of 1(°) is co-aligned with the FOV (45(°) ) of a stereo TV camera. The spectrometer will provide measurements of selected surface areas in the spectral range of 1.15-3.3 mum. The spectral selection is provided by acousto-optic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed. The spectral resolution is better than 25 cm (-1) . The instrument’s mass is 1.3 kg. The primary goal of the experiment is to detect the regolith hydration at 3mum, identifying its form from the shape of the spectrum, and to follow its changes during the day/shadow pattern. Also, LIS will allow to study the mineralogical composition from mineral signatures within the spectral range, and will serve for selection of samples to be analyzed by other instruments.

  19. Slip triggered on southern California faults by the 1992 Joshua Tree, Landers, and big bear earthquakes (United States)

    Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.


    Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.

  20. Large-amplitude moho reflections (SmS) from Landers aftershocks, Southern California (United States)

    Mori, J.; Helmberger, D.


    Closely spaced aftershocks of the 28 June 1992 Landers earthquake (Mw 7.3) were used to make event record sections that show the transverse components of 5 and SmS arrivals at a distance of 70 to 170 km. For the data recorded toward the north in the Mojave desert, large SmS phases are observed with amplitudes 2 to 5 times greater than the direct S. For similar distances to the south, the SmS arrival is comparable to or smaller than the S. Comparisons to synthetic seismograms indicate that the large-amplitude SmS phases are produced by the simple crustal structure of the Mojave desert that allows a large Moho reflection. In contrast, the more complex geologic structure to the south partitions the seismic energy into a more complicated set of seismic phases, so that the Moho reflection is diminished in amplitude. The large SmS phases observed in the Mojave enhance the overall ground motions by a factor of 2 to 3. This suggests that when damaging earthquakes occur in other regions of simple crustal structures, Moho reflections will produce amplified strong motions at distance ranges around 100 km depending on the local structure.

  1. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers (United States)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.


    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  2. Mars Pathfinder Spacecraft, Lander, and Rover Testing in Simulated Deep Space and Mars Surface Environments (United States)

    Johnson, Kenneth R.


    The Mars Pathfinder (MPF) Spacecraft was built and tested at the Jet Propulsion Laboratory during 1995/96. MPF is scheduled to launch in December 1996 and to land on Mars on July 4, 1997. The testing program for MPF required subjecting the mission hardware to both deep space and Mars surface conditions. A series of tests were devised and conducted from 1/95 to 7/96 to study the thermal response of the MPF spacecraft to the environmental conditions in which it will be exposed during the cruise phase (on the way to Mars) and the lander phase (landed on Mars) of the mission. Also, several tests were conducted to study the thermal characteristics of the Mars rover, Sojourner, under Mars surface environmental conditions. For these tests, several special test fixtures and methods were devised to simulate the required environmental conditions. Creating simulated Mars surface conditions was a challenging undertaking since Mars' surface is subjected to diurnal cycling between -20 C and -85 C, with windspeeds to 20 m/sec, occurring in an 8 torr CO2 atmosphere. This paper describes the MPF test program which was conducted at JPL to verify the MPF thermal design.

  3. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals (United States)

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor


    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than pcrit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (pcrit=20%) and tourmaline (pcrit=45%), while for lower p (less than pcrit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking sun

  4. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith. (United States)

    Schuerger, Andrew C; Ming, Douglas W; Newsom, Horton E; Ferl, Robert J; McKay, Christopher P


    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  5. Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith (United States)

    Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.


    In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

  6. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander (United States)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf


    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions

  7. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  8. Vikinzi – dijalektika religioznosti u reafirmaciji ontologije ljudske veze / The Vikings: the Dialectics of Religiousness in the Reaffirmation of Ontology of Human Bond

    Directory of Open Access Journals (Sweden)

    Đorđe Žutić


    Full Text Available This paper examines connection between methodological assumptions of philosophical counseling (philotherapy, as a form of psychoterapy, and psychoanalasys, in their key relation to the question of identity. While philotherapy pressuposes that a person possesses ‘firm’ ontological identity, which by an onsetting of behavioral disorders or psychopatologies gets ‘darkened’, addressing the subject’s speech this way would be, according to Lacan, from „it’s most unthankful angle“, where one „could never identify with the idea of his wish“. But what happens if fenomenalism of an artwork is the surface of things (‘here and now’, while policy takes over the force of generisation of identity? On the question what is behind it, we will give an explicative answer, in an artwork The Vikings: it displays a cumulative paradigm through which psychoanalasis deconstructed the legitimacy of conventional morality. Therefore, if the definition of the self ‘here and now’ was there and then, in a perspective taken toward person’s psychodinamics and the ‘nature’ of wish, it all points out to political unconscious. In The Vikings it is represented in an analysis of the myth of Valhalla. According to an experience of the main protagonist and in dialectics of religious concepts of Christianity and Vikings, we follow a narrative-technical scheme which grants a perspective of given context. In the outcome of its turnovers we will  see the equation of the nature of wish with the ethics of optimizing it’s object.

  9. Design of an unmanned lunar cargo lander that reconfigures into a shelter for a habitation module or disassembles into parts useful to a permanent manned lunar base (United States)

    Davanay, Lisa; Garner, Brian; Rigol, Jason


    NASA plans to establish a permanent manned lunar base by the first decade of the twenty-first century. It is extremely expensive to transport material from earth to the moon. Therefore, expense would be reduced if the vehicle that lands cargo on the moon could itself meet some of the material needs of establishing the lunar base. The design of a multi-functional lander that is entirely useful to the base after landing is described. Alternate designs of the overall lander configuration and possible uses of the lander and its components after landing are contained. The design solution is a lander employing the Saddlebagged Fuel Tank Configuration. After landing, its structure will be converted into a habitation module shelter that supports a protective layer of regolith. The fuel tanks will be cleaned and used as storage tanks for the lunar base. The engines and instrumentation will be saved as stock parts. Recommendations for further research and technology development to enhance future lander designs are given.

  10. Testing the Daily Predictive Power of Clustered Seismicity Models on the 1992 Landers Aftershock Sequence (United States)

    Woessner, J.; Hainzl, S.; Werner, M. J.; Catalli, F.; Gerstenberger, M. C.


    Aftershock hazard is a significant and strongly time-dependent contribution to seismic hazard. Large aftershock sequences can serve as natural laboratories for earthquake predictability experiments, allowing for retro- and prospective testing of seismicity forecasts on various spatial and temporal scales. The 1992 Landers earthquake and the resulting highly clustered earthquake sequence is one of the best recorded and best studied earthquake sequence; however, a comparative experiment to retrospectively forecast earthquakes applying established statistical and physical models has not yet been pursued. We analyze the performance of (1) the Short-Term Earthquake Probability (STEP) model and STEP model elements, (2) a suite of Epidemic Type Aftershock Sequence (ETAS) models with and without parameter dependence on time and space and various spatial triggering kernels, and (3) a model deriving seismicity rates from a rate and state model incorporating multiple stress changes due to large and moderate earthquakes in the aftershock sequence. Comparing these models allows us to address the questions: Which models perform well on short time and small spatial scales? Do physical models lead to an information gain over purely statistical models on the scale of an aftershock sequence? Where with respect to the faulting do the models perform well? For the experiment, we define rules similar to the RELM testing approach. Forecasts are computed for 90 days starting on June 28,.1992, forecasting the seismicity on a predefined grid in the magnitude range 4 ≤ M ≤ 8 each day for 24 hours. The forecasts are evaluated on a daily basis using the RELM likelihood tests that test data consistency and relative performance of the models. Preliminary results show that the statistical models perform well in the long run of the earthquake sequence but not at the onset of the sequence, due to the lack of sequence specific information. We plan to investigate additional well recorded

  11. Vikings and Tigers: Finland, Sweden, and adoption of environmental technologies in Southeast Asia's pulpand paper industries

    Directory of Open Access Journals (Sweden)

    David A. Sonnenfield


    Full Text Available This paper examines structural dimensions of the influence of core-per iphery relations on adoption of environmental technologies in newly industrializing countries (NICs, using Nordic involvement in development of Southeast Asian pulp manufacturing in the late 1980s and early 1990s as a case study. Contrary to conventional wisdom, Southeast Asia was one of the first places in the world to employ new cleaner technologies in pulp and paper manufacturing. How did this happen? This paper argues that adoption of these technologies was influenced by dynamics within the world-system combined with the intentional actions of firms, states, and social movements over a 30-year period. The paper concludes that diffusion of the new environmental technologies is resulting in cleaner production in the periphery even while being part of a trend toward increased polarization between core and peripheral states, economies, and firms. Data were gathered from fieldwork in Southeast Asia from 1993-96; correspondence with Nordic firms, organizations and individuals in attendance and interviews at industry trade shows; and use of available data. Portions of the paper are derived from a larger study of adoption of environmental technologies in the pulp and paper industries of Southeast Asia and Australia.

  12. Compact isotope analysis system for in-situ biosignature investigation Project (United States)

    National Aeronautics and Space Administration — We propose to develop a sensor for in-situ stable isotope analysis from a lander/rover on future planetary missions. The system will enable the collection of...

  13. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic) (United States)

    Lavaleye, Marc; Duineveld, Gerard; Bergman, Magda; van den Beld, Inge


    A long-term lander employing a baited camera system was developed to study temporal variation in the presence of scavenging fish and invertebrates at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). The camera system was tested during two successful long-term deployments for periods of 6 and 12 months respectively. The baited system, consisting of two separate video cameras with infrared lights and a bait dispenser with 24 bait positions, recorded more than 15,500 clips of 17 s, regularly spread over both periods. New bait, consisting of sardines in oil, was offered at regular time intervals, and attracted scavengers over the whole period of deployment, and especially the crab Chaceon affinis did still eat from it till the end of the deployments. However, the attractiveness for some scavengers, i.e. amphipods, diminished quite quickly. In addition to invertebrate scavengers, namely C. affinis, two other crab species, amphipods, a shrimp and a starfish, also 7 species of fish were recorded near the bait, of which Lepidion eques was by far the most common. Though there was no concrete evidence for seasonal patterns, the observations showed substantial temporal variation in the abundance of several species, especially the crabs C. affinis and Bathynectes maravigna and the fish Phycis blennoides. It is concluded that long-term deployments of such a baited camera system can produce novel data. For instance such a system could be employed for monitoring impacts of disturbances on the deep-sea floor (e.g. mining), as we infer that mobile scavengers will be among the first organisms to show a visible reaction to any chemically and physically (noise, vibrations) alteration of the environment similar to a mine canary.

  14. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year (United States)

    Nowomiejska, Katarzyna; Haszcz, Dariusz; Forlini, Cesare; Forlini, Matteo; Moneta-Wielgos, Joanna; Maciejewski, Ryszard; Zarnowski, Tomasz; Juenemann, Anselm G.


    Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV) and penetrating keratoplasty (PKP) using a wide-field Landers intraoperative temporary keratoprosthesis (TKP) in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity) and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure) were assessed during the follow-up (mean 16 months). Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor. PMID:26617994

  15. Feasibility of retrieving dust properties and total column water vapor from solar spectra measured using a lander camera on Mars (United States)

    Manago, Naohiro; Noguchi, Katsuyuki; Hashimoto, George L.; Senshu, Hiroki; Otobe, Naohito; Suzuki, Makoto; Kuze, Hiroaki


    Dust and water vapor are important constituents in the Martian atmosphere, exerting significant influence on the heat balance of the atmosphere and surface. We have developed a method to retrieve optical and physical properties of Martian dust from spectral intensities of direct and scattered solar radiation to be measured using a multi-wavelength environmental camera onboard a Mars lander. Martian dust is assumed to be composed of silicate-like substrate and hematite-like inclusion, having spheroidal shape with a monomodal gamma size distribution. Error analysis based on simulated data reveals that appropriate combinations of three bands centered at 450, 550, and 675 nm wavelengths and 4 scattering angles of 3°, 10°, 50°, and 120° lead to good retrieval of four dust parameters, namely, aerosol optical depth, effective radius and variance of size distribution, and volume mixing ratio of hematite. Retrieval error increases when some of the observational parameters such as color ratio or aureole are omitted from the retrieval. Also, the capability of retrieving total column water vapor is examined through observations of direct and scattered solar radiation intensities at 925, 935, and 972 nm. The simulation and error analysis presented here will be useful for designing an environmental camera that can elucidate the dust and water vapor properties in a future Mars lander mission.

  16. Wide-Field Landers Temporary Keratoprosthesis in Severe Ocular Trauma: Functional and Anatomical Results after One Year

    Directory of Open Access Journals (Sweden)

    Katarzyna Nowomiejska


    Full Text Available Purpose. To evaluate longitudinal functional and anatomical results after combined pars plana vitrectomy (PPV and penetrating keratoplasty (PKP using a wide-field Landers intraoperative temporary keratoprosthesis (TKP in patients with vitreoretinal pathology and corneal opacity due to severe ocular trauma. Material and Methods. Medical records of 12 patients who had undergone PPV/PKP/KP due to severe eye trauma were analyzed. Functional (best-corrected visual acuity and anatomic outcomes (clarity of the corneal graft, retinal attachment, and intraocular pressure were assessed during the follow-up (mean 16 months. Results. Final visual acuities varied from NLP to CF to 2 m. Visual acuity improved in 7 cases, was unchanged in 4 eyes, and worsened in 1 eye. The corneal graft was transparent during the follow-up in 3 cases and graft failure was observed in 9 eyes. Silicone oil was used as a tamponade in all cases and retina was reattached in 92% of cases. Conclusions. Combined PPV and PKP with the use of wide-field Landers TKP allowed for surgical intervention in patients with vitreoretinal pathology coexisting with corneal wound. Although retina was attached in most of the cases, corneal graft survived only in one-fourth of patients and final visual acuities were poor.

  17. Painkiller (Oxy, Vike) Facts (United States)

    ... be as dangerous as heroin or cocaine use. Oxycodone is one pain medicine that people often abuse. Sometimes it goes by the brand names OxyContin® or Percocet®. Another one that is often abused ...

  18. The last Viking King

    DEFF Research Database (Denmark)

    Dissing, J.; Binladen, J.; Hansen, Anders J.


    of King Sven Estridsen to haplogroup H; Estrid's sequence differed from that of Sven at two positions in HVR-1, 16093T -> C and 16304T -> C, indicating that she belongs to subgroup H5a. Given the maternal inheritance of mtDNA, offspring will have the same mtDNA sequence as their mother with the exception......, there have been doubts among historians whether the woman entombed was indeed Estrid. To shed light on this problem, we have extracted and analysed mitochondrial DNA (mtDNA) from pulp of teeth from each of the two royals. Four overlapping DNA-fragments covering about 400 bp of hypervariable region 1 (HVR-1...

  19. Lander radio science experiment with a direct link between Mars and the Earth (United States)

    Le Maistre, Sébastien; Rosenblatt, Pascal; Rivoldini, Attilio; Dehant, Véronique; Marty, Jean-Charles; Karatekin, Ozgür


    Mars' Orientation and rotation Parameters (called here MOP): precession, nutation, polar motion and length of day (LOD) variations, are related to the interior of the planet as well as to the dynamics of its atmosphere. The MOP can be determined using the Doppler shift on radio signal data due to the motion of a probe landed on Mars relative to tracking stations on Earth. In this paper we perform numerical simulations for assessing the precision on the determination of the MOP using Direct-To-Earth (DTE) X-band Doppler measurements for a nearly equatorial lander. We then discuss how a better knowledge of the MOP could improve our understanding on the interior structure. The sensitivity of such a DTE radio link to these rotation parameters is first investigated. This shows that the latitude of the landing site must be higher than 20° to detect the Chandler Wobble component of the polar motion in DTE Doppler data and must be at least 40° to get tight constraints on it. It is found that the precision in the determination of the seasonal LOD variations will be significantly improved after about 350 days of operation, reaching the 5% level after 550 days, thereby better constraining the CO2 mass budget in the Martian atmosphere and ice caps. The current precision in the precession rate (25 milliarcsecond (mas) per year) will be matched after 150 days of mission. An uncertainty of less than 5 mas/year will be reached after 700 days, improving the precision on the polar moment of inertia by a factor of five. The precision on the determination of the amplitudes of nutation is estimated at a few mas after one Martian year of mission (about 12 mas on the prograde/retrograde semi and terannual amplitudes) allowing for the detection of the contribution expected from the liquid core. Considering Mars with a liquid core in accordance with recent geodesic measurements, the Free-Core-Nutation (FCN) period is estimated with a precision of less than 10 days after 550 days of

  20. 3-D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field (United States)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.


    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  1. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field (United States)

    Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.


    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed

  2. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method. (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor


    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite

  3. Revisiting the 1992 Landers earthquake: a Bayesian exploration of co-seismic slip and off-fault damage. (United States)

    Gombert, Baptiste; Duputel, Zacharie; Jolivet, Romain; Rivera, Luis; Simons, Mark


    The 1992 Landers earthquake (Mw = 7.3) is one of the two largest events recorded in continental United States over the last 50 years. While several studies have investigated this earthquake, published co-seismic slip models show significant dissimilarities. These discrepancies can primarily be attributed to the ill-posed nature of the slip inversion problem and to the use of unphysical regularization constraints. Going forward, we propose a new co-seismic model obtained from the joint inversion of multiple observations in an unregularized and fully Bayesian framework. We use a comprehensive dataset including GPS, terrestrial geodesy, multiple SAR interferograms and co-seismic offsets from correlation of aerial images. These observations provide a dense coverage of both the fault vicinity and far-field deformation. To limit the impact of modeling uncertainties, we elaborate a 3D fault geometry designed from field observations, co-seismic offsets and the distribution of aftershocks. In addition, we account for uncertainty in the Earth model used to compute the Green's functions. Our solution includes the ensemble of all plausible models that are consistent with our prior information and fit the available observations within data and prediction uncertainties. Previous studies of the Landers earthquake pointed out the eventuality of a slip deficit at shallow depth (<5km) that is not relieved by post- or inter-seismic deformation. Using high-resolution near-fault ground deformation measurements, we investigate off-fault inelasticity and the existence of a compliant fault zone. Using our Bayesian framework, we investigate the impact of off-fault damage on the inferred slip at depth.

  4. Shear zones formed along long, straight traces of fault zones during the 28 June 1992 Landers, California, earthquake (United States)

    Johnson, Arvid M.; Fleming, Robert W.; Cruikshank, Kenneth M.


    Surface rupturing during the 28 June 1992 Landers, California, earthquake, east of Los Angeles, accommodated right-lateral offsets up to about 6 m along segments of distinct, en-echelon fault zones with a total length of 80 km. The offsets were accommodated generally not by faults—distinct slip surfaces—but rather by shear zones, tabular bands of localized shearing. Along simple stretches of fault zones at Landers the rupture is characterized by telescoping of shear zones and intensification of shearing: broad shear zones of mild shearing, containing narrow shear zones of more intense shearing, containing even narrower shear zones of very intense shearing, which may contain a fault. Thus the ground ruptured across broad belts of shearing with clearly defined, subparallel walls, oriented NW. Each broad belt consists of a broad zone of mild shearing, extending across its entire width (50 to 200 m), and much narrower (a few meters wide) shear zones that accommodate most of the offset of the belt and are portrayed by en-echelon tension cracks. In response to right-lateral shearing, the slices of ground bounded by the tension cracks rotated in a clockwise sense, producing left-lateral shearing, and the slices were forced against the walls of the shear zone, producing thrusting. Even narrower shear zones formed within the narrow shear zones. Although these probably are guides to right-lateral fault segments below, the surface rupturing during the earthquake is characterized not by faulting, but by the formation of shear zones at various scales.

