WorldWideScience

Sample records for vickers microhardness measurements

  1. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  2. Vickers microhardness studies on solution-grown single crystals of potassium boro-succinate

    Science.gov (United States)

    Lakshmipriya, M.; Rajan Babu, D.; Ezhil Vizhi, R.

    2015-02-01

    The semiorganic crystals of potassium boro-succinate (KBS) were grown by slow evaporation method. KBS crystallizes in monoclinic system which was confirmed by powder XRD analysis. Vickers microhardness study has been carried out over a load range of 25-100 g. The Vickers hardness numbers (Hv) of the material increases as the load increases so the material is suitable for device fabrication. The Meyer index 'n' is estimated to be greater than 1.6, the crystal system belongs to the soft material category. The elastic stiffness coefficient, c11, has also been calculated using Wooster's empirical relation from the hardness data. The fracture toughness values 'Kc', determined from measurements of crack lengths, were estimated to be 0.15166 MN/m3/2. The brittleness indices 'Bi' were estimated as 276 m-1/2.

  3. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    Directory of Open Access Journals (Sweden)

    Tahereh-Sadat Jafarzadeh

    2015-12-01

    Full Text Available Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm. Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan was performed at the top and bottom (depth=2 mm surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  4. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    Science.gov (United States)

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  5. Vickers microhardness comparison of 4 composite resins with different types of filler.

    Directory of Open Access Journals (Sweden)

    René García-Contreras

    2015-10-01

    Full Text Available Composite resins are the material of choice to restore minimal invasive cavities; conversely, it is important to explore the mechanical properties of commercially available dental materials. Objective: To compare the Vickers microhardness (VHN of four available commercial composite resins using standardized samples and methods. Methodology: Composite cylinders were manufactured in a Teflon mould. We used the follow composite resins (n=4/gp: Microhybrid resins [Feeling Lux (Viarden and Amelogen Plus (Ultradent], Hybrid resin [Te-Econom Plus (Ivoclar] and Nanohybrid resin [Filtek Z350 (3M ESPE]. All samples were incubated in distilled water at 37ºC for five days. The test was carried out with microhardness indenter at 10 N, and a dwelling time of 10 s for 9 indentations across the specimens resulting in a total of 36 indentations for each group. Data were subjected to Kolmogorov-Smirnov normality test and ANOVA (post-hoc Tukey test. Results: The VHN mean values ranged from harder to softer as follows: Filtek Z350 (71.96±6.44 (p Amelogen Plus (59.90±4.40 (p Feeling lux (53.52±5.72> Te-Econom Plus (53.26±5.19. Conclusion: According to our results, the microhardness of the evaluated conventional composite resins can withstand the masticatory forces; however nanohybrid composite resins showed better Vickers microhardness and therefore are a more clinically suitable option for minimal invasion treatments.

  6. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  7. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  8. The characterization of Vicker's microhardness indentations and pile-up profiles as a strain-hardening microprobe

    International Nuclear Information System (INIS)

    Santos, C. Jr.

    1998-04-01

    Microhardness measurements have long been used to examine strength properties and changes in strength properties in metals, for example, as induced by irradiation. Microhardness affords a relatively simple test that can be applied to very small volumes of material. Microhardness is nominally related to the flow stress of the material at a fixed level of plastic strain. Further, the geometry of the pile-up of material around the indentation is related to the strain-hardening behavior of a material; steeper pile-ups correspond to smaller strain-hardening rates. In this study the relationship between pile-up profiles and strain hardening is examined using both experimental and analytical methods. Vickers microhardness tests have been performed on a variety of metal alloys including low alloy, high Cr and austenitic stainless steels. The pile-up topology around the indentations has been quantified using confocal microscopy techniques. In addition, the indentation and pile-up geometry has been simulated using finite element method techniques. These results have been used to develop an improved quantification of the relationship between the pile-up geometry and the strain-hardening constitutive behavior of the test material

  9. Evaluating microhardness of plasma sprayed Al2O3 coatings using Vickers indentation technique

    International Nuclear Information System (INIS)

    Yin Zhijian; Tao Shunyan; Zhou Xiaming; Ding Chuanxian

    2007-01-01

    In this work, the microhardness of plasma sprayed Al 2 O 3 coatings was evaluated using the Vickers indentation technique, and the effects of measurement direction, location and applied loads were investigated. The measured data sets were then statistically analysed employing the Weibull distribution to evaluate their variability within the coatings. It was found that the Vickers hardness (VHN) increases with decreasing applied indenter load, which can be explained in terms of Kick's law and the Meyer index k of 1.93, as well as relating to the microstructural characteristics of plasma sprayed coatings and the elastic recovery taking place during indentation. In addition, VHN, measured on the cross section of coatings, was obviously higher than that on its top surface. The obtained Weibull modulus and variation coefficient indicate that the VHN was less variable when measured at a higher applied load and on the cross section of coating. The obvious dependence of the VHN on the specific indentation location within through-thickness direction was also realized. These phenomena described above in this work were related to the special microstructure and high anisotropic behaviour of plasma sprayed coatings

  10. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    Directory of Open Access Journals (Sweden)

    Ronald Machaka

    2011-01-01

    Full Text Available The Vickers microhardness measurements of boron suboxide (B6O ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs in the microhardness measurements of hot-pressed B6O discussed using existing models, that is, the classical Meyer's law, Li and Bradt's proportional specimen resistance model (PSR, the modified proportional specimen resistance model (MPSR, and Carpinteri's multifractal scaling law (MFSL. The best correlation between literature-cited load-independent Vickers microhardness values, the measured values, and applied models was achieved in the case of the MPSR and the MFSL models.

  11. Analysis of the Indentation Size Effect in the Microhardness Measurements in B6O

    OpenAIRE

    Ronald Machaka; Trevor E. Derry; Iakovos Sigalas; Mathias Herrmann

    2011-01-01

    The Vickers microhardness measurements of boron suboxide (B6O) ceramics prepared by uniaxial hot-pressing was investigated at indentation test loads in the range from 0.10 to 2.0 kgf. Results from the investigation indicate that the measured microhardness exhibits an indentation load dependence. Based on the results, we present a comprehensive model intercomparison study of indentation size effects (ISEs) in the microhardness measurements of hot-pressed B6O discussed using existing models, th...

  12. Microhardness of light- and dual-polymerizable luting resins polymerized through 7.5-mm-thick endocrowns.

    Science.gov (United States)

    Gregor, Ladislav; Bouillaguet, Serge; Onisor, Ioana; Ardu, Stefano; Krejci, Ivo; Rocca, Giovanni Tommaso

    2014-10-01

    The complete polymerization of luting resins through thick indirect restorations is still questioned. The purpose of this study was to evaluate the degree of polymerization of light- and dual-polymerizable luting resins under thick indirect composite resin and ceramic endocrowns by means of Vickers microhardness measurements. The Vickers microhardness measurements of a light-polymerizable microhybrid composite resin and a dual-polymerizable luting cement directly polymerized in a natural tooth mold for 40 seconds with a high-power light-emitting diode lamp (control) were compared with measurements after indirect irradiation through 7.5-mm-thick composite resin and ceramic endocrowns for 3 × 90 seconds. A test-to-control microhardness values ratio of 0.80 at a depth of 0.5 mm below the surface was assumed as the criterion for adequate conversion. For the Vickers microhardness measurements of a dual-polymerizable luting cement, no differences (P>.05) were found between Vickers microhardness control values and values reported after polymerization through composite resin and ceramic endocrowns. For The Vickers microhardness measurements (±SD) of a light-polymerizable microhybrid composite resin, control values were significantly (P.05). Under the conditions of this in vitro study, Vickers microhardness values of the dual-polymerizable resin cement and the light-polymerizable restorative composite resin irradiated for 3 × 90 seconds with a high irradiance light-emitting diode lamp through 7.5-mm-thick endocrowns reached at least 80% of the control Vickers microhardness values, which means that both materials can be adequately polymerized when they are used for luting thick indirect restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Determination of Formula for Vickers Hardness Measurements Uncertainty

    International Nuclear Information System (INIS)

    Purba, Asli

    2007-01-01

    The purpose of formula determination is to obtain the formula of Vickers hardness measurements uncertainty. The approach to determine the formula: influenced parameters identification, creating a cause and effect diagram, determination of sensitivity, determination of standard uncertainty and determination of formula for Vickers hardness measurements uncertainty. The results is a formula for determination of Vickers hardness measurements uncertainty. (author)

  14. A new approach to the estimation of surface free energy based on Vickers microhardness data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A relation between surface free energy (σMHV and Meyer’s lines cut-values has been established using Vickers microhardness (MHV method and empirical physical laws. This relation allows the calculation of σMHV only from MHV data. The parameters required are Meyer’s lines cut-values and the mean value of diagonal length of the impression at different loads applied (drealmean. Our study of 12 samples of ultra high molecular weight polyethylene (PE-UHMW showed that the new approach is applicable when the slope value of Meyer’s lines equals 2 (i.e. n = 2. A γ-60Co source was used for the irradiation of 11 samples (one of the samples investigated is un-irradiated at room temperature in air. Doses of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 and 1500 kGy were applied. The values of σMHV obtained are in a good agreement with the literature. The dependence of σMHV on the dose applied strictly corresponds to the radiation effects theory. MHV was measured at seven different loads – 0.0123, 0.0245, 0.049, 0.098, 0.196, 0.392, 0.785 N at a loading time of 30 s.

  15. Microhardness studies of nanocrystalline lead molybdate

    International Nuclear Information System (INIS)

    Anandakumar, V.M.; Abdul Khadar, M.

    2009-01-01

    Nanocrystalline lead molybdate (PbMoO 4 ) of four different grain sizes were synthesized through chemical precipitation technique and the grain sizes and crystal structure are determined using the broadening of X-ray diffraction patterns and transmission electron microscopy. The microhardness of nanocrystalline lead molybdate (PbMoO 4 ) with different grain sizes were measured using a Vicker's microhardness tester for various applied loads ranging from 0.049 to 1.96 N. The microhardness values showed significant indentation size effect at low indentation loads. The proportional specimen resistance model put forward by Li and Bradt and energy balance model put forward by Gong and Li were used to analyze the behaviour of measured microhardness values under different indentation loads. The microhardness data obtained for samples of different grain sizes showed grain size dependent strengthening obeying normal Hall-Petch relation. The dependence of compacting pressure and annealing temperature on microhardness of the nanostructured sample with grain size of ∼18 nm were also studied. The samples showed significant increase in microhardness values as the compacting pressure and annealing time were increased. The variation of microhardness of the material with pressure of pelletization and annealing time are discussed in the light of change of pore size distribution of the samples.

  16. The microstructure and microhardness of friction stir welded dissimilar copper/Al-5% Mg alloys

    Science.gov (United States)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    A friction stir welded joint between copper and aluminum alloy has been investigated and characterized for the microstructure and microhardness number distribution. The microstructural evolution of the joint is studied using optical microscopy and microhardness. The mechanical characteristics in structural zones of FSW joints are determined by Vickers microhardness measurements. Samples were cut across the cross section. It is shown that intermetallic Cu/Al particles are formed at interfaces. The intermetallics microhardness in the dissimilar aluminum/cooper FSW joint differs from that of the joint produced by fusion welding. The grain structures obtained in different dissimilar joint zones are examined.

  17. The In vitro Evaluation of the effect of xyliwhite, probiotic, and the conventional toothpastes on the enamel roughness and microhardness.

    Science.gov (United States)

    Maden, E Arat; Altun, C; Polat, G Guven; Basak, F

    2018-03-01

    The aim of this study was to evaluate the effect of fluoride, Xylitol, Probiotic, and Whitening toothpastes on the permanent teeth enamel roughness and microhardness. One hundred and twenty teeth were randomly divided into 2 groups, each group having 60 samples. G1: The group in which enamel roughness was examined (n = 60). G2: The group in which enamel microhardness was examined (n = 60). Then, these groups were randomly divided into 4 groups among themselves (n = 15). Each group was brushed using four different toothpastes for 1 week with a battery-powered toothbrush in the morning and evening for 2 min. Vicker's hardness tester was used to measure the changes in microhardness, and the profilometer was used to measure the changes in surface roughness. No statistically significant differences were found on surface roughness and microhardness values measured after tooth brushing process in group brushed with Colgate MaxFresh toothpaste (P > 0.01). Statistically significant decrease was observed on Vicker's hardness values measured after tooth brushing process in groups brushed with Ipana White Power Carbonate toothpaste, Xyliwhite Toothpaste Gel, and Periobiotic Probiotic Toothpaste (P tooth enamel surface roughness and microhardness. Xyliwhite, Periobiotic, and Ipana White Power Carbonate-containing abrasive toothpastes led to changes negatively on permanent tooth enamel surface roughness and microhardness.

  18. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.

    Science.gov (United States)

    Lippert, F; Lynch, R J M

    2014-07-01

    The aims of the present laboratory study were twofold: a) to investigate the suitability of Knoop and Vickers surface microhardness (SMH) in comparison to transverse microradiography (TMR) to investigate early enamel caries lesion formation; b) to compare the kinetics of caries lesion initiation and progression between human and bovine enamel. Specimens (90×bovine and 90×human enamel) were divided into six groups (demineralization times of 8/16/24/32/40/48h) of 15 per enamel type and demineralized using a partially saturated lactic acid solution. SMH was measured before and after demineralization and changes in indentation length (ΔIL) calculated. Lesions were characterized using TMR. Data were analyzed (two-way ANOVA) and Pearson correlation coefficients calculated. ΔIL increased with increasing demineralization times but plateaued after 40h, whereas lesion depth (L) and integrated mineral loss (ΔZ) increased almost linearly throughout. No differences between Knoop and Vickers SMH in their ability to measure enamel demineralization were observed as both correlated strongly. Overall, ΔIL correlated strongly with ΔZ and L but only moderately with the degree of surface zone mineralization, whereas ΔZ and L correlated strongly. Bovine demineralized faster than human enamel (all techniques). Lesions in bovine formed faster than in human enamel, although the resulting lesions were almost indistinguishable in their mineral distribution characteristics. Early caries lesion demineralization can be sufficiently studied by SMH, but its limitations on the assessment of the mineral status of more demineralized lesions must be considered. Ideally, complementary techniques to assess changes in both physical and chemical lesion characteristics would be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Accounting for measurement reliability to improve the quality of inference in dental microhardness research: a worked example.

    Science.gov (United States)

    Sever, Ivan; Klaric, Eva; Tarle, Zrinka

    2016-07-01

    Dental microhardness experiments are influenced by unobserved factors related to the varying tooth characteristics that affect measurement reproducibility. This paper explores the appropriate analytical tools for modeling different sources of unobserved variability to reduce the biases encountered and increase the validity of microhardness studies. The enamel microhardness of human third molars was measured by Vickers diamond. The effects of five bleaching agents-10, 16, and 30 % carbamide peroxide, and 25 and 38 % hydrogen peroxide-were examined, as well as the effect of artificial saliva and amorphous calcium phosphate. To account for both between- and within-tooth heterogeneity in evaluating treatment effects, the statistical analysis was performed in the mixed-effects framework, which also included the appropriate weighting procedure to adjust for confounding. The results were compared to those of the standard ANOVA model usually applied. The weighted mixed-effects model produced the parameter estimates of different magnitude and significance than the standard ANOVA model. The results of the former model were more intuitive, with more precise estimates and better fit. Confounding could seriously bias the study outcomes, highlighting the need for more robust statistical procedures in dental research that account for the measurement reliability. The presented framework is more flexible and informative than existing analytical techniques and may improve the quality of inference in dental research. Reported results could be misleading if underlying heterogeneity of microhardness measurements is not taken into account. The confidence in treatment outcomes could be increased by applying the framework presented.

  20. Influence of bleaching agents on the microhardness of nanoparticle resin composite

    Directory of Open Access Journals (Sweden)

    Vanderlei Salvador Bagnato

    2009-01-01

    Full Text Available Objective: To assess the effect of bleaching agents on the microhardness of nanoparticle resin composite. Methods: Twenty-eight cylindrical test specimens (8x1mm of FiltekTM Supreme XT resin (3M/ESPE were prepared and divided into 5 groups. The initial Vickers microhardness was measured (load of 50 grams force for 30 seconds on the top surface of the test specimens. The groupswere treated and divided as follows: G1 – artificial saliva (21 days - control; G2 - 7% hydrogen peroxide gel applied for 4h/day, for 14 days; G3 - 10% carbamide peroxide for 4h/day, for 14 days: G4 – 35% hydrogen peroxide gel applied in three sessions of 30 minutes each, with an interval of one week (21 days between the sessions; G5 - 35% carbamide peroxide, three sessions of 30 minutes each, with an interval of one week (21 days between the sessions. The top surfaces of the test specimens received treatment and were submitted to the Vickers microhardness test. Results: The results obtained were submitted to the Analysis of Variance at a fixed criterion, at a level of significance of p=0.05. No significant differences were observed among the treatments tested (p=0.42 when compared with G1. Significant differences (Tukey test were found when the initial microhardness values were compared with the values after experimental treatments (p<0.01. Conclusion: The application of bleaching agents did not alter the microhardness of resin composites. Therefore, there is no need to change restorations after bleaching.

  1. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  2. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    International Nuclear Information System (INIS)

    Iurchenko, Anton; Borc, Jarosław; Sangwal, Keshra; Voronov, Alexei

    2016-01-01

    The Vickers microhardness H_V of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H_V of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H_0, is 2337 MPa for LDP, and (4) the value of fracture toughness K_C of LDP crystals lies between 4.7 and 12 MPa m"1"/"2. The load-independent hardness H_0 of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K_C is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H_V was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K_C from the radial cracks was calculated.

  3. Influence of gamma and e-beam irradiation on microhardness of recycled polyolefin-rubber composites

    International Nuclear Information System (INIS)

    Atabaev, B.G.; Gafurov, U.G.; Fainleib, A.M.; Tolstov, A.

    2006-01-01

    Full text: The dose dependencies of surface Vickers microhardness (H) for gamma and e-beam irradiated (E=5 MeV) recycled polyethylene-rubber and polypropylene-rubber composites has been investigated. The new techniques for measuring of polymer surface microhardness using decoration of indenter imprint under load lower 100g are developed. The measurements under 50g load shown the microhardness sharp decreasing for e-beam irradiation up to dose 50-150 kGy. The optimal dose D opt for improving of viscoelastic properties at minimal microhardness HV for HDPE-rubber blends-100 kGy and PP-rubber blends-75 kGy are defined. The microhardness change depend on irradiation dose can be explained by concurrence of irradiation stimulated chain cross-linking, oxidation and destruction processes. In our work samples of polyolefin powder were irradiated in air to form peroxide and hydroperoxide groups and heated to form polar groups capable of improving the compatibility with the radiation devulcanized rubber particles. The absolute value of microhardness of polyolefin-rubber composites extremely low for polyolefins and close to microhardness of high elastic rubber. The viscoelastic properties can be explained by new model of formation mixing amorphous interface between semicrystalline polyolefin and devulcanized rubber. The work was supported by EC (STCU Project U3009). (author)

  4. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    Science.gov (United States)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  5. Micro-hardness of non-irradiated uranium dioxide

    International Nuclear Information System (INIS)

    Kim, Sung-Sik; Takagi, Osamu; Obata, Naomi; Kirihara, Tomoo.

    1983-01-01

    In order to obtain the optimum conditions for micro-hardness measurements of sintered UO 2 , two kinds of hardness tests (Vickers and Knoop) were examined with non-irradiated UO 2 of 2.5 and 5 μm in grain size. The hardness values were obtained as a function of the applied load in the load range of 25 -- 1,000 g. In the Vickers test, cracks were generated around the periphery of an indentation even at lower load of 50 g, which means the Vickers hardness is not suitable for UO 2 specimens. In the Knoop test, three stages of load dependence were observed for sintered pellet as well as for a single crystal by Bates. Load dependence of Knoop hardness and crack formation were discussed. In the range of applied load around 70 -- 100 g there were plateau region where hardness values were nearly unchanged and did not contain any cracks in the indentation. The plateau region represents a hardness of a specimen. From a comparison between the hardness values of 2.5 μm and those of 5 μm UO 2 , it was approved that the degree of sintering controls the hardness in the plateau region. (author)

  6. Influence of enzymatic maceration on the microstructure and microhardness of compact bone

    International Nuclear Information System (INIS)

    Yin Ling; Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua

    2010-01-01

    The cleaning of fresh bones to remove their soft tissues while maintaining their structural integrity is a basic and essential part of bone studies. The primary issue is how the cleaning process influences bone microstructures and mechanical properties. We cleaned fresh lamb femurs using enzymatic maceration in comparison with water maceration at room temperature. The microstructures of these compact bones were examined using scanning electron microscopy (SEM) and their porosities were quantified using image processing software. The bone microhardness was measured using a Vickers indentation tester for studying the mechanical properties. The results show that enzymatic maceration of compact bone resulted in a significant microhardness reduction in comparison with water maceration. However, enzymatic maceration did not cause any significant change of porosity in bone structures.

  7. Influence of enzymatic maceration on the microstructure and microhardness of compact bone

    Energy Technology Data Exchange (ETDEWEB)

    Yin Ling [School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4811 (Australia); Venkatesan, Sudharshan; Kalyanasundaram, Shankar; Qin Qinghua, E-mail: ling.yin@jcu.edu.a [Department of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2010-02-15

    The cleaning of fresh bones to remove their soft tissues while maintaining their structural integrity is a basic and essential part of bone studies. The primary issue is how the cleaning process influences bone microstructures and mechanical properties. We cleaned fresh lamb femurs using enzymatic maceration in comparison with water maceration at room temperature. The microstructures of these compact bones were examined using scanning electron microscopy (SEM) and their porosities were quantified using image processing software. The bone microhardness was measured using a Vickers indentation tester for studying the mechanical properties. The results show that enzymatic maceration of compact bone resulted in a significant microhardness reduction in comparison with water maceration. However, enzymatic maceration did not cause any significant change of porosity in bone structures.

  8. Microhardness studies on nonlinear optical L-alanine single crystals

    Indian Academy of Sciences (India)

    evaporation technique over a load range of 10–50 g on selected broad (2 0 3) plane. Vickers (Hv) ... Meyer's index number (n) calculated from Hv shows that the material belongs to the soft material .... where Hk is Knoop microhardness value at a particular load, ... Chenthamarai S, Jayaraman D, Ushasree P M, Meera K,.

  9. Influence of remineralizing gels on bleached enamel microhardness in different time intervals.

    Science.gov (United States)

    Borges, Alessandra Bühler; Yui, Karen Cristina Kazue; D'Avila, Thaís Corrêa; Takahashi, Camila Lurie; Torres, Carlos Rocha Gomes; Borges, Alexandre Luis Souto

    2010-01-01

    This study evaluated the influence of bleaching gel pH, the effect of applying remineralizing gels after bleaching and the effect of artificial saliva on enamel microhardness. Seventy bovine incisors were divided into three groups: Group 1 (n=10) received no bleaching procedure (control); Group 2 was bleached with a 35% hydrogen peroxide neutral gel (n=30) and Group 3 was bleached with a 35% hydrogen peroxide acid gel (n=30). Each experimental group was subdivided into three groups (n=10) according to the post-bleaching treatment: storage in artificial saliva, application of a fluoride gel and application of a combination of calcium and fluoride gel. The specimens were stored in artificial saliva for 7, 15 and 30 days and enamel microhardness was evaluated. The Vickers microhardness data were analyzed by three-way RM ANOVA, which revealed a significant difference only for treatment factor. The Tukey's test showed that the groups bleached followed by no additional treatment exhibited microhardness means significantly lower than the bleached groups treated with remineralizing gels. The Dunnet's test showed a significant difference only for the group bleached with acid gel without remineralizing treatment compared to the control group measured immediately after bleaching. It was concluded that acid bleaching gel significantly reduced enamel microhardness and that use of remineralizing gels after bleaching can significantly enhance the microhardness of bleached enamel.

  10. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel.

    Science.gov (United States)

    Fatima, Nazish; Ali Abidi, Syed Yawar; Meo, Ashraf Ali

    2016-02-01

    To evaluate the effect of home-use bleaching agent containing 16% Carbamide Peroxide (CP) and in-office bleaching agent containing 38% Hydrogen Peroxide (HP) on enamel micro-hardness. An in vitroexperimental study. Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Atotal of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37°C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37°C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. In the control group, the baseline micro-hardness was 181.1 ±9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ±10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ±23 on day 1, 170 ±30 on day 7 and 173 ±23 on day 14 (p = 0.256). The statistically insignificant difference was found among micro-hardness values of different bleaching

  11. In Vitro Comparative Study of Two Different Bleaching Agents on Micro-hardness Dental Enamel

    International Nuclear Information System (INIS)

    Fatima, N.; Abidi, S. Y. A.; Meo, A. A.

    2016-01-01

    Objective: To evaluate the effect of home-use bleaching agent containing 16 percentage Carbamide Peroxide (CP) and in-office bleaching agent containing 38 percentage Hydrogen Peroxide (HP) on enamel micro-hardness. Study Design: An in vitro experimental study. Place and Duration of Study: Department of Operative Dentistry and Science of Dental Materials at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences and Material Engineering Department of NED University of Engineering and Technology, Karachi, from July to December 2014. Methodology: A total of 90 enamel slabs from 45 sound human 3rd molar were randomly divided into 3 groups. Each group contained 30 specimens (n=30). Group 1 was kept in artificial saliva at 37 Degree C in incubator during the whole experiment. However, Groups 2 and 3 were treated with power whitening gel and tooth whitening pen respectively. After bleaching session, specimens were thoroughly rinsed with deionized water again for 10 seconds and then stored in artificial saliva at 37 Degree C in incubator. Artificial saliva was changed after every 2 days. The Vickers hardness tester (Wolpert 402 MVD, Germany) was adjusted to a load of 0.1 kg (100 gm) and dwell time of 5 seconds. Three Vickers were performed on each specimen using a hardness tester according to the ISO 6507-3:1998 specification. Micro-hardness measurements were performed before and after bleaching at day 1, 7 and 14. Results: In the control group, the baseline micro-hardness was 181.1 ± 9.3 which was reduced after the storage on day 1, 7 and 14 (p = 0.104). In Group 2, baseline micro-hardness was 180.4 ±10.1 which was reduced to 179.79 ± 10.0 units after day 1. Whereas, on day 7 and 14, the values of micro-hardness were 179.8 ±10 and 179.7 ±10.29, respectively (p=0.091). Furthermore, the baseline micro-hardness in Group 3 was 174.0 ±22.9 units which was reduced to 173 ± 23 on day 1, 170 ±30 on day 7 and 173 ± 23 on day 14 (p = 0

  12. Development of the ultra-microhardness technique for evaluating stress-strain properties of metals

    International Nuclear Information System (INIS)

    Yasuda, K.; Shinohara, K.; Kinoshita, C.; Yamada, M.; Arai, M.

    1994-01-01

    A method is proposed for evaluating the strain-hardening exponent (n) and the 0.2% yield stress (σ 0.2 ) for fcc metals solely through the ultra-microhardness technique. To this end, ultra-microhardness (H um ) and Vickers hardness (H v ) measurements together with tensile tests were carried out for Ni and Al with various n and σ 0.2 . The value of H v is proportional to H um at the load P, and the proportional constant depends on P but scarcely on metals. The ratio of H um (P)/H um 0 (P) is scaled solely by n as a linear function independent of the specific metal, where H um 0 (P) is the value of H um (P) of specimens which show no strain-hardening. Based on the results and Cahoon's relation which relates H v , σ 0.2 and n, the values of n and σ 0.2 are evaluated solely through the ultra-microhardness technique. The proposed equation can be explained in terms of a constitutive equation for polycrystalline metals. ((orig.))

  13. Effect of four over-the-counter tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Majeed, A; Grobler, S R; Moola, M H; Oberholzer, T G

    2011-10-01

    This in vitro study evaluated the effect of four over-the-counter tooth-whitening products on enamel microhardness. Fifty enamel blocks were prepared from extracted human molar teeth. The enamel surfaces were polished up to 1200 grit fineness and the specimens randomly divided into five groups. Enamel blocks were exposed to: Rapid White (n=10); Absolute White (n=10); Speed White (n=10) and White Glo (n=10) whitening products, according to the manufacturers' instructions. As control, ten enamel blocks were kept in artificial saliva at 37 degrees C without any treatment. Microhardness values were obtained before exposure (baseline) and after 1, 7 and 14-day treatment periods using a digital hardness tester with a Vickers diamond indenter. Data were analysed using Wilcoxon Signed Rank Sum Test, one-way ANOVA and Tukey-Kramer Multiple Comparison Test (penamel microhardness. Speed White increased the microhardness of enamel, while White Glo and artificial saliva had no effect on hardness. Over-the-counter tooth-whitening products might decrease enamel microhardness depending on the type of product.

  14. Effect of different bleaching strategies on microhardness of a silorane-based composite resin.

    Science.gov (United States)

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Mohammadi, Narmin; Ebrahimi Chaharom, Mohammad Esmaeel; Godrati, Mostafa; Savadi Oskoee, Ayda

    2016-01-01

    Background. Dentists' awareness of the effects of bleaching agents on the surface and mechanical properties of restorative materials is of utmost importance. Therefore, this in vitro study was undertaken to investigate the effects of different bleaching strategies on the microhardness of a silorane-based composite resin. Methods. Eighty samples of a silorane-based composite resin (measuring 4 mm in diameter and 2 mm in thickness) were prepared within acrylic molds. The samples were polished and randomly assigned to 4 groups (n=20). Group 1 (controls) were stored in distilled water for 2 weeks. The samples in group 2 underwent a bleaching procedure with 15% carbamide peroxide for two weeks two hours daily. The samples in group 3 were bleached with 35% hydrogen peroxide twice 5 days apart for 30 minutes each time. The samples in group 4 underwent a bleaching procedure with light-activated 35% hydrogen peroxide under LED light once for 40 minutes. Then the microhardness of the samples was determined using Vickers method. Data were analyzed with one-way ANOVA and post hoc Tukey tests (P bleaching agents significantly decreased microhardness compared to the control group (P 0.05). Conclusion. Bleaching agents decreased microhardness of silorane-based composite resin restorations, the magnitude of which depending on the bleaching strategy used.

  15. Application of instrumented microhardness method to follow the thermal ageing of cast duplex stainless steel

    International Nuclear Information System (INIS)

    Rezakhanlou, R.; Massoud, J.P.

    1993-03-01

    During the thermal ageing of cast duplex stainless steel the ferrite hardness largely increases. The measurement of the ferrite phase hardness can give us an indication of the level of the ageing process. But in order to have a representative value of the ferrite hardness, the applied load must be low enough. For this reason, we have used the instrumented microhardness (IMH) test which consists to measure continuously the applied load and the indentation depth during the operation. The mechanical analysis of the so called indentation curve allows us to calculate the hardness and the young modulus of the indented material for loads as low as 2 g. The results confirm the Vickers microhardness measurement under 50 g loads i.e. a sharp increase of the ferrite hardness (x 2.3 as compared to the as received state) for the highly aged sample. It should be noted that the results obtained with the IMH are completely independent of the operator. (authors). 18 refs., 7 figs., 6 tabs

  16. Radiopacity and microhardness changes and effect of X-ray operating voltage in resin-based materials before and after the expiration date

    Directory of Open Access Journals (Sweden)

    Tirapelli Camila

    2004-01-01

    Full Text Available This study observed alteration in the radiopacity and microhardness of expired resin-based materials compared to non-expired materials and the operating characteristics of the X-ray source used. Five 2 mm-thick cured specimens were prepared for each material: composite resins (P60®, Z100®, and a compomer (Dyract AP®. Radiopacity of the specimens was evaluated comparing the density of the resin-based material to an equivalent (mm density of a 99.5% pure aluminum step wedge using a transmission densitometer. Surface microhardness measurements were carried out using a calibrated Vickers indenter on three different points of the same surface. ANOVA and Tukey tests (pre-set alpha = 0.05 revealed that expired materials showed no significant change in radiopacity. One material (Filtek P60 demonstrated lower radiopacity with lower KVp. Change in microhardness wa s statistically significant for Z100: for this material, the microhardness after expiration was significantly lower than before the expiration date.

  17. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  18. Thermomechanical Properties of Sb2O3-TeO2-V2O5 Glassy Systems: Thermal Stability, Glass Forming Tendency and Vickers Hardness

    Science.gov (United States)

    Souri, Dariush; Torkashvand, Ziba

    2017-04-01

    Three-component 40TeO2-(60- x)V2O5- xSb2O3 glasses with 0 ≤ x ≤ 10 (in mol.%) were obtained by the rapid melt-quenching method. These glasses were studied with respect to some mechanical properties with the goal of obtaining information about their structure. The Vickers hardness test was employed to obtain Vickers micro-hardness ( H V) at two different loads, which was within the range of 13.187-17.557 GPa for a typical 0.1 HV (0.9807 N) load. In addition, theoretical micro-hardness ( H) was investigated and compared with experimental H V, showing the elevating trend with increase of Sb2O3 content, as for H V. Furthermore, differential scanning calorimetry (DSC) was employed within the range of 150-500°C at heating rates of φ = 3 K/min, 6 K/min, 9 K/min, 10 K/min, and 13 K/min. In this work, thermal stability ( T s = T cr - T x) and glass forming tendency ( K gl) were measured and reported for these glasses to determine the relationship between the chemical composition and the thermal stability, in order to interpret the structure of glass. Generally, from the ascertained outputs [analysis of mechanical data, titration study, the values of reduced fraction of vanadium ions ( C V) and oxygen molar volume ( V_{{O}}^{*} )], it was found that the micro-hardness had an increasing trend with increasing the Sb2O3 content. Among the studied glasses, the sample with x = 8 had a higher average micro-hardness value, the highest average thermal stability and glass forming tendency with respect to the other samples, which makes it a useful material (owning very good resistance against thermal attacks) for device manufacturing.

  19. Microstructures and Microhardness Properties of CMSX-4® Additively Fabricated Through Scanning Laser Epitaxy (SLE)

    Science.gov (United States)

    Basak, Amrita; Holenarasipura Raghu, Shashank; Das, Suman

    2017-12-01

    Epitaxial CMSX-4® deposition is achieved on CMSX-4® substrates through the scanning laser epitaxy (SLE) process. A thorough analysis is performed using various advanced material characterization techniques, namely high-resolution optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and Vickers microhardness measurements, to characterize and compare the quality of the SLE-fabricated CMSX-4® deposits to the CMSX-4® substrates. The results show that the CMSX-4® deposits have smaller primary dendritic arm spacing, finer γ/ γ' size, weaker elemental segregation, and higher microhardness compared to the investment cast CMSX-4® substrates. The results presented here demonstrate that CMSX-4® is an attractive material for laser-based AM processing and, therefore, can be used in the fabrication of gas turbine hot-section components through AM processing.

  20. [Influence of Coca-Cola on early erosion and surface microhardness of human enamel: an in situ study].

    Science.gov (United States)

    Yuan, M; Zhang, Q; Gao, X J

    2016-06-01

    Assessed the effect of single dose attack of Coca-Cola on early erosion and surface microhardness of permanent human enamel, in order to provide diet instructions on minimum amount and frequency of carbonated beverage consumption. Eighty enamel slabs were prepared out of 10 extracted human mandibular third molars, and distributed into 8 groups with randomized block design(n=10). Ten generally healthy volunteers with normal saliva secretion wore acrylic palatal appliances containing 2 enamel slabs, with formation of a salivary pellicle 2 h ahead. The volunteers were instructed to drink 100 ml fresh Coca-Cola within 20 s. And then the alterations of the enamel slabs were measured using a Vicker's microhardness tester at 1, 2, 4, 6, 8, 10, 20 and 30 min after the consumption of Coca-Cola. For each volunteer, the experiment was carried out in four days, 2 samples were examined each time. Data were analyzed using Kruskal-Wallis and Wilcoxon tests(α =0.05). Significant decreases in surface microhardness(SMH)were observed in each time point(PCoca-Cola could lead to significant decrease of enamel microhardness and initiate erosion of enamel surface. Enamel surface microhardness decreased to the lowest points at 2-8 min, and began to recover after 10 min. The enamel surface microhardness could not fully recovered to the baseline level in 30 min if no intervention was performed.

  1. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages.

    Science.gov (United States)

    Haghgou, Hamid R; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster.

  2. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    Science.gov (United States)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  3. Effects of applying anchovy (Stolephorus insularis) substrates on the microhardness of tooth enamel in Sprague-Dawley rats

    Science.gov (United States)

    Hendrik, Y. C.; Puspitawati, R.; Gunawan, H. A.

    2017-08-01

    Anchovies (Stolephorus insularis) contain high levels of fluor in the form of CaF2. The aim of this study is to analyze changes in tooth enamel microhardness after application of anchovy substrates by feeding or as a topical fluoridation material. An in vivo study of the lower left incisors of nine Sprague-Dawley rats was conducted. The sample was comprised of baseline and treatment groups, including feeding application, topical application, negative control feeding, and negative control topical groups. The treatment groups were given 5% anchovy substrates through feeding and topical applications. After treatment, tooth samples were extracted from each of the rats for examination, and statistical analyses were performed after determining hardness numbers for enamel surfaces using Vickers microhardness tester. Vickers hardness numbers (VHNs) for anchovy substrate application and consumption by feeding (440.3 ± 24.72) were higher than for the negative control (315.80 ± 17.51). VHNs for the topical application group were higher than for the negative control (347.28 ± 28.56) and for the feeding group. The use of anchovy as a fluoridation material in form of topical application is potentially an effective method for increasing the microhardness of the tooth enamel surface

  4. CORROSION IN ACIDIC BEVERAGES AND RECOVERY OF MICROHARDNESS OF HUMAN TEETH ENAMEL

    Directory of Open Access Journals (Sweden)

    Petra Gaalova

    2016-05-01

    Full Text Available We studied the influence of corrosion in acidic beverages (white wine, pH~3.5 on micromechanical properties of human teeth. Simultaneously, the effect of fluorine-containing mouthwash (pH~4.4 and of artificial saliva (pH~5.3 in terms of their protective action against corrosion, and the recovery of mechanical properties through fluoridation and re-calcification was studied. The influence of the solutions on Vickers hardness of dental enamel was monitored on the basis of results from the corrosion tests carried out under quasi-dynamic conditions. The tests were performed at the temperature corresponding to the temperature of human body (37°C. The measurements confirmed a significant deterioration of microhardness with prolonged exposure to white wine. The Vickers hardness decreased from 347 HV0.2 in un-corroded specimens to 186 HV0.2 in samples corroded for 60 minutes in white wine. A recovery of Vickers hardness was observed after 60 minutes exposition time in the fluoridation solution, with the increase from 186 to 372 HV0.2. Similar effect was observed in the artificial saliva solution, with observed hardness increase from 186 to 320 HV0.2. Healing of corrosion-induced defects by the action of both solutions was observed by SEM, and associated with observed increase of hardness

  5. The effect of fiber laser parameters on microhardness and microstructure of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Mohammed Ghusoon R.

    2017-01-01

    Full Text Available An investigation was implement to study the influence of laser power, and speed of the welding on hardness, microstructure, and penetration of laser welding bead on plate duplex stainless steel, which is not exhibited so far. A fiber laser was selected for welding duplex stainless steel sheet with 2 mm thickness. Then, optical microscope (OM was used in the morphologic observation of cross section, penetration depth, and bead width. Microhardness of the welded sheet was measured using Vickers hardness. Profiles of hardness and microstructure were utilized to discriminate welding line and to propose superior welding parameters. The experimental results displayed that, a good quality of duplex steel welds can be acquired when a suitable fiber laser welding parameters were selected. It was found that microhardness profiles showed a rise in the hardness of the weld and heat-affected zones as the solidification process proceeds rapidly. Additionally, the crystal solidification process induced by the fiber laser welding was schematically clarified and systematically exposed.

  6. Effect of storage solutions on microhardness of crown enamel and dentin.

    Science.gov (United States)

    Aydın, Berdan; Pamir, Tijen; Baltaci, Aysun; Orman, Mehmet N; Turk, Tugba

    2015-01-01

    The aim of this study was to determine alterations in microhardness of crown dentin and enamel, after 2 and 12-month storage in de-ionized water, 0.2% glutaraldehyde, Hanks' Balanced Salt Solution (HBSS), 0.1% sodium hypochlorite (NaOCl) or 0.1% thymol. Freshly extracted, nonsterile 60 intact human premolars were distributed to five groups. Six teeth from each group were evaluated after two, and other six teeth were evaluated after 12 months storage. After grinding and polishing of teeth, Vickers hardness was evaluated with making indentations on enamel and dentin, using a pyramid diamond indenter tip exerting 100 g load for 15 s. After 2 months storage in solutions, range of the hardness values (HV) of enamel and dentin were in between 315-357 and 64-67, respectively. However, 12 months storage of the teeth resulted in a statistically significant decrease in microhardness when compared to microhardness of teeth stored for 2 months (P = 0.001). Although the differences were not significant regarding solutions, all solutions decreased the microhardness both in enamel and dentin (P > 0.05). However, decrease in microhardness was relatively less in de-ionized water and thymol solutions while glutaraldehyde decreased microhardness the most: 63% for enamel and 53% for dentin. Microhardness of enamel and dentin was in an acceptable range when teeth were stored for 2 months in de-ionized water, glutaraldehyde, HBSS, NaOCl or in thymol; thus, teeth kept up to 2 months in these solutions can be used for mechanical in vitro tests. However, 12 months storage significantly decreased the microhardness of enamel and dentin.

  7. Influence of nitrogen immersion on the mechanical properties of (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite

    Science.gov (United States)

    Rahal, H. T.; Awad, R.; Abdel-Gaber, A. M.

    2018-05-01

    (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite, where 0.0 ≤ x ≤ 0.2 wt%., were prepared using solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). Vickers microhardness measurements (HV) were carried out at room temperature under different applied loads varying from 0.49 to 9.8 N, and dwell times (40 and 59 s). It was noted that dwell time and Vickers microhardness were inversely proportional. HV values increase as x increases up to 0.1 wt%, and then they decrease with further increases in x. All samples exhibit indentation size effect (ISE) with normal trend, as Vickers microhardness decreases by increasing the applied loads. Also, Vickers microhardness measurements of the prepared samples were done during both loading forces up to 9.8 N and unloading downwards to 0.49 N. It was noted that unloading values of Vickers microhardness are slightly greater than loading values. The elastic/plastic deformation model (EPD) was used to interpret the loading and unloading Vickers microhardness results. It is clearly noted that values of do, the added elastic component the measured plastic indentation semi-diagonal (d),in the unloading results are much higher than those for loading data. The effect of liquid nitrogen immersion for 16 h on Vickers microhardness values was examined. A significant improvement in the Vickers microhardness of (Bi, Pb)-2223 samples immersed in liquid nitrogen was observed. Such behavior is attributed to the fact that nitrogen immersion increases the volume contraction of the superconductor matrix, causing the shrink of the pores and voids present in the samples. Different models were used to analyze the obtained results such as Meyer's law, Hays-Kendall (HK) approach, elastic/plastic deformation (EPD) model, and modified proportional specimen resistance (MPSR) model. The experimental results of Vickers microhardness

  8. Enamel microhardness and bond strengths of self-etching primer adhesives.

    Science.gov (United States)

    Adebayo, Olabisi A; Burrow, Michael F; Tyas, Martin J; Adams, Geoffrey G; Collins, Marnie L

    2010-04-01

    The aim of this study was to determine the relationship between enamel surface microhardness and microshear bond strength (microSBS). Buccal and lingual mid-coronal enamel sections were prepared from 22 permanent human molars and divided into two groups, each comprising the buccal and lingual enamel from 11 teeth, to analyze two self-etching primer adhesives (Clearfil SE Bond and Tokuyama Bond Force). One-half of each enamel surface was tested using the Vickers hardness test with 10 indentations at 1 N and a 15-s dwell time. A hybrid resin composite was bonded to the other half of the enamel surface with the adhesive system assigned to the group. After 24 h of water storage of specimens at 37 degrees C, the microSBS test was carried out on a universal testing machine at a crosshead speed of 1 mm min(-1) until bond failure occurred. The mean microSBS was regressed on the mean Vickers hardness number (VHN) using a weighted regression analysis in order to explore the relationship between enamel hardness and microSBS. The weights used were the inverse of the variance of the microSBS means. Neither separate correlation analyses for each adhesive nor combined regression analyses showed a significant correlation between the VHN and the microSBS. These results suggest that the microSBS of the self-etch adhesive systems are not influenced by enamel surface microhardness.

  9. The Effect of Diode Laser Treatment for Root Canal Disinfection on Fracture Resistance and Micro-hardness of the Tooth

    International Nuclear Information System (INIS)

    Elmiligy, H.H; Diab, A.H.; Sabet, N.E.; Saafan, A.M.

    2014-01-01

    This study evaluated the effect of diode laser treatment for root canal disinfection on fracture resistance and micro-hardness of the tooth. Sixty freshly extracted mandibular and maxillary premolars were accessed under coolant then root canals were flared up to apical preparation size 40 MFA coupled with 5.25% NaOCl as an irrigant. Teeth were divided into two groups, control group (group I) and lased group (group II) that was lased by diode laser with average power 2 w through fibrooptic into the canal 2 mm shorter than the apex. Each tooth was embedded in acrylic block, and then subjected to the fracture resistance test. Each root was then sectioned transversely and polished to record dentin Vickers hardness. Data was analysed with student t-test then with linear regression test. The Lased samples presented a significantly higher resistance to fracture than unlased samples. There was no statistically significant differences found between Vickers hardness (HV) of lased and unlased samples and there was no relation between fracture resistance and microhardness. Diode laser (980 nm) treatment had no adverse effect on dentin microhardness, also it increased the fracture resistance of dentin. Diode laser (980 nm) treatment could attain better function ability and maintenance of tooth after endodontic treatment.

  10. Influence of Scanning Speed on the Microhardness Property of Additive Manufactured Titanium Alloy

    Directory of Open Access Journals (Sweden)

    R. M. Mahamood

    2016-12-01

    Full Text Available Ti6Al4V is an important aerospace alloy, and it is challenging processing this material through traditional manufacturing processes. Laser metal deposition, an additive manufacturing process offers lots of advantages for processing aerospace materials, the ability to increase buy-to-fly ratio by at least 80% amongst other things. An improved property is achievable through laser metal deposition. The Ti6Al4V powder of particle size 150-200 μm was deposited using a 4.0 kW Rofin Sinar Nd: YAG laser on 72x72x5 mm Ti6Al4V substrate. The powder was delivered using argon gas as a shield. The scanning speed was varied between 0.01 and 0.12 m/sec. The microstructures of the deposited layers were studied by optical microscope and the microhardness was also measured using the Vickers hardness tester. The properties of the deposited tracks were compared to that of the substrate. The microhardness was found to increase with increase in scanning speed.

  11. Effect of titanium dioxide nanoparticle addition into orthodontic adhesive resin on enamel microhardness

    Science.gov (United States)

    Andriani, A.; Krisnawati; Purwanegara, M. K.

    2017-08-01

    White spots are an early sign of enamel demineralization, which may lead to development of dental caries. Enamel demineralization can be determined by examining the microhardness number of the enamel. Addition of antibacterial agents such as TiO2 nanoparticles into the orthodontic adhesive (TiO2 nanocomposite) is expected to prevent enamel demineralization. The objective of this study is to evaluate the effect of TiO2 nanocomposites in maintaining enamel microhardness around orthodontic brackets. The bracket was bonded to the premolar using Transbond XT (group 1), 1% TiO2 nanocomposites (group 2), and 2% TiO2 nanocomposites (group 3). Group 4 was the control group, and it was not given any treatment prior to the microhardness test. The samples of groups 1, 2, and 3 were soaked in BHI solution containing Streptococcus mutans, and then stored in an incubator at 37°C for 30 days. Demineralizations were determined on cross-sectioned tooth 100μm and 200μm cervical to the bracket by the Vickers microhardness test. The microhardness values were significantly different between every group, with the highest value obtained for control group, followed by the 2% TiO2 nanocomposite group, 1% TiO2 nanocomposite group, and then the Transbond XT group. The results of this study reveal that 2% TiO2 nanocomposites have the ability to maintain enamel microhardness around the orthodontic bracket.

  12. Study of the variations of the microhardness and electrical resistivity in nuclear materials

    International Nuclear Information System (INIS)

    Lucki, G.

    1982-01-01

    Data about the effect of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05; 0.10; 0.20; 0.50 and 1.00 wt % of Nb additions are presented with the purpose of contributing to the technology of fabrication and characterization of materials intended to perform in nuclear environments. The samples have been irradiated with fast neutrons (E > 1 MeV) inside IPEN's reactor core in argon atmosphere and temperature range of 200 - 600 0 C (isothermal annealings diring 7 hours) with fluences of 10 17 n/cm 2 . Identical isothermal annealings have been performed without irradiation. Present work also reports to Vickers microhardness of ZrNb (97.5 - 2.5 wt. %) alloy and zircalloys 2 and 4 before irradiation. (Author) [pt

  13. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-11-01

    Full Text Available Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition, molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ProRoot MTA (Dentsply Tulsa Dental, and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively. However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively. Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

  14. Influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins.

    Science.gov (United States)

    Karaman, Emel; Tuncer, Duygu; Firat, Esra; Ozdemir, Oguz Suleyman; Karahan, Sevilay

    2014-05-01

    To investigate the influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. Three different composite resins (Filtek Silorane, Filtek P60, Filtek Supreme XT) were tested. Thirty cylindrical specimens (10 × 2 mm) per material were prepared and polished with a series of aluminum-oxide polishing disks. Each group was then randomly subdivided into three groups according to the test beverages: distilled water (control), cola and coffee. The samples were immersed into different beverages for 15 days. Color, surface roughness and microhardness values were measured by a spectrophotometer, prophylometer and Vickers hardness device respectively, at baseline and after 15 days. The data were subjected to statistical analysis. Immersion in coffee resulted in a significant discoloration for all the composites tested, although the color change was lower in Filtek Silorane than that of MBCs (p composites tested showed similar surface roughness changes after immersion in different beverages (p > 0.05). Besides coffee caused more roughness change than others. Immersion in coffee caused highest microhardness change in Filtek Supreme XT (p resin composites, depending on the characteristics of the materials.

