WorldWideScience

Sample records for video target tracking

  1. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  2. INFLUENCE OF STOCHASTIC NOISE STATISTICS ON KALMAN FILTER PERFORMANCE BASED ON VIDEO TARGET TRACKING

    Institute of Scientific and Technical Information of China (English)

    Chen Ken; Napolitano; Zhang Yun; Li Dong

    2010-01-01

    The system stochastic noises involved in Kalman filtering are preconditioned on being ideally white and Gaussian distributed. In this research,efforts are exerted on exploring the influence of the noise statistics on Kalman filtering from the perspective of video target tracking quality. The correlation of tracking precision to both the process and measurement noise covariance is investigated; the signal-to-noise power density ratio is defined; the contribution of predicted states and measured outputs to Kalman filter behavior is discussed; the tracking precision relative sensitivity is derived and applied in this study case. The findings are expected to pave the way for future study on how the actual noise statistics deviating from the assumed ones impacts on the Kalman filter optimality and degradation in the application of video tracking.

  3. Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance

    Directory of Open Access Journals (Sweden)

    Riad I. Hammoud

    2014-10-01

    Full Text Available We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA and multi-media indexing and explorer (MINER. VIVA utilizes analyst call-outs (ACOs in the form of chat messages (voice-to-text to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1 a fusion of graphical track and text data using probabilistic methods; (2 an activity pattern learning framework to support querying an index of activities of interest (AOIs and targets of interest (TOIs by movement type and geolocation; and (3 a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV. VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  4. Automatic association of chats and video tracks for activity learning and recognition in aerial video surveillance.

    Science.gov (United States)

    Hammoud, Riad I; Sahin, Cem S; Blasch, Erik P; Rhodes, Bradley J; Wang, Tao

    2014-10-22

    We describe two advanced video analysis techniques, including video-indexed by voice annotations (VIVA) and multi-media indexing and explorer (MINER). VIVA utilizes analyst call-outs (ACOs) in the form of chat messages (voice-to-text) to associate labels with video target tracks, to designate spatial-temporal activity boundaries and to augment video tracking in challenging scenarios. Challenging scenarios include low-resolution sensors, moving targets and target trajectories obscured by natural and man-made clutter. MINER includes: (1) a fusion of graphical track and text data using probabilistic methods; (2) an activity pattern learning framework to support querying an index of activities of interest (AOIs) and targets of interest (TOIs) by movement type and geolocation; and (3) a user interface to support streaming multi-intelligence data processing. We also present an activity pattern learning framework that uses the multi-source associated data as training to index a large archive of full-motion videos (FMV). VIVA and MINER examples are demonstrated for wide aerial/overhead imagery over common data sets affording an improvement in tracking from video data alone, leading to 84% detection with modest misdetection/false alarm results due to the complexity of the scenario. The novel use of ACOs and chat Sensors 2014, 14 19844 messages in video tracking paves the way for user interaction, correction and preparation of situation awareness reports.

  5. Image and video based remote target localization and tracking on smartphones

    Science.gov (United States)

    Wang, Qia; Lobzhanidze, Alex; Jang, Hyun; Zeng, Wenjun; Shang, Yi; Yang, Jingyu

    2012-06-01

    Smartphones are becoming popular nowadays not only because of its communication functionality but also, more importantly, its powerful sensing and computing capability. In this paper, we describe a novel and accurate image and video based remote target localization and tracking system using the Android smartphones, by leveraging its built-in sensors such as camera, digital compass, GPS, etc. Even though many other distance estimation or localization devices are available, our all-in-one, easy-to-use localization and tracking system on low cost and commodity smartphones is first of its kind. Furthermore, smartphones' exclusive user-friendly interface has been effectively taken advantage of by our system to facilitate low complexity and high accuracy. Our experimental results show that our system works accurately and efficiently.

  6. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    Science.gov (United States)

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  7. Technology survey on video face tracking

    Science.gov (United States)

    Zhang, Tong; Gomes, Herman Martins

    2014-03-01

    With the pervasiveness of monitoring cameras installed in public areas, schools, hospitals, work places and homes, video analytics technologies for interpreting these video contents are becoming increasingly relevant to people's lives. Among such technologies, human face detection and tracking (and face identification in many cases) are particularly useful in various application scenarios. While plenty of research has been conducted on face tracking and many promising approaches have been proposed, there are still significant challenges in recognizing and tracking people in videos with uncontrolled capturing conditions, largely due to pose and illumination variations, as well as occlusions and cluttered background. It is especially complex to track and identify multiple people simultaneously in real time due to the large amount of computation involved. In this paper, we present a survey on literature and software that are published or developed during recent years on the face tracking topic. The survey covers the following topics: 1) mainstream and state-of-the-art face tracking methods, including features used to model the targets and metrics used for tracking; 2) face identification and face clustering from face sequences; and 3) software packages or demonstrations that are available for algorithm development or trial. A number of publically available databases for face tracking are also introduced.

  8. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    Science.gov (United States)

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  9. Moving Target Detection and Active Tracking with a Multicamera Network

    Directory of Open Access Journals (Sweden)

    Long Zhao

    2014-01-01

    Full Text Available We propose a systematic framework for Intelligence Video Surveillance System (IVSS with a multicamera network. The proposed framework consists of low-cost static and PTZ cameras, target detection and tracking algorithms, and a low-cost PTZ camera feedback control algorithm based on target information. The target detection and tracking is realized by fixed cameras using a moving target detection and tracking algorithm; the PTZ camera is manoeuvred to actively track the target from the tracking results of the static camera. The experiments are carried out using practical surveillance system data, and the experimental results show that the systematic framework and algorithms presented in this paper are efficient.

  10. Face Recognition and Tracking in Videos

    Directory of Open Access Journals (Sweden)

    Swapnil Vitthal Tathe

    2017-07-01

    Full Text Available Advancement in computer vision technology and availability of video capturing devices such as surveillance cameras has evoked new video processing applications. The research in video face recognition is mostly biased towards law enforcement applications. Applications involves human recognition based on face and iris, human computer interaction, behavior analysis, video surveillance etc. This paper presents face tracking framework that is capable of face detection using Haar features, recognition using Gabor feature extraction, matching using correlation score and tracking using Kalman filter. The method has good recognition rate for real-life videos and robust performance to changes due to illumination, environmental factors, scale, pose and orientations.

  11. Snapshot spectral and polarimetric imaging; target identification with multispectral video

    Science.gov (United States)

    Bartlett, Brent D.; Rodriguez, Mikel D.

    2013-05-01

    As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.

  12. Adaptive block online learning target tracking based on super pixel segmentation

    Science.gov (United States)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  13. Visualization of ground truth tracks for the video 'Tracking a "facer's" behavior in a public plaza'

    DEFF Research Database (Denmark)

    2015-01-01

    The video shows the ground truth tracks in GIS of all pedestrians in the video 'Tracking a 'facer's" behavior in a public plaza'. The visualization was made using QGIS TimeManager.......The video shows the ground truth tracks in GIS of all pedestrians in the video 'Tracking a 'facer's" behavior in a public plaza'. The visualization was made using QGIS TimeManager....

  14. Research on target tracking in coal mine based on optical flow method

    Science.gov (United States)

    Xue, Hongye; Xiao, Qingwei

    2015-03-01

    To recognize, track and count the bolting machine in coal mine video images, a real-time target tracking method based on the Lucas-Kanade sparse optical flow is proposed in this paper. In the method, we judge whether the moving target deviate from its trajectory, predicate and correct the position of the moving target. The method solves the problem of failure to track the target or lose the target because of the weak light, uneven illumination and blocking. Using the VC++ platform and Opencv lib we complete the recognition and tracking. The validity of the method is verified by the result of the experiment.

  15. Fast-track video-assisted thoracoscopic surgery

    DEFF Research Database (Denmark)

    Holbek, Bo Laksafoss; Petersen, René Horsleben; Kehlet, Henrik

    2016-01-01

    Objectives To provide a short overview of fast-track video-assisted thoracoscopic surgery (VATS) and to identify areas requiring further research. Design A literature search was made using key words including: fast-track, enhanced recovery, video-assisted thoracoscopic surgery, robot......-assisted thoracoscopic surgery (RATS), robotic, thoracotomy, single-incision, uniportal, natural orifice transluminal endoscopic surgery (NOTES), chest tube, air-leak, digital drainage, pain management, analgesia, perioperative management, anaesthesia and non-intubated. References from articles were screened for further...

  16. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  17. Robust feedback zoom tracking for digital video surveillance.

    Science.gov (United States)

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  18. Optimized swimmer tracking system based on a novel multi-related-targets approach

    Science.gov (United States)

    Benarab, D.; Napoléon, T.; Alfalou, A.; Verney, A.; Hellard, P.

    2017-02-01

    Robust tracking is a crucial step in automatic swimmer evaluation from video sequences. We designed a robust swimmer tracking system using a new multi-related-targets approach. The main idea is to consider the swimmer as a bloc of connected subtargets that advance at the same speed. If one of the subtargets is partially or totally occluded, it can be localized by knowing the position of the others. In this paper, we first introduce the two-dimensional direct linear transformation technique that we used to calibrate the videos. Then, we present the classical tracking approach based on dynamic fusion. Next, we highlight the main contribution of our work, which is the multi-related-targets tracking approach. This approach, the classical head-only approach and the ground truth are then compared, through testing on a database of high-level swimmers in training, national and international competitions (French National Championships, Limoges 2015, and World Championships, Kazan 2015). Tracking percentage and the accuracy of the instantaneous speed are evaluated and the findings show that our new appraoach is significantly more accurate than the classical approach.

  19. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    Science.gov (United States)

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  20. Lightweight Object Tracking in Compressed Video Streams Demonstrated in Region-of-Interest Coding

    Directory of Open Access Journals (Sweden)

    Lerouge Sam

    2007-01-01

    Full Text Available Video scalability is a recent video coding technology that allows content providers to offer multiple quality versions from a single encoded video file in order to target different kinds of end-user devices and networks. One form of scalability utilizes the region-of-interest concept, that is, the possibility to mark objects or zones within the video as more important than the surrounding area. The scalable video coder ensures that these regions-of-interest are received by an end-user device before the surrounding area and preferably in higher quality. In this paper, novel algorithms are presented making it possible to automatically track the marked objects in the regions of interest. Our methods detect the overall motion of a designated object by retrieving the motion vectors calculated during the motion estimation step of the video encoder. Using this knowledge, the region-of-interest is translated, thus following the objects within. Furthermore, the proposed algorithms allow adequate resizing of the region-of-interest. By using the available information from the video encoder, object tracking can be done in the compressed domain and is suitable for real-time and streaming applications. A time-complexity analysis is given for the algorithms proving the low complexity thereof and the usability for real-time applications. The proposed object tracking methods are generic and can be applied to any codec that calculates the motion vector field. In this paper, the algorithms are implemented within MPEG-4 fine-granularity scalability codec. Different tests on different video sequences are performed to evaluate the accuracy of the methods. Our novel algorithms achieve a precision up to 96.4 .

  1. Lightweight Object Tracking in Compressed Video Streams Demonstrated in Region-of-Interest Coding

    Directory of Open Access Journals (Sweden)

    Rik Van de Walle

    2007-01-01

    Full Text Available Video scalability is a recent video coding technology that allows content providers to offer multiple quality versions from a single encoded video file in order to target different kinds of end-user devices and networks. One form of scalability utilizes the region-of-interest concept, that is, the possibility to mark objects or zones within the video as more important than the surrounding area. The scalable video coder ensures that these regions-of-interest are received by an end-user device before the surrounding area and preferably in higher quality. In this paper, novel algorithms are presented making it possible to automatically track the marked objects in the regions of interest. Our methods detect the overall motion of a designated object by retrieving the motion vectors calculated during the motion estimation step of the video encoder. Using this knowledge, the region-of-interest is translated, thus following the objects within. Furthermore, the proposed algorithms allow adequate resizing of the region-of-interest. By using the available information from the video encoder, object tracking can be done in the compressed domain and is suitable for real-time and streaming applications. A time-complexity analysis is given for the algorithms proving the low complexity thereof and the usability for real-time applications. The proposed object tracking methods are generic and can be applied to any codec that calculates the motion vector field. In this paper, the algorithms are implemented within MPEG-4 fine-granularity scalability codec. Different tests on different video sequences are performed to evaluate the accuracy of the methods. Our novel algorithms achieve a precision up to 96.4%.

  2. Performance evaluation software moving object detection and tracking in videos

    CERN Document Server

    Karasulu, Bahadir

    2013-01-01

    Performance Evaluation Software: Moving Object Detection and Tracking in Videos introduces a software approach for the real-time evaluation and performance comparison of the methods specializing in moving object detection and/or tracking (D&T) in video processing. Digital video content analysis is an important item for multimedia content-based indexing (MCBI), content-based video retrieval (CBVR) and visual surveillance systems. There are some frequently-used generic algorithms for video object D&T in the literature, such as Background Subtraction (BS), Continuously Adaptive Mean-shift (CMS),

  3. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    Directory of Open Access Journals (Sweden)

    Ming Xue

    2014-02-01

    Full Text Available To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks.

  4. Pricise Target Geolocation and Tracking Based on Uav Video Imagery

    Science.gov (United States)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    There is an increasingly large number of applications for Unmanned Aerial Vehicles (UAVs) from monitoring, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using an extended Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors, Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process. The results of this study compared with code-based ordinary GPS, indicate that RTK observation with proposed method shows more than 10 times improvement of accuracy in target geolocation.

  5. Target Tracking of a Linear Time Invariant System under Irregular Sampling

    Directory of Open Access Journals (Sweden)

    Jin Xue-Bo

    2012-11-01

    Full Text Available Due to event-triggered sampling in a system, or maybe with the aim of reducing data storage, tracking many applications will encounter irregular sampling time. By calculating the matrix exponential using an inverse Laplace transform, this paper transforms the irregular sampling tracking problem to the problem of tracking with time-varying parameters of a system. Using the common Kalman filter, the developed method is used to track a target for the simulated trajectory and video tracking. The results of simulation experiments have shown that it can obtain good estimation performance even at a very high irregular rate of measurement sampling time.

  6. High-throughput phenotyping of plant resistance to aphids by automated video tracking.

    Science.gov (United States)

    Kloth, Karen J; Ten Broeke, Cindy Jm; Thoen, Manus Pm; Hanhart-van den Brink, Marianne; Wiegers, Gerrie L; Krips, Olga E; Noldus, Lucas Pjj; Dicke, Marcel; Jongsma, Maarten A

    2015-01-01

    Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops. Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-throughput, quantitative phenotyping methods. We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of lettuce cultivar 'Corbana' against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could screen 100 samples in parallel. Automated video tracking can be used to screen large plant populations for resistance to aphids and other piercing-sucking insects.

  7. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    International Nuclear Information System (INIS)

    Anderson, Robert J.

    2014-01-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  8. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn't lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  9. Multi-Target Camera Tracking, Hand-off and Display LDRD 158819 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Robotic and Security Systems Dept.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance-based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldn’t lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that take live video imagery from multiple video cameras, identify individual moving targets from the background imagery, and then display the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of current capability.

  10. Optimal path planning for video-guided smart munitions via multitarget tracking

    Science.gov (United States)

    Borkowski, Jeffrey M.; Vasquez, Juan R.

    2006-05-01

    An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.

  11. Tracking and recognition face in videos with incremental local sparse representation model

    Science.gov (United States)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  12. Video-based measurements for wireless capsule endoscope tracking

    International Nuclear Information System (INIS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions. (paper)

  13. Video-based measurements for wireless capsule endoscope tracking

    Science.gov (United States)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  14. Multi-view video segmentation and tracking for video surveillance

    Science.gov (United States)

    Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj

    2009-05-01

    Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.

  15. Study on the Detection of Moving Target in the Mining Method Based on Hybrid Algorithm for Sports Video Analysis

    Directory of Open Access Journals (Sweden)

    Huang Tian

    2014-10-01

    Full Text Available Moving object detection and tracking is the computer vision and image processing is a hot research direction, based on the analysis of the moving target detection and tracking algorithm in common use, focus on the sports video target tracking non rigid body. In sports video, non rigid athletes often have physical deformation in the process of movement, and may be associated with the occurrence of moving target under cover. Media data is surging to fast search and query causes more difficulties in data. However, the majority of users want to be able to quickly from the multimedia data to extract the interested content and implicit knowledge (concepts, rules, rules, models and correlation, retrieval and query quickly to take advantage of them, but also can provide the decision support problem solving hierarchy. Based on the motion in sport video object as the object of study, conducts the system research from the theoretical level and technical framework and so on, from the layer by layer mining between low level motion features to high-level semantic motion video, not only provides support for users to find information quickly, but also can provide decision support for the user to solve the problem.

  16. Object tracking using multiple camera video streams

    Science.gov (United States)

    Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford

    2010-05-01

    Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.

  17. Real-time WAMI streaming target tracking in fog

    Science.gov (United States)

    Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe

    2016-05-01

    Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.

  18. ‘PhysTrack’: a Matlab based environment for video tracking of kinematics in the physics laboratory

    Science.gov (United States)

    Umar Hassan, Muhammad; Sabieh Anwar, Muhammad

    2017-07-01

    In the past two decades, several computer software tools have been developed to investigate the motion of moving bodies in physics laboratories. In this article we report a Matlab based video tracking library, PhysTrack, primarily designed to investigate kinematics. We compare PhysTrack with other commonly available video tracking tools and outline its salient features. The general methodology of the whole video tracking process is described with a step by step explanation of several functionalities. Furthermore, results of some real physics experiments are also provided to demonstrate the working of the automated video tracking, data extraction, data analysis and presentation tools that come with this development environment. We believe that PhysTrack will be valuable for the large community of physics teachers and students already employing Matlab.

  19. A System based on Adaptive Background Subtraction Approach for Moving Object Detection and Tracking in Videos

    Directory of Open Access Journals (Sweden)

    Bahadır KARASULU

    2013-04-01

    Full Text Available Video surveillance systems are based on video and image processing research areas in the scope of computer science. Video processing covers various methods which are used to browse the changes in existing scene for specific video. Nowadays, video processing is one of the important areas of computer science. Two-dimensional videos are used to apply various segmentation and object detection and tracking processes which exists in multimedia content-based indexing, information retrieval, visual and distributed cross-camera surveillance systems, people tracking, traffic tracking and similar applications. Background subtraction (BS approach is a frequently used method for moving object detection and tracking. In the literature, there exist similar methods for this issue. In this research study, it is proposed to provide a more efficient method which is an addition to existing methods. According to model which is produced by using adaptive background subtraction (ABS, an object detection and tracking system’s software is implemented in computer environment. The performance of developed system is tested via experimental works with related video datasets. The experimental results and discussion are given in the study

  20. Autonomous target tracking of UAVs based on low-power neural network hardware

    Science.gov (United States)

    Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe

    2014-05-01

    Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.

  1. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan

    2016-10-25

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face clustering and face tracking from real world videos. The motivation for the proposed research is that face clustering and face tracking can provide useful information and constraints to each other, thus can bootstrap and improve the performances of each other. To this end, we introduce a Coupled Hidden Markov Random Field (CHMRF) to simultaneously model face clustering, face tracking, and their interactions. We provide an effective algorithm based on constrained clustering and optimal tracking for the joint optimization of cluster labels and face tracking. We demonstrate significant improvements over state-of-the-art results in face clustering and tracking on several videos.

  2. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  3. Tracking of Individuals in Very Long Video Sequences

    DEFF Research Database (Denmark)

    Fihl, Preben; Corlin, Rasmus; Park, Sangho

    2006-01-01

    In this paper we present an approach for automatically detecting and tracking humans in very long video sequences. The detection is based on background subtraction using a multi-mode Codeword method. We enhance this method both in terms of representation and in terms of automatically updating...

  4. Video-based Chinese Input System via Fingertip Tracking

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yu

    2012-10-01

    Full Text Available In this paper, we propose a system to detect and track fingertips online and recognize Mandarin Phonetic Symbol (MPS for user-friendly Chinese input purposes. Using fingertips and cameras to replace pens and touch panels as input devices could reduce the cost and improve the ease-of-use and comfort of computer-human interface. In the proposed framework, particle filters with enhanced appearance models are applied for robust fingertip tracking. Afterwards, MPS combination recognition is performed on the tracked fingertip trajectories using Hidden Markov Models. In the proposed system, the fingertips of the users could be robustly tracked. Also, the challenges of entering, leaving and virtual strokes caused by video-based fingertip input can be overcome. Experimental results have shown the feasibility and effectiveness of the proposed work.

  5. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    Science.gov (United States)

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  6. Multiscale Architectures and Parallel Algorithms for Video Object Tracking

    Science.gov (United States)

    2011-10-01

    larger number of cores using the IBM QS22 Blade for handling higher video processing workloads (but at higher cost per core), low power consumption and...Cell/B.E. Blade processors which have a lot more main memory but also higher power consumption . More detailed performance figures for HD and SD video...Parallelism in Algorithms and Architectures, pages 289–298, 2007. [3] S. Ali and M. Shah. COCOA - Tracking in aerial imagery. In Daniel J. Henry

  7. AUTOMATIC FAST VIDEO OBJECT DETECTION AND TRACKING ON VIDEO SURVEILLANCE SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Arunachalam

    2012-08-01

    Full Text Available This paper describes the advance techniques for object detection and tracking in video. Most visual surveillance systems start with motion detection. Motion detection methods attempt to locate connected regions of pixels that represent the moving objects within the scene; different approaches include frame-to-frame difference, background subtraction and motion analysis. The motion detection can be achieved by Principle Component Analysis (PCA and then separate an objects from background using background subtraction. The detected object can be segmented. Segmentation consists of two schemes: one for spatial segmentation and the other for temporal segmentation. Tracking approach can be done in each frame of detected Object. Pixel label problem can be alleviated by the MAP (Maximum a Posteriori technique.

  8. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task.

    Science.gov (United States)

    Gozli, Davood G; Bavelier, Daphne; Pratt, Jay

    2014-10-12

    Research on the impact of action video game playing has revealed performance advantages on a wide range of perceptual and cognitive tasks. It is not known, however, if playing such games confers similar advantages in sensorimotor learning. To address this issue, the present study used a manual motion-tracking task that allowed for a sensitive measure of both accuracy and improvement over time. When the target motion pattern was consistent over trials, gamers improved with a faster rate and eventually outperformed non-gamers. Performance between the two groups, however, did not differ initially. When the target motion was inconsistent, changing on every trial, results revealed no difference between gamers and non-gamers. Together, our findings suggest that video game playing confers no reliable benefit in sensorimotor control, but it does enhance sensorimotor learning, enabling superior performance in tasks with consistent and predictable structure. Copyright © 2014. Published by Elsevier B.V.

  9. Hypersonic sliding target tracking in near space

    Directory of Open Access Journals (Sweden)

    Xiang-yu Zhang

    2015-12-01

    Full Text Available To improve the tracking accuracy of hypersonic sliding target in near space, the influence of target hypersonic movement on radar detection and tracking is analyzed, and an IMM tracking algorithm is proposed based on radial velocity compensating and cancellation processing of high dynamic biases under the earth centered earth fixed (ECEF coordinate. Based on the analysis of effect of target hypersonic movement, a measurement model is constructed to reduce the filter divergence which is caused by the model mismatch. The high dynamic biases due to the target hypersonic movement are approximately compensated through radial velocity estimation to achieve the hypersonic target tracking at low systematic biases in near space. The high dynamic biases are further eliminated by the cancellation processing of different radars, in which the track association problem can be solved when the dynamic biases are low. An IMM algorithm based on constant acceleration (CA, constant turning (CT and Singer models is used to achieve the hypersonic sliding target tracking in near space. Simulation results show that the target tracking in near space can be achieved more effectively by using the proposed algorithm.

  10. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    Science.gov (United States)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  11. Exploiting target amplitude information to improve multi-target tracking

    Science.gov (United States)

    Ehrman, Lisa M.; Blair, W. Dale

    2006-05-01

    Closely-spaced (but resolved) targets pose a challenge for measurement-to-track data association algorithms. Since the Mahalanobis distances between measurements collected on closely-spaced targets and tracks are similar, several elements of the corresponding kinematic measurement-to-track cost matrix are also similar. Lacking any other information on which to base assignments, it is not surprising that data association algorithms make mistakes. One ad hoc approach for mitigating this problem is to multiply the kinematic measurement-to-track likelihoods by amplitude likelihoods. However, this can actually be detrimental to the measurement-to-track association process. With that in mind, this paper pursues a rigorous treatment of the hypothesis probabilities for kinematic measurements and features. Three simple scenarios are used to demonstrate the impact of basing data association decisions on these hypothesis probabilities for Rayleigh, fixed-amplitude, and Rician targets. The first scenario assumes that the tracker carries two tracks but only one measurement is collected. This provides insight into more complex scenarios in which there are fewer measurements than tracks. The second scenario includes two measurements and one track. This extends naturally to the case with more measurements than tracks. Two measurements and two tracks are present in the third scenario, which provides insight into the performance of this method when the number of measurements equals the number of tracks. In all cases, basing data association decisions on the hypothesis probabilities leads to good results.

  12. Video Surveillance using a Multi-Camera Tracking and Fusion System

    OpenAIRE

    Zhang , Zhong; Scanlon , Andrew; Yin , Weihong; Yu , Li; Venetianer , Péter L.

    2008-01-01

    International audience; Usage of intelligent video surveillance (IVS) systems is spreading rapidly. These systems are being utilized in a wide range of applications. In most cases, even in multi-camera installations, the video is processed independently in each feed. This paper describes a system that fuses tracking information from multiple cameras, thus vastly expanding its capabilities. The fusion relies on all cameras being calibrated to a site map, while the individual sensors remain lar...

  13. Underwater Acoustic Target Tracking: A Review

    Science.gov (United States)

    Han, Ying; Fan, Liying

    2018-01-01

    Advances in acoustic technology and instrumentation now make it possible to explore marine resources. As a significant component of ocean exploration, underwater acoustic target tracking has aroused wide attention both in military and civil fields. Due to the complexity of the marine environment, numerous techniques have been proposed to obtain better tracking performance. In this paper, we survey over 100 papers ranging from innovative papers to the state-of-the-art in this field to present underwater tracking technologies. Not only the related knowledge of acoustic tracking instrument and tracking progress is clarified in detail, but also a novel taxonomy method is proposed. In this paper, algorithms for underwater acoustic target tracking are classified based on the methods used as: (1) instrument-assisted methods; (2) mode-based methods; (3) tracking optimization methods. These algorithms are compared and analyzed in the aspect of dimensions, numbers, and maneuvering of the tracking target, which is different from other survey papers. Meanwhile, challenges, countermeasures, and lessons learned are illustrated in this paper. PMID:29301318

  14. Real-time logo detection and tracking in video

    Science.gov (United States)

    George, M.; Kehtarnavaz, N.; Rahman, M.; Carlsohn, M.

    2010-05-01

    This paper presents a real-time implementation of a logo detection and tracking algorithm in video. The motivation of this work stems from applications on smart phones that require the detection of logos in real-time. For example, one application involves detecting company logos so that customers can easily get special offers in real-time. This algorithm uses a hybrid approach by initially running the Scale Invariant Feature Transform (SIFT) algorithm on the first frame in order to obtain the logo location and then by using an online calibration of color within the SIFT detected area in order to detect and track the logo in subsequent frames in a time efficient manner. The results obtained indicate that this hybrid approach allows robust logo detection and tracking to be achieved in real-time.

  15. Kalman Filter Based Tracking in an Video Surveillance System

    Directory of Open Access Journals (Sweden)

    SULIMAN, C.

    2010-05-01

    Full Text Available In this paper we have developed a Matlab/Simulink based model for monitoring a contact in a video surveillance sequence. For the segmentation process and corect identification of a contact in a surveillance video, we have used the Horn-Schunk optical flow algorithm. The position and the behavior of the correctly detected contact were monitored with the help of the traditional Kalman filter. After that we have compared the results obtained from the optical flow method with the ones obtained from the Kalman filter, and we show the correct functionality of the Kalman filter based tracking. The tests were performed using video data taken with the help of a fix camera. The tested algorithm has shown promising results.

  16. Automatic tracking of cells for video microscopy in patch clamp experiments.

    Science.gov (United States)

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy

  17. Contextual analysis of videos

    CERN Document Server

    Thida, Myo; Monekosso, Dorothy

    2013-01-01

    Video context analysis is an active and vibrant research area, which provides means for extracting, analyzing and understanding behavior of a single target and multiple targets. Over the last few decades, computer vision researchers have been working to improve the accuracy and robustness of algorithms to analyse the context of a video automatically. In general, the research work in this area can be categorized into three major topics: 1) counting number of people in the scene 2) tracking individuals in a crowd and 3) understanding behavior of a single target or multiple targets in the scene.

  18. Thermal Tracking of Sports Players

    Directory of Open Access Journals (Sweden)

    Rikke Gade

    2014-07-01

    Full Text Available We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

  19. Thermal tracking of sports players.

    Science.gov (United States)

    Gade, Rikke; Moeslund, Thomas B

    2014-07-29

    We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

  20. IFE Target Injection Tracking and Position Prediction Update

    International Nuclear Information System (INIS)

    Petzoldt, Ronald W.; Jonestrask, Kevin

    2005-01-01

    To achieve high gain in an inertial fusion energy power plant, driver beams must hit direct drive targets with ±20 μm accuracy (±100 μm for indirect drive). Targets will have to be tracked with even greater accuracy. The conceptual design for our tracking system, which predicts target arrival position and timing based on position measurements outside of the reaction chamber was previously described. The system has been built and has begun tracking targets at the first detector station. Additional detector stations are being modified for increased field of view. After three tracking stations are operational, position predictions at the final station will be compared to position measurements at that station as a measure of target position prediction accuracy.The as-installed design will be described together with initial target tracking and position prediction accuracy results. Design modifications that allow for improved accuracy and/or in-chamber target tracking will also be presented

  1. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    Directory of Open Access Journals (Sweden)

    Chang Yao-Jen

    2002-01-01

    Full Text Available This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network and the H.324 WAN (wide-area network users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  2. A Standard-Compliant Virtual Meeting System with Active Video Object Tracking

    Science.gov (United States)

    Lin, Chia-Wen; Chang, Yao-Jen; Wang, Chih-Ming; Chen, Yung-Chang; Sun, Ming-Ting

    2002-12-01

    This paper presents an H.323 standard compliant virtual video conferencing system. The proposed system not only serves as a multipoint control unit (MCU) for multipoint connection but also provides a gateway function between the H.323 LAN (local-area network) and the H.324 WAN (wide-area network) users. The proposed virtual video conferencing system provides user-friendly object compositing and manipulation features including 2D video object scaling, repositioning, rotation, and dynamic bit-allocation in a 3D virtual environment. A reliable, and accurate scheme based on background image mosaics is proposed for real-time extracting and tracking foreground video objects from the video captured with an active camera. Chroma-key insertion is used to facilitate video objects extraction and manipulation. We have implemented a prototype of the virtual conference system with an integrated graphical user interface to demonstrate the feasibility of the proposed methods.

  3. A survey on the automatic object tracking technology using video signals

    International Nuclear Information System (INIS)

    Lee, Jae Cheol; Jun, Hyeong Seop; Choi, Yu Rak; Kim, Jae Hee

    2003-01-01

    Recently, automatic identification and tracking of the object are actively studied according to the rapid development of signal processing and vision technology using improved hardware and software. The object tracking technology can be applied to various fields such as road watching of the vehicles, weather satellite, traffic observation, intelligent remote video-conferences and autonomous mobile robots. Object tracking system receives subsequent pictures from the camera and detects motions of the objects in these pictures. In this report, we investigate various object tracking techniques such as brightness change using histogram characteristic, differential image analysis, contour and feature extraction, and try to find proper methods that can be used to mobile robots actually

  4. Heterogeneous CPU-GPU moving targets detection for UAV video

    Science.gov (United States)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  5. Computer-aided target tracking in motion analysis studies

    Science.gov (United States)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  6. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    Directory of Open Access Journals (Sweden)

    Xin Li

    2014-06-01

    Full Text Available Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians, especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach.

  7. Robust infrared target tracking using discriminative and generative approaches

    Science.gov (United States)

    Asha, C. S.; Narasimhadhan, A. V.

    2017-09-01

    The process of designing an efficient tracker for thermal infrared imagery is one of the most challenging tasks in computer vision. Although a lot of advancement has been achieved in RGB videos over the decades, textureless and colorless properties of objects in thermal imagery pose hard constraints in the design of an efficient tracker. Tracking of an object using a single feature or a technique often fails to achieve greater accuracy. Here, we propose an effective method to track an object in infrared imagery based on a combination of discriminative and generative approaches. The discriminative technique makes use of two complementary methods such as kernelized correlation filter with spatial feature and AdaBoost classifier with pixel intesity features to operate in parallel. After obtaining optimized locations through discriminative approaches, the generative technique is applied to determine the best target location using a linear search method. Unlike the baseline algorithms, the proposed method estimates the scale of the target by Lucas-Kanade homography estimation. To evaluate the proposed method, extensive experiments are conducted on 17 challenging infrared image sequences obtained from LTIR dataset and a significant improvement of mean distance precision and mean overlap precision is accomplished as compared with the existing trackers. Further, a quantitative and qualitative assessment of the proposed approach with the state-of-the-art trackers is illustrated to clearly demonstrate an overall increase in performance.

  8. Qualitative Video Analysis of Track-Cycling Team Pursuit in World-Class Athletes.

    Science.gov (United States)

    Sigrist, Samuel; Maier, Thomas; Faiss, Raphael

    2017-11-01

    Track-cycling team pursuit (TP) is a highly technical effort involving 4 athletes completing 4 km from a standing start, often in less than 240 s. Transitions between athletes leading the team are obviously of utmost importance. To perform qualitative video analyses of transitions of world-class athletes in TP competitions. Videos captured at 100 Hz were recorded for 77 races (including 96 different athletes) in 5 international track-cycling competitions (eg, UCI World Cups and World Championships) and analyzed for the 12 best teams in the UCI Track Cycling TP Olympic ranking. During TP, 1013 transitions were evaluated individually to extract quantitative (eg, average lead time, transition number, length, duration, height in the curve) and qualitative (quality of transition start, quality of return at the back of the team, distance between third and returning rider score) variables. Determination of correlation coefficients between extracted variables and end time allowed assessment of relationships between variables and relevance of the video analyses. Overall quality of transitions and end time were significantly correlated (r = .35, P = .002). Similarly, transition distance (r = .26, P = .02) and duration (r = .35, P = .002) were positively correlated with end time. Conversely, no relationship was observed between transition number, average lead time, or height reached in the curve and end time. Video analysis of TP races highlights the importance of quality transitions between riders, with preferably swift and short relays rather than longer lead times for faster race times.