  5. Transient stresses al Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: implications for the time-dependence of fault friction

    Directory of Open Access Journals (Sweden)

    J. B. Fletcher


    Full Text Available he M 7.4 Landers earthquake triggered widespread seismicity in the Western U.S. Because the transient dynamic stresses induced at regional distances by the Landers surface waves are much larger than the expected static stresses, the magnitude and the characteristics of the dynamic stresses may bear upon the earthquake triggering mechanism. The Landers earthquake was recorded on the UPSAR array, a group of 14 triaxial accelerometers located within a 1-square-km region 10 km southwest of the town of Parkfield, California, 412 km northwest of the Landers epicenter. We used a standard geodetic inversion procedure to determine the surface strain and stress tensors as functions of time from the observed dynamic displacements. Peak dynamic strains and stresses at the Earth's surface are about 7 microstrain and 0.035 MPa, respectively, and they have a flat amplitude spectrum between 2 s and 15 s period. These stresses agree well with stresses predicted from a simple rule of thumb based upon the ground velocity spectrum observed at a single station. Peak stresses ranged from about 0.035 MPa at the surface to about 0.12 MPa between 2 and 14 km depth, with the sharp increase of stress away from the surface resulting from the rapid increase of rigidity with depth and from the influence of surface wave mode shapes. Comparison of Landers-induced static and dynamic stresses at the hypocenter of the Big Bear aftershock provides a clear example that faults are stronger on time scales of tens of seconds than on time scales of hours or longer.

  6. Were Viking Dry-dock methods in the Americas used earlier to Build Pyramids, with Outflow Eroding the Sphinx, and were Stonehenge, the Obelisks, and Moas Similarly Erected? (United States)

    McLeod, Edward; McLeod, Roger


    Chisel-quarried recycled granite in MA is datable by runes to 1069 CE; it could corroborate dating by a LIDAR. Associated sites, possibly used by Vikings to dry-dock their ships, could have exploited lock-like controls, possibly a continued technology. Site-leveling at the Giza Pyramids proves water was used. `Locks' and body-immersion worked for building, moving, erecting, or watering, at sites like Stonehenge, The Hanging Gardens at Babylon, the Moas of Easter Island, or The Pyramids, where the eroding water discharge was deliberately flushed over the Sphinx complex. It enhance the electromagnetically excited blue light signals we can detect, especially at sites frequented by Molocket of ME. Information, as at America's Stonehenge, in NH, and constructions at Acton MA, at Giza or at Rumford ME proves that the Pyramids and Sphinx were engineered and built about 4500 BP.

  7. Dolutegravir in Antiretroviral-Experienced Patients With Raltegravir- and/or Elvitegravir-Resistant HIV-1: 24-Week Results of the Phase III VIKING-3 Study (United States)

    Castagna, Antonella; Maggiolo, Franco; Penco, Giovanni; Wright, David; Mills, Anthony; Grossberg, Robert; Molina, Jean-Michel; Chas, Julie; Durant, Jacques; Moreno, Santiago; Doroana, Manuela; Ait-Khaled, Mounir; Huang, Jenny; Min, Sherene; Song, Ivy; Vavro, Cindy; Nichols, Garrett; Yeo, Jane M.; Aberg, J.; Akil, B.; Arribas, J. R.; Baril, J.-G.; Blanco Arévalo, J. L.; Blanco Quintana, F.; Blick, G.; Boix Martínez, V.; Bouchaud, O.; Branco, T.; Bredeek, U. F.; Castro Iglesias, M.; Clumeck, N.; Conway, B.; DeJesus, E.; Delassus, J.-L.; De Truchis, P.; Di Perri, G.; Di Pietro, M.; Duggan, J.; Duvivier, C.; Elion, R.; Eron, J.; Fish, D.; Gathe, J.; Haubrich, R.; Henderson, H.; Hicks, C.; Hocqueloux, L.; Hodder, S.; Hsiao, C.-B.; Katlama, C.; Kozal, M.; Kumar, P.; Lalla-Reddy, S.; Lazzarin, A.; Leoncini, F.; Llibre, J. M.; Mansinho, K.; Morlat, P.; Mounzer, K.; Murphy, M.; Newman, C.; Nguyen, T.; Nseir, B.; Philibert, P.; Pialoux, G.; Poizot-Martin, I.; Ramgopal, M.; Richmond, G.; Salmon Ceron, D.; Sax, P.; Scarsella, A.; Sension, M.; Shalit, P.; Sighinolfi, L.; Sloan, L.; Small, C.; Stein, D.; Tashima, K.; Tebas, P.; Torti, C.; Tribble, M.; Troisvallets, D.; Tsoukas, C.; Viciana Fernández, P.; Ward, D.; Wheeler, D.; Wilkin, T.; Yeni, G.-P.; Louise Martin-Carpenter, J.; Uhlenbrauck, Gina


    Background. The pilot phase IIb VIKING study suggested that dolutegravir (DTG), a human immunodeficiency virus (HIV) integrase inhibitor (INI), would be efficacious in INI-resistant patients at the 50 mg twice daily (BID) dose. Methods. VIKING-3 is a single-arm, open-label phase III study in which therapy-experienced adults with INI-resistant virus received DTG 50 mg BID while continuing their failing regimen (without raltegravir or elvitegravir) through day 7, after which the regimen was optimized with ≥1 fully active drug and DTG continued. The primary efficacy endpoints were the mean change from baseline in plasma HIV-1 RNA at day 8 and the proportion of subjects with HIV-1 RNA <50 c/mL at week 24. Results. Mean change in HIV-1 RNA at day 8 was −1.43 log10 c/mL, and 69% of subjects achieved <50 c/mL at week 24. Multivariate analyses demonstrated a strong association between baseline DTG susceptibility and response. Response was most reduced in subjects with Q148 + ≥2 resistance-associated mutations. DTG 50 mg BID had a low (3%) discontinuation rate due to adverse events, similar to INI-naive subjects receiving DTG 50 mg once daily. Conclusions. DTG 50 mg BID–based therapy was effective in this highly treatment-experienced population with INI-resistant virus. Clinical Trials Registration. (NCT01328041) and (112574). PMID:24446523

  8. Hydrodynamic controls on cold-water coral growth in the Gulf of Mexico: Long term in situ seabed lander observations (United States)

    Mienis, Furu; Duineveld, Gerard; Davies, Andrew J.; van Weering, Tjeerd C. E.; Ross, Steve W.; Roberts, Murray; Seim, Harvey E.; Bane, John M.


    Cold-water coral reefs and mounds are a common feature on the continental slopes of the North East Atlantic Ocean. On the European continental margin mound structures that are many kilometers long and wide have been discovered, often colonized by a thriving coral community. Similar structures have been found in the West Atlantic on the continental slope between 300-800 m water depth, along the slope from North Carolina to Florida. Presently detailed studies on the environmental constraints in cold-water coral areas are limited to cold-water coral areas in the North East Atlantic. This is the first study showing long term environmental variability in a cold-water coral habitat in the Gulf of Mexico, West Atlantic and the data highlight novel observations of short term environmental variability in a cold-water coral habitat. In the Gulf of Mexico Lophelia pertusa occurrences are scattered and form less dense communities than those situated on the Atlantic margins. The Viosca Knoll (VK826) area is the most extensive cold-water coral area presently known in the Gulf of Mexico, with Lophelia pertusa being the most common coral species. Broadly two characteristic coral habitats can be described on Viosca Knoll. Firstly, a dense coral cover that resembles a biogenic reef and secondly authigenic carbonate blocks with sparse coral coverage. Two benthic landers were deployed for over a year in the vicinity of the corals to measure the local environmental conditions. Both landers measured the current velocity and direction, temperature, salinity, fluorescence, optical backscatter and were equipped with a sediment trap. Furthermore CTD transects were made across the cold-water coral area. Transects showed no fluorescence signal below 150 m water depth and an oxygen minimum zone at the depth of the corals. A prominent intermediate nepheloid layer was present at 300-400 m water depth. Long term deployments of benthic landers of a period over 12 months revealed intra annual

  9. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter

    as characterizing its sub-surface. Magnetic fields are generated by electric currents in the planetary space environment, induced currents in the planetary interior and possibly remanent magnetism. In consequence, hardly any other single physical quantity can be used in such a variety of studies related......Magnetic field observations at a planetary surface have a wide potential of scientific applications, ranging from processes in the dynamic interaction between the planet environment and the solar wind, to determining the structure and thermal evolution of the interior of the planet as well...... to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...

  10. Three Dimensional Situational Awareness Sensor to Assist Descent and Landing of the Mars Lander Spacecraft Project (United States)

    National Aeronautics and Space Administration — In order to address NASA's needs identified in the RFP, TetraVue proposes the use of a unique, non GPS and non-observer position dependent 3D sensor system to...

  11. Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander (United States)

    Nikkanen, T.; Schmidt, W.; Harri, A.-M.; Genzer, M.; Hieta, M.; Haukka, H.; Kemppinen, O.


    Finnish Meteorological Institute (FMI) has developed a novel kind of pressure and humidity instrument for the Schiaparelli Mars lander, which is a part of the ExoMars 2016 mission of the European Space Agency (ESA) [1]. The DREAMS-P pressure instrument and DREAMS-H humidity instrument are part of the DREAMS science package on board the lander. DREAMS-P (seen in Fig. 1 and DREAMS-H were evolved from earlier planetary pressure and humidity instrument designs by FMI with a completely redesigned control and data unit. Instead of using the conventional approach of utilizing a space grade processor component, a commercial off the shelf microcontroller was selected for handling the pressure and humidity measurements. The new controller is based on the Freescale MC9S12XEP100 16-bit automotive microcontroller. Coordinated by FMI, a batch of these microcontroller units (MCUs) went through a custom qualification process in order to accept the component for spaceflight on board a Mars lander.

  12. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions. (United States)

    Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András


    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

  13. Safe landing area determination for a Moon lander by reachability analysis (United States)

    Arslantaş, Yunus Emre; Oehlschlägel, Thimo; Sagliano, Marco


    In the last decades developments in space technology paved the way to more challenging missions like asteroid mining, space tourism and human expansion into the Solar System. These missions result in difficult tasks such as guidance schemes for re-entry, landing on celestial bodies and implementation of large angle maneuvers for spacecraft. There is a need for a safety system to increase the robustness and success of these missions. Reachability analysis meets this requirement by obtaining the set of all achievable states for a dynamical system starting from an initial condition with given admissible control inputs of the system. This paper proposes an algorithm for the approximation of nonconvex reachable sets (RS) by using optimal control. Therefore subset of the state space is discretized by equidistant points and for each grid point a distance function is defined. This distance function acts as an objective function for a related optimal control problem (OCP). Each infinite dimensional OCP is transcribed into a finite dimensional Nonlinear Programming Problem (NLP) by using Pseudospectral Methods (PSM). Finally, the NLPs are solved using available tools resulting in approximated reachable sets with information about the states of the dynamical system at these grid points. The algorithm is applied on a generic Moon landing mission. The proposed method computes approximated reachable sets and the attainable safe landing region with information about propellant consumption and time.

  14. Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander (United States)

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, N.; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, W. T.


    NASA's InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3-1.0 mm, surface densities of 1.3-1.8 g cm^{-3}, and an effective regolith Young's modulus of 2.5^{+1.9}_{-1.4} MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02-0.04 for the vertical component and 0.01-0.02 for the horizontal component. These values are 3-6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ˜2×10^{-10} ms^{-2} Hz^{-1/2} with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10^{-8} ms^{-2} Hz^{-1/2}.


    Directory of Open Access Journals (Sweden)

    Alan Ruffman


    Full Text Available This most valuable compilation by Patricia Lockridge et al. (2002 covers a wide range of tsunamis and tsunami-like events ranging from marine tectonic, volcanic, and landslide tsunamis to possible meteorologic tsunami-like events. Lockridge et al.'s (2002 massive text table (pp. 124-141 entitled "Description of Events" covers events from 1668 to 1992. The 2002 paper in Science of Tsunami Hazards was clearly intended to be an update of, an extension to, and a sequel to, the first east coast and Caribbean tsunami compilations contained in Lander and Lockridge's 1989 National Geophysical Data Center volume United States Tsunamis (including United States Possessions 1690-1988.The Lockridge et al. (2002 compilation contains a small error with respect to the 1929 "Grand Banks" Earthquake and Tsunami of which I may be cause in part. In addition the tsunami histories of oceans without a tsunami warning system will be now receiving much closer attention, including historic events in the Atlantic Ocean given the events of December 26, 2004 and March 18, 2005 in the Indian Ocean; both the Atlantic and the Indian Oceans have no tsunami warning system and have an incomplete tsunami history.

  16. Rosetta Orbiter and Lander: Our Evolving Understanding of Comet Churyumov-Gerasimenko (United States)

    Alexander, Claudia


    Rosetta is the third cornerstone mission of the European Space Agency's (ESA) comprehensive Horizon 2000 Programme. It was designed to find, and examine, some of the original material of the solar system; to help us understand how the comet works as a machine to absorb and re-radiate energy from the sun; to characterize the thermophysical properties and structure of the body, and to complete an inventory of its dusty, organic, and isotopic composition. At the time of the conference, Rosetta will be at perihelion, portions of the surface that were initially in sunlight will be in complete darkness, and portions initially only partially exposed to the sun will be experiencing summer. At the time of the conference, a planned pass into a comet plume may have yielded important measurements. Up-to-date logistics of Rosetta exploration will be discussed.Rosetta has already provided a rich mother-lode of data on this intriguing object, from the early measurements of D/H ratio, to the first-time measurement of N2 in a small body, to the unique ‘dragon-egg’ morphology seen in selected places on the surface. In this talk, I'll review some of the principle results so far of the Rosetta mission, including what we know of comet activity, the showers of grains, and developing magnetic field induced cometospheric boundaries and coma environment. I'll review the landing and walk through the 60 hours of time the probe spent on the comet's surface. Finally I'll discuss some of the intriguing questions that might be answered with the perihelion pass, such as does the observed increase in this comet’s rotation period indicate a sign of comet inflation or disruption?

  17. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions (United States)

    Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András


    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

  18. Findings from the PP-SESAME experiment on board the Philae/ROSETTA lander on the surface of comet 67P (United States)

    Lethuillier, A.; Le Gall, A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Fischer, H.; Seidensticker, K.


    The Permittivity Probe (PP-SESAME [1]) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 meters of the nucleus of comet 67P/Churyumov- Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide unique insight into the composition (and activity if data could have been acquired longer) of the comet. In this paper, we present the analysis of the PP-SESAME measurements acquired during the first science sequence, on November 13, 2014, on the surface of the comet.

  19. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network (United States)

    Miller, M. Meghan


    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our

  20. Armadillo and the Viking spirit

    DEFF Research Database (Denmark)

    Frisk, Kristian


    Recent studies have shown that names of military bases, equipment, operations, sites, units, and weaponry have played a key role in the demonstration of power, the legitimization of war, and the formation of cohesion in the ranks. This paper argues that such naming practices form part of a broader...... process of the construction of meaning, or what Hans Blumenberg has termed the ‘work on myth’, since names function as principal devices for creating, reproducing, and transforming cultural narratives. Based on a case study of the Danish experience as part of Task Force Helmand in Afghanistan, the paper...... elucidates how the army’s names have brought stories of national origin, heroic greatness, and warrior ancestry into the banal space of life abroad, where a mythscape has grown and changed in response to the situation on the ground and changes in the wider figuration of the Afghan War. On this basis...

  1. Armadillo and the Viking spirit

    DEFF Research Database (Denmark)

    Frisk, Kristian


    process of the construction of meaning, or what Hans Blumenberg has termed the ‘work on myth’, since names function as principal devices for creating, reproducing, and transforming cultural narratives. Based on a case study of the Danish experience as part of Task Force Helmand in Afghanistan, the paper...... elucidates how the army’s names have brought stories of national origin, heroic greatness, and warrior ancestry into the banal space of life abroad, where a mythscape has grown and changed in response to the situation on the ground and changes in the wider figuration of the Afghan War. On this basis...

  2. Viking Disruptions or Growing Integration?

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael


    Long-distance communication has emerged as a particular focus for archaeological exploration using network theory, analysis, and modelling. Initial attempts to adapt methods from social network analysis to archaeological data have, however, struggled to produce decisive results. This paper...... demonstrates how formal network analysis can be combined with a contextual reading of evidence relating to a long-distance communication network in the past. A study of the combined distributions of ten vessel types in 152 settlement sites from the 10th century suggests the outline of the core structure...... of the network. The model implies that 10th century long-distance exchange in the North Sea region featured long-distance links equal to those of the Carolingian emporia trade, and represented a growth in terms of new axes of integration, above all the growing links between the Scandinavian Peninsula...

  3. Integrated Pressure-Fed Liquid Oxygen / Methane Propulsion Systems - Morpheus Experience, MARE, and Future Applications (United States)

    Hurlbert, Eric; Morehead, Robert; Melcher, John C.; Atwell, Matt


    An integrated liquid oxygen (LOx) and methane propulsion system where common propellants are fed to the reaction control system and main engines offers advantages in performance, simplicity, reliability, and reusability. LOx/Methane provides new capabilities to use propellants that are manufactured on the Mars surface for ascent return and to integrate with power and life support systems. The clean burning, non-toxic, high vapor pressure propellants provide significant advantages for reliable ignition in a space vacuum, and for reliable safing or purging of a space-based vehicle. The NASA Advanced Exploration Systems (AES) Morpheus lander demonstrated many of these key attributes as it completed over 65 tests including 15 flights through 2014. Morpheus is a prototype of LOx/Methane propellant lander vehicle with a fully integrated propulsion system. The Morpheus lander flight demonstrations led to the proposal to use LOx/Methane for a Discovery class mission, named Moon Aging Regolith Experiment (MARE) to land an in-situ science payload for Southwest Research Institute on the Lunar surface. Lox/Methane is extensible to human spacecraft for many transportation elements of a Mars architecture. This paper discusses LOx/Methane propulsion systems in regards to trade studies, the Morpheus project experience, the MARE NAVIS (NASA Autonomous Vehicle for In-situ Science) lander, and future possible applications. The paper also discusses technology research and development needs for Lox/Methane propulsion systems.

  4. VL1/VL2 MARS LABELED RELEASE V1.0 (United States)

    National Aeronautics and Space Administration — The Labeled Release (LR) instrument on each Viking Lander operated throughout the Primary Mission and continued into the Extended Mission. The basic analysis cycle...

  5. Characterization of Martian Rock Shape for MER Airbag Drop Tests (United States)

    Dimaggio, E. N.; Schroeder, R. D.; Golombek, M. P.; Haldemann, A.; Castle, N.


    To aid in defining the rock distributions for MER airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high and characterize them by their shape and burial.

  6. Mass spectrometer-pyrolysis experiment for atmospheric and soil sample analysis on the surface of Mars (United States)

    Mauersberger, Konrad; Mahaffy, Paul; Niemann, Hasso


    Results from the Viking mission will form the foundation for future in-depth investigations of atmosphere-surface interactions on Mars. The two Viking landers carried impressive instrumentation to obtain and analyze soil samples: the sites were observed by cameras, and the collector head was located on a long boom and allowed the collection of large samples at various depths. A selection of grain sizes was possible and a distribution system supplied a number of experiments with soil material. Despite stationary vehicles, a wide sampling field was reachable. The GCMS system, responsible for atmospheric as well as surface soil analysis, worked well on both landers. Atmospheric measurements resulted in the determination of the abundance of noble gases as well as of other molecular species. Isotopic composition measurements included the important ratios of C-13/C-12, N-15/N-14, and Ar-36/Ar-40. To verify these past results and to advance detailed studies of noble gas isotope ratios and minor constituents, better instrument sensitivities, higher precision, and lower background contributions are required in future Mars missions. Soil analysis during the Viking mission concentrated on organic material. Heating cycles were performed to 500 C and only water and carbon dioxide were identified. Higher pyrolysis temperatures are of primary importance to advance our understanding of the mineralogy and gas loading of surface material and atmospheric exchange.