  15. Identification of a novel FAM83H mutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta.

    Science.gov (United States)

    Hyun, H-K; Lee, S-K; Lee, K-E; Kang, H-Y; Kim, E-J; Choung, P-H; Kim, J-W

    2009-11-01

    To determine the underlying molecular genetic aetiology of a family with the hypocalcified form of amelogenesis imperfecta and to investigate the hardness of the enamel and dentine of a known FAM83H mutation. Mutational screening of the FAM83H on the basis of candidate gene approach was performed. All exons and exon-intron boundaries was amplified and sequenced. A microhardness test was performed to measure the Vickers microhardness value. A novel nonsense mutation (c.1354C>T, p.Q452X) was identified in the last exon of FAM83H, which resulted in soft, uncalcified enamel. The affected enamel was extremely soft (about 17% of the normal control), but the underlying dentine was as hard as the normal control. Mutational analysis revealed a novel mutation in FAM83H gene. Hardness of dentine was not affected by the mutation, whilst the enamel was extremely soft.

  16. The effect of two in-office and home bleaching gels on microhardness of composite resin

    Directory of Open Access Journals (Sweden)

    Alizadeh Oskoee P.

    2007-07-01

    Full Text Available Background and Aim: Bleaching products as chemical materials can exert side effects on soft and hard tissues and existing restorative materials with oxidizing mechanism. The aim of this study was to evaluate the effect of 15% and 35% carbamide peroxide gels as home and in-office bleaching agents respectively, on microhardness and surface topography of composite resin.Materials and Methods: In this in vitro study, a total of 75 disc shaped specimens were prepared from Z100  composite resin (3M and randomly divided into three groups with following treatment designs: group 1, 370C distilled water, group 2, 15% carbamide peroxide, 6 hours/day for 3 weeks, group 3, 35% carbamide peroxide 30 minutes/week for 3 weeks. The microhardness (Vickers hardness of samples was measured using Shimadzu set on three different points of each sample. 8 samples of each group were selected randomly to be assessed by scanning electron microscopy (SEM for probable changes in surface topography. Data were analyzed using one way ANOVA and Duncan tests with p<0.05 as the level of significance. Results: 15% carbamide peroxide group had the maximum amount of microhardness (84.59±1.87 and 35% carbamide peroxide group had the minimum (76. 14±1.77. Only the difference between home bleaching and control group was not statistically significant (P=0.24. The SEM assessing revealed no changes in surface topography.Conclusion: Based on the results of this study, in-office bleaching may decrease the microhardness of composite resin.

  17. Effects of the bleaching procedures on enamel micro-hardness: Plasma Arc and diode laser comparison.

    Science.gov (United States)

    Nematianaraki, Saeid; Fekrazad, Reza; Naghibi, Nasim; Kalhori, Katayoun Am; Junior, Aldo Brugnera

    2015-10-02

    One of the major side effects of vital bleaching is the reduction of enamel micro-hardness. The purpose of this study was to evaluate the influence of two different bleaching systems, Plasma Arc and GaAlAs laser, on the enamel micro-hardness. 15 freshly extracted human third molars were sectioned to prepare 30 enamel blocks (5×5 mm). These samples were then randomly divided into 2 groups of 15 each (n=15): a plasma arc bleaching group (: 350-700 nm) + 35% Hydrogen Peroxide whitening gel and a laser bleaching group (GaAlAs laser, λ: 810 nm, P: 10 W, CW, Special Tip) + 35% Hydrogen Peroxide whitening gel. Samples were subjected to the Vickers micro-hardness test (VHN) at a load of 50 g for 15s before and after treatment. Data were statistically analyzed by a Mann-Whitney test (p≤0.05). In the GaAlAs laser group, the enamel micro-hardness was 618.2 before and was reduced to 544.6 after bleaching procedures. In the plasma arc group, the enamel micro-hardness was 644.8 before and 498.9 after bleaching. Although both techniques significantly reduced VHN, plasma arc bleaching resulted in a 22.62% reduction in VHN for enamel micro-hardness, whereas an 11.89% reduction in VHN was observed for laser bleaching; this difference is statistically significant (plaser than with the plasma arc. Therefore GaAlAs laser bleaching has fewer harmful effects than plasma arc in respect to enamel micro-hardness reduction.

  18. Microhardness of the YbxY1-xInCu4 alloy system: the of electronic structure on hardness

    International Nuclear Information System (INIS)

    Ocko, M; Sarrao, J L; Stubicar, N; Aviani, I; Simek, Z; Stubicar, M

    2003-01-01

    We show that the Vickers microhardness, measured on flux grown single crystals of the Yb x Y 1-x InCu 4 alloy system, although sample dependent, exhibits clear concentration dependence; it increases with decreasing x. Such a dependence is not expected because the cubic lattice parameter increases with decreasing x and one expects then a decrease of hardness with decreasing x. Also, such a concentration dependence is in accordance with neither the Mott-Nabarro theory nor other known experimental results. We ascribe the observed dependence to the change of the electronic structure of the Yb x Y 1-x InCu 4 alloy system with x

  19. Shear punch and microhardness tests for strength and ductility measurements

    International Nuclear Information System (INIS)

    Lucas, G.E.; Odette, G.R.; Sheckherd, J.W.

    1983-01-01

    In response to the requirements of the fusion reactor materials development program for small-scale mechanical property tests, two techniques have been developed, namely ball microhardness and shear punch tests. The ball microhardness test is based on the repeated measurement at increasing loads of the chordal diameter of an impression made by a spherical penetrator. A correlation has been developed to predict the constitutive relation of the test material from these data. In addition, the indentation pile-up geometry can be analyzed to provide information on the homogeneity of plastic flow in the test material. The shear punch test complements the microhardness test. It is based on blanking a circular disk from a fixed sheet metal specimen. The test is instrumented to provide punch load-displacement data, and these data can be used to determine flow properties of the test material such as yield stress, ultimate tensile strength, work-hardening exponent, and reduction of area

  20. Effects of Wet and Dry Finishing and Polishing on Surface Roughness and Microhardness of Composite Resins

    Science.gov (United States)

    Nasoohi, Negin; Hoorizad, Maryam

    2017-01-01

    Objectives: This study aimed to assess the effect of wet and dry finishing and polishing on microhardness and roughness of microhybrid and nanohybrid composites. Materials and Methods: Thirty samples were fabricated of each of the Polofil Supra and Aelite Aesthetic All-Purpose Body microhybrid and Grandio and Aelite Aesthetic Enamel nanohybrid composite resins. Each group (n=30) was divided into three subgroups of D, W and C (n=10). Finishing and polishing were performed dry in group D and under water coolant in group W. Group C served as the control group and did not receive finishing and polishing. Surface roughness of samples was measured by a profilometer and their hardness was measured by a Vickers hardness tester. Data were analyzed using two-way ANOVA (Pcomposites (Pcomposites (Pcomposites (Pcomposite resins. PMID:29104597

  1. The investigation of Y doping content effect on the microstructure and microhardness of tungsten materials

    International Nuclear Information System (INIS)

    Zhao, Mingyue; Zhou, Zhangjian; Ding, Qingming; Zhong, Ming; Tan, Jun

    2014-01-01

    In this study, the microstructure and microhardness of tungsten–yttrium (W–Y) composites were investigated as a function of Y doping content (0.25–3 wt%). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W–Y alloys when the Y content was higher than 0.5 wt%. The EDS analysis revealed that the Y rich phases were complex (W–Y) oxides formed during the sintering process. The Y doping content showed obvious influence on the refinement of tungsten grains during sintering. W–1.5Y composite showed the finest microstructure with an average grain size of 0.32 μm, and thus achieved the highest Vickers microhardness with the value of 770 HV 0.2

  2. Study of Microhardness and Electrical Properties of Proton Irradiated Polyether sulfone

    International Nuclear Information System (INIS)

    Quresh, A.

    2006-01-01

    Polyethersulfone (PES) films were irradiated with 3 MeV proton beams in the fluence range 10 1 3-10 1 5 ions/cm 2 . The irradiated samples were characterized by a Vickers' microhardness tester at a load of 100-1000 mN, and electrical properties in the frequency range 100 Hz to 1MHz by an LCR meter. It is observed that microhardness increases as fluence increases up to the fluence of 10 1 4 ions/cm 2 and decreases on further increase of the fluence. This may be attributed to the fact that a cross linking phenomenon dominates up to the fluence of 10 1 4 ions/cm 2 . There is an exponential increase in conductivity and the effect of irradiation is significant at higher fluences. The dielectric constant/loss was found to change significantly due to irradiation. It has been found that dielectric response in both pristine and irradiated samples obey universal law is given by ε α f n -1.These results were corroborated with structural changes observed in FTIR spectra of pristine and irradiated samples

  3. Surface Roughness, Microhardness, and Microleakage of a Silorane-Based Composite Resin after Immediate or Delayed Finishing/Polishing

    Directory of Open Access Journals (Sweden)

    Fernanda Carvalho Rezende Lins

    2016-01-01

    Full Text Available Objective. This study evaluated the effect of immediate or delayed finishing/polishing using different systems on the surface roughness, hardness, and microleakage of a silorane-based composite. Material and Methods. Specimens were made with silorane-based composite (Filtek P90, 3M ESPE and assigned to the treatments: control (light-cured; aluminum oxide discs (Sof-Lex, 3M ESPE; diamond-impregnated silicone tips (Astropol, Ivoclar Vivadent; aluminum oxide-impregnated silicone tips (Enhance, Dentsply. Half of the specimens were finished/polished immediately and the rest after 7 days. Surface roughness (Ra, μm; n=20 and Vickers microhardness (50 g; 45 s; n=10 were measured. Cavities were prepared in bovine incisors and filled with Filtek P90. The fillings received immediate or delayed finishing/polishing (n=10 and were subjected to dye penetration test (0.5% basic fuchsin, 24 h. Data were analyzed by ANOVA and Scheffe, Kruskal-Wallis, and Mann-Whitney tests (p<0.05. Results. The finishing/polishing system significantly influenced roughness and microhardness (p<0.0001. For enamel, microleakage was not affected by the finishing/polishing system (p=0.309. For dentin, Sof-Lex discs and Astropol points promoted greater microleakage than Enhance points (p=0.033. Conclusion. Considering roughness, microhardness, and microleakage together, immediate finishing/polishing of a silorane-based composite using aluminum oxide discs may be recommended.

  4. Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction.

    Science.gov (United States)

    Freddo, Rafael Augusto; Kapczinski, Myriam Pereira; Kinast, Eder Julio; de Souza Junior, Oswaldo Baptista; Rivaldo, Elken Gomes; da Fontoura Frasca, Luis Carlos

    2016-10-01

    To evaluate, by means of pin-on-disk testing, the wear potential of different dental ceramic systems as it relates to friction parameters, surface finish, and microhardness. Three groups of different ceramic systems (Noritake EX3, Eris, Empress II) with 20 disks each (10 glazed, 10 polished) were used. Vickers microhardness (Hv) was determined with a 200-g load for 30 seconds. Friction coefficients (μ) were determined by pin-on-disk testing (5 N load, 600 seconds, and 120 rpm). Wear patterns were assessed by scanning electron microscopy (SEM). The results were analyzed using one-way ANOVA and Tukey's test, with the significance level set at α = 0.05. The coefficients of friction were as follows: Noritake EX3 0.28 ± 0.12 (polished), 0.33 ± 0.08 (glazed); Empress II 0.38 ± 0.08 (polished), 0.45 ± 0.05 (glazed); Eris 0.49 ± 0.05 (polished), 0.49 ± 0.06 (glazed). Microhardness measurements were as follows: Noritake EX3 530.7 ± 8.7 (polished), 525.9 ± 6.2 (glazed); Empress II 534.1 ± 8 (polished), 534.7 ± 4.5 (glazed); Eris, 511.7 ± 6.5 (polished), 519.5 ± 4.1 (glazed). The polished and glazed Noritake EX3 and polished and glazed Eris specimens showed statistically different friction coefficients. SEM image analysis revealed more surface changes, such as small cracks and grains peeling off, in glazed ceramics. Wear potential may be related to the coefficient of friction in Noritake ceramics, which had a lower coefficient than Eris ceramics. Within-group analysis showed no differences in polished or glazed specimens. The differences observed were not associated with microhardness. © 2015 by the American College of Prosthodontists.

  5. The Effects of Remineralization via Fluoride Versus Low-Level Laser IR810 and Fluoride Agents on the Mineralization and Microhardness of Bovine Dental Enamel

    Directory of Open Access Journals (Sweden)

    Edith Lara-Carrillo

    2018-01-01

    Full Text Available The objective of this study was to assess the mineralization and microhardness of bovine dental enamel surfaces treated with fluoride, tri-calcium phosphate, and infrared (IR 810 laser irradiation. The study used 210 bovine incisors, which were divided into six groups (n = 35 in each: Group A: Untreated (control, Group B: Fluoride (Durapath-Colgate, Group C: Fluoride+Tri-calcium phosphate (Clin-Pro White-3 M, Group D: Laser IR 810 (Quantum, Group E: Fluoride+laser, and Group F: Fluoride+tri-calcium phosphate+laser. Mineralization was measured via UV-Vis spectroscopy for phosphorus and via atomic absorption spectroscopy for calcium upon demineralization and remineralization with proven agents. Microhardness (SMH was measured after enamel remineralization. Mineral loss data showed differences between the groups before and after the mineralizing agents were placed (p < 0.05. Fluoride presented the highest remineralization tendency for both calcium and phosphate, with a Vickers microhardness of 329.8 HV0.1/11 (p < 0.05. It was observed that, if remineralization solution contained fewer minerals, the microhardness surface values were higher (r = −0.268 and −0.208; p < 0.05. This study shows that fluoride has a remineralizing effect compared with calcium triphosphate and laser IR810. This in vitro study imitated the application of different remineralizing agents and showed which one was the most efficient for treating non-cavitated injuries. This can prevent the progression of lesions in patients with white spot lesions.

  6. Effects of 15% carbamide peroxide and 40% hydrogen peroxide on the microhardness and color change of composite resins.

    Directory of Open Access Journals (Sweden)

    Sedighe Sadat Hashemi Kamangar

    2014-04-01

    Full Text Available The aim of this study was to determine the effects of 40% hydrogen peroxide and 15% carbamide peroxide on microhardness and color change of a silorane-based composite resin in comparison with two methacrylate-based composites.Fifty-four disc-shaped specimens (A3 shade were fabricated of Filtek P90 (P90, Filtek Z350XT Enamel (Z350 and Filtek Z250 (Z250 (3MESPE (n=18. The samples of each composite were randomly divided into three subgroups of 6. The control subgroups were immersed in distilled water; the test groups were exposed to Opalescence Boost (OB once; and Opalescence PF (OP (Ultradent for two weeks. Vickers microhardness testing and a spectrophotometric analysis of the color of samples were performed before and after each intervention.The baseline microhardness of P90 was significantly lower than that of the other two composites (P=0.001, but no difference was found between Z250 and Z350 in this respect (P=0.293. Bleaching treatments significantly decreased the microhardness of Z250 and Z350 (P 0.05. No significant difference was detected between the two types of bleaching (P>0.05. After bleaching with OB, ΔE value was measured to be 3.12(1.97, 3.31(1.84 and 3.7(2.11 for P90, Z250 and Z350, respectively. These values were 5.98(2.42, 4.66(2.85 and 4.90(2.78 after bleaching with OP with no significant difference.Bleaching decreased the microhardness of methacrylate-based but not silorane-based composites. Although no significant differences were found in ΔE of composites, ΔE of all groups did not remain in the clinically acceptable range after bleaching except for P90 after bleaching with 40% H2O2 (ΔE < 3.3.

  7. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  8. Mechanical properties of materials used for temporary fixed dentures – in vitro study

    Directory of Open Access Journals (Sweden)

    Celej-Piszcz Elzbieta

    2017-06-01

    Full Text Available Objectives. The objective of the research was to define the mechanical properties of currently marketed temporary filling materials. Methods. Eight temporary filling materials: Boston, Dentalon, Protemp II, Revotek LC, Structure 2, Structure 3, UniFast LC, UniFast Trad were used to make 5 samples each of measurements 2 × 2 × 25 mm, in order to define the flexural strength, and 10 rings each of measurements 2 × 5 mm, in order to carry out the Vickers micro-hardness test. After preparation, the samples were stored in distilled water of temperature of 370°C, for 7 days. Subsequently, flexural strength and Vickers hardness testing was undertaken. Results. Composite temporary materials showed considerably better mechanical properties, both in flexural strength and in Vickers micro-hardness testing. Conclusions. the best mechanical properties, both in terms of flexural strength, as well as Vickers micro-hardness test can be observe among composite materials.

  9. Effect of CPP-ACP paste with and without CO2 laser irradiation on demineralized enamel microhardness and bracket shear bond strength

    Directory of Open Access Journals (Sweden)

    Nasrin Farhadian

    Full Text Available ABSTRACT Introduction: Many patients seeking orthodontic treatment already have incipient enamel lesions and should be placed under preventive treatments. The aim of this in vitro study was to evaluate the effect of CPP-ACP paste and CO2 laser irradiation on demineralized enamel microhardness and shear bond strength of orthodontic brackets. Methods: Eighty caries-free human premolars were subjected to a demineralization challenge using Streptococcus mutans. After demineralization, the samples were randomly divided into five equal experimental groups: Group 1 (control, the brackets were bonded without any surface treatment; Group 2, the enamel surfaces were treated with CPP-ACP paste for 4 minutes before bonding; Group 3, the teeth were irradiated with CO2 laser beams at a wavelength of 10.6 µm for 20 seconds. The samples in Groups 4 and 5 were treated with CO2 laser either before or through CPP-ACP application. SEM photomicrographs of a tooth from each group were taken to observe the enamel surface. The brackets were bonded to the buccal enamel using a conventional method. Shear bond strength of brackets and ARI scores were measured. Vickers microhardness was measured on the non-bonded enamel surface. Data were analyzed with ANOVA and Tukey test at the p< 0.05 level. Results: The mean shear bond strength and microhardness of the laser group were higher than those in the control group and this difference was statistically significant (p< 0.05. All groups showed a higher percentage of ARI score 4. Conclusion: CO2 laser at a wavelength of 10.6 µm significantly increased demineralized enamel microhardness and enhanced bonding to demineralized enamel.

  10. Dentine microhardness after different methods for detection and removal of carious dentine tissue

    Directory of Open Access Journals (Sweden)

    Fernanda Brandão Mollica

    2012-08-01

    Full Text Available There are several methods for identifying carious dentinal tissue aiming to avoid removal of healthy dentinal tissue. OBJECTIVES: The purpose of this study was to test different methods for the detection of carious dentinal tissue regarding the amount of carious tissue removed and the remaining dentin microhardness after caries removal. MATERIAL AND METHODS: The dentin surfaces of 20 bovine teeth were exposed and half of the surface was protected with nail polish. Cariogenic challenge was performed by immersion in a demineralizing solution for 14 days. After transverse cross-section of the crown, the specimens were divided into four groups (n=10, according to the method used to identify and remove the carious tissue: "Papacárie", Caries-detector dye, DIAGNOdent and Tactile method. After caries removal, the cross-sectional surface was included in acrylic resin and polished. In a microhardness tester, the removed dentin thickness and the Vickers microhardness of the following regions were evaluated: remaining dentin after caries removal and superficial and deep healthy dentin. RESULTS: ANOVA and Tukey's test (α=0.05 were performed, except for DIAGNOdent, which did not detect the presence of caries. Results for removed dentin thickness were: "Papacárie" (424.7±105.0; a, Caries-detector dye (370.5±78.3; ab, Tactile method (322.8±51.5; bc. Results for the remaining dentin microhardness were: "Papacárie" (42.2±10.5; bc, Caries-detector dye (44.6±11.8; abc, Tactile method (24.3±9.0; d. CONCLUSIONS: DIAGNOdent did not detect the presence of carious tissue; Tactile method and "Papacárie" resulted in the least and the most dentinal thickness removal, respectively; Tactile method differed significantly from "Papacárie" and Caries-detector dye in terms of the remaining dentin microhardness, and Tactile method was the one which presented the lowest microhardness values.

  11. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine

    Science.gov (United States)

    Taneja, Sonali; Kumari, Manju; Anand, Surbhi

    2014-01-01

    Objectives: The objective of this in vitro study was to assess the effect of different chelating agents on the calcium loss and its subsequent effect on the microhardness of the root dentin. Materials and Methods: Ten single rooted lower premolars were selected. The teeth were decoronated and thick transverse sections of 2 mm were obtained from the coronal third of the root. Each section was then divided into four quarters, each part constituting a sample specimen from the same tooth for each group. The treatment groups were: Group 1 (Control): 5% Sodium hypochlorite (NaOCl) for 5 min + distilled water for 5 min; Group 2: 5% NaOCl for 5 min + 17% ethylenediaminetetraacetic acid (EDTA) for 5 min; Group 3: 5% NaOCl for 5 min + 2.25% Peracetic acid (PAA) for 5 min and Group 4: 5% NaOCl for 5 min + QMix for 5 min respectively. The calcium loss of the samples was evaluated using the Atomic Absorption Spectrophotometer followed by determination of their microhardness using Vickers Hardness Tester. Data was analyzed using one-way ANOVA, Post hoc Tukey test and Pearson correlation. Results: The maximum calcium loss and minimum microhardness was observed in Group 3 followed by Group 2, Group 4 and Group 1. There was a statistically significant difference between all the groups except between Groups 2 and 4. Conclusions: Irrigation with NaOCl + 2.25% PAA caused the maximum calcium loss from root dentin and reduced microhardness. A negative correlation existed between the calcium loss and reduction in the microhardness of root dentin. PMID:24778513

  12. Microhardness measurement in AISI 321 stainless steel with niobium additions before and after fast neutron irradiation

    International Nuclear Information System (INIS)

    Galli, V.L.; Lucki, G.

    1980-01-01

    Data about influence of neutron irradiation on the microhardness of stainless steel of type AISI 321 with 0.05 and 0.1wt.% Nb additions are presented. The microhardness measurements were made in the range of 300 to 650 0 C, before and after fast neutron irradiation with fluences about 10 17 n/cm 2 . Our results indicate that radiation damage peaks occur around 480 0 C for the stainless steel of type AISI 321 without Nb addition, around 500 0 C for the composition with 0.05 wt.% Nb addition and around 570 0 C for the composition with 0.1 wt.% Nb addition. Microhardness data are in agreement with those obtained by means of electrical resistivity measurements, performed at the same conditions. (Author) [pt

  13. Study of the carburization of an austenitic steel through optical and scanning electron microscopy, microhardness and X ray microanalysis of C

    International Nuclear Information System (INIS)

    Champigny, Michel; Gauvain, Danielle; Meny, Lucienne

    1977-01-01

    Carburization tests of 316 L stainless steel have been performed in liquid sodium at 550, 600 and 650 0 C; the depth of penetration of carbon is of the order of 300 μm. The structure of the carburized layer has been studied through optical and scanning electron microscopy: the carbides precipitate first within the grain boundaries, making a nearly continuous superficial carbide layer. The Vickers and Knoop (under 50 g load) microhardness measurements determine the depth of carburization with an error of +-50μm. Though the tensile strength does not vary much with the carburization, the striction, and then the deformation capability, is highly decreased. The variation of the concentration in carbon versus distance has been measured by quantitative X ray microanalysis, using diamond as a standard; the best experimental conditions, regarding the overlapping of the Cr 2 Lα and Ni 3 Lα lines with CK line have been chosen, and the minimum contamination during the measurements has been performed. The results have been confirmed by the analysis of carbon in Fe Ni standards containing less than 1 w/o carbon. The results are discussed with the published data. This work shows that: the increase of microhardness is not related in a simple way with the carbon content of the stainless steel; the carbon concentration can be measured quickly with an error of +-5% when 0,2 [fr

  14. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.

    Science.gov (United States)

    Gabriel, Sinara B; de Almeida, Luiz H; Nunes, Carlos A; Dille, Jean; Soares, Glória A

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti-12Mo-13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000°C for 24h, water quenching, cold forging to reduce 80% of the area, and ageing at 500°C for 24h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240±100 nm length) and massive particles of 200-500 nm size. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vickers Hardness of Diamond and cBN Single Crystals: AFM Approach

    Directory of Open Access Journals (Sweden)

    Sergey Dub

    2017-12-01

    Full Text Available Atomic force microscopy in different operation modes (topography, derivative topography, and phase contrast was used to obtain 3D images of Vickers indents on the surface of diamond and cBN single crystals with high spatial resolution. Confocal Raman spectroscopy and Kelvin probe force microscopy were used to study the structure of the material in the indents. It was found that Vickers indents in diamond has no sharp and clear borders. However, the phase contrast operation mode of the AFM reveals a new viscoelastic phase in the indent in diamond. Raman spectroscopy and Kelvin probe force microscopy revealed that the new phase in the indent is disordered graphite, which was formed due to the pressure-induced phase transformation in the diamond during the hardness test. The projected contact area of the graphite layer in the indent allows us to measure the Vickers hardness of type-Ib synthetic diamond. In contrast to diamond, very high plasticity was observed for 0.5 N load indents on the (001 cBN single crystal face. Radial and ring cracks were absent, the shape of the indents was close to a square, and there were linear details in the indent, which looked like slip lines. The Vickers hardness of the (111 synthetic diamond and (111 and (001 cBN single crystals were determined using the AFM images and with account for the elastic deformation of the diamond Vickers indenter during the tests.

  16. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  17. Effects of layering technique on the shade of resin overlays and the microhardness of dual cure resin cement

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2014-06-01

    Full Text Available The purpose of this study was to assess the color of layered resin overlays and to test the early microhardness of dual cure resin cement (DCRC light cured through the layered resin overlays. Resin overlays of 1.5 mm thickness were fabricated with the A3 shade of Z350 (Group 1L, the A3B and A3E shades of Supreme XT (Group 2L, and the A3, E3, and T1 shades of Sinfony (Group 3L using one, two, and three layers, respectively (n = 7. Each layer of the resin overlays was set in equal thickness. The color of the resin overlays was measured with a colorimeter and compared with an A3 shade resin denture tooth. DCRC was light cured through the resin overlays, and the early microhardness of the DCRC was measured. The ΔE value between the denture tooth and the resin overlays and the Vickers hardness number (VHN of the DCRC were analyzed with one-way ANOVA and Tukey’s HSD test. The color differences were 8.9 ± 0.5, 5.3 ± 1.0, and 7.3 ± 0.5 and the VHNs were 19.4 ± 1.1, 21.1 ± 0.9, and 29.3 ± 0.6 for Groups 1L, 2L, and 3L, respectively. Therefore, to match the designated tooth color of resin inlays and to increase the early microhardness of DCRC, layered resin inlays are more appropriate than single-dentin-layer resin inlays. However, the translucent layer should be used cautiously because the color difference of resin inlays with a translucent layer was affected more than those without a translucent layer.

  18. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel

    Science.gov (United States)

    Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.

    2018-04-01

    Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.

  19. Surface microhardness of different thicknesses of a premixed bioceramic material with or without the application of a moist cotton pellet

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2016-01-01

    Full Text Available Background: This study was conducted to assess the effect of thickness and hydration condition on the surface microhardness of Endosequence Root Repair Material putty (ERRM; Brasseler USA, Savannah, GA, a premixed bioceramic material. Materials and Methods: Polymethyl methacrylate cylindrical molds with an internal diameter of 4 mm and three heights of 2, 4, and 6 mm were fabricated. In Group 1 (dry condition, the molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ERRM. In Groups 2 and 3 (wet condition, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed directly on the upper surface of ERRM, respectively. The lower surface of ERRM was in contact with floral foams soaked with human blood. After 4 days, Vickers microhardness of the upper surface of ERRM was tested. The data were analyzed using two-way analysis of variance. Significance level was set at P 0.05. Conclusion: Based on the results of this study, it could be concluded that placing a moistened cotton pellet on ERRM putty up to 6 mm thick might be unnecessary to improve its surface microhardness and hydration characteristics.

  20. Postirradiation recovery of a reactor pressure vessel steel investigated by positron annihilation and microhardness measurements

    International Nuclear Information System (INIS)

    Pareja, R.; Diego, N. De; Cruz, R.M. de la; Del Rio, J.

    1993-01-01

    Positron lifetime and microhardness measurements have been performed on untreated, thermal-aged, neutron-irradiated, and postirradiation-annealed samples of reactor pressure vessel steels with the purpose of investigating the mechanisms of irradiation-induced hardening and recovery of the mechanical properties in these materials. The positron lifetime experiments have not revealed any evidence of the formation of a significant concentration of voids or vacancy clusters in samples irradiated at ∼290 C with fluences ≤2.71 x 10 23 n/m 2 (E>1 MeV), but they suggest a dislocation annealing induced by the irradiation. Isochronal annealing experiments with neutron-irradiated samples show a simultaneous recovery in their positron lifetime and microhardness at ∼340 C. From the microhardness measurements, the yield strength of the irradiated material has been estimated. The results appear to be consistent with a model of hardening due to irradiation-induced dissolution of precipitates with formation of small metastable precipitates after postirradiation aging and recovery induced by the disappearance of these metastable precipitates

  1. Influence of heavy ion implantation on the microhardness of lif

    CERN Document Server

    Abu-Alazm, S M

    2003-01-01

    The paper presented microhardness measurements for pure lithium fluoride (LiF) implanted with Ar, Kr and Xe at doses ranged from 10 sup 9 up to 10 sup 1 2 ion/cm sup 2. Measurements were also performed for the microhardness after irradiation by electron and gamma rays. The data exhibited a large increase of microhardness of LiF using heavy ions in comparison with the unimplanted and irradiated samples with electrons and gamma rays. The influence of annealing the samples on the microhardness is also studied. The obtained results were interpreted according to the formation of F-centers in LiF.

  2. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  3. Effect of welding process on microstructure, microhardness and composition chemistry of stainless steel coatings applied by welding; Efeito do processo de soldagem na microestrutura, microdureza e composicao quimica de revestimentos de aco inoxidavel aplicados por soldagem

    Energy Technology Data Exchange (ETDEWEB)

    Melo, R.H.F. de; Maciel, T.M., E-mail: raphael.engmec@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-Graduacao em Mecanica; Costa, J.; Santa, R.A.C. [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Unidade Academica de Quimica

    2012-07-01

    This study evaluates the influence of welding parameters on the chemical composition of weld overlays of the AWS E 308-L T1 applied by the FCAW and SAW process, as well as their influence on the microstructure and microhardness of the weld overlays. The characterization of chemical composition was performed by EDX (Energy Dispersive X-ray Analysis), the microstructure was investigated by optical microscopy and Vickers microhardness. The contents of Cr, Ni, Mn, Mo, Nb and Si varied as a function of welding parameters, the microstructure and microhardness varied as a function of heat input and chemical composition. The resulting microstructure showed an austenitic matrix with lacy ferrite and ferrite FA, with an average hardness of 191.6 HV for the FCAW process and 210 HV for the SAW process. (author)

  4. Design of Vickers Hardness Loading Controller

    Directory of Open Access Journals (Sweden)

    Sihai Zhao

    2014-09-01

    Full Text Available Traditionally Vickers testing needs manual works, as a result, it will induce low precision and automatization. So this paper design a new type of loading controlling system, it is based on single chip computer 89S52, used PZT as the force generator in micro Vickers hardness testing. It primarily includes the designing of hardware, software of collecting data and PZT signals by AD667. This article has given the sketch of electrical circuit and controlling software, it also offers the experiment data. The experiments have showed that using this system can exactly control the loading results, and the average tolerance is less than 0.43 %.

  5. Microhardness technique for determination of radiation hardening in austenitic stainless steel using

    International Nuclear Information System (INIS)

    Hofman, A.

    1995-01-01

    The use of microhardness technique to determine the radiation hardening has been studied. Microhardness measurements have been conducted on austenitic stainless steel 0H18N10T irradiated up to 2·10 23 nm -2 . It was determined that the increase in microhardness varies directly with the measured increase in the 0,2% offret yield strength and has been found that microhardness technique may be an effective tool to measurements of radiation induced hardening. Based on the results and Cahoon's relation that σ 0,2 (MPa)=3,27HV(0,1) n method for evaluating the yield stress σ 0,2 by microhardness technique is analyzed. 14 refs., 3 figs., 3 tabs

  6. Evaluation of Microhardness of Mineral Trioxide Aggregate after Immediate Placement of Different Coronal Restorations: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Maryam Kazemipoor

    2018-02-01

    Full Text Available Objectives: The purpose of this research was to evaluate the effect of immediate placement of different restorative materials in comparison with a temporary restoration on the surface microhardness of mineral trioxide aggregate (MTA.Materials and Methods: Access cavities were prepared in 40 extracted human molars, and a 3-mm layer of MTA was placed in the pulp chamber. The samples were divided into eight groups (n=5. Ten minutes after the MTA placement, two groups were restored with Zonalin temporary restoration, while the other six groups were restored with glass-ionomer cement (GIC, resin-modified glass-ionomer (RMGI, or resin-based composite. In each group, the Vickers microhardness (VMH of MTA was determined after 7 and 21 days. Data were entered into SPSS 17 software program and were analyzed by two-way analysis of variance (ANOVA. The significance level was set at 5%.Results: The type of restorative materials had a statistically significant effect on the microhardness of MTA (P=0.002. However, the microhardness of MTA was neither significantly influenced by the timing of final restoration (P=0.246 nor by the time-material interaction (P=0.116.Conclusions: Based on the results of the present study and by considering the limitations of laboratory studies, it is recommended to postpone the placement of final restorations until the underlying MTA is completely set. Otherwise, in the clinical conditions in which early covering of MTA is recommended, sufficient moist-curing and hydration should be guaranteed by selecting a restorative material with the lowest hydrophilic interaction energy.

  7. High temperature microhardness of ZrB2 single crystals

    International Nuclear Information System (INIS)

    Yi Xuan; Chen Chunhua; Otani, Shigeki

    2002-01-01

    Vickers microhardness of (0001), (101-bar 0) and (112-bar 0) planes of ZrB 2 single crystal prepared by the floating zone method has been investigated at various temperatures and loading times. As the temperature increases from 25 deg. C to 1000 deg. C, hardness drops from ∼20.9 GN m -2 of all planes to ∼7.85 GN m -2 for (0001) plane and ∼4.91 GN m -2 for (101-bar 0) and (112-bar 0) planes. The hardness of (101-bar 0) and (112-bar 0) planes exhibits almost same tendency and is always lower than that of (0001) plane by about 35%. The thermal softening coefficients of all three planes strongly depends on the temperature range with clear inflections at 400 deg. C and 700 deg. C. The loading time dependence of hardness is used to calculate the activation energy for creep. In addition, a relationship was found that shows the variation of hardness with temperature to be proportional to the variation with the loading time in a specific temperature range. (rapid communication)

  8. Characteristics microstructure and microhardness of cast Ti-6Al-4V ELI for biomedical application submitted to solution treatment

    Science.gov (United States)

    Damisih, Jujur, I. Nyoman; Sah, Joni; Agustanhakri, Prajitno, Djoko Hadi

    2018-05-01

    Ti 6Al-4V ELI (Extra Low Interstitial)alloy containing 6wt% of aluminum, 4wt% of vanadium with controlled level of iron and oxygen is one of most popular alloy employed in biomedical applications as implant material. Heat treatment process for titanium alloys becomes important and could be performed by some of different ways in order to develop microstructure as well as its properties. The objective of this paper is to study the effects of solution treatment temperature on microstructure and mechanical properties of as-cast Ti-6Al-4V ELI especially microhardness value. The alloy was melted by single arc melting furnace with a water-cooled copper crucible hearth under argon atmosphere and then casted. It was heat treated through solution treatment at 3 (three) different temperaturesi.e. 850°C, 950°C and 1050°C in an argon gas atmosphere for around 30 minutes. After solution treatment, samples were water quenched and then aged at temperature of 500°C for 4 hours. To investigate its microstructure, the alloy was investigated under optical microscope and scanning electron microscope (SEM). It was observed Widmanstätten microstructure consisting of mixture α and β phase with basket-weave pattern. The Vickers microhardness test was performed and the results exhibited the optimum value was obtained at temperature of 950°C of solution treatment. From the observation, it revealed that the heat treatment has substantial effect on microstructural properties where microhardness increased due to formation of α' martensite structure. It was showed also that solution treatment followed by aging could improve mechanical properties especially microhardness value of Ti-6Al-4V ELI alloy. These results were suggesting the optimized conditions of heat treatment to obtain the best microstructure properties and microhardness value.

  9. Relationship between microhardness and fluorine contents on tooth enamel determined by PIGE analysis

    International Nuclear Information System (INIS)

    Ma, D.S.; Paik, D.I.; Park, D.Y.; Moon, H.S.; Chang, Y.I.; Kim, J.B.

    1997-01-01

    The remineralization effect of fluoride has been measured by surface microhardness on tooth enamel. The purpose of this study was to investigate the relationship between microhardness and fluorine concentration on tooth enamel. Twelve sound bovine enamel specimens were prepared and immersed in 0.05% NaF solution for 1, 3, 6, 24 and 36 hours, respectively. The concentration of fluorine in specimens were measured by PIGE analysis and surface microhardness of each specimen was measured by surface microhardness tester. Fluorine concentration was increased by immersing time. There was no change in microhardness of each specimen by fluorine content. The results of this study suggest that there was no relationship between the fluorine concentration and surface microhardness in sound tooth enamel. PIGE analysis can be used effectively to assess the remineralization effect of fluorine content in tooth enamel. (author)

  10. Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin.

    Science.gov (United States)

    Faraji, Foad; Heshmat, Haleh; Banava, Sepideh

    2017-01-01

    EQUIA TM is a new gastrointestinal (GI) system with high compressive strength, surface microhardness (MH), and fluoride release potential. This in vitro study aimed to assess the effect of aging and type of protective coating on the MH of EQUIA TM GI cement. A total of 30 disc-shaped specimens measuring 9 mm in diameter and 2 mm in thickness were fabricated of EQUIA TM GI and divided into three groups of G-Coat nanofilled coating (a), no coating (b) and margin bond (c). The Vickers MH value of specimens was measured before (baseline) and at 3 and 6 months after water storage. Data were analyzed using repeated measures ANOVA. Group B had significantly higher MH than the other two groups at baseline. Both G-Coat and margin bond increased the surface MH of GI at 3 and 6 months. The MH values of G-Coat and margin bond groups did not significantly increase or decrease between 3 and 6 months. The increase in MH was greater in the G-Coat compared to the margin bond group in the long-term. Clinically, margin bond may be a suitable alternative when G-Coat is not available.

  11. Effect of pre-heating on the viscosity and microhardness of a resin composite.

    LENUS (Irish Health Repository)

    Lucey, S

    2010-04-01

    The effect of pre-heating resin composite on pre-cured viscosity and post-cured surface hardness was evaluated. Groups of uncured specimens were heated to 60 degrees C and compared with control groups (24 degrees C) with respect to viscosity and surface hardness. Mean (SD) viscosities of the pre-heated specimens (n = 15) were in the range of 285 (13)-377 (11) (Pa) compared with 642 (35)-800 (23) (Pa) at ambient temperature. There was a statistically significant difference between the two groups (P < 0.001). Mean (SD) Vickers microhardness (VHN) of the pre-heated group (n = 15) was 68.6 (2.3) for the top surface and 68.7 (1.8) for the bottom surface measured at 24 h post curing (specimen thickness = 1.5 mm). The corresponding values for the room temperature group were 60.6 (1.4) and 59.0 (3.5). There was a statistically significant difference between corresponding measurements taken at the top and bottom for the pre-heated and room temperature groups (P < 0.001). There was no significant difference between top and bottom measurements within each group. Pre-heating resin composite reduces its pre-cured viscosity and enhances its subsequent surface hardness. These effects may translate as easier placement together with an increased degree of polymerization and depth-of-cure.

  12. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    Science.gov (United States)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  13. Microstructures and microhardness evolutions of melt-spun Al–8Ni–5Nd–4Si alloy

    International Nuclear Information System (INIS)

    Karaköse, Ercan; Keskin, Mustafa

    2012-01-01

    Al–Ni–Nd–Si alloy with nominal composition of Al–8 wt.%Ni–5 wt.%Nd–4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely α-Al, intermetallic Al 3 Ni, Al 11 Nd 3 and fcc Si. Melt-spun ribbons are completely composed of α-Al phase. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: ► Rapid solidification allows a reduction in grain size, extended solid solution ranges. ► We observed the matrix lattice parameter increases with increasing wheel speed. ► Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. ► The solidification rate is high enough to retain most of alloying elements in the Al matrix. ► The rapid solidification has effect on the phase constitution.

  14. Structural and mechanical properties of ZnMgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, M. [Istanbul Technical University, Faculty of Mechanical Engineering, 34437, Gumussuyu, Istanbul (Turkey); Ataoglu, S. [Istanbul Technical University, Faculty of Civil Engineering, 34469, Maslak, Istanbul (Turkey); Istanbul Technical University, Earthquake Engineering and Disaster Management Institute, 34469, Maslak, Istanbul (Turkey); Arda, L., E-mail: lutfi.arda@bahcesehir.edu.tr [Bahcesehir University, Faculty of Arts and Sciences, Department of Mathematics and Computer Sciences, Ciragan Cad, Osmanpasa Mektebi Sok, 34349, Besiktas, Istanbul (Turkey); Ozturk, O.; Asikuzun, E. [Kastamonu University, Faculty of Arts and Sciences, Department of Physics, 37100, Kastamonu (Turkey); Akcan, D. [Bahcesehir University, Faculty of Arts and Sciences, Department of Mathematics and Computer Sciences, Ciragan Cad, Osmanpasa Mektebi Sok, 34349, Besiktas, Istanbul (Turkey); Cakiroglu, O. [Hasan Ali Yucel Education Faculty, Istanbul University, 34452, Beyazit, Istanbul (Turkey)

    2014-01-10

    This study reports the effect of annealing temperature on the structure and mechanical properties of Zn{sub 0.95}Mg{sub 0.05}O bulk samples by using digital Vickers microhardness tester, X-ray diffraction analysis, scanning electron microscopy and electron dispersive X-ray measurements. The samples were prepared using Zn and Mg based alkoxed by the sol–gel technique and annealed at various temperatures (500, 600, 700 and 800 °C). Vickers microhardness, elastic modulus, yield strength and fracture toughness values of Zn{sub 0.95}Mg{sub 0.05}O bulk samples were separately calculated and compared with each other. The experimental results of hardness measurements were analyzed using Meyer's law, Proportional Specimen Resistance (PSR) and Elastic/Plastic Deformation (EPD) models and Hays–Kendall (HK) approach. Finally, it was seen that HK approach is the most successful model for the microhardness analysis of these materials.

  15. Effect of microstructure and microhardness on the wear resistance of zirconia-alumina, zirconia-yttria and zirconia-ceria coatings manufactured by atmospheric plasma spraying; fecto de la microestructura y de la microdureza sobre la resistencia al desgaste de recubrimientos elaborados por proyeccion termica por plasma atmosferico a partir de circona-alumina, circona-itria y circona-ceria

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Gonzalez, A.; Ageorges, H.; Rojas, O.; Lopez, E.; Milena Hurtado, F.; Vargas, F.

    2015-10-01

    The effect of the structure and microhardness on the wear resistance of zirconia-alumina (ATZ), zirconia-yttria (YSZ) and zirconia-ceria (CSZ) coatings manufactured by atmospheric plasma spraying was studied. The microstructure and the fracture on the cross section of the coatings were analyzed using Scanning Electron Microscopy, the phases were identified using X-Ray Diffraction, the microhardness was measured by Vickers indentation and the wear resistance was evaluated by ball on disc test. The results showed that zirconia-alumina coating exhibits the best performance in the wear test. This behavior is closely related to their microstructure and higher microhardness, despite of its significant quantity of the monoclinic zirconia phase, which has lower mechanical properties than tetragonal zirconia phase. Tetragonal zirconia phase was predominant in the zirconia-yttria and zirconia-ceria coatings and despite this behavior; they did not have a good performance in the wear tests. This low wear resistance was mainly influenced by the columnar structure within their lamellae, which caused a greater detachment of particles in the contact surface during the ball-disc tests, increasing its wear. (Author)

  16. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr [Karatekin University, Faculty of Sciences, Department of Physics, 18100 Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I (Turkey); Keskin, Mustafa [Erciyes University, Faculty of Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.

  17. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method.

    Science.gov (United States)

    Hayashi-Sakai, Sachiko; Sakai, Jun; Sakamoto, Makoto; Endo, Hideaki

    2012-09-01

    The purpose of the present study was to examine the fracture toughness and Vickers microhardness number of permanent and primary human enamel using the indentation microfracture method. Crack resistance and a parameter indirectly related to fracture toughness were measured in 48 enamel specimens from 16 permanent teeth and 12 enamel specimens obtained from six primary teeth. The Vickers microhardness number of the middle portion was greater than the upper portion in primary enamel. The fracture toughness was highest in the middle portion of permanent enamel, because fracture toughness greatly depends upon microstructure. These findings suggest that primary teeth are not miniature permanent teeth but have specific and characteristic mechanical properties.

  18. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  19. Final report on RMO Vickers key comparison COOMET M.H-K1

    Science.gov (United States)

    Aslanyan, E.; Menelao, F.; Herrmann, K.; Aslanyan, A.; Pivovarov, V.; Galat, E.; Dovzhenko, Y.; Zhamanbalin, M.

    2013-01-01

    This report describes a COOMET key comparison on Vickers hardness scales involving five National Metrology Institutes: PTB (Germany), BelGIM (Belarus), NSC IM (Ukraine), KazInMetr (Kazakhstan) and VNIIFTRI (Russia). The pilot laboratory was VNIIFTRI, and PTB acted as the linking institute to key comparisons CCM.H-K1.b and CCM.H-K1.c conducted for the Vickers hardness scales HV1 and HV30, respectively. The comparison was also conducted for the HV5 Vickers hardness scale, since this scale is most frequently used in practice in Russia and CIS countries that work according to GOST standards. In the key comparison, two sets of hardness reference blocks for the Vickers hardness scales HV1, HV5 and HV30 consisting each of three hardness reference blocks with hardness levels of 450 HV and 750 HV were used. The measurement results and uncertainty assessments for HV1 and HV30 hardness scales, as announced by BelGIM, NSC IM, KazInMetr and VNIIFTRI, are in good agreement with the key comparison reference values of CCM.H-K1.b and CCM.H-K1.c. The comparison results for the HV5 hardness scale are viewed as additional information, since up to today no CCM key comparisons on this scale have yet been carried out. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. The technology development for surveillance test of RPV materials 2

    International Nuclear Information System (INIS)

    Chang, Kee Ok; Lee, Sam Lai; Kim, Byoung Chul; Choi, Sun Pil; Choi, Kwen Jai

    1998-12-01

    Irradiation-induced changes in mechanical properties and magnetic parameters were measured and compared to explore possible correlations for Mn-Mo-Ni low alloy steel surveillance specimens which were irradiated to a neutron fluence of 2.4 x 10 1 9n/cm 2 (E≥1.0 MeV) in a typical pressurized water reactor environment at about 288 deg C. For mechanical property parameters, microvickers hardness, tensile and Charpy impact test were performed and Barkhausen Noise(BN) amplitude, coercivity, maximum induction were measured for magnetic parameters, respectively. Results of mechanical property measurements showed an increase in yield and tensil strength, microvickers hardness 41J indexed RT NDT and a decrease in upper shelf energy irrespective of base and weld metals. In the case of magnetic measurements, it is found that magnetic remanence, BN amplitude, BN energy have dropped significantly but coercivity has increased rapidly after irradiation. For isothermally heat treated condition of irradiated specimen, BN energy has increased while Vickers microhardness has decreased. Results of BNE and Vickers microhardness are reversed to the results on irradiated condition. All these consistent changes in magnetic parameter and Vickers microhardness measurement, which are thought to be resulted from the interaction between irradiation-induced defects and dislocation, and magnetic domain, respectively, show a possibility that magnetic measurement may be used to the evaluation of material degradation and recovery due to neutron irradiation and heat treatment, respectively, if a relevant large database is prepared. (author). 49 refs., 7 tabs., 23 figs

  1. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets.

    Science.gov (United States)

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO 2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO 2 laser (10.6 µm CO 2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and

  2. A comparison of microhardness of indirect composite restorative materials Estudo comparativo da microdureza de materiais resinosos indiretos

    Directory of Open Access Journals (Sweden)

    Carolina Baptista Miranda

    2003-06-01

    Full Text Available The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10 as follows: G1 - Artglass; G2 - Sinfony; G3 - Solidex; G4 - Targis. Microhardness was determined by the Vickers indentation technique with a load of 300g for 10 seconds. Four indentations were made on each sample, determining the mean microhardness values for each specimen. Descriptive statistics data for the experimental conditions were: G1 - Artglass (mean ±standard deviation: 55.26 ± 1.15HVN; median: 52.6; G2 - Sinfony (31.22 ± 0.65HVN; 31.30; G3 - Solidex (52.25 ± 1.55HVN; 52.60; G4 - Targis (72.14 ± 2.82HVN; 73.30. An exploratory data analysis was performed to determine the most appropriate statistical test through: (I Levene's for homogeneity of variances; (II ANOVA on ranks (Kruskal-Wallis; (III Dunn's multiple comparison test (0.05. Targis presented the highest microhardness values while Sinfony presented the lowest. Artglass and Solidex were found as intermediate materials. These results indicate that distinct mechanical properties may be observed at specific materials. The composition of each material as well as variations on polymerization methods are possibly responsibles for the difference found in microhardness. Therefore, indirect composite resin materials that guarantee both good esthetics and adequate mechanical properties may be considered as substitutes of natural teeth.O objetivo deste estudo foi comparar a microdureza de 4 resinas compostas indiretas. Quarenta amostras cilíndricas foram obtidas com o auxílio de uma matriz de teflon, seguindo-se as recomendações dos fabricantes. Foram obtidas 10 amostras para cada material testado, contituindo-se 4 grupos (n=10 como se segue: G1-Artglass; G2-Sinfony; G3-Solidex; G4-Targis. A

  3. Maximisation of the ratio of microhardness to the Young's modulus of Ti–12Mo–13Nb alloy through microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara B., E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Centro Universitário de Volta Redonda, Volta Redonda, RJ (Brazil); Almeida, Luiz H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Nunes, Carlos A. [Universidade de São Paulo, Departamento de Engenharia de Materiais, C.P. 116, Lorena, SP 12.600-970 (Brazil); Dille, Jean [Université Libre de Bruxelles, Chemical and Materials Department, Av. F. Roosevelt 50, C. P. 194/03, Brussels (Belgium); Soares, Glória A. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil)

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti–12Mo–13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000 °C for 24 h, water quenching, cold forging to reduce 80% of the area, and ageing at 500 °C for 24 h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240 ± 100 nm length) and massive particles of 200–500 nm size. - Highlights: • The work presents microstructure change and properties of Ti–12Mo–13Nb alloy. • The better condition was achieved by the α phase distributed in the β matrix. • The values obtained were higher than of the Ti–6Al–4V alloy and cp Ti.