  9. Precise Object Tracking under Deformation

    International Nuclear Information System (INIS)

    Saad, M.H.

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results. xiiiThe precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high

  10. Tracking of ball and players in beach volleyball videos.

    Directory of Open Access Journals (Sweden)

    Gabriel Gomez

    Full Text Available This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points.

  11. Tracking of Ball and Players in Beach Volleyball Videos

    Science.gov (United States)

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  12. Quantitative analysis of spider locomotion employing computer-automated video tracking

    DEFF Research Database (Denmark)

    Baatrup, E; Bayley, M

    1993-01-01

    The locomotor activity of adult specimens of the wolf spider Pardosa amentata was measured in an open-field setup, using computer-automated colour object video tracking. The x,y coordinates of the animal in the digitized image of the test arena were recorded three times per second during four...

  13. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  14. Tracking a convoy of multiple targets using acoustic sensor data

    Science.gov (United States)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  15. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    2014-04-01

    Full Text Available With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  16. PageRank tracker: from ranking to tracking.

    Science.gov (United States)

    Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie

    2014-06-01

    Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.

  17. Linear array of photodiodes to track a human speaker for video recording

    International Nuclear Information System (INIS)

    DeTone, D; Neal, H; Lougheed, R

    2012-01-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant– the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting–a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  18. Linear array of photodiodes to track a human speaker for video recording

    Science.gov (United States)

    DeTone, D.; Neal, H.; Lougheed, R.

    2012-12-01

    Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.

  19. A digital video tracking system

    Science.gov (United States)

    Giles, M. K.

    1980-01-01

    The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.

  20. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  1. Određivanje daljine cilja pomoću video senzora i analiza uticaja grešaka i šuma merenja / Target range evaluation using video sensor and analysis of the influence of measurement noise and errors

    Directory of Open Access Journals (Sweden)

    Dragoslav Ugarak

    2006-01-01

    Full Text Available U radu je opisan matematički model određivanja daljine cilja obradom video snimaka u toku praćenja. Analizirani su doprinosi parametara koji utiču na veličinu grešaka i određene su vrednosti standardnog odstupanja. / This paper presents mathematical model of determining target range by analyzing video frame during the tracking. The contribution of effective parameters to accuracy are analyzed and values of standard deviation are determined.

  2. Compression of Video Tracking and Bandwidth Balancing Routing in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2015-12-01

    Full Text Available There has been a tremendous growth in multimedia applications over wireless networks. Wireless Multimedia Sensor Networks(WMSNs have become the premier choice in many research communities and industry. Many state-of-art applications, such as surveillance, traffic monitoring, and remote heath care are essentially video tracking and transmission in WMSNs. The transmission speed is constrained by the big file size of video data and fixed bandwidth allocation in constant routing paths. In this paper, we present a CamShift based algorithm to compress the tracking of videos. Then we propose a bandwidth balancing strategy in which each sensor node is able to dynamically select the node for the next hop with the highest potential bandwidth capacity to resume communication. Key to this strategy is that each node merely maintains two parameters that contain its historical bandwidth varying trend and then predict its near future bandwidth capacity. Then, the forwarding node selects the next hop with the highest potential bandwidth capacity. Simulations demonstrate that our approach significantly increases the data received by the sink node and decreases the delay on video transmission in Wireless Multimedia Sensor Network environments.

  3. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    Science.gov (United States)

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  4. Occlusion Handling in Videos Object Tracking: A Survey

    International Nuclear Information System (INIS)

    Lee, B Y; Liew, L H; Cheah, W S; Wang, Y C

    2014-01-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  5. Occlusion Handling in Videos Object Tracking: A Survey

    Science.gov (United States)

    Lee, B. Y.; Liew, L. H.; Cheah, W. S.; Wang, Y. C.

    2014-02-01

    Object tracking in video has been an active research since for decades. This interest is motivated by numerous applications, such as surveillance, human-computer interaction, and sports event monitoring. Many challenges related to tracking objects still remain, this can arise due to abrupt object motion, changing appearance patterns of objects and the scene, non-rigid object structures and most significant are occlusion of tracked object be it object-to-object or object-to-scene occlusions. Generally, occlusion in object tracking occur under three situations: self-occlusion, inter-object occlusion by background scene structure. Self-occlusion occurs most frequently while tracking articulated objects when one part of the object occludes another. Inter-object occlusion occurs when two objects being tracked occlude each other whereas occlusion by the background occurs when a structure in the background occludes the tracked objects. Typically, tracking methods handle occlusion by modelling the object motion using linear and non-linear dynamic models. The derived models will be used to continuously predicting the object location when a tracked object is occluded until the object reappears. Example of these method are Kalman filtering and Particle filtering trackers. Researchers have also utilised other features to resolved occlusion, for example, silhouette projections, colour histogram and optical flow. We will present some result from a previously conducted experiment when tracking single object using Kalman filter, Particle filter and Mean Shift trackers under various occlusion situation in this paper. We will also review various other occlusion handling methods that involved using multiple cameras. In a nutshell, the goal of this paper is to discuss in detail the problem of occlusion in object tracking and review the state of the art occlusion handling methods, classify them into different categories, and identify new trends. Moreover, we discuss the important

  6. Virtual target tracking (VTT) as applied to mobile satellite communication networks

    Science.gov (United States)

    Amoozegar, Farid

    1999-08-01

    Traditionally, target tracking has been used for aerospace applications, such as, tracking highly maneuvering targets in a cluttered environment for missile-to-target intercept scenarios. Although the speed and maneuvering capability of current aerospace targets demand more efficient algorithms, many complex techniques have already been proposed in the literature, which primarily cover the defense applications of tracking methods. On the other hand, the rapid growth of Global Communication Systems, Global Information Systems (GIS), and Global Positioning Systems (GPS) is creating new and more diverse challenges for multi-target tracking applications. Mobile communication and computing can very well appreciate a huge market for Cellular Communication and Tracking Devices (CCTD), which will be tracking networked devices at the cellular level. The objective of this paper is to introduce a new concept, i.e., Virtual Target Tracking (VTT) for commercial applications of multi-target tracking algorithms and techniques as applied to mobile satellite communication networks. It would be discussed how Virtual Target Tracking would bring more diversity to target tracking research.

  7. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    Energy Technology Data Exchange (ETDEWEB)

    Ebe, Kazuyu, E-mail: nrr24490@nifty.com; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji [Joetsu General Hospital, 616 Daido-Fukuda, Joetsu-shi, Niigata 943-8507 (Japan); Sugimoto, Satoru [Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421 (Japan); Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi [Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510 (Japan); Court, Laurence [The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-08-15

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  8. Development of a video image-based QA system for the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system

    International Nuclear Information System (INIS)

    Ebe, Kazuyu; Tokuyama, Katsuichi; Baba, Ryuta; Ogihara, Yoshisada; Ichikawa, Kosuke; Toyama, Joji; Sugimoto, Satoru; Utsunomiya, Satoru; Kagamu, Hiroshi; Aoyama, Hidefumi; Court, Laurence

    2015-01-01

    Purpose: To develop and evaluate a new video image-based QA system, including in-house software, that can display a tracking state visually and quantify the positional accuracy of dynamic tumor tracking irradiation in the Vero4DRT system. Methods: Sixteen trajectories in six patients with pulmonary cancer were obtained with the ExacTrac in the Vero4DRT system. Motion data in the cranio–caudal direction (Y direction) were used as the input for a programmable motion table (Quasar). A target phantom was placed on the motion table, which was placed on the 2D ionization chamber array (MatriXX). Then, the 4D modeling procedure was performed on the target phantom during a reproduction of the patient’s tumor motion. A substitute target with the patient’s tumor motion was irradiated with 6-MV x-rays under the surrogate infrared system. The 2D dose images obtained from the MatriXX (33 frames/s; 40 s) were exported to in-house video-image analyzing software. The absolute differences in the Y direction between the center of the exposed target and the center of the exposed field were calculated. Positional errors were observed. The authors’ QA results were compared to 4D modeling function errors and gimbal motion errors obtained from log analyses in the ExacTrac to verify the accuracy of their QA system. The patients’ tumor motions were evaluated in the wave forms, and the peak-to-peak distances were also measured to verify their reproducibility. Results: Thirteen of sixteen trajectories (81.3%) were successfully reproduced with Quasar. The peak-to-peak distances ranged from 2.7 to 29.0 mm. Three trajectories (18.7%) were not successfully reproduced due to the limited motions of the Quasar. Thus, 13 of 16 trajectories were summarized. The mean number of video images used for analysis was 1156. The positional errors (absolute mean difference + 2 standard deviation) ranged from 0.54 to 1.55 mm. The error values differed by less than 1 mm from 4D modeling function errors

  9. Using Genetic Algorithm for Eye Detection and Tracking in Video Sequence

    Directory of Open Access Journals (Sweden)

    Takuya Akashi

    2007-04-01

    Full Text Available We propose a high-speed size and orientation invariant eye tracking method, which can acquire numerical parameters to represent the size and orientation of the eye. In this paper, we discuss that high tolerance in human head movement and real-time processing that are needed for many applications, such as eye gaze tracking. The generality of the method is also important. We use template matching with genetic algorithm, in order to overcome these problems. A high speed and accuracy tracking scheme using Evolutionary Video Processing for eye detection and tracking is proposed. Usually, a genetic algorithm is unsuitable for a real-time processing, however, we achieved real-time processing. The generality of this proposed method is provided by the artificial iris template used. In our simulations, an eye tracking accuracy is 97.9% and, an average processing time of 28 milliseconds per frame.

  10. Tracking Persons-of-Interest via Unsupervised Representation Adaptation

    OpenAIRE

    Zhang, Shun; Huang, Jia-Bin; Lim, Jongwoo; Gong, Yihong; Wang, Jinjun; Ahuja, Narendra; Yang, Ming-Hsuan

    2017-01-01

    Multi-face tracking in unconstrained videos is a challenging problem as faces of one person often appear drastically different in multiple shots due to significant variations in scale, pose, expression, illumination, and make-up. Existing multi-target tracking methods often use low-level features which are not sufficiently discriminative for identifying faces with such large appearance variations. In this paper, we tackle this problem by learning discriminative, video-specific face representa...

  11. Research on infrared small-target tracking technology under complex background

    Science.gov (United States)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  12. Eye tracking a self-moved target with complex hand-target dynamics

    Science.gov (United States)

    Landelle, Caroline; Montagnini, Anna; Madelain, Laurent

    2016-01-01

    Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129

  13. Manifolds for pose tracking from monocular video

    Science.gov (United States)

    Basu, Saurav; Poulin, Joshua; Acton, Scott T.

    2015-03-01

    We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).

  14. Straight-Line Target Tracking for Unmanned Surface Vehicles

    Directory of Open Access Journals (Sweden)

    Morten Breivik

    2008-10-01

    Full Text Available This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs. Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

  15. Active Multimodal Sensor System for Target Recognition and Tracking.

    Science.gov (United States)

    Qu, Yufu; Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-06-28

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system.

  16. Target tracking system based on preliminary and precise two-stage compound cameras

    Science.gov (United States)

    Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie

    2018-02-01

    Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.

  17. OpenCV and TYZX : video surveillance for tracking.

    Energy Technology Data Exchange (ETDEWEB)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-08-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processing solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition.

  18. OpenCV and TYZX : video surveillance for tracking

    International Nuclear Information System (INIS)

    He, Jim; Spencer, Andrew; Chu, Eric

    2008-01-01

    As part of the National Security Engineering Institute (NSEI) project, several sensors were developed in conjunction with an assessment algorithm. A camera system was developed in-house to track the locations of personnel within a secure room. In addition, a commercial, off-the-shelf (COTS) tracking system developed by TYZX was examined. TYZX is a Bay Area start-up that has developed its own tracking hardware and software which we use as COTS support for robust tracking. This report discusses the pros and cons of each camera system, how they work, a proposed data fusion method, and some visual results. Distributed, embedded image processing solutions show the most promise in their ability to track multiple targets in complex environments and in real-time. Future work on the camera system may include three-dimensional volumetric tracking by using multiple simple cameras, Kalman or particle filtering, automated camera calibration and registration, and gesture or path recognition

  19. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    Science.gov (United States)

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  20. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  1. Target-type probability combining algorithms for multisensor tracking

    Science.gov (United States)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  2. Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation

    OpenAIRE

    McCall, J C; Trivedi, Mohan Manubhai

    2006-01-01

    Driver-assistance systems that monitor driver intent, warn drivers of lane departures, or assist in vehicle guidance are all being actively considered. It is therefore important to take a critical look at key aspects of these systems, one of which is lane-position tracking. It is for these driver-assistance objectives that motivate the development of the novel "video-based lane estimation and tracking" (VioLET) system. The system is designed using steerable filters for robust and accurate lan...

  3. Advances in top-down and bottom-up approaches to video-based camera tracking

    OpenAIRE

    Marimón Sanjuán, David

    2007-01-01

    Video-based camera tracking consists in trailing the three dimensional pose followed by a mobile camera using video as sole input. In order to estimate the pose of a camera with respect to a real scene, one or more three dimensional references are needed. Examples of such references are landmarks with known geometric shape, or objects for which a model is generated beforehand. By comparing what is seen by a camera with what is geometrically known from reality, it is possible to recover the po...

  4. Advances in top-down and bottom-up approaches to video-based camera tracking

    OpenAIRE

    Marimón Sanjuán, David; Ebrahimi, Touradj

    2008-01-01

    Video-based camera tracking consists in trailing the three dimensional pose followed by a mobile camera using video as sole input. In order to estimate the pose of a camera with respect to a real scene, one or more three dimensional references are needed. Examples of such references are landmarks with known geometric shape, or objects for which a model is generated beforehand. By comparing what is seen by a camera with what is geometrically known from reality, it is possible to recover the po...

  5. Precise object tracking under deformation

    International Nuclear Information System (INIS)

    Saad, M.H

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This frame-work focuses on the precise object tracking under deformation such as scaling , rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results.

  6. Multiple instance learning tracking method with local sparse representation

    KAUST Repository

    Xie, Chengjun

    2013-10-01

    When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others. © The Institution of Engineering and Technology 2013.

  7. Collaborative In-Network Processing for Target Tracking

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2003-03-01

    Full Text Available This paper presents a class of signal processing techniques for collaborative signal processing in ad hoc sensor networks, focusing on a vehicle tracking application. In particular, we study two types of commonly used sensors—acoustic-amplitude sensors for target distance estimation and direction-of-arrival sensors for bearing estimation—and investigate how networks of such sensors can collaborate to extract useful information with minimal resource usage. The information-driven sensor collaboration has several advantages: tracking is distributed, and the network is energy-efficient, activated only on a when-needed basis. We demonstrate the effectiveness of the approach to target tracking using both simulation and field data.

  8. Mouse short- and long-term locomotor activity analyzed by video tracking software.

    Science.gov (United States)

    York, Jason M; Blevins, Neil A; McNeil, Leslie K; Freund, Gregory G

    2013-06-20

    Locomotor activity (LMA) is a simple and easily performed measurement of behavior in mice and other rodents. Improvements in video tracking software (VTS) have allowed it to be coupled to LMA testing, dramatically improving specificity and sensitivity when compared to the line crossings method with manual scoring. In addition, VTS enables high-throughput experimentation. While similar to automated video tracking used for the open field test (OFT), LMA testing is unique in that it allows mice to remain in their home cage and does not utilize the anxiogenic stimulus of bright lighting during the active phase of the light-dark cycle. Traditionally, LMA has been used for short periods of time (mins), while longer movement studies (hrs-days) have often used implanted transmitters and biotelemetry. With the option of real-time tracking, long-, like short-term LMA testing, can now be conducted using videography. Long-term LMA testing requires a specialized, but easily constructed, cage so that food and water (which is usually positioned on the cage top) does not obstruct videography. Importantly, videography and VTS allows for the quantification of parameters, such as path of mouse movement, that are difficult or unfeasible to measure with line crossing and/or biotelemetry. In sum, LMA testing coupled to VTS affords a more complete description of mouse movement and the ability to examine locomotion over an extended period of time.

  9. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    Science.gov (United States)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  10. Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.

    Science.gov (United States)

    Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok

    2018-05-08

    This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.

  11. A lightweight target-tracking scheme using wireless sensor network

    International Nuclear Information System (INIS)

    Kuang, Xing-hong; Shao, Hui-he; Feng, Rui

    2008-01-01

    This paper describes a lightweight target-tracking scheme using wireless sensor network, where randomly distributed sensor nodes take responsibility for tracking the moving target based on the acoustic sensing signal. At every localization interval, a backoff timer algorithm is performed to elect the leader node and determine the transmission order of the localization nodes. An adaptive active region size algorithm based on the node density is proposed to select the optimal nodes taking part in localization. An improved particle filter algorithm performed by the leader node estimates the target state based on the selected nodes' acoustic energy measurements. Some refinements such as optimal linear combination algorithm, residual resampling algorithm, Markov chain Monte Carlo method are introduced in the scheme to improve the tracking performance. Simulation results validate the efficiency of the proposed tracking scheme

  12. Homography-based multiple-camera person-tracking

    Science.gov (United States)

    Turk, Matthew R.

    2009-01-01

    Multiple video cameras are cheaply installed overlooking an area of interest. While computerized single-camera tracking is well-developed, multiple-camera tracking is a relatively new problem. The main multi-camera problem is to give the same tracking label to all projections of a real-world target. This is called the consistent labelling problem. Khan and Shah (2003) introduced a method to use field of view lines to perform multiple-camera tracking. The method creates inter-camera meta-target associations when objects enter at the scene edges. They also said that a plane-induced homography could be used for tracking, but this method was not well described. Their homography-based system would not work if targets use only one side of a camera to enter the scene. This paper overcomes this limitation and fully describes a practical homography-based tracker. A new method to find the feet feature is introduced. The method works especially well if the camera is tilted, when using the bottom centre of the target's bounding-box would produce inaccurate results. The new method is more accurate than the bounding-box method even when the camera is not tilted. Next, a method is presented that uses a series of corresponding point pairs "dropped" by oblivious, live human targets to find a plane-induced homography. The point pairs are created by tracking the feet locations of moving targets that were associated using the field of view line method. Finally, a homography-based multiple-camera tracking algorithm is introduced. Rules governing when to create the homography are specified. The algorithm ensures that homography-based tracking only starts after a non-degenerate homography is found. The method works when not all four field of view lines are discoverable; only one line needs to be found to use the algorithm. To initialize the system, the operator must specify pairs of overlapping cameras. Aside from that, the algorithm is fully automatic and uses the natural movement of

  13. Video motion detection for physical security applications

    International Nuclear Information System (INIS)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly

  14. INSPTRAX - The Inspection Targeting, Planning and Tracking Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The INSPTRAX System tracks Air, RCRA, and Water inspection targeting, planning and tracking information. It is used by the the Air, RCRA, and Water programs to input...

  15. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  16. Analysis of Dead Time and Implementation of Smith Predictor Compensation in Tracking Servo Systems for Small Unmanned Aerial Vehicles

    National Research Council Canada - National Science Library

    Brashear , Jr, Thomas J

    2005-01-01

    .... Gimbaled video camera systems, designed at NPS, use two servo actuators to command line of sight orientation via serial controller while tracking a target and is termed Visual Based Target Tracking (VBTT...

  17. Data fusion for target tracking and classification with wireless sensor network

    Science.gov (United States)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  18. Persistent Aerial Tracking

    KAUST Repository

    Mueller, Matthias

    2016-04-13

    In this thesis, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photo-realistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the rst evaluation of many state of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. We also present a simulator that can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV "in the field", as well as, generate synthetic but photo-realistic tracking datasets with free ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator will be made publicly available to the vision community to further research in the area of object tracking from UAVs. Additionally, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by \\'handing over the camera\\' from one UAV to another. We integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  19. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  20. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias

    2016-09-16

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  1. RGBD Video Based Human Hand Trajectory Tracking and Gesture Recognition System

    Directory of Open Access Journals (Sweden)

    Weihua Liu

    2015-01-01

    Full Text Available The task of human hand trajectory tracking and gesture trajectory recognition based on synchronized color and depth video is considered. Toward this end, in the facet of hand tracking, a joint observation model with the hand cues of skin saliency, motion and depth is integrated into particle filter in order to move particles to local peak in the likelihood. The proposed hand tracking method, namely, salient skin, motion, and depth based particle filter (SSMD-PF, is capable of improving the tracking accuracy considerably, in the context of the signer performing the gesture toward the camera device and in front of moving, cluttered backgrounds. In the facet of gesture recognition, a shape-order context descriptor on the basis of shape context is introduced, which can describe the gesture in spatiotemporal domain. The efficient shape-order context descriptor can reveal the shape relationship and embed gesture sequence order information into descriptor. Moreover, the shape-order context leads to a robust score for gesture invariant. Our approach is complemented with experimental results on the settings of the challenging hand-signed digits datasets and American sign language dataset, which corroborate the performance of the novel techniques.

  2. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    Science.gov (United States)

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  3. A Coupled Hidden Markov Random Field Model for Simultaneous Face Clustering and Tracking in Videos

    KAUST Repository

    Wu, Baoyuan; Hu, Bao-Gang; Ji, Qiang

    2016-01-01

    Face clustering and face tracking are two areas of active research in automatic facial video processing. They, however, have long been studied separately, despite the inherent link between them. In this paper, we propose to perform simultaneous face

  4. Group Targets Tracking Using Multiple Models GGIW-CPHD Based on Best-Fitting Gaussian Approximation and Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Gamma Gaussian inverse Wishart cardinalized probability hypothesis density (GGIW-CPHD algorithm was always used to track group targets in the presence of cluttered measurements and missing detections. A multiple models GGIW-CPHD algorithm based on best-fitting Gaussian approximation method (BFG and strong tracking filter (STF is proposed aiming at the defect that the tracking error of GGIW-CPHD algorithm will increase when the group targets are maneuvering. The best-fitting Gaussian approximation method is proposed to implement the fusion of multiple models using the strong tracking filter to correct the predicted covariance matrix of the GGIW component. The corresponding likelihood functions are deduced to update the probability of multiple tracking models. From the simulation results we can see that the proposed tracking algorithm MM-GGIW-CPHD can effectively deal with the combination/spawning of groups and the tracking error of group targets in the maneuvering stage is decreased.

  5. Moving target tracking through distributed clustering in directional sensor networks.

    Science.gov (United States)

    Enayet, Asma; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-12-18

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  6. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    Science.gov (United States)

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  7. Video Views and Reviews: Golgi Export, Targeting, and Plasma Membrane Caveolae

    Science.gov (United States)

    Watters, Christopher

    2004-01-01

    In this article, the author reviews videos from "Molecular Biology of the Cell (MBC)" depicting various aspects of plasma membrane (PM) dynamics, including the targeting of newly synthesized components and the organization of those PM invaginations called caveolae. The papers accompanying these videos describe, respectively, the constitutive…

  8. Super-resolution imaging applied to moving object tracking

    Science.gov (United States)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  9. Through-Wall Multiple Targets Vital Signs Tracking Based on VMD Algorithm

    Directory of Open Access Journals (Sweden)

    Jiaming Yan

    2016-08-01

    Full Text Available Targets located at the same distance are easily neglected in most through-wall multiple targets detecting applications which use the single-input single-output (SISO ultra-wideband (UWB radar system. In this paper, a novel multiple targets vital signs tracking algorithm for through-wall detection using SISO UWB radar has been proposed. Taking advantage of the high-resolution decomposition of the Variational Mode Decomposition (VMD based algorithm, the respiration signals of different targets can be decomposed into different sub-signals, and then, we can track the time-varying respiration signals accurately when human targets located in the same distance. Intensive evaluation has been conducted to show the effectiveness of our scheme with a 0.15 m thick concrete brick wall. Constant, piecewise-constant and time-varying vital signs could be separated and tracked successfully with the proposed VMD based algorithm for two targets, even up to three targets. For the multiple targets’ vital signs tracking issues like urban search and rescue missions, our algorithm has superior capability in most detection applications.

  10. A game theory approach to target tracking in sensor networks.

    Science.gov (United States)

    Gu, Dongbing

    2011-02-01

    In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.

  11. Target tracking using DMLC for volumetric modulated arc therapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Baozhou; Rangaraj, Dharanipathy; Papiez, Lech; Oddiraju, Swetha; Yang Deshan; Li, H. Harold [Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States); Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States); Department of Radiation Oncology, School of Medicine, Washington University, 4921 Parkview Place, St. Louis, Missouri 63110 (United States)

    2010-12-15

    Purpose: Target tracking using dynamic multileaf collimator (DMLC) is a promising approach for intrafraction motion management in radiation therapy. The purpose of this work is to develop a DMLC tracking algorithm capable of delivering volumetric-modulated arc therapy (VMAT) to the targets that experience two-dimensional (2D) rigid motion in the beam's eye view. Methods: The problem of VMAT delivery to moving targets is formulated as a control problem with constraints. The relationships between gantry speed, gantry acceleration, MLC leaf-velocity, dose rate, and target motion are derived. An iterative search algorithm is developed to find numerical solutions for efficient delivery of a specific VMAT plan to the moving target using 2D DMLC tracking. The delivery of five VMAT lung plans is simulated. The planned and delivered fluence maps in the target-reference frame are calculated and compared. Results: The simulation demonstrates that the 2D tracking algorithm is capable of delivering the VMAT plan to a moving target fast and accurately without violating the machine constraints and the integrity of the treatment plan. The average delivery time is only 29 s longer than that of no-tracking delivery, 101 versus 72 s, respectively. The fluence maps are normalized to 200 MU and the average root-mean-square error between the desired and the delivered fluence is 2.1 MU, compared to 14.8 MU for no-tracking and 3.6 MU for one-dimensional tracking. Conclusions: A locally optimal MLC tracking algorithm for VMAT delivery is proposed, aiming at shortest delivery time while maintaining treatment plan invariant. The inconsequential increase of treatment time due to DMLC tracking is clinically desirable, which makes VMAT with DMLC tracking attractive in treating moving tumors.

  12. The Bering Target Tracking Instrumentation

    DEFF Research Database (Denmark)

    Denver, Troelz; Jørgensen, John Leif; Betto, Maurizio

    2003-01-01

    The key science instrument on the Bering satellite mission is a relative small telescope with an entrance aperture of 300 mm and a focal length between 500 and 1000 mm. The detection of potential targets is performed by one of the target scanning advanced stellar compasses (ASCs). This procedure...... results in a simple prioritized list of right ascension, declination, proper motion and intensity of each prospective target. The telescope itself has a dedicated ASC Camera Head Unit (CHU) mounted on the secondary mirror, largely co-aligned with the telescope. This CHU accurately determines the telescope......'s pointing direction. To achieve fast tracking over a large solid angle, the telescope pointing is achieved by means of a folding mirror in the optical pathway. When a prospective target approaches the telescope FOV, the ASC on the secondary will guide the folding mirror into position such that the target...

  13. A Novel Loss Recovery and Tracking Scheme for Maneuvering Target in Hybrid WSNs.

    Science.gov (United States)

    Qian, Hanwang; Fu, Pengcheng; Li, Baoqing; Liu, Jianpo; Yuan, Xiaobing

    2018-01-25

    Tracking a mobile target, which aims to timely monitor the invasion of specific target, is one of the most prominent applications in wireless sensor networks (WSNs). Traditional tracking methods in WSNs only based on static sensor nodes (SNs) have several critical problems. For example, to void the loss of mobile target, many SNs must be active to track the target in all possible directions, resulting in excessive energy consumption. Additionally, when entering coverage holes in the monitoring area, the mobile target may be missing and then its state is unknown during this period. To tackle these problems, in this paper, a few mobile sensor nodes (MNs) are introduced to cooperate with SNs to form a hybrid WSN due to their stronger abilities and less constrained energy. Then, we propose a valid target tracking scheme for hybrid WSNs to dynamically schedule the MNs and SNs. Moreover, a novel loss recovery mechanism is proposed to find the lost target and recover the tracking with fewer SNs awakened. Furthermore, to improve the robustness and accuracy of the recovery mechanism, an adaptive unscented Kalman filter (AUKF) algorithm is raised to dynamically adjust the process noise covariance. Simulation results demonstrate that our tracking scheme for maneuvering target in hybrid WSNs can not only track the target effectively even if the target is lost but also maintain an excellent accuracy and robustness with fewer activated nodes.

  14. Improving Global Multi-target Tracking with Local Updates

    DEFF Research Database (Denmark)

    Milan, Anton; Gade, Rikke; Dick, Anthony

    2014-01-01

    -target tracker, if they result in a reduction in the global cost function. Since tracking failures typically arise when targets become occluded, we propose a local data association scheme to maintain the target identities in these situations. We demonstrate a reduction of up to 50% in the global cost function...

  15. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    Directory of Open Access Journals (Sweden)

    Asma Enayet

    2014-12-01

    Full Text Available The problem of moving target tracking in directional sensor networks (DSNs introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target’s location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works.

  16. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  17. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    Science.gov (United States)

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  18. Random Scenario Generation for a Multiple Target Tracking Environment Evaluation

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    , which were normally crossing targets, was to test the efficiency of the track splitting algorithm for different situations. However this approach only gives a measure of performance for a specific, possibly unrealistic, scenario and it was felt appropriate to develop procedures that would enable a more...... general performance assessment. Therefore, a random target motion scenario is adopted. Its implementation in particular for testing the track splitting algorithm using Kalman filters is used and a couple of tracking performance parameters are computed to investigate such random scenarios....

  19. Tracking target objects orbiting earth using satellite-based telescopes

    Science.gov (United States)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  20. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images.

    Science.gov (United States)

    Kim, Sohyun; Jang, Gwang-Il; Kim, Sungho; Kim, Junmo

    2018-03-27

    This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

  1. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images

    Directory of Open Access Journals (Sweden)

    Sohyun Kim

    2018-03-01

    Full Text Available This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS and airborne EO/IR system.

  2. TRUSTWORTHY OPTIMIZED CLUSTERING BASED TARGET DETECTION AND TRACKING FOR WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    C. Jehan

    2016-06-01

    Full Text Available In this paper, an efficient approach is proposed to address the problem of target tracking in wireless sensor network (WSN. The problem being tackled here uses adaptive dynamic clustering scheme for tracking the target. It is a specific problem in object tracking. The proposed adaptive dynamic clustering target tracking scheme uses three steps for target tracking. The first step deals with the identification of clusters and cluster heads using OGSAFCM. Here, kernel fuzzy c-means (KFCM and gravitational search algorithm (GSA are combined to create clusters. At first, oppositional gravitational search algorithm (OGSA is used to optimize the initial clustering center and then the KFCM algorithm is availed to guide the classification and the cluster formation process. In the OGSA, the concept of the opposition based population initialization in the basic GSA to improve the convergence profile. The identified clusters are changed dynamically. The second step deals with the data transmission to the cluster heads. The third step deals with the transmission of aggregated data to the base station as well as the detection of target. From the experimental results, the proposed scheme efficiently and efficiently identifies the target. As a result the tracking error is minimized.

  3. An improved multi-domain convolution tracking algorithm

    Science.gov (United States)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  4. An Integral Model for Target Tracking Based on the Use of a WSN

    Directory of Open Access Journals (Sweden)

    Pietro Manzoni

    2013-06-01

    Full Text Available The use of wireless sensor networks (WSN in tracking applications is growing at a fast pace. In these applications, the sensor nodes discover, monitor and track an event or target object. A significant number of proposals relating the use of WSNs for target tracking have been published to date. However, they either focus on the tracking algorithm or on the communication protocol, and none of them address the problem integrally. In this paper, a comprehensive proposal for target detection and tracking is discussed. We introduce a tracking algorithm to detect and estimate a target location. Moreover, we introduce a low-overhead routing protocol to be used along with our tracking algorithm. The proposed algorithm has low computational complexity and has been designed considering the use of a mobile sink while generating minimal delay and packet loss. We also discuss the results of the evaluation of the proposed algorithms.

  5. EXPERIMENTAL TARGET INJECTION AND TRACKING SYSTEM CONSTRUCTION AND SINGLE SHOT TESTING

    International Nuclear Information System (INIS)

    PETZOLDT, R.W.; ALEXANDER, N.B.; DRAKE, T.J.; GOODIN, D.T; JONESTRACK, K; VERMILLION, B.A

    2003-01-01

    Targets must be injected into an IFE power plant at a rate of approximately 5 to 10 Hz. Targets must be tracked very accurately to allow driver beams to be aligned with defined points on the targets with accuracy ± 150 (micro)m for indirect drive and ± 20 (micro)m for direct drive. An experimental target injection and tracking system has been constructed at General Atomics. The injector system will be used as a tool for testing the survivability of various target designs and provide feedback to the target designers. Helium gas propels the targets down an 8 m gun barrel up to 400 m/s. Direct-drive targets are protected in the barrel by sabots that are spring loaded to separate into two halves after acceleration. A sabot deflector directs the sabot halves away from the target injection path. Targets will be optically tracked with laser beams and line-scan cameras. Target position and arrival time will be predicted in real time based on early target position measurements. The system installation will be described. System testing to overcome excessive projectile wear and debris in the gun barrel is presented

  6. A ground moving target emergency tracking method for catastrophe rescue

    Science.gov (United States)

    Zhou, X.; Li, D.; Li, G.

    2014-11-01

    In recent years, great disasters happen now and then. Disaster management test the emergency operation ability of the government and society all over the world. Immediately after the occurrence of a great disaster (e.g., earthquake), a massive nationwide rescue and relief operation need to be kicked off instantly. In order to improve the organizations efficiency of the emergency rescue, the organizers need to take charge of the information of the rescuer teams, including the real time location, the equipment with the team, the technical skills of the rescuers, and so on. One of the key factors for the success of emergency operations is the real time location of the rescuers dynamically. Real time tracking methods are used to track the professional rescuer teams now. But volunteers' participation play more and more important roles in great disasters. However, real time tracking of the volunteers will cause many problems, e.g., privacy leakage, expensive data consumption, etc. These problems may reduce the enthusiasm of volunteers' participation for catastrophe rescue. In fact, the great disaster is just small probability event, it is not necessary to track the volunteers (even rescuer teams) every time every day. In order to solve this problem, a ground moving target emergency tracking method for catastrophe rescue is presented in this paper. In this method, the handheld devices using GPS technology to provide the location of the users, e.g., smart phone, is used as the positioning equipment; an emergency tracking information database including the ID of the ground moving target (including the rescuer teams and volunteers), the communication number of the handheld devices with the moving target, and the usually living region, etc., is built in advance by registration; when catastrophe happens, the ground moving targets that living close to the disaster area will be filtered by the usually living region; then the activation short message will be sent to the selected

  7. Robust Tracking with Discriminative Ranking Middle-Level Patches

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2014-04-01

    Full Text Available The appearance model has been shown to be essential for robust visual tracking since it is the basic criterion to locating targets in video sequences. Though existing tracking-by-detection algorithms have shown to be greatly promising, they still suffer from the drift problem, which is caused by updating appearance models. In this paper, we propose a new appearance model composed of ranking middle-level patches to capture more object distinctiveness than traditional tracking-by-detection models. Targets and backgrounds are represented by both low-level bottom-up features and high-level top-down patches, which can compensate each other. Bottom-up features are defined at the pixel level, and each feature gets its discrimination score through selective feature attention mechanism. In top-down feature extraction, rectangular patches are ranked according to their bottom-up discrimination scores, by which all of them are clustered into irregular patches, named ranking middle-level patches. In addition, at the stage of classifier training, the online random forests algorithm is specially refined to reduce drifting problems. Experiments on challenging public datasets and our test videos demonstrate that our approach can effectively prevent the tracker drifting problem and obtain competitive performance in visual tracking.