  7. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory (United States)

    Hickman, J. M.; Bloomfield, H. S.


    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, and estimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  8. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory (United States)

    Hickman, J. M.; Bloomfield, H. S.


    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, andestimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  9. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander (United States)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.


    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  10. Improvements in the Global Reference Atmospheric Model and comparisons with a global 3-D numerical model (United States)

    Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.


    The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.

  11. Secular Climate Change on Mars: An Update Using One Mars Year of MSL Pressure Data (United States)

    Haberle, R. M.; Gomez-Elvira, J.; de la Torre Juarez, M.; Harri, A-M.; Hollingsworth, J. L.; Kahanpaa, H.; Kahre, M. A.; Lemmon, M.; Martin-Torres, F. J.; Mischna, M.; hide


    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approximately 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat within the SPRC led to suggestions that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, an estimate based on some modeling (Haberle and Kahre, 2010), and that the loss is monotonic, the global annual mean surface pressure should have increased between approximately 1-20 Pa since the Viking mission (approximately 20 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2.5 Mars years ago were found to be consistent with these loss rates. Last year at this meeting we compared surface pressure data from the MSL mission through sol 360 with that from Viking Lander 2 (VL-2) for the same period to determine if the trend continues. The results were ambiguous. This year we have a full Mars year of MSL data to work with. Using the Ames GCM to compensate for dynamics and environmental differences, our analysis suggests that the mean annual pressure has decreased by approximately 8 Pa since Viking. This result implies that the SPRC has gained (not lost) mass since Viking. However, the estimated uncertainties in our analysis are easily at the 10 Pa level and possibly higher. Chief among these are the hydrostatic adjustment of surface pressure from grid point elevations to actual elevations and the simulated regional environmental conditions at the lander sites. For these reasons, the most reasonable conclusion is that there is no significant difference in the size of the atmosphere between now and Viking. This implies, but does not demand, that the mass of the SPRC has not changed since Viking. Of course, year-to-year variations are possible as implied by the Phoenix data

  12. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland (United States)

    Sayle, Kerry L.; Cook, Gordon T.; Ascough, Philippa L.; Hastie, Helen R.; Einarsson, Árni; McGovern, Thomas H.; Hicks, Megan T.; Edwald, Ágústa; Friðriksson, Adolf


    Carbon and nitrogen stable isotope ratios (δ13C and δ15N) have been used widely in archaeology to investigate palaeodiet. Sulphur stable isotope ratios (δ34S) have shown great promise in this regard but the potential of this technique within archaeological science has yet to be fully explored. Here we report δ34S, δ13C and δ15N values for 129 samples of animal bone collagen from Skútustaðir, an early Viking age (landnám) settlement in north-east Iceland. This dataset represents the most comprehensive study to date of its kind on archaeological material and the results show a clear offset in δ34S values between animals deriving their dietary resources from terrestrial (mean = +5.6 ± 2.8‰), freshwater (mean = -2.7 ± 1.4‰) or marine (mean = +15.9 ± 1.5‰) reservoirs (with the three food groups being significantly different at 2σ). This offset allows reconstruction of the dietary history of domesticated herbivores and demonstrates differences in husbandry practices and animal movement/trade, which would be otherwise impossible using only δ13C and δ15N values. For example, several terrestrial herbivores displayed enriched bone collagen δ34S values compared to the geology of the Lake Mývatn region, indicating they may have been affected by sea-spray whilst being pastured closer to the coast, before being traded inland. Additionally, the combination of heavy δ15N values coupled with light δ34S values within pig bone collagen suggests that these omnivores were consuming freshwater fish as a significant portion of their diet. Arctic foxes were also found to be consuming large quantities of freshwater resources and radiocarbon dating of both the pigs and foxes confirmed previous studies showing that a large freshwater radiocarbon (14C) reservoir effect exists within the lake. Overall, these stable isotope and 14C data have important implications for obtaining a fuller reconstruction of the diets of the early Viking settlers in Iceland, and may allow

  13. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions. (United States)

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P


    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.

  14. Measuring the Permittivity of the Nucleus of a Comet: the PP-SESAME Experiment on Board the Philae/ROSETTA Lander (United States)

    Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.


    The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.

  15. Slosh Baffle Design and Test for Spherical Liquid Oxygen and Liquid Methane Propellant Tank for a Lander (United States)

    Strahan, Alan; Hernandez, Humberto


    A Vertical Test Bed (VTB) is being developed to investigate exploration technologies with earth-based landing trajectories. During this activity, a concern emerged that the VTB, with large liquid tanks, could experience unstable slosh interaction between the propellant fluid motion and the control system, leading to an investigation of slosh characteristics of the VTB. As such, slosh modeling, analysis and testing were performed, that both verified models and lead to the conclusion that baffles would be required for the full-scale vehicle. Follow-on design and testing supported development of these baffles and measurement of their performance. The majority of the tests conducted, including both subscale and full, involved the use of clear tanks containing water as a reasonable substitute for the cryogenic propellants, though a few tests involved the actual liquid oxygen and methane. Along the way, some unique test and data recording methods were employed to reduce testing complexity and cost.

  16. Anne Scott Sørensen, Ole Martin Høystad, Erling Bjurström and Halvard Vike Nye kulturstudier - En innføring, Oslo: Spartacus Forlag AS/Scandinavian Academic Press, 2008

    Directory of Open Access Journals (Sweden)

    Gösta Arvastson


    Full Text Available Nye kulturstudier [New Cultural Studies] is the first introduction to cultural studies in Scandinavia and an impressive presentation of the subject. The book aims to explain how cultural studies emerged as an interdisciplinary field in humanities and social sciences. Other introductions to cultural research in eth-nology and anthropology have been produced - but this one is different, since it is more comprehensive and am-bitious. Nye kulturstudier is the result of in-terdisciplinary collaboration between four colleagues from Norway, Sweden and Denmark. Senior lecturer Anne Scott Sørensen and Professor Ole Martin Høystad are affiliated to the Institute for Literature, Media and Cultural Studies at the University of Southern Denmark in Odense. Professor Erling Bjurström belongs to Tema Q at Linköping Uni-versity, and Professor Halvard Vike works at the Institute for Social Anthro-pology at Oslo University. The authors comment that they are oriented towards different subjects and educational pro-grammes at their respective universities. The book begins with a background to the theories and scientific traditions. This is followed by Cultural Analysis and Methodology, a chapter on Identity, Globalisation and Multiculturalism, one on Taste, Lifestyle and Consumption and, finally, by Nature, Body and Ex-perience Landscapes.

  17. Life detection experiments of the Viking Mission on Mars can be best interpreted with a Fenton oxidation reaction composed of H2O2 and Fe2+ and iron-catalysed decomposition of H2O2 (United States)

    Apak, Resat


    The findings of the life detection experiments carried out during the Viking mission to Mars were reinterpreted with a chemical hypothesis. The labelled release (LR), pyrolytic release (PR) and gas exchange (GEx) experiments were interpreted with Fenton chemistry. Oxygen and carbon dioxide evolution from Martian soil upon wetting and nutrient addition could be attributed to competition reactions between the Fenton-type oxidation of organic nutrients with the aqueous (hydrogen peroxide+Fe(II)) combination and the iron-catalysed decomposition of hydrogen peroxide. A substantial evolution of radioactive gas upon addition of labelled organic nutrient solution to soil, whereas the ceasing of this gas with a heat treated sample in the LR experiments, was attributed to Fenton oxidation and hydrogen peroxide thermal decomposition, respectively. The peculiar kinetics of LR and PR experiments that cannot be fully explained by other chemical or biochemical scenarios were easily explained with this new hypothesis, i.e. limitation of the Fenton reaction may arise from the depletion of reactants, the build-up of ferric hydroxide on soil and excessive scavenging by the organic nutrients of the generated hydroxyl radicals. Reabsorption or adsorption of evolved or introduced CO2 may involve the formation of carbonate compounds (e.g., magnesium carbonate and bicarbonate) on the surface of alkalinized soil as a result of the Fenton reaction. A critical evaluation of the recent biological hypothesis assuming the utilization of a hydrogen peroxide water intracellular fluid by putative organisms (Houtkooper & Schulze-Makuch 2007) is also made.

  18. Venus Lander Experiment Vessel Project (United States)

    National Aeronautics and Space Administration — Ceramic Composites Inc. (CCI) of Millersville, MD in association with Swales Aerospace of Beltsville, MD have evaluated an innovative approach for the design of a...

  19. RITD - Adapting Mars Entry, Descent and Landing System for Earth (United States)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero


    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  20. Advanced Rigid Ablative Thermal Protection Systems (United States)

    Feldman, J. D.; Gasch, M. J.; Poteet, C. C.; Szalai, Christine


    With the gradual increase in robotic rover sophistication and the desire for humans to explore the solar system, the need for reentry systems to deliver large payloads into planetary atmospheres is looming. Heritage ablative Thermal Protection Systems (TPS) using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for many future missions. Significant advances in TPS materials technology are needed in order to enable susequent human exploration missions. This paper summarizes some recent progress at NASA in developing families of advanced rigid ablative TPS that could be used for thermal protection in planetary entry missions. In particular, the effort focuses on technologies required to land heavy masses on Mars to facilitate exploration.

  1. Data calibrated migration modelling in the assessment of Brent Group prospectivity: a case study from the Veslefrikk area of the Norwegian North Viking Graben

    Energy Technology Data Exchange (ETDEWEB)

    Hay, S.J. [Statoil, Stavanger (Norway); Park, P.J.; Seim, K. [Statoil, Harstad (Norway)


    A study of the prospectivity around the Veslefrikk oil field in Block 30/3 of the Norwegian North Sea included an evaluation of petroleum migration and trapped gas to oil ratios. The study followed a procedure which involved the assessment of source rock distribution and quality, source rock maturity, petroleum generation and expulsion, and secondary migration. Inside a semi-regional framework two prospects are discussed: (1) B-prospect, a down faulted hanging-wall trap to the west of the Veslefrikk Horst where the existing discoveries of Veslefrikk, Oseberg East, and Zeta exist; and (2) C-prospect, a tilted fault block foot wall trap to the south of the Huldra discovery. 1D thermal modelling coupled to map based petroleum migration analysis and 2D multi-layer migration modelling were used in this multi-source, multi-carrier setting to evaluate the petroleum system. With the integration of available well and seismic data basin modelling techniques can deliver more confident assessments, especially where multiple geological models may exist. In this study area, data, such as temperatures and source rock properties, were used to constrain the model input options, thereby reducing parameter uncertainty. Other data, such as geochemical fluid to source correlation and observed petroleum distribution and composition, served as a validity check for the simulated results from different geological models. The use of these data in this case history are discussed and illustrated. (author)

  2. Fertility, survival, and conformation of Montbéliarde × Holstein and Viking Red × Holstein crossbred cows compared with pure Holstein cows during first lactation in 8 commercial dairy herds. (United States)

    Hazel, A R; Heins, B J; Hansen, L B


    Montbéliarde (MO) × Holstein (HO) and Viking Red (VR) × HO crossbred cows were compared with pure HO cows in 8 large, high-performance dairy herds in Minnesota. All cows calved for the first time from December 2010 to April 2014. Fertility and survival traits were calculated from records of insemination, pregnancy diagnosis, calving, and disposal that were recorded via management software. Body condition score and conformation were subjectively scored once during early lactation by trained evaluators. The analysis of survival to 60 d in milk included 536 MO × HO, 560 VR × HO, and 1,033 HO cows during first lactation. Cows analyzed for other fertility, survival, and conformation traits had up to 13% fewer cows available for analysis. The first service conception rate of the crossbred cows (both types combined) increased 7%, as did the conception rate across the first 5 inseminations, compared with the HO cows during first lactation. Furthermore, the combined crossbred cows (2.11 ± 0.05) had fewer times bred than HO cows (2.30 ± 0.05) and 10 fewer d open compared with their HO herdmates. Across the 8 herds, breed groups did not differ for survival to 60 d in milk; however, the superior fertility of the crossbred cows allowed an increased proportion of the combined crossbreds (71 ± 1.5%) to calve a second time within 14 mo compared with the HO cows (63 ± 1.5%). For survival to second calving, the combined crossbred cows had 4% superior survival compared with the HO cows. The MO × HO and VR × HO crossbred cows both had increased body condition score (+0.50 ± 0.02 and +0.25 ± 0.02, respectively) but shorter stature and less body depth than HO cows. The MO × HO cows had less set to the hock and a steeper foot angle than the HO cows, and the VR × HO cows had more set to the hock with a similar foot angle to the HO cows. The combined crossbred cows had less udder clearance from the hock than HO cows, more width between both front and rear teats, and longer

  3. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James


    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  4. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences; Fleming, R.W. [Geological Survey, Denver, CO (United States); Cruikshank, K.M. [Portland State Univ., OR (United States). Dept. of Geology; Martosudarmo, S.Y. [BPP Technologi, Jakarta (Indonesia)


    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  5. The World in the Viking Age

    DEFF Research Database (Denmark)

    with cargo and with seafarers who met foreign cultures, created unexpected connections between people from the Arctic Circle to the oceans south of the equator. Travel accounts have handed down glimpses of these voyages to the present day. However, it is archaeological discoveries in particular which uncover...

  6. Iron Lady / Vaira Vike-Freiberga

    Index Scriptorium Estoniae

    Vike-Freiberga, Vaira, 1937-


    Valik Läti presidendi vastuseid, millele Venemaa ametnikud on reageerinud kõige ägedamalt. Teemad puudutavad Venemaa võimalikku agressiooni Baltimaades ning Läti liitumist NATO ja Euroopa Liiduga

  7. Robots Conquering the Homeland of the Vikings:

    DEFF Research Database (Denmark)

    Agger Nielsen, Jeppe; Andersen, Kim Normann; Sigh, Anne

    The movement of robots from the production line to the service sector provides a protein solution to innovate and transform public service delivery. However, although robots increasingly are adopted in public service delivery (e.g., in healthcare and eldercare) as an alternative to traditional...... labor intensive services, little is known about their impact on organizations work processes, and how key stakeholders react toward robots. On this backdrop, this single case study investigates implementation and use of robot vacuum cleaners in Danish eldercare at the local government level. Using...... an extended version of the technological frame concept, this paper illustrates how technologist, managers, frontline staff and clients have different perceptions towards robot vacuum cleaning. The technologist and managers praise the new innovation for facilitating savings on the current accounts. By contrast...

  8. To Teach "Vikings" to Behave among "Mandarins"

    DEFF Research Database (Denmark)

    Søndergaard, Mikael; Lemmergaard, Jeanette


    The objective of this paper is to report from interactive teaching situations that involve a number of cross-cultural puzzles and to report on the construct value of a model in progress on bribery in China. The paper reports from eight simulations. It is a cross-disciplinary case involving joint...... venture, expatriation training, culture in auditing and business ethics....

  9. Developing And Qualifying Space Lighting Systems (United States)

    Guscott, Brian R.; Richter, John; Kiss, John; Holt, Stewart


    ILC's involvement in aerospace lighting will be discussed, detailing the pitfalls and problems associated with the design development and qualification of space suitable hardware. A recent project will be investigated and a brief opinion of the requirements for future space lighting issues will be presented. ILC's history in the aerospace lighting field began in 1977 with a project for a xenon short arc lamp for the Mars Viking Lander biological experiments. This lamp required the design and fabrication of a 5 watt device that would withstand lift-off and on-orbit conditions and function once landed on Mars. This first ILC product was an outgrowth of on-going work at Varian in Palo Alto. Next came lighting for the Space Shuttle both the interiors and exteriors; fluorescent tubes for the European Spacelab; beacon lights for the manned maneuverable unit; light sources for several shuttle experiment packages and currently, projects to provide pilot lights for a tethered satellite, beacons for rockets, and the general illumination for the proposed Space Station. ILC has grown with the US space program, and now has a dedicated division to respond to the expanding lighting needs of the space related community. The problems encountered and solutions for these problems for the luminaires for the Space Shuttle are well documented in the papers by Evans,,and in the papers Since these publications are almost 10 years old it is a tribute to their initial designs that to date the only failures that have occurred to space hardware are 6 lamp failures to Pay Load Bay Lights (PLB's) and 3 lamp failures to Remote Manipulator Arm Lights (RMA's), no fluorescent luminaire has failed. Technical issues that have provided the most challenge include: o Developing a highly efficient metal halide lamp that would withstand the vibration and thermal specifications. o Designing fluorescent luminaires that can withstand the balldrop test. o Identifying materials that provide the correct

  10. The Small Mars System (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.


    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  11. Small Radioisotope Power System Testing at NASA Glenn Research Center (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis


    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  12. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art


    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  13. Mars Pathfinder Airbag Impact Attenuation System (United States)

    Waye, Donald; Cole, J. Kenneth; Rivellini, Tommaso P.


    The Mars Pathfinder spacecraft, scheduled for launch in December 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia's High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  14. Landing site considerations for atmosphere structure and meteorology (United States)

    Seiff, Alvin; Haberle, R.; Murphy, J.


    The goal of the ASI/MET experiments is to extend our knowledge of Mars atmosphere structure and meteorology over that established by the Viking mission. The two in situ soundings of Mars atmosphere by Vikings 1 and 2 were highly similar, but radio occultations and infrared soundings have shown large variability in atmosphere structure on Mars with latitude, season, and terrain elevation. It would be of great interest to obtain an in situ sounding showing strong contrast in thermal structure with the Viking profiles. These would be expected to occur in the winter season, in the southern hemisphere, or at polar latitudes. These options are ruled out by Pathfinder Mission constraints, which place the entry in low, northern latitudes in mid summer, with small seasonal difference from the two Viking landers, and small latitude difference from Viking 1.

  15. 1993 Aerospace Avionic Systems Division Conference, 3rd, Denver, CO, Apr. 22, 1993, Proceedings (United States)

    Topics addressed include a single-supply monolithic, MIL-STD-1553 transreceiver implemented in BiCMOS wafer fabrication technology, a development methodology for contemporary avionics systems, MIL-STD-1553 remote terminal design using ASIC megacell technology, a modular electrooptic bus coupler, experiences in validating MIL-STD-1553 remote terminals, and the STANAG 3910 data bus for the next generation of European avionics systems. Attention is also given to JIAWG compatible development boards for the i960, high-speed databus evaluation, the space avionics architecture standard tailored to the common lunar lander conceptual design, and 1553 RT mechanizations for data sample consistency and multimessage transfers.

  16. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa


    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  17. Imaging Systems For Application In Harsh Environments (United States)

    Grothues, H.-G.; Michaelis, H.; Behnke, T.; Bresch, W.; Koldewey, E.; Lichopoj, A.; Tschentscher, M.; Alicke, P.