  4. Cathodoluminescence study of vickers indentations in magnesium ...

    African Journals Online (AJOL)

    Vickers diamond pyramid indentations made in single crystal of magnesium oxide (MgO) were examined in an environmental scanning electron microscope interfaced with an AVS-2000 spectrophotometer for luminescence. Three distinct zones around the indentations were identified to exhibit cathodoluminescence, which ...

  5. Fracture toughness measurements on a glass bonded sodalite high-level waste form

    International Nuclear Information System (INIS)

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-01-01

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies

  6. Effects of Treatment with Various Remineralizing Agents on the Microhardness of Demineralized Enamel Surface

    Directory of Open Access Journals (Sweden)

    Kiana Salehzadeh Esfahani

    2015-12-01

    Full Text Available Background and aims. Remineralization of incipient caries is one of the goals in dental health care. The present study aimed at comparing the effects of casein phosphopeptide-amorphous calcium phosphate complex (CPP-ACP, Remin Pro®, and 5% sodium fluoride varnish on remineralization of enamel lesions. Materials and methods. In this in vitro study, 60 enamel samples were randomly allocated to six groups of 10. After four days of immersion in demineralizing solution, microhardness of all samples was measured. Afterward, groups 1-3 under-went one-time treatment with fluoride varnish, CPP-ACP, and Remin Pro®, respectively. Microhardness of groups 4-6 was measured not only after one-month treatment with the above-mentioned materials (for eight hours a day, but also after re-exposing to the demineralizing solution. The results were analyzed by one-way analysis of variance (ANOVA, repeated measures ANOVA, and Fisher’s least significant difference (LSD test. Results. None of the regimens could increase microhardness in groups 1-3. However, one-month treatment regimens in groups 4-6 caused a significant increase in microhardness. The greatest microhardness was detected in the group treated with CPP-ACP (P = 0.001. In addition, although microhardness reduced following re-demineralization in all three groups, the mean reduction was minimum in the CPP-ACP-treated group (P < 0.001. Conclusion. While long-term repeated application of all compounds improved microhardness, the remineralization potential of CPP-ACP was significantly higher than that of Remin Pro® and sodium fluoride varnish.

  7. Residual stresses around Vickers indents

    International Nuclear Information System (INIS)

    Pajares, A.; Guiberteau, F.; Steinbrech, R.W.

    1995-01-01

    The residual stresses generated by Vickers indentation in brittle materials and their changes due to annealing and surface removal were studied in 4 mol% yttria partially stabilized zirconia (4Y-PSZ). Three experimental methods to gain information about the residual stress field were applied: (i) crack profile measurements based on serial sectioning, (ii) controlled crack propagation in post indentation bending tests and (iii) double indentation tests with smaller secondary indents located around a larger primary impression. Three zones of different residual stress behavior are deduced from the experiments. Beneath the impression a crack free spherical zone of high hydrostatic stresses exists. This core zone is followed by a transition regime where indentation cracks develop but still experience hydrostatic stresses. Finally, in an outward third zone, the crack contour is entirely governed by the tensile residual stress intensity (elastically deformed region). Annealing and surface removal reduce this crack driving stress intensity. The specific changes of the residual stresses due to the post indentation treatments are described and discussed in detail for the three zones

  8. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    Directory of Open Access Journals (Sweden)

    Grace Syafira

    2013-07-01

    Full Text Available Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces that were embedded in epoxy resin. Furthermore specimens were randomly divided into 4 groups, which were control (distilled water, theobromine 100 mg/L (T100, theobromine 500 mg/L (T500 and theobromine 1000 mg/L (T1000. Specimens were immersed for 15 minutes and microhardness test was performed using Knoop microhardness tester. Results: Increasing enamel microhardness was observed after treatment with four different theobromine concentrations. The highest icreased of enamel microhardness was shown in T1000 group and difference compared to other groups were statistically significant (p<0.05. Conclusion: theobromine is a potential dental caries prevention material due to its effect in improving the microhardness of tooth enamel.

  9. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    Vickers microhardness measurement indicated reliable joint performance for the microwave-assisted brazed joints during ... Alumina ceramics are used in wide range of applications due to their .... temperature were recorded by DAQSOFT software in a sep- .... Tubes: Design and Development Capabilities (MTDDC)',.

  10. Evaluation of a 6% hydrogen peroxide tooth-whitening gel on enamel microhardness after extended use.

    Science.gov (United States)

    Toteda, Mariarosaria; Philpotts, Carole J; Cox, Trevor F; Joiner, Andrew

    2008-11-01

    To evaluate the effects of a 6% hydrogen peroxide tooth whitener, Xtra White, on sound human enamel microhardness in vitro after an extended and exaggerated simulated 8 weeks of product use. Polished human enamel specimens were prepared and baseline microhardness and color measurements determined. The enamel specimens were exposed to a fluoride-containing toothpaste for 30 seconds and then exposed to water, Xtra White, a control carbopol gel containing no hydrogen peroxide, or a carbonated beverage (each group, n = 8) for 20 minutes. Specimens were exposed to whole saliva at all other times. In order to simulate 8 weeks of extended product use, quadruple the length of the manufacturer's instructions, 112 treatments, were conducted. Microhardness measurements were taken after 2, 4, 6, and 8 weeks of simulated treatments, and color was measured after 2 and 8 weeks. The Xtra White-treated specimens showed a statistically significant (P enamel microhardness between baseline and all treatment times for XW and water groups. Xtra White does not have any deleterious effects on sound human enamel microhardness after an extended and exaggerated simulated 8 weeks of product use.

  11. Relationship between 0.2% proof stress and Vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS

    International Nuclear Information System (INIS)

    Matsuoka, Saburo

    2004-01-01

    Stress corrosion cracking (SCC) occurs in shrouds and piping made of low carbon austenitic stainless steels at nuclear power plants. A work-hardened layer is considered to be one of the probable causes for this occurrence. The maximum Vickers hardness measured at the work-hardened layer is 400 HV. It is important to determine the yield strength and tensile strength of the work-hardened layer in the investigation on the causes of SCC. However, the tensile specimen cannot be obtained since the thickness of the work-hardened layer is as mall as several hundred μm, therefore, it is useful if we can estimate these strengths from its Vickers hardness. Consequently, we investigated the relationships between Vickers hardness versus yield strength and tensile strength using the results obtained on various steels in a series of Fatigue Data Sheets published by the National Institute for Materials Science and results newly obtained on a parent material and rolled materials (reduction of area: 10 - 50%, maximum hardness: 350 HV) for a low carbon stainless steel. The results showed that (1) the relationship between the 0.2% proof stress and the Vickers hardness can be described by a single straight line regardless of strength, structure, and rolling ratio, however, (2) the tensile strength is not correlated with the Vickers hardness, and the austenitic stainless steel in particular shows characteristics different from those of other steels. (author)

  12. Microhardness of boron, titanium, and nitrogen implanted steel

    International Nuclear Information System (INIS)

    Sowa, M.; Szyszko, W.; Sielanko, J.; Glusiec, L.

    1989-01-01

    Mechanically polished steel (1H18N9T) and (15GTM) samples are implanted with boron, titanium, and nitrogen ions, with dose ranging from 10 16 to 10 17 ions/cm 2 . The implantation energy varied from 100 to 250 keV. Implanted samples are heat-treated at 400 to 800 0 C in vacuum. The microhardness of implanted samples is measured by using a Hanneman tester with loads ranging from 2 to 40 g. The influence of annealing temperature on microhardness of the implanted layers is determined. The diffusion of boron from the implanted layers is also investigated by using the secondary ion mass spectrometer. The diffusion coefficients of boron in steel are determined. (author)

  13. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites.

    Science.gov (United States)

    Karacolak, Gamze; Turkun, L Sebnem; Boyacioglu, Hayal; Ferracane, Jack L

    2018-03-30

    Determining the energy transferred at the bottom of eleven bulk-fill resin composites, comparing top and bottom microhardness's and evaluating the correlation between microhardness and radiant energy were aimed. Samples were placed over the bottom sensor of a visible light transmission spectrophotometer and polymerized for 20 s. The bottom and top Knoop microhardness were measured. Paired t-test and correlation analysis were used for statistics (p≤0.05). In all groups, the bottom radiant energy decreased significantly with increasing thickness. For groups of Aura 2 mm, X-tra Fil 2 and 4 mm, SDR 2 and 4 mm, X-tra Base 2 mm no significant difference was found between top and bottom microhardness. For the bottom levels of Aura, X-tra Fil, Filtek Bulk-Fill Posterior, SDR, X-tra Base groups no significant difference was found between the microhardness's of 2 and 4 mm thicknesses. For X-tra Fil, Tetric Evo Ceram Bulk-Fill, Filtek Bulk-Fill Flowable and Z100 groups radiant energy affected positively the microhardness.

  14. Phase composition and microhardness of rapidly quenched Al-Fe alloys after high pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V.; Kaloshkin, S.D.; Gunderov, D.V.; Afonina, E.A.; Brodova, I.G.; Stolyarov, V.V.; Baldokhin, Yu.V.; Shelekhov, E.V.; Tomilin, I.A

    2004-07-15

    Aluminium-based Al-Fe alloys with Fe content of 2, 8, and 10 wt.% were prepared by rapid quenching (RQ) from the melt at a rate of 10{sup 6} K/s. Structure of the alloys was examined by X-ray diffraction (XRD) and Moessbauer spectroscopy. Phase transformations of RQ alloys by high pressure torsion (HPT) were studied. Dependences of phase composition on the intensity of HPT were investigated. Microhardness measurements of HPT alloys show a considerable structural heterogeneity of specimens, the dependence of microhardness on the radius of the pills was found out. Phase composition and microhardness during the heating were investigated. At the initial step of heating (120-150 deg. C), an increase in microhardness was observed, whereas further heating leads to a decrease in the microhardness.

  15. Effect of tray-based and trayless tooth whitening systems on microhardness of enamel surface and subsurface.

    Science.gov (United States)

    Teixeira, Erica C N; Ritter, André V; Thompson, Jeffrey Y; Leonard, Ralph H; Swift, Edward J

    2004-12-01

    To evaluate the effect of tray-based and trayless tooth whitening systems on surface and subsurface microhardness of human enamel. Enamel slabs were obtained from recently extracted human third molars. Specimens were randomly assigned to six groups according to tooth whitening treatment (n = 10): 6.0% hydrogen peroxide (HP) (Crest Whitestrips), 6.5% HP (Crest Professional Whitestrips), 7.5% HP (Day White Excel 3), 9.5% HP (Day White Excel 3), 10% carbamide peroxide (Opalescence), and a control group (untreated). Specimens were treated for 14 days following manufacturers' recommended protocols, and were immersed in artificial saliva between treatments. Enamel surface Knoop microhardness (KHN) was measured immediately before treatment, and at days 1, 7, and 14 of treatment. After treatment, subsurface microhardness was measured at depths of 50-500 microm. Data were analyzed for statistical significance using analysis of variance. Differences in microhardness for treated vs. untreated enamel surface were not statistically significant at any time interval. For 6.5% and 9.5% HP, there was a decrease in surface microhardness values during treatment, but at the end of treatment the microhardness values were not statistically different from the baseline values. For the enamel subsurface values, no differences were observed between treated vs. untreated specimens at each depth. Trayless and tray-based tooth whitening treatments do not significantly affect surface or subsurface enamel microhardness.

  16. Life evaluation of FR-CV cable on thermal-radiation combined aging by micro-hardness

    International Nuclear Information System (INIS)

    Sugiyama, Masahiko; Ogata, Akimasa; Nitta, Makoto; Tani, Tsuneo; Yagi, Toshiaki; Seguchi, Tadao.

    1996-01-01

    For the evaluation of cable life for the application to nuclear facilities, the accelerated test was conducted by the combination of radiation and thermal oxidation. The degradation of FR-CV cable by the aging was monitored by tensile test, micro-hardness test, and gel-fraction measurement. The micro-hardness increased with the progress of degradation and related well with decrease of ultimate elongation of the sheath material, and was also reflected by the loss of plasticizer. The micro-hardness technique has a possibility to detect the degradation of cable as a non-destructive detector. (author)

  17. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this paper, mild steel–mild steel (MS-MS) joints fabricated through microwave hybrid heating (MHH) have been characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), electron probe micro analyser (EPMA), Vicker's microhardness measurement and tensile strength. The XRD spectrum of the ...

  18. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    The brazed joints were characterizedby X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, Vickers microhardness evaluation, brazing strength measurement and helium leak test. X-ray diffraction analysis confirmed the formationof Ti-based compounds at the substrate-filler alloy interfaces of ...

  19. Removable partial or complete dentures exposed to beverages and mouthwashes: evaluation of microhardness and roughness

    Directory of Open Access Journals (Sweden)

    Fernanda Alves Feitosa

    Full Text Available AbstractPurposeTo evaluate microhardness and roughness of denture base polymethylmethacrylate resinn exposed to acid beverages and mouthwashes.Material and methodRectangular samples (n=80 were prepared from poly (methyl methacrylate (PMMA. They were divided into 8 groups and had the initial microhardness and Knoop roughness measured. Samples of each group were immersed for 10 min into a test solution (coffee, lemon juice, chlorhexidine gluconate, red wine, cola-based soft drink, vinegar or antiseptic with and without alcohol and after stored in artificial saliva for 23 h and 50 min, completing a period of 24 h. This procedure was performed for 14 consecutive days and after this period the microhardness and surface roughness measurements were made again. Data were statistically analyzed using ANOVA non parametric, Kruskal-Walis and the Dunn´s test for microhardness and the t-Student and ANOVA for roughness.ResultFor microhardness there were found statistically significant differences among the chlorhexidine gluconate solution, antiseptic without alcohol and cola-based soft drink. For roughness was observed that the mean values between the initial period and after immersion in the test products differed statistically in all groups, without difference among groups.ConclusionThe microhardness of poly(methyl methacrylate was affected by continue exposition to chlorhexidine gluconate, antiseptic without alcohol and cola-based soft drink. The roughness of poly(methyl methacrylate is negatively influenced by the exposure to all tested products. It may be concluded that both, microhardness and roughness, were affected by the treatments.

  20. Structure-property correlations in nanocrystalline Al-Zr alloy composites

    International Nuclear Information System (INIS)

    Rittner, M.N.; Argonne National Lab., IL; Weertman, J.R.; Eastman, J.A.

    1996-01-01

    A study of the structure, grain size stability and Vickers microhardness of nanocrystalline aluminum-zirconium alloy composites was conducted. Samples were synthesized by the inert gas condensation process with electron beam evaporation. Transmission electron microscope examinations of the samples were performed at room and elevated temperatures. The behavior of the microstructures of the samples with time and temperature was investigated as a function of specimen composition. Vickers microhardness data were evaluated at room temperature in as-produced and polished compacted specimens. The local chemical composition of individual microhardness indents and average values of the grain size and porosity level were determined for a number of samples. Correlations among these microstructural variables and hardness were determined using multiple regression techniques

  1. Evaluation of a 6% hydrogen peroxide tooth whitening gel on enamel and dentine microhardness in vitro.

    Science.gov (United States)

    Joiner, Andrew; Thakker, Gopal; Cooper, Yvonne

    2004-01-01

    The aims of this study were to evaluate the effects of a novel 6% hydrogen peroxide containing tooth whitener, Xtra White (XW), on enamel and dentine microhardness in vitro. Polished human enamel and dentine specimens were prepared and baseline microhardness determined. In study 1, enamel specimens were exposed to 20 min cycles of either water, XW or Sprite Light for up to 28 cycles. In studies 2 and 3, enamel specimens were treated with 20 min cycles of either XW or water and exposed to whole saliva at all other times. In study 3, an additional exposure to a fluoride containing toothpaste was conducted. In total, 28 treatments were conducted in order to simulate a 2 weeks product use. In study 4, dentine specimens were treated as per study 3. Final microhardness measurements were taken and for studies 3 and 4 colour measurements were additionally taken. XW and water gave no statistically significant (p>0.05) changes in enamel and dentine microhardness after 28 treatments. Sprite Light gave a significant (penamel microhardness after one 20 min treatment. XW showed significant bleaching of enamel and dentine specimens as compared to the water control. XW does not have any significant effect on enamel and dentine microhardness.

  2. The effect of three whitening oral rinses on enamel micro-hardness

    OpenAIRE

    Potgieter, E; Osman, Y; Grobler, SR

    2014-01-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treat...

  3. Application of ANFIS for analytical modeling of tensile strength of functionally graded steels

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-06-01

    Full Text Available In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode. Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems (ANFIS. To build the model for graded ferritic and austenitic steels, training, testing and validation using respectively 174 and 120 experimental data were conducted. According to the input parameters, in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation which correlates the Vickers microhardness of each layer to its corresponding chemical composition was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the Vickers microhardness of each layer in functionally graded steels was related to the yield stress of the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels configuration was found through a numerical method. The obtained results from the proposed model are in good agreement with those acquired from the experiments.

  4. Effect of different concentrations of fluoride varnish on enamel surface microhardness: An in vitro randomized controlled study

    Directory of Open Access Journals (Sweden)

    Priya Subramaniam

    2016-01-01

    Full Text Available Introduction: Dental caries occurs as a result of demineralization-remineralization phases occurring alternately at the tooth surface. Fluoride varnishes have a caries-inhibiting effect on teeth through remineralization. The resulting enamel is resistant to acid dissolution. Aim: The aim of this study is to assess enamel surface microhardness (SMH following varnish application with different fluoride concentrations. Materials and Methods: Ninety freshly extracted, caries-free premolar teeth were used. Teeth were sectioned to obtain enamel blocks from the buccal surface of crown. The blocks were serially polished and flattened, embedded in acrylic blocks and smoothened to achieve a flat surface. The samples were divided into three groups, namely, A, B, and C consisting of 30 enamel blocks each. In Group A, Fluor Protector® varnish and in Group B, Bi-Fluorid 10® varnish was applied. Group C served as controls. All samples were subjected to a demineralization-remineralization cycle for 7 days. The SMH of enamel was measured. Data obtained was subjected to statistical analysis using the Student's t-test and one-way ANOVA. Results: The mean values of enamel SMH of Groups A and B were 496.99 ± 4.81 and 449.47 ± 7.37 Vickers Hardness Number, respectively. Conclusion: Fluor Protector varnish showed significantly higher enamel SMH than that of the other two groups (P < 0.05.

  5. Microhardness of demineralized enamel following home bleaching and laser-assisted in office bleaching

    Science.gov (United States)

    Ghanbarzadeh, Majid; Akbari, Majid; Hamzei, Haniye

    2015-01-01

    Background There is little data regarding the effect of tooth whitening on microhardness of white spot lesions. This study was conducted to investigate the effect of home-bleaching and laser-assisted in-office bleaching on microhardness of demineralized enamel. Material and Methods Forty bovine incisors were selected and immersed in a demineralizing solution for 12 weeks to induce white spot lesions. Enamel blocks were prepared and randomly assigned to two groups of 20 each. The first group underwent home bleaching with 15% carbamide peroxide which was applied for 8 hours a day over a period of 15 days. In the second group, in-office bleaching was performed by 40% hydrogen peroxide and powered by irradiation from an 810 nm gallium-aluminum-arsenide (GaAlAs) diode laser (CW, 2W). This process was performed for 3 sessions every seven days, in 15 days. The specimens were stored in Fusayama Meyer artificial saliva during the experiment. Surface microhardness was assessed before and after the bleaching therapies in both groups. Results Microhardness decreased significantly following both home bleaching and laser-assisted in-office bleaching (pTooth whitening through home bleaching or laser-assisted in-office bleaching can result in a significant reduction in microhardness of white spot lesions. Therefore, it is suggested to take protective measures on bleached demineralized enamel. Key words:White spot lesion, bleaching, laser, microhardness, demineralized enamel, home bleaching, in-office bleaching. PMID:26330939

  6. Effect of light irradiation on tooth whitening: enamel microhardness and color change.

    Science.gov (United States)

    Gomes, Mauricio Neves; Francci, Carlos; Medeiros, Igor Studart; De Godoy Froes Salgado, Nívea Regina; Riehl, Heraldo; Marasca, José Milton; Muench, Antônio

    2009-01-01

    The aim of this study was to evaluate the influence of light exposure associated with 35% hydrogen peroxide (Pola Office, SDI, Melbourne, Vic., Australia) or 15% hydrogen peroxide (BriteSmile, Discus, Culver City, CA, USA) on the microhardness and color changes of bovine enamel. Experimental groups were Britesmile + Light (BL) (15% hydrogen peroxide + plasm arc; 4 x 20 minutes), Britesmile + No Light (BN) (BL, no light), Pola office + Light (PL) (35% hydrogen peroxide + LED; 4 x 8 minutes), and Pola office + No light (PN) (PL, no light). Color changes (DeltaE) and the CIELAB (Commission Internationale de l' Eclairage, L* a* b* color system) parameters (L*, a*, and b*) were assessed with a spectrophotometer before (B), immediately (A), 1 day and 7 days after bleaching. The microhardness was measured before (B) and after (A), the obtained data were submitted to a two-way analysis of variance, and DeltaE were submitted to t-test for each period. Only Pola Office, in which the peroxide is associated with the light, improved DeltaE when evaluated immediately after bleaching (p enamel microhardness was not altered after bleaching for BriteSmile. However, enamel microhardness was reduced after bleaching for Pola Office, 283 MPa (+/-21) and 265 MPa (+/-27), respectively. It was concluded that these two bleaching systems were efficient regardless of the light systems used. However, the 35% hydrogen peroxide altered the enamel microhardness. CLINICAL SIGNIFICANCE Enamel microhardness was affected by a 35% hydrogen peroxide in-office bleaching therapy. Moreover, the in-office bleaching outcome was not improved by using the light associated with systems tested in this study. (J Esthet Restor Dent 21:387-396, 2009).

  7. Initial permeability and vickers hardness of thermally aged FeCu alloy

    International Nuclear Information System (INIS)

    Kikuchi, H.; Onuki, T.; Kamada, Y.; Ara, K.; Kobayashi, S.; Takahashi, S.

    2007-01-01

    The initial permeability obtained from small AC field excitation is a more useful parameter for nondestructive evaluation (NDE) of ferromagnetic materials than one obtained from a major hysteresis loop from the viewpoints of electricity consumption and real-time measurements. In this paper, in order to study the possibility of applying magnetic methods to pressure vessel surveillance at nuclear power plants, permeability of the thermally aged Fe-Cu specimens were evaluated using impedance measurements and the hardness of those specimens was also evaluated. The Vickers hardness increases as aging time increases. The permeability of the cold-rolled specimen decreases with thermal aging. On the other hand, the permeability of as-received specimens increased at first then decreases as thermal aging goes

  8. Determination of the mechanical characteristics of irradiated metals from the results of microhardness tests

    International Nuclear Information System (INIS)

    Hofman, A.

    1999-01-01

    To predict the possibilities of using structural materials in nuclear and thermonuclear reactors, it is important to have data on changes of the mechanical characteristics and irradiation obtained from full-scale or simulation tests. Materials are irradiated in nuclear reactors with fast neutrons, the sources of high-energy neutrons with an energy of 14 MeV and the accelerators of charged particles. The restricted volumes for irradiation of these specimens in the systems and also the need to test large numbers of specimens under the same conditions make it necessary to reduce the size of irradiated specimens. To solve this problem, work is being carried out to develop various methods of testing miniature specimens, including tension extrusion of disc-shaped micro-specimens, microhardness, and the Charpy Method. In examination of the irradiation hardening of the materials, the main advantage of the microhardness method is that it makes it possible to examine small specimens. In single microhardness tests, only a small area of the irradiated specimens is examined. This makes it possible to increase the radiation dose and carry out subsequent tests of microhardness on the same specimens. The aim of this work was to determine the possibilities of using the microhardness measurement method for evaluating the mechanical characteristics of metallic materials. The comparison of the data, obtained in microhardness tests and in tensile loading specimens of 0Kh18N10Tsteel, irradiated with neutrons, shows the efficiency of the microhardness method as a tool for investigating the irradiation hardening of reactor materials

  9. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  10. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2016-11-01

    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  11. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    International Nuclear Information System (INIS)

    Abdala, M.R.W.S.; Garcia de Blas, J.C.; Barbosa, C.; Acselrad, O.

    2008-01-01

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy

  12. Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying

    International Nuclear Information System (INIS)

    Alijani, Fatemeh; Amini, Rasool; Ghaffari, Mohammad; Alizadeh, Morteza; Okyay, Ali Kemal

    2014-01-01

    Highlights: • Potential to produce B1′ (thermal- and stress-induced) and B2 was established. • Martensitic transformation occurred without the formation of intermediate R-phase. • Formation of unwanted intermetallics during heating was hindered by milling. • During milling, microhardness was increased, then reduced, and afterward re-increased. • By milling evolution, thermal crystallization steps changed from 3 to 2. - Abstract: In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti–41Ni–9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0–12 h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19′) and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time

  13. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  14. The use of microhardness tests to determine the radiation hardening of austenitic stainless steel; Zastosowanie pomiarow mikrotwardosci dla okreslenia umocnienia radiacyjnego stali austenitycznej napromienionej neutronami

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, A.; Kochanski, T.; Malczyk, A.

    1994-12-31

    The use of microhardness technique to determine the radiation hardening has been studied. Microhardness measurements have been conducted on austenitic stainless steel OH18N1OT irradiated up to 2x10{sup 19} ncm{sup -2}. It was determined that the increase in microhardness varies directly with the measured increase in the 0.2% offset yield strength and has been found that microhardness technique may be an effective tool to measurements of radiation induced hardening. (author). 18 refs, 3 figs, 3 tabs.

  15. Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, P. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Peer Mohamed, M. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Department of Physics, C. Abdul Hakeem College, Melvisharam 632 509, Tamil Nadu (India); Krishnan, P. [Department of Physics, St. Joseph’s College of Engineering, Chennai 600 119, Tamil Nadu (India); Nageshwari, M.; Mani, G. [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India); Lydia Caroline, M., E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604 407, Tamil Nadu (India)

    2016-12-15

    Single crystals of L-phenylalanine dl-mandelic acid [C{sub 9}H{sub 11}NO{sub 2}. C{sub 8}H{sub 8}O{sub 3}], have been grown by the slow evaporation technique at room temperature using aqueous solution. The single crystal XRD study confirms monoclinic system for the grown crystal. The functional groups present in the grown crystal have been identified by FTIR and FT-Raman analyses. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 257 nm and the optical band gap energy E{sub g} is determined to be 4.62 eV. The Kurtz powder second harmonic generation was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. Further, the thermal studies confirmed no weight loss up to 150°C for the as-grown crystal. The photoluminescence spectrum exhibited three peaks (414 nm, 519 nm, 568 nm) due to the donation of protons from carboxylic acid to amino group. Laser damage threshold value was found to be 4.98 GW/cm{sup 2}. The Vickers microhardness test was carried out on the grown crystals and there by Vickers hardness number (H{sub v}), work hardening coefficient (n), yield strength (σ{sub y}), stiffness constant C{sub 11} were evaluated. The dielectric behavior of the crystal has been determined in the frequency range 50 Hz–5 MHz at various temperatures.

  16. Comparative evaluation of two different remineralizing agents on the microhardness of bleached enamel surface: Results of an in vitro study.

    Science.gov (United States)

    Kaur, Gunpriya; Sanap, Anita U; Aggarwal, Shalini D; Kumar, Tanaya

    2015-01-01

    Various agents are studied for their remineralization potential. To evaluate the effect of GC Tooth Mousse and Toothmin Tooth Cream on microhardness of bleached enamel. In vitro- study. Twenty freshly extracted anterior teeth were cut sagittally and impregnated in cold cure acrylic resin. Specimens were kept in artificial saliva to prevent from dehydration. After measuring baseline hardness, teeth were randomly divided into two groups. Everbrite In - Office Tooth whitening kit (Dentamerica) was used to demineralize the teeth following which hardness was measured again. Teeth in group one (n=10) and group two (n=10) were treated with GC tooth mousse (Recaldent) and Toothmin tooth cream (Abbott Healthcare Pvt.Ltd) daily for seven days and microhardness of enamel surface was measured. Mean, SD, and percentage change in the microhardness were calculated. Student's paired t-test was used to evaluate the signifi cance of change from initial, after bleaching for 5 min and after 1-week remineralization Unpaired't' test was used to compare difference between groups. Microhardness significantly decreased in both groups after bleaching (% change group one: 3.24% group two: 3.26% in group; P0.05). Both GC Tooth Mousse (Recaldent) and Toothmin Tooth cream (Abbott Healthcare Pvt.Ltd) increase the microhardness of bleached enamel. Toothmin tooth cream is a better agent for increasing microhardness, although difference is not significant.

  17. Textural and morphological studies on zinc–iron alloy electrodeposits

    Indian Academy of Sciences (India)

    ness of the coating was measured in Vicker's hard- ness number (VHN) by static indentation method, using. Leco microhardness tester (Model M 400) at a given load for 15 seconds time duration. X-ray diffraction pat- terns were taken by using JEOL PANalytical, X' per. PRO model. Samples were scanned between 20. ◦ and.

  18. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Kaytbay, Saleh; El-Hadek, Medhat

    2014-01-01

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  19. Effect of different curing modes on the degree of conversion and the microhardness of different composite restorations

    Directory of Open Access Journals (Sweden)

    Reem Ali Ajaj

    2015-01-01

    Full Text Available Introduction: This study aims to evaluate the effects of different curing units and modes on the degree of conversion (DC and microhardness (MH of two different resin composites [ESTELITE ∑ QUICK (EQ, and Z350 XT (Z3]. Materials and Methods: One hundred (100 discs of each tested material were made and divided into two subgroups (n = 50 according to the discs′ dimensions: 5 mm diameter × 2 mm thickness, and 2 mm diameter × 2 mm thickness. Each subgroup was further subdivided into the following five classes (n = 10: I cured with halogen light curing-unit; II cured with light-emitting diode (LED unit; III cured with argon laser; IV cured with halogen light-curing unit for 5 s, 10 s rest followed by 20 s curing; and V cured with halogen light-curing unit for 10 s, then 10 s rest, followed by 10 s curing. The first subgroup was tested for MH using the Vickers Microhardness tester and the second subgroup was tested for DC using Fourier transform infrared spectroscopy (FTIR. Data were statistically analyzed using two-way analysis of variance (ANOVA and Tukey′s post hoc test P < 0.05. Results: Specimens in class IV showed the highest mean DC and MH, followed by class III, then class II. Class I showed significantly lower mean values for both DC and MH. On the other hand, Z3 showed statistically significantly higher mean DC and MH than EQ. Conclusion: Although the two tested composites did not perform similarly under the test conditions, curing with halogen unit for 5 s, then 10 s rest, followed by 10 s curing improved the DC and the MH of both the tested materials.

  20. In-vitro study investigating influence of toothpaste containing green tea extract on the microhardness of demineralized human enamel

    Science.gov (United States)

    Febrian, K.; Triaminingsih, S.; Indrani, DJ

    2017-08-01

    The aim of this study was to analyze the influence of toothpaste containing green tea extract on the microhardness of demineralized enamel. Human tooth, which was demineralised in citric acid solution, had a toothpaste containing green tea extract of concentration of 5, 10 or 15% application. Microhardness measurement was carried out on each enamel surface of the teeth for initial, after the demineralization and after application of the tooth pastes. It showed that there was significant decrease between enamel microhardness of the teeth at the initial condition and after demineralization. After application of the toothpaste containing green tea extract of each concentration the microhardnss increased significantly. However, there the microhardness was insignificant between the applications of each green tea concentration.

  1. Effect of various tooth-whitening products on enamel microhardness.

    Science.gov (United States)

    Grobler, S R; Majeed, A; Moola, M H

    2009-11-01

    The purpose of this in vitro study was to evaluate the effect of various tooth-whitening products containing carbamide peroxide (CP) or hydrogen peroxide (HP), on enamel microhardness. Enamel blocks were exposed to: Nite White ACP 10% CP (Group 2, n=10); Yotuel Patient 10% CP (Group 3, n=10); Opalescence PF 10% CP (Group 4, n=10); Opalescence PF 20% CP (Group 5, n=10); Opalescence Treswhite Supreme 10% HP (Group 6, n=10); Yotuel 10 Minutes 30% CP (Group 7, n=10); Opalescence Quick 45% CP (Group 8, n=10), Yotuel Special 35% HP (Group 9, n=10), Opalescence Boost 38% HP (Group 10, n=10) according to the instructions of the manufacturers. The control (Group 1, n=10) was enamel blocks kept in artificial saliva at 37 degrees C without any treatment. The microhardness values were obtained before exposure and after a 14-day treatment period. Specimens were kept in artificial saliva at 37 degrees C between treatments. Data were analysed using Kruskal-Wallis one-way ANOVA and Tukey-Kramer Multiple Comparison Test. Indent marks on the enamel blocks were also examined under the Scanning Electron Microscope. All whitening products decreased enamel microhardness except group 10 but only Groups 2, 3, 4, 5 and 7 showed significant decrease in enamel microhardness as compared to the control group (p enamel. All products tested in this study decreased enamel microhardness except Opalescence Boost 38% HP. The products containing carbamide peroxide were more damaging to enamel because of the longer application times. Nite White ACP 10% CP showed the highest reduction in enamel microhardness as compared to other products tested.

  2. The effect of bleaching agents on the microhardness of dental aesthetic restorative materials.

    Science.gov (United States)

    Türker, S B; Biskin, T

    2002-07-01

    This study investigated the effects of three home bleaching agents on the microhardness of various dental aesthetic restorative materials. The restorative materials were: feldspatic porcelain, microfilled composite resin and light-cured modified glass-ionomer cement and the bleaching agents Nite-White (16% carbamide peroxide), Opalescence (10% carbamide peroxide and carbapol jel) and Rembrandt (10% carbamide peroxide jel). A total of 90 restorative material samples were prepared 1 cm diameter and 6 mm thick and kept in distilled water for 24 h before commencing bleaching which was carried out for 8 h day-1 for 4 weeks. Microhardness measurements were then made using a Tukon tester. Statistically significant differences with respect to unbleached controls were found only for the feldspatic porcelain and microfilled composite resins (P light cured modified glass-ionomer cement. For the composite resin, whereas Nite-White increased its microhardness, the other bleaching agents decreased it. There were no significant differences between the bleaching agents for any of the restorative materials.

  3. Theobromine Effects on Enamel Surface Microhardness: In Vitro

    OpenAIRE

    Grace Syafira; Rina Permatasari; Nina Wardani

    2013-01-01

    Dental caries is still a dental health problem in Indonesia. Fluoride, one of the dental caries prevention material, but its safety and the danger of fluorosis is still debated. Theobromine is an alkaloid compound contained in cocoa beans. Theobromine is believed to increase enamel microhardness with mineral changes in the enamel superficial layer. Objectives: To determine the influence of theobromine on the enamel surface microhardness. Methods: This study used 40 premolar tooth crown pieces...

  4. Microstructure and microhardness of Ti6246 linear friction weld

    International Nuclear Information System (INIS)

    Guo, Yina; Jung, Taenam; Chiu, Yu Lung; Li, Hangyue; Bray, Simon; Bowen, Paul

    2013-01-01

    The microhardness and microstructure of linear friction welded Ti–6Al–2Sn–4Zr–6Mo (Ti6246) alloys were studied, in both as-welded and post-weld heat-treated conditions. It has been found that the as-welded Ti6246 has a lower microhardness value of about 360 HV in the central weld zone than that of the base material of about 420 HV. Post-weld heat-treatment of the Ti6246 weld at 600 °C for 1 h has led to the hardness increase of about 180 HV at the central weld zone. Transmission electron microscopy studies show that the microstructure at the central weld zone of the as-welded Ti6246 consists of fine grains with dense acicular orthorhombic α″ martensite. The soft α″ martensite is believed to account for the low hardness measured in the as-welded conditions. Phase transformation from orthorhombic α″ to hexagonal α occurred during the PWHT, resulting in the observed hardness increase.

  5. In vitro effect of Q-switched Nd:YAG laser exposure on morphology, hydroxyapatite composition and microhardness properties of human dentin

    Directory of Open Access Journals (Sweden)

    Retna Apsari

    2011-12-01

    Full Text Available Background: A Q-switched Nd:YAG laser was employed as a source of ablation. The fundamental wavelength of the laser is 1064 nm, with pulse duration of 8 nanosecond operates with uniphase mode of TEM00. In the following experiments, dentin samples (without caries and plaque are exposed to pulse laser with Q-switching effect at various energy dose. Purpose: The aim of this study was to investigate the effect of laser ablation on dentin samples using Q-switched Nd:YAG laser exposure. Methods: The laser was operated in repetitive mode with frequency of 10 Hz. The energy dose of the laser was ranging from 13.9 J/cm2, 21.2 J/cm2 and 41.7 J/cm2. The target material comprised of human dentin. The laser was exposed in one mode with Q-switched Nd:YAG laser. Energy delivered to the target through free beam technique. The exposed human dentin was examined by using x-ray diffraction (XRD and fluoresence scanning electron microscopy for energy dispersive (FESEM-EDAX. Microhardness of human dentin were examined by using microhardness vickers test (MVT. Results: The result obtained showed that the composition of hydroxyapatite of the dentin after exposed by Q-switched Nd:YAG laser are 75.02% to 78.21%, with microhardness of 38.7 kgf/mm2 to 86.6 kgf/mm2. This indicated that exposed pulsed Nd:YAG laser on the human dentin attributed to the phototermal effect. The power density created by the Q-switched Nd:YAG laser enables the heat to produce optical breakdown (melting and hole associated with plasma formation and shock wave propagation, from energy dose of 21.2 J/cm2. From XRD analysis showed that the exposure of Nd:YAG laser did not involve in changing the crystal structure of the dentin, but due to photoablation effect. Conclusion: In conclusion, the application of Q-switched Nd:YAG laser as contactless drills in dentistry should be regarded as an alternative to the classical mechanical technique to improve the quality of the dentin treatment.Latar belakang

  6. Effect of laser modification of B-Ni complex layer on wear resistance and microhardness

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Popławski, Mikołaj; Bartkowski, Dariusz; Przestacki, Damian; Miklaszewski, Andrzej

    2015-09-01

    The paper presents the results of microstructure observations, microhardness measurements and wear resistance tests of B-Ni complex layers. Boronickelizing is a three-step process of layer production on metallic substrate. Nickel modified boronized layers were called 'boronickelized'. Nickel plating was applied first and, as a result, nickel coatings with a varying thickness were obtained. Diffusion boronizing was carried out as a second step. Boronickelized layer was formed following the merger of galvanic and diffusion processes. In the third step the galvanic-diffusion boronickelized layer was obtained by remelting it with a CO2 laser beam. Galvanic-diffusion boronickelized layer had a dual-zone microstructure. The first zone was continuous and nickel-enriched, and characterized by reduced microhardness, whereas the second zone was characterized by needle-shaped microstructure, with microhardness similar to Fe2B iron borides. After laser modification steel specimens with the boronickelized layer consisted of remelted zone (MZ), heat affected zone (HAZ), and substrate. It was found that increasing the thickness of nickel coating leads to decreasing the microhardness of the remelted zone. Increasing thickness of nickel coating causes the reduction of wear resistance of boronickelized layer modified by laser beam. The application of a nickel coating thicker than 20 μm causes incomplete remelting of needle-shaped microstructure of boronickelized layer.

  7. Relationship between microhardness and fatigue strength after glass micro-bead peening and ion implantation

    International Nuclear Information System (INIS)

    Lunarski, J.; Zielecki, M.

    1989-01-01

    Results of tests on fatigue strength and condition of the surface layer, produced by ion implantation or/and glass micro-bead peening for E1961Sz and 12H2N4MAZ steels and WT3-1 titanium alloy are reported. In the tests the following characteristics are measured: Knoop hardness, residual stresses (by etching method), surface roughness, and oscillatory bending fatigue limit at the resonance frequency of the specimen. The test results indicate that for the examined steels there is a strong correlation between surface microhardness and fatigue limit, in spite of various surface treatments. This fact enables to predict changes in the fatigue limit, basing on the results of surface microhardness measurements, which are inexpensive and easy to perform. (author)

  8. Effect of bleaching on microhardness of esthetic restorative materials.

    Science.gov (United States)

    Malkondu, Özlem; Yurdagüven, Haktan; Say, Esra Can; Kazazoğlu, Ender; Soyman, Mübin

    2011-01-01

    This study evaluated the effect of a high-concentration carbamide peroxide–containing home bleaching system (Opalescence PF) and a hydrogen peroxide–containing over-the-counter bleaching system (Treswhite Supreme) on the microhardness of two nanocomposites (Filtek Supreme XT and Premise) and leucite-reinforced glass ceramic (Empress Esthetic), glass ceramic (Empress 2 layering), and feldspathic porcelain (Matchmaker MC). A total of 100 specimens, 20 of each kind of the restorative materials, 2 mm in thickness and 10 mm in diameter, were fabricated. Then the specimens were polished with SiC paper and 1 μm alumina polishing paste. After polishing, porcelain specimens were glazed in accordance with the manufacturer's instructions. Each type of restorative material was then randomly divided into two groups (n=10), and the specimens were treated with either Opalescence PF or Treswhite Supreme. The microhardness of the specimens before bleaching (baseline) and after bleaching was determined using a digital microhardness tester. Data were analyzed using the Mann-Whitney U-test and the Wilcoxon test. Opalescence PF significantly influenced the hardness of all the restorative materials. Statistically significant decreases with respect to before bleaching were found for Premise (p=0.005), Empress Esthetic (p=0.003), Empress 2 layering (p=0.005), and Matchmaker-MC (p=0.003), whereas a statistically significant increase was observed in Filtek Supreme XT (p=0.028). The difference in the microhardness values between before and after bleaching using Treswhite Supreme was statistically significant only for Premise (p=0.022). High-concentration carbamide peroxide–containing home bleaching may affect the microhardness of restorative materials.

  9. The effect of three whitening oral rinses on enamel micro-hardness.

    Science.gov (United States)

    Potgieter, E; Osman, Y; Grobler, S R

    2014-05-01

    The purpose of this study was to determine the effect on human enamel micro-hardness of three over-the-counter whitening oral rinses available in South Africa. Enamel fragments were gathered into three groups of 15 each. One group was exposed to Colgate Plax Whitening Blancheur, the second group to White Glo 2 in 1 and the third to Plus White, in each case for periods recommended by the respective manufacturers. Surface micro-hardness of all groups was measured before and after a 14 day treatment period. pH levels of the oral rinses were also determined with a combination pH electrode. Pre- and post- treatment data were analysed by the Wilcoxon Signed Rank Sum Test. According to the micro-hardness values no significant (p > 0.05) enamel damage was found as a result of treatment. However, it was observed that Colgate Pax and White Glo decreased the enamel hardness, an early sign of enamel damage, while Plus White showed a small increase in hardness. The three whitening oral rinses on the South African market do not damage the tooth enamel significantly when used as recommended by the manufacturers. However, extending the contact period and increasing the frequency of application might lead to damage of enamel.

  10. Studies on Al-Mg solid solutions using electrical resistivity and microhardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A.; Afify, N.; El-Halawany, S.M.; Mossad, A. [Assiut Univ. (Egypt). Dept. of Physics

    1999-08-01

    Al-C at% Mg alloys (C = 0.82, 1.84, 3.76, 5.74 and 12.18) have been selected for this study. From the electrical resistivity measurements it is concluded that the resistivity increment of Al-Mg alloys (in a solid solution state) is proportional to the atomic fractional constituents (Mg and Al) as {delta}{rho}{sub all} = 64.66 c(1-c) {mu}{omega} cm. In addition, both the temperature coefficient of resistivity, {alpha}{sub all} and the relaxation time of the free electrons {tau}{sub all} in the alloys diminish with increasing the solute Mg concentration. The increase of the scattering power, {eta}, with increasing C is interpreted to be due to the contribution of electron-impurity scattering. The percentage increase due to electron-impurity scattering per one atomic percent Mg has been determined as 12.99%. The Debye temperature {theta} decreases as the Mg concentration increases. The microhardness results showed that the solid solution hardening obeys the relation {delta}HV{sub s} = 135.5C{sup 0.778} MPa which is comparable to the theory of solid solution hardening for all alloys; {delta}HV{sub s} {approx} C{sup 0.5-0.67} MPa. (orig.)

  11. Microhardness of anodic aluminum oxide formed in an alkaline electrolyte

    Science.gov (United States)

    Kanygina, O. N.; Filyak, M. M.

    2017-04-01

    The microhardness of anodic aluminum oxide formed by anodizing of aluminum sheet in electrolyte on the basis of sodium hydroxide has been determined experimentally. The microhardness of the hard film/soft substrate system has been estimated by three approaches: indentation geometry (length of diagonals) in film surfaces, the sum of the hardnesses of the film and the surface with allowance for the indentation surface area and geometry, and with allowance for the indentation depth. It is demonstrated that the approach accounting for the indentation depth makes it possible to eliminate the influence of the substrate. It is established that the microhardness of the films formed in alkaline electrolytes is comparable with that formed in acid electrolytes.

  12. Microstructure and microhardness of Ti6246 linear friction weld

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yina; Jung, Taenam [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Chiu, Yu Lung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Li, Hangyue [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Bray, Simon [Rolls-Royce plc, PO Box 31, Derby DE24 8BJ (United Kingdom); Bowen, Paul [School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT (United Kingdom)

    2013-02-01

    The microhardness and microstructure of linear friction welded Ti-6Al-2Sn-4Zr-6Mo (Ti6246) alloys were studied, in both as-welded and post-weld heat-treated conditions. It has been found that the as-welded Ti6246 has a lower microhardness value of about 360 HV in the central weld zone than that of the base material of about 420 HV. Post-weld heat-treatment of the Ti6246 weld at 600 Degree-Sign C for 1 h has led to the hardness increase of about 180 HV at the central weld zone. Transmission electron microscopy studies show that the microstructure at the central weld zone of the as-welded Ti6246 consists of fine grains with dense acicular orthorhombic {alpha} Double-Prime martensite. The soft {alpha} Double-Prime martensite is believed to account for the low hardness measured in the as-welded conditions. Phase transformation from orthorhombic {alpha} Double-Prime to hexagonal {alpha} occurred during the PWHT, resulting in the observed hardness increase.

  13. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    Science.gov (United States)

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Evaluation of surface physical properties of acrylic resins for provisional prosthesis

    Directory of Open Access Journals (Sweden)

    Sérgio Paulo Hilgenberg

    2008-09-01

    Full Text Available Acrylic resins used for provisional prostheses should have satisfactory superficial characteristics in order to ensure gingival health and low bacterial attachment. The purpose of the present study was to evaluate the superficial roughness and contact angle after two types of polishing and the Vickers hardness of three acrylic resins (Duralay - G1, Dencrilay - G2, and Dencor - G3, all shade 66, indicated for provisional fixed prostheses. Five 20 x 3 ± 1 mm diameter discoid specimens were obtained for each group. One side of the specimens was subjected to standard polishing (pumice and whiting slurry, and the opposite side was polished with special tips. The mean roughness and contact angles of the materials were measured. The specimens were subjected to the Vickers microhardness test, which indicated that standard polishing produced a surface roughness equivalent to that of the special tips. The contact angles obtained with the standard polishing were equivalent to those observed in the special tips group. The microhardness of G1 and G3 resins showed statistical differences.

  15. Quality assurance in design: policy adopted by Vickers Barrow Engineering Works

    International Nuclear Information System (INIS)

    Aubrey, J.H.

    1976-01-01

    The quality assurance system operated by the Vickers Barrow Engineering Works is described, with special reference to the design of the reactor shield and above core structure for the first commercial fast reactor. Section headings are: introduction; what is quality assurance of design; attitude of designer; design discipline; customers attitude; Engineering Company system; future application of Design Quality Assurance Record system. (U.K.)

  16. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  17. Microstructure evolution in dissimilar AA6060/copper friction stir welded joints

    Science.gov (United States)

    Kalashnikova, T. A.; Shvedov, M. A.; Vasilyev, P. A.

    2017-12-01

    Friction stir welding process has been applied for making a dissimilar copper/aluminum alloy joint. The grain microstructure and mechanical properties of the obtained joint were studied. The structure of the cross-section of the FSW compound was analyzed. The microstructural evolution of the joint was examined using optical microscopy. The mechanical properties of the intermetallic particles were evaluated by measuring the microhardness according to the Vickers method. The microhardness of the intermetallic particles was by a factor of 4 lower than that of the particles obtained by fusion welding. The results of the investigations enable using friction stir welding for making dissimilar joints.

  18. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  19. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  20. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    DEFF Research Database (Denmark)

    Yang, R.; Wu, G. L.; Zhang, X.

    2017-01-01

    measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient...... in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure....