  8. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  9. Feature Quantization and Pooling for Videos

    Science.gov (United States)

    2014-05-01

    less vertical motion. The exceptions are videos from the classes of biking (mainly due to the camera tracking fast bikers), jumping on a trampoline ...tracking the bikers; the jumping videos, featuring people on trampolines , the swing videos, which are usually recorded in profile view, and the walking

  10. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  11. A Bayesian solution to multi-target tracking problems with mixed labelling

    NARCIS (Netherlands)

    Aoki, E.H.; Boers, Y.; Svensson, Lennart; Mandal, Pranab K.; Bagchi, Arunabha

    In Multi-Target Tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature and has been previously formulated using Bayesian recursion. However, the existing literature lacks an appropriate measure of uncertainty related to the assigned labels which

  12. Final Report: Non-Visible, Automated Target Acquisition and Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goddard, James K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Karnowski, Thomas Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The Roadside Tracker (RST) represents a new approach to radiation portal monitors. It uses a combination of gamma-ray and visible-light imaging to localize gamma-ray radiation sources to individual vehicles in free-flowing, multi-lane traffic. Deployed as two trailers that are parked on either side of the roadway (Fig. 1); the RST scans passing traffic with two large gamma-ray imagers, one mounted in each trailer. The system compensates for vehicle motion through the imager’s fields of view by using automated target acquisition and tracking (TAT) software applied to a stream of video images. Once a vehicle has left the field of view, the radiation image of that vehicle is analyzed for the presence of a source, and if one is found, an alarm is sounded. The gamma-ray image is presented to the operator together with the video image of the traffic stream when the vehicle was approximately closest to the system (Fig. 2). The offending vehicle is identified with a bounding box to distinguish it from other vehicles that might be present at the same time. The system was developed under a previous grant from the Department of Homeland Security’s (DHS’s) Domestic Nuclear Detection Office (DNDO). This report documents work performed with follow-on funding from DNDO to further advance the development of the RST. Specifically, the primary thrust was to extend the performance envelope of the system by replacing the visible-light video cameras used by the TAT software with sensors that would allow operation at night and during inclement weather. In particular, it was desired to allow operation after dark without requiring external lighting. As part of this work, the system software was also upgraded to allow the use of 64-bit computers, the current generation operating system (OS), software development environment (Windows 7 vs. Windows XP, and current Visual Studio.Net), and improved software version controls (GIT vs. Source Safe.) With the upgraded performance allowed by

  13. A Single Unexpected Change in Target- but Not Distractor Motion Impairs Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Hauke S. Meyerhoff

    2013-02-01

    Full Text Available Recent research addresses the question whether motion information of multiple objects contributes to maintaining a selection of objects across a period of motion. Here, we investigate whether target and/or distractor motion information is used during attentive tracking. We asked participants to track four objects and changed either the motion direction of targets, the motion direction of distractors, neither, or both during a brief flash in the middle of a tracking interval. We observed that a single direction change of targets is sufficient to impair tracking performance. In contrast, changing the motion direction of distractors had no effect on performance. This indicates that target- but not distractor motion information is evaluated during tracking.

  14. Hierarchical Context Modeling for Video Event Recognition.

    Science.gov (United States)

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  15. Models and Algorithms for Tracking Target with Coordinated Turn Motion

    Directory of Open Access Journals (Sweden)

    Xianghui Yuan

    2014-01-01

    Full Text Available Tracking target with coordinated turn (CT motion is highly dependent on the models and algorithms. First, the widely used models are compared in this paper—coordinated turn (CT model with known turn rate, augmented coordinated turn (ACT model with Cartesian velocity, ACT model with polar velocity, CT model using a kinematic constraint, and maneuver centered circular motion model. Then, in the single model tracking framework, the tracking algorithms for the last four models are compared and the suggestions on the choice of models for different practical target tracking problems are given. Finally, in the multiple models (MM framework, the algorithm based on expectation maximization (EM algorithm is derived, including both the batch form and the recursive form. Compared with the widely used interacting multiple model (IMM algorithm, the EM algorithm shows its effectiveness.

  16. Acquisition, tracking, and pointing IV; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Gowrinathan, Sankaran

    1990-09-01

    Various papers on acquisition, tracking, and pointing are presented. Individual topics addressed include: backlash control techniques in geared servo mechanics; optical fiber and photodetector array for robotic seam tracking; star trackers for spacecraft applications; Starfire optical range tracking system for the 1.5 m telescope; real-time video image centroid tracker; optical alignment with a beamwalk system; line-of-sight stabilization requirements for target tracking system; image quality with narrow beam illumination in an active tracking system; IR sensor data fusion for target detection, identification, and tracking; target location and pointing algorithm for a three-axis stabilized line scanner. Also discussed are: adaptive control system techniques applied to inertial stabilization systems; supervisory control of electrooptic tracking and pointing; position loop compensation for flex-pivot-mounted gimbal stabilization systems; advanced testing methods for acquisition, tracking, and pointing; development of kinmatics for gimballed mirror systems.

  17. Color and motion-based particle filter target tracking in a network of overlapping cameras with multi-threading and GPGPU Rastreo de objetivos por medio de filtros de partículas basados en color y movimiento en una red de cámaras con multi-hilo y GPGPU

    Directory of Open Access Journals (Sweden)

    Jorge Francisco Madrigal Díaz

    2013-03-01

    Full Text Available This paper describes an efficient implementation of multiple-target multiple-view tracking in video-surveillance sequences. It takes advantage of the capabilities of multiple core Central Processing Units (CPUs and of graphical processing units under the Compute Unifie Device Arquitecture (CUDA framework. The principle of our algorithm is 1 in each video sequence, to perform tracking on all persons to track by independent particle filters and 2 to fuse the tracking results of all sequences. Particle filters belong to the category of recursive Bayesian filters. They update a Monte-Carlo representation of the posterior distribution over the target position and velocity. For this purpose, they combine a probabilistic motion model, i.e. prior knowledge about how targets move (e.g. constant velocity and a likelihood model associated to the observations on targets. At this first level of single video sequences, the multi-threading library Threading Buildings Blocks (TBB has been used to parallelize the processing of the per-target independent particle filters. Afterwards at the higher level, we rely on General Purpose Programming on Graphical Processing Units (generally termed as GPGPU through CUDA in order to fuse target-tracking data collected on multiple video sequences, by solving the data association problem. Tracking results are presented on various challenging tracking datasets.Este artículo describe una implementación eficiente de un algoritmo de seguimiento de múlti­ples objetivos en múltiples vistas en secuencias de video vigilancia. Aprovecha las capacidades de las Unidades Centrales de Procesamiento (CPUs, por sus siglas en inglés de múltiples núcleos y de las unidades de procesamiento gráfico, bajo el entorno de desarrollo de Arquitec­tura Unificada de Dispositivos de Cómputo (CUDA, por sus siglas en inglés. El principio de nuestro algoritmo es: 1 aplicar el seguimiento visual en cada secuencia de video sobre todas las

  18. Moving Shadow Detection in Video Using Cepstrum

    Directory of Open Access Journals (Sweden)

    Fuat Cogun

    2013-01-01

    Full Text Available Moving shadows constitute problems in various applications such as image segmentation and object tracking. The main cause of these problems is the misclassification of the shadow pixels as target pixels. Therefore, the use of an accurate and reliable shadow detection method is essential to realize intelligent video processing applications. In this paper, a cepstrum-based method for moving shadow detection is presented. The proposed method is tested on outdoor and indoor video sequences using well-known benchmark test sets. To show the improvements over previous approaches, quantitative metrics are introduced and comparisons based on these metrics are made.

  19. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  20. Real-Time FPGA-Based Object Tracker with Automatic Pan-Tilt Features for Smart Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2017-05-01

    Full Text Available The design of smart video surveillance systems is an active research field among the computer vision community because of their ability to perform automatic scene analysis by selecting and tracking the objects of interest. In this paper, we present the design and implementation of an FPGA-based standalone working prototype system for real-time tracking of an object of interest in live video streams for such systems. In addition to real-time tracking of the object of interest, the implemented system is also capable of providing purposive automatic camera movement (pan-tilt in the direction determined by movement of the tracked object. The complete system, including camera interface, DDR2 external memory interface controller, designed object tracking VLSI architecture, camera movement controller and display interface, has been implemented on the Xilinx ML510 (Virtex-5 FX130T FPGA Board. Our proposed, designed and implemented system robustly tracks the target object present in the scene in real time for standard PAL (720 × 576 resolution color video and automatically controls camera movement in the direction determined by the movement of the tracked object.

  1. Video stimuli reduce object-directed imitation accuracy: a novel two-person motion-tracking approach.

    Science.gov (United States)

    Reader, Arran T; Holmes, Nicholas P

    2015-01-01

    Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

  2. Efficient and Adaptive Node Selection for Target Tracking in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2016-01-01

    Full Text Available In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.

  3. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-02-01

    Full Text Available A multiple targets cognitive radar tracking method based on Compressed Sensing (CS is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramér-Rao Bounds (PCRB of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

  4. Video-Guidance Design for the DART Rendezvous Mission

    Science.gov (United States)

    Ruth, Michael; Tracy, Chisholm

    2004-01-01

    NASA's Demonstration of Autonomous Rendezvous Technology (DART) mission will validate a number of different guidance technologies, including state-differenced GPS transfers and close-approach video guidance. The video guidance for DART will employ NASA/Marshall s Advanced Video Guidance Sensor (AVGS). This paper focuses on the terminal phase of the DART mission that includes close-approach maneuvers under AVGS guidance. The closed-loop video guidance design for DART is driven by a number of competing requirements, including a need for maximizing tracking bandwidths while coping with measurement noise and the need to minimize RCS firings. A range of different strategies for attitude control and docking guidance have been considered for the DART mission, and design decisions are driven by a goal of minimizing both the design complexity and the effects of video guidance lags. The DART design employs an indirect docking approach, in which the guidance position targets are defined using relative attitude information. Flight simulation results have proven the effectiveness of the video guidance design.

  5. Target injection and tracking for inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W. [Lawrence Livermore National Lab., CA (United States); Moir, R.W. [Lawrence Livermore National Lab., CA (United States)

    1996-11-01

    In an inertial fusion power plant, several cryogenic targets must be injected each second into a reaction chamber with speeds of about 100 m s{sup -1}. This speed can be achieved with an acceleration in the range from 1000 to 10 000 m s{sup -2}. The total accuracy of driver beam pointing and target position prediction must be less than {+-}0.6 mm for a 3 mm beam spot radius. A 0.1 {mu}m thick dual membrane supporting the capsule in the hohlraum will allow nearly 2000 m s{sup -2} acceleration. The strength of frozen DT in the capsule is calculated to allow acceleration in excess of 10 000 m s{sup -2} if the DT temperature is less than 17 K. A gas gun is the preferred device for injecting indirect drive targets owing to its simplicity and proven reliability. The amount of gas required for each target (about 10-100 mg) is acceptable. A revolver loading mechanism is recommendced with a cam-operated poppet valve to control the gas flow. Slots near the muzzle of the gun barrel are recommended to vent gas and thereby to improve accuracy and to aid gas pumping. Optical target tracking and electronic timing devices can predict target arrival time with sufficient accuracy. Target steering by electrostatic deflection of the in-flight target is shown to be feasible and would avoid the need to point the beams actively. Calculations show that induced tumble from electrostatically steering the target is not excessive. An experiment has been designed to develop target injection and to verify the predicted accuracy of sequential injection and tracking of multiple targets. (orig.)

  6. Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search

    Directory of Open Access Journals (Sweden)

    Meiqin Liu

    2017-12-01

    Full Text Available Underwater wireless sensor networks (UWSNs can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.

  7. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    OpenAIRE

    Kia, Chua; Arshad, Mohd Rizal

    2006-01-01

    This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs) operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system ...

  8. Efficient characterization of labeling uncertainty in closely-spaced targets tracking

    NARCIS (Netherlands)

    Moreno Leon, Carlos; Moreno Leon, Carlos; Driessen, Hans; Mandal, Pranab K.

    2016-01-01

    In this paper we propose a novel solution to the labeled multi-target tracking problem. The method presented is specially effective in scenarios where the targets have once moved in close proximity. When this is the case, disregarding the labeling uncertainty present in a solution (after the targets

  9. Estimation of Radar Cross Section of a Target under Track

    Directory of Open Access Journals (Sweden)

    Hong Sun-Mog

    2010-01-01

    Full Text Available In allocating radar beam for tracking a target, it is attempted to maintain the signal-to-noise ratio (SNR of signal returning from the illuminated target close to an optimum value for efficient track updates. An estimate of the average radar cross section (RCS of the target is required in order to adjust transmitted power based on the estimate such that a desired SNR can be realized. In this paper, a maximum-likelihood (ML approach is presented for estimating the average RCS, and a numerical solution to the approach is proposed based on a generalized expectation maximization (GEM algorithm. Estimation accuracy of the approach is compared to that of a previously reported procedure.

  10. Event-triggered cooperative target tracking in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Lu Kelin

    2016-10-01

    Full Text Available Since the issues of low communication bandwidth supply and limited battery capacity are very crucial for wireless sensor networks, this paper focuses on the problem of event-triggered cooperative target tracking based on set-membership information filtering. We study some fundamental properties of the set-membership information filter with multiple sensor measurements. First, a sufficient condition is derived for the set-membership information filter, under which the boundedness of the outer ellipsoidal approximation set of the estimation means is guaranteed. Second, the equivalence property between the parallel and sequential versions of the set-membership information filter is presented. Finally, the results are applied to a 1D event-triggered target tracking scenario in which the negative information is exploited in the sense that the measurements that do not satisfy the triggering conditions are modelled as set-membership measurements. The tracking performance of the proposed method is validated with extensive Monte Carlo simulations.

  11. Development of target-tracking algorithms using neural network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Sun; Lee, Joon Whaoan; Yoon, Sook; Baek, Seong Hyun; Lee, Myung Jae [Chonbuk National University, Chonjoo (Korea)

    1998-04-01

    The utilization of remote-control robot system in atomic power plants or nuclear-related facilities grows rapidly, to protect workers form high radiation environments. Such applications require complete stability of the robot system, so that precisely tracking the robot is essential for the whole system. This research is to accomplish the goal by developing appropriate algorithms for remote-control robot systems. A neural network tracking system is designed and experimented to trace a robot Endpoint. This model is aimed to utilized the excellent capabilities of neural networks; nonlinear mapping between inputs and outputs, learning capability, and generalization capability. The neural tracker consists of two networks for position detection and prediction. Tracking algorithms are developed and experimented for the two models. Results of the experiments show that both models are promising as real-time target-tracking systems for remote-control robot systems. (author). 10 refs., 47 figs.

  12. Real-time vehicle detection and tracking in video based on faster R-CNN

    Science.gov (United States)

    Zhang, Yongjie; Wang, Jian; Yang, Xin

    2017-08-01

    Vehicle detection and tracking is a significant part in auxiliary vehicle driving system. Using the traditional detection method based on image information has encountered enormous difficulties, especially in complex background. To solve this problem, a detection method based on deep learning, Faster R-CNN, which has very high detection accuracy and flexibility, is introduced. An algorithm of target tracking with the combination of Camshift and Kalman filter is proposed for vehicle tracking. The computation time of Faster R-CNN cannot achieve realtime detection. We use multi-thread technique to detect and track vehicle by parallel computation for real-time application.

  13. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view

    International Nuclear Information System (INIS)

    McQuaid, D; Webb, S

    2006-01-01

    A new modification of the dynamic multileaf collimator (dMLC) delivery technique for intensity-modulated therapy (IMRT) is outlined. This technique enables the tracking of a target moving through rigid-body translations in a 2D trajectory in the beam's eye view. The accuracy of the delivery versus that of deliveries with no tracking and of 1D tracking techniques is quantified with clinically derived intensity-modulated beams (IMBs). Leaf trajectories calculated in the target-reference frame were iteratively synchronized assuming regular target motion. This allowed the leaves defined in the lab-reference frame to simultaneously follow the target motion and to deliver the required IMB without violation of the leaf maximum-velocity constraint. The leaves are synchronized until the gradient of the leaf position at every instant is less than a calculated maximum. The delivered fluence in the target-reference frame was calculated with a simple primary-fluence model. The new 2D tracking technique was compared with the delivered fluence produced by no-tracking deliveries and by 1D tracking deliveries for 33 clinical IMBs. For the clinical IMBs normalized to a maximum fluence of 200 MUs, the rms difference between the desired and the delivered IMB was 15.6 ± 3.3 MU for the case of a no-tracking delivery, 7.9 ± 1.6 MU for the case where only the primary component of motion was corrected and 5.1 ± 1.1 MU for the 2D tracking delivery. The residual error is due to interpolation and sampling effects. The 2D tracking delivery technique requires an increase in the delivery time evaluated as between 0 and 50% of the unsynchronized delivery time for each beam with a mean increase of 13% for the IMBs tested. The 2D tracking dMLC delivery technique allows an optimized IMB to be delivered to moving targets with increased accuracy and with acceptable increases in delivery time. When combined with real-time knowledge of the target motion at delivery time, this technique facilitates

  14. Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

    Directory of Open Access Journals (Sweden)

    Michael Rudzsky

    2008-01-01

    Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.

  15. A high precision video-electronic measuring system for use with solid state track detectors

    International Nuclear Information System (INIS)

    Schott, J.U.; Schopper, E.; Staudte, R.

    1976-01-01

    A video-electronic image analyzing system Quantimet 720 has been modified to meet the requirements of the measurement of tracks of nuclear particles in solid state track detectors with resulting improvement of precision, speed, and the elimination of subjective influences. A microscope equipped with an automatic XY stage projects the image onto the cathode of a vidicon-amplifier. Within the TV-picture generated, characterized by the coordinate XY in the specimen, we determine coordinates xy of events by setting cross lines on the screen which correspond to a digital accuracy of 0.1 μm at the position of the object. Automatic movement in Z-direction can be performed by stepping motor and measured electronically, or continously by setting electric voltage on a piezostrictive support of the objective. (orig.) [de

  16. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    Science.gov (United States)

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  17. Spatio-temporal features for tracking and quadruped/biped discrimination

    Science.gov (United States)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  18. Classification of Birds and Bats Using Flight Tracks

    Energy Technology Data Exchange (ETDEWEB)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    2015-05-01

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant model for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.

  19. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Science.gov (United States)

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  20. KOLAM: a cross-platform architecture for scalable visualization and tracking in wide-area imagery

    Science.gov (United States)

    Fraser, Joshua; Haridas, Anoop; Seetharaman, Guna; Rao, Raghuveer M.; Palaniappan, Kannappan

    2013-05-01

    KOLAM is an open, cross-platform, interoperable, scalable and extensible framework supporting a novel multi- scale spatiotemporal dual-cache data structure for big data visualization and visual analytics. This paper focuses on the use of KOLAM for target tracking in high-resolution, high throughput wide format video also known as wide-area motion imagery (WAMI). It was originally developed for the interactive visualization of extremely large geospatial imagery of high spatial and spectral resolution. KOLAM is platform, operating system and (graphics) hardware independent, and supports embedded datasets scalable from hundreds of gigabytes to feasibly petabytes in size on clusters, workstations, desktops and mobile computers. In addition to rapid roam, zoom and hyper- jump spatial operations, a large number of simultaneously viewable embedded pyramid layers (also referred to as multiscale or sparse imagery), interactive colormap and histogram enhancement, spherical projection and terrain maps are supported. The KOLAM software architecture was extended to support airborne wide-area motion imagery by organizing spatiotemporal tiles in very large format video frames using a temporal cache of tiled pyramid cached data structures. The current version supports WAMI animation, fast intelligent inspection, trajectory visualization and target tracking (digital tagging); the latter by interfacing with external automatic tracking software. One of the critical needs for working with WAMI is a supervised tracking and visualization tool that allows analysts to digitally tag multiple targets, quickly review and correct tracking results and apply geospatial visual analytic tools on the generated trajectories. One-click manual tracking combined with multiple automated tracking algorithms are available to assist the analyst and increase human effectiveness.

  1. Multi-agent target tracking using particle filters enhanced with context data

    CSIR Research Space (South Africa)

    Claessens, R

    2015-05-01

    Full Text Available The proposed framework for Multi-Agent Target Tracking supports i) tracking of objects and ii) search and rescue based on the fusion of very heterogeneous data. The system is based on a novel approach to fusing sensory observations, intelligence...

  2. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  3. Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.

    Science.gov (United States)

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-11-11

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.

  4. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    Science.gov (United States)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  5. Code domain steganography in video tracks

    Science.gov (United States)

    Rymaszewski, Sławomir

    2008-01-01

    This article is dealing with a practical method of hiding secret information in video stream. Method is dedicated for MPEG-2 stream. The algorithm takes to consider not only MPEG video coding scheme described in standard but also bits PES-packets encapsulation in MPEG-2 Program Stream (PS). This modification give higher capacity and more effective bit rate control for output stream than previously proposed methods.

  6. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  7. A novel visual saliency detection method for infrared video sequences

    Science.gov (United States)

    Wang, Xin; Zhang, Yuzhen; Ning, Chen

    2017-12-01

    Infrared video applications such as target detection and recognition, moving target tracking, and so forth can benefit a lot from visual saliency detection, which is essentially a method to automatically localize the ;important; content in videos. In this paper, a novel visual saliency detection method for infrared video sequences is proposed. Specifically, for infrared video saliency detection, both the spatial saliency and temporal saliency are considered. For spatial saliency, we adopt a mutual consistency-guided spatial cues combination-based method to capture the regions with obvious luminance contrast and contour features. For temporal saliency, a multi-frame symmetric difference approach is proposed to discriminate salient moving regions of interest from background motions. Then, the spatial saliency and temporal saliency are combined to compute the spatiotemporal saliency using an adaptive fusion strategy. Besides, to highlight the spatiotemporal salient regions uniformly, a multi-scale fusion approach is embedded into the spatiotemporal saliency model. Finally, a Gestalt theory-inspired optimization algorithm is designed to further improve the reliability of the final saliency map. Experimental results demonstrate that our method outperforms many state-of-the-art saliency detection approaches for infrared videos under various backgrounds.

  8. Target Tracking in 3-D Using Estimation Based Nonlinear Control Laws for UAVs

    Directory of Open Access Journals (Sweden)

    Mousumi Ahmed

    2016-02-01

    Full Text Available This paper presents an estimation based backstepping like control law design for an Unmanned Aerial Vehicle (UAV to track a moving target in 3-D space. A ground-based sensor or an onboard seeker antenna provides range, azimuth angle, and elevation angle measurements to a chaser UAV that implements an extended Kalman filter (EKF to estimate the full state of the target. A nonlinear controller then utilizes this estimated target state and the chaser’s state to provide speed, flight path, and course/heading angle commands to the chaser UAV. Tracking performance with respect to measurement uncertainty is evaluated for three cases: (1 stationary white noise; (2 stationary colored noise and (3 non-stationary (range correlated white noise. Furthermore, in an effort to improve tracking performance, the measurement model is made more realistic by taking into consideration range-dependent uncertainties in the measurements, i.e., as the chaser closes in on the target, measurement uncertainties are reduced in the EKF, thus providing the UAV with more accurate control commands. Simulation results for these cases are shown to illustrate target state estimation and trajectory tracking performance.

  9. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  10. Siamese convolutional networks for tracking the spine motion

    Science.gov (United States)

    Liu, Yuan; Sui, Xiubao; Sun, Yicheng; Liu, Chengwei; Hu, Yong

    2017-09-01

    Deep learning models have demonstrated great success in various computer vision tasks such as image classification and object tracking. However, tracking the lumbar spine by digitalized video fluoroscopic imaging (DVFI), which can quantitatively analyze the motion mode of spine to diagnose lumbar instability, has not yet been well developed due to the lack of steady and robust tracking method. In this paper, we propose a novel visual tracking algorithm of the lumbar vertebra motion based on a Siamese convolutional neural network (CNN) model. We train a full-convolutional neural network offline to learn generic image features. The network is trained to learn a similarity function that compares the labeled target in the first frame with the candidate patches in the current frame. The similarity function returns a high score if the two images depict the same object. Once learned, the similarity function is used to track a previously unseen object without any adapting online. In the current frame, our tracker is performed by evaluating the candidate rotated patches sampled around the previous frame target position and presents a rotated bounding box to locate the predicted target precisely. Results indicate that the proposed tracking method can detect the lumbar vertebra steadily and robustly. Especially for images with low contrast and cluttered background, the presented tracker can still achieve good tracking performance. Further, the proposed algorithm operates at high speed for real time tracking.

  11. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  12. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    Science.gov (United States)

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  13. Robot Visual Tracking via Incremental Self-Updating of Appearance Model

    Directory of Open Access Journals (Sweden)

    Danpei Zhao

    2013-09-01

    Full Text Available This paper proposes a target tracking method called Incremental Self-Updating Visual Tracking for robot platforms. Our tracker treats the tracking problem as a binary classification: the target and the background. The greyscale, HOG and LBP features are used in this work to represent the target and are integrated into a particle filter framework. To track the target over long time sequences, the tracker has to update its model to follow the most recent target. In order to deal with the problems of calculation waste and lack of model-updating strategy with the traditional methods, an intelligent and effective online self-updating strategy is devised to choose the optimal update opportunity. The strategy of updating the appearance model can be achieved based on the change in the discriminative capability between the current frame and the previous updated frame. By adjusting the update step adaptively, severe waste of calculation time for needless updates can be avoided while keeping the stability of the model. Moreover, the appearance model can be kept away from serious drift problems when the target undergoes temporary occlusion. The experimental results show that the proposed tracker can achieve robust and efficient performance in several benchmark-challenging video sequences with various complex environment changes in posture, scale, illumination and occlusion.

  14. ANNOTATION SUPPORTED OCCLUDED OBJECT TRACKING

    Directory of Open Access Journals (Sweden)

    Devinder Kumar

    2012-08-01

    Full Text Available Tracking occluded objects at different depths has become as extremely important component of study for any video sequence having wide applications in object tracking, scene recognition, coding, editing the videos and mosaicking. The paper studies the ability of annotation to track the occluded object based on pyramids with variation in depth further establishing a threshold at which the ability of the system to track the occluded object fails. Image annotation is applied on 3 similar video sequences varying in depth. In the experiment, one bike occludes the other at a depth of 60cm, 80cm and 100cm respectively. Another experiment is performed on tracking humans with similar depth to authenticate the results. The paper also computes the frame by frame error incurred by the system, supported by detailed simulations. This system can be effectively used to analyze the error in motion tracking and further correcting the error leading to flawless tracking. This can be of great interest to computer scientists while designing surveillance systems etc.

  15. Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters

    Directory of Open Access Journals (Sweden)

    M. Sanjeev Arulampalam

    2004-11-01

    Full Text Available We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs. Three different (PFs are proposed for this problem which is formulated as a multiple model tracking problem in a jump Markov system (JMS framework. The proposed filters are (i multiple model PF (MMPF, (ii auxiliary MMPF (AUX-MMPF, and (iii jump Markov system PF (JMS-PF. The performance of these filters is compared with that of standard interacting multiple model (IMM-based trackers such as IMM-EKF and IMM-UKF for three separate cases: (i single-sensor case, (ii multisensor case, and (iii tracking with hard constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.

  16. Postural sway and gaze can track the complex motion of a visual target.

    Directory of Open Access Journals (Sweden)

    Vassilia Hatzitaki

    Full Text Available Variability is an inherent and important feature of human movement. This variability has form exhibiting a chaotic structure. Visual feedback training using regular predictive visual target motions does not take into account this essential characteristic of the human movement, and may result in task specific learning and loss of visuo-motor adaptability. In this study, we asked how well healthy young adults can track visual target cues of varying degree of complexity during whole-body swaying in the Anterior-Posterior (AP and Medio-Lateral (ML direction. Participants were asked to track three visual target motions: a complex (Lorenz attractor, a noise (brown and a periodic (sine moving target while receiving online visual feedback about their performance. Postural sway, gaze and target motion were synchronously recorded and the degree of force-target and gaze-target coupling was quantified using spectral coherence and Cross-Approximate entropy. Analysis revealed that both force-target and gaze-target coupling was sensitive to the complexity of the visual stimuli motions. Postural sway showed a higher degree of coherence with the Lorenz attractor than the brown noise or sinusoidal stimulus motion. Similarly, gaze was more synchronous with the Lorenz attractor than the brown noise and sinusoidal stimulus motion. These results were similar regardless of whether tracking was performed in the AP or ML direction. Based on the theoretical model of optimal movement variability tracking of a complex signal may provide a better stimulus to improve visuo-motor adaptation and learning in postural control.

  17. Opportune acquisition and tracking time for the fast-moving targets in a ground-based telescope

    Science.gov (United States)

    Chen, Juan; Wang, Jianli; Chen, Tao

    2004-10-01

    Acquisition is defined as identification for a fixed target in the related field of sight (FOS), while tracking means the sway of the telescope's axis of sight (AOS). The automatic acquisition and tracking is a process in which the operating way of the telescope should be switched from guiding to automatic tracking. There are some kinds of method to improve the acquisition and tracking ability for fast moving targets: to extend the acquisition and tracking FOS with memory and storage information of the sensor system; the multimode control to improve the dynamic property of the servo system; to choose an opportune time for acquisition and tracking; to select the control regulator parameter in every working states. If the processor of the CCD sensor can temporarily remember and save the information of the target before it moves out of the FOS, correspondingly, the FOS may be extended. The data forecast technology is used to store the target information. The automatic interception experiments are carried out to verify the control strategy.

  18. Real-time video analysis for retail stores

    Science.gov (United States)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  19. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    Science.gov (United States)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of

  20. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias; Sharma, Gopal; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  1. Persistent Aerial Tracking system for UAVs

    KAUST Repository

    Mueller, Matthias

    2016-12-19

    In this paper, we propose a persistent, robust and autonomous object tracking system for unmanned aerial vehicles (UAVs) called Persistent Aerial Tracking (PAT). A computer vision and control strategy is applied to a diverse set of moving objects (e.g. humans, animals, cars, boats, etc.) integrating multiple UAVs with a stabilized RGB camera. A novel strategy is employed to successfully track objects over a long period, by ‘handing over the camera’ from one UAV to another. We evaluate several state-of-the-art trackers on the VIVID aerial video dataset and additional sequences that are specifically tailored to low altitude UAV target tracking. Based on the evaluation, we select the leading tracker and improve upon it by optimizing for both speed and performance, integrate the complete system into an off-the-shelf UAV, and obtain promising results showing the robustness of our solution in real-world aerial scenarios.

  2. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    Directory of Open Access Journals (Sweden)

    Anthony Hoak

    2017-03-01

    Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  3. Infrared dim moving target tracking via sparsity-based discriminative classifier and convolutional network

    Science.gov (United States)

    Qian, Kun; Zhou, Huixin; Wang, Bingjian; Song, Shangzhen; Zhao, Dong

    2017-11-01

    Infrared dim and small target tracking is a great challenging task. The main challenge for target tracking is to account for appearance change of an object, which submerges in the cluttered background. An efficient appearance model that exploits both the global template and local representation over infrared image sequences is constructed for dim moving target tracking. A Sparsity-based Discriminative Classifier (SDC) and a Convolutional Network-based Generative Model (CNGM) are combined with a prior model. In the SDC model, a sparse representation-based algorithm is adopted to calculate the confidence value that assigns more weights to target templates than negative background templates. In the CNGM model, simple cell feature maps are obtained by calculating the convolution between target templates and fixed filters, which are extracted from the target region at the first frame. These maps measure similarities between each filter and local intensity patterns across the target template, therefore encoding its local structural information. Then, all the maps form a representation, preserving the inner geometric layout of a candidate template. Furthermore, the fixed target template set is processed via an efficient prior model. The same operation is applied to candidate templates in the CNGM model. The online update scheme not only accounts for appearance variations but also alleviates the migration problem. At last, collaborative confidence values of particles are utilized to generate particles' importance weights. Experiments on various infrared sequences have validated the tracking capability of the presented algorithm. Experimental results show that this algorithm runs in real-time and provides a higher accuracy than state of the art algorithms.

  4. Impact of Target Distance, Target Size, and Visual Acuity on the Video Head Impulse Test.

    Science.gov (United States)

    Judge, Paul D; Rodriguez, Amanda I; Barin, Kamran; Janky, Kristen L

    2018-05-01

    The video head impulse test (vHIT) assesses the vestibulo-ocular reflex. Few have evaluated whether environmental factors or visual acuity influence the vHIT. The purpose of this study was to evaluate the influence of target distance, target size, and visual acuity on vHIT outcomes. Thirty-eight normal controls and 8 subjects with vestibular loss (VL) participated. vHIT was completed at 3 distances and with 3 target sizes. Normal controls were subdivided on the basis of visual acuity. Corrective saccade frequency, corrective saccade amplitude, and gain were tabulated. In the normal control group, there were no significant effects of target size or visual acuity for any vHIT outcome parameters; however, gain increased as target distance decreased. The VL group demonstrated higher corrective saccade frequency and amplitude and lower gain as compared with controls. In conclusion, decreasing target distance increases gain for normal controls but not subjects with VL. Preliminarily, visual acuity does not affect vHIT outcomes.

  5. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  6. Adaptive Kalman Filter Applied to Vision Based Head Gesture Tracking for Playing Video Games

    Directory of Open Access Journals (Sweden)

    Mohammadreza Asghari Oskoei

    2017-11-01

    Full Text Available This paper proposes an adaptive Kalman filter (AKF to improve the performance of a vision-based human machine interface (HMI applied to a video game. The HMI identifies head gestures and decodes them into corresponding commands. Face detection and feature tracking algorithms are used to detect optical flow produced by head gestures. Such approaches often fail due to changes in head posture, occlusion and varying illumination. The adaptive Kalman filter is applied to estimate motion information and reduce the effect of missing frames in a real-time application. Failure in head gesture tracking eventually leads to malfunctioning game control, reducing the scores achieved, so the performance of the proposed vision-based HMI is examined using a game scoring mechanism. The experimental results show that the proposed interface has a good response time, and the adaptive Kalman filter improves the game scores by ten percent.