    Imaging systems operating in the wavelength domain between the near UV and the mid IR (about 300 nm to > 5 (m) play a crucial role in remote sensing from orbiters and in-situ lander measurements of planetary exploration space missions. Wide-angle and high-resolution cameras, IR imagers, and imaging spectrographs provide carto- graphic information on the morphology and topography of planetary surfaces, serve to characterize landing sites with their geological features like soils and rocks, de- liver data on the spectrophotometric characteristics of minerals, and contribute to at- mospheric reasearch. Moreover, imaging systems have the important task to present scientific missions to the general public. As resources during planetary missions are usually very limited imaging payloads have to be designed to have low mass and size, low power consumption, and to effectively handle the imaging data taking into ac- count the limited computing powers, mass memories and telemetry data rates (image data compression). Furthermore, the design has to cope with extremely harsh environ- ments such as, for example, high and very low temperatures, large temperature varia- tions and gradients, high mechanical loads (shocks), e.g. during landing on a planetary surface, a hostile particle radiation environment, and dusty or chemically aggressive atmospheres. The presentation discusses the requirements to be set up for planetary mission imaging systems, and gives an overview of the most important design mea- sures to be taken in order to be compliant with these requirements (e.g. miniatur- ization of electronics, light-weight materials, athermal and radiation tolerant design). The discussion comprises all subunits of imaging systems starting with the optics / the spectrograph and the detector unit, continuing with the data processing unit, and ending with peripheral equipment like e.g. drives, deployable booms, and illumina- tion devices for lander cameras. Examples are given of already

  18. Two-Dimensional Planetary Surface Landers Project (United States)

    National Aeronautics and Space Administration — We propose to develop a new landing approach that significantly reduces development time and obviates the most complicated, most expensive and highest-risk phase of...

  19. 1992 Landers and Big Bear, USA Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Southern California residents were rudely awakened Sunday morning June 28, 1992 at 04:57 am (June 28 at 11:57 GMT), by an earthquake of magnitude 7.6 (Ms) followed...

  20. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions (United States)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd


    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  1. Ground-state properties and density response of quasi-one-dimensional electron systems (United States)

    Agosti, Daniele; Pederiva, Francesco; Lipparini, Enrico; Takayanagi, Kazuo


    Ground-state properties of the quasi-one-dimensional electron gas in a quantum wire are calculated in the random-phase approximation (RPA), the ladder approximation, and the Singwi-Tosi-Land-Sjölander approximation. Numerical results are given for the exchange-correlation energy and the compressibility as a function of the electron density and the width of the wire. The dielectric response of the system has been calculated in the local field approximation and compared with the RPA result.

  2. Solar Electric Generating System II finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dohner, J.L.; Anderson, J.R.


    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  3. Outpost Assembly Using the ATHLETE Mobility System (United States)

    Howe, A. Scott; Wilcox, Brian


    A planetary surface outpost will likely consist of elements delivered on multiple manifests, that will need to be assembled from a scattering of landings. Using the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) limbed robotic mobility system, the outpost site can be prepared in advance through leveling, paving, and in-situ structures. ATHLETE will be able to carry pressurized and non-pressurized payloads overland from the lander descent stage to the outpost location, and perform precision docking and assembly of components. In addition, spent descent stages can be carried to assembly locations to form elevated decks for external work platforms above the planet surface. This paper discusses several concepts that have been studied for possible inclusion in the NASA Evolvable Mars Campaign human exploration mission scenarios.

  4. Hydrogeology of Basins on Mars (United States)

    Arvidson, Raymond E.


    This document summarizes the work accomplished under NASA Grant NAG5-3870. Emphasis was put on the development of the FIDO rover, a prototype for the twin-Mers which will be operating on the surface of Mars in 2004, specifically the primary work was the analysis of FIDO field trials. The grantees also analyzed VIKING Lander 1 XRFS and Pathfinder APXS data. Results show that the Viking site chemistry is consistent with an andesite, and the Pathfinder site is consistent with a basaltic andesite. The grantees also worked to demonstrate the capability to simulate annealing methods to apply to the inversion of remote sensing data. They performed an initial analyses of Sojourner engineering telemetry and imaging data. They performed initial analyses of Viking Lander Stereo Images, and of Hematite deposits in Terra Meridiani. They also acquired and analyzed the New Goldstone radar data.

  5. The atmosphere and climate of Mars

    CERN Document Server

    Clancy, R Todd; Forget, François; Smith, Michael D; Zurek, Richard W


    Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.

  6. Testing for a cosmological influence on local physics using atomic and gravitational clocks (United States)

    Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.


    The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.

  7. Outer planet atmospheric entry probes - An overview of technology readiness (United States)

    Vojvodich, N. S.; Reynolds, R. T.; Grant, T. L.; Nachtsheim, P. R.


    Entry probe systems for characterizing, by in situ measurements, the atmospheric properties, chemical composition, and cloud structure of the planets Saturn, Uranus, and Jupiter are examined from the standpoint of unique mission requirements, associated subsystem performance, and degree of commonality of design. Past earth entry vehicles (PAET) and current planetary spacecraft (Pioneer Venus probes and Viking lander) are assessed to identify the extent of potential subsystem inheritance, as well as to establish the significant differences, in both form and function, relative to outer planet requirements. Recent research results are presented and reviewed for the most critical probe technology areas, including: science accommodation, telecommunication, and entry heating and thermal protection. Finally presented is a brief discussion of the use of decision analysis techniques for quantifying various probe heat-shield test alternatives and performance risk.


    Directory of Open Access Journals (Sweden)

    K. Swarnalatha


    Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.

  9. system (United States)

    Garcilazo, H.; Valcarce, A.; Vijande, J.


    Using local central Yukawa-type Malfliet-Tjon interactions reproducing the low-energy parameters and phase shifts of the nn system, and the latest updates of the nΛ and ΛΛ Nijmegen ESC08c potentials, we study the possible existence of a bound state. Our results indicate that the is unbound, being just above threshold. We discuss the role played by the 1 S 0 nn repulsive term of the Yukawa-type Malfliet-Tjon interaction. Supported by COFAA-IPN (México), Ministerio de Economía, Industria y Competitividad and EU FEDER (FPA2013-47443, FPA2015-69714-REDT, FPA2016-77177), Junta de Castilla y León (SA041U16) and Generalitat Valenciana PrometeoII/2014/066

  10. ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration (United States)

    Wilcox, Brian H.


    As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions. Architectural studies have indicated that one useful role for ATHLETE in planetary (moon or Mars) exploration is to "walk" cargo off the payload deck of a lander and transport it across the surface. Recent architectural approaches are focused on the concept that the lander descent stage will use liquid hydrogen as a propellant. This is the highest performance chemical fuel, but it requires very large tanks. A natural geometry for the lander is to have a single throttleable rocket engine on

  11. Perchlorate radiolysis on Mars and the origin of martian soil reactivity. (United States)

    Quinn, Richard C; Martucci, Hana F H; Miller, Stephanie R; Bryson, Charles E; Grunthaner, Frank J; Grunthaner, Paula J


    Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO(-)), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO(-) with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments.

  12. Mission and system concepts for Mars robotic precursor missions (United States)

    Scoon, George E. N.; Hechler, Martin


    Mission and system design concepts reflecting the status at about the midpoint of the Marsnet phase A study are reported. The objective of Marsnet is to place three to four small stations (approximately 80 kg) on the surface of Mars to perform scientific measurements in the areas of geophysics (seismology), geology, geochemistry, mineralogy, meteorology, and exobiology. The ESA Landers will constitute part of a global network to which NASA is planning to contribute up to 16 other stations. The Mars Global Network may be seen as a precursor to the exploration of Mars by mobile vehicles in terms of its scientific measurements. But, also, some aspects of mission and system design addressed may be applicable to more complex robotic missions to Mars, for example, the development and testing of feasible probe delivery concepts; the design of low mass, low power components, and solar arrays suited for the Mars environment; and the development of a low complexity mobile instrument deployment device.

  13. NASA's Space Launch System (SLS) Program: Mars Program Utilization (United States)

    May, Todd A.; Creech, Stephen D.


    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  14. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues (United States)

    Palaszewski, Bryan


    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  15. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems (United States)

    Mwara, Kamwana N.


    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  16. System of gigantic valleys northwest of Tharsis, Mars: Latent catastrophic flooding, northwest watershed, and implications for northern plains ocean (United States)

    Dohm, J.M.; Anderson, R.C.; Baker, V.R.; Ferris, J.C.; Hare, T.M.; Strom, R.G.; Rudd, L.P.; Rice, J. W.; Casavant, R.R.; Scott, D.H.


    Mars Orbiter Laser Altimeter (MOLA) reveals a system of gigantic valleys to the northwest of the huge martian shield volcano, Arsia Mons, in the western hemisphere of Mars. These newly identified northwestern slope valleys (NSVs) potentially signify previously undocumented martian catastrophic floods and may corroborate the northern ocean hypotheses. These features, which generally correspond spatially to gravity lows, were previously obscurred in Mariner and Viking Orbiter imagery by veneers of materials, including volcanic lava flows and air fall deposits. Geologic investigations of the Tharsis region suggest that the NSVs were mainly carved prior to the construction of Arsia Mons and its associated Late Hesperian and Amazonian age lava flows, concurrent with the early development of the outflow channels that debouch into Chryse Planitia.

  17. The Art and Science of Systems Engineering (United States)

    Singer, Christopher E.


    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  18. Red Dragon drill missions to Mars (United States)

    Heldmann, Jennifer L.; Stoker, Carol R.; Gonzales, Andrew; McKay, Christopher P.; Davila, Alfonso; Glass, Brian J.; Lemke, Larry L.; Paulsen, Gale; Willson, David; Zacny, Kris


    We present the concept of using a variant of a Space Exploration Technologies Corporation (SpaceX) Dragon space capsule as a low-cost, large-capacity, near-term, Mars lander (dubbed ;Red Dragon;) for scientific and human precursor missions. SpaceX initially designed the Dragon capsule for flight near Earth, and Dragon has successfully flown many times to low-Earth orbit (LEO) and successfully returned the Dragon spacecraft to Earth. Here we present capsule hardware modifications that are required to enable flight to Mars and operations on the martian surface. We discuss the use of the Dragon system to support NASA Discovery class missions to Mars and focus in particular on Dragon's applications for drilling missions. We find that a Red Dragon platform is well suited for missions capable of drilling deeper on Mars (at least 2 m) than has been accomplished to date due to its ability to land in a powered controlled mode, accommodate a long drill string, and provide payload space for sample processing and analysis. We show that a Red Dragon drill lander could conduct surface missions at three possible targets including the ice-cemented ground at the Phoenix landing site (68 °N), the subsurface ice discovered near the Viking 2 (49 °N) site by fresh impact craters, and the dark sedimentary subsurface material at the Curiosity site (4.5 °S).

  19. Estonia's eVikings project facing new challenges / Tarmo Pihl

    Index Scriptorium Estoniae

    Pihl, Tarmo


    Analüüs innovatsioonist ning teadus- ja arendustegevusest Eestis. Koostöö vajalikkusest ettevõtete ja instituutide vahel parandamaks Eesti IT sektori rahvusvahelist konkurentsivõimet. IT-alastest uuringutest Eestis. Skeem

  20. Astrobiology from exobiology: Viking and the current Mars probes. (United States)

    Soffen, G A


    The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.

  1. Mars: Water Vapor Observations from the Viking Orbiters (United States)

    Farmer, C. B.; Davies, D. W.; Holland, A. L.; Laporte, D. D.; Doms, P. E.


    The global distribution of the water vapor has been mapped at low resolution throughout the period from the northern summer solstice to the following equinox. During this seasonal period the water vapor underwent a gradual redistribution, the latitude of maximum column abundance moving from the northern polar area to the equatorial latitudes. The total global vapor content remained approximately constant at the equivalent of about 1.3 cu km of ice. The various data obtained indicate that the residual polar caps are composed of water ice.

  2. Chemical and physical microenvironments at the Viking landing sites (United States)

    Clark, B. C.


    Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.

  3. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing (United States)

    Palaszewski, Bryan


    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  4. Cold Helium Pressurization for Liquid Oxygen/Liquid Methane Propulsion Systems: Fully-Integrated Hot-Fire Test Results (United States)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.


    Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.

  5. Measurements of Oxychlorine species on Mars (United States)

    Sutter, B.; Quinn, R. C.; Archer, P. D.; Glavin, D. P.; Glotch, T. D.; Kounaves, S. P.; Osterloo, M. M.; Rampe, E. B.; Ming, D. W.


    Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10-25 vol%) deposits, expected associated oxychlorine phases (>5-10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which

  6. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration (United States)

    Palaszewski, Bryan


    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  7. Intelligent Systems Technologies for Ops (United States)

    Smith, Ernest E.; Korsmeyer, David J.


    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  8. Classification systems of communication for use in epidemiological surveillance of children with cerebral palsy. (United States)

    Virella, Daniel; Pennington, Lindsay; Andersen, Guro L; Andrada, Maria da Graça; Greitane, Andra; Himmelmann, Kate; Prasauskiene, Audrone; Rackauskaite, Gija; De La Cruz, Javier; Colver, Allan


    Children with cerebral palsy (CP) often experience communication difficulties. We aimed to identify a classification system for communication of children with CP suitable for epidemiological surveillance. Systems to classify the communication of children with CP were identified. The Communication Function Classification System (CFCS), Functional Communication Classification System (FCCS), and Viking Speech Scale (VSS) were chosen for further investigation and translated. They were administered to 155 children aged 4 to 13 years with CP (across all motor severity levels) from eight European countries. Children's parents/carers, speech therapists, and other health professionals applied the systems through direct observation. Other professionals applied them from case notes only. The systems were assessed for agreement, stability, ease, and feasibility of application. Test-retest stability was moderate-to-high for VSS (k=0.66-0.88), CFCS (k=uncomputed-0.91), and FCCS (k=0.52-0.91). Overall interrater agreement was fair to very good for every classification system. VSS achieved the best agreement between parents/carers and speech therapists. VSS was considered the easiest instrument to apply. Because of its ease of use by a range of healthcare professionals, the VSS should be considered for CP registers which intend to survey speech intelligibility. For a wider assessment of communication, the CFCS or FCC should be considered. © 2015 Mac Keith Press.

  9. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.


    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  10. Lunar surface base propulsion system study, volume 1 (United States)


    The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.

  11. Systems Engineering and Reusable Avionics (United States)

    Conrad, James M.; Murphy, Gloria


    One concept for future space flights is to construct building blocks for a wide variety of avionics systems. Once a unit has served its original purpose, it can be removed from the original vehicle and reused in a similar or dissimilar function, depending on the function blocks the unit contains. For example: Once a lunar lander has reached the moon's surface, an engine controller for the Lunar Decent Module would be removed and used for a lunar rover motor control unit or for a Environmental Control Unit for a Lunar Habitat. This senior design project included the investigation of a wide range of functions of space vehicles and possible uses. Specifically, this includes: (1) Determining and specifying the basic functioning blocks of space vehicles. (2) Building and demonstrating a concept model. (3) Showing high reliability is maintained. The specific implementation of this senior design project included a large project team made up of Systems, Electrical, Computer, and Mechanical Engineers/Technologists. The efforts were made up of several sub-groups that each worked on a part of the entire project. The large size and complexity made this project one of the more difficult to manage and advise. Typical projects only have 3-4 students, but this project had 10 students from five different disciplines. This paper describes the difference of this large project compared to typical projects, and the challenges encountered. It also describes how the systems engineering approach was successfully implemented so that the students were able to meet nearly all of the project requirements.

  12. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.


    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  13. High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander RID G-2489-2010 RID A-4901-2009

    DEFF Research Database (Denmark)

    Fones, GR; Davison, W.; Holby, O.


    . The newly developed deployment system is described, and based on these first results, its strengths and weaknesses are discussed. Deployments were made in the Western Black Sea in shelf sediments overlain by well-oxygenated water at a water depth of 77 m. Maxima of the redox-sensitive metals at 4 and 8 cm...

  14. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere (United States)

    Batterson, Courtney


    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  15. Development of Augmented Spark Impinging Igniter System for Methane Engines (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.


    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a

  16. Development of Life Support System Technologies for Human Lunar Missions (United States)

    Barta, Daniel J.; Ewert, Michael K.


    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  17. Estimating the Life Cycle Cost of Space Systems (United States)

    Jones, Harry W.


    A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.

  18. Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions (United States)

    Colozza, Anthony J.; Cataldo, Robert L.


    This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made.

  19. Planetary seismology and interiors (United States)

    Toksoz, M. N.


    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  20. Solar radiation on a catenary collector (United States)

    Crutchik, M.; Appelbaum, J.


    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  1. Marco Polo: International Small Solar System Body Exploration Mission in 2010's (United States)

    Yano, Hajime

    Since 2000, Japanese scientists and engineers have investigated new generation primitive body missions in the post-Hayabusa era in 2010's. Receiving the Minorbody Exploration Forum Final Report, ISAS established the nation-wide Small Body Exploration Working Group (SBE-WG) in 2004. After the successful exploration of the S-type NEO Itokawa by Hayabusa in 2005, the Hayabusa-2 concept emerged for a C-type asteroid sample return by the original Hayabusa spacecraft system with minor improvements and modifications. In parallel to that effort, the SBE-WG continued to develop the post-Hayabusa mission concept as "Hayabusa Mk-II," a fully model-changed, advanced spacecraft with the sample return capability from the most primitive bodies of the solar system. It is this Hayabusa Mk-II that has became the foundation of the International small body exploration concept "Marco Polo" since 2006. Jointly proposed to the first call of the ESA Cosmic Vision by scientists from Japan, Europe, and the U.S., the Marco Polo concept was selected as one of the M-class mission candidates for the assessment study phase in the fall of 2007. In 2008, the international joint study team has been created and its mission definitions, system requirements, and target selections are currently under the study. The top-level scientific themes are to decode the solar system formation and evolution in the astrobiology and astromineralogy contexts as one of the most important scientific challenges of 2010's. These themes are sub-divided into several objectives to be achieved by both instruments carried onboard the mother spacecraft (MSC), a large lander, or small hopping rovers and returned samples. The initial mission target candicdates include comet-asteroid transition (CAT) objects, D-type asteroids and C-type binary asteroids in near-Earth orbits. In the baseline scenario, a Soyuz launcher provided by ESA will launch the JAXA-made MSC with sampling and other in-situ science instruments provided by

  2. Robotic Arm and Rover Actuator Systems for Mars Exploration (United States)

    Reid, L.; Brawn, D.; Noon, D.


    Missions such as the Sojourner Rover, the Robotic Arm for Mars Polar Lander, and the 2003 Mars Rover, Athena, use numerous actuators that must operate reliably in extreme environments for long periods of time.

  3. Liquid Chromatography Applied to Space System (United States)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Searching for signs of past or present life in our Solar System is a real challenge that stirs up the curiosity of scientists. Until now, in situ instrumentation was designed to detect and determine concentrations of a wide number of organic biomarkers. The relevant method which was and still is employed in missions dedicated to the quest of life (from Viking to ExoMars) corresponds to the pyrolysis-GC-MS. Along the missions, this approach has been significantly improved in terms of extraction efficiency and detection with the use of chemical derivative agents (e.g. MTBSTFA, DMF-DMA, TMAH…), and in terms of analysis sensitivity and resolution with the development of in situ high-resolution mass spectrometer (e.g. TOF-MS). Thanks to such an approach, organic compounds such as amino acids, sugars, tholins or polycyclic aromatic hydrocarbons (PAHs) were expected to be found. However, while there’s a consensus that the GC-MS of Viking, Huygens, MSL and MOMA space missions worked the way they had been designed to, pyrolysis is much more in debate (Glavin et al. 2001; Navarro-González et al. 2006). Indeed, (1) it is thought to remove low levels of organics, (2) water and CO2 could interfere with the detection of likely organic pyrolysis products, and (3) only low to mid-molecular weight organic molecules can be detected by this technique. As a result, researchers are now focusing on other in situ techniques which are no longer based on the volatility of the organic matter, but on the liquid phase extraction and analysis. In this line, micro-fluidic systems involving sandwich and/or competitive immunoassays (e.g. LMC, SOLID; Parro et al. 2005; Sims et al. 2012), micro-chip capillary electrophoreses (e.g. MOA; Bada et al. 2008), or nanopore-based analysis (e.g. BOLD; Schulze-Makuch et al. 2012) have been conceived for in situ analysis. Thanks to such approaches, molecular biological polymers (polysaccharides, polypeptides, polynucleotides, phospholipids, glycolipids

  4. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  5. Logistics Modeling for Lunar Exploration Systems (United States)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.