  1. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  2. Influence of the final temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Pedro César Garcia Oliveira

    2007-02-01

    Full Text Available The aim of the work was to evaluate the influence of the temperature of investment healting on the tensile strength and Vickers hardness of CP Ti and Ti-6Al-4V alloy casting. Were obtained for the tensile strength test dumbbell rods that were invested in the Rematitan Plus investment and casting in the Discovery machine cast. Thirty specimens were obtained, fiftten to the CP Titanium and fifteen to the Ti-6Al-4V alloy, five samples to each an of the three temperatures of investment: 430ºC (control group, 480ºC and 530ºC. The tensile test was measured by means of a universal testing machine, MTS model 810, at a strain of 1.0 mm/min. After the tensile strenght test the specimens were secctioned, embedded and polished to hardness measurements, using a Vickers tester, Micromet 2100. The means values to tensile tests to the temperatures 430ºC, 480 and 530: CP Ti (486.1 - 501.16 - 498.14 -mean 495.30 MPa and Ti-6Al-4V alloy (961.33 - 958.26 - 1005.80 - mean 975.13 MPa while for the Vickers hardness the values were (198.06, 197.85, 202.58 - mean 199.50 and (352.95, 339.36, 344.76 - mean 345.69, respectively. The values were submitted to Analysis of Variance (ANOVA and Tukey,s Test that indicate differences significant only between the materials, but not between the temperature, for both the materias. It was conclued that increase of the temperature of investment its not chance the tensile strength and the Vickers hardness of the CP Titanium and Ti-6Al-4V alloy.

  3. Thermal treatment of the Fe78Si9B13 alloy in it amorphous phase studied by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cabral P, A.; Lopez, A.; Garcia S, F.

    2003-01-01

    The magnetic and microhardness changes, dependents of the temperature that occur in the Fe 78 Si 9 B 13 alloy in it amorphous state were studied by means of the Moessbauer spectroscopy and Vickers microhardness. According to the Moessbauer parameters and in particular that of the hyperfine magnetic field, this it changes according to the changes of the microhardness; i.e. if the microhardness increases, the hyperfine magnetic field increases. The registered increment of hardness in the amorphous state of this alloy should be considered as anomalous, according to the prediction of the Hall-Petch equation, the one that relates negative slopes with grain sizes every time but small. (Author)

  4. Evaluation of photo-activation appliances used in dentistry

    Directory of Open Access Journals (Sweden)

    Thales Ribeiro de Magalhães Filho

    2008-01-01

    Full Text Available Objective: Verify the Vickers microhardness promoted by three photo-activation appliances: one Halogen Light Ultralux (Dabi-Atlante, Ribeirão Preto, Brazil and two Light Emitting Diodes. One with a larger diode (Ultraled, Dabi-Atlante, Ribeirão Preto, Brazil and the other with seven smaller diodes (Ultraled xp, Dabi-Atlante, Ribeirão Preto, Brazil in composites with different matrixes. Methods: Three test specimens were made for each resinous materials using silicone molds measuring 4 X 8 X 30 mm. Polymerization was performedin three stages and on the two surfaces. After having been submitted to careful polishing with sequential abrasive papers and diamond paste, the Vickers microhardness of the test specimens was determined. Afterwards these values were submitted to statistical analysis by the ANOVA table and Student’s-t test. Results: The microhardness values obtained in the hybrid composite were as follows: 51.63 kg/mm2 +- 3.27; 52.22 kg/mm2 +- 3.3; 38.08 kg/mm2 +-0.31 and in the ormocer, 41.87 kg/mm2 +- 2.36; 41.5 kg/mm2 +- 1.2; 33.63 kg/mm2 +- 1.2, by the Ultralux (Dabi-Atlante, Ribeirão Preto, Brazil, Ultraled xp (Dabi-Atlante, Ribeirão Preto, Brazil and Ultraled (Dabi-Atlante, Ribeirão Preto, Brazil appliances, respectively. Conclusion: The Ultraled (Dabi-Atlante, Ribeirão Preto, Brazil and Ultraled xp (Dabi-Atlante, Ribeirão Preto, Brazil appliances promoted microhardness values that were similar between them and higher than the values produced by Ultraled (Dabi-Atlante, Ribeirão Preto, Brazil in the composites. It was verified that the intensity of the photo-activator appliances is directly related to the microhardness they produce in the composites.

  5. In vitro effects of alcohol-containing and alcohol-free mouthrinses on microhardness of some restorative materials.

    Science.gov (United States)

    Gürgan, S; Onen, A; Köprülü, H

    1997-03-01

    Daily application of mouthrinses has been recommended for the prevention and control of caries and periodontal disease. The aim of this study was to evaluate the effect of alcohol-containing and alcohol-free mouthrinses on the microhardness of three restorative materials. Materials tested included visible light cured (VLC) composite resin (Amelogen), VLC glass-ionomer cement (Fuji II LC) and a fissure sealant (Ultra Seal XT). Eighteen cylinders of each restorative were fabricated and initially stored in distilled water for 24 h. Six samples of the restoratives were stored for 12 hours to simulate a 2 min/day for 1 year exposure to mouthrinses in the following solutions: distilled water (control), alcohol-containing mouthrinse (Viadent) and alcohol-free mouthrinse (Rembrandt). At the end of the test period microhardness was measured with a Tukon microhardness tester. Kruskal-Wallis one-way analysis of variance was used to analyse the data. Both mouthrinses affected the hardness of the materials tested.

  6. Study of the microstructure and of microhardness variation of a Ni-Fe-Cr austenitic alloy by niobium

    International Nuclear Information System (INIS)

    Carvalho e Camargo, M.U. de; Lucki, G.

    1979-01-01

    The mechanisms of hardening and corrosion resistance increase in Ni-Fe-Cr austenitic stainless steels by Nb additions are of interest to nuclear technology Niobium additions to a 321 type stainless steel were made in order to study the microhardness, electrical resistivity and metallography. Experimental measurements results are shown. The effect of Nb additions as a micro-alloying element and the thermal and mechanical processes (cold working in particular) in the microstructure and microhardness properties of the 11% Ni - 70%Fe - 17% Cr austenitic alloys were studied. (Author) [pt

  7. Tooth enamel surface micro-hardness with dual species Streptococcus biofilm after exposure to Java turmeric (Curcuma xanthorrhiza Roxb.) extract

    Science.gov (United States)

    Isjwara, F. R. G.; Hasanah, S. N.; Utami, Sri; Suniarti, D. F.

    2017-08-01

    Streptococcus biofilm on tooth surfaces can decrease mouth environment pH, thus causing enamel demineralization that can lead to dental caries. Java Turmeric extract has excellent antibacterial effects and can maintain S. mutans biofilm pH at neutral levels for 4 hours. To analyze the effect of Java Turmeric extract on tooth enamel micro-hardness, the Java Turmeric extract was added on enamel tooth samples with Streptococcus dual species biofilm (S. sanguinis and S. mutans). The micro-hardness of enamel was measured by Knoop Hardness Tester. Results showed that Curcuma xanthorrhiza Roxb. could not maintain tooth enamel surface micro-hardness. It is concluded that Java Turmeric extract ethanol could not inhibit the hardness of enamel with Streptococcus dual species biofilm.

  8. Microhardness and fracture toughness of Ce0.9Gd0.1O1.95 for manufacturing solid oxide electrolytes

    International Nuclear Information System (INIS)

    Mangalaraja, R.V.; Ananthakumar, S.; Uma, Kasimayan; Jimenez, Romel M.; Lopez, Marta; Camurri, Carlos P.

    2009-01-01

    Synthesis of nanocrystalline gadolinium doped ceria (Ce 0.9 Gd 0.1 O 1.95 ) was attempted by nitrate-fuel combustion technique involving different organic fuels namely urea, citric acid, glycine and poly ethylene glycol. As-combusted ceria precursors were calcined at 700 deg. C for 2 h for obtaining fully dense, nanocrystalline ceria powders. Cylindrical ceria discs were fabricated by uni-axial pressing and sintered intentionally at low temperature of 1200 deg. C for 2 h for assessing the sintering characteristics of the nano powders as well as the mechanical performance of the sintered ceria body. The study confirms that the nano powders could be sintered to 98% theoretical sintered density at 1200 deg. C with a grain size of 400 nm to 1 μm. The sintered samples exhibited the Vickers microhardness of 8.82 ± 0.2 GPa and the fracture toughness of 1.75 ± 0.3 MPa m 1/2 at a load 20 N for glycine and citric acid fuels derived ceria, respectively. A comparison between the fuels was made with respect to the sintering and mechanical properties of doped ceria. Citric acid and glycine fuels resulted in sintered ceria with high hardness where as the urea and polyethylene fuels derived nano ceria resulted in high fracture toughness.

  9. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    Science.gov (United States)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  10. Environmental effects on fatigue of alkaline earth aluminosilicate glass with varying fictive temperature

    DEFF Research Database (Denmark)

    Striepe, Simon; Deubener, Joachim; Smedskjær, Morten Mattrup

    2013-01-01

    The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K) are comp......The influence of relative humidity on microhardness, stress intensity, crack resistance, and sub-critical crack growth of an alkaline earth aluminosilicate glass has been studied by Vickers indentation. Quenched and annealed glasses with a wide range of fictive temperatures (ΔTf ≈ 130 K....... The glasses with lower fictive temperature exhibit a larger change in the micromechanical properties when comparing wet and dry conditions. Finally, it is found that sub-critical crack growth is larger in the low fictive temperature glasses, indicating a diminished resistance against fatigue and stress...

  11. Improvement of the mechanical, tribological and antibacterial properties of glass ionomer cements by fluorinated graphene.

    Science.gov (United States)

    Sun, Li; Yan, Zhuanjun; Duan, Youxin; Zhang, Junyan; Liu, Bin

    2018-06-01

    The aim of this study was to improve the mechanical properties, wear resistance and antibacterial properties of conventional glass ionomer cements (GICs) by fluorinated graphene (FG), under the premise of not influencing their solubility and fluoride ion releasing property. FG with bright white color was prepared using graphene oxide by a hydrothermal reaction. Experimental modified GICs was prepared by adding FG to the traditional GICs powder with four different weight ratios (0.5wt%, 1wt%, 2wt% and 4wt%) using mechanical blending. Compressive and flexural strength of each experimental and control group materials were investigated using a universal testing machine. The Vickers microhardness of all the specimens was measured by a Vicker microhardness tester. For tribological properties of the composites, specimens of each group were investigated by high-speed reciprocating friction tester. Fluoride ion releasing was measured by fluoride ion selective electrode methods. The antibacterial effect of GICs/FG composites on selected bacteria (Staphylococci aureus and Streptococcus mutans) was tested with pellicle sticking method. The prepared GICs/FG composites with white color were successfully fabricated. Increase of Vickers microhardness and compressive strength and decrease of friction coefficient of the GICs/FG composites were achieved compared to unreinforced materials. The colony count against S. aureus and S. mutans decreased with the increase of the content of FG. And the antibacterial rate of S. mutans can be up to 85.27% when the FG content was 4wt%. Additionally, fluoride ion releasing property and solubility did not show significant differences between unreinforced and FG reinforced GICs. Adding FG to traditional GICs could not only improve mechanical and tribological properties of the composites, but also improve their antibacterial properties. In addition, the GICs/FG composites had no negative effect on the color, solubility and fluoride ion releasing

  12. Influence of pulse electrodeposition parameters on microhardness ...

    Indian Academy of Sciences (India)

    duty cycle on the microhardness and grain size of nanocomposite coatings that produced through the pulse current ... prepared by blowing inert metallic gas on a cold substrate in which fast gas .... were produced by a power supply.

  13. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin

    Directory of Open Access Journals (Sweden)

    Flávia Emi Razera BALDASSO

    2017-05-01

    Full Text Available Abstract This study aimed to evaluate the effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Sixty root canals from mandibular incisors were instrumented and randomly divided into six groups (n = 10 according to the irrigant used: QMiX, 17% EDTA, 10% citric acid (CA, 1% peracetic acid (PA, 2.5% NaOCl (solution control, and distilled water (negative control. The chelating solutions were used to irrigate the canal followed by 2.5% NaOCl as a final flush. After the irrigation protocols, all specimens were rinsed with 10 mL of distilled water to remove any residue of the chemical solutions. Before and after the final irrigation protocols, dentin microhardness was measured with a Knoop indenter. Three indentations were made at 100 µm and 500 µm from the root canal lumen. Afterwards, the specimens were prepared for scanning electron microscopic analysis and the amount of dentin erosion was examined. Wilcoxon and Kruskal-Wallis tests were used to analyze the results with a significance level set at 5%. At 100 µm, all protocols significantly reduced dentin microhardness (p < .05, while at 500 µm, this effect was detected only in the EDTA and QMiX groups (p < .05. CA was the irrigant that caused more extensive erosion in dentinal tubules, followed by PA and EDTA. QMiX opened dentinal tubules, but did not cause dentin erosion. Results suggest that QMiX and 17% EDTA reduced dentin microhardness at a greater depth. Additionally, QMiX did not cause dentin erosion.

  14. Vickers Attenuator. Volume 3C(VA) - Technical appraisal. Consultants' 1983 report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A report is given by a team of Consultants on the estimated cost of converting wave energy to electrical energy by a 2 GW array of Vickers Attenuator wave energy devices and delivering this to a sub-station on the west coast of Skye. Comparisons of the estimates made by the team developing the concept are presented and discrepancies discussed. A detailed engineering assessment is given.

  15. Modelo predictivo del espesor de la capa de óxido y microdureza en aluminio Al3003-B14 y Al6063-T6 anodizado usando análisis multifactorial Oxide film thickness and microhardness prediction model of Al3003-B14 and Al6063-T6 anodized aluminum using multifactorial analysis

    Directory of Open Access Journals (Sweden)

    Leonardo Eladio Vergara Guillén

    2011-08-01

    ], electrolyte concentration [1,2M; 2M], current density [1Amp/dm²; 3Amp/dm²], aluminum [Al3003, Al6063], and as a noise parameter, the plastic deformation [0%, 10%, 20%, 30%]. A combined fractional design 2(7-2 was proposed, based on which a total of 48 tests were performed using sulfuric acid electrolytic solutions. The measurement of microhardness was performed using a Vickers indenter loaded at 400g, and the thickness of the oxide layer was captured using electron microscopy. Variance analysis (ANOVA was applied to the results in order to determine the significant factors and the robustness of the effects. Results of microhardness [HV] [85,74-308,87]; and the oxide layer thickness [µm] [12,82 – 94,69] were determined. Finally, the equations for the prediction models are shown for each response as a function of the significant factors, these equations will allow the selection of the microhardness and thickness of oxide layer to fulfill the requirements of a particular product using an appropriate selection of process parameters.

  16. Anisotropy of the Mechanical Properties of TbF3 Crystals

    Science.gov (United States)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  17. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian)

    OpenAIRE

    Daniela Ogrean

    2001-01-01

    The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes) indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Tim...

  18. Effect of artificial aging on the roughness and microhardness of sealed composites.

    Science.gov (United States)

    Catelan, Anderson; Briso, André L F; Sundfeld, Renato H; Dos Santos, Paulo H

    2010-10-01

      The application of surface sealant could improve the surface quality and success of composite restorations; however, it is important to assess the behavior of this material when subjected to aging procedures.   To evaluate the effect of artificial aging on the surface roughness and microhardness of sealed microhybrids and nanofilled composites.   One hundred disc-shaped specimens were made for each composite. After 24 hours, all samples were polished and surface sealant was applied to 50 specimens of each composite. Surface roughness (Ra) was determined with a profilometer and Knoop microhardness was assessed with a 50-g load for 15 seconds. Ten specimens of each group were aged during 252 hours in a UV-accelerated aging chamber or immersed for 28 days in cola soft drink, orange juice, red wine staining solutions, or distilled water. Data were analyzed by two-way analysis of variance and Fischer's test (α=0.05).   Artificial aging decreased microhardness values for all materials, with the exceptions of Vit-l-escence (Ultradent Products Inc., South Jordan UT, USA) and Supreme XT (3M ESPE, St. Paul, MN, USA) sealed composites; surface roughness values were not altered. Water storage had less effect on microhardness, compared with the other aging processes. The sealed materials presented lower roughness and microhardness values, when compared with unsealed composites.   Aging methods decreased the microhardness values of a number of composites, with the exception of some sealed composites, but did not alter the surface roughness of the materials. The long-term maintenance of the surface quality of materials is fundamental to improving the longevity of esthetic restorations. In this manner, the use of surface sealants could be an important step in the restorative procedure using resin-based materials. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  19. Thermal treatment of the Fe{sub 78}Si{sub 9}B{sub 13} alloy in it amorphous phase studied by means of Moessbauer spectroscopy; Tratamiento termico de la aleacion Fe{sub 78}Si{sub 9}B{sub 13} en su fase amorfa estudiado por medio de la espectroscopia Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Lopez, A.; Garcia S, F. [Facultad de Ciencias, UAEM, 50000 Toluca, Estado de Mexico (Mexico)

    2003-07-01

    The magnetic and microhardness changes, dependents of the temperature that occur in the Fe{sub 78}Si{sub 9}B{sub 13} alloy in it amorphous state were studied by means of the Moessbauer spectroscopy and Vickers microhardness. According to the Moessbauer parameters and in particular that of the hyperfine magnetic field, this it changes according to the changes of the microhardness; i.e. if the microhardness increases, the hyperfine magnetic field increases. The registered increment of hardness in the amorphous state of this alloy should be considered as anomalous, according to the prediction of the Hall-Petch equation, the one that relates negative slopes with grain sizes every time but small. (Author)

  20. Microhardness studies on nonlinear optical L-alanine single crystals

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... increasing load. Meyer's index number () calculated from v shows that the material belongs to the soft material category. Using Wooster's empirical relation, the elastic stiffness constant (11) was calculated from Vickers hardness values. Young's modulus was calculated using Knoop hardness values.

  1. Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    Science.gov (United States)

    Dannels, Christine M.; Dutta, Sunil

    1989-01-01

    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC.

  2. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  3. Microhardness and Roughness of Enamel Bleached with 10% Carbamide Peroxide and Brushed with Different Toothpastes: An In Situ Study

    Science.gov (United States)

    Melo, Carolina França de Medeiros; Manfroi, Fernanda Borguetti; Spohr, Ana Maria

    2014-01-01

    Background: This in situ study evaluated the roughness and microhardness of enamel bleached with 10% carbamide peroxide (PC10) and brushed with different toothpastes. Materials and Methods: Two groups of volunteers received PC10 and placebo agents for 21 days in two phases in a crossover 2 × 3 study. Fragments of human enamel were distributed among intraoral removable appliances (IRA). Nine fragments, divided into three triplets, were used in each IRA, and these were brushed with toothpastes R (Colgate), W (Colgate Total 12 Whiteness Gel) or BS (Colgate Whitening Oxygen Bubbles Fluoride). Treatments agents were applied for 8 h overnight. After brushing, the volunteers used the IRA for about 16 h/day. After a washout period, new IRAs were distributed and the volunteers were crossed over to the alternate agent for 21 days. Roughness and microhardness were measured before and after each phase. Results: According to the paired Student’s t-test, roughness of enamel increased and microhardness decreased (P Enamel microhardness and surface roughness are altered when PC10 bleaching is associated with tooth brushing using toothpastes BS, R, and W. PMID:25214727

  4. Molar development in sheep: morphology, radiography, microhardness

    International Nuclear Information System (INIS)

    Milhaud, G.; Nezit, J.

    1991-01-01

    The chronology of molar development is studied from radiographic and macroscopic observations on 48 south Pre-Alps were living under optimal nutritional conditions. It was found that the first molar started its development in utero, the second molar at one month after birth, and the third molar, at 9-10 months. The first molar emerged into the oral cavity at 3 months, the second at 9 months and the third molar at 18 months. The first molar began the development of its roots at 6-7 months, the second molar at 11-12 months and the third molar at 20-22 months. The first molar reached completion of the growth of its roots at 3.5-4 years, the second and the third molars at about 6 years. The molars show the particularity of being functional during the three months which follow their eruption although the development of the crown is not completed. Then the accelerated wear is only partially compensated by the growth of the roots. The study also shows how the combined effects of wear and dentine deposit in the pulp cavity affect the morphology of molars. It reveals the marked hardness of enamel (240 Vickers units) and the low resistance of dentine at the surface of attrition (30 Vickers units)

  5. Laser surface melting of 304 stainless steel for pitting corrosion resistance improvement

    CSIR Research Space (South Africa)

    Seleka, TS

    2006-11-01

    Full Text Available optical emission spectroscopy (GDOES) was utilized for chemical analysis. Changes in hardness were observed by using a Vickers microhardness tester. Pitting corrosion tests on laser treated and untreated samples were conducted according to ASTM G48...

  6. Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.

    Science.gov (United States)

    Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer

    2008-01-01

    To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P statistically significant (P statistically significant (P .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.

  7. Standard hardness conversion tables for metals relationship among brinell hardness, vickers hardness, rockwell hardness, superficial hardness, knoop hardness, and scleroscope hardness

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 Conversion Table 1 presents data in the Rockwell C hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.2 Conversion Table 2 presents data in the Rockwell B hardness range on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, Knoop hardness, and Scleroscope hardness of non-austenitic steels including carbon, alloy, and tool steels in the as-forged, annealed, normalized, and quenched and tempered conditions provided that they are homogeneous. 1.3 Conversion Table 3 presents data on the relationship among Brinell hardness, Vickers hardness, Rockwell hardness, Rockwell superficial hardness, and Knoop hardness of nickel and high-nickel alloys (nickel content o...

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Vickers microhardness indentation technique has been employed to detect the photoplastic effect in the transparent polycarbonate specimens in darkness and under mercury illumination. For low applied loads, the hardening of specimens under illumination confirms the positive photoplastic effect that causes ...

  9. Vickers Terminator. Volume 3C(VT) - Technical appraisal. Consultants' 1983 report

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A report is given by a team of consultants on the estimated cost of converting wave energy to electrical energy by a 2 GW array of Vickers Terminator wave energy devices and delivering the electricity to a sub-station on the west coast of Skye. Comparisons with the estimates made by the team developing the concept are presented and are largely in agreement, except for the capital cost per device and the power chain efficiency. A detailed engineering assessment is given.

  10. Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface

    Directory of Open Access Journals (Sweden)

    Юлія Геннадіївна Чабак

    2016-11-01

    Full Text Available The article presents an analysis of the cathode material and the pulse plasma treatment mode influence on the surface microstructure and microhardness of high chrome (15% Cr cast iron. The methods of metallographic analysis and microhardness measurements were used. It has been shown that pulsed plasma treatment at 4 kV voltage with the use of the electro-axial thermal accelerator results in surface modification with high microhardness 950-1050 HV50, and in the formation of the coating due to the transfer of the electrodes material. The specific features of using different cathode materials have been systematized. It has been found that graphite electrodes are not recommended to be used due to their low strength and fracture under plasma pulses. In case of using tungsten cathode a coating of small thickness (20-30 microns and having cracks has been formed on the specimen surface. The most expedient is to apply the electrodes with low melting point (such as killed St.3, which provides a high-quality state of treated surface and formation the protective crack-free coating of 80-100 microns thick. It has been found that as a result of the plasma pulsed treatment the enrichment of coating with carbon is likely to occur that results in microhardness increase. The prospects of this technology as well as its shortcomings have been described

  11. Final report on COOMET Vickers PTB/VNIIFTRI key comparison (COOMET.M.H-K1.b and COOMET.M.H-K1.c)

    Science.gov (United States)

    Aslanyan, E.; Herrmann, K.

    2013-01-01

    This report describes a COOMET key comparison on Vickers hardness scales of two National Metrology Institutes—PTB and VNIIFTRI. The pilot laboratory was PTB, which was the linking institute with the key comparison reference values of CCM.H-K1. In the key comparison two sets of hardness reference blocks for the Vickers hardness scales HV1 and HV30, each consisting of three hardness reference blocks with the hardness levels 240 HV, 540 HV and 840 HV, are used. The same hardness reference blocks were used previously in the key comparison CCM.H-K1. The measurement results and uncertainty assessments, announced by VNIIFTRI, are in good agreement with the key comparison reference values of CCM.H-K1. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Relating coal oxidation and hydrophobicity: a petrographic approach

    CSIR Research Space (South Africa)

    Kruszewska, KJ

    1996-11-01

    Full Text Available techniques, namely long-wave fluorescence relative intensity (FRI) measurements 3 and a vitrinite elasticity index .(EI) based on Vickers microhardness impression types 3'4, to assess the degree of oxidation of a set of four..., IEA Coal Research, London, 1990, pp. 57-60 3 Kruszewska, K. J. and du Cann, V. M. Fuel 1996, 75, 769 4 Nandi, B. N., Ciavaglia, L. A. and Montgomery, D. S. J. Microsc. 1977, 109, 93 5 Stach, E. et al. (Eds...

  13. Dependence of microhardness of coke on carbon content and final coking temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Dvorak, P.

    1995-12-31

    At present time is important the coke-quality, tested by various methods again. The new methods of evaluation of coke quality as e.g. CSR, CRI, ACRI etc. demonstrate, that the mechanical stability parameters are in connection of microstructure of coke mass. The purpose of present paper is to investigate the dependence of microhardness on the carbon content and the final carbonisation temperature in the coal-coke series. The samples prepared experimentally in more series from different coal blends from 20{degrees}C to 1100{degrees}C were investigated both mega- and microscopically. The tests of microhardness are based on the use of the Hanemann microhardness tester. Principally this method consists in impressing the diamond pyramid into the surface of the sample. The data on the pressure applied are subtracted on the scale of load. An important factor influencing the results is the choice of the points from which the sample is to be withdrawn. The choice is dependent on the aim to be achieved. For the determination of an average microhardness it is sufficient to take sample from the middle part of the coke block representing the half width of the coking chamber. The choice of the point is also of great importance. In strong and homogeneous walls, sharply bounded, impressions can be found with a distinct diagonal cross. In thin walls the impressions are distinguished by distinct boundaries, the middle part, however, not being distinct as the pyramidal point did not penetrate the wall. Impressions providing accurate values are those distinctly bounded by a distinct diagonal cross. The walls not having been chosen correctly, the errors reveal themselves as the scattering of the points in the diagrams of microhardness.

  14. Microhardness and Roughness of Infiltrated White Spot Lesions Submitted to Different Challenges.

    Science.gov (United States)

    Neres, É Y; Moda, M D; Chiba, E K; Briso, Alf; Pessan, J P; Fagundes, T C

    A white spot lesion is the first clinical sign of a caries lesion and represents mineral loss from the enamel subsurface. The purpose of this study was to evaluate the microhardness and surface roughness of white spot lesions after application of a resin infiltrant and subjection to different challenges. Caries-like lesions were induced in bovine enamel discs (n=50), and the specimens were randomly divided into five study groups (n=10): demineralized enamel (negative control, G1), infiltrated enamel (G2), infiltrated enamel submitted to brushing (G3), infiltrated enamel submitted to pH cycling (G4), and infiltrated enamel submitted to artificial aging (G5). Half of each enamel surface was used as its own positive control. Roughness data were analyzed using the Kruskal-Wallis test followed by the Dunn test. Results from microhardness were analyzed by two-way analysis of variance, followed by the Tukey test for multiple comparisons. The level of significance was set at 5%. Microhardness and roughness values obtained from the test side of the specimens were significantly lower compared with the sound enamel for all groups. Microhardness values obtained for G2, G3, and G5 were not significantly different. Values found for G1 were significantly lower compared with those for G2, G3, and G5. The lowest microhardness values were observed for G4, which was significantly different from the other groups. Surface roughness was not significantly different between G2 and G3. The resin infiltrant presented superiority over the unprotected white spot lesions, as they were more resistant to mechanical and aging challenges. However, resin infiltration was not able to reestablish the properties of sound enamel and was not resistant to a new cariogenic challenge.

  15. Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

    Science.gov (United States)

    Santini, Ario; Naaman, Reem Khalil; Aldossary, Mohammed Saeed

    2017-04-01

    To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU). Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05. TECBF was more translucent than SF (Pwave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (Penergy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

  16. Evaluation of effect of different disposable infection control barriers on light intensity of light-curing unit and microhardness of composite - An in vitro study.

    Science.gov (United States)

    Khode, Rajiv Tarachand; Shenoi, Pratima Ramakrishna; Kubde, Rajesh R; Makade, Chetana S; Wadekar, Kanchan D; Khode, Priyanka Tarachand

    2017-01-01

    This study evaluated effect of infection control barriers on light intensity (LI) of light-curing unit (LCU) and microhardness of composite. Four different disposable barriers ( n = 30) were tested against the control. LI for each barrier was measured with Lux meter. One hundred and fifty Teflon molds were equally divided into five groups of thirty each. Composite was filled in bulk in these molds and cured without and with barrier. Microhardness was evaluated on top and bottom surface of composite specimen with microhardness testing machine and hardness ratio (HR) was derived. One-way analysis of variance, Tukey's honestly significant difference test, and paired t -test using SPSS version 18 software. All barriers had significantly reduced the baseline LI of LCU ( P glove pieces (LCGP) significantly reduced the microhardness of the composite ( P < 0.05). However, HR determined inadequate curing only with LCGP. Although entire tested barrier significantly reduced the LI; none, except LCGP markedly affected the degree of cure of the composite.

  17. Micro and nanohardness testing of laser welds

    Czech Academy of Sciences Publication Activity Database

    Šebestová, H.; Čtvrtlík, Radim; Chmelíčková, H.; Tomáštík, J.

    2014-01-01

    Roč. 15, č. 3 (2014), s. 247-253 ISSN 1454-9069 R&D Projects: GA TA ČR TA01010517 Institutional support: RVO:68378271 Keywords : Vickers microhardness * depth sensing indentation * laser welding Subject RIV: JP - Industrial Processing Impact factor: 1.658, year: 2014

  18. Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging

    Directory of Open Access Journals (Sweden)

    Wuhao Zhuang

    2014-11-01

    Full Text Available Cold rotary forging is a novel metal forming technology which is widely used to produce the high performance gears. Investigating the microstructure and mechanical property of cold rotary forged gears has a great significance in improving their service performance. In this study, the grain morphology in different regions of the spur bevel gear which is processed by cold rotary forging is presented. And the distribution regulars of the grain deformation and Vickers hardness in the transverse and axial sections of the gear tooth are studied experimentally. A three-dimensional rigid-plastic FE model is developed to simulate the cold rotary forging process of a spur bevel gear under the DEFORM-3D software environment. The variation of effective strain in the spur bevel gear has been investigated so as to explain the distribution regulars of the microstructure and Vickers hardness. The results of this research thoroughly reveal the inhomogeneous deformation mechanisms in cold rotary forging of spur bevel gears and provide valuable guidelines for improving the performance of cold rotary forged spur bevel gears.

  19. Correlation of hot-microhardness with elevated-temperature tensile properties of low activation ferritic steel

    International Nuclear Information System (INIS)

    Hsu Chenyih

    1986-01-01

    Hot microhardness and elevated temperature tensile tests have been performed on 9Cr-2.5W-0.3V-0.15C(GA3X) low activation ferritic steel at temperatures from 20 0 C to 650 0 C. The uniform elongation of the tensile test correlated well with the ductility parameter of the microhardness test. The hot-microhardness test showed a sensitive response to the softening and changes in ductility of the GA3X steel. The ultimate tensile strength and 0.2% yield strength of this steel correlated well with hot microhardness data at test temperatures up to 400 0 C using Cahoon's expressions σ uts = (H/2.9)(n/0.217) n and σ ys = (H/3)(0.1) n , respectively, where H is the diamond pyramid hardness and n is the strain hardening exponent. A 20-30% underestimate of tensile strengths were obtained using Cahoon's expressions at temperatures above 400 0 C, which is probably attributed to creep deformation and may be improved by selecting a proper loading condition during the hardness test. (orig.)

  20. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  1. Effect of hydrogenation pressure on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy

    International Nuclear Information System (INIS)

    Duvaizem, Jose Helio; Galdino, Gabriel Souza; Bressiani, Ana Helena; Faria Junior, Rubens Nunes de; Takiishi, Hidetoshi

    2009-01-01

    The effects of the hydrogenation stage on microstructure and mechanical properties of Ti-13Nb-13Zr alloy produced by powder metallurgy have been studied. Powder alloys have been produced by hydrogenation with 250 MPa or 1 GPa and via high energy planetary ball milling. Samples were isostatically pressed at 200 MPa and sintered at 1150 deg C for 7, 10 and 13 hours. Elastic modulus and microhardness were determined using a dynamic mechanical analyzer (DMA) and a Vickers microhardness tester. Density of the samples was measured using a liquid displacement system. Microstructure and phases presents were analyzed employing scanning electron microscopy (SEM). Elastic modulus were 81.3 ± 0.8 and 62.6 ± 0.6 GPa for samples produced by 250 MPa and 1 GPa hydrogenation, respectively when sintered for 7h. (author)

  2. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    International Nuclear Information System (INIS)

    Barucca, G.; Ferragut, R.; Fiori, F.; Lussana, D.; Mengucci, P.; Moia, F.; Riontino, G.

    2011-01-01

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the β'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on β'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with β'' → β' transformation.

  3. Use of microhardness to determine the strengthening and microstructural alterations of 14-MeV-neutron-irradiated metals

    International Nuclear Information System (INIS)

    Panayotou, N.F.

    1982-02-01

    Microhardness has been found to be an effective post-irradiation analytical tool. The hardening of recrystallized copper and type 316 stainless steel irradiated up to 1 x 10 18 n/cm 2 , E = 14 MeV, at the Rotating Target Neutron Source (RTNS)-II has been studied. It was determined that for these metals the increase in hardness varies directly with the measured increase in the 0.2 percent offset yield strength. Furthermore the coupled use of microhardness and transmission electron microscope techniques provides an estimate of the defect population which was not resolved by TEM. This estimate in turn, was used to evaluate the magnitude of the proportionality constant used in the strong barrier model of radiation induced hardening

  4. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  5. Analysis of the influence of structure on mechanical properties of multilayer Ni/Cu thin films for use in microelectronic technologies

    Directory of Open Access Journals (Sweden)

    Lamovec Jelena S.

    2015-01-01

    Full Text Available Multilayer Ni/Cu thin films were produced by dual-bath electrodeposition technique (DBT on polycrystalline cold-rolled Cu substrate. Different Ni/Cu multilayer structures were realized by changing of process parameters such as total film thickness, sublayer thickness and Ni/Cu sublayer thickness ratio. The mechanical properties of Vickers microhardness and interfacial adhesion in the films were investigated. Decreasing of sublayer thickness down to 300 nm and increasing of Ni:Cu sublayer thickness ratio to 1:4, lead to higher values of Vickers microhardness compared to monolayer metal films. Thin films with sublayer thicknesses from 75 nm to 5 μm show strong interfacial adhesion. A weak adhesion and sublayer exfoliation for the films with sublayer thickness greater than 5μm were found. Three-dimensional Ni microstructures can be fabricated using multilayer Ni/Cu film by selective etching of Cu layers in an acidic thiourea solution ('surface micromachining' technique.

  6. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  7. Mechanical properties of very thin cover slip glass disk

    Indian Academy of Sciences (India)

    Unknown

    Mechanical properties of very thin cover slip glass disk. A SEAL, A K DALUI, M BANERJEE, A K MUKHOPADHYAY* and K K PHANI. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very ...

  8. Effects of the Ratio between Pigment and Bleaching Gel on the Fracture Resistance and Dentin Microhardness of endodontically treated Teeth.

    Science.gov (United States)

    Galloza, Marina Og; Jordão-Basso, Keren Cf; Bandeca, Matheus C; Costa, Samuel O; Borges, Alvaro H; Tonetto, Mateus R; Tirintan, Fabio C; Keine, Kátia C; Kuga, Milton C

    2017-11-01

    The aim of this study was to evaluate the effects of bleaching gel using 35% hydrogen peroxide (HP), associated with red carmine pigment (RC), in the 3:1 or 1:1 ratio, on fracture resistance and dentin microhardness of endodontically treated teeth. A total of 40 lower incisors were endodontically treated and divided into four groups (n = 10), according to the bleaching protocol: G1 (HP3), 35% HP + RC (3:1); G2 (HP1), 35% HP + RC (1:1); G3 (positive), 38% HP; and G4 (negative), unbleached. Four dental bleaching sessions were performed. The dental crowns were restored after the last session and submitted to the fracture resistance test. Totally, 60 specimens from the endodontically treated lower incisor crowns were prepared to evaluate the effects on dentin microhardness. The analysis was measured (in Knoop) prior to and after the last dental bleaching session using similar bleaching protocols. G2 presented the lowest fracture resistance (p 0.05). No difference was observed in the reduction of dentin microhardness among the groups (p > 0.05). A 1:1 ratio (bleaching gel:pigment) caused a significant fracture resistance reduction in relation to the other protocols. No effect on the dentin microhardness reduction was observed. The pigment addition to the bleaching agent accelerates the bleaching chemical reaction. However, no studies have evaluated the ideal proportion to optimize tooth bleaching.

  9. Effect of FSW welding speed on microstructure and microhardness of Al-0.84Mg-0.69Si-0.76Fe alloy at moderate rotational tool velocity

    Science.gov (United States)

    Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.

    2018-03-01

    The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.

  10. The effect of different light-curing units on tensile strength and microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Eduardo Batista Franco

    2007-12-01

    Full Text Available The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE. Conventional halogen (Curing Light 2500 - 3M/ESPE; CL and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6 were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm², respectively and different curing times (20s, 40s and 60s were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10 were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5. Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05. Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.

  11. Mechanical properties of ProTaper Gold nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2016-11-01

    To evaluate and compare the resistance to cyclic fatigue and torsional stress, flexibility and surface microhardness of ProTaper Gold (PTG; Dentsply, Tulsa Dental Specialties, Tulsa, OK, USA) system with ProTaper Universal (PTU; Dentsply Maillefer, Ballaigues, Switzerland). PTG and PTU instruments were rotated in simulated canals and the number of cycles to failure was recorded to assess their cyclic fatigue resistance. Torsional strength was measured using a torsiometer after fixing firmly the apical 3 mm of the instrument. A scanning electron microscope was used to characterize the topographic features of the fracture surfaces of the broken instruments. The instruments were tested for bending resistance using cantilever-bending test. Vickers microhardness was measured on the cross section of instruments with 300 g load and 15 s dwell time. Data were analysed statistically using independent t-tests. Statistical significance was set at P hand, PTU instruments were associated with higher resistance to torsional stress and microhardness than PTG instruments (P < 0.001). After torsional tests, the fractured cross-sectional surfaces revealed skewed dimples near the centre of the fracture surfaces and circular abrasion streaks. The PTG instrument had improved resistance to cyclic fatigue and flexibility compared with PTU. PTU instruments had improved resistance to torsional stress and microhardness compared with PTG. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Formation and evolution of the hardening precipitates in a Mg-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Ferragut, R. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Fiori, F. [Dipartimento SAIFET, Sezione di Scienze Fisiche, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Lussana, D. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy); Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Moia, F. [Dipartimento di Fisica, LNESS and CNISM, Politecnico di Milano, Via Anzani 42, I-22100 Como (Italy); Riontino, G. [Dipartimento di Chimica IFM and NIS Centre, Universita di Torino, Via P. Giuria 9, I-10125 Torino (Italy)

    2011-06-15

    The formation and evolution of hardening precipitates in a Mg-Y-Nd (WE43) alloy during artificial ageing at 150 and 210 deg. C is followed by small angle X-ray scattering (SAXS) measurements, Vickers microhardness tests and transmission electron microscopy (TEM) observations. A quantitative description of the alloy studied during the early and advanced stages of the precipitation sequence is presented. In situ SAXS evolution at 210 deg. C of the size, volume fraction and number density of the subnanometer and nanometer particles that evolve in the {beta}'' phase was obtained. TEM and microhardness results indicate that the hardening mechanism is based on {beta}'' transformation of pre-precipitates and their growth at 150 deg. C, while at 210 deg. C hardening is mainly associated with {beta}'' {yields} {beta}' transformation.

  13. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

    Directory of Open Access Journals (Sweden)

    Haitham T. Hussein

    2014-01-01

    Full Text Available Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM, energy-dispersive X-ray florescence analysis (EDS, optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  14. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    Science.gov (United States)

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.

  15. Chemomechanical phenomena in the grinding of coal. Final report, February 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Macmillan, N.H.

    1977-08-01

    Vickers microhardness, drilling rate, grinding rate and zeta-potential measurements have been made on coals of various rank in both aqueous and organic environments in order to determine whether: (a) chemomechanical (Rebinder) effects exist in coal; and (b) any such effects as do exist can be used to improve the comminution of coal. The results reveal the mechanical behavior of coal to be remarkably environment-insensitive as compared to inorganic non-metals. As a result, it is concluded that chemomechanical phenomena offer little prospect of reducing the cost of comminuting coal.

  16. Microstructure evolution and hardness change in ordered Ni3V intermetallic alloy by energetic ion irradiation

    International Nuclear Information System (INIS)

    Hashimoto, A.; Kaneno, Y.; Semboshi, S.; Yoshizaki, H.; Saitoh, Y.; Okamoto, Y.; Iwase, A.

    2014-01-01

    Ni 3 V bulk intermetallic compounds with ordered D0 22 structure were irradiated with 16 MeV Au ions at room temperature. The irradiation induced phase transformation was examined by means of the transmission electron microscope (TEM), the extended X-ray absorption fine structure measurement (EXAFS) and the X-ray diffraction (XRD). We also measured the Vickers hardness for unirradiated and irradiated specimens. The TEM observation shows that by the Au irradiation, the lamellar microstructures and the super lattice spot in diffraction pattern for the unirradiated specimen disappeared. This TEM result as well as the result of XRD and EXAFS measurements means that the intrinsic D0 22 structure of Ni 3 V changes into the A1 (fcc) structure which is the lattice structure just below the melting point in the thermal equilibrium phase diagram. The lattice structure change from D0 22 to A1 (fcc) accompanies a remarkable decrease in Vickers microhardness. The change in crystal structure was discussed in terms of the thermal spike and the sequential atomic displacements induced by the energetic heavy ion irradiation

  17. Analysis of physical factors on chosen properties of anodic alumina oxide (AAO layers and environment

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2016-10-01

    Full Text Available In the contribution is evaluated an impact of physical factors of anodizing process, namely the temperature of an electrolyte, anodizing time and voltage, on the change of values of Vickers microhardness and thickness of formed layer of experimental materials Al99∙5. By increasing of electrolyte temperature, the values of layer microhardness and thickness layer increase, namely about 0.78 % at the increasing of electrolyte temperature by 1 °C. By lengthening of anodizing time grows the value of layer thickness, but only to the value of the critical deposition time, when chemical dissolution of the layer start to be more prominent. By voltage increasing, values of layer thickness and micro-hardness are increased in the range of the used experimental values.

  18. The effect of Curcuma domestica Val - Tamarindus indica L mixed solution (“kunyit asam” on microhardness and roughnessof human tooth enamel

    Directory of Open Access Journals (Sweden)

    Andi Pratiwi Iljas

    2016-06-01

    Full Text Available Nowadays,peoples tendto seekan alternative treatment from traditional plants because it is side effects relatively less than synthetic drugs. One of the famous traditional medicinedrinks in Indonesia is “kunyit asam”. People was make it with mixed both Curcuma domestica Val and Tamarindus indica L. Beside it has many advantages for health such as increasing stamina, it also has a good taste, so many people consumed it. However, the acid content in this drink maycause enamel erosion. Therefore the aim of this present study is to determine thein vitro effect of “kunyit asam” solution towards microhardness and roughness of human enamel tooth. The pH of solutionwas measure using a digital pH meter, while the calcium content measure using the Atomic Absorption Spectroscopy (AAS. This study used 40 permanent maxillary first incisor that has been extracted from the patient who came to dental polyclinic of hospitals in Polewali Mandar regency, West Sulawesi Province during February 2015-April 2015 period. The roots of the teeth were removed at the cementoenamel junction. Tooth crowns placed on blocks orthoplast with labial surface facing up. Samples were randomly divided into 2 groups equally andimmersed in aquadest solution pH 7.0 (negative control (Group I or “kunyit asam” solution pH 3.0 (Group II for 14, 28, 42 and 56 minutes respectively. An Universal Hardness Tester (Affri® Universal Hardness Tester, Japan was used to measure enamel surface microhardness, while to measure enamel surface roughness wasused a Roughness Tester (Surftest 301 Mitutoyo, Japan. Both measure were done before and after immersed in solution. Data were statistically analyzed using Levene, paired-t one-way Analysis of Variance (ANOVA and Least Significance Different (LSD tests. The results of present study showed that there was no significant difference (p>0.05 microhardness but significant differences (p<0.05 for the roughness of tooth enamelbefore and

  19. Wykorzystanie pomiarów mikrotwardości Vickersa do analiz wegla kamiennego pochodzacego z partii F kopalni Borynia-Zofiówka-Jastrzebie, Ruch Zofiówka

    Czech Academy of Sciences Publication Activity Database

    Godyń, K.; Králová, Lucie

    2017-01-01

    Roč. 19, č. 1 (2017), s. 25-33 ISSN 1643-1030 Institutional support: RVO:68145535 Keywords : Vickers microhardness * hard coal * Upper Silesian Coal Basin (USCB) Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mining and mineral processing http://www.img-pan.krakow.pl/index.php/pl/wydawnictwa/prace-img-pan/2016.html

  20. Evaluation of WC-9Co-4Cr laser surface alloyed coatings on stainless steel

    CSIR Research Space (South Africa)

    Obadele, A

    2011-07-01

    Full Text Available spectrometer (EDS), while the phase changed were observed using x-ray diffraction (XRD). The surface hardness was determined using the Vickers microhardness tester. The decomposition of WC-9Co-4Cr into W2C, C and W is as a result of low heat of formation of WC...

  1. Effects of hydrogen peroxide bleaching strip gels on dental restorative materials in vitro: surface microhardness and surface morphology.

    Science.gov (United States)

    Duschner, Heinz; Götz, Hermann; White, Donald J; Kozak, Kathleen M; Zoladz, James R

    2004-01-01

    This study examined the effects of peroxide tooth bleaching, including Crest Whitestrips hydrogen peroxide gel treatments, on the surface hardness and morphology of common dental restorative treatments. American Dental Association (ADA) recommended dental restorative materials, including amalgam, dental gold, porcelain, glass ionomer, and composites, were prepared according to manufacturers' instructions. A cycling treatment methodology was employed which alternated ex vivo human salivary exposures with bleaching treatments under conditions of controlled temperature and durations of treatment. Bleaching treatments included commercial Crest Whitestrips bleaching gels, which utilize hydrogen peroxide as the in situ bleaching source, and several commercial carbamide peroxide bleaching gels. Control treatments included placebo gels and an untreated group. Crest Whitestrips bleaching included treatment exposures simulating recommended clinical exposures (14 hours), along with excess bleaching simulating exposure to five times suggested Crest Whitestrips use. At the conclusion of treatments, surface microhardness measures and surface morphological assessments with standard and variable pressure (VP-) SEMs were conducted to assess the effects of bleaching exposure on the surface morphology and structural integrity of the restoratives. Surface microhardness and SEM measures revealed no significant deleterious effects on the restoration surfaces from Whitestrips gels. These results confirm that tooth bleaching from the selected commercial hydrogen peroxide or carbamide peroxide bleaching systems does not produce changes in surface morphology or microhardness of common dental restorative materials. These results support the clinical safety of the selected commercial bleaching systems to the oral environment, matching results obtained from long-term use of these ingredients applied in dental offices and available in commercial formulations.

  2. Effect of different light-curing devices and aging procedures on composite knoop microhardness

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2009-12-01

    Full Text Available The aim of this study was to evaluate the effect of light-curing devices (Halogen/HAL, Light Emitting Diodes/LED, Argon Laser/LAS and Plasma Arc/PAC and aging procedures (Mechanical Cycling/MC, Thermal Cycling/TC, Storage/S, MC+TC and MC+TC+S on the micro-hardness of bottom/B and top/T surfaces of 2-mm-high composite resin cylinders. The Knoop microhardness test (25 g, 20 s on both B and T was performed before and after each aging procedure. For B and T, before aging procedures, PAC showed reduced polymerization effectiveness when compared with HAL. In the T, after TC, PAC and LAS had also showed reduced polymerization effectiveness when compared to HAL and LED. For all light-curing devices, MC+TC+S and S affected the Knoop microhardness values. In the B, no difference could be observed among the aging procedures for PAC. From all light-curing units, PAC may have rendered composites of reduced quality and the storage aging procedures were the most harmful to the polymer hardness.

  3. Microhardness changes gradient of the duplex stainless steel (DSS surface layer after dry turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2014-10-01

    Full Text Available The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps.

  4. Changes in Vickers hardness during the decomposition of bone: Possibilities for forensic anthropology.

    Science.gov (United States)

    Walden, Steven J; Evans, Sam L; Mulville, Jacqui

    2017-01-01

    The purpose of this study was to determine how the Vickers hardness (HV) of bone varies during soft tissue putrefaction. This has possible forensic applications, notably for determining the postmortem interval. Experimental porcine bone samples were decomposed in surface and burial deposition scenarios over a period of 6 months. Although the Vickers hardness varied widely, it was found that when transverse axial hardness was subtracted from longitudinal axial hardness, the difference showed correlations with three distinct phases of soft tissue putrefaction. The ratio of transverse axial hardness to longitudinal axial hardness showed a similar correlation. A difference of 10 or greater in HV with soft tissue present and signs of minimal decomposition, was associated with a decomposition period of 250 cumulative cooling degree days or less. A difference of 10 (+/- standard error of mean at a 95% confidence interval) or greater in HV associated with marked decomposition indicated a decomposition period of 1450 cumulative cooling degree days or more. A difference of -7 to +8 (+/- standard error of mean at a 95% confidence interval) was thus associated with 250 to 1450 cumulative cooling degree days' decomposition. The ratio of transverse axial HV to longitudinal HV, ranging from 2.42 to 1.54, is a more reliable indicator in this context and is preferable to using negative integers These differences may have potential as an indicator of postmortem interval and thus the time of body deposition in the forensic context. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter

    OpenAIRE

    HERVAS , Isabel; MONTAGNE , Alex; Van Gorp , Adrien; BENTOUMI , M.; THUAULT , A.; IOST , Alain

    2016-01-01

    International audience; Numerous methods have been proposed to estimate the indentation fracture toughness Kic for brittle materials. These methods generally uses formulæ established from empirical correlations between critical applied force, or average crack length, and classical fracture mechanics tests. This study compares several models of fracture toughness calculation obtained by using Vickers indenters. Two optical glasses (Crown and Flint), one vitroceramic (Zerodur) and one ceramic (...