  7. On the Impact of Localization and Density Control Algorithms in Target Tracking Applications for Wireless Sensor Networks

    Science.gov (United States)

    Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.

    2012-01-01

    Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329

  8. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    Science.gov (United States)

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  9. Multi-Target Tracking via Mixed Integer Optimization

    Science.gov (United States)

    2016-05-13

    an easily interpretable global objective function. Furthermore, we propose a greedy heuristic which quickly finds good solutions. We extend both the... heuristic and the MIO model to scenarios with missed detections and false alarms. Index Terms—optimization; multi-target tracking; data asso- ciation...energy in [14] and then again as a minimization of discrete-continuous energy in [15]. These algorithms aim to more accurately represent the nature of the

  10. A new user-assisted segmentation and tracking technique for an object-based video editing system

    Science.gov (United States)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  11. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  12. Application results for an augmented video tracker

    Science.gov (United States)

    Pierce, Bill

    1991-08-01

    The Relay Mirror Experiment (RME) is a research program to determine the pointing accuracy and stability levels achieved when a laser beam is reflected by the RME satellite from one ground station to another. This paper reports the results of using a video tracker augmented with a quad cell signal to improve the RME ground station tracking system performance. The video tracker controls a mirror to acquire the RME satellite, and provides a robust low bandwidth tracking loop to remove line of sight (LOS) jitter. The high-passed, high-gain quad cell signal is added to the low bandwidth, low-gain video tracker signal to increase the effective tracking loop bandwidth, and significantly improves LOS disturbance rejection. The quad cell augmented video tracking system is analyzed, and the math model for the tracker is developed. A MATLAB model is then developed from this, and performance as a function of bandwidth and disturbances is given. Improvements in performance due to the addition of the video tracker and the augmentation with the quad cell are provided. Actual satellite test results are then presented and compared with the simulated results.

  13. Measuring coseismic displacements with point-like targets offset tracking

    KAUST Repository

    Hu, Xie; Wang, Teng; Liao, Mingsheng

    2014-01-01

    Offset tracking is an important complement to measure large ground displacements in both azimuth and range dimensions where synthetic aperture radar (SAR) interferometry is unfeasible. Subpixel offsets can be obtained by searching for the cross-correlation peak calculated from the match patches uniformly distributed on two SAR images. However, it has its limitations, including redundant computation and incorrect estimations on decorrelated patches. In this letter, we propose a simple strategy that performs offset tracking on detected point-like targets (PT). We first detect image patches within bright PT by using a sinc-like template from a single SAR image and then perform offset tracking on them to obtain the pixel shifts. Compared with the standard method, the application on the 2010 M 7.2 El Mayor-Cucapah earthquake shows that the proposed PT offset tracking can significantly increase the cross-correlation and thus result in both efficiency and reliability improvements. © 2013 IEEE.

  14. Dazzle camouflage, target tracking, and the confusion effect.

    Science.gov (United States)

    Hogan, Benedict G; Cuthill, Innes C; Scott-Samuel, Nicholas E

    2016-01-01

    The influence of coloration on the ecology and evolution of moving animals in groups is poorly understood. Animals in groups benefit from the "confusion effect," where predator attack success is reduced with increasing group size or density. This is thought to be due to a sensory bottleneck: an increase in the difficulty of tracking one object among many. Motion dazzle camouflage has been hypothesized to disrupt accurate perception of the trajectory or speed of an object or animal. The current study investigates the suggestion that dazzle camouflage may enhance the confusion effect. Utilizing a computer game style experiment with human predators, we found that when moving in groups, targets with stripes parallel to the targets' direction of motion interact with the confusion effect to a greater degree, and are harder to track, than those with more conventional background matching patterns. The findings represent empirical evidence that some high-contrast patterns may benefit animals in groups. The results also highlight the possibility that orientation and turning may be more relevant in the mechanisms of dazzle camouflage than previously recognized.

  15. Reduced bandwidth video for remote vehicle operations

    Energy Technology Data Exchange (ETDEWEB)

    Noell, T.E.; DePiero, F.W.

    1993-08-01

    Oak Ridge National Laboratory staff have developed a video compression system for low-bandwidth remote operations. The objective is to provide real-time video at data rates comparable to available tactical radio links, typically 16 to 64 thousand bits per second (kbps), while maintaining sufficient quality to achieve mission objectives. The system supports both continuous lossy transmission of black and white (gray scale) video for remote driving and progressive lossless transmission of black and white images for remote automatic target acquisition. The average data rate of the resulting bit stream is 64 kbps. This system has been demonstrated to provide video of sufficient quality to allow remote driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds up to 15 mph (24.1 kph) on a moguled dirt track. The nominal driving configuration provides a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approximately}1s. This paper reviews the system approach and implementation, and further describes some of our experiences when using the system to support remote driving.

  16. Quantifying sublethal effects of glyphosate and Roundup® to Daphnia magna using a fluorescence based enzyme activity assay and video tracking

    DEFF Research Database (Denmark)

    Roslev, Peter; R. Hansen, Lone; Ørsted, Michael

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum, non-selective herbicide formulations. The toxicity of this herbicide to non-target aquatic organisms such as Daphnia magna is often evaluated using conventional toxicity assays that focus...... on endpoints such as immobility and mortality. In this study, we investigated sublethal effects of glyphosate and Roundup® to D. magna using video tracking for quantifying behavioral changes, and a novel fluorescence based assay for measuring in vivo hydrolytic enzyme activity (FLEA assay). Roundup® exposure...... resulted in concentration-dependent inhibition of alkaline phosphatase activity in D. magna. The inhibition of alkaline phosphatase by Roundup® was temperature-dependent with lowest inhibition at 14 °C and greater inhibition at 20 and 26 °C. Exposure of D. magna to sublethal concentrations of glyphosate...

  17. Dual linear structured support vector machine tracking method via scale correlation filter

    Science.gov (United States)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  18. Urbanism on Track : Application of tracking technologies in urbanism

    NARCIS (Netherlands)

    Van der Hoeven, F.D.; Van Schaick, J.; Van der Spek, S.C.; Smit, M.G.J.

    2008-01-01

    Tracking technologies such as GPS, mobile phone tracking, video and RFID monitoring are rapidly becoming part of daily life. Technological progress offers huge possibilities for studying human activity patterns in time and space in new ways. Delft University of Technology (TU Delft) held an

  19. Target tracking control and semi-physical simulation of Qball-X4 quad-rotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available In this article, a set of integrated ground target tracking flight system has been proposed based on the Qball-X4 quad-rotor unmanned aerial vehicle hardware platform and the QuaRC software platform. Both of the hardware and software platforms are developed by Quanser Company, Canada. The proposed tracking and positioning algorithm could be divided into several stages. First, a tracker is developed based on an optical flow method to track the target; and then, in order to improve the reliability of tracking algorithm and also help in retrieving the lost target, a cascade target detector is developed; meanwhile, a model updated scheme aiming at some possible errors in tracking and detecting process is presented based on Positive-Negative (P-N learning system; at last, a monocular visual positioning system is designed based on the corresponding navigation message. In addition, the effectiveness of the proposed flight control system is verified by both simulation and hardware-in-loop system results in several tracking flight tests.

  20. DMLC motion tracking of moving targets for intensity modulated arc therapy treatment

    DEFF Research Database (Denmark)

    Zimmerman, Jens; Korreman, Stine; Persson, Gitte

    2009-01-01

    (DMLC). The aim of this work was to evaluate the dose delivered to moving targets using the RapidArc (Varian Medical Systems, Inc.) technology with and without a DMLC tracking algorithm. MATERIAL AND METHODS: A Varian Clinac iX was equipped with a preclinical RapidArc and a 3D DMLC tracking application......) and state (1). CONCLUSIONS: DMLC tracking together with RapidArc make a feasible combination and is capable of improving the dose distribution delivered to a moving target. It seems to be of importance to minimize noise influencing the tracking, to gain the full benefit from the application........ A motion platform was placed on the couch, with the detectors on top: a PTW seven29 and a Scandidos Delta4. One lung plan and one prostate plan were delivered. Motion was monitored using a Real-time Position Management (RPM) system. Reference measurements were performed for both plans with both detectors...

  1. Near real-time bi-planar fluoroscopic tracking system for the video tumor fighter

    International Nuclear Information System (INIS)

    Lawson, M.A.; Wika, K.G.; Gillies, G.T.; Ritter, R.C.

    1991-01-01

    The authors have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the Video Tumor Fighter (VTF). The software was written for s Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally- oriented, visible-light cameras and simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented

  2. Video tracking and post-mortem analysis of dust particles from all tungsten ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Endstrasser, N., E-mail: Nikolaus.Endstrasser@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Brochard, F. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Rohde, V., E-mail: Volker.Rohde@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Balden, M. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Lunt, T.; Bardin, S.; Briancon, J.-L. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Neu, R. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-08-01

    2D dust particle trajectories are extracted from fast framing camera videos of ASDEX Upgrade (AUG) by a new time- and resource-efficient code and classified into stationary hot spots, single-frame events and real dust particle fly-bys. Using hybrid global and local intensity thresholding and linear trajectory extrapolation individual particles could be tracked up to 80 ms. Even under challenging conditions such as high particle density and strong vacuum vessel illumination all particles detected for more than 50 frames are tracked correctly. During campaign 2009 dust has been trapped on five silicon wafer dust collectors strategically positioned within the vacuum vessel of the full tungsten AUG. Characterisation of the outer morphology and determination of the elemental composition of 5 x 10{sup 4} particles were performed via automated SEM-EDX analysis. A dust classification scheme based on these parameters was defined with the goal to link the particles to their most probable production sites.

  3. Joint passive radar tracking and target classification using radar cross section

    Science.gov (United States)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  4. Automated target recognition and tracking using an optical pattern recognition neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  5. Intelligent video surveillance systems

    CERN Document Server

    Dufour, Jean-Yves

    2012-01-01

    Belonging to the wider academic field of computer vision, video analytics has aroused a phenomenal surge of interest since the current millennium. Video analytics is intended to solve the problem of the incapability of exploiting video streams in real time for the purpose of detection or anticipation. It involves analyzing the videos using algorithms that detect and track objects of interest over time and that indicate the presence of events or suspect behavior involving these objects.The aims of this book are to highlight the operational attempts of video analytics, to identify possi

  6. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    Science.gov (United States)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  7. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    NARCIS (Netherlands)

    Zachiu, Cornel; Ries, Mario G; Ramaekers, Pascal; Guey, Jean-Luc; Moonen, Chrit T W; de Senneville, Baudouin Denis

    2017-01-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target

  8. Robust Object Tracking with a Hierarchical Ensemble Framework

    Science.gov (United States)

    2016-10-09

    consistency in the target bounding box level while we take this into con - sideration by employing an adaptive Kalman filter. Therefore our method is more...hu- man videos with occlusions(OCC), deformation( DEF ), back- ground clutter(BC), scale variations(SV), fast motion(FM) and illumination variation(IV... con - volutional features for visual tracking,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082, 2015. 445

  9. Visual Analytics and Storytelling through Video

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Pak C.; Perrine, Kenneth A.; Mackey, Patrick S.; Foote, Harlan P.; Thomas, Jim

    2005-10-31

    This paper supplements a video clip submitted to the Video Track of IEEE Symposium on Information Visualization 2005. The original video submission applies a two-way storytelling approach to demonstrate the visual analytics capabilities of a new visualization technique. The paper presents our video production philosophy, describes the plot of the video, explains the rationale behind the plot, and finally, shares our production experiences with our readers.

  10. Region descriptors for automatic classification of small sea targets in infrared video

    NARCIS (Netherlands)

    Mouthaan, M.M.; Broek, S.P. van den; Hendriks, E.A.; Schwering, P.B.W.

    2011-01-01

    We evaluate the performance of different key-point detectors and region descriptors when used for automatic classification of small sea targets in infrared video. In our earlier research performed on this subject as well as in other literature, many different region descriptors have been proposed.

  11. Impedance modulation and feedback corrections in tracking targets of variable size and frequency.

    Science.gov (United States)

    Selen, Luc P J; van Dieën, Jaap H; Beek, Peter J

    2006-11-01

    Humans are able to adjust the accuracy of their movements to the demands posed by the task at hand. The variability in task execution caused by the inherent noisiness of the neuromuscular system can be tuned to task demands by both feedforward (e.g., impedance modulation) and feedback mechanisms. In this experiment, we studied both mechanisms, using mechanical perturbations to estimate stiffness and damping as indices of impedance modulation and submovement scaling as an index of feedback driven corrections. Eight subjects tracked three differently sized targets (0.0135, 0.0270, and 0.0405 rad) moving at three different frequencies (0.20, 0.25, and 0.33 Hz). Movement variability decreased with both decreasing target size and movement frequency, whereas stiffness and damping increased with decreasing target size, independent of movement frequency. These results are consistent with the theory that mechanical impedance acts as a filter of noisy neuromuscular signals but challenge stochastic theories of motor control that do not account for impedance modulation and only partially for feedback control. Submovements during unperturbed cycles were quantified in terms of their gain, i.e., the slope between their duration and amplitude in the speed profile. Submovement gain decreased with decreasing movement frequency and increasing target size. The results were interpreted to imply that submovement gain is related to observed tracking errors and that those tracking errors are expressed in units of target size. We conclude that impedance and submovement gain modulation contribute additively to tracking accuracy.

  12. IVF: exploiting intensity variation function for high-performance pedestrian tracking in forward-looking infrared imagery

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Paravati, Gianluca; Belluccini, Luca

    2014-02-01

    Tracking pedestrian targets in forward-looking infrared video sequences is a crucial component of a growing number of applications. At the same time, it is particularly challenging, since image resolution and signal-to-noise ratio are generally very low, while the nonrigidity of the human body produces highly variable target shapes. Moreover, motion can be quite chaotic with frequent target-to-target and target-to-scene occlusions. Hence, the trend is to design ever more sophisticated techniques, able to ensure rather accurate tracking results at the cost of a generally higher complexity. However, many of such techniques might not be suitable for real-time tracking in limited-resource environments. This work presents a technique that extends an extremely computationally efficient tracking method based on target intensity variation and template matching originally designed for targets with a marked and stable hot spot by adapting it to deal with much more complex thermal signatures and by removing the native dependency on configuration choices. Experimental tests demonstrated that, by working on multiple hot spots, the designed technique is able to achieve the robustness of other common approaches by limiting drifts and preserving the low-computational footprint of the reference method.

  13. Supertracker: A Programmable Parallel Pipeline Arithmetic Processor For Auto-Cueing Target Processing

    Science.gov (United States)

    Mack, Harold; Reddi, S. S.

    1980-04-01

    Supertracker represents a programmable parallel pipeline computer architecture that has been designed to meet the real time image processing requirements of auto-cueing target data processing. The prototype bread-board currently under development will be designed to perform input video preprocessing and processing for 525-line and 875-line TV formats FLIR video, automatic display gain and contrast control, and automatic target cueing, classification, and tracking. The video preprocessor is capable of performing operations full frames of video data in real time, e.g., frame integration, storage, 3 x 3 convolution, and neighborhood processing. The processor architecture is being implemented using bit-slice microprogrammable arithmetic processors, operating in parallel. Each processor is capable of up to 20 million operations per second. Multiple frame memories are used for additional flexibility.

  14. Hardware accelerator design for tracking in smart camera

    Science.gov (United States)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  15. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.

    Science.gov (United States)

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J

    2015-09-22

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.

  16. Event-triggered Kalman-consensus filter for two-target tracking sensor networks.

    Science.gov (United States)

    Su, Housheng; Li, Zhenghao; Ye, Yanyan

    2017-11-01

    This paper is concerned with the problem of event-triggered Kalman-consensus filter for two-target tracking sensor networks. According to the event-triggered protocol and the mean-square analysis, a suboptimal Kalman gain matrix is derived and a suboptimal event-triggered distributed filter is obtained. Based on the Kalman-consensus filter protocol, all sensors which only depend on its neighbors' information can track their corresponding targets. Furthermore, utilizing Lyapunov method and matrix theory, some sufficient conditions are presented for ensuring the stability of the system. Finally, a simulation example is presented to verify the effectiveness of the proposed event-triggered protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Tracking a "facer's" behavior in a public plaza

    DEFF Research Database (Denmark)

    2014-01-01

    The video shows the tracking of a "facer's" behavior in a public plaza using a thermal camera (non-privacy violating) and a visualization of the tracks in a space-time cube in a 3D GIS. The tracking data is used in my PhD project on Human Movement Patterns in Smart Cities. The recording and analy...... and analysis of the thermal video has been made in collaboration with Rikke Gade from the Visual Analytics of People Lab at Aalborg University.......The video shows the tracking of a "facer's" behavior in a public plaza using a thermal camera (non-privacy violating) and a visualization of the tracks in a space-time cube in a 3D GIS. The tracking data is used in my PhD project on Human Movement Patterns in Smart Cities. The recording...

  18. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    International Nuclear Information System (INIS)

    Cho, Byungchul; Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-01-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was ∼450 ms. The tracking error using a prediction algorithm was 0.9 ± 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  19. Composite Wavelet Filters for Enhanced Automated Target Recognition

    Science.gov (United States)

    Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.

  20. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    Science.gov (United States)

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics

  1. Quantitative analysis of the improvement in high zoom maritime tracking due to real-time image enhancement

    CSIR Research Space (South Africa)

    Bachoo, AK

    2011-04-01

    Full Text Available This work aims to evaluate the improvement in the performance of tracking small maritime targets due to real-time enhancement of the video streams from high zoom cameras on pan-tilt pedestal. Due to atmospheric conditions these images can frequently...

  2. Collaborative 3D Target Tracking in Distributed Smart Camera Networks for Wide-Area Surveillance

    Directory of Open Access Journals (Sweden)

    Xenofon Koutsoukos

    2013-05-01

    Full Text Available With the evolution and fusion of wireless sensor network and embedded camera technologies, distributed smart camera networks have emerged as a new class of systems for wide-area surveillance applications. Wireless networks, however, introduce a number of constraints to the system that need to be considered, notably the communication bandwidth constraints. Existing approaches for target tracking using a camera network typically utilize target handover mechanisms between cameras, or combine results from 2D trackers in each camera into 3D target estimation. Such approaches suffer from scale selection, target rotation, and occlusion, drawbacks typically associated with 2D tracking. In this paper, we present an approach for tracking multiple targets directly in 3D space using a network of smart cameras. The approach employs multi-view histograms to characterize targets in 3D space using color and texture as the visual features. The visual features from each camera along with the target models are used in a probabilistic tracker to estimate the target state. We introduce four variations of our base tracker that incur different computational and communication costs on each node and result in different tracking accuracy. We demonstrate the effectiveness of our proposed trackers by comparing their performance to a 3D tracker that fuses the results of independent 2D trackers. We also present performance analysis of the base tracker along Quality-of-Service (QoS and Quality-of-Information (QoI metrics, and study QoS vs. QoI trade-offs between the proposed tracker variations. Finally, we demonstrate our tracker in a real-life scenario using a camera network deployed in a building.

  3. Signal Detection, Target Tracking and Differential Geometry Applications to Statistical Inference

    National Research Council Canada - National Science Library

    Rao, C

    1997-01-01

    Signal detection and target tracking. A novel method known as polynomial rooting approach is proposed to obtain estimates of frequencies, amplitudes and noise variance of two-dimensional exponential signals...

  4. Medical Imaging for the Tracking of Micromotors.

    Science.gov (United States)

    Vilela, Diana; Cossío, Unai; Parmar, Jemish; Martínez-Villacorta, Angel M; Gómez-Vallejo, Vanessa; Llop, Jordi; Sánchez, Samuel

    2018-02-27

    Micro/nanomotors are useful tools for several biomedical applications, including targeted drug delivery and minimally invasive microsurgeries. However, major challenges such as in vivo imaging need to be addressed before they can be safely applied on a living body. Here, we show that positron emission tomography (PET), a molecular imaging technique widely used in medical imaging, can also be used to track a large population of tubular Au/PEDOT/Pt micromotors. Chemisorption of an iodine isotope onto the micromotor's Au surface rendered them detectable by PET, and we could track their movements in a tubular phantom over time frames of up to 15 min. In a second set of experiments, micromotors and the bubbles released during self-propulsion were optically tracked by video imaging and bright-field microscopy. The results from direct optical tracking agreed with those from PET tracking, demonstrating that PET is a suitable technique for the imaging of large populations of active micromotors in opaque environments, thus opening opportunities for the use of this mature imaging technology for the in vivo localization of artificial swimmers.

  5. Hierarchically Coordinated Power Management for Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Feng Juan

    2013-10-01

    Full Text Available Energy efficiency is very important for wireless sensor networks (WSNs since sensor nodes have a limited energy supply from a battery. So far, a lot research has focused on this issue, while less emphasis has been placed on the adaptive sleep time for each node with a consideration for the application constraints. In this paper, we propose a hierarchically coordinated power management (HCPM approach, which both addresses the energy conservation problem and reduces the packet forwarding delay for target tracking WSNs based on a virtual-grid-based network structure. We extend the network lifetime by adopting an adaptive sleep scheduling scheme that combines the local power management (PM and the adaptive coordinate PM strategies to schedule the activities of the sensor nodes at the surveillance stage. Furthermore, we propose a hierarchical structure for the tracking stage. Experimental results show that the proposed approach has a greater capability of extending the network lifetime while maintaining a short transmission delay when compared with the protocol which does not consider the application constraints in target tracking sensor networks.

  6. Automated intelligent video surveillance system for ships

    Science.gov (United States)

    Wei, Hai; Nguyen, Hieu; Ramu, Prakash; Raju, Chaitanya; Liu, Xiaoqing; Yadegar, Jacob

    2009-05-01

    To protect naval and commercial ships from attack by terrorists and pirates, it is important to have automatic surveillance systems able to detect, identify, track and alert the crew on small watercrafts that might pursue malicious intentions, while ruling out non-threat entities. Radar systems have limitations on the minimum detectable range and lack high-level classification power. In this paper, we present an innovative Automated Intelligent Video Surveillance System for Ships (AIVS3) as a vision-based solution for ship security. Capitalizing on advanced computer vision algorithms and practical machine learning methodologies, the developed AIVS3 is not only capable of efficiently and robustly detecting, classifying, and tracking various maritime targets, but also able to fuse heterogeneous target information to interpret scene activities, associate targets with levels of threat, and issue the corresponding alerts/recommendations to the man-in- the-loop (MITL). AIVS3 has been tested in various maritime scenarios and shown accurate and effective threat detection performance. By reducing the reliance on human eyes to monitor cluttered scenes, AIVS3 will save the manpower while increasing the accuracy in detection and identification of asymmetric attacks for ship protection.

  7. A Bayesian analysis of the mixed labelling phenomenon in two-target tracking

    NARCIS (Netherlands)

    Aoki, E.H.; Boers, Y.; Svensson, L.; Mandal, Pranab K.; Bagchi, Arunabha

    In mulit-target tracking and labelling (MTTL), mixed labelling corresponds to a situation where there is ambiguity in labelling, i.e. in the assignment of labels to locations (where a "location" here means simply an unlabelled single-target state. The phenomenon is well-known in literature, and

  8. Interaction of 80 MeV PI+ with different targets: Track detector studies

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, L; Chohan, A S [Government Coll., Lahore. (Pakistan) Deptt. of Physics Khan, H.A. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Nuclear Engineering Div.)

    1990-04-01

    CR-39 and mica track detectors have been used in the study of the interactions of 80 MeV PI+ with thin targets of Bi, Pb, Ho, Sb. The binary fission cross sections, the length and angular distributions of etched tracks have been obtained. The cross-section values obtained by using CR-39 are higher as compared to those obtained with mica. (author).

  9. Interaction of 80 MeV PI+ with different targets: Track detector studies

    International Nuclear Information System (INIS)

    Tabassum, L.; Chohan, A.S.

    1990-01-01

    CR-39 and mica track detectors have been used in the study of the interactions of 80 MeV PI+ with thin targets of Bi, Pb, Ho, Sb. The binary fission cross sections, the length and angular distributions of etched tracks have been obtained. The cross-section values obtained by using CR-39 are higher as compared to those obtained with mica. (author)

  10. Automatic measurement for solid state track detectors

    International Nuclear Information System (INIS)

    Ogura, Koichi

    1982-01-01

    Since in solid state track detectors, their tracks are measured with a microscope, observers are forced to do hard works that consume time and labour. This causes to obtain poor statistic accuracy or to produce personal error. Therefore, many researches have been done to aim at simplifying and automating track measurement. There are two categories in automating the measurement: simple counting of the number of tracks and the requirements to know geometrical elements such as the size of tracks or their coordinates as well as the number of tracks. The former is called automatic counting and the latter automatic analysis. The method to generally evaluate the number of tracks in automatic counting is the estimation of the total number of tracks in the total detector area or in a field of view of a microscope. It is suitable for counting when the track density is higher. The method to count tracks one by one includes the spark counting and the scanning microdensitometer. Automatic analysis includes video image analysis in which the high quality images obtained with a high resolution video camera are processed with a micro-computer, and the tracks are automatically recognized and measured by feature extraction. This method is described in detail. In many kinds of automatic measurements reported so far, frequently used ones are ''spark counting'' and ''video image analysis''. (Wakatsuki, Y.)

  11. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2005-09-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  12. Robotics Vision-based Heuristic Reasoning for Underwater Target Tracking and Navigation

    Directory of Open Access Journals (Sweden)

    Chua Kia

    2008-11-01

    Full Text Available This paper presents a robotics vision-based heuristic reasoning system for underwater target tracking and navigation. This system is introduced to improve the level of automation of underwater Remote Operated Vehicles (ROVs operations. A prototype which combines computer vision with an underwater robotics system is successfully designed and developed to perform target tracking and intelligent navigation. This study focuses on developing image processing algorithms and fuzzy inference system for the analysis of the terrain. The vision system developed is capable of interpreting underwater scene by extracting subjective uncertainties of the object of interest. Subjective uncertainties are further processed as multiple inputs of a fuzzy inference system that is capable of making crisp decisions concerning where to navigate. The important part of the image analysis is morphological filtering. The applications focus on binary images with the extension of gray-level concepts. An open-loop fuzzy control system is developed for classifying the traverse of terrain. The great achievement is the system's capability to recognize and perform target tracking of the object of interest (pipeline in perspective view based on perceived condition. The effectiveness of this approach is demonstrated by computer and prototype simulations. This work is originated from the desire to develop robotics vision system with the ability to mimic the human expert's judgement and reasoning when maneuvering ROV in the traverse of the underwater terrain.

  13. Classification of dual language audio-visual content: Introduction to the VideoCLEF 2008 pilot benchmark evaluation task

    NARCIS (Netherlands)

    Larson, M.; Newman, E.; Jones, G.J.F.; Köhler, J.; Larson, M.; de Jong, F.M.G.; Kraaij, W.; Ordelman, R.J.F.

    2008-01-01

    VideoCLEF is a new track for the CLEF 2008 campaign. This track aims to develop and evaluate tasks in analyzing multilingual video content. A pilot of a Vid2RSS task involving assigning thematic class labels to video kicks off the VideoCLEF track in 2008. Task participants deliver classification

  14. Video redaction: a survey and comparison of enabling technologies

    Science.gov (United States)

    Sah, Shagan; Shringi, Ameya; Ptucha, Raymond; Burry, Aaron; Loce, Robert

    2017-09-01

    With the prevalence of video recordings from smart phones, dash cams, body cams, and conventional surveillance cameras, privacy protection has become a major concern, especially in light of legislation such as the Freedom of Information Act. Video redaction is used to obfuscate sensitive and personally identifiable information. Today's typical workflow involves simple detection, tracking, and manual intervention. Automated methods rely on accurate detection mechanisms being paired with robust tracking methods across the video sequence to ensure the redaction of all sensitive information while minimizing spurious obfuscations. Recent studies have explored the use of convolution neural networks and recurrent neural networks for object detection and tracking. The present paper reviews the redaction problem and compares a few state-of-the-art detection, tracking, and obfuscation methods as they relate to redaction. The comparison introduces an evaluation metric that is specific to video redaction performance. The metric can be evaluated in a manner that allows balancing the penalty for false negatives and false positives according to the needs of particular application, thereby assisting in the selection of component methods and their associated hyperparameters such that the redacted video has fewer frames that require manual review.

  15. Robust online tracking via adaptive samples selection with saliency detection

    Science.gov (United States)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  16. Research on Key Technologies of Network Centric System Distributed Target Track Fusion

    Directory of Open Access Journals (Sweden)

    Yi Mao

    2017-01-01

    Full Text Available To realize common tactical picture in network-centered system, this paper proposes a layered architecture for distributed information processing and a method for distributed track fusion on the basis of analyzing the characteristics of network-centered systems. Basing on the noncorrelation of three-dimensional measurement of surveillance and reconnaissance sensors under polar coordinates, it also puts forward an algorithm for evaluating track quality (TQ using statistical decision theory. According to simulation results, the TQ value is associated with the measurement accuracy of sensors and the motion state of targets, which is well matched with the convergence process of tracking filters. Besides, the proposed algorithm has good reliability and timeliness in track quality evaluation.

  17. An Energy-Efficient Target Tracking Framework in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhijun Yu

    2009-01-01

    Full Text Available This study devises and evaluates an energy-efficient distributed collaborative signal and information processing framework for acoustic target tracking in wireless sensor networks. The distributed processing algorithm is based on mobile agent computing paradigm and sequential Bayesian estimation. At each time step, the short detection reports of cluster members will be collected by cluster head, and a sensor node with the highest signal-to-noise ratio (SNR is chosen there as reference node for time difference of arrive (TDOA calculation. During the mobile agent migration, the target state belief is transmitted among nodes and updated using the TDOA measurement of these fusion nodes one by one. The computing and processing burden is evenly distributed in the sensor network. To decrease the wireless communications, we propose to represent the belief by parameterized methods such as Gaussian approximation or Gaussian mixture model approximation. Furthermore, we present an attraction force function to handle the mobile agent migration planning problem, which is a combination of the node residual energy, useful information, and communication cost. Simulation examples demonstrate the estimation effectiveness and energy efficiency of the proposed distributed collaborative target tracking framework.

  18. Image-based tracking and sensor resource management for UAVs in an urban environment

    Science.gov (United States)

    Samant, Ashwin; Chang, K. C.

    2010-04-01

    Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.

  19. Electronic evaluation for video commercials by impression index.

    Science.gov (United States)

    Kong, Wanzeng; Zhao, Xinxin; Hu, Sanqing; Vecchiato, Giovanni; Babiloni, Fabio

    2013-12-01

    How to evaluate the effect of commercials is significantly important in neuromarketing. In this paper, we proposed an electronic way to evaluate the influence of video commercials on consumers by impression index. The impression index combines both the memorization and attention index during consumers observing video commercials by tracking the EEG activity. It extracts features from scalp EEG to evaluate the effectiveness of video commercials in terms of time-frequency-space domain. And, the general global field power was used as an impression index for evaluation of video commercial scenes as time series. Results of experiment demonstrate that the proposed approach is able to track variations of the cerebral activity related to cognitive task such as observing video commercials, and help to judge whether the scene in video commercials is impressive or not by EEG signals.

  20. Automated Indexing and Search of Video Data in Large Collections with inVideo

    Directory of Open Access Journals (Sweden)

    Shuangbao Paul Wang

    2017-08-01

    Full Text Available In this paper, we present a novel system, inVideo, for automatically indexing and searching videos based on the keywords spoken in the audio track and the visual content of the video frames. Using the highly efficient video indexing engine we developed, inVideo is able to analyze videos using machine learning and pattern recognition without the need for initial viewing by a human. The time-stamped commenting and tagging features refine the accuracy of search results. The cloud-based implementation makes it possible to conduct elastic search, augmented search, and data analytics. Our research shows that inVideo presents an efficient tool in processing and analyzing videos and increasing interactions in video-based online learning environment. Data from a cybersecurity program with more than 500 students show that applying inVideo to current video material, interactions between student-student and student-faculty increased significantly across 24 sections program-wide.

  1. Target Response Adaptation for Correlation Filter Tracking

    KAUST Repository

    Bibi, Adel Aamer

    2016-09-16

    Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.

  2. Real time tracking by LOPF algorithm with mixture model

    Science.gov (United States)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  3. Enhancement system of nighttime infrared video image and visible video image

    Science.gov (United States)

    Wang, Yue; Piao, Yan

    2016-11-01

    Visibility of Nighttime video image has a great significance for military and medicine areas, but nighttime video image has so poor quality that we can't recognize the target and background. Thus we enhance the nighttime video image by fuse infrared video image and visible video image. According to the characteristics of infrared and visible images, we proposed improved sift algorithm andαβ weighted algorithm to fuse heterologous nighttime images. We would deduced a transfer matrix from improved sift algorithm. The transfer matrix would rapid register heterologous nighttime images. And theαβ weighted algorithm can be applied in any scene. In the video image fusion system, we used the transfer matrix to register every frame and then used αβ weighted method to fuse every frame, which reached the time requirement soft video. The fused video image not only retains the clear target information of infrared video image, but also retains the detail and color information of visible video image and the fused video image can fluency play.

  4. A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking.

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Shafiee

    Full Text Available In this work, we introduce a deep-structured conditional random field (DS-CRF model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.

  5. Application of Fractional Fourier Transform to Moving Target Indication via Along-Track Interferometry

    Directory of Open Access Journals (Sweden)

    Chiu Shen

    2005-01-01

    Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.

  6. Thermal Tracking of Sports Players

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline...