    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  6. Ares I Stage Separation System Design Certification Testing (United States)

    Mayers, Stephen L.; Beard, Bernard B.; Smith, R. Kenneth; Patterson, Alan


    NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided.

  7. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus (United States)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    elements of external orientation, provides new image processing of previous missions to outer planetary system. Using Photomod software ( we have generated a new control point network in 3-D and orthomosaics for Io, Ganymede and Enceladus. Based on improved orbit data for Galileo we have used larger numbers of images than were available before, resulting in a more rigid network for Ganymede. The obtained results will be used for further processing and improvement of the various parameters: body shape parameters and shape modeling, libration, as well as for studying of the surface interesting geomorphological phenomena, for example, distribution of bright and dark surface materials on Ganymede and their correlations with topography and slopes [6]. Acknowledgments: The Ganymede study was partly supported by ROSKOSMOS and Space Research Institute under agreement No. 36/13 “Preliminary assessment of the required coordinate and navigation support for selection of landing sites for lander mission “Laplace” and partly funding by agreement No. 11-05-91323 for “Geodesy, cartography and research satellites Phobos and Deimos” References: [1] Nadezhdina et al. Vol. 14, EGU2012-11210, 2012. [2] Zhukov et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [3] Zubarev et al. International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space Research Institute, Moscow, Russia, 4-8 March, 2013. [4] Lazarev et al. Izvestia VUZov. 2012, No 6, pp. 9-11 (in Russian). [5] Kokhanov et al. Current problems in remote sensing of the Earth from space. 2013. Vol. 10. No 4. pp. 136-153. (in Russian). [6] Oberst et al., 2013 International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments", Space

  8. Developing a Prototype ALHAT Human System Interface for Landing (United States)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin


    The goal of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project is to safely execute a precision landing anytime/anywhere on the moon. This means the system must operate in any lighting conditions, operate in the presence of any thruster generated regolith clouds, and operate without the help of redeployed navigational aids or prepared landing site at the landing site. In order to reach this ambitious goal, computer aided technologies such as ALHAT will be needed in order to permit these landings to be done safely. Although there will be advanced autonomous capabilities onboard future landers, humans will still be involved (either onboard as astronauts or remotely from mission control) in any mission to the moon or other planetary body. Because many time critical decisions must be made quickly and effectively during the landing sequence, the Descent and Landing displays need to be designed to be as effective as possible at presenting the pertinent information to the operator, and allow the operators decisions to be implemented as quickly as possible. The ALHAT project has established the Human System Interface (HSI) team to lead in the development of these displays and to study the best way to provide operators enhanced situational awareness during landing activities. These displays are prototypes that were developed based on multiple design and feedback sessions with the astronaut office at NASA/ Johnson Space Center. By working with the astronauts in a series of plan/build/evaluate cycles, the HSI team has obtained astronaut feedback from the very beginning of the design process. In addition to developing prototype displays, the HSI team has also worked to provide realistic lunar terrain (and shading) to simulate a "out the window" view that can be adjusted to various lighting conditions (based on a desired date/time) to allow the same terrain to be viewed under varying lighting terrain. This capability will be critical to determining the

  9. A cislunar transportation system fuelled by lunar resources (United States)

    Sowers, G. F.


    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  10. Magnetism of Minor Bodies in the Solar System: From 433 Eros, passing Braille, Steins, and Lutetia towards Churyumov-Gerasimenko and 1999 JU3. (United States)

    Hercik, David; Auster, Hans-Ulrich; Heinisch, Philip; Richter, Ingo; Glassmeier, Karl-Heinz


    Minor bodies in the solar system, such as asteroids and comets, are important sources of information for our knowledge of the solar system formation. Besides other aspects, estimation of a magnetization state of such bodies might prove important in understanding the early aggregation phases of the protoplanetary disk, showing the level of importance of the magnetic forces in the processes involved. Meteorites' magnetization measurements suggest that primitive bodies consist of magnetized material. However, space observations from various flybys give to date diverse results for a global magnetization estimation. The flybys at Braille and Gaspra indicate possible higher magnetization (~ 10-3 Am2/kg), while flybys at Steins and Lutetia show no significant values in the global field change illustrating low global magnetization. Furthermore, the interpretation of remote (during flybys) measurements is very difficult. For correct estimates on the local magnetization one needs (in the best case) multi-point surface measurements. Single point observation has been done by NEAR-Shoemaker on 433 Eros asteroid, revealing no signature in magnetic field that could have origin in asteroid magnetization. Similar results, no magnetization observed, have been provided by evaluation of recent data from ROMAP (Philae lander) and RPC-MAG (Rosetta orbiter) instruments from comet 67P/Churyumov-Gerasimenko. The ROMAP instrument provided measurements from multiple points of the cometary surface as well as data along ballistic path between multiple touchdowns, which support the conclusion of no global magnetization. However, even in case of the in-situ on surface observations the magnetization estimate has a limiting spatial resolution that is dependent on the distance from the surface (~ 50 cm in case of ROMAP). To get information about possible smaller magnetized grains distribution and magnetization strength, the sensor shall be placed as close as possible to the surface. For such

  11. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.


    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  12. Anchoring a lander on an asteroid using foam stabilization Project (United States)

    National Aeronautics and Space Administration — NASA has proposed several missions to land a craft on an asteroid and potentially to return samples from it. While large asteroids in the asteroid belt can exhibit a...

  13. Compact Vacuum Pump for Titan Lander Missions Project (United States)

    National Aeronautics and Space Administration — NASA, the Department of Defense, the Department of Homeland Security, and commercial industry have a pressing need for miniaturized, rugged, low mass, power...

  14. Low Cost Mars Sample Return Utilizing Dragon Lander Project (United States)

    Stoker, Carol R.


    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  15. German Women in the Five New Lander: Employment and Entrepreneurship (United States)


    an innovative twist the effort may not be entrepreneurial. Taking over the family business , or expanding the size by buying another business could...the context of the current market and political changes. Simply being a small businessman or operating a family business in East Germany does not make...European Community is relying on a public relations campaign to dispel its image of out-of-touch bureaucrats. The owner of a large family business in

  16. Compact Vacuum Pump for Titan Lander Missions Project (United States)

    National Aeronautics and Space Administration — For a number of years Creare has developed, fabricated, and tested highly miniaturized, high vacuum pumps specifically designed for mass spectrometers used on NASA...

  17. Landers and Big Bear California Earthquakes, June 28, 1992 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — California residents were rudely awakened early Sunday morning June 28, 1992, by an earthquake of magnitude 7.6 (Ms) followed by a smaller 6.7 (s) magnitude...

  18. Spacecraft Orbits for Earth/Mars-Lander Radio Relay (United States)

    Noreen, Gary; Diehl, Roger; Neelon, Joseph


    A report discusses a network of spacecraft, in orbit around Mars, used to relay radio communications between Earth stations and mobile exploratory robots (rovers) as well as stationary scientific instruments that have been landed on the Mars surface. The relay spacecraft include two already in orbit plus several others planned to arrive at Mars in the years 2004 through 2008. A major portion of the report is devoted to the orbit of the G. Macroni Orbiter, which is in the midst of an iterative design process and is intended to be the first Mars orbiter designed primarily for radio relay. Candidate orbits are analyzed with a view toward choosing one that maximizes the amount of time available for communication with surface units, taking account of visibility as a function of position, the limit on communication distance at low power, and the fact that surface units can transmit more easily when they are in sunlight. Two promising new orbits for Mars relay satellites are identified: a 1/2-sol apoapsis-at-constant-time-of-day equatorial orbit and a 1/4-sol apoapsis-at-constant-time-of-day, critical-inclination orbit.

  19. Development of an Indexing Media Filtration System for Long Duration Space Missions (United States)

    Agui, Juan H.; Vijayakumar, R.


    The effective maintenance of air quality aboard spacecraft cabins will be vital to future human exploration missions. A key component will be the air cleaning filtration system which will need to remove a broad size range of particles including skin flakes, hair and clothing fibers, other biological matter, and particulate matter derived from material and equipment wear. In addition, during surface missions any extraterrestrial planetary dust, including dust generated by near-by ISRU equipment, which is tracked into the habitat will also need to be managed by the filtration system inside the pressurized habitat compartments. An indexing media filter system is being developed to meet the demand for long-duration missions that will result in dramatic increases in filter service life and loading capacity, and will require minimal crew involvement. These features may also benefit other closed systems, such as submarines, and remote location terrestrial installations where servicing and replacement of filter units is not practical. The filtration system consists of three stages: an inertial impactor stage, an indexing media stage, and a high-efficiency filter stage, packaged in a stacked modular cartridge configuration. Each stage will target a specific range of particle sizes that optimize the filtration and regeneration performance of the system. An 1/8th scale and full-scale prototype of the filter system have been fabricated and have been tested in the laboratory and reduced gravity environments that simulate conditions on spacecrafts, landers and habitats. Results from recent laboratory and reducegravity flight tests data will be presented.

  20. Implementation of a Relay Coordination System for the Mars Network (United States)

    Allard, Daniel A.


    Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation

  1. SeeStar: an open-source, low-cost imaging system for subsea observations (United States)

    Cazenave, F.; Kecy, C. D.; Haddock, S.


    Scientists and engineers at the Monterey Bay Aquarium Research Institute (MBARI) have collaborated to develop SeeStar, a modular, light weight, self-contained, low-cost subsea imaging system for short- to long-term monitoring of marine ecosystems. SeeStar is composed of separate camera, battery, and LED lighting modules. Two versions of the system exist: one rated to 300 meters depth, the other rated to 1500 meters. Users can download plans and instructions from an online repository and build the system using low-cost off-the-shelf components. The system utilizes an easily programmable Arduino based controller, and the widely distributed GoPro camera. The system can be deployed in a variety of scenarios taking still images and video and can be operated either autonomously or tethered on a range of platforms, including ROVs, AUVs, landers, piers, and moorings. Several Seestar systems have been built and used for scientific studies and engineering tests. The long-term goal of this project is to have a widely distributed marine imaging network across thousands of locations, to develop baselines of biological information.

  2. Strategies and Technologies for In Situ Mineralogical Investigations on Mars (United States)

    Marshall, J. R.; Bratton, C.; Koppel, L.; Hecht, M.; Metzger, E.


    Surface landers on Mars (Viking and Pathfinder) have not revealed satisfying answers to the mineralogy and lithology of the planet's surface. In part, this results from their prime directives: Viking focused on exobiology, Pathfinder focused on technology demonstration. The analytical instruments on board the landers made admirable attempts to extract the mineralogy and geology of Mars, as did countless modeling efforts after the missions. Here we suggest a framework for elucidating martian, or any other planetary geology, through an approach that defines (a) type of information required, (b) explorational strategy harmonious with acquisition of these data, (c) interpretation approach to the data, (d) compatible mission architecture, (e) instrumentation for interrogating rocks and soil. (a) Data required: The composition of a planet is ordered at scales ranging from molecules to minerals to rocks, and from geological units to provinces to planetary-scale systems. The largest ordering that in situ compositional instruments can attempt to interrogate is rock type "aggregate" information. This is what the geologist attempts to identify first. From this, mineralogy can be either directly seen or inferred. From mineralogy can be determined elemental abundances and perhaps the state of the compounds as being crystalline or amorphous. Knowledge of rock type and mineralogy is critical for elucidating geologic process. Mars landers acquired extremely valuable elemental data, but attempted to move from elements to aggregates, but this can only be done by making many assumptions and sometimes giant leaps of faith. Data we believe essential are elements, minerals, degree of ordering of compounds, and the aggregate or rock type that these materials compose. (b) Explorational strategy: A lander should function as a surrogate geologist. Of the total landscape, a geologist sees much, but gives detailed attention to an infinitesimally small amount of what is seen. To acquire

  3. The Hardware Challenges for the Mars Exploration Rover Heat Rejection System (United States)

    Tsuyuki, Glenn; Ganapathi, Gani; Bame, David; Patzold, Jack; Fisher, Richard; Theriault, Laurent


    The primary objective of the Mars Exploration Rover (MER) 2003 Project focused on the search for evidence of water on Mars. The launch of two identical flight systems occurred in June and July of 2003. The roving science vehicles are expected to land on the Martian surface in early and late January of 2004, respectively. The flight system design inherited many successfully features and approaches from the Mars Pathfinder Mission. This included the use of a mechanically-pumped fluid loop, known as the Heat Rejection System (HRS), to transport heat from the Rover to radiators on the Cruise Stage during the quiescent trek to Mars. While the heritage of the HRS was evident, application of this system for MER presented unique and difficult challenges with respect to hardware implementation. We will discuss these hardware challenges in each HRS hardware element: the integrated pump assembly, cruise stage HRS, lander HRS, and Rover HRS. These challenges span the entire development cycle including fabrication, assembly, and test. We will conclude by citing the usefulness of this system during launch operations, where in particular, the flight hardware inside the Rover was thermally conditioned by the HRS since there was no other effective means of maintaining its temperature.

  4. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems (United States)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.


    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  5. Space Launch System Upper Stage Technology Assessment (United States)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy


    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  6. Quakefinder: A scalable data mining system for detecting earthquakes from space

    Energy Technology Data Exchange (ETDEWEB)

    Stolorz, P.; Dean, C. [California Inst. of Technology, Pasadena, CA (United States)


    We present an application of novel massively parallel datamining techniques to highly precise inference of important physical processes from remote sensing imagery. Specifically, we have developed and applied a system, Quakefinder, that automatically detects and measures tectonic activity in the earth`s crust by examination of satellite data. We have used Quakefinder to automatically map the direction and magnitude of ground displacements due to the 1992 Landers earthquake in Southern California, over a spatial region of several hundred square kilometers, at a resolution of 10 meters, to a (sub-pixel) precision of 1 meter. This is the first calculation that has ever been able to extract area-mapped information about 2D tectonic processes at this level of detail. We outline the architecture of the Quakefinder system, based upon a combination of techniques drawn from the fields of statistical inference, massively parallel computing and global optimization. We confirm the overall correctness of the procedure by comparison of our results with known locations of targeted faults obtained by careful and time-consuming field measurements. The system also performs knowledge discovery by indicating novel unexplained tectonic activity away from the primary faults that has never before been observed. We conclude by discussing the future potential of this data mining system in the broad context of studying subtle spatio-temporal processes within massive image streams.

  7. Conceptual analysis of a lunar base transportation system (United States)

    Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.


    Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.

  8. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.


    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  9. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide


    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  10. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications (United States)

    Hoberecht, Mark A.; Jakupca, Ian J.


    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  11. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations (United States)

    Palaszewski, Bryan


    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  12. On the Applicability of Geographic Information Systems for Landing-Site Assessments (United States)

    van Gasselt, S.


    As of 2013, a total number of 45 autonomous lander, sample-return or rover missions have been launched to the Moon, Venus, Mars, and Titan since 1960. Slightly less than 50% of these attempts were successful (see [4] and compilation in figure 1). Reports of the National Research Council (NRC) or recent surveys and roadmaps of space agencies clearly state the importance of autonomous units operating on the surface of other planets as precursors to in-depth robotic analyses and human exploration [1, 2, 3]. The selection of landing sites for autonomously operating planetary probes is a complex task, mainly because of partial gaps in the determinability of surface properties based on remote-sensing data, but also because scientific as well as engineering aspects need to be co-evaluated to provide a basis for a successful and effective mission-operation with measurable scientific output. Science criteria are always related to a set of (planet-specific) surface investigations conducted at a distinct location. Engineering constraints pick up science criteria and form an additional set of requirements within a geospatial context. This context makes it attractive to make use of established tools to geospatially analyse, define and rate locations in terms of a feasibility and safety assessment for lander or rover operations. For terrestrial applications, integration, analysis and evaluation of data from a geospatial domain are today usually conducted using highly modifiable but generic geographic information system (GIS) technology (GIST). GIS allow us to define workflow models related to geospatially defined data and to extract information from such investigations. We here want to discuss how standard demands as put forward by recent mission-planning scenarios can be evaluated using standard GIST, i.e. we want to define adaptable workflows for solving characteristic problems. As a second aim, such a procedure should provide a basis for discussion on how such systems can

  13. 2010 JPC Abstract: Ares I First Stage Propulsion System Status (United States)

    Priskos, Alex S.


    In November 2005, NASA created the Constellation Program to develop an entirely new fleet of spacecraft to include the Ares I Crew Launch Vehicle and Ares V Cargo Launch vehicles. This mission architecture included the Orion capsule (which would be used to transport astronauts to low-Earth orbit and beyond), the Altair lunar lander, and an Earth departure stage. The Ares First Stage Team has made significant progress on the design of a propulsion system to meet the objectives of the Constellation Program. Work on a first stage element propulsion system capable of lofting a new fleet of spacecraft is well underway. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle served as a starting point in the design of a new motor that would meet the requirements of those new vehicles. This new propulsive element will provide greater total impulse utilizing a fifth segment to loft a safer, more powerful fleet of space flight vehicles. Performance requirements, basic architecture, and obsolescence issues were all factors in determining the new first stage element design and configuration. Early efforts focused on creating designs that would be capable of supporting the requisite loads and environments. While the motor casings are Shuttle legacy, because of Ares I s unique in-line configuration, the first stage will require entirely new forward structures (forward skirt, forward skirt extension, aeroshell, and frustum) and a modified systems tunnel. The use of composites facilitated a change in the geometry, which in turn afforded the ability to focus strength where it was needed without additional mass. The Ares First Stage rocket motor casting tooling was designed and built to achieve a propellant grain geometry that produces the specific required ballistic profile. The new propellant formulation is a polybutadiene acrylonitrile (PBAN) copolymer, which has been modified to attain the desired burn rate and retain adequate tailoring

  14. Oxidants: Chemical Energy for Life on Mars and in the Outer Solar System (United States)

    Schulze-Makuch, D.; Houtkooper, J.; Cooper, J.


    Redox gradients are essential for life as we know it. Strong oxidants to retain these gradients are produced in a variety of planetary environments by UV and ionizing radiation. Houtkooper and Schulze-Makuch (2007) previously suggested hydrogen peroxide as an essential biological ingredient for putative Martian life to adapt to the challenging near-surface conditions on the Red Planet. On Earth, adaptation and use of oxidants is widespread. Examples are microorganisms that use or produce oxidants, and the microbe Acetobacter peroxidans, which uses the decomposition of H2O2 as its major metabolic pathway. However, oxidants may also be critical biogenic components on outer Solar System objects of high astrobiological potential such as Europa and Enceladus. Exothermic reactivity of oxidants additionally contributes heat for habitable environments and acceleration of chemical processes potentially supporting life. Oxidation chemistry produces volatile gases and other detectable species that may be diagnostic of recent and ongoing biochemistry. More reduced chemical environments like the Titan atmosphere, and more isolated liquid water habitats like the deep-lying subsurface oceans of Ganymede and Callisto, may be astrobiologically impacted by externally driven inputs of oxidants over billions of years. Houtkooper, J.M. and Schulze-Makuch, D. (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. of Astrobiology 6: 147-152. Cooper, J. F., P. D. Cooper, E. C. Sittler, S. J. Sturner, A. M. Rymer, and M. E. Hill. Radiolytic gas-driven cryovolcanism in the outer solar system, J. Geophys. Res., in review.