  6. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com; Jatisukamto, Gaguk, E-mail: gagukjtsk@yahoo.co.id [Mechanical and Industrial Engineering Department, Gadjah Mada University Jl. Grafika 2, Yogyakarta, 55281 (Indonesia)

    2016-03-29

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  7. Statistical analysis of the Vickers micro hardness of precipitates in a Cu-10% wt. Ni-3% wt. Al alloy using the Weibull distribution function

    International Nuclear Information System (INIS)

    Diaz, Gerardo; Donoso, Eduardo; Varschavsky, Ari

    2004-01-01

    A statistical analysis was carried out of the distribution of Vickers micro hardness values of nickel and aluminum atom precipitates from a solid solution of Cu-Ni-Al. Non isothermal calorimetric curves confirmed the formation of two types of precipitates: Ni Al from 45 K to 600 K, and Ni 3 Al from 650 K to 800 K. The micro hardness measurements were done at room temperature in the previously quenched material and submitted to isothermal and iso chronic annealing treatments. A lower dispersion in the distribution of the Vickers micro hardness values in the Ni Al precipitate for the entire formation temperature was determined with a lesser average micro hardness than the Ni 3 Al precipitate. The Weibull modules were estimated from the respective Weibull diagrams. The lesser dispersion was proven by the elevated values of the Wobble modules. The maximum average micro hardness attained by the Ni Al phase was 148, with a Weibull module of 26 and an annealing temperature of 553 K maintained for 40 minutes. The Ni 3 Al reached a maximum average micro hardness of 248 with a Weibull module of 10 and a annealing temperature of 793 K during 40 minutes (CW)

  8. Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiCy

    International Nuclear Information System (INIS)

    Zueva, L.V.; Lipatnikov, V.N.; Gusev, A.I.

    2000-01-01

    The effect of transition from the disordered state to the ordered one on the microstructure and microhardness of the nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.97) is studied. It is shown that the Ti 2 C and Ti 3 C 2 ordered phases are formed due to annealing at the temperature about 1073 K in the field of TiC 0.50 -TiC 0.70 . It is established that the grains growth by annealing leads to decrease in and ordering to increase in the TiC y carbide microhardness [ru

  9. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    International Nuclear Information System (INIS)

    Cabral P, A.; Garcia S, I.; Contreras V, J. A.; Garcia S, F.; Nava, N.

    2010-01-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  10. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  11. The effect of blood and synthetic tissue fluid on the microhardness of ProRoot MTA, OrthoMTA and RetroMTA

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2017-12-01

    Results: Exposure to blood significantly decreased the microhardness of all materials at all three points of 0.5, 2 and 3.5 mm (P<0.001. At level of 0.5 and 2 mm distant from blood, OrthoMTA showed significantly the least microhardness value; however, at the point of 3.5 mm, the microhardness of RetroMTA was higher than the two other materials (P<0.001. After exposure of samples to distilled water or PBS, no significant difference was found between the materials at any levels of 0.5, 2, and 3.5 mm (P<0.01. Conclusion: Blood exposure resulted in the decrease of microhardness of internal part of the materials.

  12. The Influence of Post Bleaching Treatments in Stain Absorption and Microhardness.

    Science.gov (United States)

    Moosavi, Horieh; Darvishzadeh, Fatemeh

    2016-01-01

    This study investigated the effects of post bleaching treatments to prevent restaining and the change of enamel surface microhardness after dental bleaching in vitro. Sixty intact human incisor teeth were stained in tea solution and randomly assigned into four groups (n=15). Then samples were bleached for two weeks (8 hours daily) by 15% carbamide peroxide. Tooth color was determined both with a spectrophotometer and visually before bleaching (T1) and immediately after bleaching (T2). Next, it was applied in group 1 fluoride (Naf 2%) gel for 2 minutes, and in group 2 a fractional CO2 laser (10 mJ, 200 Hz, 10 s), and in group 3, nanohydroxyapatite gel for 2 minutes. The bleached teeth in group 4 remained untreated (control group). Then teeth placed in tea solution again. Color examinations were repeated after various post bleaching treatments (T3) and restaining with tea (T4) and color change values recorded. The microhardness was measured at the enamel surface of samples. Data was analyzed using ANOVA, Tukey HSD test and Dunnett T3 (α = 0.05). Directly after bleaching (ΔE T3-T2), the treatment with nanohydroxyapatite showed significantly the least color lapse in colorimetric evaluation. In experimental groups, the color change between T3 and T4 stages (ΔE T4-T3) was significantly lower than control group (P bleaching treatments are suggested for prevention of stain absorption and increasing the hardening of bleached enamel.

  13. A comparison of microhardness of indirect composite restorative materials

    DEFF Research Database (Denmark)

    Miranda, Carolina Baptista; Pagani, Clóvis; Bottino, Marco Cícero

    2003-01-01

    The purpose of this study was to compare the microhardness of four indirect composite resins. Forty cylindrical samples were prepared according to the manufacturer’s recommendations using a Teflon mold. Ten specimens were produced from each tested material, constituting four groups (n=10) as foll...... esthetics and adequate mechanical properties may be considered as substitutes of natural teeth....

  14. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  15. Effect of Popping Chocolate and Candy on Enamel Microhardness of Primary and Permanent Teeth.

    Science.gov (United States)

    Tabari, Mitra; Alaghemand, Homayoon; Qujeq, Durdi; Mohammadi, Elahe

    2017-01-01

    Dental erosion is a common disease in children. Food diets, due to high amounts of juice, soft drinks, chewing gum, and acidic chocolate, are one of the most important risk factors in erosive processes among children. The aim of this study was to evaluate the effect of candy and chocolate on the microhardness of tooth enamel. Two types of popping candy and one type of popping chocolate were used in this study. Thirty-three healthy permanent premolar teeth and 33 primary incisor teeth (A or B) were selected. Five grams of each popping chocolate or candy was dissolved with 2 ml of artificial saliva. Subsequently, their pH and titrable acidity (TA) as well as microhardness and surface roughness of enamel were examined in the laboratory. Data were analyzed and evaluated Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY through independent t -test, paired t -test, Tukey test, and ANOVA. The results of this study showed that only the pH of the candies was below the critical pH of the enamel (5.5) and their TA was B = 0.20 and C = 0.21. The most significant effect on the enamel microhardness of the permanent and primary teeth was by the following types of candy: orange flavor (C), strawberry flavor (B), and chocolate (A), respectively. This difference was significant ( P < 0.001) and the surface roughness increased after exposure. This study showed that popping chocolate and candy reduces microhardness of enamel.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very thin, commercial, soda-lime-silica cover slip glass (diameter, D-18 mm, thickness, T-0 3 mm; T/D ≈ 0.02) are reported here. The ball on ring biaxial flexure tests were conducted at room temperature as a function of ...

  17. Deposition and characterization of sputtered hexaboride coatings

    International Nuclear Information System (INIS)

    Waldhauser, W.

    1996-06-01

    Hexaborides of the rare-earth elements ReB 6 are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB 6 or single LaB 6 crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB 6 , CeB 6 , SmB 6 and YB 6 targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB 6 , CeB 6 and SmB 6 to YB 6 . The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB 6 coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  18. Characterization of porous tungsten by microhardness

    International Nuclear Information System (INIS)

    Selcuk, C.; Wood, J.V.; Morley, N.; Bentham, R.

    2001-01-01

    One of the applications of tungsten is as high current density dispenser cathode in the form of porous tungsten. It is used as a cathode after being impregnated with an electron emissive material so pore distribution in the part is the most important parameter for its function as a uniform and controlled porosity will lead to a better performance. In this study, application of microhardness as a characterization method for uniformity of the pore distribution and homogeneity of the structure is introduced. Optical microscopy and SEM is used to relate the results and porous tungsten structure for a better understanding of the method applied. (author)

  19. Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Qi, Xiaoben; Zhu, Shigen; Ding, Hao; Zhu, Zhengkun; Han, Zhibing

    2013-01-01

    WC–12%Co powders deposited on ductile iron by electric contact strengthening were studied. This technology was based on the application of the contact resistance heating between the electrode and work piece to form a wear resistant layer on ductile iron. The microstructure, microhardness distribution, phase transformation and wear behaviors of the coating were investigated using optical microscope, scanning electron microscope, Vickers hardness (HV 0.5 ), X-ray diffraction, rolling contact wear tests. The results showed that the WC–12%Co coating by electric contact strengthening was metallurgically bonded to the ductile iron. Additionally, the effect of experimental parameters on microhardness and wear resistance of coatings were studied using orthogonal experiment. The results showed that compared with (A) electric current and (B) rotating speed, (C) contact force displays the most significant effect on microhardness and wear resistance of coatings. The coatings produced at A = 19 kA, B = 0.3 r/min and C = 700 N possessed highest microhardness of 1073 HV 0.5 and wear resistance.

  20. Influence of tooth bleaching on dental enamel microhardness: a systematic review and meta-analysis.

    Science.gov (United States)

    Zanolla, J; Marques, Abc; da Costa, D C; de Souza, A S; Coutinho, M

    2017-09-01

    Several studies have investigated the effect of bleaching on dental tissues. The evaluation of the effect of home bleaching with 10% carbamide peroxide is important for assessing alterations in enamel microhardness that may affect dental health in terms of resistance to masticatory forces. This meta-analysis was performed in order to determine scientific evidence regarding the effects of home vital bleaching with 10% carbamide peroxide gel on the microhardness of human dental enamel. A systematic electronic literature search was conducted in the PubMed and Web of Science databases using search terms. Two independent researchers evaluated the information and methodological quality of the studies. Inclusion and exclusion criteria were established for article selection; further, only studies published in English were selected. Thirteen studies that met all of the inclusion and exclusion criteria were selected and underwent statistical analysis. The results of this meta-analysis showed no significant changes in enamel microhardness when using the 10% carbamide peroxide bleaching gel over periods of 7, 14 and 21 days. © 2016 Australian Dental Association.

  1. Synthesis and mechanical properties of bulk Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy fabricated by consolidation of mechanically alloyed amorphous powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinfu; Wang, Kun; Li, Zhendong; Wang, Xingfu; Wang, Dan; Han, Fusheng, E-mail: fshan@issp.ac.cn

    2015-05-25

    Graphical abstract: Different regions indentation morphologies under 50 g load consolidated at 723 K (left), nanohardness of the Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} alloy as a function consolidation temperature (right). It can be seen from the above figures that the consolidated sample presents white regions, and the microhardness in the white regions is a little lower than the matrix, which could be caused by the difference of the chemical composition and chemical bonding forces between them. Interestingly, the cracks were formed around the indentation periphery in the white regions, which are not shown in the matrix. The nanohardness of the bulk composites increased from 11.16 to 13.27 GPa with the consolidation temperature increasing, mechanical softening was also found in the present alloys. - Highlights: • Bulk amorphous–nanocrystalline Al-based alloys were prepared by HPS process. • The Vickers microhardness of bulk samples is in the range of 945–1177HV0.1. • The nanohardness agrees well with the Vickers hardness testing results. - Abstract: Mechanically alloyed amorphous Al{sub 76}Ni{sub 8}Ti{sub 8}Zr{sub 4}Y{sub 4} (at.%) alloy powder was consolidated by high-pressure sintering process. The influence of the consolidation temperature on the structure and mechanical properties of the consolidated bulk alloys was examined by X-ray diffraction (XRD), Optical microscopy (OM), Scanning electron microscopy (SEM), Vickers Hardness Tester and Nano Indenter. Structural investigations of the bulk materials revealed that most of the amorphous structure was retained after consolidation at 623 K, however, compaction at 723 K and 823 K caused crystallization of the amorphous phase with the appearance of white regions. The results also indicate that application of high pressure affected the crystallization products of the present alloy. Micro mechanical analysis showed that the microhardness of the bulk composites increased from 945HV{sub 0.1} to 1177HV

  2. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  3. On the definition of microhardness

    International Nuclear Information System (INIS)

    Yost, F.G.

    1983-01-01

    Microhardness testing can be a very useful tool for studying modern materials, but is plagued by well-known experimental difficulties. Reasons for the unusual behavior of hardness data at very low loads are explored by Monte Carlo simulation. These simulations bear remarkable resemblance to the results of actual hardness experiments. The limit of hardness as load or indentation depth tends to zero is shown to depend on experimental error rather than upon intrinsic material properties. The large scatter of hardness data at very low loads is insured by the accepted definition of hardness. A new definition of hardness is suggested which eliminates much of this scatter and possesses a limit as indentation depth approaches zero. Some simple calculations are used to show the utility of this new approach to hardness testing

  4. Comparative evaluation of two different remineralizing agents on the microhardness of bleached enamel surface: Results of an in vitro study

    Directory of Open Access Journals (Sweden)

    Gunpriya Kaur

    2015-01-01

    Conclusion: Both GC Tooth Mousse (Recaldent and Toothmin Tooth cream (Abbott Healthcare Pvt.Ltd increase the microhardness of bleached enamel. Toothmin tooth cream is a better agent for increasing microhardness, although difference is not significant.

  5. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  6. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    Directory of Open Access Journals (Sweden)

    Francisco J. Baldenebro-Lopez

    2015-01-01

    Full Text Available In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed.

  7. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.F., E-mail: gfsun82@gmail.com [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Bhattacharya, S. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); Dinda, G.P.; Dasgupta, A. [Center for Advanced Technologies, Focus: Hope, Detroit, MI, 48238 (United States); Mazumder, J. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-06-15

    Highlights: {yields} Orientation relationships among phases in the DMD are given. {yields} Martensite lattice parameters increased with laser specific energy. {yields} Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  8. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    International Nuclear Information System (INIS)

    Sun, G.F.; Bhattacharya, S.; Dinda, G.P.; Dasgupta, A.; Mazumder, J.

    2011-01-01

    Highlights: → Orientation relationships among phases in the DMD are given. → Martensite lattice parameters increased with laser specific energy. → Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  9. Microstructure and microhardness of AA1050/TiC surface composite ...

    Indian Academy of Sciences (India)

    A tool made of HCHCr steel, oil hardened to 62 HRC, having a cylindrical profile was used in this study. The microstructure and microhardness of the fabricated AMC were analysed. Scanning Electron Microscope (SEM) micrographs revealed a uniform distribution of TiC particles which were well-bonded to the matrix alloy.

  10. Effect of accelerated aging on the microhardness and color stability of flexible resins for dentures

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho Goiato

    2010-03-01

    Full Text Available Acrylic resins have been widely used due to their acceptable esthetics and desirable characteristics such as easy handling, good thermal conductivity, low permeability to oral fluids and color stability. Flexible resins were introduced on the market as an alternative to the use of conventional acrylic resins in the construction of complete and partial removable dentures. Although these resins present advantages in terms of esthetics and comfort, studies assessing chromatic and microhardness alterations of these materials are still scarce in the related literature. The aim of this study was to evaluate the chromatic and microhardness alterations of two commercial brands of flexible resins in comparison to the conventional resin Triplex when submitted to accelerated aging. The resins were manipulated according to manufacturers' instructions and inserted into a silicone matrix to obtain 21 specimens divided into 3 groups: Triplex, Ppflex and Valplast. Triplex presented the highest microhardness value (p < 0.05 for all the aging periods, which was significantly different from that of the other resins, followed by the values of Valplast and Ppflex. Comparison between the flexible resins (Ppflex and Valplast revealed a statistically significant difference (p < 0.05 as regards color. The flexible resin Ppflex and the conventional resin Triplex presented no statistically significant difference (p < 0.05 as regards aging. The accelerated aging significantly increased the microhardness values of the resins, with the highest values being observed for Triplex. Valplast presented the greatest chromatic alteration after accelerated aging.

  11. Effect of yttrium doping on structural and electrical properties of Bi2Sr1.9Ca0.1−xYxCu2O7+δ (Bi-2202 cuprate ceramics

    Directory of Open Access Journals (Sweden)

    Yazid Boudjadja

    2016-09-01

    Full Text Available In this work, we report on the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1−xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.10 are elaborated in air by conventional solid state reaction and characterized by X-ray diffraction (XRD, scanning electronic microscopy (SEM combined with EDS spectroscopy, density, Vickers microhardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers microhardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.10, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

  12. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments.

    Science.gov (United States)

    Pereira, E S J; Peixoto, I F C; Viana, A C D; Oliveira, I I; Gonzalez, B M; Buono, V T L; Bahia, M G A

    2012-05-01

    To compare physical and mechanical properties of one conventional and one thermomechanically treated nickel-titanium (NiTi) wire used to manufacture rotary endodontic instruments. Two NiTi wires 1.0 mm in diameter were characterized; one of them, C-wire (CW), was processed in the conventional manner, and the other, termed M-Wire (MW), received an additional heat treatment according to the manufacturer. Chemical composition was determined by energy-dispersive X-ray spectroscopy, phase constitution by XRD and the transformation temperatures by DSC. Tensile loading/unloading tests and Vickers microhardness measurements were performed to assess the mechanical behaviour. Data were analysed using analysis of variance (α = 0.05). The two wires showed approximately the same chemical composition, close to the 1 : 1 atomic ratio, and the β-phase was the predominant phase present. B19' martensite and the R-phase were found in MW, in agreement with the higher transformation temperatures found in this wire compared with CW, whose transformation temperatures were below room temperature. Average Vickers microhardness values were similar for MW and CW (P = 0.91). The stress at the transformation plateau in the tensile load-unload curves was lower and more uniform in the M-Wire, which also showed the smallest stress hysteresis and apparent elastic modulus. The M-Wire had physical and mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. © 2011 International Endodontic Journal.

  13. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    Science.gov (United States)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  14. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    Science.gov (United States)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  15. Improvement of the Wear Resistance of Ferrous Alloys by Electroless Plating of Nickel

    Science.gov (United States)

    Kaleicheva, J. K.; Karaguiozova, Z.

    2018-01-01

    The electroless nickel (Ni) and composite nickel - nanodiamond (Ni+DND) coatings are investigated in this study. The method EFTTOM-NICKEL for electroless nickel plating with nanosized strengthening particles (DND 4-6 nm) is applied for the coating deposition. The coatings are deposited on ferrous alloys samples. The wear resistance of the coatings is performed by friction wear tests under 50-400 MPa loading conditions - in accordance with a Polish Standard PN-83/H-04302. The microstructure observations are made by optic metallographic microscope GX41 OLIMPUS and the microhardness is determined by Vickers Method. Tests for wear resistance, thickness and microhardness measurements of the coatings without heat treatment and heat treatment are performed. The heat treatment regime is investigated with the aim to optimize the thermal process control of the coated samples without excessive tempering of the substrate material. The surface fatigue failure is determined by contact fatigue test with the purpose to establish suitable conditions for production of high performance materials.

  16. Application of microhardness measurements to the study of diffusion zones; Application des mesures de microdurete a l'etude des zones de diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Bouchet, P; Siouffi, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    It is well known that the concentration fluctuations in diffusion zones can be determined by microhardness tests. It was therefore interesting to define the experimental conditions leading to the best accuracy. To this end, we have studied the influence of the kind of penetrator used, and of the applied load on the reproducibility of the curves plotting the variation of microhardness values against penetration. This work carried out for diffusion zones of various widths, has enabled us to determine in each case the best experimental procedure. (author) [French] On sait que les variations de concentration existant dans les zones de diffusion peuvent etre determinees au moyen de mesures de microdurete. Il etait donc interessant de definir les conditions experimentales conduisant a la meilleure precision. Dans ce but, nous avons etudie l'influence de la nature du penetrateur et celle de la charge appliquee sur la reproductibilite des courbes representant les variations de durete en fonction de la penetration. Ce travail, effectue pour des zones de diffusion de differentes largeurs, nous a permis de determiner dans chaque cas les conditions experimentales les plus favorables. (auteur)

  17. Evaluation of microhardness of residual dentin in primary molars following caries removal with conventional and chemomechanical techniques: An In vitro Study

    Directory of Open Access Journals (Sweden)

    A Shihab Anwar

    2017-01-01

    Full Text Available Background: Many patients consider removal of caries to be a very unpleasant experience. Removal of caries with conventional drill is considered traumatic mainly due to fear and anxiety of children and their parents. Minimally invasive dentistry adopts a philosophy that integrates prevention, remineralization, and minimal intervention for the placement and replacement of restorations, thus reaching the treatment objective using the least invasive surgical approach, with the removal of the minimal amount of healthy tissues. Chemomechanical caries removal (CMCR is a method for minimally invasive, gentle dentin caries removal based on biological principles which is an effective alternative to the traditional method. The present study was done to compare the microhardness of sound dentin before and after carious removal using a chemomechanical method and a conventional method. Materials and Methods: The present in vitro study was done on 28 proximal surfaces of fourteen extracted primary molars (with active caries on one proximal surface and sound side as control. The study was done to assess the Knoop microhardness of remaining dentinal surface after caries removal using a slow speed conventional bur and a chemomechanical method (Carie-Care™. Results and Conclusion: The rotary instrument group showed a consistent microhardness value with not much difference according to depth. The chemomechanical group showed a lesser microhardness value closer to the cavity floor than away from it. The microhardness values at all depths were significantly different for each treatment group with an increased value seen in the rotary group. The mean microhardness values of residual dentin in treated side were found to be insignificant when compared among each interval in each group. The microhardness of sound dentin had high significant difference from that of residual dentin in both the rotary group and the chemomechanical group.

  18. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    International Nuclear Information System (INIS)

    Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J.

    2012-01-01

    Highlights: ► Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. ► Microstructure, microhardness and corrosion of remelted samples are deeply analysed. ► Microstructural changes of laser remelted TiG2 lead to microhardness increase. ► Remelted Ti6Al4V presents microhardness increase and corrosion improvement. ► Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  19. Effect of energy density and delay time on the degree of conversion and Knoop microhardness of a dual resin cement.

    Science.gov (United States)

    Mainardi, Maria do Carmo A J; Giorgi, Maria Cecília C; Lima, Débora A N L; Marchi, Giselle M; Ambrosano, Gláucia M; Paulillo, Luiz A M S; Aguiar, Flávio H B

    2015-02-01

    In the present study, we evaluated the influence of the photo-curing delay time and energy density on the degree of conversion and the Knoop microhardness of a resin cement. Seventy-eight samples were assigned to 13 groups (n = 6), one of which received no light curing (control). The samples were made of a dual-cured resin cement (RelyX ARC) with the aid of a Teflon matrix, submitted to one of the following energy densities (J/cm²): 7, 14, 20, and 28. Delay times were immediate (0), 1 min, or 2 min. After 24 h, the degree of conversion and microhardness were measured at three segments: cervical, medium, and apical. Data were submitted to three-way anova and Tukey's and Dunnett's tests, the latest of which was used to compare the control to the experimental groups. No interaction was observed between delay time and energy density regarding the degree of conversion. The cervical segment showed the highest values, while the apical showed the lowest. Microhardness values concerning the cervical segment in all groups were statistically different from that obtained for the control. A high-irradiance light-curing unit allows for a reduced irradiation exposure time with a short delay time, aimed at tooth restorations using a dual-cured resin cement. © 2014 Wiley Publishing Asia Pty Ltd.

  20. Correlation of Yield Stress And Microhardness in 08cr16ni11mo3 Irradiated To High Dose In The Bn-350 Fast Reactor

    International Nuclear Information System (INIS)

    Maksimkin, O.P.; Gusev, M.N.; Tivanova, O.S.; Silnaygina, N.S.; Garner, Francis A.

    2006-01-01

    The relationship between values of the microhardness and the engineering yield stress in steel 08Cr16Ni11Mo3 (Russian analog of AISI 316) heavily irradiated in the BN-350 reactor has been experimentally derived. It agrees very well with the previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the K δ format where the correlation involves changes in the two properties, we find excellent agreement with a universal K δ correlation developed by Busby and coworkers. With this K δ correlation, one can predict the value of yield stress in irradiated material based on measured values of microhardness. The technique is particularly suitable when the material of interest is in an inconvenient location or configuration, or when significant gradients in mechanical properties are anticipated over small dimensions. This approach makes it possible to reduce the labor input and risk when conducting such work. It appears that the derived correlation is equally applicable to both Russian and Western austenitic steel, and also in both irradiated and unirradiated conditions. Additionally, this report points out that microhardness measurements must take into account that high temperature sodium exposure alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  1. Changes to Glazed Dental Ceramic Shade, Roughness, and Microhardness after Bleaching and Simulated Brushing.

    Science.gov (United States)

    Rodrigues, Carlos Roberto Teixeira; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes

    2017-09-05

    To evaluate shade stability, surface roughness, microhardness, and compressive strength of a glazed feldspathic ceramic subjected to bleaching and simulated brushing. Eighty-eight glazed feldspathic ceramic specimens were made from microparticulate leucite and divided into eight groups (n = 10). The whitening products used were: Opalescence Trèswhite Supreme (Ultradent), Opalescence®\\ PF 15% (Ultradent), and Oral-B 3D White Whitestrips. All substances for whitening were used for 4 hours/day for a period of 14 days; the control group was not bleached. Next, half of the specimens were individually brushed. Microhardness and surface roughness data were subjected to three-way ANOVA and Tukey test. The diametrical tensile strength data were subjected to two-way ANOVA. The shade change data were analyzed using Kruskal-Wallis, Mann-Whitney, and the Student-Newman-Keuls test. The significance level was set at 5%. Glazed feldspathic ceramic surface microhardness was significantly affected by bleaching agents (p = 0.007). Initially, glazed ceramic microhardness was significantly higher than that observed after contact with the bleaching agents, whether or not brushing was performed. The specimens submitted to bleaching in preloaded trays presented lower surface roughness values after brushing (p = 0.037). The surface roughness was significantly lower in the brushed specimens (p = 0.044). The diametrical tensile strength was not significantly affected by the application of bleaching agents (p = 0.563) or by brushing (p = 0.477). When the specimens were brushed, however, shade change was significantly influenced by the bleaching agent used (p = 0.041). Bleaching agents associated with brushing cycles can alter surface properties and shade stability of glazed feldspathic ceramics, though such findings may not reflect the performance of unglazed feldspathic ceramics. © 2017 by the American College of Prosthodontists.

  2. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    Science.gov (United States)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  3. Thermal Stability of Microstructure and Microhardness of Heterophase BCC-Alloys After Torsional Deformation on Bridgman Anvils

    Science.gov (United States)

    Ditenberg, I. A.; Tyumentsev, A. N.

    2018-03-01

    The results of investigations of thermal stability of microstructure and microhardness of alloys of the V-4Ti-4Cr and Mo-47Re systems, subjected to torsional deformation by high quasi-hydrostatic pressure at room temperature, are reported. It is shown that submicrocrystalline and nanocrystalline states, and the respective high values of microhardness, persist up to the upper bound ( 0.4 Tmelt) of the temperature interval of their recovery and polygonization in a single-phase state. The main factors ensuring thermal stability of highlydefective states in heterophase alloys are discussed.

  4. Deposition and characterization of sputtered hexaboride coatings; Abscheidung und Charakterisierung aufgestaeubter Hexaboridschichten

    Energy Technology Data Exchange (ETDEWEB)

    Waldhauser, W

    1996-06-01

    Hexaborides of the rare-earth elements ReB{sub 6} are potential materials for cathode applications since they combine properties such as low work function, good electrical conductivity, high melting point as well as low volatility at high temperatures. Due to their high hardness and colorations ranging from blue to purple these compounds are also considered for applications to coatings for decoration of consumer products. At present, either rods of sintered LaB{sub 6} or single LaB{sub 6} crystals are indirectly heated to induce emission. In this workboride coatings were deposited onto various substrates employing non-reactive magnetron sputtering from LaB{sub 6}, CeB{sub 6}, SmB{sub 6} and YB{sub 6} targets. Coatings deposited were examined using scanning electron microscopy, X-ray diffraction, electron probe microanalysis. Vickers microhardness, colorimeter and spectroscopic ellipsometry measurements. Electron emission characteristics of the coatings were studied by the thermionic emission and the contact potential method. After optimization of the sputtering parameters fine-columnar or partially amorphous films with atomic ratios of boron to metal in the order of 5 to 7.5 were obtained. The tendency to form the corresponding hexaboride phase decreases from LaB{sub 6}, CeB{sub 6} and SmB{sub 6} to YB{sub 6}. The work function was measured to be in the range of 2.6 to 3.3 eV. Vickers microhardness values lie between 1500 and 2000 HVO.01. LaB{sub 6} coatings showed the most pronounced visual color impression corresponding to dark violet. The results obtained indicate that sputtered hexaboride films are well suited for decorative and thermionic applications. (author)

  5. Fracture Toughness and Micro-Strain of Y-TZP Nanoceramics at Different Sintering Temperature

    Directory of Open Access Journals (Sweden)

    Rabiha S. Yaseen

    2017-11-01

    Full Text Available The objective of this research is to study the effect of sintering temperature on the mechanical properties and micro-strain of yttria tetragonal zirconia polycrystalls (Y-TZP nanostructure.   Where green disk formed by uniaxially press, sintered at (1500 – 1550 – 1600⁰C in air for 2hr then polished to mirror shape for fracture toughness and micro-hardness measurement by Vickers indenter at (60 kg to 100gm loads. Atomic force microscopy (AFM technique was use to measure the change in grain size and shape of the samples, X-ray diffraction (XRD evaluated to identify the phases and to measure the micro-strain of the samples.          The Results show that increasing sintering temperature will increase the grain size with increasing the average of micro-strain. Tetragonal  phase is the prevailing phase with small amount of cubic phase and the amount of monoclinic phase was under detection limite after sintering but there is increas in lattice dimension according to micro-strain calculation and grinding process produce micro-strain. With increasing the sintering temperature micro-hardness and fracture toughness will increas.

  6. Bleaching agent action on color stability, surface roughness and microhardness of composites submitted to accelerated artificial aging.

    Science.gov (United States)

    Rattacaso, Raphael Mendes Bezerra; da Fonseca Roberti Garcia, Lucas; Aguilar, Fabiano Gamero; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2011-04-01

    The purpose of this study was to evaluate the bleaching agent action on color stability, surface roughness and microhardness of composites (Charisma, Filtek Supreme and Heliomolar - A2) submitted to accelerated artificial aging (AAA). A Teflon matrix (12 x 2 mm) was used to fabricate 18 specimens (n=6) which, after polishing (Sof-Lex), were submitted to initial color reading (ΔE), Knoop microhardness (KHN) (50 g/15 s load) and roughness (R(a)) (cut-off 0.25 mm) tests. Afterwards, the samples were submitted to AAA for 384 hours and new color, microhardness and roughness readings were performed. After this, the samples were submitted to daily application (4 weeks) of 16% Carbamide Peroxide (NiteWhite ACP) for 8 hours and kept in artificial saliva for 16 hours. New color, microhardness and roughness readings were made at the end of the cycle, and 15 days after bleaching. Comparison of the ΔE means (2-way ANOVA, Bonferroni, P<.05) indicated clinically unacceptable color alteration for all composites after AAA, but without significant difference. Statistically significant increase in the KHN values after AAA was observed, but without significant alterations 15 days after bleaching. For R(a) there was no statistically significant difference after AAA and 15 days after bleaching. The alterations promoted by the bleaching agent and AAA are material dependent.

  7. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaya-Vazquez, M.R. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Sanchez-Amaya, J.M., E-mail: josemaria.sanchez@uca.es [Titania, Ensayos y Proyectos Industriales S.L., Ctra Sanlucar A-2001 Km 7,5, Parque Tecnologico TecnoBahia-Edif. RETSE Nave 4, 11500 El Puerto de Santa Maria, Cadiz (Spain); Departamento de Fisica Aplicada, CASEM, Avda. Republica Saharaui s/n, 11510-Puerto Real, Cadiz (Spain); Boukha, Z.; Botana, F.J. [Laboratorio de Corrosion y Proteccion, Universidad de Cadiz, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Avda. Republica Saharaui s/n, 11510 Puerto Real, Cadiz (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Laser remelting of TiG2 and Ti6Al4V is performed with argon shielded diode laser. Black-Right-Pointing-Pointer Microstructure, microhardness and corrosion of remelted samples are deeply analysed. Black-Right-Pointing-Pointer Microstructural changes of laser remelted TiG2 lead to microhardness increase. Black-Right-Pointing-Pointer Remelted Ti6Al4V presents microhardness increase and corrosion improvement. Black-Right-Pointing-Pointer Martensite depth in remelted Ti6Al4V is linearly proportional to laser fluence. - Abstract: The high strength, low density and superior corrosion resistance allow titanium alloys to be widely employed in different industrial applications. The properties of these alloys can be modulated by different heat treatments, including laser processing. In the present paper, laser remelting treatments, performed with a high power diode laser, were applied to samples of two titanium alloys (TiG2 and Ti6Al4V). The influence of the applied laser fluence on microstructure, microhardness and corrosion resistance is investigated. Results show that laser remelting treatments with appropriate fluences provoke microstructural changes leading to microhardness increase and corrosion resistance improvement.

  8. The influence of amperage of electric arc on microhardness in the area single and overlapping remeltings of HS 6-5-2 steel

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2011-07-01

    Full Text Available The present thesis depicts the microhardness of HV0,065 surface layer of high speed steel HS6-5-2 remelted with the electric arc. There were different surface layer variants of remelting used – the amperage was changed from 50 to 120A with the stable scanning speed of 300mm/min. There was also the influence of overlapping of the remeltings on the microhardness result. The highest average microhardness of the surface layer of high speed steel HS6-5-2 amounting 1100 HV0,065 was achieved by using the amperage of electric arc of 50 A. The overlapping of remeltings is connected with the possibility of occurence of the microhardness decrease in the area of overlapping of the heat influence zone of second remelting (another remelting on the first remelting (the previous one.

  9. An in vitro investigation of human enamel wear by restorative dental materials

    International Nuclear Information System (INIS)

    Adachi, L.K.; Saiki, M.; De Campos, T.N.

    2001-01-01

    A radiometric method was applied to asses enamel wear by another enamel and by restorative materials. The radioactive enamel was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with the radioactive enamel. The enamel wear was evaluated by measuring the beta-activity of 32 P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another natural enamel or by resin materials. Resin materials caused less enamel wear than another natural enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. (author)

  10. Effect of Laser Power on Metallurgical, Mechanical and Tribological Characteristics of Hardfaced Surfaces of Nickel-Based Alloy

    Science.gov (United States)

    Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.

    2017-12-01

    In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.

  11. Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin

    OpenAIRE

    Faraji, Foad; Heshmat, Haleh; Banava, Sepideh

    2017-01-01

    Background and Objectives: EQUIATM is a new gastrointestinal (GI) system with high compressive strength, surface microhardness (MH), and fluoride release potential. This in vitro study aimed to assess the effect of aging and type of protective coating on the MH of EQUIATM GI cement. Materials and Methods: A total of 30 disc-shaped specimens measuring 9 mm in diameter and 2 mm in thickness were fabricated of EQUIATM GI and divided into three groups of G-Coat nanofilled coating (a), no coating ...

  12. Effects of hydrogen peroxide bleaching strips on tooth surface color, surface microhardness, surface and subsurface ultrastructure, and microchemical (Raman spectroscopic) composition.

    Science.gov (United States)

    Duschner, Heinz; Götz, Hermann; White, Donald J; Kozak, Kathleen M; Zoladz, James R

    2006-01-01

    This study examined the effects of hydrogen peroxide tooth bleaching strips on the surface hardness and morphology of enamel and the ultrastructure and chemical composition of enamel and dentin in vitro. Sound human molars were ground and polished to prepare a uniform substrate for bleaching treatments. A cycling treatment methodology was employed which alternated ex vivo human salivary exposures with bleaching treatments under conditions of controlled temperature and durations of treatment. Bleaching treatments included commercial Crest Whitestrips bleaching strips, which utilize hydrogen peroxide in a gel as the in situ bleaching source at 6.0 and 6.5% concentrations of H2O2. Control treatments included an untreated group. Crest Whitestrips bleaching included treatment exposures simulating 2x the recommended clinical exposures (28 hours bleaching). Surface color measurements were taken prior to and following bleaching to ensure tooth bleaching activity. The effects of bleach on physical properties of enamel were assessed with microhardness measures. Ultrastructural effects were classified by surface and subsurface confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques. In addition, the effects of bleaching on tooth microchemical composition was studied in different tooth regions by coincident assessment of Raman spectroscopic signature. Color assessments confirmed significant ex vivo tooth bleaching by Whitestrips. Surface microhardness and SEM measures revealed no deleterious effects on the enamel surfaces. CLSM micromorphological assessments supported the safety of hydrogen peroxide bleaching strips both on surface and subsurface enamel, DEJ, and dentin ultrastructure. Raman spectroscopy analysis demonstrated no obvious effects of bleaching treatments on the microchemical composition of enamel and dentin. These results confirm that tooth bleaching with hydrogen peroxide whitening strips does not produce changes in surface

  13. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  14. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Zhang Liang; Wang Juping; Chen Bo [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-08-12

    Ni-TiO{sub 2} composite coating which was prepared under pulse current conditions was successfully performed on sintered NdFeB magnet. As a comparison, pure nickel coating was also prepared. The phase structure, the surface morphology, the chemical composition, the anti-corrosion performance of the coatings for magnets, the microhardness and the wearing resistance performance of the coatings were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), electrochemical technique, Vickers hardness tester and ball-on-disc tribometer, respectively. The results revealed that Ni-TiO{sub 2} composite coating provided excellent anti-corrosion performance for the magnets, and showed higher microhardness and better anti-wear performance.

  15. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis.

    Science.gov (United States)

    Andreotti, Agda Marobo; Goiato, Marcelo Coelho; Moreno, Amália; Nobrega, Adhara Smith; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline

    2014-01-01

    The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO₂), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey's test (P<0.05 significance level). Among the nanoparticle groups, the TiO₂ groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%-2% TiO₂ groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO₂ groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO₂ being the most influential nanoparticle in terms of the evaluated properties.

  16. Opacificación y endurecimiento de vidriados cerámicos mediante scheelita

    Directory of Open Access Journals (Sweden)

    Vicent, J. B.

    2001-04-01

    Full Text Available The effect of addition of scheelite, obtained by both ceramic and coprecipation route, on the opacity and strength of ceramic glazes are discussed and compared with the scheelite obtained by in situ devitrification from a4dition of WO3. Mohs hardness, Vickers microhardness, gloss and whitness measurements of resulting glazes are associated with the obtained microstrucure of glass-ceramic composite.

    En esta comunicación se presentan los resultados obtenidos en la utilización de scheelita obtenida por diferentes procedimientos (ruta cerámica y precipitación química en la opacificación y endurecimiento de vidriados cerámicos comparándose los resultados con los obtenidos por coprecipitación in situ de Scheelita por adición de WO3 al molino. Los estudios de dureza al rayado, microdureza Vickers así como de índice de blancura y brillo de los materiales obtenidos se asocian al tipo de microestructura obtenido en material compuesto vidrio-cerámica.

  17. Ceramic tools insert assesment based on vickers indentation methodology

    Science.gov (United States)

    Husni; Rizal, Muhammad; Aziz M, M.; Wahyu, M.

    2018-05-01

    In the interrupted cutting process, the risk of tool chipping or fracture is higher than continues cutting. Therefore, the selection of suitable ceramic tools for interrupted cutting application become an important issue to assure that the cutting process is running effectively. At present, the performance of ceramics tools is assessed by conducting some cutting tests, which is required time and cost consuming. In this study, the performance of ceramic tools evaluated using hardness tester machine. The technique, in general, has a certain advantage compare with the more conventional methods; the experimental is straightforward involving minimal specimen preparation and the amount of material needed is small. Three types of ceramic tools AS10, CC650 and K090 have been used, each tool was polished then Vickers indentation test were performed with the load were 0.2, 0.5, 1, 2.5, 5 and 10 kgf. The results revealed that among the load used in the tests, the indentation loads of 5 kgf always produce well cracks as compared with others. Among the cutting tool used in the tests, AS10 has produced the shortest crack length and follow by CC 670, and K090. It is indicated that the shortest crack length of AS10 reflected that the tool has a highest dynamic load resistance among others insert.

  18. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    Science.gov (United States)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  19. Finite element analysis of stresses in Berkovich, Vickers and Knoop indentation for densifying and non-densifying glasses

    Science.gov (United States)

    Chen, Kanghua

    2002-08-01

    A constitutive law for fused silica accounting for its permanent densification under large compressive stresses is presented. The implementation of the constitutive equations in the general-purpose finite element code ABAQUS via user subroutine is proposed and carefully verified. The three-dimensional indentation mechanics under Berkovich, Vickers and Knoop indenters is extensively investigated based on the proposed constitutive relation. The results of stress distribution and plastic zone for both densifying and non-densifying optical glasses are systematically compared. These numerical results are in good agreement with the experimental observations of optical manufacturing. That is, fused silica shows lower material removal rate, smaller surface roughness and subsurface damage in contrast to non-densifying optical glasses under the same grinding condition. Material densification of fused silica is thoroughly studied through numerical simulations of indentation mechanics. The exact amount of densification and shear strain of fused silica under Berkovich indentation is calculated to show the deformation mechanism of glass materials under three-dimensional indentations. The surface profiles show the material "pile-up" around the indenter tip for non-densifying glasses and "sink-in" for fused silica after the indentation load is removed. An important inverse problem is studied: estimation of abrasive size and indentation load through the examination of residual indentation footprints. A series of 2D axisymmetric spherical indentation simulations generate a wide range of relationships among the indentation load, indenter size, residual indentation depth and size of residual indentation zone for the five selected brittle materials: glass fused silica (FS), BK7, semiconductor Si, laser glass LHG8, and optical crystal CaF2.. The application of the inverse problem is verified by the good agreement between the estimated abrasive size and the actual abrasive size found

  20. The hardness of synthetic products obtained from cooled and crystallized basaltic melts (in Romanian

    Directory of Open Access Journals (Sweden)

    Daniela Ogrean

    2001-04-01

    Full Text Available The Hardness of Synthetic Products Obtained from Cooled and Crystallized Basaltic Melts. Hardness is one of the main properties of the products obtained from cooled and crystallized basaltic melts under a controlled thermal regime. It influences the abrasion tear resistance of the resulted material. The microhardness measurements on the samples (bricks, boards, gutters, armour plates, tubes indicated Vickers hardness value between 757–926 for the materials obtained from Şanovita basalts (Timiş district and between 539–958 respectively, in case of the Racoş basalts (Braşov district. There is a certain variation of the hardness within the same sample, in various measurement points, within the theoretical limits of the hardnesses of the pyroxenes and that of the spinels.

  1. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Nili Ahmadabadi, M., E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Seiffodini, A. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11356-4563 (Iran, Islamic Republic of); Yazd University, Department of Material Science and Engineering, Yazd 84196 (Iran, Islamic Republic of)

    2013-11-15

    The Vickers microindentation experiments and associated plastic deformation in as-cast and annealed (Fe{sub 0.9}Ni{sub 0.1}){sub 77}Mo{sub 5}P{sub 9}C{sub 7.5}B{sub 1.5} bulk metallic glass was conducted. In addition to the bulk indentation behavior, the shear band morphology underneath the Vickers microindenter was examined by employing the bonded interface technique. Microstructural characterization revealed that a liquid phase separation occurred during melting process. Atomic force microscopy of the glassy matrix of the as-cast specimen reveals the composition inhomogeneity induced by the liquid phase separation. This effect generates shear band branching or deflection during the shear band propagation. For the bulk indentation, the trends in the hardness vs. indentation load were found related to the pressure sensitive index and the phase separation process simultaneously. The results show that the as-cast as well as the annealed specimens are deformed through semi-circular and radial shear bands. In addition, in the partially crystalized specimen, the change in the properties and microstructure of the BMG induced by the partial crystallization treatment and phase separation process resulted in tertiary shear bands formation.

  2. The effect of different beverages on surface hardness of nanohybrid resin composite and giomer.

    Science.gov (United States)

    Tanthanuch, Saijai; Kukiattrakoon, Boonlert; Siriporananon, Chantima; Ornprasert, Nawanda; Mettasitthikorn, Wathu; Likhitpreeda, Salinla; Waewsanga, Sulawan

    2014-05-01

    To investigate the effects of five beverages (apple cider, orange juice, Coca-Cola, coffee, and beer) on microhardness and surface characteristic changes of nanohybrid resin composite and giomer. Ninety-three specimens of each resin composite and giomer were prepared. Before immersion, baseline data of Vicker's microhardness was recorded and surface characteristics were examined using scanning electron microscopy (SEM). Five groups of discs (n = 18) were alternately immersed in 25 mL of each beverage for 5 s and in 25 mL of artificial saliva for 5 s for 10 cycles. Specimens were then stored in artificial saliva for 24 h. This process was repeated for 28 days. After immersion, specimens were evaluated and data were analyzed by two-way repeated analysis of variance (ANOVA), Tukey's honestly significant difference (HSD), and a t-test (α = 0.05). Microhardness of all groups significantly decreased after being immersed in the tested beverages (P composition of the restorative materials and beverages.

  3. Microhard MHX 2420 Orbital Performance Evaluation Using RT Logic T400CS

    Science.gov (United States)

    Kearney, Stuart; Lombardi, Mark; Attai, Watson; Oyadomari, Ken; Al Rumhi, Ahmed Saleh Nasser; Rakotonarivo, Sebastien; Chardon, Loic; Gazulla, Oriol Tintore; Wolfe, Jasper; Salas, AlbertoGuillen; hide

    2012-01-01

    A major upfront cost of building low cost Nanosatellites is the communications sub-system. Most radios built for space missions cost over $4,000 per unit. This exceeds many budgets. One possible cost effective solution is the Microhard MHX2420, a commercial off-the-shelf transceiver with a unit cost under $1000. This paper aims to support the Nanosatellite community seeking an inexpensive radio by characterizing Microhard's performance envelope. Though not intended for space operations, the ability to test edge cases and increase average data transfer speeds through optimization positions this radio as a solution for Nanosatellite communications by expanding usage to include more missions. The second objective of this paper is to test and verify the optimal radio settings for the most common cases to improve downlinking. All tests were conducted with the aid of the RT Logic T400CS, a hardware-in-the-loop channel simulator designed to emulate real-world radio frequency (RF) link effects. This study provides recommended settings to optimize the downlink speed as well as the environmental parameters that cause the link to fail.

  4. Diamond-like carbon coatings enhance the hardness and resilience of bearing surfaces for use in joint arthroplasty.

    Science.gov (United States)

    Roy, M E; Whiteside, L A; Xu, J; Katerberg, B J

    2010-04-01

    The purpose of this study was to evaluate the potential of a hard diamond-like carbon (DLC) coating to enhance the hardness and resilience of a bearing surface in joint replacement. The greater hardness of a magnesium-stabilized zirconium (Mg-PSZ) substrate was expected to provide a harder coating-substrate composite microhardness than the cobalt-chromium alloy (CoCr) also used in arthroplasty. Three femoral heads of each type (CoCr, Mg-PSZ, DLC-CoCr and DLC-Mg-PSZ) were examined. Baseline (non-coated) and composite coating/substrate hardness was measured by Vickers microhardness tests, while nanoindentation tests measured the hardness and elastic modulus of the DLC coating independent of the Mg-PSZ and CoCr substrates. Non-coated Mg-PSZ heads were considerably harder than non-coated CoCr heads, while DLC coating greatly increased the microhardness of the CoCr and Mg-PSZ substrates. On the nanoscale the non-coated heads were much harder than on the microscale, with CoCr exhibiting twice as much plastic deformation as Mg-PSZ. The mechanical properties of the DLC coatings were not significantly different for both the CoCr and Mg-PSZ substrates, producing similar moduli of resilience and plastic resistance ratios. DLC coatings greatly increased hardness on both the micro and nano levels and significantly improved resilience and resistance to plastic deformation compared with non-coated heads. Because Mg-PSZ allows less plastic deformation than CoCr and provides a greater composite microhardness, DLC-Mg-PSZ will likely be more durable for use as a bearing surface in vivo. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Study of microcracks morphology produced by Vickers indentation on AISI 1045 borided steels

    International Nuclear Information System (INIS)

    Campos, I.; Ramirez, G.; VillaVelazquez, C.; Figueroa, U.; Rodriguez, G.

    2008-01-01

    In this work, we analyzed the roughness morphology of indentation microcracks produced by the Vickers microindentation in the iron boride Fe 2 B. Using the paste boriding process, the boride layers were formed at the surface of AISI 1045 steels. The diffusion processes were carried out with 5 mm of boron paste thickness over the substrate surface at three different temperatures (1193, 1223 and 1273 K) with two different time exposures. The indentations in each Fe 2 B layer were made using a constant load of 200 g at four different distances from the surface. The fracture behavior of the Fe 2 B borided phase is found to be brittle in nature. The profiles of microcracks formed at the corners of the indentations were obtained using the scanning electronic microscopy and were analyzed within the framework of fractal geometry. We found that all indentation microcracks display a self-affine invariance characterized by the same roughness (Hurst) exponent H = 0.8 ± 0.1. The effect of the self-affine roughness of indentation microcracks on the measured fracture toughness is discussed within the framework of the mechanics of self-affine cracks. It is pointed out that the arrest of indentation microcracks is controlled by the fractal fracture toughness, which for the Fe 2 B borided phase is found to be K fc = 0.42 ± 0.02 MPa m 0.75 at all distances from the surface

  6. Correlation of yield stress and microhardness in 08Cr16Ni11Mo3 stainless steel irradiated to high dose in the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Gusev, M.N.; Maksimkin, O.P.; Tivanova, O.V.; Silnaygina, N.S.; Garner, F.A.