  7. Simulation of Anti-occlusion Arithmetic in Real-time Tracking of Video Objects%抗遮挡视频图像目标实时跟踪的仿真研究

    Institute of Scientific and Technical Information of China (English)

    赵林; 冯燕; 吕维

    2011-01-01

    In the tracking of moving targets in video, occlusion can make the appearance clues of the tracked targets such as the size and the colour lose reliability, and this can cause the wrong recognition and the inaccurate tracking. To overcome the problem, this paper presents an anti-occlusion tracking arithmetic which is based on the prediction of the target state and the scaning of local optical flow. Whether the target is in occlusion is predicted by employing the Kalman filtering and the colour feature. ff the object is in occlusion, the object information is updated by optimal positioning information of the local optical flow scaning. Experimental results produced by the Directshow software show that the algorithm can accurately track the moving object occluded by background or by other objects under the premise of the real-time requirement.%在视频运动目标跟踪中,遮挡的出现会使所跟踪目标的尺寸和色彩等外观线索失去可靠性,容易造成误识别,进而导致对于目标的错误跟踪.为了克服这一问题,提出了一种基于目标状态预测和局部光流扫描的抗遮挡跟踪算法.算法根据卡尔曼滤波和目标颜色特征信息,预测各目标是否处于遮挡状态,在目标处于遮挡的情况下,通过由局部光流扫描得到的最佳定位信息更新目标信息.在Directshow软件下的仿真结果表明,所提出算法能够在保证实时性的前提下,在运动目标被背景遮挡或被其它目标遮挡时均能实现较准确跟踪.

  8. Video Game Use and Cognitive Performance: Does It Vary with the Presence of Problematic Video Game Use?

    OpenAIRE

    Collins, Emily; Freeman, Jonathan

    2014-01-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other t...

  9. Exogenous Social Identity Cues Differentially Affect the Dynamic Tracking of Individual Target Faces

    Science.gov (United States)

    Allen, Roy; Gabbert, Fiona

    2013-01-01

    We report on an experiment to investigate the top-down effect of exogenous social identity cues on a multiple-identity tracking task, a paradigm well suited to investigate the processes of binding identity to spatial locations. Here we simulated an eyewitness event in which dynamic targets, all to be tracked with equal effort, were identified from…

  10. Multi-UAV Doppler Information Fusion for Target Tracking Based on Distributed High Degrees Information Filters

    Directory of Open Access Journals (Sweden)

    Hamza Benzerrouk

    2018-03-01

    Full Text Available Multi-Unmanned Aerial Vehicle (UAV Doppler-based target tracking has not been widely investigated, specifically when using modern nonlinear information filters. A high-degree Gauss–Hermite information filter, as well as a seventh-degree cubature information filter (CIF, is developed to improve the fifth-degree and third-degree CIFs proposed in the most recent related literature. These algorithms are applied to maneuvering target tracking based on Radar Doppler range/range rate signals. To achieve this purpose, different measurement models such as range-only, range rate, and bearing-only tracking are used in the simulations. In this paper, the mobile sensor target tracking problem is addressed and solved by a higher-degree class of quadrature information filters (HQIFs. A centralized fusion architecture based on distributed information filtering is proposed, and yielded excellent results. Three high dynamic UAVs are simulated with synchronized Doppler measurement broadcasted in parallel channels to the control center for global information fusion. Interesting results are obtained, with the superiority of certain classes of higher-degree quadrature information filters.

  11. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available stream_source_info Kriel_2012.pdf.txt stream_content_type text/plain stream_size 29522 Content-Encoding ISO-8859-1 stream_name Kriel_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 737 33 Target Tracking Using....410634] 0.000019 [ 0.000020]4000.0 0 0 250.0 3D AASC 3D AASC 3D AASC Er ro r (m ) Er ro r (m ) E rr o r (m ) Time (s) 0 0 250.0Time (s) 0 0 250.0Time (s) AACT : AASC : AACT : AASC : AACT : 4000.0 4000.0 FIGURE 33...

  12. Robust online face tracking-by-detection

    NARCIS (Netherlands)

    Comaschi, F.; Stuijk, S.; Basten, T.; Corporaal, H.

    2016-01-01

    The problem of online face tracking from unconstrained videos is still unresolved. Challenges range from coping with severe online appearance variations to coping with occlusion. We propose RFTD (Robust Face Tracking-by-Detection), a system which combines tracking and detection into a single

  13. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    Directory of Open Access Journals (Sweden)

    Anne-Marie Brouwer

    2017-05-01

    Full Text Available EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs locked to the onset of fixation or saccade (saccade-related potentials, SRPs have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits and targets that are not (misses. Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition. In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets. In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets. Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later.

  14. Fall detection in the elderly by head-tracking

    OpenAIRE

    Yu, Miao; Naqvi, Syed Mohsen; Chambers, Jonathan

    2009-01-01

    In the paper, we propose a fall detection method based on head tracking within a smart home environment equipped with video cameras. A motion history image and code-book background subtraction are combined to determine whether large movement occurs within the scene. Based on the magnitude of the movement information, particle filters with different state models are used to track the head. The head tracking procedure is performed in two video streams taken bytwoseparatecamerasandthree-dimension...

  15. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    International Nuclear Information System (INIS)

    Ingram, S; Rao, A; Wendt, R; Castillo, R; Court, L; Yang, J; Beadle, B

    2014-01-01

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the camera by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination

  16. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran

    2006-01-01

    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  17. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    Science.gov (United States)

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  18. GPU-accelerated 3-D model-based tracking

    International Nuclear Information System (INIS)

    Brown, J Anthony; Capson, David W

    2010-01-01

    Model-based approaches to tracking the pose of a 3-D object in video are effective but computationally demanding. While statistical estimation techniques, such as the particle filter, are often employed to minimize the search space, real-time performance remains unachievable on current generation CPUs. Recent advances in graphics processing units (GPUs) have brought massively parallel computational power to the desktop environment and powerful developer tools, such as NVIDIA Compute Unified Device Architecture (CUDA), have provided programmers with a mechanism to exploit it. NVIDIA GPUs' single-instruction multiple-thread (SIMT) programming model is well-suited to many computer vision tasks, particularly model-based tracking, which requires several hundred 3-D model poses to be dynamically configured, rendered, and evaluated against each frame in the video sequence. Using 6 degree-of-freedom (DOF) rigid hand tracking as an example application, this work harnesses consumer-grade GPUs to achieve real-time, 3-D model-based, markerless object tracking in monocular video.

  19. Coding visual features extracted from video sequences.

    Science.gov (United States)

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  20. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    Directory of Open Access Journals (Sweden)

    Fabrício A. Magalhaes

    2013-12-01

    Full Text Available Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP, based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM. Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4% than for COM (17.8%. Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis.

  1. Some Aspects on Filter Design for Target Tracking

    Directory of Open Access Journals (Sweden)

    Bertil Ekstrand

    2012-01-01

    Full Text Available Tracking filter design is discussed. It is argued that the basis of the present stochastic paradigm is questionable. White process noise is not adequate as a model for target manoeuvring, stochastic least-square optimality is not relevant or required in practice, the fact that requirements are necessary for design is ignored, and root mean square (RMS errors are insufficient as performance measure. It is argued that there is no process noise and that the covariance of the assumed process noise contains the design parameters. Focus is on the basic tracking filter, the Kalman filter, which is convenient for clarity and simplicity, but the arguments and conclusions are relevant in general. For design the possibility of an observer transfer function approach is pointed out. The issues can also be considered as a consequence of the fact that there is a difference between estimation and design. The - filter is used for illustration.

  2. Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism.

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    Full Text Available To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world data is with significant noise and irrelevant patterns. Consequently, the learned features may be not all relevant and noisy. To address this problem, we propose a novel visual tracking method via a point-wise gated convolutional deep network (CPGDN that jointly performs the feature learning and feature selection in a unified framework. The proposed method performs dynamic feature selection on raw features through a gating mechanism. Therefore, the proposed method can adaptively focus on the task-relevant patterns (i.e., a target object, while ignoring the task-irrelevant patterns (i.e., the surrounding background of a target object. Specifically, inspired by transfer learning, we firstly pre-train an object appearance model offline to learn generic image features and then transfer rich feature hierarchies from an offline pre-trained CPGDN into online tracking. In online tracking, the pre-trained CPGDN model is fine-tuned to adapt to the tracking specific objects. Finally, to alleviate the tracker drifting problem, inspired by an observation that a visual target should be an object rather than not, we combine an edge box-based object proposal method to further improve the tracking accuracy. Extensive evaluation on the widely used CVPR2013 tracking benchmark validates the robustness and effectiveness of the proposed method.

  3. Understanding Learning Style by Eye Tracking in Slide Video Learning

    Science.gov (United States)

    Cao, Jianxia; Nishihara, Akinori

    2012-01-01

    More and more videos are now being used in e-learning context. For improving learning effect, to understand how students view the online video is important. In this research, we investigate how students deploy their attention when they learn through interactive slide video in the aim of better understanding observers' learning style. Felder and…

  4. An Energy-Efficient Sleep Strategy for Target Tracking Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan FENG

    2014-02-01

    Full Text Available Energy efficiency is very important for sensor networks since sensor nodes have limited energy supply from battery. So far, many researches have been focused on this issue, while less emphasis was placed on the optimal sleep time of each node. This paper proposed an adaptive energy conservation strategy for target tracking based on a grid network structure, where each node autonomously determines when and if to sleep. It allows sensor nodes far away from targets to sleep to save energy and guarantee the tracking accuracy. The proposed approach extend network lifetime by adopting an adaptive sleep scheduling scheme that combines the local power management (PM and the adaptive coordinate PM strategies to schedule the activities of sensor nodes. And each node can choose an optimal sleep time so as to make system adaptive and energy-efficient. We show the performance of our approach in terms of energy drop, comparing it to a naive approach, dynamic PM with fixed sleep time and the coordinate PM strategies. From the experimental results, it is readily seen that the efficiency of the proposed approach.

  5. Activity-based exploitation of Full Motion Video (FMV)

    Science.gov (United States)

    Kant, Shashi

    2012-06-01

    Video has been a game-changer in how US forces are able to find, track and defeat its adversaries. With millions of minutes of video being generated from an increasing number of sensor platforms, the DOD has stated that the rapid increase in video is overwhelming their analysts. The manpower required to view and garner useable information from the flood of video is unaffordable, especially in light of current fiscal restraints. "Search" within full-motion video has traditionally relied on human tagging of content, and video metadata, to provision filtering and locate segments of interest, in the context of analyst query. Our approach utilizes a novel machine-vision based approach to index FMV, using object recognition & tracking, events and activities detection. This approach enables FMV exploitation in real-time, as well as a forensic look-back within archives. This approach can help get the most information out of video sensor collection, help focus the attention of overburdened analysts form connections in activity over time and conserve national fiscal resources in exploiting FMV.

  6. Target tracking and surveillance by fusing stereo and RFID information

    Science.gov (United States)

    Raza, Rana H.; Stockman, George C.

    2012-06-01

    Ensuring security in high risk areas such as an airport is an important but complex problem. Effectively tracking personnel, containers, and machines is a crucial task. Moreover, security and safety require understanding the interaction of persons and objects. Computer vision (CV) has been a classic tool; however, variable lighting, imaging, and random occlusions present difficulties for real-time surveillance, resulting in erroneous object detection and trajectories. Determining object ID via CV at any instance of time in a crowded area is computationally prohibitive, yet the trajectories of personnel and objects should be known in real time. Radio Frequency Identification (RFID) can be used to reliably identify target objects and can even locate targets at coarse spatial resolution, while CV provides fuzzy features for target ID at finer resolution. Our research demonstrates benefits obtained when most objects are "cooperative" by being RFID tagged. Fusion provides a method to simplify the correspondence problem in 3D space. A surveillance system can query for unique object ID as well as tag ID information, such as target height, texture, shape and color, which can greatly enhance scene analysis. We extend geometry-based tracking so that intermittent information on ID and location can be used in determining a set of trajectories of N targets over T time steps. We show that partial-targetinformation obtained through RFID can reduce computation time (by 99.9% in some cases) and also increase the likelihood of producing correct trajectories. We conclude that real-time decision-making should be possible if the surveillance system can integrate information effectively between the sensor level and activity understanding level.

  7. Combining high-speed SVM learning with CNN feature encoding for real-time target recognition in high-definition video for ISR missions

    Science.gov (United States)

    Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus

    2017-05-01

    For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high

  8. Multitarget tracking in cluttered environment for a multistatic passive radar system under the DAB/DVB network

    Science.gov (United States)

    Shi, Yi Fang; Park, Seung Hyo; Song, Taek Lyul

    2017-12-01

    The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier frequency signals and signals transmitted by different illuminators but reflected via the same target become indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while the angle information is unavailable or of very poor quality. In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian coordinates with the capability of track management using the probability of target existence as a track quality measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association (SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker to update each track for each illuminator with all the measurements in the common measurement set at each time. For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that addresses the 3-D data association problem via "supertargets" using gate grouping and provides tracks directly in 3-D Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman filtering. A simulation study is

  9. Improved target detection algorithm using Fukunaga-Koontz transform and distance classifier correlation filter

    Science.gov (United States)

    Bal, A.; Alam, M. S.; Aslan, M. S.

    2006-05-01

    Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.

  10. Clustering and fault tolerance for target tracking using wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Khanzada, S.; Memon, S.

    2012-01-01

    Over the last few years, the deployment of WSNs (Wireless Sensor Networks) has been fostered in diverse applications. WSN has great potential for a variety of domains ranging from scientific experiments to commercial applications. Due to the deployment of WSNs in dynamic and unpredictable environments. They have potential to cope with variety of faults. This paper proposes an energy-aware fault-tolerant clustering protocol for target tracking applications termed as the FITf (Fault Tolerant Target Tracking) protocol The identification of RNs (Redundant Nodes) makes SN (Sensor Node) fault tolerance plausible and the clustering endorsed recovery of sensors supervised by a faulty CH (Cluster Head). The FfTT protocol intends two steps of reducing energy consumption: first, by identifying RNs in the network; secondly, by restricting the numbers of SNs sending data to the CH. Simulations validate the scalability and low power consumption of the FITf protocol in comparison with LEACH protocol. (author)

  11. Light-reflection random-target method for measurement of the modulation transfer function of a digital video-camera

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jaroslav; Jakubík, P.; Machala, L.

    2005-01-01

    Roč. 116, - (2005), s. 573-585 ISSN 0030-4026 Institutional research plan: CEZ:AV0Z10100522 Keywords : random-target measuring method * light-reflection white - noise target * digital video camera * modulation transfer function * power spectral density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.395, year: 2005

  12. DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Gustavo Sanchez

    2012-01-01

    Full Text Available This paper presents a new fast motion estimation (ME algorithm targeting high resolution digital videos and its efficient hardware architecture design. The new Dynamic Multipoint Diamond Search (DMPDS algorithm is a fast algorithm which increases the ME quality when compared with other fast ME algorithms. The DMPDS achieves a better digital video quality reducing the occurrence of local minima falls, especially in high definition videos. The quality results show that the DMPDS is able to reach an average PSNR gain of 1.85 dB when compared with the well-known Diamond Search (DS algorithm. When compared to the optimum results generated by the Full Search (FS algorithm the DMPDS shows a lose of only 1.03 dB in the PSNR. On the other hand, the DMPDS reached a complexity reduction higher than 45 times when compared to FS. The quality gains related to DS caused an expected increase in the DMPDS complexity which uses 6.4-times more calculations than DS. The DMPDS architecture was designed focused on high performance and low cost, targeting to process Quad Full High Definition (QFHD videos in real time (30 frames per second. The architecture was described in VHDL and synthesized to Altera Stratix 4 and Xilinx Virtex 5 FPGAs. The synthesis results show that the architecture is able to achieve processing rates higher than 53 QFHD fps, reaching the real-time requirements. The DMPDS architecture achieved the highest processing rate when compared to related works in the literature. This high processing rate was obtained designing an architecture with a high operation frequency and low numbers of cycles necessary to process each block.

  13. Use of a track and vertex processor in a fixed-target charm experiment

    International Nuclear Information System (INIS)

    Schub, M.H.; Carey, T.A.; Hsiung, Y.B.; Kaplan, D.M.; Lee, C.; Miller, G.; Sa, J.; Teng, P.K.

    1996-01-01

    We have constructed and operated a high-speed parallel-pipelined track and vertex processor and used it to trigger data acquisition in a high-rate charm and beauty experiment at Fermilab. The processor uses information from hodoscopes and wire chambers to reconstruct tracks in the bend view of a magnetic spectrometer, and uses these tracks to find the corresponding tracks in a set of silicon-strip detectors. The processor then forms vertices and triggers the experiment if at least one vertex is downstream of the target. Under typical charm running conditions, with an interaction rate of ∼5 MHz, the processor rejects 80-90% of lower-level triggers while maintaining efficiency of ∼70% for two-prong D-meson decays. (orig.)

  14. Automatic radar target recognition of objects falling on railway tracks

    International Nuclear Information System (INIS)

    Mroué, A; Heddebaut, M; Elbahhar, F; Rivenq, A; Rouvaen, J-M

    2012-01-01

    This paper presents an automatic radar target recognition procedure based on complex resonances using the signals provided by ultra-wideband radar. This procedure is dedicated to detection and identification of objects lying on railway tracks. For an efficient complex resonance extraction, a comparison between several pole extraction methods is illustrated. Therefore, preprocessing methods are presented aiming to remove most of the erroneous poles interfering with the discrimination scheme. Once physical poles are determined, a specific discrimination technique is introduced based on the Euclidean distances. Both simulation and experimental results are depicted showing an efficient discrimination of different targets including guided transport passengers

  15. NucliTrack: an integrated nuclei tracking application.

    Science.gov (United States)

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. User-assisted video segmentation system for visual communication

    Science.gov (United States)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  17. Cluster-based Dynamic Energy Management for Collaborative Target Tracking in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2007-07-01

    Full Text Available A primary criterion of wireless sensor network is energy efficiency. Focused onthe energy problem of target tracking in wireless sensor networks, this paper proposes acluster-based dynamic energy management mechanism. Target tracking problem isformulated by the multi-sensor detection model as well as energy consumption model. Adistributed adaptive clustering approach is investigated to form a reasonable routingframework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized toobtain optimal intra-cluster routing. Target position is predicted by particle filter. Thepredicted target position is adopted to estimate the idle interval of sensor nodes. Hence,dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that theoperation energy consumption of wireless sensor network can be reduced. The sensornodes around the target wake up on time and act as sensing candidates. With the candidatesensor nodes and predicted target position, the optimal sensor node selection is considered.Binary particle swarm optimization is proposed to minimize the total energy consumptionduring collaborative sensing and data reporting. Experimental results verify that theproposed clustering approach establishes a low-energy communication structure while theenergy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energymanagement.

  18. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    Energy Technology Data Exchange (ETDEWEB)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

    2003-01-01

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

  19. Trade-Off Exploration for Target Tracking Application in a Customized Multiprocessor Architecture

    Directory of Open Access Journals (Sweden)

    Yassin El-Hillali

    2009-01-01

    Full Text Available This paper presents the design of an FPGA-based multiprocessor-system-on-chip (MPSoC architecture optimized for Multiple Target Tracking (MTT in automotive applications. An MTT system uses an automotive radar to track the speed and relative position of all the vehicles (targets within its field of view. As the number of targets increases, the computational needs of the MTT system also increase making it difficult for a single processor to handle it alone. Our implementation distributes the computational load among multiple soft processor cores optimized for executing specific computational tasks. The paper explains how we designed and profiled the MTT application to partition it among different processors. It also explains how we applied different optimizations to customize the individual processor cores to their assigned tasks and to assess their impact on performance and FPGA resource utilization. The result is a complete MTT application running on an optimized MPSoC architecture that fits in a contemporary medium-sized FPGA and that meets the application's real-time constraints.

  20. Greenhouse gas emission trends and projections in Europe 2011. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Busche, J.; Scheffler, M.; Graichen, V. (Umweltbundesamt, Vienna (Austria)) (and others)

    2011-10-15

    At the end of 2010, the EU-15 was on track to achieve its Kyoto target but three EU-15 Member States (Austria, Italy and Luxembourg) were not on track to meet their burden-sharing targets. These countries must therefore seriously consider further action to ensure compliance, in particular revising their plans on using flexible mechanisms. Among the EEA member countries outside the EU, Liechtenstein and Switzerland were not on track to achieve their Kyoto target at the end of 2009. All other European countries are on track to meet their targets, either based on domestic emissions only or with the assistance of Kyoto mechanisms. The economic recession had a significant impact on the EU's total greenhouse gas (GHG) emission trends but a more limited effect on progress towards Kyoto targets. This is because emissions in the sectors covered by the EU Emissions Trading Scheme (ETS), which were most affected by the crisis, do not affect Kyoto compliance once ETS caps have been set. With existing national measures, Member States do not project enough emission reductions for the EU to meet its unilateral 20 % reduction commitment in 2020. Additional measures currently planned by Member States will help further reduce emissions but will be insufficient to achieve the important emission cuts needed in the longer term. By 2020 Member States must enhance their efforts to reduce emissions in non-EU ETS sectors, such as the residential, transport or agriculture sectors, where legally binding national targets have been set under the EU's 2009 climate and energy package. (Author)

  1. Hybrid markerless tracking of complex articulated motion in golf swings.

    Science.gov (United States)

    Fung, Sim Kwoh; Sundaraj, Kenneth; Ahamed, Nizam Uddin; Kiang, Lam Chee; Nadarajah, Sivadev; Sahayadhas, Arun; Ali, Md Asraf; Islam, Md Anamul; Palaniappan, Rajkumar

    2014-04-01

    Sports video tracking is a research topic that has attained increasing attention due to its high commercial potential. A number of sports, including tennis, soccer, gymnastics, running, golf, badminton and cricket have been utilised to display the novel ideas in sports motion tracking. The main challenge associated with this research concerns the extraction of a highly complex articulated motion from a video scene. Our research focuses on the development of a markerless human motion tracking system that tracks the major body parts of an athlete straight from a sports broadcast video. We proposed a hybrid tracking method, which consists of a combination of three algorithms (pyramidal Lucas-Kanade optical flow (LK), normalised correlation-based template matching and background subtraction), to track the golfer's head, body, hands, shoulders, knees and feet during a full swing. We then match, track and map the results onto a 2D articulated human stick model to represent the pose of the golfer over time. Our work was tested using two video broadcasts of a golfer, and we obtained satisfactory results. The current outcomes of this research can play an important role in enhancing the performance of a golfer, provide vital information to sports medicine practitioners by providing technically sound guidance on movements and should assist to diminish the risk of golfing injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. People detection in nuclear plants by video processing for safety purpose

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A., E-mail: calexandre@ien.gov.b, E-mail: mol@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN), Rio de Janeiro, RJ (Brazil); Seixas, Jose M.; Silva, Eduardo Antonio B., E-mail: seixas@lps.ufrj.b, E-mail: eduardo@lps.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica; Cota, Raphael E.; Ramos, Bruno L., E-mail: brunolange@poli.ufrj.b [Universidade Federal do Rio de Janeiro (EP/UFRJ), RJ (Brazil). Dept. de Engenharia Eletronica e de Computacao

    2011-07-01

    This work describes the development of a surveillance system for safety purposes in nuclear plants. The final objective is to track people online in videos, in order to estimate the dose received by personnel, during the execution of working tasks in nuclear plants. The estimation will be based on their tracked positions and on dose rate mapping in a real nuclear plant at Instituto de Engenharia Nuclear, Argonauta nuclear research reactor. Cameras have been installed within Argonauta's room, supplying the data needed. Both video processing and statistical signal processing techniques may be used for detection, segmentation and tracking people in video. This first paper reports people segmentation in video using background subtraction, by two different approaches, namely frame differences, and blind signal separation based on the independent component analysis method. Results are commented, along with perspectives for further work. (author)

  3. People detection in nuclear plants by video processing for safety purpose

    International Nuclear Information System (INIS)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A.; Seixas, Jose M.; Silva, Eduardo Antonio B.; Cota, Raphael E.; Ramos, Bruno L.

    2011-01-01

    This work describes the development of a surveillance system for safety purposes in nuclear plants. The final objective is to track people online in videos, in order to estimate the dose received by personnel, during the execution of working tasks in nuclear plants. The estimation will be based on their tracked positions and on dose rate mapping in a real nuclear plant at Instituto de Engenharia Nuclear, Argonauta nuclear research reactor. Cameras have been installed within Argonauta's room, supplying the data needed. Both video processing and statistical signal processing techniques may be used for detection, segmentation and tracking people in video. This first paper reports people segmentation in video using background subtraction, by two different approaches, namely frame differences, and blind signal separation based on the independent component analysis method. Results are commented, along with perspectives for further work. (author)

  4. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild

    KAUST Repository

    Mü ller, Matthias; Bibi, Adel Aamer; Giancola, Silvio; Al-Subaihi, Salman; Ghanem, Bernard

    2018-01-01

    Despite the numerous developments in object tracking, further development of current tracking algorithms is limited by small and mostly saturated datasets. As a matter of fact, data-hungry trackers based on deep-learning currently rely on object detection datasets due to the scarcity of dedicated large-scale tracking datasets. In this work, we present TrackingNet, the first large-scale dataset and benchmark for object tracking in the wild. We provide more than 30K videos with more than 14 million dense bounding box annotations. Our dataset covers a wide selection of object classes in broad and diverse context. By releasing such a large-scale dataset, we expect deep trackers to further improve and generalize. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset. By sequestering the annotation of the test set and providing an online evaluation server, we provide a fair benchmark for future development of object trackers. Deep trackers fine-tuned on a fraction of our dataset improve their performance by up to 1.6% on OTB100 and up to 1.7% on TrackingNet Test. We provide an extensive benchmark on TrackingNet by evaluating more than 20 trackers. Our results suggest that object tracking in the wild is far from being solved.

  5. TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild

    KAUST Repository

    Müller, Matthias

    2018-03-28

    Despite the numerous developments in object tracking, further development of current tracking algorithms is limited by small and mostly saturated datasets. As a matter of fact, data-hungry trackers based on deep-learning currently rely on object detection datasets due to the scarcity of dedicated large-scale tracking datasets. In this work, we present TrackingNet, the first large-scale dataset and benchmark for object tracking in the wild. We provide more than 30K videos with more than 14 million dense bounding box annotations. Our dataset covers a wide selection of object classes in broad and diverse context. By releasing such a large-scale dataset, we expect deep trackers to further improve and generalize. In addition, we introduce a new benchmark composed of 500 novel videos, modeled with a distribution similar to our training dataset. By sequestering the annotation of the test set and providing an online evaluation server, we provide a fair benchmark for future development of object trackers. Deep trackers fine-tuned on a fraction of our dataset improve their performance by up to 1.6% on OTB100 and up to 1.7% on TrackingNet Test. We provide an extensive benchmark on TrackingNet by evaluating more than 20 trackers. Our results suggest that object tracking in the wild is far from being solved.

  6. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    Science.gov (United States)

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  7. Tracking of TV and video gaming during childhood: Iowa Bone Development Study.

    Science.gov (United States)

    Francis, Shelby L; Stancel, Matthew J; Sernulka-George, Frances D; Broffitt, Barbara; Levy, Steven M; Janz, Kathleen F

    2011-09-24

    Tracking studies determine the stability and predictability of specific phenomena. This study examined tracking of TV viewing (TV) and video game use (VG) from middle childhood through early adolescence after adjusting for moderate and vigorous physical activity (MVPA), percentage of body fat (% BF), and maturity. TV viewing and VG use were measured at ages 5, 8, 11, and 13 (n = 434) via parental- and self-report. MVPA was measured using the Actigraph, % BF using dual-energy x-ray absorptiometry, and maturity via Mirwald predictive equations. Generalized Estimating Equations (GEE) were used to assess stability and logistic regression was used to predict children "at risk" for maintaining sedentary behaviors. Additional models examined tracking only in overfat children (boys ≥ 25% BF; girls ≥ 32% BF). Data were collected from 1998 to 2007 and analyzed in 2010. The adjusted stability coefficients (GEE) for TV viewing were 0.35 (95% CI = 0.26, 0.44) for boys, 0.32 (0.23, 0.40) for girls, and 0.45 (0.27, 0.64) for overfat. For VG use, the adjusted stability coefficients were 0.14 (0.05, 0.24) for boys, 0.24 (0.10, 0.38) for girls, and 0.29 (0.08, 0.50) for overfat. The adjusted odds ratios (OR) for TV viewing were 3.2 (2.0, 5.2) for boys, 2.9 (1.9, 4.6) for girls, and 6.2 (2.2, 17.2) for overfat. For VG use, the OR were 1.8 (1.1, 3.1) for boys, 3.5 (2.1, 5.8) for girls, and 1.9 (0.6, 6.1) for overfat. TV viewing and VG use are moderately stable throughout childhood and predictive of later behavior. TV viewing appears to be more stable in younger children than VG use and more predictive of later behavior. Since habitual patterns of sedentarism in young children tend to continue to adolescence, early intervention strategies, particularly to reduce TV viewing, are warranted.

  8. Tracking of TV and video gaming during childhood: Iowa Bone Development Study

    Directory of Open Access Journals (Sweden)

    Broffitt Barbara

    2011-09-01

    Full Text Available Abstract Background Tracking studies determine the stability and predictability of specific phenomena. This study examined tracking of TV viewing (TV and video game use (VG from middle childhood through early adolescence after adjusting for moderate and vigorous physical activity (MVPA, percentage of body fat (% BF, and maturity. Methods TV viewing and VG use were measured at ages 5, 8, 11, and 13 (n = 434 via parental- and self-report. MVPA was measured using the Actigraph, % BF using dual-energy x-ray absorptiometry, and maturity via Mirwald predictive equations. Generalized Estimating Equations (GEE were used to assess stability and logistic regression was used to predict children "at risk" for maintaining sedentary behaviors. Additional models examined tracking only in overfat children (boys ≥ 25% BF; girls ≥ 32% BF. Data were collected from 1998 to 2007 and analyzed in 2010. Results The adjusted stability coefficients (GEE for TV viewing were 0.35 (95% CI = 0.26, 0.44 for boys, 0.32 (0.23, 0.40 for girls, and 0.45 (0.27, 0.64 for overfat. For VG use, the adjusted stability coefficients were 0.14 (0.05, 0.24 for boys, 0.24 (0.10, 0.38 for girls, and 0.29 (0.08, 0.50 for overfat. The adjusted odds ratios (OR for TV viewing were 3.2 (2.0, 5.2 for boys, 2.9 (1.9, 4.6 for girls, and 6.2 (2.2, 17.2 for overfat. For VG use, the OR were 1.8 (1.1, 3.1 for boys, 3.5 (2.1, 5.8 for girls, and 1.9 (0.6, 6.1 for overfat. Conclusions TV viewing and VG use are moderately stable throughout childhood and predictive of later behavior. TV viewing appears to be more stable in younger children than VG use and more predictive of later behavior. Since habitual patterns of sedentarism in young children tend to continue to adolescence, early intervention strategies, particularly to reduce TV viewing, are warranted.

  9. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  10. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice.

    Science.gov (United States)

    Umari, Marzia; Falini, Stefano; Segat, Matteo; Zuliani, Michele; Crisman, Marco; Comuzzi, Lucia; Pagos, Francesco; Lovadina, Stefano; Lucangelo, Umberto

    2018-03-01

    In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine.

  11. Video Conferencing for a Virtual Seminar Room

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Fosgerau, A.; Hansen, Peter Søren K.

    2002-01-01

    A PC-based video conferencing system for a virtual seminar room is presented. The platform is enhanced with DSPs for audio and video coding and processing. A microphone array is used to facilitate audio based speaker tracking, which is used for adaptive beam-forming and automatic camera...

  12. Detection of Visual Events in Underwater Video Using a Neuromorphic Saliency-based Attention System

    Science.gov (United States)

    Edgington, D. R.; Walther, D.; Cline, D. E.; Sherlock, R.; Salamy, K. A.; Wilson, A.; Koch, C.

    2003-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) uses high-resolution video equipment on remotely operated vehicles (ROV) to obtain quantitative data on the distribution and abundance of oceanic animals. High-quality video data supplants the traditional approach of assessing the kinds and numbers of animals in the oceanic water column through towing collection nets behind ships. Tow nets are limited in spatial resolution, and often destroy abundant gelatinous animals resulting in species undersampling. Video camera-based quantitative video transects (QVT) are taken through the ocean midwater, from 50m to 4000m, and provide high-resolution data at the scale of the individual animals and their natural aggregation patterns. However, the current manual method of analyzing QVT video by trained scientists is labor intensive and poses a serious limitation to the amount of information that can be analyzed from ROV dives. Presented here is an automated system for detecting marine animals (events) visible in the videos. Automated detection is difficult due to the low contrast of many translucent animals and due to debris ("marine snow") cluttering the scene. Video frames are processed with an artificial intelligence attention selection algorithm that has proven a robust means of target detection in a variety of natural terrestrial scenes. The candidate locations identified by the attention selection module are tracked across video frames using linear Kalman filters. Typically, the occurrence of visible animals in the video footage is sparse in space and time. A notion of "boring" video frames is developed by detecting whether or not there is an interesting candidate object for an animal present in a particular sequence of underwater video -- video frames that do not contain any "interesting" events. If objects can be tracked successfully over several frames, they are stored as potentially "interesting" events. Based on low-level properties, interesting events are

  13. A Cubature-Principle-Assisted IMM-Adaptive UKF Algorithm for Maneuvering Target Tracking Caused by Sensor Faults

    Directory of Open Access Journals (Sweden)

    Huan Zhou

    2017-09-01

    Full Text Available Aimed at solving the problem of decreased filtering precision while maneuvering target tracking caused by non-Gaussian distribution and sensor faults, we developed an efficient interacting multiple model-unscented Kalman filter (IMM-UKF algorithm. By dividing the IMM-UKF into two links, the algorithm introduces the cubature principle to approximate the probability density of the random variable, after the interaction, by considering the external link of IMM-UKF, which constitutes the cubature-principle-assisted IMM method (CPIMM for solving the non-Gaussian problem, and leads to an adaptive matrix to balance the contribution of the state. The algorithm provides filtering solutions by considering the internal link of IMM-UKF, which is called a new adaptive UKF algorithm (NAUKF to address sensor faults. The proposed CPIMM-NAUKF is evaluated in a numerical simulation and two practical experiments including one navigation experiment and one maneuvering target tracking experiment. The simulation and experiment results show that the proposed CPIMM-NAUKF has greater filtering precision and faster convergence than the existing IMM-UKF. The proposed algorithm achieves a very good tracking performance, and will be effective and applicable in the field of maneuvering target tracking.

  14. Fish4Knowledge collecting and analyzing massive coral reef fish video data

    CERN Document Server

    Chen-Burger, Yun-Heh; Giordano, Daniela; Hardman, Lynda; Lin, Fang-Pang

    2016-01-01

    This book gives a start-to-finish overview of the whole Fish4Knowledge project, in 18 short chapters, each describing one aspect of the project. The Fish4Knowledge project explored the possibilities of big video data, in this case from undersea video. Recording and analyzing 90 thousand hours of video from ten camera locations, the project gives a 3 year view of fish abundance in several tropical coral reefs off the coast of Taiwan. The research system built a remote recording network, over 100 Tb of storage, supercomputer processing, video target detection and tracking, fish species recognition and analysis, a large SQL database to record the results and an efficient retrieval mechanism. Novel user interface mechanisms were developed to provide easy access for marine ecologists, who wanted to explore the dataset. The book is a useful resource for system builders, as it gives an overview of the many new methods that were created to build the Fish4Knowledge system in a manner that also allows readers to see ho...