  15. Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions (United States)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy


    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion

  16. Recent studies of the optical properties of dust and cloud particles in the Mars atmosphere and the interannual frequency of global dust storms (United States)

    Clancy, R. T.; Lee, S. W.; Muhleman, D. O.


    The results of research with two distinctly separate sets of observations yield new information on the optical properties of particulate scatterers in the Mars atmosphere, and on the interannual variability of the abundance of such scatterers in the Mars atmosphere. The first set of observations were taken by the IRTM (Infrared Thermal Mapper) instrument onboard the Viking Orbiters, during the period 1976 to 1980. Several hundred emission phase function (EPF) sequences were obtained over the Viking mission, in which the IRTM visual brightness channel observed the same area of surface/atmosphere as the spacecraft passed overhead. The 1 to 2 percent accuracy of calibration and the phase-angle coverage that characterizes these data make them ideally suited to determining both the optical depths and optical properties of dust and cloud scatterers in the Mars atmosphere versus latitude, longitude, seasons (L sub s), and surface elevation over the extended period of Viking observations. The EPF data were analyzed with a multiple scattering radiative transfer code to determine dust single scattering albedos which are distinctly higher than indicated by the Viking Lander observations. The second set of observations regard ground-based observations of the 1.3 to 2.6 mm rotational transitions of CO in the Martian atmosphere. The low-to-mid latitude average of the atmospheric temperature profile (0 to 70 km altitude) were derived from a number of such observations over the 1980 to 1990 period.

  17. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System (United States)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon


    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  18. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide


    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  19. The Fourth Gravity Test and Quintessence Matter Field

    CERN Document Server

    Liu, Molin; Yu, Fei; Gui, Yuanxing


    After the previous work on gravitational frequency shift, light deflection (arXiv:1003.5296) and perihelion advance (arXiv:0812.2332), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishes, it reduces to the usual Schwarzschild case naturally. Meanwhile, we also use the data of the Viking lander from the Mars and Cassini spacecraft to Saturn to constrain the quintessence field. For the Viking case, the field parameter $\\alpha$ is under the order of $10^{-9}$. However, $\\alpha$ is under $10^{-18}$ for the Cassini case.

  20. Constellation Overview: Ares V Solar System Science Workshop (United States)

    Horack, John M.


    Presentation topics include: what is NASA's mission, why the Moon next, options for Moon landings, NASA's exploration roadmap, building on a foundation of proven technologies - launch vehicle comparisons, Ares nationwide team, Ares I elements, vehicle integration accomplishments, Aires I-X test flight, Ares I-X accomplishments, Orion crew exploration vehicle, Altair lunar lander, and Ares V elements.

  1. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle


    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  2. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn (United States)

    Palaszewski, Bryan A.


    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  3. On the study of petroleum system operation: contribution of a two-dimensional modeling; Contribution a l`etude du fonctionnement des systemes petroliers: apport d`une modelisation bi-dimensionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Burrus, J.


    The second volume of this thesis which main objective is to validate concepts used in hydrocarbon generation and migration models, and more especially the Temispack model developed by IFP, is concerned with the study of petroleum genesis and migration in the Viking Graben, the Williston basin, the Paris basin, and in deltas such as Gulf Coast and the Mahakam delta

  4. Mars 2001 Mission: Addressing Scientific Questions Regarding the Characteristics and Origin of Local Bedrock and Soil (United States)

    Saunders, R. S.; Arvidson, R. E.; Weitz, C. M.; Marshall, J.; Squyres, S. W.; Christensen, P. R.; Meloy, T.; Smith, P.


    The Mars Surveyor Program 2001 Mission will carry instruments on the orbiter, lander and rover that will support synergistic observations and experiments to address important scientific questions regarding the local bedrock and soils. The martian surface is covered in varying degrees by fine materials less than a few mms in size. Viking and Pathfinder images of the surface indicate that soils at those sites are composed of fine particles. Wheel tracks from the Sojourner rover suggest that soil deposits are composed of particles 100 microns and soils are dominated by soil structure?

  5. Digital image transformation and rectification of spacecraft and radar images (United States)

    Wu, S. S. C.


    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  6. Ultraviolet Radiation-induced Alteration of Martian Surface Materials (United States)

    Yen, A. S.


    The nature and origin of martian surface materials cannot be fully characterized without addressing the unusual reactivity of the soil and the effects of exposure to the unique martian environment. Our laboratory experiments show that ultraviolet radiation at the martian surface can result in the oxidation of metal atoms and the creation of reactive oxygen species on grain surfaces. This process is important in understanding the nature and evolution of martian soils. It can explain the reactivity discovered by the Viking Landers and possibly the origin of the ferric component of the soil.

  7. Clays on Mars: Review of chemical and mineralogical evidence (United States)

    Banin, Amos; Gooding, James L.


    Mafic igneous bedrock is inferred for Mars, based on spectrophotometric evidence for pyroxene (principally in optically dark areas of the globe) and the pyroxenite-peridotite petrology of shergottite nakhlite chassignite (SNC) meteorites. Visible and infrared spectra of reddish-brown surface fines (which dominate Martian bright areas) indicate ferric iron and compare favorably (though not uniquely) with spectra of palagonitic soils. Laboratory studies of SNC's and Viking Lander results support a model for Martian soil based on chemical weathering of mafic rocks to produce layer structured silicates (clay minerals), salts, and iron oxides.

  8. Brave new worlds (United States)

    Boss, Alan


    Are we alone? There is perhaps no more important single scientific question. People have pondered this issue from the very dawn of sentience, wondering if other, similar, beings inhabited a distant mountain range or the other side of an ocean. The history of humanity is largely one of exploration and expansion, and while at first this was limited to the Earth's surface, in the last few decades only the power of our interplanetary rockets has kept us from exploring our wider environment. As the science-fiction author Ray Bradbury proclaimed when the Viking landers arrived on Mars in July 1976, "There is life on Mars, and it is us."

  9. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)


    detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.

  10. H2O frost point detection on Mars (United States)

    Ryan, J. A.; Sharman, R. D.


    The Viking Mars landers contain meteorological instrumentation to measure wind, temperature, and pressure but not atmospheric water content. The landings occurred during local summer, and it was observed that the nocturnal temperature decrease at sensor height (1.6 m) did not exhibit a uniform behavior at either site. It was expected that the rate of decrease would gradually slow, leveling off near sunrise. Instead, a leveling occurred several hours earlier. Temperature subsequently began a more rapid decrease which slowed by sunrise. This suggested that the temperature sensors may be detecting the frost point of water vapor. Analysis of alternative hypotheses demonstrates that none of these are viable candidates. The frost point interpretation is consistent with other lander and orbiter observations, with terrestrial experience, and with modeling of Mars' atmospheric behavior. It thus appears that the meteorology experiment can help provide a basis toward understanding the distribution and dynamics of Martian water vapor.

  11. The resurfacing history of Mars - A synthesis of digitized, viking-based geology (United States)

    Tanaka, Kenneth L.; Isbell, Nancy K.; Scott, David H.; Greeley, Ronald; Guest, John E.


    A global geologic map series of Mars was digitized at high resolution (1.846 sq km/pixel). It was found that the surface of Mars is predominantly volcanic. A resurfacing history was constructed by estimating the total extent of the geologic units. Eolian resurfacing was prevalent during the Late Amazonian Epoch, affecting 4.9 x 10 to the 6th sq km. It was found that resurfacing rates vary according to the absolute-age scheme used and generally decrease with time. Resurfacing rates were approximately 1000 sq km/yr during the Middle Noachian Epoch, one hundred to several hundred sq km/yr during the Late Noachian to Late Hesperian Epochs, and tens of sq km/yr or less during the Amazonian Period.

  12. Viking art in European churches (Cammin - Bamberg - Prague - León)

    DEFF Research Database (Denmark)

    Roesdahl, Else


    Artiklen rummer beskrivelser og diskussion af fire fornemme nordiske kunstgenstande fra vikingetiden (slutningen af 900-årene), som er bevaret i fornemme kirker forskellige steder i Europa. De er i Mammenstil og tolkes som gaver fra en nordisk (sandsynligvis dansk) konge - måske Harald Blåtand - ...

  13. Medieval Warm Period Archives Preserved in Limpet Shells (Patella Vulgata) From Viking Deposits, United Kingdom (United States)

    Mobilia, M.; Surge, D.


    The Medieval Warm Period (700-1100 YBP) represents a recent period of warm climate, and as such provides a powerful comparison to today's continuing warming trend. However, the spatial and temporal variability inherent in the Medieval Warm Period (MWP) makes it difficult to differentiate between global climate trends and regional variability. The continued study of this period will allow for the better understanding of temperature variability, both regional and global, during this climate interval. Our study is located in the Orkney Islands, Scotland, which is a critical area to understand climate dynamics. The North Atlantic Oscillation and Gulf Stream heavily influence climate in this region, and the study of climate intervals during the MWP will improve our understanding of the behavior of these climate mechanisms during this interval. Furthermore, the vast majority of the climate archive has been derived from either deep marine or arctic environments. Studying a coastal environment will offer valuable insight into the behavior of maritime climate during the MWP. Estimated seasonal sea surface temperature data were derived through isotopic analysis of limpet shells (Patella vulgata). Analysis of modern shells confirms that growth temperature tracks seasonal variation in ambient water temperature. Preliminary data from MWP shells record a seasonal temperature range comparable to that observed in the modern temperature data. We will extend the range of temperature data from the 10th through 14th centuries to advance our knowledge of seasonal temperature variability during the late Holocene.

  14. Archaeological excavations at Viltina - a viking age harbour site and meeting place / Marika Mägi

    Index Scriptorium Estoniae

    Mägi, Marika, 1968-


    2006 jätkusid kaevamised Viltina viikingiaegsel sadamakohal, millega oli alustatud juba 2004. aastal. Kaevati läbi 327,25 m2. Suuremas osas kaevandites paljandunud kiht on vaieldamatult asulakiht. Viltina asulakihiga aladel leidus tavapärasest asulakihist tunduvalt rohkem metall-leide. Leidudest. Tõenäoliselt oli sadamakoht kasutusajal piiratud taraga

  15. Urban networks and Arctic outlands: Craft specialists and reindeer antler in Viking towns

    DEFF Research Database (Denmark)

    Ashby, Steven P.; Coutu, Ashley N.; Sindbæk, Søren Michael


    This paper presents the results of the use of a minimally destructive biomolecular technique to explore the resource networks behind one of the first specialized urban crafts in early mediaeval northern Europe: the manufacture of composite combs of deer antler. The research incorporates the largest...

  16. The interpretation of data from the Viking Mars Atmospheric Water Detectors (MAWD): Some points for discussion (United States)

    Clifford, Stephen M.


    Properly interpreted, water vapor column abundance measurements can provide important insights into many of the processes that govern the diurnal, seasonal, and climatic cycles of atmospheric water on Mars. The uncertain distribution of water vapor complicates this analysis. It is argued that if a significant fraction of the total atmospheric vapor content is concentrated within the lowermost scale height, then the hemispheric asymmetry in zonally averaged topography/air mass might itself explain the observed gradient in the annual and zonally averaged vapor abundance.

  17. The last Viking King: a royal maternity case solved by ancient DNA analysis

    DEFF Research Database (Denmark)

    Dissing, Jørgen; Binladen, Jonas; Hansen, Anders


    Estridsen to haplogroup H; Estrid's sequence differed from that of Sven at two positions in HVR-1, 16093T-->C and 16304T-->C, indicating that she belongs to subgroup H5a. Given the maternal inheritance of mtDNA, offspring will have the same mtDNA sequence as their mother with the exception of rare cases...... doubts among historians whether the woman entombed was indeed Estrid. To shed light on this problem, we have extracted and analysed mitochondrial DNA (mtDNA) from pulp of teeth from each of the two royals. Four overlapping DNA-fragments covering about 400bp of hypervariable region 1 (HVR-1) of the D...

  18. Risk taking business Vikings: Gendered dynamics in Icelandic banks and financial companies

    Directory of Open Access Journals (Sweden)

    Kristín Loftsdóttir


    Full Text Available Feminist scholars have long emphasized the masculine culture of the financial sector, where a certain gendered structure is created and sustained. The capitalistic economy and the culture of multinational corporations play a leading role in creating and promoting new patterns of masculinity - the transnational business masculinity - on both global and local levels. It is thus important to analyze how this takes place in a local context. Following the economic collapse in Iceland, a strong emphasis formed in the public discussion on a changed gender dynamic in financial firms and in general. This article focuses on the experience of those working within the financial sector in relation to the position of men and women, contextualized within a scholarly discourse. It is based upon interviews with employees of financial institutions, where they reflect on their experience and views masculinity, essentialism and equality.

  19. Searching for Scandinavians in pre-Viking Scotland : Molecular fingerprinting of Early Medieval combs

    NARCIS (Netherlands)

    Von Holstein, Isabella C C; Ashby, Steven P.; van Doorn, Nienke L.; Sachs, Stacie M.; Buckley, Michael; Meiri, Meirav; Barnes, Ian; Brundle, Anne; Collins, Matthew J.

    The character and chronology of Norse colonisation in Early Medieval northern Scotland (8th-10th centuries AD) is hotly debated. The presence of reindeer antler raw material in 'native' or 'Pictish' type combs from the Orkney Isles, northern Scotland has been put forward as evidence for a long and

  20. Planetary Exploration in the Time of Astrobiology: Protecting against Biological Contamination

    National Research Council Canada - National Science Library

    John D. Rummel


    ... the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds...

  1. The Geodesy of the Outer Solar System Bodies from Precise Spacecraft Tracking (United States)

    Iess, L.; Asmar, S.; Anabtawi, A.


    Gravity is at the same time the main force acting on spacecraft and an essential tool to investigate the interior structure of planetary bodies. The large infrastructure of NASA's Deep Space Network (DSN), developed to support telecommunications and navigation of deep space probes, became therefore also a crucial instrument in planetary geodesy and geophysics. This dual role of the DSN was especially important in the Cassini mission, where the precise navigation of the spacecraft throughout the many flybys of Titan and the icy satellites of the Saturnian system was unavoidably entangled with the determination of the gravity fields and the ephemerides of those bodies. Thanks to precise range rate measurements enabled by the DSN and the onboard radio system, Cassini has been able to determine the density and the moment of inertia of Titan, and the presence of large tidal deformations indicating the presence of a global, internal, ocean. Gravity-topography correlations have also been used to infer the thickness and the rigidity of the satellite's icy shell. Recently, Doppler data acquired during three Enceladus flybys revealed the presence of a gravity anomaly in the southern polar region that is compatible with a regional sea at a depth of about 40 km. This sea is the likely source of the Enceladus's water plumes. Although current planetary geodesy experiments exploited tracking systems at X band (7.1-8.5 GHz), much improved range rate measurements can be attained with Ka band radio links (32.5-34 GHz), because of their larger immunity to plasma noise. This advanced system, available at the DSS 25 tracking antenna in Goldstone (CA), has been already used in the Cassini cruise phase to carry out an accurate test of general relativity, and will be exploited again by Juno in 2016 to determine the gravity field of Jupiter. Additional uses of the DSN Ka band system have been proposed in several precise geodesy experiments with future planetary missions, both with orbiters

  2. Immune System (United States)

    ... Counselors Kidney Stones Brain and Nervous System Immune System KidsHealth > For Teens > Immune System Print A A ... put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  3. System Identification

    NARCIS (Netherlands)

    Keesman, K.J.


    Summary System Identification Introduction.- Part I: Data-based Identification.- System Response Methods.- Frequency Response Methods.- Correlation Methods.- Part II: Time-invariant Systems Identification.- Static Systems Identification.- Dynamic Systems Identification.- Part III: Time-varying

  4. Design and Field Test of a Mass Efficient Crane for Lunar Payload Handling and Inspection: The Lunar Surface Manipulation System (United States)

    Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.


    Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with

  5. Growth, behavior, and economics of group-fed dairy calves fed once or twice daily in an organic production system. (United States)

    Kienitz, M J; Heins, B J; Chester-Jones, H


    Heifer calves (n = 102) were used to evaluate the effect of once- or twice-daily feeding on growth, behavior, and economics of calves in an organic group management system. Calves were assigned to replicate feeding groups of 10 in superhutches by birth order, during 2 seasons from September to December 2013 and March to May 2014 at the University of Minnesota West Central Research and Outreach Center, Morris. Calves in groups were the experimental unit. Breed groups of calves were Holsteins (n = 26), crossbreds (n = 45) including combinations Holsteins, Montbéliarde, and Viking Red (selected for high production), and crossbreds (n = 31) including combinations of Holsteins, Jersey, Normande, and Viking Red (selected for robustness). Treatment groups were once-daily feeding (1×) or twice-daily feeding (2×). Calves in both groups were fed 6 L per calf/daily of organic milk with 13% total solids and then weaned at 60 d when the group consumption averaged 0.91 kg/d of starter per calf. Body weight and hip height were recorded at birth, once a week, at weaning, and at 90 and 120 d of age. Hobo Pendant G loggers (Onset Computer Corp., Bourne, MA) were applied to the right rear leg of calves to measure total lying and standing time. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Independent variables for analyses were the fixed effects of birth weight (co-variable), season of birth, and treatment group, along with replicate as a random effect. No significant differences were found between feeding groups for body weight, weight gain, average daily gain, hip height, or heart girth. For calves in 1× and 2× groups, respectively, weaning group performance was as follows: gain per day was 0.79 and 0.81 kg, weaning weight was 92.7 and 93.3 kg, and weaning hip height was 95.2 and 95.3 cm. Daily gain to 90 d was 0.85 and 0.85 kg, and daily gain to 120 d was 0.85 and 0.83 kg for 1× and 2× calves, respectively. For lying time, calves in groups 1

  6. Thermal Management and Thermal Protection Systems (United States)

    Hasnain, Aqib


    During my internship in the Thermal Design Branch (ES3), I contributed to two main projects: i) novel passive thermal management system for future human exploration, ii) AVCOAT undercut thermal analysis. i) As NASA prepares to further expand human and robotic presence in space, it is well known that spacecraft architectures will be challenged with unprecedented thermal environments. Future exploration activities will have the need of thermal management systems that can provide higher reliability, mass and power reduction and increased performance. In an effort to start addressing the current technical gaps the NASA Johnson Space Center Passive Thermal Discipline has engaged in technology development activities. One of these activities was done through an in-house Passive Thermal Management System (PTMS) design for a lunar lander. The proposed PTMS, functional in both microgravity and gravity environments, consists of three main components: a heat spreader, a novel hybrid wick Variable Conductance Heat Pipe (VCHP), and a radiator. The aim of this PTMS is to keep electronics on a vehicle within their temperature limits (0 and 50 C for the current design) during all mission phases including multiple lunar day/night cycles. The VCHP was tested to verify its thermal performance. I created a thermal math model using Thermal Desktop (TD) and analyzed it to predict the PTMS performance. After testing, the test data provided a means to correlate the thermal math model. This correlation took into account conduction and convection heat transfer, representing the actual benchtop test. Since this PTMS is proposed for space missions, a vacuum test will be taking place to provide confidence that the system is functional in space environments. Therefore, the model was modified to include a vacuum chamber with a liquid nitrogen shroud while taking into account conduction and radiation heat transfer. Infrared Lamps were modelled and introduced into the model to simulate the sun

  7. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems, t...

  8. Landscape settings as part of earth wall systems for defence (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk


    Remnants of earth wall systems from different periods are preserved in many European countries. They were built for different functions, such as defence, demarcating ownership or keeping wild animals or cattle in or out a terrain, and often changed function over time. Earth walls date from a past in which man had limited access to man- and horsepower. In the case of defence systems, our ancestors made use of the landscape settings to improve the strength. The poster gives an overview of landscape settings used for this purpose, from prehistoric up to medieval age, for building round and linear earth wall defence systems. Round earth walls systems are found on: • High viewpoints along a river, often in combination with marshland at its feet, • Almost completely cut-off meanders of antecedent rivers. This natural setting offered an ideal defence. It allowed an almost 360 degree view and exposed the enemy for a long time when passing the river, while the steep slopes and narrow entrance made the hill fort difficult to access, • Islands in lakes, • Bordering a lake at one side, • Confluences of rivers, • Hills near the sea and a natural harbour with possibilities for defence, • High flat hill tops of medium size with steep sides. Of each situation examples are presented. Linear earth wall defence systems For linear defence earth walls no overview of landscape settings can be given, for lack of sufficient data. The Celtic, 10 m steep Beech Bottom Dyke earth wall system from around 20 A.D. connects two steeply incised river valleys. For building the Hadrian Wall (UK) the Romans made use of earth walls paralleling the steepest cuesta of the Cheviot hills. The Viking Danewerk (Ger), was built on push moraines and used the coastal marsh lands at their feet for defence. And the defence of the earth wall around the Velder (NL, probably 13th century) made use of the many small streams crossing this marshy coversand landscape, by diverting them into a canal

  9. Aeroshell for Mars Science Laboratory (United States)


    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver. This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested. The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent. The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet. In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell. The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the

  10. A new method for long-term monitoring of Arctic methane release systems - Application offshore NW Svalbard (United States)

    Ferré, Bénédicte; Dølven, Knut Ola; Silyakova, Anna; Frank, Carsten; Meyer, Mathias; Themann, Sören; Mienert, Jürgen


    While the Arctic is warming at a rate of almost twice the global average and needs particular attention for climate impacts, it is a challenging place to perform oceanic measurement, especially in regions of seasonal sea ice cover and stormy seasons. The Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) aims at understanding the impact of methane release on the marine environments and climate change, and one of the strategies relies on monitoring Arctic gas hydrate systems to evaluate the variability of methane release and its dependence on oceanographic changes. Two forefront K-lander observatories, emerging from a collaboration between CAGE and Kongsberg, were successfully deployed and retrieved offshore NW Svalbard in known natural gas release fields (240m and 90m depth), providing eleven months of high-resolution multi-sensor data. Multiple data sets include ocean temperature, salinity, oxygen, dissolved methane and CO2, fluorescence, turbidity as well as ocean current and underwater acoustic measurements. Development and implementation of such cross-disciplinary technology and data analysis brings the marine and maritime research technology fields to the forefront of environmental studies to understand global change and its impacts. This project is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.

  11. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang


    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  12. Low-Cost, Rugged High-Vacuum System (United States)

    Sorensen, Paul; Kline-Schoder, Robert


    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  13. The Saturn System Through the Eyes of Cassini (United States)

    Green, James


    More than 400 years ago, Galileo Galilei trained his homemade telescope on the night sky and observed that Saturn had two objects closely related to the planet extending on either side. At the time, in 1610, Galileo declared them to be moons. A few decades later, Saturn moon science accelerated at a dizzying pace. Christiaan Huygens first observed Saturn's largest moon Titan in 1655 and was the first to describe the extended moon-like features at Saturn as a disk of material sounding the planet. From 1671 to 1674, Giovanni Cassini discovered the moons lapetus, Rhea, Dione and Tethys. In 1675, Cassini discovered the gap in Saturn's rings that we now know as the Cassini Division. In the space age, before the Cassini-Huygens mission, we had only hints of the discoveries awaiting us at Saturn. Pioneer 11 and Voyagers 1 and 2 conducted flybys decades ago. But these quick encounters didn't allow time for more extensive research. NASA and the European Space Agency created a partnership to orbit a Saturn orbiter (Cassini) and a lander (Huygens) on Titan. Like its namesakes, the Cassini-Huygens mission not only discovered previously unknown moons, but it also helped us understand the science behind their formation, their interactions with the rings, and how truly diverse they are. The Cassini-Huygens mission revolutionized what we know about the Saturn system. The rings of Saturn, the moons, and the planet itself offer irresistible and inexhaustible subjects for intense study, and Cassini-Huygens did not disappoint. The Saturnian system proved to be a rich ground for science exploration and discoveries, and Cassini has been nothing short of a discovery machine. At the time Cassini plunged into Saturn at the end of its mission, it had observed the planet for a little less than half of a Saturn year. But it also orbited the gas giant 293 times, forever changing our understanding of the Saturn system and yielding tremendous insight for understanding the entire Solar System.

  14. Solar System Exploration Division Strategic Plan, volume 1. Executive summary and overview (United States)


    This first document is the first of a six-volume series presenting the Solar System Exploration Division's Strategic Plan for the 10-year period FY 1994 to FY 2003. The overall strategy is characterized by five fundamental precepts: (1) execute the current program; (2) improve the vitality of the program and the planetary science community; (3) initiate innovative, small, low-cost planetary missions; (4) initiate new major and moderate missions; and (5) prepare for the next generation of missions. This Strategic Plan describes in detail our proposed approach to accomplish these goals. Volume 1 provides first an Executive Summary of highlights of each of the six volumes, and then goes on to present an overview of the plan, including a discussion of the planning context and strategic approach. Volumes 2, 3, 4, and 5 describe in detail the initiatives proposed. An integral part of each of these volumes is a set of responses to the mission selection criteria questions developed by the Space and Earth Science Advisory Committee. Volume 2, Mission From Planet Earth, describes a strategy for exploring the Moon and Mars and sets forth proposed moderate missions--Lunar Observer and a Mars lander network. Volume 3, Pluto Flyby/Neptune Orbiter, discusses our proposed major new start candidate for the FY 1994 to FY 1998 time frame. Volume 4, Discovery, describes the Near-Earth Asteroid Rendezvous, as well as other candidates for this program of low-cost planetary missions. Volume 5, Toward Other Planetary Systems, describes a major research and analysis augmentation that focuses on extrasolar planet detection and the study of planetary system processes. Finally, Volume 6 summarizes the technology program that the division has structured around these four initiatives.

  15. Similar compounds searching system by using the gene expression microarray database. (United States)

    Toyoshiba, Hiroyoshi; Sawada, Hiroshi; Naeshiro, Ichiro; Horinouchi, Akira


    Numbers of microarrays have been examined and several public and commercial databases have been developed. However, it is not easy to compare in-house microarray data with those in a database because of insufficient reproducibility due to differences in the experimental conditions. As one of the approach to use these databases, we developed the similar compounds searching system (SCSS) on a toxicogenomics database. The datasets of 55 compounds administered to rats in the Toxicogenomics Project (TGP) database in Japan were used in this study. Using the fold-change ranking method developed by Lamb et al. [Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R., 2006. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929-1935] and criteria called hit ratio, the system let us compare in-house microarray data and those in the database. In-house generated data for clofibrate, phenobarbital, and a proprietary compound were tested to evaluate the performance of the SCSS method. Phenobarbital and clofibrate, which were included in the TGP database, scored highest by the SCSS method. Other high scoring compounds had effects similar to either phenobarbital (a cytochrome P450s inducer) or clofibrate (a peroxisome proliferator). Some of high scoring compounds identified using the proprietary compound-administered rats have been known to cause similar toxicological changes in different species. Our results suggest that the SCSS method could be used in drug discovery and development. Moreover, this method may be a powerful tool to understand the mechanisms by which biological systems respond to various chemical compounds and may also predict adverse effects of new compounds.

  16. Data Systems vs. Information Systems


    Amatayakul, Margret K.


    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  17. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens


    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system.......Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  18. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul


    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  19. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin


    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  20. Exploring Our Solar System with CubeSats and NanoSats (United States)

    Freeman, Anthony; Norton, Charles


    Sight Mars lander launch in March of 2016; a helicopter "drone" on Mars to extend the reach of future rovers; plans for a Lunar Flashlight mission to shine a light on the permanently shadowed craters of the Moon's poles; a Near Earth Asteroid CubeSat missio n; and a CubeSat constellation to demonstrate time series measurements of storm systems on Earth. From these beginnings, the potential for CubeSats and NanoSats to add to our knowledge of the solar system could easily grow exponentially. Imagine if every deep space mission carried one or more CubeSats that could operate independently (even for a brief period) on arrival at their target body. At only incremental additional cost, such spacecraft could go closer, probe deeper, and provide science measurements that we would not risk with the host spacecraft. This paper will describe examples including a NanoSat to probe the composition of Venus' atmosphere, impactors and close flybys of Europa, lunar probes, and soft landers for the moons of Mars. Low cost access to deep space also offers the potential for independent CubeSat/NanoSat missions - allowing us to characterize the population of near Earth asteroids for example, deploy a constellation around Venus, or take closer looks at the asteroid belt.

  1. The Exploration of Titan and the Saturnian System (United States)

    Coustenis, Athena

    Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. Titan is also rich in organic molecules—more so in its surface and atmosphere than anyplace in the solar system, including Earth [4]. These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. I will discuss our current understanding of Titan's complex environment in view of recent exploration, in particular on the atmospheric structure (temperature and composition), and the surface nature. I will show how these and other elements can give us clues as to the origin and evolution of the satellite, and how they connect to the observations of the planet and the other satellites and rings. Future space missions to Titan can help us understand the kronian and also our Solar System as a whole. In particular, I will describe the future exploration of Titan and the Saturnian System with TSSM, a mission studied jointly by ESA and NASA in 2008 [1] and prioritized second for a launch around 2023-2025. TSSM comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: a montgolfiere and a lake-landing lander. The mission would arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfiere would last at least 6 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a —2-year orbit around Titan. References 1. TSSM and EJSM NASA/ESA Joint Summary Report, 16 January 2009 2. Coustenis et al. (2008

  2. Lymph system (United States)

    Lymphatic system ... neck, under the arms, and groin. The lymph system includes the: Tonsils Adenoids Spleen Thymus ... JE, Flynn JA, Solomon BS, Stewart RW. Lymphatic system. In: Ball JW, Dains JE, Flynn JA, Solomon ...

  3. The Beagle 2 Stereo Camera System: Scientific Objectives and Design Characteristics (United States)

    Griffiths, A.; Coates, A.; Josset, J.; Paar, G.; Sims, M.


    The Stereo Camera System (SCS) will provide wide-angle (48 degree) multi-spectral stereo imaging of the Beagle 2 landing site in Isidis Planitia with an angular resolution of 0.75 milliradians. Based on the SpaceX Modular Micro-Imager, the SCS is composed of twin cameras (with 1024 by 1024 pixel frame transfer CCD) and twin filter wheel units (with a combined total of 24 filters). The primary mission objective is to construct a digital elevation model of the area in reach of the lander’s robot arm. The SCS specifications and following baseline studies are described: Panoramic RGB colour imaging of the landing site and panoramic multi-spectral imaging at 12 distinct wavelengths to study the mineralogy of landing site. Solar observations to measure water vapour absorption and the atmospheric dust optical density. Also envisaged are multi-spectral observations of Phobos &Deimos (observations of the moons relative to background stars will be used to determine the lander’s location and orientation relative to the Martian surface), monitoring of the landing site to detect temporal changes, observation of the actions and effects of the other PAW experiments (including rock texture studies with a close-up-lens) and collaborative observations with the Mars Express orbiter instrument teams. Due to be launched in May of this year, the total system mass is 360 g, the required volume envelope is 747 cm^3 and the average power consumption is 1.8 W. A 10Mbit/s RS422 bus connects each camera to the lander common electronics.

  4. The search for alien life in our solar system: strategies and priorities. (United States)

    Shapiro, Robert; Schulze-Makuch, Dirk


    With the assumption that future attempts to explore our Solar System for life will be limited by economic constraints, we have formulated a series of principles to guide future searches: (1) the discovery of life that has originated independently of our own would have greater significance than evidence for panspermia; (2) an unambiguous identification of living beings (or the fully preserved, intact remains of such beings) is more desirable than the discovery of markers or fossils that would inform us of the presence of life but not its composition; (3) we should initially seek carbon-based life that employs a set of monomers and polymers substantially different than our own, which would effectively balance the need for ease of detection with that of establishing a separate origin; (4) a "follow-the-carbon" strategy appears optimal for locating such alternative carbon-based life. In following this agenda, we judge that an intensive investigation of a small number of bodies in our Solar System is more likely to succeed than a broad-based survey of a great number of worlds. Our priority for investigation is (1) Titan, (2) Mars, (3) Europa. Titan displays a rich organic chemistry and offers several alternative possibilities for the discovery of extant life or the early stages that lead to life. Mars has already been subjected to considerable study through landers and orbiters. Although only small amounts of methane testify to the inventory of reduced carbon on the planet, a number of other indicators suggest that the presence of microbial life is a possibility. Care will be needed, of course, to distinguish indigenous life from that which may have spread by panspermia. Europa appears to contain a subsurface ocean with the possibility of hydrothermal vents as an energy source. Its inventory of organic carbon is not yet known.

  5. Rock pushing and sampling under rocks on Mars (United States)

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.


    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  6. Pico de Orizaba as an analogue to study planetary ecosynthesis on Mars (United States)

    Navarro-González, R.


    Studies of Mars by spacecrafts, landers and rovers have indicated that it was once a wetter, more habitable world than the cold desert planet of today. If water was once stable as a liquid on the surface and flowed in such vast quantities, then the atmosphere must have been denser and the climate warmer in the past. The same processes that led to the origin of life on Earth may have occurred simultaneously on Mars, and living organisms may have colonized the planet. It is unclear how or when Mars lost its thicker atmosphere and as a result lost its habitable environment. The Viking landers of the mid-1970s carried experiments designed to detect the presence of extant life and showed the martian soil to be lifeless on the surface. Future space missions will continue to explore if there was or still is life on Mars, perhaps in the subsurface. However, if there is no life on Mars, there is an opportunity to explore the potential for survival and biological evolution for terrestrial life beyond their place of origin, and do planetary ecosynthesis on Mars, a process of making the planet habitable for terrestrial organisms. The evidence that Mars was once habitable is important for planetary ecosynthesis as it provides a proof in principle that Mars can support a habitable state on timescales that, while short over the age of the solar system, are long in human terms. Artificial greenhouse gases, such as perfluorocarbons, appear to be the best method for warming Mars and increase its atmospheric density so that liquid water becomes stable. The process of introducing terrestrial ecosystems to Mars can be compared with a descent down a high mountain. Each drop in elevation results in a warmer, wetter climate and more diverse biological community. This is shown in Pico de Orizaba which is located at 19.03°N, 97.27°W and rises 5,636 meters above sea level. It is the highest mountain in Mexico, the third highest in the tropics after Mount Kilimanjaro (5,892) in Tanzania and

  7. Geologic Exploration of the Planets: A Personal Retrospective of the First 50 years (United States)

    Carr, M. H.


    The modern era of exploration of planets and satellites beyond the Earth-Moon system began on 14 December 1962 when the Mariner 2 spacecraft flew by Venus. Since that time roughly 80 spacecraft have successfully visited other planets and their satellites. In 1962 we knew nothing of the geology of the non-terrestrial planets and satellites; they were just variously shaded discs and dots. Most of us entering the new field of planetary geology at the time did so in anticipation of the Apollo lunar landings. I was hired by Gene Shoemaker to work on lunar issues and to participate in the lunar geologic mapping program that he had initiated at the USGS. Lunar studies led naturally to planetary studies but none of us could have anticipated the geologic variety that exists within the Solar System as exemplified by the coronae of Venus, the canyons of Mars, the volcanoes of Io, the ice tectonics of Europa and Ganymede, the geysers of Enceladus and the methane-carved valleys of Titan. Although Mars appeared lunar-like in the first close-up images from the Mariner 4 (1965) and Mariners 6 and 7 (1969) fly-bys, the Mariner 9 (1971) orbiter soon revealed Mars' geologic variety. Planning imaging for Mariner 9 was challenging; aids were primitive and we essentially had a blank sheet to fill. By 1971, the Viking Project with its main objective to land on Mars and search for signs of life was well underway. In 1969 I was appointed leader of the Viking Orbiter imaging team. The main function of the cameras was to ensure that the landing sites were safe before landing. In 1976 when we acquired the first close-up images of the pre-chosen landing sites they were greeted with elation and horror, elation because of their quality, horror because of the roughness of the terrain that had seemed so smooth in the Mariner 9 images. There followed an intense period of searching for safer sites and ultimately the two landers did land safely. The search for life then followed with hopes soaring as

  8. Operating Systems

    Indian Academy of Sciences (India)

    computer networks and also in Internet security concepts. Keywords. Operating systems, file sys- tems, time-shared systems. GENERAL I ARTICLE. Operating Systems. 1. Objectives and Evolution. M Suresh Babu. In this article we examine the objectives and fun.ctions of operating systems, and then we trace the evolution ...

  9. Proposed Mars Surveyor Landing Sites in Northern Meridiani Sinus, Southern Elysium Planitia, and Argyre Planitia (United States)

    Parker, T. J.; Edgett, K. S.


    Our objective is to propose two landing sites that the Mars Surveyor 2001 Lander and Athena Rover could go to on Mars that should meet the safety requirements of the spacecraft landing system and optimize surface operations (chiefly driven by power and communications requirements). An additional site within Argyre Planitia, initially proposed by Parker to the Mars Surveyor Landing Site program, is also proposed for potential consideration for post-2001 missions to Mars, as it is well outside the current latitude limits for the Athena Rover. All three sites are designed to be situated as close to a diversity of geologic units within a few kilometers of the landing site so that diversity can be placed in a geologic context. This objective is very different from the Mars Pathfinder requirement to land at a site with a maximum chance for containing a diversity of rocks within a few tens of meters of the lander. That requirement was driven by the Sojourner mobility limit of a few tens of meters. It can be argued that the Athena project, with its much larger mobility capability, might actually want to avoid such a site, because placing collected samples in geologic context would be difficult. While it has been argued, both before and after the Mars Pathfinder landing, that the provenance for local blocks may be determined by orbiter spectra, primarily from the MGS TES instrument, our ability to do so has yet to be demonstrated. Indeed, several months after conclusion of the Pathfinder mission, we have yet to reach a consensus on the composition of local materials. Our primary data set for selecting a landing site within the latitude and elevation constraints of the 2001 mission is the Viking Orbiter image archive. The site must be selected to place the landing ellipse so as to avoid obvious hazards, such as steep slopes, large or numerous craters, or abundant large knobs. For this purpose, we chose a resolution limit of better than 50 m/pixel. This necessarily excludes

  10. Phobos laser ranging: Numerical Geodesy experiments for Martian system science (United States)

    Dirkx, D.; Vermeersen, L. L. A.; Noomen, R.; Visser, P. N. A. M.


    Laser ranging is emerging as a technology for use over (inter)planetary distances, having the advantage of high (mm-cm) precision and accuracy and low mass and power consumption. We have performed numerical simulations to assess the science return in terms of geodetic observables of a hypothetical Phobos lander performing active two-way laser ranging with Earth-based stations. We focus our analysis on the estimation of Phobos and Mars gravitational, tidal and rotational parameters. We explicitly include systematic error sources in addition to uncorrelated random observation errors. This is achieved through the use of consider covariance parameters, specifically the ground station position and observation biases. Uncertainties for the consider parameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise (for an observation integration time of 60 s). We perform the analysis for a mission duration up to 5 years. It is shown that a Phobos Laser Ranging (PLR) can contribute to a better understanding of the Martian system, opening the possibility for improved determination of a variety of physical parameters of Mars and Phobos. The simulations show that the mission concept is especially suited for estimating Mars tidal deformation parameters, estimating degree 2 Love numbers with absolute uncertainties at the 10-2 to 10-4 level after 1 and 4 years, respectively and providing separate estimates for the Martian quality factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration amplitudes and gravity field coefficients provides an estimate of Phobos' relative equatorial and polar moments of inertia with an absolute uncertainty of 10-4 and 10-7, respectively, after 1 year. The observation of Phobos tidal deformation will be able to differentiate between a rubble pile and monolithic interior within 2 years. For all parameters, systematic errors have a much stronger influence (per unit uncertainty) than the uncorrelated Gaussian

  11. Bitcoin System


    Jan Lánský


    Cryptocurrency systems are purely digital and decentralized systems that use cryptographic principles to confirm transactions. Bitcoin is the first and also the most widespread cryptocurrency. The aim of this article is to introduce Bitcoin system using a language understandable also to readers without computer science education. This article captures the Bitcoin system from three perspectives: internal structure, network and users. Emphasis is placed on brief and clear definitions (system co...