    2006-01-01

    The relationship between the microhardness and the engineering yield stress in 08Cr16Ni11Mo3 steel after irradiation in the BN-350 reactor has been experimentally derived and agrees with a previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the K Δ format where the correlation involves changes in the two properties, excellent agreement is found with a universal K Δ correlation developed by Busby and coworkers. Additionally, this report points out that microhardness measurements must take into account that sodium exposure at high temperature and neutron fluence alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  7. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications

    International Nuclear Information System (INIS)

    Correa, D.R.N.; Vicente, F.B.; Donato, T.A.G.; Arana-Chavez, V.E.; Buzalaf, M.A.R.; Grandini, C.R.

    2014-01-01

    New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti–Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti–Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. - Highlights: • Ti–Zr alloys for biomedical applications were developed. • Only α′ phase was observed. • Influence of zirconium concentrations on the properties of Ti–Zr alloys was analyzed. • No cytotoxic effects were observed

  8. Structure and Properties of the Aluminide Coatings on the Inconel 625 Superalloy

    Science.gov (United States)

    Adamiak, Stanisław; Bochnowski, Wojciech; Dziedzic, Andrzej; Filip, Ryszard; Szeregij, Eugeniusz

    2016-01-01

    The research samples used in this study were based on the Inconel 625 alloy; the examined samples were coated with aluminide films deposited in a low-activity chemical vapor deposition (CVD) process. The samples' microstructure was investigated with optical and electron microscopy and energy dispersive X-ray spectroscopy analysis. Hardness measurements were performed using Vickers and Berkovich test methods. The adhesion of the aluminide coating was determined by fractography. It was shown that the fracture mechanism was different for the respective zones of the aluminide coating and the substrate material. The outer zone of the aluminide coating is characterized by an intercrystalline fracture, with a small contribution of transcrystalline fracture within individual grains (large crystallites in the bottom of the zone, composed of smaller crystallites, also show an intercrystalline fracture). The substrate material exhibited a ductile intercrystalline fracture. Based on this investigation, an increase of the microhardness of the material occurring at loads below 0.2 N was observed. When determining microhardness of aluminide coating it is necessary to take into account the optimal choice of the indentation tip.

  9. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Correa, D.R.N.; Vicente, F.B. [UNESP — Univ. Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); Donato, T.A.G.; Arana-Chavez, V.E. [USP — Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biologia Oral e Biomateriais, 05.508-900, São Paulo, SP (Brazil); Buzalaf, M.A.R. [USP — Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, C.R., E-mail: betog@fc.unesp.br [UNESP — Univ. Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil)

    2014-01-01

    New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti–Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti–Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. - Highlights: • Ti–Zr alloys for biomedical applications were developed. • Only α′ phase was observed. • Influence of zirconium concentrations on the properties of Ti–Zr alloys was analyzed. • No cytotoxic effects were observed.

  10. Evaluation of hardening and softening behaviors in Zn–21Al–2Cu alloy processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    José Luis Hernández-Rivera

    2017-10-01

    Full Text Available The microstructural evolution of as-cast and homogenized Zn–21Al–2Cu samples after two and six passes in an equal channel angular pressing (ECAP at room temperature was reported. A homogenization treatment for 24 h at 350 °C was applied to the as-cast samples followed by deformation. An annealing heat treatment was performed on all samples after the ECAP process. Our results showed that the homogenized and deformed samples displayed a uniform fine-grained microstructure after annealing, while as-cast samples without homogenization treatment presented only some regions of fine-grained microstructure. The level of microsegregation was higher in the as-cast samples as compared to the homogenized ones even after annealing. Vickers microhardness measurement on samples after deformation is smaller than the original material indicating a softening. However, after the annealing treatment, the microhardness increased, indicating that there was a slight hardening of the material. Keywords: Severe plastic deformation, ECAP, Work softening, Annealing, Hardening, Fine grain

  11. Effect of carbon addition on functional and mechnical properties of the Ni3Al phase

    Directory of Open Access Journals (Sweden)

    E. Olejnik

    2012-10-01

    Full Text Available Casting technology was applied and research was carried out on two alloys based on the Ni3Al phase with variable carbon content of 0,2 and 1,25 wt. % C, respectively. Resistance to abrasive wear, friction coefficient and Vickers microhardness were determined. Metallographic studies were conducted to examine the macrostructure and microstructure of the investigated alloys. An increase in resistance to abrasive wear and microhardness of alloy containing 1,25 wt. % C was observed. The coefficient of friction was determined, which for the alloy with increased carbon content was much lower than for the alloy containing 0,2 wt. % C. Structural changes were reported to have some effect on functional and mechanical properties of the examined alloys.

  12. Microstructure examination and microhardness of friction stir welded joint of (AA7020-O after PWHT

    Directory of Open Access Journals (Sweden)

    Ghada M.F. Essa

    2018-04-01

    Full Text Available This paper studies the microstructure and microhardness of the welded joints of the annealed aluminum alloy AA7020-O produced by friction stir welding (FSW technique. The material was applied to post weld heat treatment (solution treatment and artificially aged, T6. The traverse speed and the rotational speed are the most important process parameters of FSW, and have great influence on the heat input of the welding operation which governs the welded joints quality. To investigate their effect, the welding operation was performed using three traverse speeds, 20, 40 and 60 mm/s with two rotational speeds of 1125 and 1400 rpm, and other welding parameters were kept constant to produce comparable joints. It was found that the two rotational speeds are accepted with lower traverse speeds to produce sound joints. Microstructure of the welded joints was significantly affected by the FSW process parameters, and slight effect was reported for the grain size. Microhardness examination showed high weld joint quality with respect to the base metal hardness, which proves the reprecipitation of the hardening phase in the weld zone. The microhardness profile was strongly dependant on the rotational speed, and the average values of the joints hardness have increased with the decrease in the rotational speed, where it have been slightly affected by the welding speed. Keywords: Friction stir welding, Aluminum alloy, Mechanical properties, Microstructures

  13. Microstructure and microhardness of 17-4 PH stainless steel made by laser metal deposition

    CSIR Research Space (South Africa)

    Bayode, A

    2016-10-01

    Full Text Available variety of metallic powders. This paper investigates the evolving properties of laser deposited 17-4PH stainless steel. The microstructure was martensitic with a dendritic structure. The average microhardness of the samples was found to be less than...

  14. Microhardness of epitaxial layers of GaAs doped with rare earths

    International Nuclear Information System (INIS)

    Kulish, U.M.; Gamidov, Z.S.; Kuznetsova, I.Yu.; Petkeeva, L.N.; Borlikova, G.V.

    1989-01-01

    Results of the study of microhardness of GaAS layer doped by certain rare earths - Gd, Tb, Dy - are presented. The assumption is made that the higher is the value of the first potential of rare earth impurity ionization (i.e. the higher is the filling of 4f-shell), the lower is the effect of the element on electric and mechanical properties of GaAs epitaxial layers

  15. Determinación de las condiciones experimentales óptimas de un acero AISI 4140 nitrurado por plasma postdescarga micro-ondas

    Directory of Open Access Journals (Sweden)

    Medina-Flores, A.

    2005-12-01

    Full Text Available AISI 4140 steel pieces were nitrided by an experimental reactor made in laboratory. A series of runs were to carry out to find the correct parameters below the point of transformation eutectoide (590 °C, which a compact, homogeneous and harder nitrided layer was formed on the top of the surface. Several characterizations techniques were used to analize the microsctructural change, such as, optical microscopy (OM, microhardness Vickers, X-Ray diffraction (DRX. The results showed the formation of a compact and homogeneous layer formed by a mixture of ε-Fe2,3N and γ’-Fe4N iron nitrides whit an average of 12 μm of thickness. The Vickers results showed a value of 1100 Hv on the top of the surface a concentration profile of microhardness is observed from the top of the surface to the core of the material.

    Piezas de acero AISI 4140 fueron nitruradas en un reactor experimental fabricado en el laboratorio. Para determinar los valores de los parámetros ideales de nitruración con los cuáles se obtuvo un mayor espesor, homogeneidad y dureza de la capa nitrurada, se llevaron a cabo una serie de experimentos, a temperaturas por debajo del punto de transformación eutectoide (590 °C. Para determinar el cambio microestructural de las muestras nitruradas, se analizaron, mediante diferentes técnicas de caracterización tales como microscopía óptica (MO, microdureza Vickers y difracción de rayos X (DRX. Los resultados mostraron la formación de una capa compacta y homogénea de 12 μm de espesor formada por los nitruros ε-Fe2,3N y γ’-Fe4N sobre la superficie del material. Los resultados de microdureza vickers mostraron un valor máximo de 1.100 Hv sobre la capa nitrurada observándose un perfil de microdureza de la superficie hacia el interior del material.

  16. Wear Assessment of Fe-TiC/ZrC Hardfacing Produced from Oxides

    Directory of Open Access Journals (Sweden)

    S. Corujeira-Gallo

    2015-03-01

    Full Text Available The direct conversion of oxides into carbides during plasma transferred arc welding is a promising processing route to produce wear resistant overlays at low cost. In the present study, Fe-TiC and Fe-ZrC composite overlays were produced by carbothermic reduction of TiO2 and ZrO2 during plasma transferred arc deposition. The overlays were characterised by optical microscopy, electron microscopy and X-ray diffraction. The microstructure consisted of small TiC and ZrC evenly dispersed in a pearlitic matrix. The Vickers microhardness was measured and low-stress abrasion tests were conducted. The results showed increased hardness and promising wear resistance under low-stress abrasion conditions.

  17. The structural, microhardness and thermal properties of a semiorganic NLO crystal: Lithium paranitrophenolate trihydrate (NO2-C6H4-OLi.3H2O)

    International Nuclear Information System (INIS)

    Boaz, B. Milton; Raman, P. Santhana; Raja, S. Xavier Jesu; Das, S. Jerome

    2005-01-01

    The crystallographic parameters, morphology, microhardness anisotropy and thermal properties including differential thermal analysis (DTA), thermo gravimetric analysis (TGA) of a new nonlinear optical material lithium paranitrophenolate trihydrate (NPLi.3H 2 O) are reported. The single crystals of NPLi.3H 2 O show effective phase matchable second harmonic generation properties for frequency conversion. Optically clear single crystals having dimensions up to 12 mm x 8 mm x 4 mm have been grown successfully within a period of 60 days by isothermal solvent evaporation technique. The title compound crystallizes in monoclinic system with space group Pa. Microhardness measurement on different planes verifies the hardness anisotropy and thermal studies reveal good thermal stability of the material. The NLO property of the crystal is verified by employing Kurtz powder test. The crystal has a wide range of optical transparency from 400 nm to 1500 nm

  18. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis

    Directory of Open Access Journals (Sweden)

    Andreotti AM

    2014-12-01

    Full Text Available Agda Marobo Andreotti, Marcelo Coelho Goiato, Amália Moreno, Adhara Smith Nobrega, Aldiéris Alves Pesqueira, Daniela Micheline dos Santos Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil Abstract: The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample, and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging. Samples for each test were separated into ten groups (n=10, ie, without nanoparticles (control group or with nanoparticles of zinc oxide, titanium dioxide (TiO2, and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups. Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level. Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. Keywords: acrylic resins, eye, artificial, color, hardness, nanoparticles

  19. Effectiveness of sodium bicarbonate combined with hydrogen peroxide and CPP-ACPF in whitening and microhardness of enamel.

    Science.gov (United States)

    Ahrari, Farzaneh; Hasanzadeh, Nadia; Rajabi, Omid; Forouzannejad, Zakiyeh

    2017-03-01

    This study investigated the effects of sodium bicarbonate (NaHCO3) combined with 1.5% hydrogen peroxide (H2O2) and casein phosphopeptide amorphous calcium phosphate fluoride (CPP-ACPF) on color and microhardness of enamel. Seventy-five bovine incisors were immersed in a tea solution for 7.5 days. The specimens were randomly divided into five groups according to the whitening agent applied: 1) 94% NaHCO3, 2) a blend of 94% NaHCO3 and CPP-ACPF, 3) a blend of 94% NaHCO3 and 1.5% H2O2, 4) a blend of 94% NaHCO3, 1.5% H2O2 and CPP-ACPF, 5) control. The whitening procedure was performed for 10 times over 10 days. At each day, the buccal surfaces were covered with whitening agents for 5 minutes and then brushed for 30 seconds. After the 10 days, the teeth were again immersed in a tea solution for 10 minutes. Color assessment was performed at baseline (T1), after the first staining process (T2), after the whitening procedure (T3), and after the second staining process (T4). Finally, the specimens were subjected to microhardness test. There was a statistically significant difference in the color change between T2 and T3 stages among the study groups ( p <0.05), with the greatest improvement observed in group 4. Microhardness was significantly greater in groups 2 and 4, as compared to the other groups ( p <0.05). The combination of 94% NaHCO3, 1.5% H2O2 and CPP-ACPF was effective in improving color and microhardness of teeth with extrinsic stains and could be recommended in the clinical situation.

  20. Dynamic ageing and the mechanical response of Al-Mg-Si alloy through equal channel angular pressing

    International Nuclear Information System (INIS)

    Vaseghi, Majid; Taheri, Ali Karimi; Hong, Sun Ig; Kim, Hyoung Seop

    2010-01-01

    In this paper, dynamic ageing characteristics associated with the application of equal channel angular pressing (ECAP) to Al6061 alloy at elevated temperatures was investigated. Followed by ECAP, Vickers microhardness measurement on the cross-sectional planes and microstructural observations were undertaken using transmission electron microscopy. The combination of the ECAP process with dynamic ageing at both 100 o C and 150 o C resulted in a significant increase in hardness. The grain size was measured as ∼160 nm after four passes. A comparison with the published data on the same alloy processed by ECAP at room temperature and statically aged, suggests several advantages in incorporating dynamic ageing with ECAP. These advantages consist of the ability to attain better grain refinement, increased hardness and the potential for saving time and energy.

  1. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  2. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Jafarian, Mojtaba [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Rizi, Mohsen Saboktakin, E-mail: M.saboktakin@Pa.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jafarian, Morteza [Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Honarmand, Mehrdad [Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Javadinejad, Hamid Reza; Ghaheri, Ali [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahramipour, Mohammad Taghi [Materials Engineering Department, Hakim Sabzevari University, Sabzevar, 397 (Iran, Islamic Republic of); Ebrahimian, Marzieh [Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111 (Iran, Islamic Republic of); Department of Industrial Engineering, Lenjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2016-06-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  3. Interaction between staining and degradation of a composite resin in contact with colored foods

    Directory of Open Access Journals (Sweden)

    Debora Soares-Geraldo

    2011-08-01

    Full Text Available Composite resins might be susceptible to degradation and staining when in contact with some foods and drinks. This study evaluated color alteration and changes in microhardness of a microhybrid composite after immersion in different colored foods and determined whether there was a correlation between these two variables. Eighty composite disks were randomly divided into 8 experimental groups (n = 10: kept dry; deionized water; orange juice; passion fruit juice; grape juice; ketchup; mustard and soy sauce. The disks were individually immersed in their respective test substance at 37 ºC, for a period of 28 days. Superficial analysis of the disk specimens was performed by taking microhardness measurements (Vickers, 50 g load for 45 seconds and color alterations were determined with a spectrophotometer (CINTRA 10- using a CIEL*a*b* system, 400-700 nm wavelength, illuminant d65 and standard observer of 2º at the following times: baseline (before immersion, 1, 7, 14, 21 and 28 days. Results were analyzed by ANOVA and Tukey's test (p < 0.05. Both variables were also submitted to Pearson's correlation test (p < 0.05. The passion fruit group underwent the greatest microhardness change, while the mustard group suffered the greatest color alteration. Significant positive correlation was found between the two variables for the groups deionized water, grape juice, soy sauce and ketchup. Not all color alteration could be associated with surface degradation.

  4. Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding

    International Nuclear Information System (INIS)

    Jafarian, Mojtaba; Rizi, Mohsen Saboktakin; Jafarian, Morteza; Honarmand, Mehrdad; Javadinejad, Hamid Reza; Ghaheri, Ali; Bahramipour, Mohammad Taghi; Ebrahimian, Marzieh

    2016-01-01

    The objective of this study is to investigate the effect of the types thermal tempering of aluminum alloy on microstructure and mechanical properties of AZ31-O Mg and Al 6061-T6 diffusion bonding. Using Optical Microscope (OM) and Scanning Electron Microscopes (SEM) equipped with EDS analysis and line scan the interfaces of joints were evaluated. The XRD analysis was carried out to characterize phase constitution near the interface zone. The mechanical properties of joints were measured using Vickers micro-hardness and shear strength. According to the results in bonding of AZ31-Mg/Al-6061-O, in less plastic deformation in magnesium alloy, diffusion rate of most magnesium atoms occurred to aluminum alloy and formation of diffusion zone with minimum micro-hardness (140 HV) and maximum shear strength (32 MPa) compared to Al 6061-T6/Mg-AZ31 bonding. Evaluation of fracture surfaces indicates an occurrence of failure from the brittle intermetallic phases. - Highlights: • Diffusion bonding AZ31 to Al-6061withoutany interlayer was successful. • Thermal tempered aluminum alloy plays a vital role in the mechanical properties of joint. • Less thickness of reaction layers and micro-hardness in bonding annealed Al- 6061 layers to AZ31 was achieved. • Fracture surfaces indicated that the onset of fracture from intermetallic compounds resulted in fracture of the cleavage.

  5. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    Science.gov (United States)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  6. A comparison of terahertz-pulsed imaging with transverse microradiography and microhardness to measure mineral changes in enamel after treatment with fluoride dentifrices

    Science.gov (United States)

    Churchley, David; Lippert, Frank; Lynch, Richard; Alton, Jesse; Gonzalez-Cabezas, C.; Eder, J.

    2009-02-01

    The aim of this study was to determine the ability of Terahertz Pulsed Imaging (TPI) to measure mineral changes in enamel lesions during de/remineralisation studies. A comparison was made between transverse microradiography (TMR) and microhardness measurements. Artificial lesions were formed in bovine enamel using a solution of 0.1 M lactic acid (pH 5.0) containing 0.2% Carbopol C907 and 50% saturated with hydroxyapatite. The 20 day experimental protocol consisted of four, one-minute treatment periods with dentifrices containing 10, 675, 1385 and 2700ppm fluoride, a 4 h/day acid challenge, and for the remaining time specimens were stored in a 50:50 pooled human / artificial saliva mixture. Terahertz images were generated by positioning the specimens at the focus of the beam and raster scanning the optics to collect the reflections from the air / enamel (AEI) and lesion / enamel (LEI) interface. Significant differences were observed in the intensity change from baseline of the AEI and LEI reflections upon treatment with the four dentifrices. A linear correlation was observed between ΔAEI vs ΔVHN (r2 = 0.997), ΔAEI vs ΔKHN (r2 =0.964), ΔII (ratio of LEI to AEI) vs ΔΔZ (r2 =0.875) and ΔLEI vs ΔΔZ (r2 =0.870). Statistically significant correlations (ptechnology to measure in vitro (and possibly in situ) mineral changes in enamel and is sufficiently sensitive to discriminate between the levels of remineralization produced by the different dentifrices.

  7. Structure, microstructure and microhardness of rapidly solidified Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) thermoelectric compounds

    Science.gov (United States)

    Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.

    2018-05-01

    Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.

  8. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  9. The effects of microhardnesses and friction coefficients of GCr15 and Cr4Mo4V bearing materials by ion implantation

    International Nuclear Information System (INIS)

    Yang Qifa; Xiang Deguang; Lu Haolin

    1988-01-01

    Some experimental results of microhardnesses and friction coefficients of GCr15 and Cr4Mo4V bearing materials which were implanted with Cr, Mo, N and B ions are reported in this paper. It is found that the microhardnesses are increased and the friction coefficients are reduced by Cr, Mo, N and B ion implantation for two materials. The friction coefficients of Cr + Mo + N , Cr + Mo + B ion implanted samples are reduced to 1/3 of the unimplanted samples

  10. Microhardness studies on as-grown (111) faces of some alkaline earth nitrates

    International Nuclear Information System (INIS)

    Shekar, P.V.R.; Nagaraju, D.; Ganesh, V.; Rao, K.K.

    2009-01-01

    Single crystals of Sr(NO 3 ) 2 , Ba(NO 3 ) 2 and Pb(NO 3 ) 2 are grown from their aqueous solutions at a constant temperature of 35 C by slow evaporation technique. Crystals of size 8 to 10 mm along one edge are obtained in a period of 10 days. Chemical etching technique has been employed to study the dislocations in these crystals. The dislocations are randomly distributed and the dislocation density is about 10 4 to 10 5 /cm 2 . Microhardness studies are made on as-grown (111) faces of these crystals upto a load of 100 g. The hardness of the crystals increases with an increase in load and thereafter it becomes independent of the applied load. These results are discussed on the basis of reverse indentation size effect. Meyer index number n for these crystals is estimated at both low and high load regions. An analysis of hardness data of these crystals as well as some other cubic crystals like alums and alkali halates are discussed using Gilman-Chin parameter H v /C 44 , where H v is the microhardness and C 44 is the shear constant. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Indentation size effects in the nano- and micro-hardness of a Fe-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, F., E-mail: xufu@xtu.edu.cn; Ding, Y.H.; Deng, X.H.; Zhang, P.; Long, Z.L.

    2014-10-01

    Hardness of a Fe-based bulk metallic glass (BMG) was evaluated by both atomic force microscopy (AFM) nanoindentation (nano-hardness) and instrumented indentation with a traditional indenter setup (micro-hardness) under different maximum loads at room temperature. The nano-hardness and the micro-hardness were found to be comparable. For both of the indentation methods, indentation size effect (ISE) is detected as increase in hardness with decrease in indentation peak load. It is proposed that strain rate dependent softening, loading history and the lag between free volume creation and mechanical softening should be responsible for the ISE in this BMG. Furthermore, ISE is found to be more significant in AFM nanoindentation than in instrumented indentation. This can be explained by taking into account the effect of exerted peak load and the face angle of the indenter in a qualitative manner.

  12. Microstructural and mechanical properties of binary Ni–Si eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Musa, E-mail: gogebakan@ksu.edu.tr [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Kursun, Celal [Department of Physics, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100 (Turkey); Gunduz, Kerem Ozgur; Tarakci, Mehmet; Gencer, Yucel [Department of Materials Science and Engineering, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey)

    2015-09-15

    Highlights: • Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} were prepared by arc melting method. • The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy. • The microhardness values decreases with increase of Si/Ni ratio. • Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} are paramagnetic. - Abstract: In the present work, Ni–Si eutectic alloys with nominal compositions of Ni{sub 80}Si{sub 20}, Ni{sub 70}Si{sub 30}, Ni{sub 55}Si{sub 45} and Ni{sub 45}Si{sub 55} (Ni and Si with the purity of 99.99%) were prepared by arc melting method under vacuum/argon atmosphere. The effects of Si/Ni ratio on the microstructural properties, thermal transformation behavior, micro-hardness and magnetic properties of the Ni–Si eutectic alloys were investigated. These alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), differential thermal analysis (DTA), Vickers microhardness measurement and Vibrating Sample Magnetometer (VSM). The phases expected according to Ni–Si phase diagram for conventional solidified eutectic Ni–Si alloys are considerably consistent with phase detected by XRD in this study. The quantitative results confirm that the chemical composition of the alloys very close to eutectic compositions and the microstructures are in typical lamellar eutectic morphology. The maximum microhardness value of 1126 HV obtained for Ni{sub 70}Si{sub 30} alloy which has highest melting temperature amongst Ni–Si eutectics. The microhardness values decreases with increase of Si/Ni ratio. Ni{sub 80}Si{sub 20} and Ni{sub 55}Si{sub 45} alloys are soft ferromagnetic, Ni{sub 70}Si{sub 30} and Ni{sub 45}Si{sub 55} alloys are paramagnetic with no magnetic saturation.

  13. On Microstructure and Microhardness of Isothermally Aged UNS S32760 and the Effect on Toughness and Corrosion Behavior

    Science.gov (United States)

    Elsabbagh, Fady M.; Hamouda, Rawia M.; Taha, Mohamed A.

    2014-01-01

    This paper investigates the microstructure and secondary phase precipitations obtained in UNS S32760 super duplex stainless steel and their effect on impact toughness and corrosion resistance. The heat treatment included first solution annealing at 1150 °C followed by water quenching, then isothermal heating at different temperatures from 350 to 950 °C for different times, ranging from less than 1 min to 600 min, followed by water quenching again. Microscopic investigation, microhardness tests, and x-ray diffraction (XRD) analysis were used to identify the microstructure and secondary phase precipitations formed by heat treatment. The study indicates a fair correlation between the microscopic observations and microhardness results, while XRD analysis defined the phase's chemistry and confirmed the microscopic and hardness results. In addition to the austenite (γ) and ferrite (α) phases of the duplex structure, secondary phases of (σ, χ, and chromium nitrides) are observed at a high temperature range, while (ά) and (aged ά) are observed at a lower temperature range. It is concluded that the microhardness test can be used to identify the phases appearing in the microstructure, which results in fair prediction for the TTT diagram and σ-phase range. The variation of toughness and corrosion resistance by heat treatment differs depending on the secondary phase formation.

  14. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  15. Short Communication on “Coarsening of Y-rich oxide particles in 9%Cr-ODS Eurofer steel annealed at 1350 °C”

    Energy Technology Data Exchange (ETDEWEB)

    Sandim, M.J.R.; Souza Filho, I.R.; Bredda, E.H. [Lorena School of Engineering, University of Sao Paulo, 12602-810, Lorena (Brazil); Kostka, A.; Raabe, D. [Max-Planck-Institut für Eisenforschung, D-40237, Düsseldorf (Germany); Sandim, H.R.Z., E-mail: hsandim@demar.eel.usp.br [Lorena School of Engineering, University of Sao Paulo, 12602-810, Lorena (Brazil)

    2017-02-15

    Oxide-dispersion strengthened (ODS) Eurofer steel is targeted for structural applications in future fusion nuclear reactors. Samples were cold rolled down to 80% reduction in thickness and annealed at 1350 °C up to 8 h. The microstructural characterization was performed using Vickers microhardness testing, electron backscatter diffraction, scanning and scanning transmission electron microscopies. Experimental results provide evidence of coarsening of the Y-rich oxide particles in ODS-Eurofer steel annealed at 1350 °C within delta ferrite phase field.

  16. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment

    Energy Technology Data Exchange (ETDEWEB)

    Luo, K.Y.; Jing, X.; Sheng, J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Sun, G.F. [School of Mechanical Engineering, Southeast University, Nanjing, 211189 (China); Yan, Z. [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Lu, J.Z., E-mail: jzlu@ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-07-15

    The effects of massive laser shock peening (LSP) treatment on micro-hardness, residual stress and microstructure in four different zones of laser cladding coating was investigated. Furthermore, micro-hardness curves and residual stress distributions with and without massive LSP treatment were presented and compared, and typical microstructure in different zones of both coatings were characterized by transmission electron microscope (TEM) and cross-sectional optical microscope (OM) observations. Results and analyses showed that massive LSP treatment had an important influence on micro-hardness and residual stress of the cladding coating. Special attempt was made to the effects of massive LSP treatment on microstructure in three zones of the cladding coating. In addition, the underlying mechanism of massive LSP treatment on microstructure and mechanical properties of the cladding coating was revealed clearly. - Highlights: • Micro-hardness and residual stress curves of both coatings were presented and compared. • Typical microstructure in different zones of both coatings were characterized and analyzed. • LSP causes increased micro-activities, and induces plastic deformation layer in three zones. • Underlying mechanism of LSP on mechanical properties of cladding coating was revealed.

  17. Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets

    Directory of Open Access Journals (Sweden)

    Ahmed Ameed Zain Al-Abideen

    2017-04-01

    Full Text Available A tungsten inert gas (TIG welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15 min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum. The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.

  18. Preparation and characterization of Ti-15Zr-12.5Mo alloy for use as biomaterial

    International Nuclear Information System (INIS)

    Lourenco, M.L.; Correa, D.R.N.; Grandini, C.R.

    2014-01-01

    Titanium alloys exhibit favorable properties for biomedical applications. With the zirconium and molybdenum addition, the microstructure and mechanical properties can be changed. Moreover, these alloying elements have certified non-toxicity. The aim of this paper is to prepare and characterize the microstructure and some mechanical properties of Ti-15Zr-12,5Mo (wt%). The alloy was produced by arc-melting and heat treated at 1000 °C for 24 h. Chemical analysis was made by ICP-OES, EDS and density measurements. The crystalline structure and microstructure were analyzed by X-ray diffraction, optical and scanning electron microscopy. An analysis of the mechanical properties was evaluated by Vickers microhardness measurements. The alloy presented a β-type structure (bcc crystalline structure), with the formation of typical equiaxial grains, with higher hardness value than the cp-Ti. (author)

  19. INFLUENCE OF DIE ANGLES ON THE MICROHARDNESS OF ALUMINUM ALLOY PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Ali A Aljubouri

    2010-11-01

    Full Text Available   The die geometry has a massive effect on the plastic deformation behavior during pressing of material processed by equal channel angular pressing (ECAP method; subsequently the properties of the processed material are strongly dependent on it. Two categories of designed and manufactured dies are used for equal channel angular pressing, a 1200 sharp angle and a 900 round –cornered (200 dies, that produce strain per pass through both dies of ~0.7 and ~1.05   respectively. The microhardness developed in Al-Si alloy during ECAP using route BC. The microhardness increased by a factor of >1.5, after only 1 pressing. Subsequently, the hardness increases slightly up to 8 pressings through the 1200 sharp angle die, while it is increased by a factor of ~2.6 after 5 passes by using the 900 round cornered die, comparing with that for the cast workpiece.

  20. Effect of intracrystalline water on micro-Vickers hardness in tetragonal hen egg-white lysozyme single crystals

    International Nuclear Information System (INIS)

    Koizumi, H; Kawamoto, H; Tachibana, M; Kojima, K

    2008-01-01

    Mechanical properties of high quality tetragonal hen egg-white lysozyme single crystals which are one type of protein crystal were investigated by the indentation method. The indentation marks were clearly observed on the crystal surface and no elastic recovery of them occurred. The value of the micro-Vickers hardness in the wet condition was estimated to be about 20 MPa at room temperature. The hardness greatly depended on the amount of intracrystalline water (mobile water) contained in the crystals. The hardness increased with increasing evaporation time to air at room temperature. It reached the maximum at about 260 MPa, which is 13 times as much as that in the wet condition. The origin of such a change in hardness was explained in terms of the dislocation mechanisms in lysozyme single crystals

  1. Experimental study and effect of particulate interference on the microhardness, wear and microstructural properties of ternary doped coating

    Energy Technology Data Exchange (ETDEWEB)

    Fayomi, O. S. I., E-mail: ojosundayfayomi3@gmail.com [Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Mechanical Engineering, Covenant University, P.M.B. 1023, Canaanland, Ota (Nigeria); Popoola, A. P. I. [Department of Chemical, Metallurgical & Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Joseph, O. O.; Inegbenebor, A. O. [Department of Mechanical Engineering, Covenant University, P.M.B. 1023, Canaanland, Ota (Nigeria); Olukanni, D. O. [Department of Civil Engineering, Covenant University, P.M.B. 1023, Ota, Ogun State (Nigeria)

    2016-07-25

    This paper studies effects of the composite particle infringement of ZnO/Cr{sub 2}O{sub 3} on zinc rich ternary based coating. The corrosion-degradation property in 3.5% NaCl was investigatedusing polarization technique. The structural characteristics of the multilayer produce coatings were evaluated by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The mechanical response of the coated samples was studied using a diamond base Dura –Scan) micro-hardness tester and a MTR-300 dry abrasive wear tester. The combined effect of the coatings gave highly-improved performance on microhardness, corrosion and wear damage. This also implies that protection of wind-energy structures in marine environments can be achieved by composite strengthening capacity.

  2. Thermal Analysis and Microhardness Mapping in Hybrid Laser Welds in a Structural Steel

    Science.gov (United States)

    2003-01-01

    conditions. Via the keyhole the laser beam brings about easier ignition of the arc, stabilization of the arc welding process, and penetration of the...with respect to the conventional GMAW or GTAW processes without the need for very close fit-up. This paper will compare an autogenous laser weld to a...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP017864 TITLE: Thermal Analysis and Microhardness Mapping in Hybrid Laser

  3. Analysis of enamel microhardness at various hard tissue states and depth of the microfissures

    Directory of Open Access Journals (Sweden)

    S. P. Yarova

    2013-08-01

    Full Text Available In clinical practice are often diagnosed precervical lesions: wedge-shaped defects and cracks. Long phases of the confrontation of the body as a damaging influence in the formation of thicker tissue sections of higher salinity, density and sustainability occur prior to the integrity of the enamel. Micro-hardness is one of the important characteristics of the micro-mechanical strength of the tooth-related physical and chemical changes that occur in the enamel as a result of external and internal influences. The purpose of the study was to identify possible differences in the micro-hardness of enamel, depending on the depth of fissures and pathology of hard tissues of the teeth. We investigated the longitudinal sections of 27 teeth (18 - intact, 5 - with wedge-shaped defect, 4 - with cervical caries of both jaws removed for clinical indications in patients aged 25-54 years, who were diagnosed three types of fractures (SB Ivanov, 1984. Hardness was determined in the outer, middle, inner layers of enamel in three topographical locations: in the cusp tip (cutting edge of the tooth equator and neck as in previously described technique (S. Remizov, 1965. The obtained results showed decrease in strength with micro-cracks enamel, compared with apparently intact ones, on the average 10% more in the incisal areas (tuber, less - in the equatorial zone. In intact teeth with micro-cracks and having a wedge-shaped defect the indices differed significantly depending on the depth of the defects of the cutting edge (tuber and the equator: they were the smallest in the deep type III micro-cracks (p <0.05. The opposite picture was observed in samples with cervical caries. Thus, the statistically significant difference in terms of the micro-hardness of the enamel, depending on the depth of defects has been identified only in the area of cutting edge (tuber: in samples with deep micro-cracks of enamel type III they were the highest (P = 0.017. The greatest values of

  4. Microstructural and Microhardness Evolution from Homogenization and Hot Isostatic Pressing on Selective Laser Melted Inconel 718: Structure, Texture, and Phases

    Directory of Open Access Journals (Sweden)

    Raiyan Seede

    2018-05-01

    Full Text Available In this work, the microstructure, texture, phases, and microhardness of 45° printed (with respect to the build direction homogenized, and hot isostatically pressed (HIP cylindrical IN718 specimens are investigated. Phase morphology, grain size, microhardness, and crystallographic texture at the bottom of each specimen differ from those of the top due to changes in cooling rate. High cooling rates during the printing process generated a columnar grain structure parallel to the building direction in the as-printed condition with a texture transition from (001 orientation at the bottom of the specimen to (111 orientation towards the specimen top based on EBSD analysis. A mixed columnar and equiaxed grain structure associated with about a 15% reduction in texture is achieved after homogenization treatment. HIP treatment caused significant grain coarsening, and engendered equiaxed grains with an average diameter of 154.8 µm. These treatments promoted the growth of δ-phase (Ni3Nb and MC-type brittle (Ti, NbC carbides at grain boundaries. Laves phase (Fe2Nb was also observed in the as-printed and homogenized specimens. Ostwald ripening of (Ti, NbC carbides caused excessive grain growth at the bottom of the HIPed IN718 specimens, while smaller grains were observed at their top. Microhardness in the as-fabricated specimens was 236.9 HV and increased in the homogenized specimens by 19.3% to 282.6 HV due to more even distribution of secondary precipitates, and the nucleation of smaller grains. A 36.1% reduction in microhardness to 180.5 HV was found in the HIPed condition due to   γ ″ phase dissolution and differences in grain morphology.

  5. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  6. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  7. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites

    International Nuclear Information System (INIS)

    Algul, H.; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-01-01

    Graphical abstract: - Highlights: • Graphene reinforced nickel matrix composites were produced by pulse electroplating method at a constant current density of 5 A/dm"2. • Incorporating graphene refines the grain size and changes the microstructure of the coating. • Incorporating graphene greatly improves the friction reduction and wear resistance of the coating. • The nickel/graphene composite coating containing 500 mg/L graphene in the electrolyte showed the best results. - Abstract: Nickel–graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  8. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  9. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.

  10. In vitro assessments of experimental NaF dentifrices containing a prospective calcium phosphate technology.

    Science.gov (United States)

    Karlinsey, Robert L; Mackey, Allen C; Stookey, George K; Pfarrer, Aaron M

    2009-06-01

    To determine the fluoride dose response of experimental NaF dentifrices containing a prospective calcium phosphate technology, along with the corresponding relative enamel and dentin abrasion values. 3 mm diameter bovine enamel specimens were mounted, ground and polished, and softened in a carbopol-lactic acid solution (pH = 5.0) for 36 hours at 37 degrees C. Specimens were then measured for baseline Vickers microhardness and stratified (N = 18, mean VHN = 33) into eight groups. These groups consisted of a placebo paste, four test dentifrices (A, B, C, D) with three of the four (A, B, C) containing a promising calcium phosphate ingredient, Crest Cavity Protection, MI Paste Plus, and PreviDent Booster 5000. The groups were cycled in a lesion reversal pH cycling model consisting of four 2-minute treatment periods (diluted 1:3 with DI water) and one 4-hour acid challenge (carbopol-lactic acid, pH = 5.0) per day. Between these events, specimens were immersed in artificial saliva (pH = 7.0). After 20 days of cycling, the specimens were microdrilled and analyzed for fluoride content, and also measured for Vickers surface microhardness after 10 and 20 days of cycling and after a 2-hour and 16-hour post-cycle acid challenge (carbopol-lactic acid, pH = 5.0). Separately, relative dentin and enamel abrasion (RDA and REA) were performed using the ADA recommended radiotracer method. A fluoride dose response was observed for the test dentifrices after 10 and 20 days of pH cycling, with test dentifrice C promoting the highest remineralization among the groups while both the MI Paste Plus and PreviDent systems provide the least remineralization (one-way ANOVA, SNK, P dentin (one-way ANOVA, SNK, P < 0.05). Altogether, these data show the developmental test dentifrices demonstrate a fluoride dose response and show great promise in remineralizing white-spot enamel lesions relative to MI Paste Plus and PreviDent.

  11. Effect of oxalic acid on the optical, thermal, dielectric and mechanical behaviour of ADP crystals

    International Nuclear Information System (INIS)

    Rajesh, P.; Ramasamy, P.

    2009-01-01

    The effect of the addition, over a concentration range from 1 to 5 mol%, of oxalic acid on the growth rate, optical transparency, hardness, dielectric behaviour, and SHG efficiency of ammonium dihydrogen phosphate single crystals grown by slow evaporation method has been investigated. UV-Vis studies show that the transparency of the oxalic acid added crystals decreased gradually. Thermal studies indicate that the decomposition temperatures of the crystal are decreased in oxalic acid added ADP crystals. It is observed from the dielectric measurements that the dielectric constant and dielectric loss increase with increase in temperature for all the crystals. Vicker's microhardness study reveals that the addition of higher concentration of oxalic acid decreases the hardness of the crystal. SHG efficiency of 1 mol% of oxalic acid is higher than the pure ADP.

  12. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  13. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  14. Microstructure and temperature dependence of the microhardness of W–4V–1La2O3 and W–4Ti–1La2O3

    International Nuclear Information System (INIS)

    Savoini, B.; Martínez, J.; Muñoz, A.; Monge, M.A.; Pareja, R.

    2013-01-01

    W–4V–1La 2 O 3 and W–4Ti–1La 2 O 3 (wt.%) alloys have been produced by mechanical alloying and subsequent hot isostatic pressing. Electron microscopy observations revealed that these alloys exhibit a submicron grain structure with a dispersion of La oxide nanoparticles. Large V or Ti pools with martensitic characteristics are found segregated in the interstices between the W particles of the respective alloys. Microhardness tests were carried out over the temperature range 300–1073 K in vacuum. The microhardness–temperature curve for W–4V–1La 2 O 3 exhibited the expected decreasing trend with increasing temperature although the microhardness stayed constant between ∼473 and 773 K. The W–4Ti–1La 2 O 3 presented quite different temperature dependence with an anomalous microhardness increase for temperatures above ∼473 K

  15. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  16. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Rene GARCIA-CONTRERAS

    2015-06-01

    Full Text Available The use of nanoparticles (NPs has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC compared to GIC supplemented with titanium dioxide (TiO2 nanopowder at 3% and 5% (w/w. Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc, Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05. In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05, flexural and compressive strength (p<0.05, and antibacterial activity (p<0.001, without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  18. Analysis of the shelf life of chitosan stored in different types of packaging, using colorimetry and dentin microhardness.

    Science.gov (United States)

    da Cruz-Filho, Antonio Miranda; Bordin, Angelo Rafael de Vito; Souza-Flamini, Luis Eduardo; Guedes, Débora Fernandes da Costa; Saquy, Paulo César; Silva, Ricardo Gariba; Pécora, Jesus Djalma

    2017-05-01

    Chitosan has been widely investigated and used. However, the literature does not refer to the shelf life of this solution. This study evaluated, through the colorimetric titration technique and an analysis of dentin micro-hardness, the shelf life of 0.2% chitosan solution. Thirty human canines were sectioned, and specimens were obtained from the second and third slices, from cemento-enamel junction to the apex. A 0.2% chitosan solution was prepared and distributed in 3 identical glass bottles (v1, v2, and v3) and 3 plastic bottles (p1, p2, and p3). At 0, 7, 15, 30, 45, 60, 90, 120, 150, and 180 days, the specimens were immersed in each solution for 5 minutes ( n = 3 each). The chelating effect of the solution was assessed by micro-hardness and colorimetric analysis of the dentin specimens. 17% EDTA and distilled water were used as controls. Data were analyzed statistically by two-way and Tukey-Kramer multiple comparison ( α = 0.05). There was no statistically significant difference among the solutions with respect to the study time ( p = 0.113) and micro-hardness/time interaction ( p = 0.329). Chitosan solutions and EDTA reduced the micro-hardness in a similar manner and differed significantly from the control group ( p < 0.001). Chitosan solutions chelated calcium ions throughout the entire experiment. Regardless of the storage form, chitosan demonstrates a chelating property for a minimum period of 6 months.

  19. The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel.

    Science.gov (United States)

    Marcondes, Maurem; Paranhos, Maria Paula Gandolfi; Spohr, Ana Maria; Mota, Eduardo Gonçalves; da Silva, Isaac Newton Lima; Souto, André Arigony; Burnett, Luiz Henrique

    2009-07-01

    The Nd:YAG laser can be used in Dentistry to remove soft tissue, disinfect canals in endodontic procedures and prevent caries. However, there is no protocol for Nd:YAG laser application in dental bleaching. The aims of this in vitro study were: (a) to observe the tooth shade alteration when hydrogen peroxide whitening procedures are associated with dyes with different wavelengths and irradiated with Nd:YAG laser or halogen light; (b) to measure the Vickers (VHN) enamel microhardness before and after the whitening procedure; (c) to evaluate the tensile bond strength of two types of adhesive systems applied on bleached enamel; (d) to observe the failure pattern after bond strength testing; (e) to evaluate the pulpal temperature during the bleaching procedures with halogen light or laser; (f) to measure the kinetic reaction of hydrogen peroxide. Extracted sound human molar crowns were sectioned in the mesiodistal direction to obtain 150 fragments that were divided into five groups for each adhesive system: WL (H(2)O(2) + thickener and Nd:YAG), WH (H(2)O(2) + thickener and halogen light), QL (H(2)O(2) + carbopol + Q-switch and Nd:YAG), QH (H(2)O(2) + carbopol + Q-switch and halogen light), and C (Control, without whitening agent). Shade assessment was made with a shade guide and the microhardness tests were performed before and after the bleaching procedures. Immediately afterwards, the groups were restored with the adhesive systems Adper Single Bond 2 or Solobond M plus composite resin, and the tensile bond strength test was performed. The temperature was measured by thermocouples placed on the enamel surface and intrapulpal chamber. The kinetics of hydrogen peroxide was observed by ultraviolet analysis. The shade changed seven levels for Nd:YAG laser groups and eight levels for halogen light. According to the student's t-test, there was no statistical difference between the VHN before and after the whitening protocols (p > 0.05). The tensile bond strength showed no

  20. Characterisation of phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on casting aluminium LM24 alloy substrate

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2013-01-01

    Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of ...

  1. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA).

    Science.gov (United States)

    Abdulrazzaq Naji, Sahar; Behroozibakhsh, Marjan; Jafarzadeh Kashi, Tahereh Sadat; Eslami, Hossein; Masaeli, Reza; Mahgoli, Hosseinali; Tahriri, Mohammadreza; Ghavvami Lahiji, Mehrsima; Rakhshan, Vahid

    2018-04-01

    The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO 2 ) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. TiO 2 nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each TiO 2 :PMMA ratio, 15 specimens were fabricated for each experiment. Effects of n-TiO 2 addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. SEM images of n-TiO 2 exhibited the presence of elongated tubular structures. The XRD pattern of synthesized n-TiO 2 represented the anatase crystal phase of TiO 2 . Moderate to very strong significant positive correlations were observed between the concentration of n-TiO 2 and each of the 3 physicomechanical properties of PMMA (Pearson's P value ≤.001, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% n-TiO 2 were significantly higher than those of control ( P ≤.001). Fracture toughness of samples reinforced with 5 wt% n-TiO 2 (but not those of 2.5% n-TiO 2 ) was higher than control ( P =.002). Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

  2. Structural, mechanical, electrical and optical properties of a new lithium boro phthalate NLO crystal synthesized by a slow evaporation method

    Science.gov (United States)

    Mohanraj, K.; Balasubramanian, D.; Jhansi, N.

    2017-11-01

    A new non-linear optical (NLO) single crystal of lithium boro phthalate (LiBP) was grown by slow solvent evaporation technique. The powder sample was subjected to powder X-ray diffraction (PXRD) to find its crystalline nature and the crystal structure of the grown crystal was determined using single crystal X-ray (SXRD) diffraction analysis. The Fourier Transform Infrared (FTIR) spectrum was recorded for grown crystal to identify the various functional groups present in the compound. The mechanical property of the LiBP single crystal was studied using Vickers microhardness tester. The dielectric constant and dielectric loss measurements were carried out for the grown crystal at various temperatures. The grown crystal was subjected to UV-Visible Spectral Studies to analyze the linear optical behavior of the grown crystal. The Kurtz-Perry Powder technique was employed to measure the Second Harmonic Generation efficiency of the grown crystal.

  3. Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    Directory of Open Access Journals (Sweden)

    Ana Luísa Botta Martins de Oliveira

    2010-09-01

    Full Text Available This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140 with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard. The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level. For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods.

  4. The effect of different beverages on surface hardness of nanohybrid resin composite and giomer

    Science.gov (United States)

    Tanthanuch, Saijai; Kukiattrakoon, Boonlert; Siriporananon, Chantima; Ornprasert, Nawanda; Mettasitthikorn, Wathu; Likhitpreeda, Salinla; Waewsanga, Sulawan

    2014-01-01

    Aims: To investigate the effects of five beverages (apple cider, orange juice, Coca-Cola, coffee, and beer) on microhardness and surface characteristic changes of nanohybrid resin composite and giomer. Materials and Methods: Ninety-three specimens of each resin composite and giomer were prepared. Before immersion, baseline data of Vicker's microhardness was recorded and surface characteristics were examined using scanning electron microscopy (SEM). Five groups of discs (n = 18) were alternately immersed in 25 mL of each beverage for 5 s and in 25 mL of artificial saliva for 5 s for 10 cycles. Specimens were then stored in artificial saliva for 24 h. This process was repeated for 28 days. After immersion, specimens were evaluated and data were analyzed by two-way repeated analysis of variance (ANOVA), Tukey's honestly significant difference (HSD), and a t-test (α = 0.05). Results: Microhardness of all groups significantly decreased after being immersed in the tested beverages (P < 0.05). SEM photomicrographs presented surface degradation of all groups. Conclusions: The effect of these beverages on the surface of both restorative materials also depended upon the exposure time and chemical composition of the restorative materials and beverages. PMID:24944451

  5. Correlation between hardness and stress in Al-(Nb, Mo, Ta) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T., E-mail: car@irb.h [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Radic, N. [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Panjan, P.; Cekada, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Tonejc, A. [Department of Physics, Bijenicka cesta 32, 10000 Zagreb, P.O.B. 331 (Croatia)

    2009-06-30

    The thin films of Al{sub x}Nb{sub 1-x} (95 {>=} x {>=} 20), Al{sub x}Mo{sub x} (90 {>=} x {>=} 20) and Al{sub x}Ta{sub 1-x} (95 {>=} x {>=} 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.

  6. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    Science.gov (United States)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  7. Glass formation and properties in the system calcia-gallia-silica

    Science.gov (United States)

    Angel, Paul W.; Ray, Chandra S.; Day, Delbert E.

    1990-01-01

    The glass-forming region in the calcia-gallia-silica system is studied and found to be fairly large, with a density of 3-4 g/cu cm, a refractive index of 1.6-1.73, an Abbe number of 35-58, a thermal expansion coefficient of 6.5-11.5 x 10 to the -7th/deg C, and a Vickers microhardness of 5.2-7.3 GPa. Crystalline phases are identified at the boundary of the glass-forming region. The structural groups in the glass-forming compositions are analyzed by infrared absorption spectroscopy.

  8. Relation between Cutting Surface Quality and Alloying Element Contents when Using a CO2 Laser

    Directory of Open Access Journals (Sweden)

    J. Litecká

    2011-01-01

    Full Text Available This paper deals with the influence of material content on changes in the quality parameters of the cutting surface when cutting with a laser. The study focuses on experiments to find the effect of material structure and cutting parameters on surface roughness, Vickers microhardness and precision of laser cutting. The experimental results are shown in graphs which illustrate the suitability of materials for achieving required cutting surface quality parameters. These results can be used for optimizing production in practical applications using a laser cutting machine.