  15. Improved people detection in nuclear plants by video processing for safety purpose

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A.; Carvalho, Paulo Victor R., E-mail: calexandre@ien.gov.br, E-mail: mol@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Seixas, Jose M.; Silva, Eduardo Antonio B., E-mail: seixas@lps.ufrj.br, E-mail: eduardo@smt.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Eletrica; Waintraub, Fabio, E-mail: fabiowaintraub@hotmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politecnica. Departamento de Engenharia Eletronica e de Computacao

    2013-07-01

    This work describes improvements in a surveillance system for safety purposes in nuclear plants. The objective is to track people online in video, in order to estimate the dose received by personnel, during working tasks executed in nuclear plants. The estimation will be based on their tracked positions and on dose rate mapping in a nuclear research reactor, Argonauta. Cameras have been installed within Argonauta room, supplying the data needed. Video processing methods were combined for detecting and tracking people in video. More specifically, segmentation, performed by background subtraction, was combined with a tracking method based on color distribution. The use of both methods improved the overall results. An alternative approach was also evaluated, by means of blind source signal separation. Results are commented, along with perspectives. (author)

  16. Improved people detection in nuclear plants by video processing for safety purpose

    International Nuclear Information System (INIS)

    Jorge, Carlos Alexandre F.; Mol, Antonio Carlos A.; Carvalho, Paulo Victor R.; Seixas, Jose M.; Silva, Eduardo Antonio B.; Waintraub, Fabio

    2013-01-01

    This work describes improvements in a surveillance system for safety purposes in nuclear plants. The objective is to track people online in video, in order to estimate the dose received by personnel, during working tasks executed in nuclear plants. The estimation will be based on their tracked positions and on dose rate mapping in a nuclear research reactor, Argonauta. Cameras have been installed within Argonauta room, supplying the data needed. Video processing methods were combined for detecting and tracking people in video. More specifically, segmentation, performed by background subtraction, was combined with a tracking method based on color distribution. The use of both methods improved the overall results. An alternative approach was also evaluated, by means of blind source signal separation. Results are commented, along with perspectives. (author)

  17. Nonmyopic Sensor Scheduling and its Efficient Implementation for Target Tracking Applications

    Directory of Open Access Journals (Sweden)

    Morrell Darryl

    2006-01-01

    Full Text Available We propose two nonmyopic sensor scheduling algorithms for target tracking applications. We consider a scenario where a bearing-only sensor is constrained to move in a finite number of directions to track a target in a two-dimensional plane. Both algorithms provide the best sensor sequence by minimizing a predicted expected scheduler cost over a finite time-horizon. The first algorithm approximately computes the scheduler costs based on the predicted covariance matrix of the tracker error. The second algorithm uses the unscented transform in conjunction with a particle filter to approximate covariance-based costs or information-theoretic costs. We also propose the use of two branch-and-bound-based optimal pruning algorithms for efficient implementation of the scheduling algorithms. We design the first pruning algorithm by combining branch-and-bound with a breadth-first search and a greedy-search; the second pruning algorithm combines branch-and-bound with a uniform-cost search. Simulation results demonstrate the advantage of nonmyopic scheduling over myopic scheduling and the significant savings in computational and memory resources when using the pruning algorithms.

  18. Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

    KAUST Repository

    Zhang, Tianzhu

    2014-06-19

    Object tracking is the process of determining the states of a target in consecutive video frames based on properties of motion and appearance consistency. In this paper, we propose a consistent low-rank sparse tracker (CLRST) that builds upon the particle filter framework for tracking. By exploiting temporal consistency, the proposed CLRST algorithm adaptively prunes and selects candidate particles. By using linear sparse combinations of dictionary templates, the proposed method learns the sparse representations of image regions corresponding to candidate particles jointly by exploiting the underlying low-rank constraints. In addition, the proposed CLRST algorithm is computationally attractive since temporal consistency property helps prune particles and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25 challenging image sequences. Experimental results show that the CLRST algorithm performs favorably against state-of-the-art tracking methods in terms of accuracy and execution time.

  19. Robust Individual-Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    2016-01-01

    Full Text Available Tracking individual-cell/object over time is important in understanding drug treatment effects on cancer cells and video surveillance. A fundamental problem of individual-cell/object tracking is to simultaneously address the cell/object appearance variations caused by intrinsic and extrinsic factors. In this paper, inspired by the architecture of deep learning, we propose a robust feature learning method for constructing discriminative appearance models without large-scale pretraining. Specifically, in the initial frames, an unsupervised method is firstly used to learn the abstract feature of a target by exploiting both classic principal component analysis (PCA algorithms with recent deep learning representation architectures. We use learned PCA eigenvectors as filters and develop a novel algorithm to represent a target by composing of a PCA-based filter bank layer, a nonlinear layer, and a patch-based pooling layer, respectively. Then, based on the feature representation, a neural network with one hidden layer is trained in a supervised mode to construct a discriminative appearance model. Finally, to alleviate the tracker drifting problem, a sample update scheme is carefully designed to keep track of the most representative and diverse samples during tracking. We test the proposed tracking method on two standard individual cell/object tracking benchmarks to show our tracker's state-of-the-art performance.

  20. An Improved Mixture-of-Gaussians Background Model with Frame Difference and Blob Tracking in Video Stream

    Directory of Open Access Journals (Sweden)

    Li Yao

    2014-01-01

    Full Text Available Modeling background and segmenting moving objects are significant techniques for computer vision applications. Mixture-of-Gaussians (MoG background model is commonly used in foreground extraction in video steam. However considering the case that the objects enter the scenery and stay for a while, the foreground extraction would fail as the objects stay still and gradually merge into the background. In this paper, we adopt a blob tracking method to cope with this situation. To construct the MoG model more quickly, we add frame difference method to the foreground extracted from MoG for very crowded situations. What is more, a new shadow removal method based on RGB color space is proposed.

  1. Detection of goal events in soccer videos

    Science.gov (United States)

    Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas

    2005-01-01

    In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.

  2. Brief Report: Broad Autism Phenotype in Adults Is Associated with Performance on an Eye-Tracking Measure of Joint Attention

    Science.gov (United States)

    Swanson, Meghan R.; Siller, Michael

    2014-01-01

    The current study takes advantage of modern eye-tracking technology and evaluates how individuals allocate their attention when viewing social videos that display an adult model who is gazing at a series of targets that appear and disappear in the four corners of the screen (congruent condition), or gazing elsewhere (incongruent condition). Data…

  3. Tracking 20 years of compound-to-target output from literature and patents.

    Directory of Open Access Journals (Sweden)

    Christopher Southan

    Full Text Available The statistics of drug development output and declining yield of approved medicines has been the subject of many recent reviews. However, assessing research productivity that feeds development is more difficult. Here we utilise an extensive database of structure-activity relationships extracted from papers and patents. We have used this database to analyse published compounds cumulatively linked to nearly 4000 protein target identifiers from multiple species over the last 20 years. The compound output increases up to 2005 followed by a decline that parallels a fall in pharmaceutical patenting. Counts of protein targets have plateaued but not fallen. We extended these results by exploring compounds and targets for one large pharmaceutical company. In addition, we examined collective time course data for six individual protease targets, including average molecular weight of the compounds. We also tracked the PubMed profile of these targets to detect signals related to changes in compound output. Our results show that research compound output had decreased 35% by 2012. The major causative factor is likely to be a contraction in the global research base due to mergers and acquisitions across the pharmaceutical industry. However, this does not rule out an increasing stringency of compound quality filtration and/or patenting cost control. The number of proteins mapped to compounds on a yearly basis shows less decline, indicating the cumulative published target capacity of global research is being sustained in the region of 300 proteins for large companies. The tracking of six individual targets shows uniquely detailed patterns not discernible from cumulative snapshots. These are interpretable in terms of events related to validation and de-risking of targets that produce detectable follow-on surges in patenting. Further analysis of the type we present here can provide unique insights into the process of drug discovery based on the data it actually

  4. Greenhouse gas emission trends and projections in Europe 2012. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Gores, S.; Scheffler, M.; Graichen, V. [Oeko-Institut (Oeko), Freiburg (Germany)] [and others

    2012-10-15

    At the end of 2011, almost all European countries were on track towards their Kyoto targets for 2008-2012. The EU-15 also remained on track to achieve its Kyoto target. Italy, however, was not on track. Spain plans to acquire a large quantity of Kyoto units through the KP's flexible mechanisms to achieve its target. With emission caps already set for the economic sectors under the EU Emissions Trading Scheme (EU ETS), emissions reductions during 2012 in the sectors outside the EU ETS together with reductions by carbon sinks will set the frame for how many Kyoto units Member States need to acquire to reach their individual targets. Hence, both the development and delivery of adequate plans to acquire enough Kyoto credits is becoming increasingly important. ETS emissions from 2008 to 2011 were on average 5 % below these caps, which results in an oversupply of allowances. The EU ETS is undergoing important changes in view of the third trading phase from 2013 to 2020. Most EU Member States project that in 2020, their emissions outside the EU ETS will be lower than their national targets set under the Climate and Energy Package. However, further efforts will be necessary to achieve longer term reductions. (Author)

  5. Human tracking in thermal images using adaptive particle filters with online random forest learning

    Science.gov (United States)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  6. Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.

    Science.gov (United States)

    Siegel, R K

    1977-01-01

    A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories. PMID:885828

  7. Dependency of human target detection performance on clutter and quality of supporting image analysis algorithms in a video surveillance task

    Science.gov (United States)

    Huber, Samuel; Dunau, Patrick; Wellig, Peter; Stein, Karin

    2017-10-01

    Background: In target detection, the success rates depend strongly on human observer performances. Two prior studies tested the contributions of target detection algorithms and prior training sessions. The aim of this Swiss-German cooperation study was to evaluate the dependency of human observer performance on the quality of supporting image analysis algorithms. Methods: The participants were presented 15 different video sequences. Their task was to detect all targets in the shortest possible time. Each video sequence showed a heavily cluttered simulated public area from a different viewing angle. In each video sequence, the number of avatars in the area was altered to 100, 150 and 200 subjects. The number of targets appearing was kept at 10%. The number of marked targets varied from 0, 5, 10, 20 up to 40 marked subjects while keeping the positive predictive value of the detection algorithm at 20%. During the task, workload level was assessed by applying an acoustic secondary task. Detection rates and detection times for the targets were analyzed using inferential statistics. Results: The study found Target Detection Time to increase and Target Detection Rates to decrease with increasing numbers of avatars. The same is true for the Secondary Task Reaction Time while there was no effect on Secondary Task Hit Rate. Furthermore, we found a trend for a u-shaped correlation between the numbers of markings and RTST indicating increased workload. Conclusion: The trial results may indicate useful criteria for the design of training and support of observers in observational tasks.

  8. Automatic video surveillance of outdoor scenes using track before detect

    DEFF Research Database (Denmark)

    Hansen, Morten; Sørensen, Helge Bjarup Dissing; Birkemark, Christian M.

    2005-01-01

    This paper concerns automatic video surveillance of outdoor scenes using a single camera. The first step in automatic interpretation of the video stream is activity detection based on background subtraction. Usually, this process will generate a large number of false alarms in outdoor scenes due...

  9. An adaptive approach to human motion tracking from video

    Science.gov (United States)

    Wu, Lifang; Chen, Chang Wen

    2010-07-01

    Vision based human motion tracking has drawn considerable interests recently because of its extensive applications. In this paper, we propose an approach to tracking the body motion of human balancing on each foot. The ability to balance properly is an important indication of neurological condition. Comparing with many other human motion tracking, there is much less occlusion in human balancing tracking. This less constrained problem allows us to combine a 2D model of human body with image analysis techniques to develop an efficient motion tracking algorithm. First we define a hierarchical 2D model consisting of six components including head, body and four limbs. Each of the four limbs involves primary component (upper arms and legs) and secondary component (lower arms and legs) respectively. In this model, we assume each of the components can be represented by quadrangles and every component is connected to one of others by a joint. By making use of inherent correlation between different components, we design a top-down updating framework and an adaptive algorithm with constraints of foreground regions for robust and efficient tracking. The approach has been tested using the balancing movement in HumanEva-I/II dataset. The average tracking time is under one second, which is much shorter than most of current schemes.

  10. Inertial fusion energy target injection, tracking, and beam pointing

    International Nuclear Information System (INIS)

    Petzoldt, R.W.

    1995-01-01

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s 2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s 2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive

  11. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    Science.gov (United States)

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  12. The research of radar target tracking observed information linear filter method

    Science.gov (United States)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  13. Interacting Multiple Model (IMM Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    Directory of Open Access Journals (Sweden)

    Hua Liu

    2017-06-01

    Full Text Available For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF. The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF, the interacting multiple model cubature Kalman filter (IMMCKF and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF.

  14. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  15. REAL TIME SPEED ESTIMATION FROM MONOCULAR VIDEO

    Directory of Open Access Journals (Sweden)

    M. S. Temiz

    2012-07-01

    Full Text Available In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In order to estimate the speed of a moving vehicle from a video camera, rectification of video images is performed to eliminate the perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are computed. Computed velocity vectors are defined in the video image coordinate system and displacement vectors are measured by the means of pixel units. Then the magnitudes of the computed vectors in the image space are transformed to the object space to find the absolute values of these magnitudes. The accuracy of the estimated speed is approximately ±1 – 2 km/h. In order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. This software system has been used for all of the computations and test applications.

  16. A framework for multi-object tracking over distributed wireless camera networks

    Science.gov (United States)

    Gau, Victor; Hwang, Jenq-Neng

    2010-07-01

    In this paper, we propose a unified framework targeting at two important issues in a distributed wireless camera network, i.e., object tracking and network communication, to achieve reliable multi-object tracking over distributed wireless camera networks. In the object tracking part, we propose a fully automated approach for tracking of multiple objects across multiple cameras with overlapping and non-overlapping field of views without initial training. To effectively exchange the tracking information among the distributed cameras, we proposed an idle probability based broadcasting method, iPro, which adaptively adjusts the broadcast probability to improve the broadcast effectiveness in a dense saturated camera network. Experimental results for the multi-object tracking demonstrate the promising performance of our approach on real video sequences for cameras with overlapping and non-overlapping views. The modeling and ns-2 simulation results show that iPro almost approaches the theoretical performance upper bound if cameras are within each other's transmission range. In more general scenarios, e.g., in case of hidden node problems, the simulation results show that iPro significantly outperforms standard IEEE 802.11, especially when the number of competing nodes increases.

  17. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    Science.gov (United States)

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  18. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction

    Science.gov (United States)

    Liu, Ruiming; Liu, Erqi; Yang, Jie; Zeng, Yong; Wang, Fanglin; Cao, Yuan

    2007-11-01

    Fukunaga-Koontz transform (FKT), stemming from principal component analysis (PCA), is used in many pattern recognition and image-processing fields. It cannot capture the higher-order statistical property of natural images, so its detection performance is not satisfying. PCA has been extended into kernel PCA in order to capture the higher-order statistics. However, thus far there have been no researchers who have definitely proposed kernel FKT (KFKT) and researched its detection performance. For accurately detecting potential small targets from infrared images, we first extend FKT into KFKT to capture the higher-order statistical properties of images. Then a framework based on Kalman prediction and KFKT, which can automatically detect and track small targets, is developed. Results of experiments show that KFKT outperforms FKT and the proposed framework is competent to automatically detect and track infrared point targets.

  19. Discriminative object tracking via sparse representation and online dictionary learning.

    Science.gov (United States)

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  20. Person detection, tracking and following using stereo camera

    Science.gov (United States)

    Wang, Xiaofeng; Zhang, Lilian; Wang, Duo; Hu, Xiaoping

    2018-04-01

    Person detection, tracking and following is a key enabling technology for mobile robots in many human-robot interaction applications. In this article, we present a system which is composed of visual human detection, video tracking and following. The detection is based on YOLO(You only look once), which applies a single convolution neural network(CNN) to the full image, thus can predict bounding boxes and class probabilities directly in one evaluation. Then the bounding box provides initial person position in image to initialize and train the KCF(Kernelized Correlation Filter), which is a video tracker based on discriminative classifier. At last, by using a stereo 3D sparse reconstruction algorithm, not only the position of the person in the scene is determined, but also it can elegantly solve the problem of scale ambiguity in the video tracker. Extensive experiments are conducted to demonstrate the effectiveness and robustness of our human detection and tracking system.

  1. The Habituation/Cross-Habituation Test Revisited: Guidance from Sniffing and Video Tracking

    Directory of Open Access Journals (Sweden)

    G. Coronas-Samano

    2016-01-01

    Full Text Available The habituation/cross-habituation test (HaXha is a spontaneous odor discrimination task that has been used for many decades to evaluate olfactory function in animals. Animals are presented repeatedly with the same odorant after which a new odorant is introduced. The time the animal explores the odor object is measured. An animal is considered to cross-habituate during the novel stimulus trial when the exploration time is higher than the prior trial and indicates the degree of olfactory patency. On the other hand, habituation across the repeated trials involves decreased exploration time and is related to memory patency, especially at long intervals. Classically exploration is timed using a stopwatch when the animal is within 2 cm of the object and aimed toward it. These criteria are intuitive, but it is unclear how they relate to olfactory exploration, that is, sniffing. We used video tracking combined with plethysmography to improve accuracy, avoid observer bias, and propose more robust criteria for exploratory scoring when sniff measures are not available. We also demonstrate that sniff rate combined with proximity is the most direct measure of odorant exploration and provide a robust and sensitive criterion.

  2. Video Tracking Protocol to Screen Deterrent Chemistries for Honey Bees.

    Science.gov (United States)

    Larson, Nicholas R; Anderson, Troy D

    2017-06-12

    The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.

  3. Augmenting real-time video with virtual models for enhanced visualization for simulation, teaching, training and guidance

    Science.gov (United States)

    Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.

    2015-03-01

    In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.

  4. The live service of video geo-information

    Science.gov (United States)

    Xue, Wu; Zhang, Yongsheng; Yu, Ying; Zhao, Ling

    2016-03-01

    In disaster rescue, emergency response and other occasions, traditional aerial photogrammetry is difficult to meet real-time monitoring and dynamic tracking demands. To achieve the live service of video geo-information, a system is designed and realized—an unmanned helicopter equipped with video sensor, POS, and high-band radio. This paper briefly introduced the concept and design of the system. The workflow of video geo-information live service is listed. Related experiments and some products are shown. In the end, the conclusion and outlook is given.

  5. Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.

    Directory of Open Access Journals (Sweden)

    Michael B McCamy

    Full Text Available Human eyes move continuously, even during visual fixation. These "fixational eye movements" (FEMs include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs.

  6. Tracking, aiming, and hitting the UAV with ordinary assault rifle

    Science.gov (United States)

    Racek, František; Baláž, Teodor; Krejčí, Jaroslav; Procházka, Stanislav; Macko, Martin

    2017-10-01

    The usage small-unmanned aerial vehicles (UAVs) is significantly increasing nowadays. They are being used as a carrier of military spy and reconnaissance devices (taking photos, live video streaming and so on), or as a carrier of potentially dangerous cargo (intended for destruction and killing). Both ways of utilizing the UAV cause the necessity to disable it. From the military point of view, to disable the UAV means to bring it down by a weapon of an ordinary soldier that is the assault rifle. This task can be challenging for the soldier because he needs visually detect and identify the target, track the target visually and aim on the target. The final success of the soldier's mission depends not only on the said visual tasks, but also on the properties of the weapon and ammunition. The paper deals with possible methods of prediction of probability of hitting the UAV targets.

  7. Video Golf

    Science.gov (United States)

    1995-01-01

    George Nauck of ENCORE!!! invented and markets the Advanced Range Performance (ARPM) Video Golf System for measuring the result of a golf swing. After Nauck requested their assistance, Marshall Space Flight Center scientists suggested video and image processing/computing technology, and provided leads on commercial companies that dealt with the pertinent technologies. Nauck contracted with Applied Research Inc. to develop a prototype. The system employs an elevated camera, which sits behind the tee and follows the flight of the ball down range, catching the point of impact and subsequent roll. Instant replay of the video on a PC monitor at the tee allows measurement of the carry and roll. The unit measures distance and deviation from the target line, as well as distance from the target when one is selected. The information serves as an immediate basis for making adjustments or as a record of skill level progress for golfers.

  8. Can fractal methods applied to video tracking detect the effects of deltamethrin pesticide or mercury on the locomotion behavior of shrimps?

    Science.gov (United States)

    Tenorio, Bruno Mendes; da Silva Filho, Eurípedes Alves; Neiva, Gentileza Santos Martins; da Silva, Valdemiro Amaro; Tenorio, Fernanda das Chagas Angelo Mendes; da Silva, Themis de Jesus; Silva, Emerson Carlos Soares E; Nogueira, Romildo de Albuquerque

    2017-08-01

    Shrimps can accumulate environmental toxicants and suffer behavioral changes. However, methods to quantitatively detect changes in the behavior of these shrimps are still needed. The present study aims to verify whether mathematical and fractal methods applied to video tracking can adequately describe changes in the locomotion behavior of shrimps exposed to low concentrations of toxic chemicals, such as 0.15µgL -1 deltamethrin pesticide or 10µgL -1 mercuric chloride. Results showed no change after 1min, 4, 24, and 48h of treatment. However, after 72 and 96h of treatment, both the linear methods describing the track length, mean speed, mean distance from the current to the previous track point, as well as the non-linear methods of fractal dimension (box counting or information entropy) and multifractal analysis were able to detect changes in the locomotion behavior of shrimps exposed to deltamethrin. Analysis of angular parameters of the track points vectors and lacunarity were not sensitive to those changes. None of the methods showed adverse effects to mercury exposure. These mathematical and fractal methods applicable to software represent low cost useful tools in the toxicological analyses of shrimps for quality of food, water and biomonitoring of ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  10. Tracking of Range and Azimuth for Continuous Imaging of Marine Target in Monopulse ISAR with Wideband Echoes

    Directory of Open Access Journals (Sweden)

    Junhao Xie

    2016-01-01

    Full Text Available Real-time tracking of maneuvering targets is the prerequisite for continuous imaging of moving targets in inverse synthetic aperture radar (ISAR. In this paper, the range and azimuth tracking (RAT method with wideband radar echoes is first presented for a mechanical scanning monopulse ISAR, which is regarded as the simplest phased array unit due to the two antenna feeds. To relieve the estimation fluctuation and poor robustness of the RAT method with a single snapshot, a modified range and azimuth tracking approach based on centroid algorithm (RATCA with forgotten factor and multiple echoes is then proposed. The performances of different forgotten factors are investigated. Both theoretical analysis and experimental results demonstrate that RATCA is superior to RAT method. Particularly, when target echo is missing occasionally, RAT method fails while RATCA still keeps good performance. The potential of continuous imaging with shipborne ISAR is verified by experimental results. With minor modification, the method proposed in this paper can be potentially applied in the phased array radar.

  11. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    Science.gov (United States)

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  12. Combined kV and MV imaging for real-time tracking of implanted fiducial markers

    International Nuclear Information System (INIS)

    Wiersma, R. D.; Mao Weihua; Xing, L.

    2008-01-01

    In the presence of intrafraction organ motion, target localization uncertainty can greatly hamper the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT). To minimize the adverse dosimetric effect caused by tumor motion, a real-time knowledge of the tumor position is required throughout the beam delivery process. The recent integration of onboard kV diagnostic imaging together with MV electronic portal imaging devices on linear accelerators can allow for real-time three-dimensional (3D) tumor position monitoring during a treatment delivery. The aim of this study is to demonstrate a near real-time 3D internal fiducial tracking system based on the combined use of kV and MV imaging. A commercially available radiotherapy system equipped with both kV and MV imaging systems was used in this work. A hardware video frame grabber was used to capture both kV and MV video streams simultaneously through independent video channels at 30 frames per second. The fiducial locations were extracted from the kV and MV images using a software tool. The geometric tracking capabilities of the system were evaluated using a pelvic phantom with embedded fiducials placed on a moveable stage. The maximum tracking speed of the kV/MV system is approximately 9 Hz, which is primarily limited by the frame rate of the MV imager. The geometric accuracy of the system is found to be on the order of less than 1 mm in all three spatial dimensions. The technique requires minimal hardware modification and is potentially useful for image-guided radiation therapy systems

  13. Testing Video and Social Media for Engaging Users of the U.S. Climate Resilience Toolkit

    Science.gov (United States)

    Green, C. J.; Gardiner, N.; Niepold, F., III; Esposito, C.

    2015-12-01

    We developed a custom video production stye and a method for analyzing social media behavior so that we may deliberately build and track audience growth for decision-support tools and case studies within the U.S. Climate Resilience Toolkit. The new style of video focuses quickly on decision processes; its 30s format is well-suited for deployment through social media. We measured both traffic and engagement with video using Google Analytics. Each video included an embedded tag, allowing us to measure viewers' behavior: whether or not they entered the toolkit website; the duration of their session on the website; and the number pages they visited in that session. Results showed that video promotion was more effective on Facebook than Twitter. Facebook links generated twice the number of visits to the toolkit. Videos also increased Facebook interaction overall. Because most Facebook users are return visitors, this campaign did not substantially draw new site visitors. We continue to research and apply these methods in a targeted engagement and outreach campaign that utilizes the theory of social diffusion and social influence strategies to grow our audience of "influential" decision-makers and people within their social networks. Our goal is to increase access and use of the U.S. Climate Resilience Toolkit.

  14. Intra-system reliability of SICS: video-tracking system (Digital.Stadium®) for performance analysis in football.

    Science.gov (United States)

    Beato, Marco; Jamil, Mikael

    2017-05-09

    The correct evaluation of external load parameters is a key factor in professional football. The instrumentations usually utilised to quantify the external load parameters during official matches are Video-Tracking Systems (VTS). VTS is a technology that records two- dimensional position data (x and y) at high sampling rates (over 25 Hz). The aim of this study was to evaluate the intra-system reliability of Digital.Stadium® VTS. 28 professional male football players taking part in the Italian Serie A (age 24 ± 6 years, body mass 79.5 ± 7.8 kg, stature 1.83 ± 0.05 m) during the 2015/16 season were enrolled in this study (Team A and Team B). Video-analysis was done during an official match and data analysis was performed immediately after the game ended and then replicated a week later. This study reported a near perfect relationship between the initial analysis (analysis 1) and the replicated analysis undertaken a week later (analysis 2). R2 coefficients were highly significant for each of the performance parameters, p power of 9.65 ± 1.64 w kg-1 and 9.58 ± 1.61 w kg-1, in analysis 1 and analysis 2, respectively. The findings reported in this study underlined that all data reported by Digital.Stadium® VTS showed high levels of absolute and relative reliability.

  15. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    Science.gov (United States)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  16. Sustainable Transportation Attitudes and Health Behavior Change: Evaluation of a Brief Stage-Targeted Video Intervention

    Directory of Open Access Journals (Sweden)

    Norbert Mundorf

    2018-01-01

    Full Text Available Promoting physical activity and sustainable transportation is essential in the face of rising health care costs, obesity rates, and other public health threats resulting from lack of physical activity. Targeted communications can encourage distinct population segments to adopt active and sustainable transportation modes. Our work is designed to promote the health, social, and environmental benefits of sustainable/active transportation (ST using the Transtheoretical Model of Change (TTM, which has been successfully applied to a range of health, and more recently, sustainability behaviors. Earlier, measurement development confirmed both the structure of ST pros and cons and efficacy measures as well as the relationship between these constructs and ST stages of change, replicating results found for many other behaviors. The present paper discusses a brief pre-post video pilot intervention study designed for precontemplators and contemplators (N = 604 that was well received, effective in moving respondents towards increased readiness for ST behavior change, and improving some ST attitudes, significantly reducing the cons of ST. This research program shows that a brief stage-targeted behavior change video can increase readiness and reduce the cons for healthy transportation choices.

  17. Sustainable Transportation Attitudes and Health Behavior Change: Evaluation of a Brief Stage-Targeted Video Intervention.

    Science.gov (United States)

    Mundorf, Norbert; Redding, Colleen A; Paiva, Andrea L

    2018-01-18

    Promoting physical activity and sustainable transportation is essential in the face of rising health care costs, obesity rates, and other public health threats resulting from lack of physical activity. Targeted communications can encourage distinct population segments to adopt active and sustainable transportation modes. Our work is designed to promote the health, social, and environmental benefits of sustainable/active transportation (ST) using the Transtheoretical Model of Change (TTM), which has been successfully applied to a range of health, and more recently, sustainability behaviors. Earlier, measurement development confirmed both the structure of ST pros and cons and efficacy measures as well as the relationship between these constructs and ST stages of change, replicating results found for many other behaviors. The present paper discusses a brief pre-post video pilot intervention study designed for precontemplators and contemplators (N = 604) that was well received, effective in moving respondents towards increased readiness for ST behavior change, and improving some ST attitudes, significantly reducing the cons of ST. This research program shows that a brief stage-targeted behavior change video can increase readiness and reduce the cons for healthy transportation choices.

  18. Sustainable Transportation Attitudes and Health Behavior Change: Evaluation of a Brief Stage-Targeted Video Intervention

    Science.gov (United States)

    Mundorf, Norbert; Redding, Colleen A.; Paiva, Andrea L.

    2018-01-01

    Promoting physical activity and sustainable transportation is essential in the face of rising health care costs, obesity rates, and other public health threats resulting from lack of physical activity. Targeted communications can encourage distinct population segments to adopt active and sustainable transportation modes. Our work is designed to promote the health, social, and environmental benefits of sustainable/active transportation (ST) using the Transtheoretical Model of Change (TTM), which has been successfully applied to a range of health, and more recently, sustainability behaviors. Earlier, measurement development confirmed both the structure of ST pros and cons and efficacy measures as well as the relationship between these constructs and ST stages of change, replicating results found for many other behaviors. The present paper discusses a brief pre-post video pilot intervention study designed for precontemplators and contemplators (N = 604) that was well received, effective in moving respondents towards increased readiness for ST behavior change, and improving some ST attitudes, significantly reducing the cons of ST. This research program shows that a brief stage-targeted behavior change video can increase readiness and reduce the cons for healthy transportation choices. PMID:29346314

  19. Data association approaches in bearings-only multi-target tracking

    Science.gov (United States)

    Xu, Benlian; Wang, Zhiquan

    2008-03-01

    According to requirements of time computation complexity and correctness of data association of the multi-target tracking, two algorithms are suggested in this paper. The proposed Algorithm 1 is developed from the modified version of dual Simplex method, and it has the advantage of direct and explicit form of the optimal solution. The Algorithm 2 is based on the idea of Algorithm 1 and rotational sort method, it combines not only advantages of Algorithm 1, but also reduces the computational burden, whose complexity is only 1/ N times that of Algorithm 1. Finally, numerical analyses are carried out to evaluate the performance of the two data association algorithms.

  20. Video Surveillance of Epilepsy Patients using Color Image Processing

    DEFF Research Database (Denmark)

    Bager, Gitte; Vilic, Kenan; Alving, Jørgen

    2007-01-01

    This report introduces a method for tracking of patients under video surveillance based on a marker system. The patients are not restricted in their movements, which requires a tracking system that can overcome non-ideal scenes e.g. occlusions, very fast movements, lightning issues and other movi...

  1. Video surveillance of epilepsy patients using color image processing

    DEFF Research Database (Denmark)

    Bager, Gitte; Vilic, Kenan; Vilic, Adnan

    2014-01-01

    This paper introduces a method for tracking patients under video surveillance based on a color marker system. The patients are not restricted in their movements, which requires a tracking system that can overcome non-ideal scenes e.g. occlusions, very fast movements, lighting issues and other mov...

  2. Playing violent video games increases intergroup bias.

    Science.gov (United States)

    Greitemeyer, Tobias

    2014-01-01

    Previous research has shown how, why, and for whom violent video game play is related to aggression and aggression-related variables. In contrast, less is known about whether some individuals are more likely than others to be the target of increased aggression after violent video game play. The present research examined the idea that the effects of violent video game play are stronger when the target is a member of an outgroup rather than an ingroup. In fact, a correlational study revealed that violent video game exposure was positively related to ethnocentrism. This relation remained significant when controlling for trait aggression. Providing causal evidence, an experimental study showed that playing a violent video game increased aggressive behavior, and that this effect was more pronounced when the target was an outgroup rather than an ingroup member. Possible mediating mechanisms are discussed.

  3. Methods and Algorithms for Detecting Objects in Video Files

    Directory of Open Access Journals (Sweden)

    Nguyen The Cuong

    2018-01-01

    Full Text Available Video files are files that store motion pictures and sounds like in real life. In today's world, the need for automated processing of information in video files is increasing. Automated processing of information has a wide range of application including office/home surveillance cameras, traffic control, sports applications, remote object detection, and others. In particular, detection and tracking of object movement in video file plays an important role. This article describes the methods of detecting objects in video files. Today, this problem in the field of computer vision is being studied worldwide.

  4. Multiple-camera tracking: UK government requirements

    Science.gov (United States)

    Hosmer, Paul

    2007-10-01

    The Imagery Library for Intelligent Detection Systems (i-LIDS) is the UK government's new standard for Video Based Detection Systems (VBDS). The standard was launched in November 2006 and evaluations against it began in July 2007. With the first four i-LIDS scenarios completed, the Home Office Scientific development Branch (HOSDB) are looking toward the future of intelligent vision in the security surveillance market by adding a fifth scenario to the standard. The fifth i-LIDS scenario will concentrate on the development, testing and evaluation of systems for the tracking of people across multiple cameras. HOSDB and the Centre for the Protection of National Infrastructure (CPNI) identified a requirement to track targets across a network of CCTV cameras using both live and post event imagery. The Detection and Vision Systems group at HOSDB were asked to determine the current state of the market and develop an in-depth Operational Requirement (OR) based on government end user requirements. Using this OR the i-LIDS team will develop a full i-LIDS scenario to aid the machine vision community in its development of multi-camera tracking systems. By defining a requirement for multi-camera tracking and building this into the i-LIDS standard the UK government will provide a widely available tool that developers can use to help them turn theory and conceptual demonstrators into front line application. This paper will briefly describe the i-LIDS project and then detail the work conducted in building the new tracking aspect of the standard.

  5. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    Science.gov (United States)

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed.

  6. Occlusion detection via structured sparse learning for robust object tracking

    KAUST Repository

    Zhang, Tianzhu

    2014-01-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.