  12. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...

  13. Systems effectiveness

    CERN Document Server

    Habayeb, A R


    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  14. Detection of Northern Hemisphere Transient Baroclinic Eddies at Gale Crater Mars (United States)

    Haberle, R. M.; Kahre, M. A.; De La Torra, M.; Kass, D. M.; Barnes, J. R.


    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory’s (MSL) Curiosity rover has been operating in Gale Crater Mars (4.5°S, 137.4°E) for over 2 Mars years. Analysis of its pressure data, which have a precision of approximately 0.2 Pa (see Haberle et al., 2014; Harri et al., 2014), reveal temporal oscillations in its seasonally de-trended daily averaged pressures at some seasons with 2-5 Pa amplitudes that have periods similar to those observed at the Viking Lander 2 (VL-2) site (48.3°N, 134.0°E) several decades ago. As illustrated in Fig 1 there are clear peaks in the variance at a frequency f approximately 0.45 and 0.06 per sol for the fall season of Mars Year (MY) 31, and at f approximately 0.15 and 0.06 per sol for MY 32. These frequencies correspond to periods of 2.2, 6.7, and 16.7 sols, and are very similar to those observed at VL-2 (Fig 2, and see Barnes, 1980). Since orbital imaging data show dust frontal systems associated with eastward traveling baroclinic eddies that occasionally cross the equator (Wang et al., 2003), these findings suggest that MSL may be seeing their signature in its pressure data. To make this case we show that (a) the spectral peaks in the MSL are not only similar to those at VL-2, they have the same seasonal variation, (b) at least for some seasons the peaks are statistically significant and not likely due to random noise in the data, and (c) Global Circulation Model (GCM) results from the Ames GCM support this interpretation.

  15. The H2O2-H2O Hypothesis: Extremophiles Adapted to Conditions on Mars? (United States)

    Houtkooper, Joop M.; Schulze-Makuch, Dirk


    evolved into employing H2O2 as an antifreeze, which would also have the function as a water collector. If we would find life on Mars based on an intracellular H2O2-H2O mixture, this would not necessarily imply an independent origin of terrestrial and martian life. For that, a detailed study of the biochemistry and genetics is needed. The transfer of terrestrial organisms to Mars or vice versa is a possibility given favorable conditions for the origin and persistance of life on both planets early in solar system history (Schulze-Makuch and Houtkooper, 2007). The transfer of terrestrial organisms by early spacecrafts to Mars that either landed or crashed is a possibility, but it is not plausible that these organisms evolved in a few years. We suggest that we already have evidence of their existence from the Viking landers in two widely distant locations. The H2O2-H2O hypothesis does explain the Viking observations remarkably well, especially (1) the lack of organics detected by GC-MS, (2) the lack of detected oxidant(s) to support a chemical explanation, (3) evolution of O2 upon wetting (GEx experiment), (4) limited organic synthesis reactions (PR experiment), and (5) the gas release observations made (LR experiment)(Houtkooper and Schulze-Makuch, 2007). From the amounts of evolved CO2, O2 and N2 in the GEx experiment it can be concluded that the organisms have an excess oxidative content. This is a problem since in any destructive test, even by laser desorption-mass spectrometry (LDMS), the organisms may decompose completely into H2O, CO2, O2, and N2. The same will occur if the organisms are exposed to excess water, as they will perish due to hyperhydration. The consequence for future biology experiments is that the most fruitful approach may be the detection of metabolism under close to local environmental conditions, especially avoiding the addition of too much water. Of the Viking experiments, the PR experiment which aimed at carbon assimilation was the closest to

  16. Bitcoin System

    Directory of Open Access Journals (Sweden)

    Jan Lánský


    Full Text Available Cryptocurrency systems are purely digital and decentralized systems that use cryptographic principles to confirm transactions. Bitcoin is the first and also the most widespread cryptocurrency. The aim of this article is to introduce Bitcoin system using a language understandable also to readers without computer science education. This article captures the Bitcoin system from three perspectives: internal structure, network and users. Emphasis is placed on brief and clear definitions (system components and their mutual relationships. A new system view of the stated terms constitutes author’s own contribution.

  17. Biliary system (United States)

    The biliary system creates, moves, stores, and releases bile into the duodenum . This helps the body digest food. It also assists ... from the liver to the duodenum. The biliary system includes: The gallbladder Bile ducts and certain cells ...

  18. Intelligent Systems (United States)

    National Aeronautics and Space Administration — The autonomous systems (AS) project, led by NASA Ames, is developing software for system operation automation. AS technology will help astronauts make more decisions...

  19. Systems thinking. (United States)

    Cabrera, Derek; Colosi, Laura; Lobdell, Claire


    Evaluation is one of many fields where "systems thinking" is popular and is said to hold great promise. However, there is disagreement about what constitutes systems thinking. Its meaning is ambiguous, and systems scholars have made diverse and divergent attempts to describe it. Alternative origins include: von Bertalanffy, Aristotle, Lao Tsu or multiple aperiodic "waves." Some scholars describe it as synonymous with systems sciences (i.e., nonlinear dynamics, complexity, chaos). Others view it as taxonomy-a laundry list of systems approaches. Within so much noise, it is often difficult for evaluators to find the systems thinking signal. Recent work in systems thinking describes it as an emergent property of four simple conceptual patterns (rules). For an evaluator to become a "systems thinker", he or she need not spend years learning many methods or nonlinear sciences. Instead, with some practice, one can learn to apply these four simple rules to existing evaluation knowledge with transformative results.

  20. Declarative Systems


    Condie, Tyson


    Building system software is a notoriously complex and arduous endeavor.Developing tools and methodologies for practical system software engineeringhas long been an active area of research. This thesis explores system softwaredevelopment through the lens of a declarative, data-centric programminglanguage that can succinctly express high-level system specifications and bedirectly compiled to executable code. By unifying specification andimplementation, our approach avoids the common problem o...

  1. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems, t...... into account. The book has arisen from various courses taught in Denmark and Iceland and is designed to give students a broad introduction to the area, with exercises throughout....

  2. Major achievements of the Rosetta mission in connection with the origin of the solar system (United States)

    Barucci, M. A.; Fulchignoni, M.


    Comets have been studied from a long time and are believed to preserve pristine materials, so they are fundamental to understand the origin of the solar system and life. Starting in the early 1990s, ESA decided to have a more risky and fantastic mission to a comet. As Planetary Cornerstone mission of the ESA Horizon 2000 program, the Rosetta mission was selected with the aim of realizing two asteroid fly-bys, a rendezvous with a comet to deliver a surface science package and to hover around the comet from 4 AU inbound up to perihelion and outbound back to 3.7 AU. The mission was successfully launched on March 2, 2004 with Ariane V that started its 10-year journey toward comet 67P/Churyumov-Gerasimenko. After several planetary gravity assists, Rosetta flew by two asteroids—on September 5, 2008 (Steins) and on July 10, 2010 (Lutetia), respectively, and performed the comet orbit insertion maneuver on August 6, 2014. The onboard instruments characterized the nucleus orbiting the comet at altitudes down to few kilometers. On November 12, 2014, the lander Philae was delivered realizing the first landing ever on a comet surface. Although the exploration of the comet was planned up to the end of 2015, the mission duration was extended for nine more months than the nominal one, to follow the comet on its outbound orbit. To terminate the mission, following a series of very low orbits, a controlled impact of Rosetta spacecraft with the comet was realized on September 30, 2016. The scientific objectives of the mission have been largely achieved. The challenging mission provided the science community with an enormous quantity of data of extraordinary scientific value. In this paper, a detailed description of the mission and the highlights of the obtained scientific results on the exploration of an extraordinary world are presented. The paper also includes lessons learned and directions for the future.

  3. A Densified Liquid Methane Delivery System for the Altair Ascent Stage (United States)

    Tomsik, Thomas M.; Johnson, Wesley L.; Smudde, Todd D.; Femminineo, Mark F.; Schnell, Andrew R.


    The Altair Lunar Lander is currently carrying options for both cryogenic and hypergolic ascent stage propulsion modules. The cryogenic option uses liquid methane and liquid oxygen to propel Altair from the lunar surface back to rendezvous with the Orion command module. Recent studies have determined that the liquid methane should be densified by subcooling it to 93 K in order to prevent over-pressurization of the propellant tanks during the 210 day stay on the lunar surface. A trade study has been conducted to determine the preferred method of producing; loading, and maintaining the subcooled, densified liquid methane onboard Altair from a ground operations perspective. The trade study took into account the limitations in mass for the launch vehicle and the mobile launch platform as well as the historical reliability of various components and their thermal efficiencies. Several unique problems were encountered, namely delivering a small amount of a cryogenic propellant to a flight tank that is positioned over 350 ft above the launch pad as well as generating the desired delivery temperature of the methane at 93 K which is only 2.3 K above the methane triple point of 90.7 K. Over 20 methods of subcooled liquid methane production and delivery along with the associated system architectures were investigated to determine the best solutions to the problem. The top four cryogenic processing solutions were selected for further evaluation and detailed thermal modeling. This paper describes the results of the preliminary trade analysis of the 20 plus methane densification methods considered. The results of the detailed analysis will be briefed to the Altair Project Office and their propulsion team as well as the Ground Operations Project Office before the down-select is made between cryogenic and hypergolic ascent stages in August 2010.

  4. Rosetta begins its 10-year journey to the origins of the Solar System (United States)


    planetary encounters will increase the probe’s orbital energy and boost it well into the asteroid belt. A third and last flyby of the Earth in November 2009 will send Rosetta toward the orbit of comet Churyumov-Gerasimenko. Then, by mid-2011, when it is about 800 million km from the Sun, Rosetta will ignite its main engine for a major deep-space manoeuvre that will place it onto an interception trajectory with the comet, which will take nearly three years to be reached. Rosetta will be reactivated for good in January 2014, as it enters a six-month approach phase, closing in slowly on the nucleus of comet Churyumov-Gerasimenko. The comet will then still be far from the Sun and should not be active. Rendezvous with a comet Like comet 46P/Wirtanen, which was the planned target for Rosetta until its launch was postponed in early 2003, comet 67P/Churyumov-Gerasimenko is one of the periodic comets that were “trapped” in the inner Solar System after they came too close to Jupiter. This comet was discovered in September 1969 at the Almaty Astrophysical Institute in Kazakhstan. It was detected by astronomer Klim Churyumov, from the University of Kiev, Ukraine, on pictures taken by his colleague Svetlana Gerasimenko, from the Institute of Astrophysics of Dushanbe, Tajikistan. Rosetta will start accompanying the comet's nucleus in August 2014. It will then conduct detailed mapping of its surface and a landing site will be selected for Philae, its 100 kg lander. Philae will be dropped from an altitude of about 1 km and, due to the tiny gravity of the nucleus, it will touch down at walking speed. The lander will even have to anchor itself to the surface with two harpoons to avoid bouncing back. Philae is expected to operate from the surface for several weeks, sending back very high resolution pictures and as information about the upper crust of the nucleus. These data will be relayed to Earth by the orbiter. Rosetta will continue its observations of the comet’s nucleus for over

  5. Watchdog System

    DEFF Research Database (Denmark)

    Madsen, Tanja Kidholm Osmann; Bahnsen, Chris Holmberg; Jensen, Morten Bornø

    This deliverable is part of WP4. Overall WP4 is motivated by the need for automatic systems that can ease the task of annotating massive amounts of traffic data. Concretely this deliverable is related to WP4.2 - the watchdog system. The idea with the watchdog is to develop a system that can remove...

  6. Retrofitting Systems

    DEFF Research Database (Denmark)

    Rose, Jørgen


    This report gives an overview of the different retrofitting possibilities that are available today. The report looks at both external and internal systems for external wall constructions, roof constructions, floor constructions and foundations. All systems are described in detail in respect to use...... and methods, and the efficiency of the different systems are discussed....

  7. systemic matching

    African Journals Online (AJOL)


    understanding of scientific concepts,(iv) converted from surface learning to deep learning of chemistry concepts and chemical processes,(v) enhance their abilities to construction, or analysis of a novel systemic diagrams using chemical information, (vi) develop their thinking skills towards systemic thinking. Types Systemic ...

  8. Systems Engineering (United States)

    Pellerano, Fernando


    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  9. Operating systems

    CERN Document Server

    Tsichritzis, Dionysios C; Rheinboldt, Werner


    Operating Systems deals with the fundamental concepts and principles that govern the behavior of operating systems. Many issues regarding the structure of operating systems, including the problems of managing processes, processors, and memory, are examined. Various aspects of operating systems are also discussed, from input-output and files to security, protection, reliability, design methods, performance evaluation, and implementation methods.Comprised of 10 chapters, this volume begins with an overview of what constitutes an operating system, followed by a discussion on the definition and pr

  10. Lunae Planum (United States)


    the base of the uplands at the bottom of this image. While it's not clear what caused these deposits, ice is a likely candidate. Scientists have hypothesized that the mysterious systems of valleys and ridges (called 'fretted terrain') in this area were created through fractures and the collapse of large surface areas. Fretted terrain may have developed as icy debris flowed off of faulted valley walls and down onto the northern plains a long time ago in Martian history. This dramatic period would have coincided with the great Martian flood epoch, when melted ice from the subsurface was rapidly released in catastrophic amounts, carving out channels seen in other nearby regions. Lunae Planum lies west of Chryse Planitia (the Plains of Gold), where the Viking 1 spacecraft made history on July 20, 1976 as the first spacecraft to land safely on the surface of another planet. Viking Lander 1 made its final transmission to Earth on November 11, 1982. Perhaps one day a future spacecraft will settle down on this bright plain, using information collected by Odyssey today as the basis of its ground studies of this complex terrain. And who knows? Maybe even the design of a future rover could recall the image of a swiftly moving chariot, carrying the symbol of a crescent moon.

  11. Expert System

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas Troels; Cattani, Gian Luca


    An expert system is a computer system for inferring knowledge from a knowledge base, typically by using a set of inference rules. When the concept of expert systems was introduced at Stanford University in the early 1970s, the knowledge base was an unstructured set of facts. Today the knowledge...... base of expert systems is often given in terms of an ontology, extracted and built from various data sources by employing natural language-processing and statistics. To emphasize such capabilities, the term “expert” is now often replaced by “cognitive,” “knowledge,” “knowledge-based,” or “intelligent......” system. With very few exceptions, general-purpose expert systems have failed to emerge so far. However, expert systems are applied in specialized domains, particularly in healthcare. The increasing availability of large quantities of data to organizations today provides a valuable opportunity...

  12. Enabling kinetic micro-penetrator technology for Solar System research (United States)

    Gowen, R. A.


    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  13. Japanese future plans for exploration of primitive bodies in the solar system (United States)

    Yoshikawa, Makoto; Yano, Hajime; Kawaguchi, Junichiro

    More than two years has passed since the exploration of Itokawa by Hayabusa spacecraft. For the first time, we saw real appearance of a very small solar system body, whose size is only about 500 m in length. We had a lot of scientific results form the observation of Hayabusa, and we got many clues to know the origin and evolution of the solar system. As working for Hayabusa, we have also considered post-Hayabusa missions. Since the Itokawa is an S-type asteroid, next target should be a C-type asteroid, because these two types are abundant in the main asteroid belt. The next mission to Hayabusa is 'Hayabusa-2', which will explore C-type asteroid. The spacecraft is quite similar to Hayabusa, so we can save time for manufacturing it. The current target asteroid of Hayabusa-2 is 1999 JU3, which is intensively observed in 2007 and 2008. At the same time, we were also considering much more advanced mission after Hayabusa-2, and this mission is called 'Hayabusa-Mk2.' The target of Hayabusa-Mk2 should be much more primitive objects such as P-type or D-type asteroids, CAT, and comets, and the spacecraft is a newly developed one. In this way, we (=JAXA) are considering programmatic missions for the exploration of primitive bodies. Since there are many small bodies in the solar system, we should have such strategic approach. From 2006, Hayabusa-Mk2 is also considered under the scheme of Cosmic Vision of ESA with the European study group for small bodies of the solar system. And it was proposed to Cosmic Vision with the name of 'Marco Polo.' It has passed the first selection so now we are in the assessment phase. The spacecraft, for which Japan is responsible, is based on the idea of Hayabusa-Mk2, but we reconsider it to have a large lander and a new sampling system from Europe. There are four principal purposes for asteroid exploration, that is, science, spaceguard, resources, and manned mission. The science is the main target and we want to know the origin and evolution of

  14. Recommender systems

    CERN Document Server

    Kembellec, Gérald; Saleh, Imad


    Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understan

  15. Systemic Assurance (United States)


    benefits. The first is direct: Cost- effective and rapid recertification is essential to support the development of systems that must adapt to changes...simulations, cyber-physical robotic systems, and extremely large commercial Java programs. An important goal is to develop incrementally compostable ...combinations of models, practices, and tools for obtaining the most cost- and schedule- effective combinations for the assurance of necessary system

  16. Systems Engineering


    Vaughan, William W.


    The term “systems engineering” when entered into the Google search page, produces a significant number of results, evidence that systems engineering is recognized as being important for the success of essentially all products. Since most readers of this item will be rather well versed in documents concerning systems engineering, I have elected to share some of the points made on this subject in a document developed by the European Cooperation for Space Standardization (ECSS), a component of t...

  17. Geothermal systems (United States)

    Mohl, C.


    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  18. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander (United States)

    Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.


    The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), "Schiaparelli". DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.

  19. Japanese lunar robotics exploration by co-operation with lander and ...

    Indian Academy of Sciences (India)

    Unmanned mobile robots for surface exploration of the Moon or planets have been extensively studied and developed. A lunar rover is expected to travel safely in a wide area and explore in detail. Japanese lunar robotics exploration is under study to conduct an unmanned geological survey in the vicinity of central peaks of ...

  20. Curved focal plane extreme ultraviolet detector array for a EUV camera on CHANG E lander. (United States)

    Ni, Q; Song, K; Liu, S; He, L; Chen, B; Yu, W


    A novel curved focal plane extreme ultraviolet (EUV) detector array designed for a moon-based EUV camera is demonstrated. The curved focal plane detector array operating in a pulse-counting mode consists of a curved microchannel plate (MCP) stack and an induced charge wedge-strip anode (WSA). The curved MCP is fabricated by firstly thermally slumping of the MCPs, and then followed by optical polishing and core glass etching. By using this technology, curved MCPs with a length-to-diameter (L/D) ratio of 80:1 and a radius of curvature of 150 mm have been successfully achieved. The performance of the curved MCP detector is fully characterized in terms of the background noise, pulse height distribution, gain, image linearity and spatial resolution. It is measured that a spatial resolution of 7.13 lp/mm can be achieved with a background noise of less than 0.3 counts/cm2⋅s. The characterization results indicate that the curved focal plane detector can fulfill the requirements of the moon-based EUV camera.