  9. Application of spark plasma sintering for fabricating Nd-Fe-B composite

    Science.gov (United States)

    Sivkov, A. A.; Ivashutenko, A. S.; Lomakina, A. A.

    2015-10-01

    Constant magnets are applied in such fields as electric equipment and electric generators with fixed rotor. Rare earth metal neodymium is well known as promising material. Production of magnets by sintering three elements (neodymium, iron and boron) is one the most promising methods. But there are difficulties in choosing the right temperature for sintering and further processing. Structure and properties of the product, consisted of rare earth metals, was analyzed. X-ray analysis of the resulting product and the finished constant magnet was performed. Vickers microhardness was obtained.

  10. Influence of the bracket on bonding and physical behavior of orthodontic resin cements.

    Science.gov (United States)

    Bolaños-Carmona, Victoria; Zein, Bilal; Menéndez-Núñez, Mario; Sánchez-Sánchez, Purificación; Ceballos-García, Laura; González-López, Santiago

    2015-01-01

    The aim of the study is to determine the influence of the type of bracket, on bond strength, microhardness and conversion degree (CD) of four resin orthodontic cements. Micro-tensile bond strength (µTBS) test between the bracket base and the cement was carried out on glass-hour-shaped specimens (n=20). Vickers Hardness Number (VHN) and micro-Raman spectra were recorded in situ under the bracket base. Weibull distribution, ANOVA and non-parametric test were applied for data analysis (pcement showing the worst performance. The CD was from 80% to 62.5%.

  11. Mechanical behavior of mullite-zirconia composites

    Directory of Open Access Journals (Sweden)

    Sahnoune F.

    2010-06-01

    Full Text Available In this work, mechanical properties of mullite–zirconia composites synthesised through reaction sintering of Algerian kaolin, α-Al2O3, and ZrO2 were characterized. Phases present and their transformations were characterized using x-ray diffraction. Hardness H and fracture toughness KIC were measured by Vickers indentation using a Zwick microhardness tester. The flexural strength was measured through three point bending test using an Instron Universal Testing Machine. It was found that the increase of ZrO2 content (from 0 to 32wt.% decreased the microhardness of the composites from 14 to 10.8 GPa. However, the increase of ZrO2 content (from 0 to 24wt.% increased the flexural strength of the composites from 142 to 390 MPa then decreased it with further increase of ZrO2 content. Also, the fracture toughness increased from 1.8 to 2.9 MPa.m1/2 with the increase of ZrO2 content from 0 to 32 wt.%; and the rate of the increase decreased at higher fractions of ZrO2 content. The average linear coefficient of thermal expansion (within the range 50 to 1450°C for samples containing 0 and 16 wt.% ZrO2 sintered at 1600°C for 2 hours was 4.7 x10-6 K-1 and 5.2 x 10-6 K-1 respectively.

  12. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Perosion.

  13. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys; Estudo dos mecanismos envolvidos no processo de endurecimento superficial a laser de ligas metalicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edmara Marques Rodrigues da

    2001-07-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO{sub 2} laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the

  14. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys

    International Nuclear Information System (INIS)

    Silva, Edmara Marques Rodrigues da

    2001-01-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO 2 laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the level of

  15. Effects of alpha radiation on hardness and toughness of the borosilicate glass applied to radioactive wastes immobilization

    International Nuclear Information System (INIS)

    Prado, Miguel Oscar; Bernasconi, Norma B. Messi de; Bevilacqua, Arturo Miguel; Arribere, Maria Angelica; Heredia, Arturo D.; Sanfilippo, Miguel

    1999-01-01

    Borosilicate german glass SG7 samples, obtained by frit sintering, were irradiated with different fluences of thermal neutrons in the nucleus of a nuclear reactor. The nuclear reaction 10 B(n,α) 7 Li, where the 10 B isotope is one of the natural glass components, was used to generate alpha particles throughout the glass volume. The maximum alpha disintegration per unit volume achieved was equivalent to that accumulated in a borosilicate glass with nuclear wastes after 3.8 million years. Through Vickers indentations values for microhardness, stress for 50% fracture probability (Weibull statistics) and estimation of the toughness were obtained as a function of alpha radiation dose. Two counterbalanced effects were found: that due to the disorder created by the alpha particles in the glass and that due to the annealing during irradiation (temperature below 240 deg C). Considering the alpha radiation effect, glasses tend decrease Vickers hardness, and to increase thr 50% fracture probability stress with the dose increase. (author)

  16. Shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539

    Directory of Open Access Journals (Sweden)

    Barbara Nasiłowska

    2015-06-01

    Full Text Available This article presents shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539. The research shows strengthening of the top layer and the formation of compressive stresses in the subsurface layers of the shot-peening elements.[b]Keyword[/b]: austenitic steel 1.4539, residual stresses, Waisman-Phillips’a method

  17. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    Science.gov (United States)

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  18. The effect of Trigona sp propolis from Luwu regency, South Sulawesi province, Indonesia on human enamel teeth (an in vitro study

    Directory of Open Access Journals (Sweden)

    Ardo Sabir

    2016-06-01

    Full Text Available Propolis is a resinous substance produced by honey bees. It is well-known that propolis exhibits both antibacterial and anti-inflammatory activities therefore it has been used in folk medicine since primeval times.In recent years, propolis has been used as active component of mouthwashes in the attempt to treat gingivitis and periodontitis. The purpose of the present study is to know in vitro effect of Ethanolic Extract of Propolis (EEP solution on the microhardness of human enamel teeth. Solution of 0.125% EEP has been made from propolis which was collected from honeycombs in Luwu Regency, South Sulawesi Province. Aquadest and 1% povidone iodine were used as negative and positive control. Calcium, phosphate, fluoride concentrations and pH of the solutions were also measured using Atomic Absorption Spectroscopy and a digital pH meter. Ninety human maxillary first incisors which extracted for periodontal reasons were used in this study. The roots of the teeth were removed at the cementoenamel junction. The crowns were randomly divided into three groups of 30 each and were immersed in aquadest solution pH 8.4 (Group I; 0.125% EEP solution pH 4.3 (Group II or 1% povidone iodine solution pH 3.0 (Group III for 21, 42, 63, and 84 minutes respectively. A Vickers Hardness Tester was used to measure enamel surface microhardness before and after immersion. Data was statistically analyzed using one-way ANOVA and Tukey tests with significance level of 5%. The results showed that except immersed in aquadest, enamel microhardness increased after being immersed in EEP and povidone iodine solutions, although statistical analysis did not show significant differences (p>0.05 microhardness of enamel teeth before and after immersed in each group.In conclusion, immersion the teeth in 0.125% EEP solution pH 4.3 with 2.69 ppm phosphate, 1.49 ppm calcium, and 0.00 ppm fluoride concentrations for 84 minutes increased human enamel hardness in vitro.

  19. Wear resistance of a pressable low-fusing ceramic opposed by dental alloys.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; de Oliveira, André Almeida; Alves Gomes, Érica; Silveira Rodrigues, Renata Cristina; Faria Ribeiro, Ricardo

    2014-04-01

    Dental alloys have increasingly replaced by dental ceramics in dentistry because of aesthetics. As both dental alloys and ceramics can be present in the oral cavity, the evaluation of the wear resistance of ceramics opposed by dental alloys is important. The aim of the present study was to evaluate wear resistance of a pressable low-fusing ceramic opposed by dental alloys as well as the microhardness of the alloys and the possible correlation of wear and antagonist microhardness. Fifteen stylus tips samples of pressable low-fusing ceramic were obtained, polished and glazed. Samples were divided into three groups according to the disk of alloy/metal to be used as antagonist: Nickel-Chromium (Ni-Cr), Cobalt-Chromium (Co-Cr) and commercially pure titanium (cp Ti). Vickers microhardness of antagonist disks was evaluated before wear tests. Then, antagonist disks were sandblasted until surface roughness was adjusted to 0.75μm. Wear tests were performed at a speed of 60 cycles/min and distance of 10mm, in a total of 300,000 cycles. Before and after wear tests, samples were weighted and had their profile designed in an optical comparator to evaluate weight and height loss, respectively. Ni-Cr and cp Ti caused greater wear than Co-Cr, presenting greater weight (p=.009) and height (p=.002) loss. Cp Ti microhardness was lower than Ni-Cr and Co-Cr (pceramic presents different wear according to the dental alloy used as antagonist and the wear is not affected by antagonist microhardness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thermal treatment of the amorphous base alloy Fe 2605SA1, analysis of its defects and microhardness

    International Nuclear Information System (INIS)

    Contreras V, J.A.; Cabral P, A.; Garcia Santibanez S, F.; Ramirez, J.; Lopez M, J.; Villaverde L, A.; Montoya E, A.; Merino, F.J.

    2007-01-01

    By means of the use of the positron lifetime technique those characteristics of the present crystalline defects in an amorphous base alloy Fe (SA1) are determined, when this is subjected to thermal treatments from 293 K until 808 K. Also, some results about the microhardness and electric resistivity are presented. (Author)

  1. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    Science.gov (United States)

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  2. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  3. Mechanical and tribological properties of silicon nitride films synthesized by ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Chen Yuanru; Li Shizhuo; Zhang Xushou; Liu Hong; Yang Genqing; Qu Baochun

    1991-01-01

    This article describes preliminary investigations of mechanical and tribological properties of silicon nitride film formed by ion beam enhanced deposition (IBED) on GH37 (Ni-based alloys) steel. The films were synthesized by silicon vapor deposition with a rate of 1 A/s and by 40 keV nitrogen ion bombardment simultaneously. The thickness of the film was about 5000 A. X-ray photoelectron spectroscopy and infrared absorption spectroscopy revealed that a stoichiometric Si 3 N 4 film was formed. The observation of TEM showed that the IBED Si 3 N 4 film normally had an amorphous structure. However, electron diffraction patterns revealed a certain crystallinity. The mechanical and tribological properties of the films were investigated with a scratch tester, microhardness meter, and a ball-on-disc tribometer respectively. Results show that the adhesive strength between film and substrate is about 51 N, the Vickers microhardness with a load of 0.2 N is 980, the friction coefficient measured for steel against silicon nitride film ranges from 0.1 to 0.15, and the wear rate of coatings is about 6.8x10 -5 mm 3 /(mN). Finally, the relationship among thermal annealing, crystallinity and tribological characteristics of the Si 3 N 4 film is discussed. (orig.)

  4. Influence of Grain Refinement on Microstructure and Mechanical Properties of Tungsten Carbide/Zirconia Nanocomposites

    Science.gov (United States)

    Nasser, Ali; Kassem, Mohamed A.; Elsayed, Ayman; Gepreel, Mohamed A.; Moniem, Ahmed A.

    2016-11-01

    WC-W2C/ZrO2 nanocomposites were synthesized by pressure-less sintering (PS) and spark plasma sintering (SPS) of tungsten carbide/yttria-stabilized tetragonal zirconia, WC/TZ-3Y. Prior to sintering, WC/TZ-3Y powders were totally ball-milled for 20 and 120 h to obtain targeted nano (N) and nano-nano (N-N) structures, indicated by transmission electron microscopy and powder x-ray diffraction (PXRD). The milled powders were processed via PS at temperatures of 1773 and 1973 K for 70 min and SPS at 1773 K for 10 min. PXRD as well as SEM-EDS indicated the formation of WC-W2C/ZrO2 composites after sintering. The mechanical properties were characterized via Vicker microhardness and nanoindentation techniques indicating enhancements for sufficiently consolidated composites with high W2C content. The effects of reducing particle sizes on phase transformation, microstructure and mechanical properties are reported. In general, the composites based on the N structure showed higher microhardness than those for N-N structure, except for the samples PS-sintered at 1773 K. For instance, after SPS at 1773 K, the N structure showed a microhardness of 18.24 GPa. Nanoindentation measurements revealed that nanoscale hardness up to 22.33 and 25.34 GPa and modulus of elasticity up to 340 and 560 GPa can be obtained for WC-W2C/ZrO2 nanocomposites synthesized by the low-cost PS at 1973 K and by SPS at 1773 K, respectively.

  5. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Algul, H., E-mail: halgul@sakarya.edu.tr; Tokur, M.; Ozcan, S.; Uysal, M.; Cetinkaya, T.; Akbulut, H.; Alp, A.

    2015-12-30

    Graphical abstract: - Highlights: • Graphene reinforced nickel matrix composites were produced by pulse electroplating method at a constant current density of 5 A/dm{sup 2}. • Incorporating graphene refines the grain size and changes the microstructure of the coating. • Incorporating graphene greatly improves the friction reduction and wear resistance of the coating. • The nickel/graphene composite coating containing 500 mg/L graphene in the electrolyte showed the best results. - Abstract: Nickel–graphene metal matrix composite coatings were fabricated by pulse electrodeposition technique from a Watt's type electrolyte. Effect of the graphene concentration in the electrolyte on the microstructure, microhardness, tribological features of nanocomposite coatings were evaluated in details. Microhardness of the composite coating was measured using a Vicker's microhardness indenter. The surfaces of the samples were characterized by scanning electron microscopy (SEM). Raman spectroscopy, EDS and XRD analysis were used to determine chemical composition and structure of composite coatings. The tribological behavior of the resultant composite coating was tested by a reciprocating ball-on disk method at constant load but varying sliding speeds for determination the wear loss and friction coefficient features against a counterface. The wear and friction variations of the electrodeposited nickel graphene nanocomposite coatings sliding against an M50 steel balls were carried out on a CSM Instrument. The friction and wear properties of the coatings were examined without any lubrication at room temperature in the ambient air. The change in wear mechanisms by changing graphene nanosheets content was also comprehensively studied.

  6. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  7. Influencing Factors on the Interface Microhardness of Lightweight Aggregate Concrete Consisting of Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Lightweight aggregate concrete consisting of glazed hollow bead (GHB as lightweight aggregate is studied for the influence of nanosilica (NS content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV and hydration degree of cement paste (HD nearby the interface zone (1 mm between GHB and cement paste at different periods of aging. Due to the sampling limitation, the interface zone in this test is within 1 mm away from the surface of lightweight aggregate. The HD of cement paste was determined through chemically combined water (CCW test. The results were expected to reflect the influence of various factors on the interface zone structure. Results showed that the rational control of the four factors studied could fully mobilize the water absorption and desorption properties of GHB to improve the characteristics of the interfacial transition zone.

  8. FT-Raman spectroscopy, µ-EDXRF spectrometry, and microhardness analysis of the dentin of primary and permanent teeth.

    Science.gov (United States)

    Torres, Carolina Paes; Miranda Gomes-Silva, Jaciara; Menezes-Oliveira, Maria Angélica Hueb; Silva Soares, Luís Eduardo; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina

    2018-05-01

    The chemical compositions (organic and inorganic contents) and mechanical behaviors of the dentin of permanent and deciduous teeth were analyzed and compared using X-ray fluorescence spectrometry (µ-EDXRF) Fourier transform Raman spectroscopy (FT-Raman) and a microhardness test (HD). Healthy fresh human primary and permanent molars (n = 10) were selected, The buccal surfaces facing upwards were stabilized in an acrylic plate, flattened, polished, and submitted to the µ-EDXRF, FT-Raman, and HD analysis. The results of the analysis were subjected to ANOVAs and Mann-Whitney U/Student's t multiple comparisons tests. The data showed similar values for the dentin of the primary and permanent teeth in P content, organic content (amide I peak), inorganic content ( PO43- - 430 and 590), and microhardness, Nevertheless, Ca content and Ca/P weight ratio were higher, and the CO32- peak was lower in the dentin of the permanent teeth compared to primary teeth. It be concluded that despite permanent teeth showed more Ca element, both substrates showed similar behavior of chemical and physical properties. © 2018 Wiley Periodicals, Inc.

  9. Surface roughness and hardness of yttria stabilized zirconia (Y-TZP after 10 years of simulated brushing

    Directory of Open Access Journals (Sweden)

    Lucas Miguel Candido

    Full Text Available Introduction: The Y-TZP zirconia used for prosthetic infrastructure, in some clinical situations, can be exposed to the oral environment. In these situations, a polished surface without changes is extremely important. Objective: The aim of this study was to evaluate the mean roughness (Ra and Vickers hardness of Y-TZP zirconia (Lava™ after simulating ten years of brushing. Material and method: Thirty-six Y-TZP bar-shaped specimens (20mm X 4mm X 1.2mm were divided into three groups: storage in distilled water (DW, n=12, control; brushing with distilled water (BDW, n=12 and brushing with distilled water and fluoride toothpaste (BFT, n=12. Brushing was performed using a brushing machine with a soft-bristled toothbrush, simulating 10 years of brushing (878.400 cycles, 100gf. The mean roughness (Ra in μm and Vickers hardness (VHN of all specimens were measured twice: before and after the experimental treatment, in profilometer and microhardness tester (500gf, 30 seconds, respectively. Data were analyzed using the two-way ANOVA test (α = 0.05. Result: The interaction between groups was not significant for roughness (p = 0.701 nor for hardness (p = 0.928. The final averages for Ra (μm were equal to: DW - 0.63; BDW - 0.64; and, BFT - 0.68. The final averages for Vickers hardness (VHN were: DW - 1301.16; BDW - 1316.60; and, BFT - 1299.58. Conclusion: It was concluded that the brushing with distilled or fluoridated toothpaste was not able to change the roughness and hardness of Y-TZP zirconia used in this study.

  10. Investigation of the structural transformations in the Al-Li-Cu-Mg(8090) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, A. [Assiut Univ. (Egypt). Dept. of Physics; Afify, N. [Assiut Univ. (Egypt). Dept. of Physics

    1997-07-01

    The precipitation processes in quenched Al-2.4Li-1.16Cu-0.8Mg (wt.%) alloy (8090) from the solid solution state (T{sub q} = 803 K) have been investigated via the Vickers microhardness measurements, scanning electron microscopy and differential scanning calorimetry. On the basis of Kissinger`s analytical equation of the DSC thermograms, the overall activation energies associated with the transformation processes are evaluated. The activation energy associated with the formation of the GPB zones and {delta}` phase is determined as 82.433 kJ/mol. Whereas the energy of their dissolution is 139.78 kJ/mol. The activation energy associated with the formation of the S` phase is determined as 106.88 kJ/mol. In addition, the microstructural examination of the samples after various aging temperatures revealed that the resultant precipitates are intergranular. (orig.)

  11. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  12. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  13. Glasses obtained from industrial wastes; Vidros obtidos a partir de residuos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Curso de Engenharia de Materiais; Bernardin, A.M., E-mail: amb@unesc.ne [Servico Nacional de Aprendizagem Industrial (SENAI), Tijucas, SC (Brazil). Tecnologia em Ceramica

    2009-07-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO{sub 3} (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  14. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration

    Science.gov (United States)

    Juntavee, Niwut; Juntavee, Apa; Plongniras, Preeyarat

    2018-01-01

    Objective This study investigates the effects of nano-hydroxyapatite (NHA) gel and Clinpro (CP) on remineralization potential of enamel and cementum at the cavosurface area of computer-aided design and computer-aided manufacturing ceramic restoration. Materials and methods Thirty extracted human mandibular third molars were sectioned at 1 mm above and below the cemento–enamel junction to remove the cemento–enamel junction portions and replaced them with zirconia ceramic disks by bonding them to the crown and root portions with resin cement. The enamel and cementum with an area of 4×4 mm2 surrounding the ceramic disk was demineralized with carbopol. The demineralized surfaces were treated with either NHA or CP, while 1 group was left with no treatment. Vickers microhardness of enamel and cementum were determined before demineralization, after demineralization, and after remineralization. Analysis of variance and Tukey multiple comparisons were used to determine statistically significant differences at 95% level of confidence. Scanning electron microscopy and X-ray diffraction were used to evaluate for surface alterations. Results The mean ± SD of Vickers microhardness for before demineralization, after demineralization, and after remineralization for enamel and cementum were 377.37±22.99, 161.95±10.54, 161.70±5.92 and 60.37±3.81, 17.65±0.91, 17.04±1.00 for the no treatment group; 378.20±18.76, 160.72±8.38, 200.08±8.29 and 62.58±3.37, 18.38±1.33, 27.99±2.68 for the NHA groups; and 380.53±25.14, 161.94±5.66, 193.16±7.54 and 62.78±4.75, 19.07±1.30, 24.46±2.02 for the CP groups. Analysis of variance indicated significant increase in microhardness of demineralized enamel and cementum upon the application of either NHA or CP (pmanufacturing ceramic. PMID:29780246

  15. Habit modification of bis-thiourea zinc chloride (ZTC) semi organic crystals by impurities

    Science.gov (United States)

    Ruby Nirmala, L.; Thomas Joseph Prakash, J.

    2013-06-01

    Single crystals of bis-thiourea zinc chloride (ZTC) doped with metal ion (Li+) possess excellent nonlinear optical properties. These crystals were grown by slow evaporation solution growth technique. The effect of Li+ dopant on the growth and properties of ZTC single crystal were investigated and reported. The grown crystals were crystallized in orthorhombic structure with non-centro symmetric space group Pn21a through the parent compound. The amount of dopant incorporated in the parent crystal was revealed by the inductively coupled plasma (ICP-OES) studies. The FT-IR spectroscopy study was done for finding and confirming the functional groups present in the compound. The UV-Visible spectral study was carried out to find the optical behavior and transparency nature of the grown crystal. TG/DTA measurements and Vickers microhardness measurements were traced to find out the thermal and mechanical stability of the grown crystals respectively. Using Nd:YAG laser, the Second harmonic generation (SHG) for the grown crystals were confirmed.

  16. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    Science.gov (United States)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  17. Influence of N_2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N_2 vacuum arc discharge

    International Nuclear Information System (INIS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-01-01

    The influence of N_2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N_2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N_2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N_2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N_2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N_2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N_2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N_2 partial pressure.

  18. Micro and macro scratch and microhardness study of biocompatible DLC and TiO.sub.2./sub. films prepared by laser

    Czech Academy of Sciences Publication Activity Database

    Mikšovský, Jan; Lukeš, J.; Tolde, Z.; Remsa, Jan; Kocourek, Tomáš; Jelínek, Miroslav

    2013-01-01

    Roč. 647, JAN (2013), 25-29 ISSN 1022-6680 Institutional support: RVO:68378271 Keywords : thin films * adhesion * scratch test * microhardness * Young ´s modulus * diamond-like-carbon (DLC) * titanium dioxide (TiO 2 ). Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  20. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  1. Sintering, microstructural and dilatometric studies of combustion synthesized Synroc phases

    International Nuclear Information System (INIS)

    Muthuraman, M.; Patil, K.C.; Senbagaraman, S.; Umarji, A.M.

    1996-01-01

    Sintering, microstructure, and linear thermal expansion properties of Synroc-B and constituent phases, viz. perovskite CaTiO 3 , zirconolite ZrTi 2 O 7 , hollandite (ideal formula BaAl2Ti 6 O 16 ) have been investigated. Synroc-B powder when pelletized and sintered at 1250 C for 2 h achieved >95% theoretical density. Sintered Synroc-B has a linear thermal expansion coefficient α of 8.72 x 10 -6 K -1 and Vicker's microhardness 9.88 GPa. The linear thermal expansion curves did not show any hysteresis indicating the absence of microcracking in the sintered bodies

  2. Sub-Zero Celsius treatment: a promising option for future martensitic stainless steels

    DEFF Research Database (Denmark)

    Villa, Matteo; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2016-01-01

    A series of samples of (in wt.%) 11.5Cr-0.67C martensiticstainless steel grade were austenitized in Argon for 1 hour attemperatures ranging from 1010°C to 1190°C. Additionally, aseries of samples of (in wt.%) 15.0Cr-5.8Ni-1.0Mo-0.03C (EN1.4418) martensitic stainless steel grade were solution...... and Vickers micro-hardness indentation.Complementary electron back-scatter diffraction was appliedfor determining the phase fractions of austenite and martensite.Data shows that sub-zero Celsius treatment yields anadditional hardening response when austenite is retained in thematerial. The relevance...

  3. Interaction of dense nitrogen plasma with SS304 surface using APF plasma focus device

    Science.gov (United States)

    Afrashteh, M.; Habibi, M.; Heydari, E.

    2012-04-01

    The nitridation of SS304 surfaces is obtained by irradiating nitrogen ions from Amirkabir plasma focus device, which use multiple focus deposition shots at optimum distance 10 cm from the anode. The Vickers Micro-Hardness values are improved more than twice for the nitrided samples comparing to the nonnitrided ones. The X-ray diffraction (XRD) analysis is carried out in order to explore the phase changes in the near surface structure of the metals. The results of Scanning Electron Microscopy (SEM) indicate changes in surface morphology which are the emergence of smooth and uniform film on the surface of the nitrided metals.

  4. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening

    International Nuclear Information System (INIS)

    Li, Huimin; Liu, Yingang; Li, Miaoquan; Liu, Hongjie

    2015-01-01

    Graphical abstract: - Highlights: • The gradient nanocrystalline structure was induced in treated layer of TC17. • The thickness of nanograin layer with an average grain size of 10.5 nm was 20 μm. • The composition of the treated layer of TC17 was discussed. • The gradient variation of the microhardness was obtained in treated layer of TC17. - Abstract: The gradient nanocrystalline structure from the topmost surface to the matrix of a bulk coarse-grained TC17 was attained by using high energy shot peening treatment at an air pressure of 0.35 MPa and a processing duration of 30 min. The thickness from the topmost surface with a grain size of about 10.5 nm to the matrix with a micrometer structure was about 120 μm, and the thickness in the nanocrystalline layer was about 20 μm. The microscopic and nanocrystalline structure characteristic in the treated layer were investigated via X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The nanograins layer, the nanometer-thick laminated structure layer, the refined grains layer and the low-strain matrix layer occurred in sequence from the topmost surface to the matrix, and therefore the gradient nanocrystalline structure in the treated layer was produced by using high energy shot peening. TEM investigation confirmed that the dislocation activity with very high stacking fault energy induced by surface severe plastic deformation mainly controlled the grain refinement. The microhardness (HV 0.02 ) from the topmost surface to the matrix gradually increased by 43% from 440 to 629 and the gradient variation of the microhardness with the depths from the topmost surface to the matrix of treated TC17 was obtained.

  6. Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys

    International Nuclear Information System (INIS)

    Navamathavan, R.; Arivuoli, D.; Attolini, G.; Pelosi, C.; Choi, Chi Kyu

    2007-01-01

    Vicker's microindentation tests have been carried out on InP/InP, GaAs/InP, InGaAs/InP and InGaAsP/InP III-V compound semiconductor alloys. The detailed mechanical properties of these binary, ternary and quaternary epilayers were determined from the indentation experiments. Microindentation studies of (1 1 1) GaAs/InP both A and B faces show that the hardness value increases with load and attains a constant for further increase in load and the microhardness values were found to lie between 3.5 and 4.0 GPa. The microhardness values of InGaAs/InP epilayers with different thickness were found to lie between 3.93 and 4.312 GPa. The microhardness values of InGaAsP/InP with different elemental composition were found to lie between 5.08 and 5.73 GPa. The results show that the hardness of the quaternary alloy drastically increases, the reason may be that the increase in As concentration hardens the lattice when phosphorous concentration is less and hardness decreases when phosphorous is increased. It was interestingly observed that the hardness value increases as we proceed from binary to quaternary III-V compound semiconductor alloys

  7. Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing

    Science.gov (United States)

    Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu

    2017-12-01

    To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.

  8. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    Science.gov (United States)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  9. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  10. The effect of different fluoride application methods on the remineralization of initial carious lesions.

    Science.gov (United States)

    Byeon, Seon Mi; Lee, Min Ho; Bae, Tae Sung

    2016-05-01

    The purpose of this study was to assess the effect of single and combined applications of fluoride on the amount of fluoride release, and the remineralization and physical properties of enamel. Each of four fluoride varnish and gel products (Fluor Protector, FP, Ivoclar Vivadent; Tooth Mousse Plus, TM, GC; 60 Second Gel, A, Germiphene; CavityShield, CS, 3M ESPE) and two fluoride solutions (2% sodium fluoride, N; 8% tin(ii) fluoride, S) were applied on bovine teeth using single and combined methods (10 per group), and then the amount of fluoride release was measured for 4 wk. The electron probe microanalysis and the Vickers microhardness measurements were conducted to assess the effect of fluoride application on the surface properties of bovine teeth. The amount of fluoride release was higher in combined applications than in single application (p < 0.05). Microhardness values were higher after combined applications of N with FP, TM, and CS than single application of them, and these values were also higher after combined applications of S than single application of A (p < 0.05). Ca and P values were higher in combined applications of N with TM and CS than single application of them (p < 0.05). They were also increased after combined applications of the S with A than after single application (p < 0.05). Combined applications of fluoride could be used as a basis to design more effective methods of fluoride application to provide enhanced remineralization.

  11. SEM Evaluation of Enamel Surface Changes and Enamel Microhardness around Orthodontic Brackets after Application of CO2 Laser, Er,Cr:YSGG Laser and Fluoride Varnish: An In vivo Study.

    Science.gov (United States)

    Kaur, Tarundeep; Tripathi, Tulika; Rai, Priyank; Kanase, Anup

    2017-09-01

    One of the most undesirable consequences of orthodontic treatment is occurrence of enamel demineralization around orthodontic brackets. Numerous in vitro studies have reported the prevention of enamel demineralization by surface treatment with lasers and fluoride varnish. To evaluate the changes on the enamel surface and microhardness around orthodontic brackets after surface treatment by CO 2 laser, Er, Cr:YSGG laser and fluoride varnish in vivo. A double blind interventional study was carried out on 100 premolars which were equally divided into five groups, out of which one was the control group (Group 0). The intervention groups (Group I to IV) comprised of patients requiring fixed orthodontic treatment with all 4 first premolars extraction. Brackets were bonded on all 80 premolars which were to be extracted. Enamel surface treatment of Groups I, II and III was done by CO 2 laser, Er, Cr:YSGG laser and 5% sodium fluoride varnish respectively and Group IV did not receive any surface treatment. A modified T-loop was ligated to the bracket and after two months, the premolars were extracted. Surface changes were evaluated by Scanning Electron Microscopic (SEM) and microhardness testing. Comparison of mean microhardness between all the groups was assessed using post-hoc test with Bonferroni correction. Group I showed a melted enamel appearance with fine cracks and fissures while Group II showed a glossy, homogenous enamel surface with well coalesced enamel rods. Group III showed slight areas of erosions and Group IV presented areas of stripped enamel. Significant difference was observed between the mean microhardness (VHN) of Group I, Group II, Group III, Group IV and Group 0 with p<0.001. A significant difference of p<0.001 was observed while comparing Group I vs II,III,IV,0 and Group II vs III,IV,0. However, difference while comparing Group III vs IV was p=0.005 and difference between the mean microhardness of Group 0 vs Group III was non significant. Surface

  12. Influência do tipo de ponteira condutora de luz na microdureza de uma resina composta Influence of the different light-curing TIPS in the microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Máx Dobrovolski

    2010-01-01

    Full Text Available O objetivo desta pesquisa foi avaliar a influência do tipo de ponteira condutora de luz na microdureza de uma resina composta micro-híbrida. Foram confeccionados 14 corpos de prova da resina composta Opallis (FGM com dimensões: 5 x 2 mm, divididos em dois grupos de acordo com a ponteira condutora de luz do aparelho fotoativador de lâmpada halógena Optilight Plus - GNATUS/300 mW.cm-2. GI - ponteira condutora de luz de fibra óptica; GII - ponteira condutora de luz de polímero. Após 24 horas, as medidas de microdureza foram efetuadas com um microdurômetro HMV 2000 (Shimadzu Japão. Cinco penetrações foram efetuadas em cada superfície (topo e base totalizando 10 penetrações para cada corpo de prova. A análise estatística dos resultados realizada por meio do teste de ANOVA não apresentou diferenças significativas entre os tipos de ponta condutora de luz nas superfícies avaliadas. A análise estatística demonstrou diferença significativa nos valores médios de microdureza superficial entre as superfícies de topo e de base, para ambas as ponteiras. Com base nos resultados obtidos, foi possível concluir que as ponteiras de luz não interferem na microdureza da resina composta, e que ambas apresentaram diferenças estatisticamente significativas nos valores de microdureza das superfícies topo e base.The aim of this study is to evaluate the influence of the light-curing tips on the microhardness of a micro-hybrid composite resin. Fourteen samples of Opallis (FGM composite resin with 5 x 2 mm were prepared. The specimens were divided into two groups according to the light-curing tips from a halogen light curing unit (Optilight Plus -GNATUS/300 mW.cm-2: GI - optical fiber light-curing; GII - polymer light-curing. After 24 hours, the microhardness measurements were determined using the HMV 2000 (Shimadzu Japan. Five measurements were made on each surface (top and bottom totalizing 10 indentations for each sample. Statistical analysis

  13. Microstructure and temperature dependence of the microhardness of W–4V–1La{sub 2}O{sub 3} and W–4Ti–1La{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Savoini, B., E-mail: begona.savoini@uc3m.es; Martínez, J.; Muñoz, A.; Monge, M.A.; Pareja, R.

    2013-11-15

    W–4V–1La{sub 2}O{sub 3} and W–4Ti–1La{sub 2}O{sub 3} (wt.%) alloys have been produced by mechanical alloying and subsequent hot isostatic pressing. Electron microscopy observations revealed that these alloys exhibit a submicron grain structure with a dispersion of La oxide nanoparticles. Large V or Ti pools with martensitic characteristics are found segregated in the interstices between the W particles of the respective alloys. Microhardness tests were carried out over the temperature range 300–1073 K in vacuum. The microhardness–temperature curve for W–4V–1La{sub 2}O{sub 3} exhibited the expected decreasing trend with increasing temperature although the microhardness stayed constant between ∼473 and 773 K. The W–4Ti–1La{sub 2}O{sub 3} presented quite different temperature dependence with an anomalous microhardness increase for temperatures above ∼473 K.

  14. Investigation of Microstructure and Microhardness in Self-Reacting Friction Stir Welded AA2014-T6 and AA2219-T87

    Science.gov (United States)

    Horton, K. Renee; McGill, Preston; Barkey, Mark

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.

  15. Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature

    Directory of Open Access Journals (Sweden)

    Pedro Henrique R. Pereira

    2017-10-01

    Full Text Available An Al–3% Mg–0.2% Sc alloy was solution treated and processed through 10 turns of high-pressure torsion (HPT at 450 K. Afterwards, the HPT-processed alloy was annealed for 1 h at temperatures ranging from 423 to 773 K and its mechanical properties and microstructural evolution were examined using microhardness measurements and electron backscattered diffraction (EBSD analysis. The results demonstrate that HPT processing at an elevated temperature leads to a more uniform microhardness distribution and to an early saturation in the hardness values in the Al alloy compared with high-pressure torsion at room temperature. In addition, detailed EBSD analysis conducted on the HPT-processed samples immediately after annealing revealed that the Al–Mg–Sc alloy subjected to HPT processing at 450 K exhibits superior thermal stability by comparison with the same material subjected to HPT at 300 K. Keywords: Aluminium alloys, Hall–Petch relationship, Hardness, High-pressure torsion, Severe plastic deformation, Thermal stability

  16. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    International Nuclear Information System (INIS)

    Rathika, A.; Prasad, L. Guru; Raman, R. Ganapathi

    2016-01-01

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  17. Production and characterization of a Fe-Ni alloy by aqueous coloidal processing and solid state reaction; Producao e caracterizacao de uma liga Fe-Ni obtida por processamento coloidal aquoso e reacao de estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Junior, Luiz Eloi; Rodrigues Neto, Joao Batista; Klein, AloIsio Nelmo; Hotza, Dachamir, E-mail: eloi_junior@hotmail.com, E-mail: jbrn.ufsc@gmail.com, E-mail: a.n.klein@ufsc.br, E-mail: d.hotza@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, (Brazil); Moreno, Rodrigo, E-mail: rmoreno@icv.csic.es [Instituto de Ceramica y Vidrio (ICV/CSIC), Madri (Spain)

    2016-10-15

    Colloidal processing is a widely used technique to produce ceramic components. Several papers have been published in the last decade presenting the possibility to obtain aqueous concentrate stable suspension of metallic particles from their pH control and using dispersants. This paper aims to study the production of a steel with austenitic microstructure using elemental iron (Fe) and nickel (Ni) powders via colloidal route. For this, Zeta potential measurements were performed between pH 2 and 12 to Fe30Ni wt% composition. Aqueous suspensions reached solids concentrations of up to 45% v/v and processed by slip casting. The compacts were characterized by density (Archimedes), differential thermal analysis (DTA) and dilatometry. After sintering at 900°C to 1100°C/1h, the sintered bodies presented a microstructure with of annealing twins, porosity less than 10 %v/v approximate Vickers microhardness of 160 HV. (author)

  18. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  19. Fracture toughness of borides formed on boronized ductile iron

    International Nuclear Information System (INIS)

    Sen, Ugur; Sen, Saduman; Koksal, Sakip; Yilmaz, Fevzi

    2005-01-01

    In this study, fracture toughness properties of boronized ductile iron were investigated. Boronizing was realized in a salt bath consisting of borax, boric acid and ferro-silicon. Boronizing heat treatment was carried out between 850 and 950 deg. C under the atmospheric pressure for 2-8 h. Borides e.g. FeB, Fe 2 B formed on ductile iron was verified by X-ray diffraction (XRD) analysis, SEM and optical microscope. Experimental results revealed that longer boronizing time resulted in thicker boride layers. Optical microscope cross-sectional observation of borided layers showed dentricular morphology. Both microhardness and fracture toughness of borided surfaces were measured via Vickers indenter. The harnesses of borides formed on the ductile iron were in the range of 1160-2140 HV 0.1 and fracture toughness were in the range of 2.19-4.47 MPa m 1/2 depending on boronizing time and temperature

  20. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rathika, A. [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India); Prasad, L. Guru [Departemnt of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Raman, R. Ganapathi, E-mail: ganapathiraman83@gmail.com [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India)

    2016-03-15

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  1. Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure

    International Nuclear Information System (INIS)

    Xu Cheng; Xia Kenong; Langdon, Terence G.

    2009-01-01

    Experiments were conducted on the magnesium AZ31 alloy to evaluate the significance of conducting equal-channel angular pressing (ECAP) with a back-pressure. Following processing by ECAP, the values of the Vickers microhardness were recorded on the cross-sectional planes and microstructural observations were undertaken using transmission electron microscopy. The results show an increase in the hardness in the first pass with significant microstructural inhomogeneity and a transition towards a more homogeneous structure with subsequent passes. The grain size was measured as ∼0.9 μm after 8 passes. A comparison with published data on the same alloy processed by ECAP without a back-pressure suggests several advantages in incorporating a back-pressure into ECAP. These advantages include the ability to achieve greater grain refinement, a potential for pressing at lower temperatures and the development of a more rapid evolution towards a homogeneous microstructure.

  2. Influence of N{sub 2} partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N{sub 2} vacuum arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M., E-mail: ascientific24@aec.org.sy [Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus (Syrian Arab Republic); Abdallah, B. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Department of Chemistry, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); A-Kharroub, M. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2016-08-15

    The influence of N{sub 2} partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N{sub 2} + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N{sub 2} partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N{sub 2} partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N{sub 2} partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N{sub 2} partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N{sub 2} partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N{sub 2} partial pressure.

  3. Effect of Multipath Laser Shock Processing on Microhardness, Surface Roughness, and Wear Resistance of 2024-T3 Al Alloy

    Directory of Open Access Journals (Sweden)

    Abdulhadi Kadhim

    2014-01-01

    Full Text Available Laser shock processing (LSP is an innovative surface treatment technique with high peak power, short pulse, and cold hardening for strengthening metal materials. LSP is based on the application of a high intensity pulsed laser beam (I>1 GW/cm2;  t<50 ns at the interface between the metallic target and the surrounding medium (a transparent confining material, normally water forcing a sudden vaporization of the metallic surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The shock wave induces plastic deformation and a residual stress distribution in the target material. In this paper we study the increase of microhardness and surface roughness with the increase of laser pulse energy in 2024-T3 Al alloy. The influence of the thickness of the confining layer (water on microhardness and surface roughness is also studied. In addition, the effect of LSP treatment with best conditions on wear behaviors of the alloy was investigated.

  4. Effect of Post Heat Treatment on the Microstructure and Microhardness of Friction Stir Processed NiAl Bronze (NAB Alloy

    Directory of Open Access Journals (Sweden)

    Yuting Lv

    2015-09-01

    Full Text Available NiAl bronze (NAB alloy is prepared by using friction stir processing (FSP technique at a tool rotation rate of 1200 rpm and a traverse speed of 150 mm/min. A post heat treatment is performed at the temperature of 675 °C. The effect of heat treatment on the microstructure and microhardness is studied. The results show that the microstructure of the FSP NAB alloy consists of high density dislocations, retained β phase (β′ phase and recrystallized grains. When annealed at 675 °C, discontinuous static recrystallization (DSRX takes place. The content of β′ phase gradually decreases and fine κ phase is precipitated. After annealing for 2 h, both the microhardness of the FSP sample in the stir zone (SZ and the difference in hardness between the SZ and base metal decrease due to the reduction of the dislocation density and β′ phase, accompanying recrystallized grain coarsening. With further increasing of the annealing time to 4 h, the aforementioned difference in hardness nearly disappears.

  5. Microstructural and mechanical development and characterization of glass ionomer cements; Desenvolvimento e caracterizacao microestrutural e mecanica de cimentos de ionomero de vidro

    Energy Technology Data Exchange (ETDEWEB)

    Freire, W.P.; Barbosa, R.C.; Castanha, E.M.M.; Barbosa, E. F.; Fook, M.V.L., E-mail: waldeniafreire@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Ciencias e Engenharia de Materiais

    2013-07-01

    Glass Ionomer Cements (GICs) are widely used in dentistry, indicated as a restorative material, cement for orthopedic and dental prostheses. However, there is need for development of new bone cements as alternative or replacement to current polymethylmethacrylate cements. Thus the aim of this research was develop of an experimental GIC and the mechanical and microstructural characterization of this composite; as a control group it was used a commercial GIC called Vidrion R (SS WHITE). These composites were characterized by X-ray diffraction, Infrared Spectroscopy Fourier Transform and Scanning Electron Microscopy. The mechanical properties of the composites were measured by Vickers microhardness testing, flexural strength and compression. These cements were characterized as a semicrystalline; in FTIR spectra observed characteristic bands of these materials and microstructural studies of experimental GIC revealed that there was no proper interaction of the inorganic particles in the polymer matrix, whereas in the control group this interaction was effective resulting in greater homogeneity among its constituent phases. Experimental cement showed a higher value of microhardness in the control group, however, flexural strength of cement experimental cement was lower than the control group, and this behavior can possibly be attributed to inadequate interaction particle / matrix. In tests of compressive strength, experimental GIC showed resistance similar to that shown for control group after variation in the processing conditions of the material. (author)

  6. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  7. Changes in surface characteristics of two different resin composites after 1 year water storage: An SEM and AFM study.

    Science.gov (United States)

    Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa

    2016-11-01

    To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  8. Micromechanical properties of C70 single crystals in the temperature range 77-350 K

    International Nuclear Information System (INIS)

    Lubenets, S.V.; Natsik, V.D.; Fomenko, L.S.; Rusakova, A.V.; Natsik, V.D.; Osip'yan, Yu.A.; Orlov, V.I.; Sidorov, N.S.; Izotov, A.N.

    2012-01-01

    Hexagonal single crystals of C 70 up to a size down to 1-2 mm were grown which allowed for the first time to investigate their low-temperature mechanical properties. Morphology, microplasticity anisotropy and the temperature dependence of Vickers microhardness HV (T) of the C 70 crystals in the temperature range 77-350 K involving all known phase transitions have been studied with the aid of optical microscopy and microindentation. The association of the features of HV (T) dependence with orientation phase transformations has been analyzed. It is suggested that anisotropy of microplasticity in the C 70 crystals correlates with the active slip systems.

  9. Mechanical and microstructural characterization of aluminum reinforced with carbon-coated silver nanoparticles

    International Nuclear Information System (INIS)

    Martinez-Sanchez, R.; Reyes-Gasga, J.; Caudillo, R.; Garcia-Gutierrez, D.I.; Marquez-Lucero, A.; Estrada-Guel, I.; Mendoza-Ruiz, D.C.; Jose Yacaman, M.

    2007-01-01

    Composites of pure aluminum with carbon-coated silver nanoparticles (Ag-C NP) of 10 nm in size were prepared by the mechanical milling process. Transmission electron microscopy showed that the Ag-C NP are homogeneously dispersed into the Al matrix, silver nanoparticles do not coalesce, grow or dissolve in the aluminum matrix due the carbon shell. The values of yield strength (σ y ), maximum strength (σ max ) and micro-hardness Vickers (HVN) of the composites were evaluated and reported as a function of Ag-C NP content. It has been found that the introduction of this type of particles in aluminum strengthen it, increasing all the previous parameters

  10. Comparative Study of API 5L X60 and ASTM 572 Gr50 Steel Exposed to Crude Oil and Seawater

    Directory of Open Access Journals (Sweden)

    Marcy Viviana Chiquillo Márquez

    2018-04-01

    Full Text Available In the petroleum industry, the biphasic conditions in storage and separation tanks allow that the material to remain exposed to two different environments, causing its deterioration. In this article, an evaluation is made of the corrosive behavior and Vickers microhardness (HV of two high strength low alloy (HSLA steels and how their surfaces are characterized. The ASTM 572 Gr50 steel showed a lower corrosion rate in all systems after being immersed for 720 and 1440 hours. Characterizing the surface by means of Scanning Electron Microscopy (SEM showed uniform and localized corrosion for the both steels, and revealed that the ASTM 572 Gr50 steel shows pitting corrosion in crude oil systems. The electrochemical results revealed that the corrosion potential of API X60 steel was more negative; however the ASTM 572 Gr50 steel had a higher current density and a lower polarization resistance when immersed in an oil/seawater mixture. It also observed that, after being immersed in the corrosive fluids, the microstructures of the steels were not modified and variations in their microhardness (HV were minute.

  11. Effect of impurities on microstructure and structural propertiesof the as-cast and treated Al-Zn alloys

    Directory of Open Access Journals (Sweden)

    Douniazed Lamrous

    2014-03-01

    Full Text Available The microstructure of two Al-Zn alloys (with 10 and 30 wt.%Zn content produced by melting in the high frequency induction furnace were investigated by means of scanning electron microscopy (SEM, energy dispersive X-ray (EDX spectroscopy, X-ray diffraction (XRD analysis and the microhardness tests. The results indicate that the presence of iron impurity causes the formation of eutectic (Al,Zn3Fe in both alloys. The presence of the silicon impurity results in the formation of the phase separation in the Al-10%Zn as-cast alloy. The columnar to equiaxed transition was produced only in the Al-30%Zn as-cast alloy. The Vickers microhardness is higher in the equiaxed zone than in the columnar to equiaxed transition (CET zone. The presence of iron causes intermetallic phase formation (Al, Fe, Si3,6Zn in the Al-30%Zn as-cast alloy enabling an increase in the lattice parameter. After a homogenization treatment, the microstructure of Al-Zn treated alloys consists only of α dendrites and stable eutectic phase.

  12. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  13. Systematic hardness measurements on some rare earth garnet ...

    Indian Academy of Sciences (India)

    Unknown

    Microhardness measurements were undertaken on twelve rare earth garnet crystals. In yttrium aluminium garnet and gadolinium ... syan (1997) has quoted a single value for Gd3Sc2Ga3O12. In the present study measurements have ... small and within the limits of experimental error. There- fore, where pure garnet crystals ...

  14. Influence of Post-Weld Heat Treatment on the Microstructure, Microhardness, and Toughness of a Weld Metal for Hot Bend

    Directory of Open Access Journals (Sweden)

    Xiu-Lin Han

    2016-03-01

    Full Text Available In this work, a weld metal in K65 pipeline steel pipe has been processed through self-designed post-weld heat treatments including reheating and tempering associated with hot bending. The microstructures and the corresponding toughness and microhardness of the weld metal subjected to the post-weld heat treatments have been investigated. Results show that with the increase in reheating temperature, austenite grain size increases and the main microstructures transition from fine polygonal ferrite (PF to granular bainitic ferrite (GB. The density of the high angle boundary decreases at higher reheating temperature, leading to a loss of impact toughness. Lots of martensite/austenite (M/A constituents are observed after reheating, and to a large extent transform into cementite after further tempering. At high reheating temperatures, the increased hardenability promotes the formation of large quantities of M/A constituents. After tempering, the cementite particles become denser and coarser, which considerably deteriorates the impact toughness. Additionally, microhardness has a good linear relation with the mean equivalent diameter of ferrite grain with a low boundary tolerance angle (2°−8°, which shows that the hardness is controlled by low misorientation grain boundaries for the weld metal.

  15. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  16. Modificación superficial de aceros y hierros fundidos mediante láser de Nd: YAG. // Steels and cast irons superficial modification by means of laser Nd: YAG.