  7. Online multi-modal robust non-negative dictionary learning for visual tracking.

    Science.gov (United States)

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  8. Robust object tracking combining color and scale invariant features

    Science.gov (United States)

    Zhang, Shengping; Yao, Hongxun; Gao, Peipei

    2010-07-01

    Object tracking plays a very important role in many computer vision applications. However its performance will significantly deteriorate due to some challenges in complex scene, such as pose and illumination changes, clustering background and so on. In this paper, we propose a robust object tracking algorithm which exploits both global color and local scale invariant (SIFT) features in a particle filter framework. Due to the expensive computation cost of SIFT features, the proposed tracker adopts a speed-up variation of SIFT, SURF, to extract local features. Specially, the proposed method first finds matching points between the target model and target candidate, than the weight of the corresponding particle based on scale invariant features is computed as the the proportion of matching points of that particle to matching points of all particles, finally the weight of the particle is obtained by combining weights of color and SURF features with a probabilistic way. The experimental results on a variety of challenging videos verify that the proposed method is robust to pose and illumination changes and is significantly superior to the standard particle filter tracker and the mean shift tracker.

  9. OLIVE: Speech-Based Video Retrieval

    NARCIS (Netherlands)

    de Jong, Franciska M.G.; Gauvain, Jean-Luc; den Hartog, Jurgen; den Hartog, Jeremy; Netter, Klaus

    1999-01-01

    This paper describes the Olive project which aims to support automated indexing of video material by use of human language technologies. Olive is making use of speech recognition to automatically derive transcriptions of the sound tracks, generating time-coded linguistic elements which serve as the

  10. An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration.

    Science.gov (United States)

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Zhao, Zishu; Li, Yuankun

    2017-07-26

    In this paper, we propose a novel automatic multi-target registration framework for non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together and then estimated a global homography for the whole scene, however, these cannot achieve precise multi-target registration when the scenes are non-planar. Our framework is devoted to solving the problem using feature matching and multi-target tracking. The key idea is to analyze and register each target independently. We present a fast and robust feature matching strategy, where only the features on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking method is adopted to determine the relationships between the reservoirs and foreground blobs. With the matches in the corresponding reservoir, the homography of each target is computed according to its moving state. We tested our framework on both public near-planar and non-planar datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art global registration method and the manual global registration matrix in all tested datasets.

  11. Theory and practice of perceptual video processing in broadcast encoders for cable, IPTV, satellite, and internet distribution

    Science.gov (United States)

    McCarthy, S.

    2014-02-01

    This paper describes the theory and application of a perceptually-inspired video processing technology that was recently incorporated into professional video encoders now being used by major cable, IPTV, satellite, and internet video service providers. We will present data that show that this perceptual video processing (PVP) technology can improve video compression efficiency by up to 50% for MPEG-2, H.264, and High Efficiency Video Coding (HEVC). The PVP technology described in this paper works by forming predicted eye-tracking attractor maps that indicate how likely it might be that a free viewing person would look at particular area of an image or video. We will introduce in this paper the novel model and supporting theory used to calculate the eye-tracking attractor maps. We will show how the underlying perceptual model was inspired by electrophysiological studies of the vertebrate retina, and will explain how the model incorporates statistical expectations about natural scenes as well as a novel method for predicting error in signal estimation tasks. Finally, we will describe how the eye-tracking attractor maps are created in real time and used to modify video prior to encoding so that it is more compressible but not noticeably different than the original unmodified video.

  12. MPEG-2 Compressed-Domain Algorithms for Video Analysis

    Directory of Open Access Journals (Sweden)

    Hesseler Wolfgang

    2006-01-01

    Full Text Available This paper presents new algorithms for extracting metadata from video sequences in the MPEG-2 compressed domain. Three algorithms for efficient low-level metadata extraction in preprocessing stages are described. The first algorithm detects camera motion using the motion vector field of an MPEG-2 video. The second method extends the idea of motion detection to a limited region of interest, yielding an efficient algorithm to track objects inside video sequences. The third algorithm performs a cut detection using macroblock types and motion vectors.

  13. Extending Track Analysis from Animals in the Lab to Moving Objects Anywhere

    NARCIS (Netherlands)

    Dommelen, W. van; Laar, P.J.L.J. van de; Noldus, L.P.J.J.

    2013-01-01

    In this chapter we compare two application domains in which the tracking of objects and the analysis of their movements are core activities, viz. animal tracking and vessel tracking. More specifically, we investigate whether EthoVision XT, a research tool for video tracking and analysis of the

  14. Memory-cenric video processing

    NARCIS (Netherlands)

    Beric, A.; Meerbergen, van J.; Haan, de G.; Sethuraman, R.

    2008-01-01

    This work presents a domain-specific memory subsystem based on a two-level memory hierarchy. It targets the application domain of video post-processing applications including video enhancement and format conversion. These applications are based on motion compensation and/or broad class of content

  15. Commercial vehicle route tracking using video detection.

    Science.gov (United States)

    2010-10-31

    Interstate commercial vehicle traffic is a major factor in the life of any road surface. The ability to track : these vehicles and their routes through the state can provide valuable information to planning : activities. We propose a method using vid...

  16. Search and Tracking of an Unknown Number of Targets by a Team of Autonomous Agents Utilizing Time-evolving Partition Classification

    OpenAIRE

    Wood, Jared Gregory

    2011-01-01

    The advancement of computing technology has enabled the practical development of intelligent autonomous systems. Intelligent autonomous systems can be used to perform difficult sensing tasks. One such sensing task is to search for and track targets over large geographic areas. Searching for and tracking targets over geographic areas has important applications. These applications include search and rescue, boarder patrol, and reconnaissance. Inherent in applications such as these is the need ...

  17. Automated interactive video playback for studies of animal communication.

    Science.gov (United States)

    Butkowski, Trisha; Yan, Wei; Gray, Aaron M; Cui, Rongfeng; Verzijden, Machteld N; Rosenthal, Gil G

    2011-02-09

    Video playback is a widely-used technique for the controlled manipulation and presentation of visual signals in animal communication. In particular, parameter-based computer animation offers the opportunity to independently manipulate any number of behavioral, morphological, or spectral characteristics in the context of realistic, moving images of animals on screen. A major limitation of conventional playback, however, is that the visual stimulus lacks the ability to interact with the live animal. Borrowing from video-game technology, we have created an automated, interactive system for video playback that controls animations in response to real-time signals from a video tracking system. We demonstrated this method by conducting mate-choice trials on female swordtail fish, Xiphophorus birchmanni. Females were given a simultaneous choice between a courting male conspecific and a courting male heterospecific (X. malinche) on opposite sides of an aquarium. The virtual male stimulus was programmed to track the horizontal position of the female, as courting males do in the wild. Mate-choice trials on wild-caught X. birchmanni females were used to validate the prototype's ability to effectively generate a realistic visual stimulus.

  18. Manual versus Automated Rodent Behavioral Assessment: Comparing Efficacy and Ease of Bederson and Garcia Neurological Deficit Scores to an Open Field Video-Tracking System

    OpenAIRE

    Fiona A. Desland; Aqeela Afzal; Zuha Warraich; J Mocco

    2014-01-01

    Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garc...

  19. Object tracking by occlusion detection via structured sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2013-06-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object\\'s track. This is the case when significant occlusion occurs. To accommodate for non-sparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker consistently outperforms the state-of-the-art. © 2013 IEEE.

  20. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  1. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  2. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  3. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  4. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  5. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  6. Semantic-based surveillance video retrieval.

    Science.gov (United States)

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  7. Light-reflection random-target method for measurement of the modulation transfer function of a digital video-camera

    Science.gov (United States)

    Pospisil, J.; Jakubik, P.; Machala, L.

    2005-11-01

    This article reports the suggestion, realization and verification of the newly developed measuring means of the noiseless and locally shift-invariant modulation transfer function (MTF) of a digital video camera in a usual incoherent visible region of optical intensity, especially of its combined imaging, detection, sampling and digitizing steps which are influenced by the additive and spatially discrete photodetector, aliasing and quantization noises. Such means relates to the still camera automatic working regime and static two-dimensional spatially continuous light-reflection random target of white-noise property. The introduced theoretical reason for such a random-target method is also performed under exploitation of the proposed simulation model of the linear optical intensity response and possibility to express the resultant MTF by a normalized and smoothed rate of the ascertainable output and input power spectral densities. The random-target and resultant image-data were obtained and processed by means of a processing and evaluational PC with computation programs developed on the basis of MATLAB 6.5E The present examples of results and other obtained results of the performed measurements demonstrate the sufficient repeatability and acceptability of the described method for comparative evaluations of the performance of digital video cameras under various conditions.

  8. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.

    Science.gov (United States)

    Howard, Christina J; Wilding, Robert; Guest, Duncan

    2017-02-01

    There is mixed evidence that video game players (VGPs) may demonstrate better performance in perceptual and attentional tasks than non-VGPs (NVGPs). The rapid serial visual presentation task is one such case, where observers respond to two successive targets embedded within a stream of serially presented items. We tested light VGPs (LVGPs) and NVGPs on this task. LVGPs were better at correct identification of second targets whether they were also attempting to respond to the first target. This performance benefit seen for LVGPs suggests enhanced visual processing for briefly presented stimuli even with only very moderate game play. Observers were less accurate at discriminating the orientation of a second target within the stream if it occurred shortly after presentation of the first target, that is to say, they were subject to the attentional blink (AB). We find no evidence for any reduction in AB in LVGPs compared with NVGPs.

  9. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    International Nuclear Information System (INIS)

    Chebrolu, V.V.; Chebrolu, V.V.; Saenz, D.; Tewatia, D.; Paliwal, B.R.; Chebrolu, V.V.; Saenz, D.; Paliwal, B.R.; Sethares, W.A.; Cannon, G.

    2014-01-01

    To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving auto segmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix © and MIMV ista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ±11.1 seconds per phase ( 512 ×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  10. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    Directory of Open Access Journals (Sweden)

    Venkata V. Chebrolu

    2014-01-01

    Full Text Available Purpose. To achieve rapid automated delineation of gross target volume (GTV and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D CT. Methods and Materials. Novel morphological processing and successive localization (MPSL algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software. Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0±11.1 seconds per phase (512×512 resolution as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth were 0.865±0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  11. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours.

    Science.gov (United States)

    Chebrolu, Venkata V; Saenz, Daniel; Tewatia, Dinesh; Sethares, William A; Cannon, George; Paliwal, Bhudatt R

    2014-01-01

    Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ± 11.1 seconds per phase (512 × 512 resolution) as compared to 142.3 ± 11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  12. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  13. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    Science.gov (United States)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of

  14. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan; Abrar, Shafayat

    2017-01-01

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  15. A low-complexity interacting multiple model filter for maneuvering target tracking

    KAUST Repository

    Khalid, Syed Safwan

    2017-01-22

    In this work, we address the target tracking problem for a coordinate-decoupled Markovian jump-mean-acceleration based maneuvering mobility model. A novel low-complexity alternative to the conventional interacting multiple model (IMM) filter is proposed for this class of mobility models. The proposed tracking algorithm utilizes a bank of interacting filters where the interactions are limited to the mixing of the mean estimates, and it exploits a fixed off-line computed Kalman gain matrix for the entire filter bank. Consequently, the proposed filter does not require matrix inversions during on-line operation which significantly reduces its complexity. Simulation results show that the performance of the low-complexity proposed scheme remains comparable to that of the traditional (highly-complex) IMM filter. Furthermore, we derive analytical expressions that iteratively evaluate the transient and steady-state performance of the proposed scheme, and establish the conditions that ensure the stability of the proposed filter. The analytical findings are in close accordance with the simulated results.

  16. Low-rank sparse learning for robust visual tracking

    KAUST Repository

    Zhang, Tianzhu

    2012-01-01

    In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1]. © 2012 Springer-Verlag.

  17. No Reference Video-Quality-Assessment Model for Monitoring Video Quality of IPTV Services

    Science.gov (United States)

    Yamagishi, Kazuhisa; Okamoto, Jun; Hayashi, Takanori; Takahashi, Akira

    Service providers should monitor the quality of experience of a communication service in real time to confirm its status. To do this, we previously proposed a packet-layer model that can be used for monitoring the average video quality of typical Internet protocol television content using parameters derived from transmitted packet headers. However, it is difficult to monitor the video quality per user using the average video quality because video quality depends on the video content. To accurately monitor the video quality per user, a model that can be used for estimating the video quality per video content rather than the average video quality should be developed. Therefore, to take into account the impact of video content on video quality, we propose a model that calculates the difference in video quality between the video quality of the estimation-target video and the average video quality estimated using a packet-layer model. We first conducted extensive subjective quality assessments for different codecs and video sequences. We then model their characteristics based on parameters related to compression and packet loss. Finally, we verify the performance of the proposed model by applying it to unknown data sets different from the training data sets used for developing the model.

  18. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  19. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  20. Gaze inspired subtitle position evaluation for MOOCs videos

    Science.gov (United States)

    Chen, Hongli; Yan, Mengzhen; Liu, Sijiang; Jiang, Bo

    2017-06-01

    Online educational resources, such as MOOCs, is becoming increasingly popular, especially in higher education field. One most important media type for MOOCs is course video. Besides traditional bottom-position subtitle accompany to the videos, in recent years, researchers try to develop more advanced algorithms to generate speaker-following style subtitles. However, the effectiveness of such subtitle is still unclear. In this paper, we investigate the relationship between subtitle position and the learning effect after watching the video on tablet devices. Inspired with image based human eye tracking technique, this work combines the objective gaze estimation statistics with subjective user study to achieve a convincing conclusion - speaker-following subtitles are more suitable for online educational videos.

  1. Intelligent keyframe extraction for video printing

    Science.gov (United States)

    Zhang, Tong

    2004-10-01

    Nowadays most digital cameras have the functionality of taking short video clips, with the length of video ranging from several seconds to a couple of minutes. The purpose of this research is to develop an algorithm which extracts an optimal set of keyframes from each short video clip so that the user could obtain proper video frames to print out. In current video printing systems, keyframes are normally obtained by evenly sampling the video clip over time. Such an approach, however, may not reflect highlights or regions of interest in the video. Keyframes derived in this way may also be improper for video printing in terms of either content or image quality. In this paper, we present an intelligent keyframe extraction approach to derive an improved keyframe set by performing semantic analysis of the video content. For a video clip, a number of video and audio features are analyzed to first generate a candidate keyframe set. These features include accumulative color histogram and color layout differences, camera motion estimation, moving object tracking, face detection and audio event detection. Then, the candidate keyframes are clustered and evaluated to obtain a final keyframe set. The objective is to automatically generate a limited number of keyframes to show different views of the scene; to show different people and their actions in the scene; and to tell the story in the video shot. Moreover, frame extraction for video printing, which is a rather subjective problem, is considered in this work for the first time, and a semi-automatic approach is proposed.

  2. AAVSO Target Tool: A Web-Based Service for Tracking Variable Star Observations (Abstract)

    Science.gov (United States)

    Burger, D.; Stassun, K. G.; Barnes, C.; Kafka, S.; Beck, S.; Li, K.

    2018-06-01

    (Abstract only) The AAVSO Target Tool is a web-based interface for bringing stars in need of observation to the attention of AAVSOís network of amateur and professional astronomers. The site currently tracks over 700 targets of interest, collecting data from them on a regular basis from AAVSOís servers and sorting them based on priority. While the target tool does not require a login, users can obtain visibility times for each target by signing up and entering a telescope location. Other key features of the site include filtering by AAVSO observing section, sorting by different variable types, formatting the data for printing, and exporting the data to a CSV file. The AAVSO Target Tool builds upon seven years of experience developing web applications for astronomical data analysis, most notably on Filtergraph (Burger, D., et al. 2013, Astronomical Data Analysis Software and Systems XXII, Astronomical Society of the Pacific, San Francisco, 399), and is built using the web2py web framework based on the python programming language. The target tool is available at http://filtergraph.com/aavso.

  3. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-05-01

    Full Text Available We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences.

  4. Whose track is it anyway?

    DEFF Research Database (Denmark)

    Flora, Janne; Andersen, Astrid Oberborbeck

    2017-01-01

    tracked their hunting routes, registered animals caught and observed, and photographed and videoed important places, events, and other phenomena they found interesting and relevant to register. This essay describes the conception and implementation of Piniariarneq, and uses this experience as a lens...

  5. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo.

    Science.gov (United States)

    Bardhan, Rizia; Chen, Wenxue; Bartels, Marc; Perez-Torres, Carlos; Botero, Maria F; McAninch, Robin Ward; Contreras, Alejandro; Schiff, Rachel; Pautler, Robia G; Halas, Naomi J; Joshi, Amit

    2010-12-08

    Nanoparticle-based therapeutics with local delivery and external electromagnetic field modulation holds extraordinary promise for soft-tissue cancers such as breast cancer; however, knowledge of the distribution and fate of nanoparticles in vivo is crucial for clinical translation. Here we demonstrate that multiple diagnostic capabilities can be introduced in photothermal therapeutic nanocomplexes by simultaneously enhancing both near-infrared fluorescence and magnetic resonance imaging (MRI). We track nanocomplexes in vivo, examining the influence of HER2 antibody targeting on nanocomplex distribution over 72 h. This approach provides valuable, detailed information regarding the distribution and fate of complex nanoparticles designed for specific diagnostic and therapeutic functions.

  6. Heartbeat Rate Measurement from Facial Video

    DEFF Research Database (Denmark)

    Haque, Mohammad Ahsanul; Irani, Ramin; Nasrollahi, Kamal

    2016-01-01

    Heartbeat Rate (HR) reveals a person’s health condition. This paper presents an effective system for measuring HR from facial videos acquired in a more realistic environment than the testing environment of current systems. The proposed method utilizes a facial feature point tracking method...... by combining a ‘Good feature to track’ and a ‘Supervised descent method’ in order to overcome the limitations of currently available facial video based HR measuring systems. Such limitations include, e.g., unrealistic restriction of the subject’s movement and artificial lighting during data capture. A face...

  7. PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

    Directory of Open Access Journals (Sweden)

    Wei Leong Khong

    2014-02-01

    Full Text Available Optical sensors based vehicle tracking can be widely implemented in traffic surveillance and flow control. The vast development of video surveillance infrastructure in recent years has drawn the current research focus towards vehicle tracking using high-end and low cost optical sensors. However, tracking vehicles via such sensors could be challenging due to the high probability of changing vehicle appearance and illumination, besides the occlusion and overlapping incidents. Particle filter has been proven as an approach which can overcome nonlinear and non-Gaussian situations caused by cluttered background and occlusion incidents. Unfortunately, conventional particle filter approach encounters particle degeneracy especially during and after the occlusion. Particle filter with sampling important resampling (SIR is an important step to overcome the drawback of particle filter, but SIR faced the problem of sample impoverishment when heavy particles are statistically selected many times. In this work, genetic algorithm has been proposed to be implemented in the particle filter resampling stage, where the estimated position can converge faster to hit the real position of target vehicle under various occlusion incidents. The experimental results show that the improved particle filter with genetic algorithm resampling method manages to increase the tracking accuracy and meanwhile reduce the particle sample size in the resampling stage.

  8. Adaptive and accelerated tracking-learning-detection

    Science.gov (United States)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  9. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  10. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    Science.gov (United States)

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The

  11. High efficiency video coding coding tools and specification

    CERN Document Server

    Wien, Mathias

    2015-01-01

    The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264 | AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for th...

  12. A difference tracking algorithm based on discrete sine transform

    Science.gov (United States)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  13. Video context-dependent recall.

    Science.gov (United States)

    Smith, Steven M; Manzano, Isabel

    2010-02-01

    In two experiments, we used an effective new method for experimentally manipulating local and global contexts to examine context-dependent recall. The method included video-recorded scenes of real environments, with target words superimposed over the scenes. In Experiment 1, we used a within-subjects manipulation of video contexts and compared the effects of reinstatement of a global context (15 words per context) with effects of less overloaded context cues (1 and 3 words per context) on recall. The size of the reinstatement effects in Experiment 1 show how potently video contexts can cue recall. A strong effect of cue overload was also found; reinstatement effects were smaller, but still quite robust, in the 15 words per context condition. The powerful reinstatement effect was replicated for local contexts in Experiment 2, which included a no-contexts-reinstated group, a control condition used to determine whether reinstatement of half of the cues caused biased output interference for uncued targets. The video context method is a potent way to investigate context-dependent memory.

  14. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  15. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  16. Understanding learning within a commercial video game: A case study

    OpenAIRE

    Fowler, Allan

    2015-01-01

    There has been an increasing interest in the debate on the value and relevance using video games for learning. Some of the interest stems from frustration with current educational methods. However, some of this interest also stems from the observations of large numbers of children that play video games. This paper finds that children can learn basic construction skills from playing a video game called World of Goo. The study also employed novel eye-tracking technology to measure endogenous ey...

  17. A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers

    Science.gov (United States)

    Liu, Zhuowei; Chen, Shuxin; Wu, Hao; He, Renke; Hao, Lin

    2018-01-01

    In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter models the heavy-tailed process noise and measurement noise as a Student’s t distribution as well as approximates the multi-target intensity as a mixture of Student’s t components to be propagated in time. Then, a closed PHD recursion is obtained based on Student’s t approximation. Our approach can make full use of the heavy-tailed characteristic of a Student’s t distribution to handle the situations with heavy-tailed process and the measurement noises. The simulation results verify that the proposed filter can overcome the negative effect generated by outliers and maintain a good tracking accuracy in the simultaneous presence of process and measurement outliers. PMID:29617348

  18. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  19. Imaging of Nuclear Fragmentation in Nuclear Track Emulsion Relativistic Nuclei

    International Nuclear Information System (INIS)

    Zarubina, I.G. JINR

    2011-01-01

    The method of nuclear track emulsion provides a uniquely complete observation of multiple fragment systems produced in dissociation of relativistic nuclei. The most valuable events of coherent dissociation of nuclei in narrow jets of light and the lightest nuclei with a net charge as in the initial nucleus, occurring without the production of fragments of the target nuclei and mesons (the so-called w hite s tars), comprise a few percent among the observed interactions. The data on this phenomenon are fragmented, and the interpretation is not offered. The dissociation degree of light O, Ne, Mg and Si, and as well as heavy Au, Pb and U nuclei may reach a complete destruction to light and the lightest nuclei and nucleons, resulting in cluster systems of an unprecedented complexity. Studies with relativistic neutron-deficient nuclei have special advantages due to more complete observations. An extensive collection of macro videos of such interactions in nuclear track emulsion gathered by the Becquerel collaboration is presented

  20. Long-range eye tracking: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, S.K.; Lu, Shin-yee

    1994-08-24

    The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.

  1. Tracking flow of leukocytes in blood for drug analysis

    Science.gov (United States)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  2. Ranking Highlights in Personal Videos by Analyzing Edited Videos.

    Science.gov (United States)

    Sun, Min; Farhadi, Ali; Chen, Tseng-Hung; Seitz, Steve

    2016-11-01

    We present a fully automatic system for ranking domain-specific highlights in unconstrained personal videos by analyzing online edited videos. A novel latent linear ranking model is proposed to handle noisy training data harvested online. Specifically, given a targeted domain such as "surfing," our system mines the YouTube database to find pairs of raw and their corresponding edited videos. Leveraging the assumption that an edited video is more likely to contain highlights than the trimmed parts of the raw video, we obtain pair-wise ranking constraints to train our model. The learning task is challenging due to the amount of noise and variation in the mined data. Hence, a latent loss function is incorporated to mitigate the issues caused by the noise. We efficiently learn the latent model on a large number of videos (about 870 min in total) using a novel EM-like procedure. Our latent ranking model outperforms its classification counterpart and is fairly competitive compared with a fully supervised ranking system that requires labels from Amazon Mechanical Turk. We further show that a state-of-the-art audio feature mel-frequency cepstral coefficients is inferior to a state-of-the-art visual feature. By combining both audio-visual features, we obtain the best performance in dog activity, surfing, skating, and viral video domains. Finally, we show that impressive highlights can be detected without additional human supervision for seven domains (i.e., skating, surfing, skiing, gymnastics, parkour, dog activity, and viral video) in unconstrained personal videos.

  3. Effects of the pyrethroid insecticide Cypermethrin on the locomotor activity of the wolf spider Pardosa amentata: quantitative analysis employing computer-automated video tracking

    DEFF Research Database (Denmark)

    Baatrup, E; Bayley, M

    1993-01-01

    Pardosa amentata was quantified in an open field setup, using computer-automated video tracking. Each spider was recorded for 24 hr prior to pesticide exposure. After topical application of 4.6 ng of Cypermethrin, the animal was recorded for a further 48 hr. Finally, after 9 days of recovery, the spider...... paresis, the effects of Cypermethrin were evident in reduced path length, average velocity, and maximum velocity and an increase in the time spent in quiescence. Also, the pyrethroid disrupted the consistent distributions of walking velocity and periods of quiescence seen prior to pesticide application...

  4. Modified linear predictive coding approach for moving target tracking by Doppler radar

    Science.gov (United States)

    Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao

    2016-07-01

    Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.

  5. Enhanced Algorithms for EO/IR Electronic Stabilization, Clutter Suppression, and Track-Before-Detect for Multiple Low Observable Targets

    Science.gov (United States)

    Tartakovsky, A.; Brown, A.; Brown, J.

    The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud

  6. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    Science.gov (United States)

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  7. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-05-01

    This work presents a novel real-time algorithm for runway detection and tracking applied to the automatic takeoff and landing of Unmanned Aerial Vehicles (UAVs). The algorithm is based on a combination of segmentation based region competition and the minimization of a specific energy function to detect and identify the runway edges from streaming video data. The resulting video-based runway position estimates are updated using a Kalman Filter, which can integrate other sensory information such as position and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center. Results show an accurate tracking of the runway edges during the landing phase under various lighting conditions. Also, it suggests that such positional estimates would greatly improve the positional accuracy of the UAV during takeoff and landing phases. The robustness of the proposed algorithm is further validated using Hardware in the Loop simulations with diverse takeoff and landing videos generated using a commercial flight simulator.

  8. IMPLEMENTATION OF OBJECT TRACKING ALGORITHMS ON THE BASIS OF CUDA TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    B. A. Zalesky

    2014-01-01

    Full Text Available A fast version of correlation algorithm to track objects on video-sequences made by a nonstabilized camcorder is presented. The algorithm is based on comparison of local correlations of the object image and regions of video-frames. The algorithm is implemented in programming technology CUDA. Application of CUDA allowed to attain real time execution of the algorithm. To improve its precision and stability, a robust version of the Kalman filter has been incorporated into the flowchart. Tests showed applicability of the algorithm to practical object tracking.

  9. Small Orbital Stereo Tracking Camera Technology Development

    Science.gov (United States)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  10. Advanced digital video surveillance for safeguard and physical protection

    International Nuclear Information System (INIS)

    Kumar, R.

    2002-01-01

    Full text: Video surveillance is a very crucial component in safeguard and physical protection. Digital technology has revolutionized the surveillance scenario and brought in various new capabilities like better image quality, faster search and retrieval of video images, less storage space for recording, efficient transmission and storage of video, better protection of recorded video images, and easy remote accesses to live and recorded video etc. The basic safeguard requirement for verifiably uninterrupted surveillance has remained largely unchanged since its inception. However, changes to the inspection paradigm to admit automated review and remote monitoring have dramatically increased the demands on safeguard surveillance system. Today's safeguard systems can incorporate intelligent motion detection with very low rate of false alarm and less archiving volume, embedded image processing capability for object behavior and event based indexing, object recognition, efficient querying and report generation etc. It also demands cryptographically authenticating, encrypted, and highly compressed video data for efficient, secure, tamper indicating and transmission. In physical protection, intelligent on robust video motion detection, real time moving object detection and tracking from stationary and moving camera platform, multi-camera cooperative tracking, activity detection and recognition, human motion analysis etc. is going to play a key rote in perimeter security. Incorporation of front and video imagery exploitation tools like automatic number plate recognition, vehicle identification and classification, vehicle undercarriage inspection, face recognition, iris recognition and other biometric tools, gesture recognition etc. makes personnel and vehicle access control robust and foolproof. Innovative digital image enhancement techniques coupled with novel sensor design makes low cost, omni-directional vision capable, all weather, day night surveillance a reality

  11. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    Directory of Open Access Journals (Sweden)

    Michiaki Inoue

    2017-10-01

    Full Text Available This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time.

  12. Eye tracking in user experience design

    CERN Document Server

    Romano Bergstorm, Jennifer

    2014-01-01

    Eye Tracking for User Experience Design explores the many applications of eye tracking to better understand how users view and interact with technology. Ten leading experts in eye tracking discuss how they have taken advantage of this new technology to understand, design, and evaluate user experience. Real-world stories are included from these experts who have used eye tracking during the design and development of products ranging from information websites to immersive games. They also explore recent advances in the technology which tracks how users interact with mobile devices, large-screen displays and video game consoles. Methods for combining eye tracking with other research techniques for a more holistic understanding of the user experience are discussed. This is an invaluable resource to those who want to learn how eye tracking can be used to better understand and design for their users. * Includes highly relevant examples and information for those who perform user research and design interactive experi...

  13. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    Science.gov (United States)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  14. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    International Nuclear Information System (INIS)

    Arrabito, L; Bozza, C; Buontempo, S

    2007-01-01

    The OPERA experiment, designed to conclusively prove the existence of ν μ →ν τ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ν τ 's in the CNGS ν μ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ∼20 cm 2 /h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA

  15. Measuring energy expenditure in sports by thermal video analysis

    DEFF Research Database (Denmark)

    Gade, Rikke; Larsen, Ryan Godsk; Moeslund, Thomas B.

    2017-01-01

    Estimation of human energy expenditure in sports and exercise contributes to performance analyses and tracking of physical activity levels. The focus of this work is to develop a video-based method for estimation of energy expenditure in athletes. We propose a method using thermal video analysis...... to automatically extract the cyclic motion pattern, in walking and running represented as steps, and analyse the frequency. Experiments are performed with one subject in two different tests, each at 5, 8, 10, and 12 km/h. The results of our proposed video-based method is compared to concurrent measurements...

  16. A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Science.gov (United States)

    Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien

    2018-03-01

    -posterior direction. Inferred traces often exhibit higher interdimensional correlation, which are not true representation of thoracic/abdominal motion and may underestimate kV-based tracking errors. The use of internal traces acquired from systems such as Calypso is advised for future kV-based tracking studies. The Gaussian PDF method is the most accurate 2D-3D inference method for tracking thoracic/abdominal targets. Motion magnitude has significant impact on 2D-3D inference error, and should be considered when estimating kV-based tracking error. © 2018 American Association of Physicists in Medicine.

  17. Intelligent video surveillance systems and technology

    CERN Document Server

    Ma, Yunqian

    2009-01-01

    From the streets of London to subway stations in New York City, hundreds of thousands of surveillance cameras ubiquitously collect hundreds of thousands of videos, often running 24/7. How can such vast volumes of video data be stored, analyzed, indexed, and searched? How can advanced video analysis and systems autonomously recognize people and detect targeted activities real-time? Collating and presenting the latest information Intelligent Video Surveillance: Systems and Technology explores these issues, from fundamentals principle to algorithmic design and system implementation.An Integrated

  18. Human tracking over camera networks: a review

    Science.gov (United States)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  19. Dazzle camouflage and the confusion effect: the influence of varying speed on target tracking.

    Science.gov (United States)

    Hogan, Benedict G; Cuthill, Innes C; Scott-Samuel, Nicholas E

    2017-01-01

    The formation of groups is a common strategy to avoid predation in animals, and recent research has indicated that there may be interactions between some forms of defensive coloration, notably high-contrast 'dazzle camouflage', and one of the proposed benefits of grouping: the confusion effect. However, research into the benefits of dazzle camouflage has largely used targets moving with constant speed. This simplification may not generalize well to real animal systems, where a number of factors influence both within- and between-individual variation in speed. Departure from the speed of your neighbours in a group may be predicted to undermine the confusion effect. This is because individual speed may become a parameter through which the observer can individuate otherwise similar targets: an 'oddity effect'. However, dazzle camouflage patterns are thought to interfere with predator perception of speed and trajectory. The current experiment investigated the possibility that such patterns could ameliorate the oddity effect caused by within-group differences in prey speed. We found that variation in speed increased the ease with which participants could track targets in all conditions. However, we found no evidence that motion dazzle camouflage patterns reduced oddity effects based on this variation in speed, a result that may be informative about the mechanisms behind this form of defensive coloration. In addition, results from those conditions most similar to those of published studies replicated previous results, indicating that targets with stripes parallel to the direction of motion are harder to track, and that this pattern interacts with the confusion effect to a greater degree than background matching or orthogonal-to-motion striped patterns.

  20. Adaptive estimation for control of uncertain nonlinear systems with applications to target tracking

    Science.gov (United States)

    Madyastha, Venkatesh Kattigari

    2005-08-01

    Design of nonlinear observers has received considerable attention since the early development of methods for linear state estimation. The most popular approach is the extended Kalman filter (EKF), that goes through significant degradation in the presence of nonlinearities, particularly if unmodeled dynamics are coupled to the process and the measurement. For uncertain nonlinear systems, adaptive observers have been introduced to estimate the unknown state variables where no priori information about the unknown parameters is available. While establishing global results, these approaches are applicable only to systems transformable to output feedback form. Over the recent years, neural network (NN) based identification and estimation schemes have been proposed that relax the assumptions on the system at the price of sacrificing on the global nature of the results. However, most of the NN based adaptive observer approaches in the literature require knowledge of the full dimension of the system, therefore may not be suitable for systems with unmodeled dynamics. We first propose a novel approach to nonlinear state estimation from the perspective of augmenting a linear time invariant observer with an adaptive element. The class of nonlinear systems treated here are finite but of otherwise unknown dimension. The objective is to improve the performance of the linear observer when applied to a nonlinear system. The approach relies on the ability of the NNs to approximate the unknown dynamics from finite time histories of available measurements. Next we investigate nonlinear state estimation from the perspective of adaptively augmenting an existing time varying observer, such as an EKF. EKFs find their applications mostly in target tracking problems. The proposed approaches are robust to unmodeled dynamics, including unmodeled disturbances. Lastly, we consider the problem of adaptive estimation in the presence of feedback control for a class of uncertain nonlinear systems

  1. Rate control scheme for consistent video quality in scalable video codec.

    Science.gov (United States)

    Seo, Chan-Won; Han, Jong-Ki; Nguyen, Truong Q

    2011-08-01

    Multimedia data delivered to mobile devices over wireless channels or the Internet are complicated by bandwidth fluctuation and the variety of mobile devices. Scalable video coding has been developed as an extension of H.264/AVC to solve this problem. Since scalable video codec provides various scalabilities to adapt the bitstream for the channel conditions and terminal types, scalable codec is one of the useful codecs for wired or wireless multimedia communication systems, such as IPTV and streaming services. In such scalable multimedia communication systems, video quality fluctuation degrades the visual perception significantly. It is important to efficiently use the target bits in order to maintain a consistent video quality or achieve a small distortion variation throughout the whole video sequence. The scheme proposed in this paper provides a useful function to control video quality in applications supporting scalability, whereas conventional schemes have been proposed to control video quality in the H.264 and MPEG-4 systems. The proposed algorithm decides the quantization parameter of the enhancement layer to maintain a consistent video quality throughout the entire sequence. The video quality of the enhancement layer is controlled based on a closed-form formula which utilizes the residual data and quantization error of the base layer. The simulation results show that the proposed algorithm controls the frame quality of the enhancement layer in a simple operation, where the parameter decision algorithm is applied to each frame.

  2. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.

    Science.gov (United States)

    Liu, Xinyang; Plishker, William; Zaki, George; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj

    2016-06-01

    Common camera calibration methods employed in current laparoscopic augmented reality systems require the acquisition of multiple images of an entire checkerboard pattern from various poses. This lengthy procedure prevents performing laparoscope calibration in the operating room (OR). The purpose of this work was to develop a fast calibration method for electromagnetically (EM) tracked laparoscopes, such that the calibration can be performed in the OR on demand. We designed a mechanical tracking mount to uniquely and snugly position an EM sensor to an appropriate location on a conventional laparoscope. A tool named fCalib was developed to calibrate intrinsic camera parameters, distortion coefficients, and extrinsic parameters (transformation between the scope lens coordinate system and the EM sensor coordinate system) using a single image that shows an arbitrary portion of a special target pattern. For quick evaluation of calibration results in the OR, we integrated a tube phantom with fCalib prototype and overlaid a virtual representation of the tube on the live video scene. We compared spatial target registration error between the common OpenCV method and the fCalib method in a laboratory setting. In addition, we compared the calibration re-projection error between the EM tracking-based fCalib and the optical tracking-based fCalib in a clinical setting. Our results suggest that the proposed method is comparable to the OpenCV method. However, changing the environment, e.g., inserting or removing surgical tools, might affect re-projection accuracy for the EM tracking-based approach. Computational time of the fCalib method averaged 14.0 s (range 3.5 s-22.7 s). We developed and validated a prototype for fast calibration and evaluation of EM tracked conventional (forward viewing) laparoscopes. The calibration method achieved acceptable accuracy and was relatively fast and easy to be performed in the OR on demand.

  3. A neurocomputational model of figure-ground discrimination and target tracking.

    Science.gov (United States)

    Sun, H; Liu, L; Guo, A

    1999-01-01

    A neurocomputational model is presented for figureground discrimination and target tracking. In the model, the elementary motion detectors of the correlation type, the computational modules of saccadic and smooth pursuit eye movement, an oscillatory neural-network motion perception module and a selective attention module are involved. It is shown that through the oscillatory amplitude and frequency encoding, and selective synchronization of phase oscillators, the figure and the ground can be successfully discriminated from each other. The receptive fields developed by hidden units of the networks were surprisingly similar to the actual receptive fields and columnar organization found in the primate visual cortex. It is suggested that equivalent mechanisms may exist in the primate visual cortex to discriminate figure-ground in both temporal and spatial domains.

  4. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  5. Automated assessment and tracking of human body thermal variations using unsupervised clustering.

    Science.gov (United States)

    Yousefi, Bardia; Fleuret, Julien; Zhang, Hai; Maldague, Xavier P V; Watt, Raymond; Klein, Matthieu

    2016-12-01

    The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subject's body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures.

  6. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    Science.gov (United States)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  7. Automated music selection of video ads

    Directory of Open Access Journals (Sweden)

    Wiesener Oliver

    2017-07-01

    Full Text Available The importance of video ads on social media platforms can be measured by views. For instance, Samsung’s commercial ad for one of its new smartphones reached more than 46 million viewers at Youtube. A video ad addresses the visual as well as the auditive sense of users. Often the visual sense is busy in the sense that users focus other screens than the screen with the video ad. This is called the second screen syndrome. Therefore, the importance of the audio channel seems to grow. To get back the visual attention of users that are deflected from other visual impulses it appears reasonable to adapt the music to the target group. Additionally, it appears useful to adapt the music to content of the video. Thus, the overall success of a video ad could by increased by increasing the attention of the users. Humans typically make the decision about the music of a video ad. If there is a correlation between music, products and target groups, a digitization of the music selection process seems to be possible. Since the digitization progress in the music sector is mainly focused on music composing this article strives for making a first step towards the digitization of the music selection.

  8. High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang

    for the spacecraft to navigate safely and autonomously towards the target. These methods are applied on three distinct study cases, which are based on the platform of the microASC instrument. In relation to the Mars2020 rover, a structured light system is used to navigate the PIXL instrument towards the Martian...... surface, whose objective is to seek evidence of ancient life in the form of chemical biosignatures. The structured light is a subsystem of the PIXL instrument consisting of two active lasers and an imager. The structured light makes use of active triangulation to support a safe approach towards...... team and processing of the captured data was recognized with two Group Achievement Awards from the National Aeronautics and Space Administration. With today's advancement in autonomy, the focus is set on in-flight tracking of a non-cooperative artificial satellite with the end goal of capturing...

  9. Coding the Complexity of Activity in Video Recordings

    DEFF Research Database (Denmark)

    Harter, Christopher Daniel; Otrel-Cass, Kathrin

    2017-01-01

    This paper presents a theoretical approach to coding and analyzing video data on human interaction and activity, using principles found in cultural historical activity theory. The systematic classification or coding of information contained in video data on activity can be arduous and time...... Bødker’s in 1996, three possible areas of expansion to Susanne Bødker’s method for analyzing video data were found. Firstly, a technological expansion due to contemporary developments in sophisticated analysis software, since the mid 1990’s. Secondly, a conceptual expansion, where the applicability...... of using Activity Theory outside of the context of human–computer interaction, is assessed. Lastly, a temporal expansion, by facilitating an organized method for tracking the development of activities over time, within the coding and analysis of video data. To expand on the above areas, a prototype coding...

  10. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    Science.gov (United States)

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  11. Dense Trajectories and DHOG for Classification of Viewpoints from Echocardiogram Videos

    Directory of Open Access Journals (Sweden)

    Liqin Huang

    2016-01-01

    Full Text Available In echo-cardiac clinical computer-aided diagnosis, an important step is to automatically classify echocardiography videos from different angles and different regions. We propose a kind of echocardiography video classification algorithm based on the dense trajectory and difference histograms of oriented gradients (DHOG. First, we use the dense grid method to describe feature characteristics in each frame of echocardiography sequence and then track these feature points by applying the dense optical flow. In order to overcome the influence of the rapid and irregular movement of echocardiography videos and get more robust tracking results, we also design a trajectory description algorithm which uses the derivative of the optical flow to obtain the motion trajectory information and associates the different characteristics (e.g., the trajectory shape, DHOG, HOF, and MBH with embedded structural information of the spatiotemporal pyramid. To avoid “dimension disaster,” we apply Fisher’s vector to reduce the dimension of feature description followed by the SVM linear classifier to improve the final classification result. The average accuracy of echocardiography video classification is 77.12% for all eight viewpoints and 100% for three primary viewpoints.

  12. Tracking Subpixel Targets with Critically Sampled Optical Sensors

    Science.gov (United States)

    2012-09-01

    LEFT BLANK xii LIST OF ACRONYMS AND ABBREVIATIONS PSF point spread function SNR signal-to-noise ratio SLAM simultaneous localization and tracking EO... LIDAR light detection and ranging FOV field of view RMS root mean squared PF particle filter TBD track before detect MCMC monte carlo markov chain

  13. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    International Nuclear Information System (INIS)

    Ingram, W; Rao, A; Wendt, R; Court, L; Yang, J; Beadle, B

    2015-01-01

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded as it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration

  14. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, W; Rao, A; Wendt, R; Court, L [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Yang, J; Beadle, B [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded as it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration

  15. PERANCANGAN VIDEO PANDUAN FITNES SEBAGAI MEDIA PEMBELAJARAN

    Directory of Open Access Journals (Sweden)

    Rizkysari Meimaharani

    2013-06-01

    Full Text Available ABSTRACT Designing fitness exercise tutorial level beginner as learning and promotion media for life gym was designed to provide guidelines of good movement in the fitness training sessions for beginners, especially the gym because life member will be distributed free of charge for new members sign up. For the process of editing video tutorial software and hardware needed adequate for smooth production. The results also depend on the ability of either constituent knowledge of a general nature and especially directing, editing, creativity, and the ability of hardware, software and technology / computer. Excess video guide allows members to understand the movement is good and right to avoid unwanted injury. Not only guides the movement are presented in this video project but also the member is given petuntuk diet and proper diet for target practice can be easily achieved. Excess video guide allows members to understand the movement is good and right to avoid unwanted injury. Not only guides the movement are presented in this video project but also the member is given guide of diet and proper diet for target practice can be easily achieved. The presence of video editing technology offers convenience to an agency to educate the public through video learning and served as media promotion of a service or related agency theme of the video.

  16. Optimization of object tracking based on enhanced imperialist ...

    African Journals Online (AJOL)

    . Tracking moving object(s) in video/image frame sequences in cluttered scenes usually results in complications and hence performance degradation. This is attributable to complexity in partial and full object occlusions and scene illumination ...

  17. Automated Video Surveillance for the Study of Marine Mammal Behavior and Cognition

    Directory of Open Access Journals (Sweden)

    Jeremy Karnowski

    2016-11-01

    Full Text Available Systems for detecting and tracking social marine mammals, including dolphins, can provide data to help explain their social dynamics, predict their behavior, and measure the impact of human interference. Data collected from video surveillance methods can be consistently and systematically sampled for studies of behavior, and frame-by-frame analyses can uncover insights impossible to observe from real-time, freely occurring natural behavior. Advances in boat-based, aerial, and underwater recording platforms provide opportunities to document the behavior of marine mammals and create massive datasets. The use of human experts to detect, track, identify individuals, and recognize activity in video demands significant time and financial investment. This paper examines automated methods designed to analyze large video corpora containing marine mammals. While research is converging on best solutions for some automated tasks, particularly detection and classification, many research domains are ripe for exploration.

  18. Multitarget multisensor closed-loop tracking

    Science.gov (United States)

    Sanders-Reed, John N.

    2004-07-01

    This paper describes a closed-loop tracking system using multiple co-located sensors to develop multi-sensor track histories on multiple targets. The use of multiple, co-aligned sensors to track multiple, possibly maneuvering targets, presents a number of tracker design challenges and opportunities. Many of these problems have been addressed individually in the published literature from a theoretical point of view. However, no one has yet addressed the design and implementation of a specific tracker to meet all of these requirements at once. Specific questions addressed in this paper include how to assign N detections in a current frame to M active tracks, how to initiate new tracks and terminate dead tracks, how to combine information from multiple sensors into a single integrated picture, represented by a global track file, and how to perform these functions in a timely manner to support a precision closed loop tracking system.

  19. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration.

    Science.gov (United States)

    Su, Li-Ming; Vagvolgyi, Balazs P; Agarwal, Rahul; Reiley, Carol E; Taylor, Russell H; Hager, Gregory D

    2009-04-01

    To investigate a markerless tracking system for real-time stereo-endoscopic visualization of preoperative computed tomographic imaging as an augmented display during robot-assisted laparoscopic partial nephrectomy. Stereoscopic video segments of a patient undergoing robot-assisted laparoscopic partial nephrectomy for tumor and another for a partial staghorn renal calculus were processed to evaluate the performance of a three-dimensional (3D)-to-3D registration algorithm. After both cases, we registered a segment of the video recording to the corresponding preoperative 3D-computed tomography image. After calibrating the camera and overlay, 3D-to-3D registration was created between the model and the surgical recording using a modified iterative closest point technique. Image-based tracking technology tracked selected fixed points on the kidney surface to augment the image-to-model registration. Our investigation has demonstrated that we can identify and track the kidney surface in real time when applied to intraoperative video recordings and overlay the 3D models of the kidney, tumor (or stone), and collecting system semitransparently. Using a basic computer research platform, we achieved an update rate of 10 Hz and an overlay latency of 4 frames. The accuracy of the 3D registration was 1 mm. Augmented reality overlay of reconstructed 3D-computed tomography images onto real-time stereo video footage is possible using iterative closest point and image-based surface tracking technology that does not use external navigation tracking systems or preplaced surface markers. Additional studies are needed to assess the precision and to achieve fully automated registration and display for intraoperative use.

  20. Application of Video Recognition Technology in Landslide Monitoring System

    Directory of Open Access Journals (Sweden)

    Qingjia Meng

    2018-01-01

    Full Text Available The video recognition technology is applied to the landslide emergency remote monitoring system. The trajectories of the landslide are identified by this system in this paper. The system of geological disaster monitoring is applied synthetically to realize the analysis of landslide monitoring data and the combination of video recognition technology. Landslide video monitoring system will video image information, time point, network signal strength, power supply through the 4G network transmission to the server. The data is comprehensively analysed though the remote man-machine interface to conduct to achieve the threshold or manual control to determine the front-end video surveillance system. The system is used to identify the target landslide video for intelligent identification. The algorithm is embedded in the intelligent analysis module, and the video frame is identified, detected, analysed, filtered, and morphological treatment. The algorithm based on artificial intelligence and pattern recognition is used to mark the target landslide in the video screen and confirm whether the landslide is normal. The landslide video monitoring system realizes the remote monitoring and control of the mobile side, and provides a quick and easy monitoring technology.

  1. Accuracy of position measurement method using Arago spot for inertial fusion energy target tracking system

    International Nuclear Information System (INIS)

    Saruta, Koichi; Tsuji, Ryusuke

    2007-01-01

    The accuracy of a position measurement method using the Arago spot is reported for an inertial fusion energy (IFE) target tracking system, where the position of the target is determined by the position of the Arago spot, which is a bright spot appearing in the central portion of the diffraction pattern of a spherical obstacle. We use a He-Ne laser as the light source and a charge-coupled device (CCD) camera with a microscope objective lens to magnify and record the diffraction pattern of a spherical target. We examine two different algorithms to determine the center of the Arago spot in order to compare the measurement performances. The experimental results show that the position of a 5-mm-diameter target can be obtained with a measurement resolution of 1 μm and an rms measurement error of less than 0.2μm for both algorithms when the distance between the target and the microscope objective lens is 5 cm. (author)

  2. Statistical motion vector analysis for object tracking in compressed video streams

    Science.gov (United States)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  3. Hierarchical online appearance-based tracking for 3D head pose, eyebrows, lips, eyelids, and irises

    NARCIS (Netherlands)

    Orozco, Javier; Rudovic, Ognjen; Gonzalez Garcia, Jordi; Pantic, Maja

    In this paper, we propose an On-line Appearance-Based Tracker (OABT) for simultaneous tracking of 3D head pose, lips, eyebrows, eyelids and irises in monocular video sequences. In contrast to previously proposed tracking approaches, which deal with face and gaze tracking separately, our OABT can

  4. Are video sharing web sites a useful source of information on hypertension?

    Science.gov (United States)

    Kumar, Nilay; Pandey, Ambarish; Venkatraman, Anand; Garg, Neetika

    2014-07-01

    Hypertension (HTN) is a prevalent and growing public health problem in the United States and worldwide. Video sharing Web sites such as YouTube could potentially influence patient behaviors via properties of interpersonal and mass media communication. We conducted this cross-sectional study to assess the accuracy and content of YouTube videos on HTN and understand how viewers interact with this online information. We analyzed 209 videos (31.57 hours) of which 63% were classified as useful, 33% as misleading, and 4% represented patient's personal experiences. Number of views per day and "likes" were significantly lower for useful videos. Approximately half the misleading videos contained product advertisements, 70% advocated unproven alternative treatments, and 91% targeted patients. Viewer engagement (number of views) was a poor predictor of usefulness and/or content whereas source of upload, and target audiences were good predictors of usefulness and/or content. Videos uploaded by university channels and/or professional organizations that targeted physicians had a 99.4% (P < .001) probability of being useful whereas videos uploaded by individuals with unknown credentials that targeted patients had a 21.2% (P < .001) probability of being useful. A majority of HTN-related videos on YouTube are useful. Viewer engagement is significantly higher with videos that contain misleading and/or erroneous information in comparison to videos that contain useful information. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. System and method for improving video recorder performance in a search mode

    NARCIS (Netherlands)

    2000-01-01

    A method and apparatus wherein video images are recorded on a plurality of tracks of a tape such that, for playback in a search mode at a speed, higher than the recording speed the displayed image will consist of a plurality of contiguous parts, some of the parts being read out from tracks each

  6. System and method for improving video recorder performance in a search mode

    NARCIS (Netherlands)

    1991-01-01

    A method and apparatus wherein video images are recorded on a plurality of tracks of a tape such that, for playback in a search mode at a speed higher than the recording speed the displayed image will consist of a plurality of contiguous parts, some of the parts being read out from tracks each

  7. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    International Nuclear Information System (INIS)

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-01-01

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  8. Using Video Game-Based Instruction in an EFL Program: Understanding the Power of Video Games in Education

    Directory of Open Access Journals (Sweden)

    Héctor Alejandro Galvis Guerrero

    2011-09-01

    Full Text Available This small-scale action-research study examines the perceptions of four students in a military academy in Colombia undergoing the processof using a mainstream video game in their EFL classes instead of classic forms of instruction. The video game used served to approach EFL by means of language exploratory activities designed according to the context present in the video game and the course linguistic objectives. This study was conducted on the grounds that computer technology offers the possibility of enhancing EFL instruction by means of simulating and augmenting the target language context. The researcher’s belief is that video games offer a learning environment closely related to students’ experiences and preferences. Results from this study suggest that students were more entertained and attentive and demonstrated more engagement and disposition towards their English classes. Students also learned about matters related to the target language and culture, and were not only circumscribed to linguistic ones. Similarly, results from this study shed some light on the importance of offering access to technology to students before they advance to higher education that support video-gaming practices in the classroom.

  9. Assessing the importance of audio/video synchronization for simultaneous translation of video sequences

    OpenAIRE

    Staelens, Nicolas; De Meulenaere, Jonas; Bleumers, Lizzy; Van Wallendael, Glenn; De Cock, Jan; Geeraert, Koen; Vercammen, Nick; Van den Broeck, Wendy; Vermeulen, Brecht; Van de Walle, Rik; Demeester, Piet

    2012-01-01

    Lip synchronization is considered a key parameter during interactive communication. In the case of video conferencing and television broadcasting, the differential delay between audio and video should remain below certain thresholds, as recommended by several standardization bodies. However, further research has also shown that these thresholds can be relaxed, depending on the targeted application and use case. In this article, we investigate the influence of lip sync on the ability to perfor...

  10. Object recognition with video-theodolites and without targeting the object

    International Nuclear Information System (INIS)

    Kahmen, H.; Seixas, A. de

    1999-01-01

    At the Department of Applied Geodesy and Engineering Geodesy (TU Vienna) an new kind of theodolite measurement system is under development, enabling measurements with an accuracy of 1:30.000 with and without targeting the object. The main goal is, to develop an intelligent multi-sensor system. Thus an operator is only needed to supervise the system. Results are gained on-sine and can be stored in a CAD system. If no artificial targets are used identification of points has to be performed by the Master-Theodolite. The method, used in our project, is based on interest operators. The Slave-Theodolite has to track the master by searching for homologous regions. The before described method can only be used, if there is some texture on the surface of the object. If that is not fulfilled, a 'grid-line-method' can be used, to get informations about the surface of the object. In the case of a cartesian co-ordinate system, for instance, the grid-lines can be chosen by the operator before the measurement process is started. The theodolite-measurement system is then able to detect the grid-lines and to find the positions where the grid-lines intersect the surface of the object. This system could be used for positioning the different components of a particle accelerator. (author)

  11. Object recognition with video-theodolites and without targeting the object

    Energy Technology Data Exchange (ETDEWEB)

    Kahmen, H.; Seixas, A. de [University of Technology Vienna, Institute of Geodesy and Geophysics, Vienna (Austria)

    1999-07-01

    At the Department of Applied Geodesy and Engineering Geodesy (TU Vienna) an new kind of theodolite measurement system is under development, enabling measurements with an accuracy of 1:30.000 with and without targeting the object. The main goal is, to develop an intelligent multi-sensor system. Thus an operator is only needed to supervise the system. Results are gained on-sine and can be stored in a CAD system. If no artificial targets are used identification of points has to be performed by the Master-Theodolite. The method, used in our project, is based on interest operators. The Slave-Theodolite has to track the master by searching for homologous regions. The before described method can only be used, if there is some texture on the surface of the object. If that is not fulfilled, a 'grid-line-method' can be used, to get informations about the surface of the object. In the case of a cartesian co-ordinate system, for instance, the grid-lines can be chosen by the operator before the measurement process is started. The theodolite-measurement system is then able to detect the grid-lines and to find the positions where the grid-lines intersect the surface of the object. This system could be used for positioning the different components of a particle accelerator. (author)

  12. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    Science.gov (United States)

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  13. Video performance for high security applications

    International Nuclear Information System (INIS)

    Connell, Jack C.; Norman, Bradley C.

    2010-01-01

    The complexity of physical protection systems has increased to address modern threats to national security and emerging commercial technologies. A key element of modern physical protection systems is the data presented to the human operator used for rapid determination of the cause of an alarm, whether false (e.g., caused by an animal, debris, etc.) or real (e.g., a human adversary). Alarm assessment, the human validation of a sensor alarm, primarily relies on imaging technologies and video systems. Developing measures of effectiveness (MOE) that drive the design or evaluation of a video system or technology becomes a challenge, given the subjectivity of the application (e.g., alarm assessment). Sandia National Laboratories has conducted empirical analysis using field test data and mathematical models such as binomial distribution and Johnson target transfer functions to develop MOEs for video system technologies. Depending on the technology, the task of the security operator and the distance to the target, the Probability of Assessment (PAs) can be determined as a function of a variety of conditions or assumptions. PAs used as an MOE allows the systems engineer to conduct trade studies, make informed design decisions, or evaluate new higher-risk technologies. This paper outlines general video system design trade-offs, discusses ways video can be used to increase system performance and lists MOEs for video systems used in subjective applications such as alarm assessment.

  14. Markerless Augmented Reality via Stereo Video See-Through Head-Mounted Display Device

    Directory of Open Access Journals (Sweden)

    Chung-Hung Hsieh

    2015-01-01

    Full Text Available Conventionally, the camera localization for augmented reality (AR relies on detecting a known pattern within the captured images. In this study, a markerless AR scheme has been designed based on a Stereo Video See-Through Head-Mounted Display (HMD device. The proposed markerless AR scheme can be utilized for medical applications such as training, telementoring, or preoperative explanation. Firstly, a virtual model for AR visualization is aligned to the target in physical space by an improved Iterative Closest Point (ICP based surface registration algorithm, with the target surface structure reconstructed by a stereo camera pair; then, a markerless AR camera localization method is designed based on the Kanade-Lucas-Tomasi (KLT feature tracking algorithm and the Random Sample Consensus (RANSAC correction algorithm. Our AR camera localization method is shown to be better than the traditional marker-based and sensor-based AR environment. The demonstration system was evaluated with a plastic dummy head and the display result is satisfactory for a multiple-view observation.

  15. The role of "rescue saccades" in tracking objects through occlusions.

    Science.gov (United States)

    Zelinsky, Gregory J; Todor, Andrei

    2010-12-29

    We hypothesize that our ability to track objects through occlusions is mediated by timely assistance from gaze in the form of "rescue saccades"-eye movements to tracked objects that are in danger of being lost due to impending occlusion. Observers tracked 2-4 target sharks (out of 9) for 20 s as they swam through a rendered 3D underwater scene. Targets were either allowed to enter into occlusions (occlusion trials) or not (no occlusion trials). Tracking accuracy with 2-3 targets was ≥ 92% regardless of target occlusion but dropped to 74% on occlusion trials with four targets (no occlusion trials remained accurate; 83%). This pattern was mirrored in the frequency of rescue saccades. Rescue saccades accompanied approximatlely 50% of the Track 2-3 target occlusions, but only 34% of the Track 4 occlusions. Their frequency also decreased with increasing distance between a target and the nearest other object, suggesting that it is the potential for target confusion that summons a rescue saccade, not occlusion itself. These findings provide evidence for a tracking system that monitors for events that might cause track loss (e.g., occlusions) and requests help from the oculomotor system to resolve these momentary crises. As the number of crises increase with the number of targets, some requests for help go unsatisfied, resulting in degraded tracking.

  16. A semi-automatic annotation tool for cooking video

    Science.gov (United States)

    Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe

    2013-03-01

    In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.

  17. Saying What You're Looking For: Linguistics Meets Video Search.

    Science.gov (United States)

    Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark

    2016-10-01

    We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.

  18. Application aware approach to compression and transmission of H.264 encoded video for automated and centralized transportation surveillance.

    Science.gov (United States)

    2012-10-01

    In this report we present a transportation video coding and wireless transmission system specically tailored to automated : vehicle tracking applications. By taking into account the video characteristics and the lossy nature of the wireless channe...

  19. Biased lineup instructions and face identification from video images.

    Science.gov (United States)

    Thompson, W Burt; Johnson, Jaime

    2008-01-01

    Previous eyewitness memory research has shown that biased lineup instructions reduce identification accuracy, primarily by increasing false-positive identifications in target-absent lineups. Because some attempts at identification do not rely on a witness's memory of the perpetrator but instead involve matching photos to images on surveillance video, the authors investigated the effects of biased instructions on identification accuracy in a matching task. In Experiment 1, biased instructions did not affect the overall accuracy of participants who used video images as an identification aid, but nearly all correct decisions occurred with target-present photo spreads. Both biased and unbiased instructions resulted in high false-positive rates. In Experiment 2, which focused on video-photo matching accuracy with target-absent photo spreads, unbiased instructions led to more correct responses (i.e., fewer false positives). These findings suggest that investigators should not relax precautions against biased instructions when people attempt to match photos to an unfamiliar person recorded on video.

  20. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  1. An improved likelihood model for eye tracking

    DEFF Research Database (Denmark)

    Hammoud, Riad I.; Hansen, Dan Witzner

    2007-01-01

    While existing eye detection and tracking algorithms can work reasonably well in a controlled environment, they tend to perform poorly under real world imaging conditions where the lighting produces shadows and the person's eyes can be occluded by e.g. glasses or makeup. As a result, pixel clusters...... associated with the eyes tend to be grouped together with background-features. This problem occurs both for eye detection and eye tracking. Problems that especially plague eye tracking include head movement, eye blinking and light changes, all of which can cause the eyes to suddenly disappear. The usual...... approach in such cases is to abandon the tracking routine and re-initialize eye detection. Of course this may be a difficult process due to missed data problem. Accordingly, what is needed is an efficient method of reliably tracking a person's eyes between successively produced video image frames, even...

  2. A Coded Aperture Compressive Imaging Array and Its Visual Detection and Tracking Algorithms for Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Hanxiao Wu

    2012-10-01

    Full Text Available In this paper, we propose an application of a compressive imaging system to the problem of wide-area video surveillance systems. A parallel coded aperture compressive imaging system is proposed to reduce the needed high resolution coded mask requirements and facilitate the storage of the projection matrix. Random Gaussian, Toeplitz and binary phase coded masks are utilized to obtain the compressive sensing images. The corresponding motion targets detection and tracking algorithms directly using the compressive sampling images are developed. A mixture of Gaussian distribution is applied in the compressive image space to model the background image and for foreground detection. For each motion target in the compressive sampling domain, a compressive feature dictionary spanned by target templates and noises templates is sparsely represented. An l1 optimization algorithm is used to solve the sparse coefficient of templates. Experimental results demonstrate that low dimensional compressed imaging representation is sufficient to determine spatial motion targets. Compared with the random Gaussian and Toeplitz phase mask, motion detection algorithms using a random binary phase mask can yield better detection results. However using random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed image. Our tracking algorithm can achieve a real time speed that is up to 10 times faster than that of the l1 tracker without any optimization.

  3. Automation system for optical counting of nuclear tracks

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V

    1999-06-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2{center_dot}10{sup 5} tracks/cm{sup 2}. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  4. Automation system for optical counting of nuclear tracks

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Boulyga, E.G.; Lomonosova, E.M.; Zhuk, I.V.

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2·10 5 tracks/cm 2 . The automatic system was applied in the experimental investigation of uranium and transuranium elements

  5. Automation system for optical counting of nuclear tracks

    CERN Document Server

    Boulyga, S F; Lomonosova, E M; Zhuk, I V

    1999-01-01

    An automation system consisting of the microscope, video camera and Pentium PC with frame recorder was created. The system provides counting of nuclear tracks on the SSNTD surface with a resolution of 752 x 582 points, determination of the surface area and main axis of the track. The pattern recognition program was developed for operation in Windows 3.1 (or higher) ensuring a convenient interface with the user. In a comparison of the results on automatic track counting with the more accurate hand mode it was shown that the program enables the tracks to be detected even on images with a rather high noise level. It ensures a high accuracy of track counting being comparable with the accuracy of manual counting for densities of tracks in the range of up to 2 centre dot 10 sup 5 tracks/cm sup 2. The automatic system was applied in the experimental investigation of uranium and transuranium elements.

  6. Development and application of traffic flow information collecting and analysis system based on multi-type video

    Science.gov (United States)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  7. Video sensor architecture for surveillance applications.

    Science.gov (United States)

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  8. Video Sensor Architecture for Surveillance Applications

    Directory of Open Access Journals (Sweden)

    José E. Simó

    2012-02-01

    Full Text Available This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  9. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  10. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    Science.gov (United States)

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  11. Infrared small target detection technology based on OpenCV

    Science.gov (United States)

    Liu, Lei; Huang, Zhijian

    2013-09-01

    Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.

  12. Interaction of 84 MeV/u 12C with 208Pb target investigated with CR-39 plastic track detector

    International Nuclear Information System (INIS)

    Grabez, B.

    1984-01-01

    The interaction of the 84 MeV/u 12 C ions with 208 Pb target was investigated using CR-39 plastic track detector. The first part of the work was dedicated to the examination of the methodology of the recently presented CR-39 detector and its calibration. Measurements have been done on tracks of various ions in the broad atomic number region from Z = 2 to Z = 92. The possibility of the identification of low energy fragments produced in nuclear interactions by measurements on the finished tracks was studied. Our results show that very good charge resolution can be achieved through determination of the mean etch rate ratio and the range of low energy ions. In the second part of the work it was shown that the main reaction channels in the interaction of 84 MeV/u C with Pb target are spallation, fission and fragmentation. The contribution of the multifragmentation is less than 1% of the total reaction cross section. From our results follows that the most probable reaction channels after collision with small impact parameter are fragmentation and deep spallation. The spallation and fission come after more peripheral collisions. (orig./HSI)

  13. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingyao [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Bharat, Shyam [Philips Research North America, Briarcliff Manor, New York (United States); Michalski, Jeff M.; Gay, Hiram A. [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States); Hou, Wei-Hsien [St Louis University School of Medicine, St Louis, Missouri (United States); Parikh, Parag J., E-mail: pparikh@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri (United States)

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  14. Structural Sparse Tracking

    KAUST Repository

    Zhang, Tianzhu

    2015-06-01

    Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.

  15. Mobile Video in Everyday Social Interactions

    Science.gov (United States)

    Reponen, Erika; Lehikoinen, Jaakko; Impiö, Jussi

    Video recording has become a spontaneous everyday activity for many people, thanks to the video capabilities of modern mobile phones. Internet connectivity of mobile phones enables fluent sharing of captured material even real-time, which makes video an up-and-coming everyday interaction medium. In this article we discuss the effect of the video camera in the social environment, everyday life situations, mainly based on a study where four groups of people used digital video cameras in their normal settings. We also reflect on another study of ours, relating to real-time mobile video communication and discuss future views. The aim of our research is to understand the possibilities in the domain of mobile video. Live and delayed sharing seem to have their special characteristics, live video being used as a virtual window between places whereas delayed video usage has more scope for good-quality content. While this novel way of interacting via mobile video enables new social patterns, it also raises new concerns for privacy and trust between participating persons in all roles, largely due to the widely spreading possibilities of videos. Video in a social situation affects cameramen (who record), targets (who are recorded), passers-by (who are unintentionally in the situation), and the audience (who follow the videos or recording situations) but also the other way around, the participants affect the video by their varying and evolving personal and communicational motivations for recording.

  16. Medical video server construction.

    Science.gov (United States)

    Dańda, Jacek; Juszkiewicz, Krzysztof; Leszczuk, Mikołaj; Loziak, Krzysztof; Papir, Zdzisław; Sikora, Marek; Watza, Rafal

    2003-01-01

    The paper discusses two implementation options for a Digital Video Library, a repository used for archiving, accessing, and browsing of video medical records. Two crucial issues to be decided on are a video compression format and a video streaming platform. The paper presents numerous decision factors that have to be taken into account. The compression formats being compared are DICOM as a format representative for medical applications, both MPEGs, and several new formats targeted for an IP networking. The comparison includes transmission rates supported, compression rates, and at least options for controlling a compression process. The second part of the paper presents the ISDN technique as a solution for provisioning of tele-consultation services between medical parties that are accessing resources uploaded to a digital video library. There are several backbone techniques (like corporate LANs/WANs, leased lines or even radio/satellite links) available, however, the availability of network resources for hospitals was the prevailing choice criterion pointing to ISDN solutions. Another way to provide access to the Digital Video Library is based on radio frequency domain solutions. The paper describes possibilities of both, wireless and cellular network's data transmission service to be used as a medical video server transport layer. For the cellular net-work based solution two communication techniques are used: Circuit Switched Data and Packet Switched Data.

  17. A Directory of English Language Teaching Videos.

    Science.gov (United States)

    Falsetti, Julie, Comp.

    This third edition of the video directory updates previous editions and alphabetically lists videos, by title. It is designed to assist in the teaching of English or the training of teachers of English. Information included are format, standard, variety, use, target, level, price, duration, quality, support materials included, distributor, year…

  18. Enhancing cognition with video games: a multiple game training study.

    Directory of Open Access Journals (Sweden)

    Adam C Oei

    Full Text Available Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands.We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch for one hour a day/five days a week over four weeks (20 hours. Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training.Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.

  19. Enhancing Cognition with Video Games: A Multiple Game Training Study

    Science.gov (United States)

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be

  20. Enhancing cognition with video games: a multiple game training study.

    Science.gov (United States)

    Oei, Adam C; Patterson, Michael D

    2013-01-01

    Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.