    Directory of Open Access Journals (Sweden)

    R. Sagaró Z.

    2001-10-01

    Full Text Available Se presentan los resultados de los autores en el tratamiento térmico superficial con técnica láser (TTSL. Con el empleo deun láser de Nd: YAG se procedió al endurecimiento superficial de los aceros AISI 1045, W1, W112 y hierros fundidos detipo laminar y nodular. Los autores prestan atención a las rutas de endurecimiento superficial atendiendo a los parámetrosoperacionales del láser: potencia incidente en la zona de interacción (P y la velocidad de barrido del haz de láser (V. Deigual forma se establecen valoraciones acerca de las estructuras metalográficas obtenidas. En todos los casos se reportanvalores de microdureza Vickers que oscilan entre los 500-900 HV (incrementos de 3-4 veces respecto al substratooriginal. Los resultados obtenidos permiten establecer en todos los casos experimentados que el incremento de lavelocidad de barrido provocó una disminución de la profundidad de la capa endurecida. Las experiencias del TTSL en losaceros ensayados muestran una tendencia a la disminución de la profundidad del endurecimiento con el incremento delcontenido de carbono.Palabras claves: Endurecimiento superficial, parámetros de operación de láser., microdureza, profundidadde capa endurecida, de fallo, vibraciones.____________________________________________________________________________AbstractThis paper expose the experiences of researchers on the laser surface heat treatment. The hardening of AISI 1045, W1,W112 steels and cast irons flake and nodular was carried out by using a Nd: YAG laser. Operation parameters of laser, likebeam power (P and traverse speed of the laser spot (V are closely with hardening depth . Authors present some analysesabout metallographic studies. In all cases are reported Vickers microhardness about 500-900 HV (three or four times higherthan original substrates. Relations between microhardness and depth of hardening are presented for the processedmaterials. Experimental results showed that the increased

  17. Laser metal deposition of Ti6Al4V: A study on the effect of laser power on microstructure and microhardness

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available The effect of laser power on the resulting microstructure and microhardness of laser metal deposited Ti6Al4V powder on Ti6Al4V substrate has been investigated. The tracks were deposited using 99.6 % pure Ti6Al4V powder of particle size ranging...

  18. Microhardness evaluation alloys Hf-Si-B; Avaliacao de microdureza de ligas Hf-Si-B

    Energy Technology Data Exchange (ETDEWEB)

    Gigolotti, Joao Carlos Janio; Costa, Eliane Fernandes Brasil [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Rocha, Elisa Gombio; Coelho, Gilberto Carvalho, E-mail: carlosjanio@uol.com.br, E-mail: eliane-costabrasi@hotmail.com, E-mail: cnunes@demar.eel.usp.br, E-mail: elisarocha@alunos.eel.usp.br, E-mail: coelho@demar.eel.usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil)

    2014-08-15

    The technological advance has generated increasing demand for materials that can be used under high temperature, what includes intermetallic MR-Si-B (MR = refractory metal) alloys with multiphase structures, that can also be applied in oxide environments. Thus, this work had for objective the micro hardness study of the Hf-Si-B system alloys, heat treated at 1600 deg C, in the Hf rich region. Hf-Si-B alloys had been produced with blades of Hf (min. 99.8%), Si (min. 99.998%) and B (min. 99.5%), in the voltaic arc furnace and heat treated at 1600 deg C under argon atmosphere. The relationship of the phases had been previously identified by X-ray diffraction and contrast in backscattered electron imaging mode. The alloys had their hardness analyzed by method Vickers (micro hardness) with load of 0.05 kgf and 0.2 kgf and application time of 20 s. The results, obtained from the arithmetic mean of measurements for each alloy on the heterogeneous region, showed a mean hardness of 11.08 GPA, with small coefficient of variation of 3.8%. The borides HfB2 (19.34 GPa) e HfB - 11.76 GPa, showed the hardness higher than the silicides Hf2Si (8.57 GPa), Hf5Si3 (9.63 GPa), Hf3Si2 (11.66 GPa), Hf5Si4 (10.00 GPa), HfSi (10.02 GPa) e HfSi2 (8.61 GPa). (author)

  19. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  20. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al-Mg-Sc alloy plates

    International Nuclear Information System (INIS)

    Zhao, Juan; Jiang, Feng; Jian, Haigen; Wen, Kang; Jiang, Long; Chen, Xiaobo

    2010-01-01

    Al-Mg-Sc alloy plates were welded by FSW and TIG welding. The effect of welding processes on mechanical properties of Al-Mg-Sc welded joints was analyzed based on optical microscopy, transmission electron microscopy, tensile testing and Vickers microhardness measurements. The results show that the mechanical properties of FSW welded joint are much better than those of TIG welded joint; the strength coefficient of FSW joint is up to 94%. Moreover, tensile strength and yield strength of FSW joint are 19% and 31% higher than those of TIG joint, respectively, which are attributed to the preservation of cold working microstructures in the process of FSW. Due to the low welding temperature during FSW process and the excellent thermal stability of Al 3 (Sc, Zr) particles, the cold working microstructures can be well preserved. In addition, the FSW joint have asymmetric microstructures and mechanical properties, which are not observed in TIG welded joint.

  1. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Science.gov (United States)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  2. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Directory of Open Access Journals (Sweden)

    Jianbing Meng

    2014-02-01

    Full Text Available Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM, a Fourier-transform infrared spectrophotometer (FTIR, an X-ray diffractometer (XRD, an optical contact angle meter, a digital Vickers micro-hardness (Hv tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  3. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2014-03-15

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  4. Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites

    International Nuclear Information System (INIS)

    Mula, Suhrit; Pabi, S.K.; Koch, Carl C; Padhi, P.; Ghosh, S.

    2012-01-01

    Workability and mechanical properties of the ultrasonically cast Al–X wt% Al 2 O 3 (X=2, 3.57 and 4.69) metal matrix nanocomposites were reported in the present investigation. The Al–Al 2 O 3 (average size ∼10 nm) composites showed maximum reduction ratios of 2, 1.75 and 1.41 at room temperature, and 8, 7 and 6 at 300 °C. The elastic modulus, nanoindentation hardness, microhardness and Vickers hardness were measured on the as-cast, cold and hot rolled specimens. The tensile properties were also evaluated for the as-cast composites for different wt% of reinforcement. The microstructural examination was done by optical, scanning and transmission electron microscopy. The strength and workability of the nanocomposites were discussed in the light of dislocation/particle interaction, particle size and its concentration, inter-particle spacing and working temperature. 2 wt% of Al 2 O 3 reinforcement showed better combination of workability and mechanical properties possibly due to better distribution of particulates in the matrix.

  5. Effect of using the double layer technique on the microstructure, microhardness and residual stress of welded ASTM A516 GR70 structural steel

    International Nuclear Information System (INIS)

    Oliveira, George Luiz Gomes de; Miranda, Helio Cordeiro de

    2010-01-01

    The aim of this work is to evaluate the effect of using the double layer technique on the microstructure, microhardness and residual stresses of welded ASTM A516 Gr70 structural steel. Samples were welded with the same welding parameters and two types of chamfers, while the samples welded using the double layer technique underwent a buttering process on their chamfer face. Residual stress measurement was accomplished through x-ray diffraction, using a mini diffractometer for measurement in field. Metallographic analysis was accomplished in the transverse section of the welded joint, using optic microscopy and scanning electron microscopy. The double layer technique showed that can be used in the welding of ASTM A516 Gr70 steel, because, besides promote a refinement and a drawing back of the CG-HAZ, it increased compressive residual stress in the whole surface of the analyzed samples.(author)

  6. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  7. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  8. Structure and microhardness of alloy VT22 granules additionally doped with carbon and boron

    International Nuclear Information System (INIS)

    Sysoeva, N.V.; Polyakova, I.G.; Karpova, I.G.

    1996-01-01

    Aimed to improve heat resistance and strength of titanium base alloys due to carbon and boron additions (up to 0.3%) a study was made into regularities of phase decomposition in VT22 alloy during its rapid quenching from a liquid state on manufacturing granules 100-400 μm in size. Cooling rates on quenching were found to be sufficiently high to prevent precipitating carbides and borides. Subsequent annealing of granules promotes homogeneous precipitation of strengthening phases in the form of titanium carbides and borides, a reasonable amount of carbon and boron remaining in solid solution. An increase in microhardness of annealed granules reaches 20-25% compared to the standard alloy. 6 refs.; 2 figs.; 2 tabs

  9. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    Science.gov (United States)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  10. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  11. Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel

    International Nuclear Information System (INIS)

    Ding, H.L.; Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    Graphical abstract: TEM images of microstructure for 14%Cr-ODS ferritic steel annealed for 2 h at different temperatures: (a) 600 °C, (b) 800 °C, (c) 950 °C, and (d) 1150 °C, and the evolution trends of coercivity field (H_C) and Vickers microhardness for samples annealed at above temperatures for 2 h and 50 h. - Highlights: • The thermal stability of annealed 14%Cr-ODS ferritic steel was investigated. • The particle size keeps fairly constant with increasing annealing temperature. • The grain size is still 2–4 μm even after annealing for 50 h at 1150 °C. • The hardness and H_C are almost unchanged after annealing from 800 °C to 1150 °C. - Abstract: The microstructure and magnetic properties of the 14%Cr oxide dispersion strengthened (ODS) ferritic steel fabricated by sol–gel and HIP method were investigated by annealing in vacuum for 2 h (at 300, 600, 800, 950 and 1150 °C) and 50 h (at 600, 800, 950 and 1150 °C). Microstructure analysis shows that as the annealing temperature increases, the size of oxide nanoparticles becomes smaller and their dispersion in matrix becomes more homogeneous. Grain size remains stable when the annealing temperature is below 800 °C, while above 800 °C, grain size grows with the increasing annealing temperature and time. The Vickers microhardness and coercivity (H_C) display almost similar evolution trend with annealing temperature for 2 h and 50 h. No obvious recrystallization appears after 1150 °C annealing, which indicates the high microstructural stability of 14%Cr-ODS ferritic steel. The possible mechanism for above behaviors is discussed in this paper.

  12. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    Science.gov (United States)

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  13. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Marcio W.D., E-mail: mwdmendes@ipen.com; Ágreda, Carola G.; Bressiani, Ana H.A.; Bressiani, José C.

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti–27Nb–13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for > 3 days in the SBF solution. - Highlights: • The alloy is classified as α + β and the milling time influences the formation of these phases. • Dissolution of Nb is related to the mechanical properties of the alloy. • It's possible to form apatite on all samples immersed in SBF from 3 days. • The alloy can be used in orthopedic applications or in dental applications.

  14. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  15. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    Souza, Kellie Provazi de

    2006-01-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO 4 ) 2 (NH 4 ) 2 .6H 2 O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl 3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  16. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium; A influencia do ferro e do oxido de cerio sobre a condutividade eletrica e a resistencia a corrosao do aluminio anodizado

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Kellie Provazi de

    2006-07-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO{sub 4}){sub 2}(NH{sub 4}){sub 2}.6H{sub 2}O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl{sub 3} composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  17. Investigations on growth morphology, bulk growth and crystalline perfection of L-threonine, an organic nonlinear optical material

    International Nuclear Information System (INIS)

    Linet, J. Mary; Das, S. Jerome

    2010-01-01

    L-threonine single crystal was successfully grown from aqueous solution. The morphology of the grown crystal was compared with the predicted morphology using Bravais-Friedel-Donnay-Harker law and was found to be in good agreement with the predicted morphology. Good optical quality bulk single crystal of enhanced size has been grown using unidirectional crystal growth method. High-resolution X-ray analysis study resulted in a rocking curve with a full width half maximum of 20 arc sec exhibiting the good crystalline quality of the grown crystal. The optical transmission study shows 90% of transmission in the entire visible region that exhibits the good optical quality of the grown crystal. The mechanical properties were analyzed by Vicker's microhardness method.

  18. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  19. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  20. Ni/TiO2 composite electrocoatings

    Directory of Open Access Journals (Sweden)

    Kollia, C.

    2005-12-01

    Full Text Available Nickel composite coatings have been studied in order to provide increased properties on engineering materials surfaces, such as higher electrical conductivity, wear and corrosion resistance and to decrease the end product manufacturing cost by plating on cheap materials. Adding TiO2 particles in the bath during the deposition process produced composite coatings. This was tried on electrodeposition from a Watts bath by conventional DC conditions and by pulse plating. The surfaces were studied by SEM, by profilometry and by Vickers microhardness, and its structure by X-ray diffraction. The incorporation percentage of TiO2 particles in the metallic matrix was estimated by EDS analysis. Corrosion measurements of the deposits were taken by Tafel curves. The results obtained show that particle incorporation percentage is higher for the Ni/TiO2 electrodeposits produced by pulse current and the microhardness is significantly increased compared to the electrodeposits produced by DC.

    Los electrodepósitos compuestos de níquel confieren mejores propiedades a la superficies de los materiales utilizados en ingeniería, tales como conductividad eléctrica, desgaste y resistencia a la corrosión, y disminuyen el costo del producto manufacturado al utilizarse como recubrimiento de acabado sobre materiales base más económicos. La adición de partículas de TiO2 al baño durante la electrodeposicion da lugar a la formación de recubrimientos compuestos. La electrodeposicion se llevó cabo en un baño Watts en condiciones convencionales de corriente continua y por electrodepósito pulsante. Las superficies fueron estudiadas por SEM y microanálisis EDS; se midió su microrrugosidad y microdureza Vickers; y su estructura se analizó mediante Difracción de Rayos X. Las medidas de corrosión de los depósitos se realizaron a partir del trazado de curvas de Tafel. Los resultados muestran que el porcentaje de

  1. Study of Chromium Multilayers Properties Obtained by Pulsed Current Density: Residual Stress and Microhardness

    Directory of Open Access Journals (Sweden)

    Julieta TORRES-GONZÁLEZ

    2010-12-01

    Full Text Available Chromium multilayers deposits were obtained from three different bath solutions, they were prepared by switching current density between 10 and 70 Adm-2. Two temperatures were studied, 35°C and 55°C. At 35°C two different microstructures are alternated: columnar obtained at 10 Adm-2 and equiaxial obtained at 70 Adm-2. At 55°C only the columnar type microstructure is present, at 10 and 70 Adm-2, the only difference among the layers is a slight disorientation of grains. The properties of these chromium multilayers were characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD. In general the deposits are microcracked with a high microhardness, high residual stress and a small grain size.

  2. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  3. Does the contact time of alginate with plaster cast influence its properties?

    Directory of Open Access Journals (Sweden)

    Mariana Marquezan

    2012-06-01

    Full Text Available The aim of this study was to verify the influence of the time of contact between alginate and gypsum after the modeling procedure on the properties of the plaster cast, such as surface detail, dimensional stability and microhardness. Thirty cylindrical specimens of orthodontic gypsum Type III were made by means of impressions of a stainless steel master model which had five reference lines in the upper surface. The samples were divided into two groups: Group 1 (G1 - with time of contact of 1 hour; and Group 2 (G2 - 12 hours of contact. All the specimens were stored up to 48 hours until they underwent laboratory testing. Surface detail and dimensional stability were tested by one calibrated examiner using a visual analysis and a profilometer (Profile Projector Nikon model 6C, Nikon Corporation, Tokyo, Japan, respectively, to evaluate the quality of reproduction of the lines and the distances between them. The microhardness was determined for each sample by making six indentations with a Vickers diamond pyramid indenter (Buehler, Lake Bluff, USA under a load of 100 gF for 15 s. The results showed significant difference (P £ 0.05 between groups in two of the three properties examined: surface detail and microhardness, which decreased as the time of contact rose. The 12-hour time of contact between alginate and the plaster cast is not recommended because it influences the quality of the plaster cast.

  4. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  5. The comparison of the effects of different whitening toothpastes on the micro hardness of a nano hybrid composite resin.

    Science.gov (United States)

    Nainan, Mohan Thomas; Balan, Ashok Kalappurakkal; Sharma, Roshni; Thomas, Sabeena Susan; Deveerappa, Santhosh B

    2014-11-01

    The aim of this study was to compare the micro hardness of a nanohybrid composite resin after brushing with two herbal and one non-herbal whitening toothpastes. We divided Eighty disk-shaped specimens of a nanohybrid composite (Tetric N Ceram, Ivoclar Vivadent, Asia) into 4 groups of 20 specimens each: Groups A, B, C, and D. Group A was control, Group B was brushed with Colgate total advanced whitening (Colgate-Palmolive (India) Limited), Group C with Salt and Lemon, Dabur (Dabur International Limited, Dubai, UAE), and Group D with HiOra Shine, Himalaya (The Himalaya Drug Company, India). The specimens were polished using medium, fine, and superfine discs (Sof-lex, 3M, ESPE, USA) and subsequently placed at 37°C in distilled water. They were brushed for 2 minutes twice daily with a soft motorized toothbrush (Colgate 360 sonic power battery-operated tooth brush, Colgate Palmolive, India) for 30 days. The samples were rinsed under running water to remove the toothpaste and stored in distilled water at 37°C until the readout was taken on the Vickers's hardness tester for microhardness. The results revealed that the difference among the groups was statistically significant (P < 0.001). Tukey's test showed that reduction in microhardness for Group B was significantly higher than that for Group C and Group D (P < 0.001). Within the limitations of this study, non-herbal whitening toothpaste had a greater impact on the microhardness of nanohybrid resin composite than herbal whitening toothpastes.

  6. Influence of ZrB2 addition on microstructural development and microhardness of Ti-SiC clad coatings on Ti6Al4V substrate

    CSIR Research Space (South Africa)

    Farotade, GA

    2017-08-01

    Full Text Available The microstructural features and microhardness of ZrB(sub2) reinforced Ti-SiC coatings on Ti-6Al-4V substrate were studied.The deposition of these coatings was achieved via laser cladding technique. A 4.0 KW fiber delivered Nd: YAG laser was used...

  7. Investigation of microstructure and mechanical properties of phosphocalcic bone substitute using the chemical wet method

    Science.gov (United States)

    Alimi, Latifa; Bahloul, Lynda; Azzi, Afef; Guerfi, Souad; Ismail, Fadhel; Chaoui, Kamel

    2018-05-01

    Selection of calcium phosphate base materials in reconstructive bone surgery is justified by the surprising similarities in chemical compositions with human bones. The closest to natural apatite material is the hydroxyapatite (HAp) which has a chemical composition based on calcium and phosphate (Ca10(PO4)6(OH)2). In this study, HAp is synthesized using the wet precipitation method from hydrated calcium chloride (CaCl2,12H2O) and di-sodium hydrogen phosphate di-hydrate (HNa2PO4,2H2O). The powder is calcinated at 900°C and 1200°C in order to compare with sintered condition at 1150°C. Vickers microhardness tests and X-ray diffraction analyzes are used for the characterization of the crystalline material. Mechanical properties (Hv, σe, σr, and KC) and the degree of crystallinity (Xc) are discussed according to heat treatment temperatures. Results indicate that heat treating the powder at 1200°C increased crystallinity up to 72%. At the same time, microhardness increased with temperature and even outmatched the sintered case at 1150°C. Fracture toughness is ameliorated with increasing heat treatment temperature by more than two folds.

  8. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    Science.gov (United States)

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  9. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    Science.gov (United States)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  10. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  11. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sinhmar, S., E-mail: sinhmarsunil88@gmail.com; Dwivedi, D.K.

    2017-01-27

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  12. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    International Nuclear Information System (INIS)

    Sinhmar, S.; Dwivedi, D.K.

    2017-01-01

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  13. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  14. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  15. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions.

    Science.gov (United States)

    Ryniewicz, Anna M; Bojko, Łukasz; Ryniewicz, Wojciech I

    2016-01-01

    The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp - grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young's modulus value, were measured with the Oliver and Pharr method. Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young's modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.

  16. Effect of Er,Cr:YSGG laser irradiation on bovine enamel surface during in-office tooth bleaching ex vivo.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Strakas, Dimitrios; Koliniotou-Koumpia, Eugenia; Koumpia, Effimia

    2017-07-01

    The aim of this in vitro study was to evaluate the effect of using Er,Cr:YSGG laser during in-office tooth bleaching on bovine enamel surface to evaluate the safety of this therapy on tooth tissues. Thirty-six enamel specimens were prepared from bovine incisors and divided into three groups: Group 1 specimens (control) received no bleaching treatment; Group 2 received a conventional in-office bleaching treatment (40 % H 2 O 2 ); Group 3 received laser-assisted bleaching procedure (40 % H 2 O 2 ) utilizing an Er,Cr:YSGG laser. The specimens were stored for 10 days after the bleaching treatment in artificial saliva. Vickers hardness was determined using a microhardness tester, and measurements for surface roughness were done using a VSI microscope. Three specimens for each experimental group were examined under SEM and mineral composition of the specimens was evaluated using EDS. Data were statistically analyzed using one-way ANOVA, Tukey's post hoc, Wilcoxon signed rank and Kruskal-Wallis tests (a = 0.05). The Vickers hardness of the enamel was reduced after in-office bleaching procedures (p  0.05), and no changes in mineral composition of the enamel were detected after in-office bleaching procedures (p > 0.05). The laser-assisted bleaching treatment with Er,Cr:YSGG laser did not influence the enamel surface compared to the conventional bleaching technique. The safety of the use of Er,Cr:YSGG laser during in-office tooth bleaching regarding the surface properties of the enamel was confirmed under in vitro conditions.

  17. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites

    Directory of Open Access Journals (Sweden)

    Jose Augusto RODRIGUES

    2017-08-01

    Full Text Available Abstract The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow–U (SDR, Tetric EvoCeram Bulk Fill-IVA (TEC or Esthet-X HD–B1 (EHD, and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB at the bottom of specimen stacks. Vickers hardness (VH was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  18. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites.

    Science.gov (United States)

    Rodrigues, Jose Augusto; Tenorio, Ilana Pais; Mello, Ginger Baranhuk Rabello de; Reis, André Figueiredo; Shen, Chiayi; Roulet, Jean-François

    2017-08-21

    The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow-U (SDR), Tetric EvoCeram Bulk Fill-IVA (TEC) or Esthet-X HD-B1 (EHD), and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB) at the bottom of specimen stacks. Vickers hardness (VH) was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β)] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  19. The effects of barium sufate and iodide compound on the characteristics of dental acrylic resins

    International Nuclear Information System (INIS)

    Lee, Yong Keun; Lee, Keon Il; Jung, Sung Woo

    1996-01-01

    Aspiratin or swallowing foreign bodies is a common occurrence. If they are wholly or partly radiopaque, their localization in and progress through the gastrointestinal tract can be more effective. Of the dental origin foreign materials swallowed, the most common things are fragments of anterior maxillary partial denture. But the radiopacity of denture base resins is not sufficient to determine the location of the objects. The purpose of this study was to develop a radiopaque dental acrylic resin, which has clinically detectable radiopacity with minimal change of mechanical properties and color. the radiopacity, color change (CIE E) and microhardness of acrylic resins were determined after mixing barium sulfate or iolide compound. Thermocycling course was conducted to deter mine the change of characteristic of resins after using for a long time I the mouth. Five or ten percent of barium sulfa te to total weight of cured material was mixed with heat curing dental acrylic resin or chemically curing orthodontic re sin. In the case of iodide compound, the mixing ratio was two or three percent. After mixing the high radiopaque material s, resin was cured to 20X20X2 mm plate, polished with 600 sand paper and finally polished with Microcloth (Buehler). T he specimens were thermocycled in 5 and 55 degree distilled water for 2,000 times, and the measurement of radiopacity, color and Vickers hardness was repeated every 500 times thermocycling. The radiopacity of specimens on the X-ray films was measured with densitometer (X-rite). The color change was determined with differential colorimeter (Model TC-6FX, Tokyo Denshoku), and the Vickers hardness number was measured with microhardness tester (Mitsuzawa). The following results were obtained : 1. All the three variables, the kinds of acrylic resins, the mixing or the kinds radiopaque materials and thermocycling , had combined effect on the radiopacity of the dental acrylic resins (p<0.01). 2. The two variables, the mixing or

  20. The effects of barium sufate and iodide compound on the characteristics of dental acrylic resins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Keun; Lee, Keon Il; Jung, Sung Woo [Dept. of Oral Radiology, College of Dentistry, Wonkwang University, Iksan(Korea, Republic of)

    1996-08-15

    Aspiratin or swallowing foreign bodies is a common occurrence. If they are wholly or partly radiopaque, their localization in and progress through the gastrointestinal tract can be more effective. Of the dental origin foreign materials swallowed, the most common things are fragments of anterior maxillary partial denture. But the radiopacity of denture base resins is not sufficient to determine the location of the objects. The purpose of this study was to develop a radiopaque dental acrylic resin, which has clinically detectable radiopacity with minimal change of mechanical properties and color. the radiopacity, color change (CIE E) and microhardness of acrylic resins were determined after mixing barium sulfate or iolide compound. Thermocycling course was conducted to deter mine the change of characteristic of resins after using for a long time I the mouth. Five or ten percent of barium sulfa te to total weight of cured material was mixed with heat curing dental acrylic resin or chemically curing orthodontic re sin. In the case of iodide compound, the mixing ratio was two or three percent. After mixing the high radiopaque material s, resin was cured to 20X20X2 mm plate, polished with 600 sand paper and finally polished with Microcloth (Buehler). T he specimens were thermocycled in 5 and 55 degree distilled water for 2,000 times, and the measurement of radiopacity, color and Vickers hardness was repeated every 500 times thermocycling. The radiopacity of specimens on the X-ray films was measured with densitometer (X-rite). The color change was determined with differential colorimeter (Model TC-6FX, Tokyo Denshoku), and the Vickers hardness number was measured with microhardness tester (Mitsuzawa). The following results were obtained : 1. All the three variables, the kinds of acrylic resins, the mixing or the kinds radiopaque materials and thermocycling , had combined effect on the radiopacity of the dental acrylic resins (p<0.01). 2. The two variables, the mixing or

  1. Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Livia Raquel C. Malheiros

    2015-01-01

    Full Text Available High-pressure torsion (HPT was used to impose severe plastic deformation on a magnesium alloy AZ31. The material was processed for 0.5, 1, 2, 3, 5 and 7 turns at room temperature under a pressure of 6.0 GPa. Samples were annealed for 1800 s at temperatures of 373 K, 423 K, 473 K, 573 K and 673 K. Microhardness tests and metallography were used to determine the evolution of strength and grain size as a function of the annealing temperature. The results show that recrystallization takes place at temperatures higher than 423 K. The annealing behavior is independent of the number of turns in HPT.

  2. Study of amorphous films of TiAlN prepared by reactive cathodic erosion by radiofrequencies; Estudio de peliculas amorfas de TiAlN preparadas por erosion catodica reactiva por radiofrecuencias

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, L. [Programa de Posgrado en Materiales del Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico); Morales H, J. [Programa de Posgrado en Ingenieria de la Facultad de Ingenieria de la Universidad Autonoma de Queretaro, (Mexico); Bartolo P, J.P.; Ceh S, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Merida, Km. 6 Antigua Carretera a Progreso, A.P. 73 Cordemex 97310 Merida, Yucatan (Mexico); Munoz S, J.; Espinoza B, F.J. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro, (Mexico)

    2004-07-01

    Using the reactive magnetron r f sputtering technique, we prepared TiAlN films with amorphous structure on Corning glass and steel substrates in a reactive atmosphere of nitrogen and argon using a target of Ti-AI (40/60 wt. %). The average temperature of the substrates was about 25 C, with the purpose of obtaining amorphous films. The ratio of partial pressure of nitrogen to argon, PN/PAr was varied according to these values: 0.14, 0.28, and 0.43; fixing these values during whole the evaporation. Further on, films were prepared introducing nitrogen in periodic pulses with maximum values of PN/PAr 4.7 during 45 seconds, with fixed periods of 10, 15 and 20 minutes. In all cases amorphous films were obtained, according to X-ray Diffraction. The chemical composition of the samples was measured by electron dispersive spectroscopy, showing a clear dependence with the evaporation conditions. In spite of the amorphous structure of the material, atomic force microscopy measurements showed a surface morphology dependent on the nitrogen content. Additionally, measurements of electronic spectroscopy for chemical analysis and Raman scattering spectroscopy for identification of chemical bonds were carried out. Measurements of mechanical properties of the samples were carried out using nano indentation and micro-hardness Vickers's tests. (Author)

  3. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  4. Synthesis, growth, structural, optical, thermal, dielectric and mechanical studies of an organic guanidinium p-nitrophenolate crystal

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Mohan, R.

    2014-08-01

    Guanidinium p-nitrophenolate (GUNP), a novel organic compound, was synthesized and crystals were grown from methanol solution by a slow evaporation solution growth technique. A single crystal X-ray diffraction study elucidated the crystal structure of GUNP belonging to the orthorhombic crystal system with space group Pnma. Thermal studies revealed that the GUNP crystal is thermally stable up to 192 °C. The lower cut-off wavelength of GUNP was found to be 505 nm by UV-vis-NIR spectral studies. The luminescence properties of the GUNP crystal were investigated. The three independent tensor coefficients ε11, ε22 and ε33 of the dielectric permittivity were calculated. The mechanical properties of the grown crystal were studied by Vickers' microhardness hardness technique.

  5. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1992-08-16 to 1992-10-21 (NODC Accession 0115003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115003 includes chemical, discrete sample, physical and profile data collected from JOHN V. VICKERS in the Bering Sea, North Pacific Ocean and South...

  6. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  7. Processing of a novel nano-structured ferritic steel via spark plasma sintering and investigation of its mechanical and microstructural characteristics

    International Nuclear Information System (INIS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.

    2015-01-01

    Nano-structured ferritic steels (NFSs) with 12-14 wt% Cr have attracted widespread interest for potential high temperature structural and fuel cladding applications in advanced nuclear reactors. They have excellent high temperature mechanical properties and high resistance to radiation-induced damage. The properties of the NFSs depend on the composition that mainly consists of Cr, Ti, W or Mo, and Y 2 O 3 as alloying constituents. In this study, a novel nano-structured ferritic steel (Fe-14Cr-1Ti-0.3Mo-0.5La 2 O 3 , wt%) termed as 14LMT was developed via high energy ball milling and spark plasma sintering. Vickers microhardness values were measured. Microstructural studies of the developed NFSs were performed by EBSD and TEM, which revealed a bimodal grain size distribution. A significant number density of nano-precipitates was observed in the microstructure. The diameter of the precipitates varied between 2-70 nm and the morphology from the spherical to faceted shape. The Cr-La-Ti-O-enriched nano-clusters were identified by APT studies. (authors)

  8. Growth, spectral, dielectric and antimicrobial studies on 4-piperidinium carboxylamide picrate crystals

    Science.gov (United States)

    Dhanabal, T.; Tharanitharan, V.; Amirthaganesan, G.; Dhandapani, M.

    2014-07-01

    Single crystal of 4-piperidinium carboxylamide picrate was grown by slow evaporation solution growth technique at ambient temperature. The average dimensions of grown crystal were 0.7 × 0.3 × 0.2 cm3. The solubility of the compound was analyzed using methanol and acetone. Optical property of the compound was ascertained by UV-visible absorption spectral study. The sharp and well defined Bragg peaks observed in the powder X-ray diffraction pattern confirm its crystallinity. The different kinds of protons and carbons in the compound were confirmed by 1H and 13C NMR spectral analyses. The presence of various functional groups in the compound was assigned through polarized Raman spectral study. The mechanical property of the crystal was measured by Vicker's microhardness test and the compound was found to be soft material. The dielectric constant and dielectric loss of the crystal decrease with increase in frequency. The antibacterial and antifungal activities of the crystal were studied by disc diffusion method and found that the compound shows good inhibition efficiency against various bacteria and fungi species.

  9. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    Science.gov (United States)

    Kumar, Amit; Mehta, Neeraj

    2017-06-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.

  10. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    International Nuclear Information System (INIS)

    Kumar, Amit; Mehta, Neeraj

    2017-01-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se_7_8_-_xTe_2_0Sn_2Cd_x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume (V_h), formation energy (E_h) of micro-voids in the glassy network and modulus of elasticity (E) have been determined and their variation with glass composition has been investigated. (orig.)

  11. Synthesis and physicochemical properties of bis(L-asparaginato) zinc(II): A promising new semiorganic crystal with high laser damage threshold for shorter wavelength generation

    Science.gov (United States)

    Subhashini, R.; Arjunan, S.

    2018-05-01

    An exceedingly apparent nonlinear semiorganic optical crystals of bis(L-asparaginato)zinc(II) [BLAZ], was synthesized by a traditional slow evaporation solution growth technique. The cell parameters were estimated from single crystal X-ray diffraction analysis. Spectroscopic study substantiates the presence of functional groups. The UV spectrum shows the sustenance of wide transparency window and several optical constants, such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data. The fluorescence emission spectrum of the crystal pronounces red emission. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser. The output intensity of second harmonic generation was estimated using the Kurtz and Perry powder method. The hardness stability was investigated by Vickers microhardness test. The decomposition and thermal stability of the compound were scrutinized by TGA-DSC studies. Dielectric studies were carried out to anatomize the electrical properties of the crystal. SEM analysis reveals the existence of minute crystallites on the growth surface.

  12. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    Science.gov (United States)

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Erosive effects of common beverages on extracted premolar teeth.

    Science.gov (United States)

    Seow, W K; Thong, K M

    2005-09-01

    Dental erosion is highly prevalent today, and acidic drinks are thought to be an important cause. The aim of the present investigation was to determine the erosive potential of a range of common beverages on extracted human teeth. The beverages were tested for their individual pHs using a pH meter. The clinical effects of the most erosive beverages were determined by the degree of etching and Vickers microhardness of enamel. The results showed that many common beverages have pHs sufficiently low to cause enamel erosion. Lime juice concentrate (pH 2.1) had the lowest pH, followed by Coca-cola and Pepsi (both with pH 2.3) and Lucozade (pH 2.5). The erosive potential of these beverages was demonstrated by the deep etching of the enamel after five minutes. The Vickers Hardness of enamel was reduced by about 50 per cent in the case of lime juice (p case of Coca-cola (p Coca-cola completely reversed the erosive effects on the enamel. Although only a few of the beverages with the lowest pHs were tested, the present study showed that the most acidic drinks had the greatest erosive effects on enamel. While saliva was protective against erosion, relatively large volumes were required to neutralize the acidity.

  14. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    2016-03-15

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage. In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.

  15. The remineralization potential of cocoa (Theobroma cacao bean extract to increase the enamel micro hardness

    Directory of Open Access Journals (Sweden)

    Sulistianingsih Sulistianingsih

    2017-08-01

    Full Text Available Introduction: Remineralization is the process of returning mineral ions into a hydroxyapatite structure characterized by mineral deposition on the enamel surface. The presence of mineral deposition would affect the micro hardness of tooth enamel. The use of fluorine as remineralization agent with side effects such as fluorosis. Cocoa bean extract contains theobromin that can be used as an alternative remineralization ingredients. The objectives was to determine micro hardness email after remineralization using cocoa bean extract as natural material and to compare with fluorine use as synthetic material. Methods: Thirty-six maxillary first premolar tooth crown was cut and planted in the epoxy resin. Teeth were then immersed in demineralization solution at pH 4 for 6 hours. The sample were divided into 2 groups, 18 for the fluorine group and the remaining group of cocoa extract. Vickers microhardness test was used before treatment, after demineralized and after remineralization. Results: Enamel microhardness value before treatment in the fluorine group average value was 376.17 VHN and the cocoa extract group was 357.33 VHN. After demineralization in fluorine group was 268,13 VHN and cocoa extract group was 235,93 VHN. After remineralization in fluorine group was 321,08 VHN and cocoa extract group was 293,86 VHN. The results of the analysis showed that the level of micro hardness email after remineralization was not significantly different in two groups (p > 0.05. Conclusions: Cocoa extract is able to increase the microhardness of enamel so it can act as a substitution for fluorine remineralization.

  16. Hardness and stability of a carburized surface layer on AISI 316L stainless steel after irradiation in a spallation neutron environment

    International Nuclear Information System (INIS)

    McClintock, David A.; Hyres, James W.; Vevera, Bradley J.

    2014-01-01

    The inner surfaces of mercury target vessels at the Spallation Neutron Source (SNS) experience material erosion caused by proton-beam induced cavitation of the liquid mercury. One approach developed and deployed to inhibit erosion of the target vessel material was surface hardening via a proprietary low-temperature carburization treatment, called Kolsterising®, to the target surfaces most susceptible to cavitation-induced erosion. Previous testing has shown that the hardened surface produced by the Kolsterising® treatment can delay the onset of erosion and inhibit erosion once initiated. But the stability of the carbon atmosphere in the treated surface layer after radiation to doses prototypic to the SNS target was unknown. Therefore, as part of the target Post Irradiation Examination program at the SNS, optical microscopy and microhardness testing were performed on material sampled from the first and second operational SNS target vessels. Optical micrographs contained no noticeable precipitation in the super-saturated carbon layer extending into the base material and several micrographs contained evidence of a proposed mechanism for mass wastage from the vessel surface. The hardened layer was characterized using Vickers microhardness testing and results show that the shape of hardness profile of the treated layer corresponded well with known pre-irradiation hardness values, though the microhardness results show some hardening occurred during irradiation. The results suggest that the hardened surface layer produced by the Kolsterising® treatment is stable at the operational temperatures and dose levels experienced by the first and second operational SNS target modules

  17. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2014-01-01

    Full Text Available In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage.

  18. The Influence of Duration of Mechanical Activation of Titanium Powder on its Morphology, Microstructure, and Microhardness

    Science.gov (United States)

    Ditenberg, I. A.; Korchagin, M. A.; Pinzhin, Yu. P.; Melnikov, V. V.; Tyumentsev, A. N.; Grinyaev, K. V.; Smirnov, I. V.; Radishevskii, V. L.; Tsverova, A. S.; Sukhanov, I. I.

    2017-10-01

    Using the methods of X-ray diffraction analysis and scanning and transmission electron microscopy, an investigation of the influence of duration of mechanical activation on morphology and structure of titanium powder is performed. In the course of processing the following stages of material transformation are revealed: fragmentation of the initial powder, conglomeration, and ovalization of the conglomerates. It is found that when the duration of mechanical activation increases, the characteristic size of coherent scattering regions is significantly decreased, which is accompanied by an increase in the value of microdistortions and intensive fragmentation of the crystal lattice inside powder particles followed by the formation of highly defective nanostructured states. The transformation of microstructure is accompanied by a considerable increase in microhardness.

  19. Study of Micro-hardness of High-Speed W9Mo4Co8 Steel Plates in Pendulum Grinding by Abrasive Wheel Periphery

    OpenAIRE

    Soler, Yakov Iosifovich; Nguyen, Van Canh

    2017-01-01

    In cutting tool assembly, grinding is the most important technological step of the finishing treatment, largely determining the workmanship. An increase of micro-hardness after grinding relative to the original one indicates the dominant role of abrasive tool force impact on the ground surface. A decrease, in contrast, evidences a significant softening under the influence of heat source. This research based on nonparametric statistics to predict the effect of wheel characteristics with abrasi...

  20. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.

    Science.gov (United States)

    Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin

    2017-08-01

    The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at pfill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microhardness evaluation around composite restorations using fluoride-containing adhesive systems Avaliação da microdureza ao redor de restaurações de compósito confeccionadas com sistemas adesivos contendo fluoretos

    Directory of Open Access Journals (Sweden)

    Cláudia Silami de Magalhães

    2005-09-01

    Full Text Available The purpose of this study was to evaluate the microhardness of dental enamel around composite restorations bonded with fluoride-containing adhesive systems (FCAS, after thermo- and pH-cycling protocols. Standardized cylindrical cavities were prepared on enamel surfaces of 175 dental fragments, which were randomly assigned into seven experimental groups (n=25. Four groups used FCAS: Optibond Solo (OS; Prime&Bond 2.1 (PB; Syntac Sprint (SS and Tenure Quick (TC. Other groups consisted of "Sandwich" technique restoration (STR (glass ionomer liner + hydrophobic adhesive resin /restorative composite or used Single Bond with (SB or without (SBWC cycling protocols. Adhesive systems were applied according to manufacturers' instructions and cavities were restored with a microfilled composite (Durafill VS. After finishing and polishing, all groups were submitted to 1,000 thermal cycles (5 ºC and 55 ºC and to demineralization (pH 4.3 and remineralization (pH 7.0 cycling protocols, except for SBWC group. The Knoop microhardness of enamel surfaces were measured around restorations. Indentations were recorded at 150, 300 and 450-mm from the cavity wall. Data were analyzed by two-way ANOVA and Duncan's Test (a=0.05%. Means ± SD of enamel microhardness for the groups were (Kg/mm²: SBWC: 314.50 ± 55.93ª ; SB: 256.78 ± 62.66b; STR: 253.90 ± 83.6b; TQ: 243.93 ± 68.3b; OS: 227.97 ± 67.1c; PB: 213.30 ± 91.3d; SS: 208.73 ± 86.6d. Means ± SD of microhardness for the distances 150, 300, 450mm from the cavity wall were, respectively: 234.46 ± 77.81ª; 240.24 ± 85.12ª; 262.06 ± 79.46b. SBWC group, which was not submitted to thermo- and pH-cycling protocols, showed the highest enamel microhardness mean value and the FCAS resulted in lower microhardness values. At 450 mm from the cavity wall, the enamel microhardness increased significantly.O objetivo deste estudo foi avaliar a microdureza do esmalte dental ao redor de restaurações em compósito que

  2. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    International Nuclear Information System (INIS)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara; Marques, Isabella S.V.; Sukotjo, Cortino; Mathew, Mathew T.; Rangel, Elidiane C.; Cruz, Nilson C.; Mesquita, Marcelo F.; Consani, Rafael X.

    2016-01-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H_2O_2 (Cl), H_2SO_4 + H_2O_2 (S); sandblasted with Al_2O_3 (Sb), Al_2O_3 followed by HCl + H_2O_2 (SbCl), and Al_2O_3 followed by H_2SO_4 + H_2O_2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R_p) and the lowest capacitance (Q) and corrosion current density (I_c_o_r_r) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R_p values of cp-Ti surfaces and produced the highest I_c_o_r_r values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp-Ti. • Acid etching is a promising dental implants surface treatment.

  3. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  4. Effect of artificial aging on the surface roughness and microhardness of resin-based materials.

    Science.gov (United States)

    Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C

    2016-01-01

    This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.

  5. Measuring Radiation Damage from Heavy Energetic Ions in Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, M., PI-MSU; Ronningen, R., PI-MSU; Ahle, L., PI-LLNL; Gabriel, T., Scientific Investigation and Development; Mansur, L., PI-ORNL; Leonard, K., ORNL; Mokhov, N., FNAL; Niita, K., RIST, Japan

    2009-02-21

    An intense beam of 122 MeV/u (9.3 GeV) 76Ge ions was stopped in aluminum samples at the Coupled Cyclotron Facility at NSCL, MSU. Attempts were made at ORNL to measure changes in material properties by measuring changes in electrical resistivity and microhardness, and by transmission electron microscopy characterization, for defect density caused by radiation damage, as a function of depth and integrated ion flux. These measurements are relevant for estimating damage to components at a rare isotope beam facility.

  6. Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 Wt to 2 Wt %

    Directory of Open Access Journals (Sweden)

    Lucia Lattanzi

    2018-03-01

    Full Text Available In recent years, the influence of Ni on high-temperature mechanical properties of casting Al alloys has been extensively examined in the literature. In the present study, room temperature mechanical properties of an A356 alloy with Ni additions from 0.5 to 2 wt % were investigated. The role of Ni-based compounds and eutectic Si particles in reinforcing the Al matrix was studied with image analysis and was then related to tensile properties and microhardness. In the as-cast condition, the formation of the 3D network is not sufficient to determine an increase of mechanical properties of the alloys since fracture propagates by cleavage through eutectic Si particles and Ni aluminides or by the debonding of brittle phases from the aluminum matrix. After T6 heat treatment the increasing amount of Ni aluminides, due to further addition of Ni to the alloy, together with their brittle behavior, leads to a decrease of yield strength, ultimate tensile strength, and Vickers microhardness. Despite the fact that Ni addition up to 2 wt % hinders spheroidization of eutectic Si particles during T6 heat treatment, it also promotes the formation of a higher number of brittle Ni-based compounds that easily promote fracture propagation.

  7. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    Science.gov (United States)

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering.

    Science.gov (United States)

    Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Geçimli, Zeynep Nur; Aydoğdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, Oguzhan

    2016-07-07

    We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 °C, reveal about 700 % increase in the microhardness (~100 and 775 HV, respectively). Composites prepared at 1300 °C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.

  9. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  10. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  11. A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE)

    Science.gov (United States)

    Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano

    2018-05-01

    In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.

  12. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  13. Lasers in odontology: survey of work carried out in the laboratories of the CEN/Saclay Service of Advanced techniques and Physical Chemistry

    International Nuclear Information System (INIS)

    Hasson, R.; Merard, R.; Melcer, J.; Melcer, F.

    1985-08-01

    After carbon dioxide laser treatment the mineralised dental tissues (enamel, dentine) of humans and animals were examined by photon microscopy and subjected to Vickers microdurometric tests. They show a melted zone and a heat-affected zone which are compared with synthetic hydroxyapatite. The plates illustrate the resulting structural changes, micro-hardness increase and resistance to acid attack. The thermal diffusiveness of these tissues being slight, the heat-affected zone is not very deep under pulsed conditions. For a surface temperature of 200 0 C on the dental enamel the thermal gradient is 10 -4 0 C m -1 over a layer of 1 mm for a 1-second pulse duration. Bacterial cultures have demonstrated the sterilising effect of the laser. This laboratory research has so far given rise to 1200 clinical treatments on humans [fr

  14. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.W. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, M.C., E-mail: michael.gao@netl.doe.gov [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); AECOM, P.O. Box 1959, Albany, OR 97321 (United States); Hawk, J.A. [National Energy Technology Laboratory, 1450 Queen Ave SW, Albany, OR 97321 (United States); Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, H.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-30

    This study reports the design and development of ductile and strong refractory single-phase high-entropy alloys (HEAs) for high temperature applications, based on NbTaV with addition of Ti and W. Assisted by CALPHAD modeling, a single body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingots using X-ray diffraction and scanning electron microscopy. The observed elemental segregation in each alloy qualitatively agrees with CALPHAD prediction. The Vickers microhardnesses (and yield strengths) of the alloys are about 3 (and 3.5–4.4) times that those estimated from the rule of mixture. While NbTaTiVW shows an impressive yield strength of 1420 MPa with fracture strain of 20%, NbTaTiV exhibits exceptional compressive ductility at room temperature.

  15. An Analysis of the Microstructure, Macrostructure and Microhardness of Nicr-Ir Joints Produced by Laser Welding with and without Preheat

    Directory of Open Access Journals (Sweden)

    Różowicz S.

    2016-06-01

    Full Text Available This paper discusses some of the basic problems involved in laser welding of dissimilar materials with significant differences in melting points. It focuses on the micro and macrostructure of laser welded NiCr-Ir microjoints used in central spark plug electrodes. The joints were produced by welding with and without preheat using an Nd,YAG laser. The structure and composition of the welded joints were analyzed by means of a light microscope (LM and a scanning electron microscope (SEM equipped with an energy dispersive X-ray (EDX spectrometer. The microhardness of the weld area was also studied.

  16. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals

    International Nuclear Information System (INIS)

    Chien, F.R.; Ubic, F.J.; Prakash, V.; Heuer, A.H.

    1998-01-01

    The stress-induced tetragonal to monoclinic (t → m) martensitic transformation, stress-induced ferroelastic domain switching, and dislocation slip were induced by Vickers microindentation at elevated temperatures in polydomain single crystals of 3 mol%-Y 2 O 3 -stabilized tetragonal ZrO 2 single crystals (3Y-TZS). Chemical etching revealed traces along t directions adjacent to indentations, and Raman spectroscopy and TEM have shown that these traces are caused by products of the martensitic transformation, i.e. the monoclinic product phase forms primarily as thin, long plates with a habit plane approximately on (bar 301) m . This habit plane and the associated shear strain arising from the transformation, visible in TEM micrographs at the intersection of crystallographically equivalent martensite plates, were successfully predicted using the observed lattice correspondence and the phenomenological invariant plane strain theory of martensitic transformations. The extent of the martensitic transformation increased with increasing temperature from room temperature up to 300 C, but then decreased at higher temperatures. Ferroelastic deformation of tetragonal ZrO 2 has been observed at all temperatures up to 1,000 C. At the highest temperature, only ferroelastic domain switching and dislocation slip occurred during indentation-induced deformation

  17. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel

    Science.gov (United States)

    Alam, Mohammad K.; Edrisy, Afsaneh; Urbanic, Jill; Pineault, James

    2017-03-01

    Laser cladding is a surface treatment process which is starting to be employed as a novel additive manufacturing. Rapid cooling during the non-equilibrium solidification process generates non-equilibrium microstructures and significant amounts of internal residual stresses. This paper investigates the laser cladding of 420 martensitic stainless steel of two single beads produced by different process parameters (e.g., laser power, laser speed, and powder feed rate). Metallographic sample preparation from the cross section revealed three distinct zones: the bead zone, the dilution zone, and the heat-affected zone (HAZ). The tensile residual stresses were in the range of 310-486 MPa on the surface and the upper part of the bead zone. The compressive stresses were in the range of 420-1000 MPa for the rest of the bead zone and the dilution zone. The HAZ also showed tensile residual stresses in the range of 140-320 MPa for both samples. The post-cladding heat treatment performed at 565 °C for an hour had significantly reduced the tensile stresses at the surface and in the subsurface and homogenized the compressive stress throughout the bead and dilution zones. The microstructures, residual stresses, and microhardness profiles were correlated for better understanding of the laser-cladding process.

  18. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Riva, Rudimar [Department of Aerospace Science and Technology, Institute for Advanced Studies (IEAv), Sao Jose dos Campos 12227-000, SP (Brazil)

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  19. Effect of the welding process on the microstructure and microhardness of API 5L X80 steel welded joint used for oil transportation pipeline; Efeito do processo de soldagem sobre a microestrutura e a microdureza de juntas soldadas de aco API 5L X80 usado em tubulacoes para transporte de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.T.P.; Albuquerque, S.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Maciel, T.M.; Almeida, D.M.; Santos, M.A.

    2008-07-01

    This study had as objective to evaluate the microstructure and microhardness of API 5L X80 steel welded joints, used for pipelines to transport oil and gas, using the Shield Metal Arc Welding process with pre- heating temperature of 200 deg C and 400 deg C and the AWS E8010G electrode as filler metal. For this, besides the microhardness of the welded joint, the weld metals percentiles of micro-constituents and of columnar and regenerated grains and the medium size and extension of the heat affected zone were evaluated. The percentage of acicular ferrite in weld metal ranged from 13% to 33% which generated values of microhardness from 114 HV to 309 HV. (author)

  20. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.

    Science.gov (United States)

    Marin, E; Offoiach, R; Lanzutti, A; Regis, M; Fusi, S; Fedrizzi, L

    2014-01-01

    Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD