WorldWideScience

Sample records for vibrations involving hydrogen

  1. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  2. Hydrogen local vibrational modes in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  3. Piezoelectric bimorph cantilever for vibration-producing-hydrogen.

    Science.gov (United States)

    Zhang, Jun; Wu, Zheng; Jia, Yanmin; Kan, Junwu; Cheng, Guangming

    2012-12-27

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  4. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin [ORNL; Neogi, Sanghamitra [Pennsylvania State University; Kent, Paul R [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Wesolowski, David J [ORNL; Cole, David R [ORNL; Sofo, Jorge O. [Pennsylvania State University

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  5. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  6. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    OpenAIRE

    Guangming Cheng; Yanmin Jia; Junwu Kan; Zheng Wu; Jun Zhang

    2012-01-01

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or tr...

  7. Hydrogen Bonding and Vibrational Spectroscopy: A Theoretical Study

    Science.gov (United States)

    Chaban, Galina M.

    2005-01-01

    Effects of hydrogen bonding on vibrational spectra are studied for several hydrogen-bonded complexes, in which hydrogen bonding ranges from weak (25 kcal/mol). The systems studied include complexes of inorganic acids and salts with water and ammonia, as well as complexes of several organic molecules (nitriles and amino acids) with water. Since anharmonic effects are very strong in hydrogen-bonded systems, anharmonic vibrational frequencies and infrared intensities are computed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. The most common spectral effects induced by hydrogen bonding are red shifts of stretching vibrational frequencies ranging from approx.200/cm to over 2000/cm and significant increases of infrared intensities for those bonds that participate in hydrogen bonding. However, some systems (e.g. nitrile-water complexes) exhibit shifts in the opposite direction (to the blue) upon formation of hydrogen bonds.

  8. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    Matta C F, Hernandez-Trujillo J, Tang T-H and Bader. R F W 2003 Hydrogen- Hydrogen Bonding: A Stabiliz- ing Interaction in Molecules and Crystals Chem. Eur. J. 9 1940. 37. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-. García J, Cohen A J and Yang W 2010 Revealing noncovalent interactions J. Am. Chem. Soc.

  9. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on average, the ...

  10. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  11. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    Science.gov (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  12. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals

    Directory of Open Access Journals (Sweden)

    Masae Takahashi

    2014-03-01

    Full Text Available The development of terahertz technology in the last few decades has made it possible to obtain a clear terahertz (THz spectrum. THz vibrations clearly show the formation of weak bonds in crystals. The simultaneous progress in the code of first-principles calculations treating noncovalent interactions has established the position of THz spectroscopy as a powerful tool for detecting the weak bonding in crystals. In this review, we are going to introduce, briefly, the contribution of weak bonds in the construction of molecular crystals first, and then, we will review THz spectroscopy as a powerful tool for detecting the formation of weak bonds and will show the significant contribution of advanced computational codes in treating noncovalent interactions. From the second section, following the Introduction, to the seventh section, before the conclusions, we describe: (1 the crystal packing forces, the hydrogen-bonded networks and their contribution to the construction of organic crystals; (2 the THz vibrations observed in hydrogen-bonded molecules; (3 the computational methods for analyzing the THz vibrations of hydrogen-bonded molecules; (4 the dispersion correction and anharmonicity incorporated into the first-principles calculations and their effect on the peak assignment of the THz spectrum (5 the temperature dependence; and (6 the polarization dependence of the THz spectrum.

  13. Nature of the Frequency Shift of Hydrogen Valence Vibrations

    CERN Document Server

    Zhyganiuk, I V

    2015-01-01

    The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.

  14. Finite-temperature hydrogen adsorption and desorption thermodynamics driven by soft vibration modes.

    Science.gov (United States)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Kim, Yong-Hyun

    2013-08-09

    It has been widely accepted that enhanced dihydrogen adsorption is required for room-temperature hydrogen storage on nanostructured porous materials. Here we report, based on results of first-principles total energy and vibrational spectrum calculations, finite-temperature adsorption and desorption thermodynamics of hydrogen molecules that are adsorbed on the metal center of metal-porphyrin-incorporated graphene. We have revealed that the room-temperature hydrogen storage is achievable not only with the enhanced adsorption enthalpy, but also with soft-mode driven vibrational entropy of the adsorbed dihydrogen molecule. The soft vibration modes mostly result from multiple orbital coupling between the hydrogen molecule and the buckled metal center, for example, in Ca-porphyrin-incorporated graphene. Our study suggests that the current design strategy for room-temperature hydrogen storage materials should be modified with explicitly taking the finite-temperature vibration thermodynamics into account.

  15. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  16. The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Hänninen, Vesa; Halonen, Lauri

    2015-01-01

    We have developed a model to calculate accurately the intensity of the hydrogen bonded XH-stretching vibrational transition in hydrogen bonded complexes. In the Local Mode Perturbation Theory (LMPT) model, the unperturbed system is described by a local mode (LM) model, which is perturbed...... by the intermolecular modes of the hydrogen bonded system that couple with the intramolecular vibrations of the donor unit through the potential energy surface. We have applied the model to three complexes containing water as the donor unit and different acceptor units, providing a series of increasing complex binding...... of the fundamental hydrogen bonded OH-stretching transition relative to the simpler LM model....

  17. Hydrogen bonding and vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, D; Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Pshenichnikov, Maxim S.

    2004-01-01

    We present a study of the effect of hydrogen bonding on vibrational energy relaxation of the OH-stretching mode in pure water and in water-acetonitrile mixtures. The extent of hydrogen bonding is controlled by dissolving water at various concentrations in acetonitrile. Infrared frequency-resolved

  18. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  19. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  20. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......, weak intramolecular hydrogen bonds in methyl lactate, allyl carbinol and methallyl carbinol have been identified and characterized. The effect of substitution of two hydrogen atoms on one of the methylene groups with either methyl groups or tri uoromethyl groups on the intramolecular...

  1. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  2. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory

    Science.gov (United States)

    Ramya, K. R.; Venkatnathan, Arun

    2013-03-01

    Hydrogen clathrate hydrates are promising sources of clean energy and are known to exist in a sII hydrate lattice, which consists of H2 molecules in dodecahedron (512) and hexakaidecahedron (51264) water cages. The formation of these hydrates which occur in extreme thermodynamic conditions is known to be considerably reduced by an inclusion of tetrahydrofuran (THF) in cages of these hydrate lattice. In this present work, we employ the density functional theory with a dispersion corrected (B97-D) functional to characterize vibrational Raman modes in the cages of pure and THF doped hydrogen clathrate hydrates. Our calculations show that the symmetric stretch of the H2 molecule in the 51264H2.THF cage is blueshifted compared to the 51264H2 cage. However, all vibrational modes of water molecules are redshifted which suggest reduced interaction between the H2 molecule and water molecules in the 51264H2.THF cage. The symmetric and asymmetric O-H stretch of water molecules in 512H2, 51264H2, and 51264H2.THF cages are redshifted compared with the corresponding guest free cages due to interactions between encapsulated H2 molecules and water molecules of the cages. The low frequency modes contain contributions from contraction and expansion of water cages and vibration of water molecules due to hydrogen bonding and these modes could possibly play an important role in the formation of the hydrate lattice.

  3. Statistical simulation of the flow of vibrationally preexcited hydrogen in a shock tube and the possibility of physical detonation

    Science.gov (United States)

    Kulikov, S. V.; Chervonnaya, N. A.; Ternovaya, O. N.

    2016-08-01

    The direct simulation Monte Carlo method is used to numerically simulate the problem of the shock wave front in vibrationally excited hydrogen flowing in the low-pressure channel of a shock tube. It is assumed that the vibrational temperature of the hydrogen equals 3000 K. The cases of partially and completely excited hydrogen are considered. Equilibrium hydrogen is applied as a pusher gas, but its concentration is 50 times higher than the hydrogen concentration in the low-pressure channel. In addition, the strength of the shock wave is varied by heating the pusher gas. It has been shown that, if the prestored vibrational energy is weakly converted to translational energy, the shock wave slows down over time. If the energy conversion is sufficiently intense, when the pusher gas is warm and only completely vibrationally excited hydrogen is in the low-pressure channel, the wave gains speed over time (its velocity increases roughly by a factor of 1.5). This causes physical detonation, in which case the parameters of the wave become dependent on the vibrational-to-thermal energy conversion and independent of the way of its initiation.

  4. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  5. The chemistry of ethylene and hydrogen on Pt(111) monitored with surface vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, P.; Shen, Y.R.; Somorjai, G.A. [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Both the hydrogenation and dehydrogenation of ethylene have been studied using infrared-visible sum frequency generation (SFG), a surface vibrational spectroscopy, on the Pt(111) single crystal surface in the v(CH) range. It was found that the dehydrogenation of ethylene to ethylidyne proceeds through an ethylidene (or ethyl) intermediate. The same intermediate was also found to be present in the conversion of both surface vinyl groups and acetylene to ethylidyne. The hydrogenation of ethylene to ethane was examined in situ using SFG over 10 orders of magnitude in pressure. It was found that di-sigma bonded ethylene was readily hydrogenated in UHV at low temperature. Further, di-sigma bonded ethylene was the only species beside ethylidyne found to be present on the Pt(111) surface under conditions of a few Torr of both ethylene and hydrogen at 300K. The surface concentration of di-sigma bonded ethylene on Pt(111) was about 5% of a monolayer under the high pressure conditions.

  6. Interplay between Hydrogen Bonding and Vibrational Coupling in Liquid N-Methylacetamide.

    Science.gov (United States)

    Cunha, Ana V; Salamatova, Evgeniia; Bloem, Robbert; Roeters, Steven J; Woutersen, Sander; Pshenichnikov, Maxim S; Jansen, Thomas L C

    2017-06-01

    Intrinsically disordered proteins play an important role in biology, and unraveling their labile structure presents a vital challenge. However, the dynamical structure of such proteins thwarts their study by standard techniques such as X-ray diffraction and NMR spectroscopy. Here, we use a neat liquid composed of N-methylacetamide molecules as a model system to elucidate dynamical and structural properties similar to those one can expect to see in intrinsically disordered proteins. To examine the structural dynamics in the neat liquid, we combine molecular dynamics, response-function-based spectral simulations, and two-dimensional polarization-resolved infrared spectroscopy in the amide I (CO stretch) region. The two-dimensional spectra reveal a delicate interplay between hydrogen bonding and intermolecular vibrational coupling effects, observed through a fast anisotropy decay. The present study constitutes a general platform for understanding the structure and dynamics of highly disordered proteins.

  7. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  8. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  9. A mixed quantum-classical molecular dynamics study of anti-tetrol and syn-tetrol dissolved in liquid chloroform II: infrared emission spectra, vibrational excited-state lifetimes, and nonequilibrium hydrogen-bond dynamics.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2013-11-21

    The effect of vibrational excitation and relaxation of the hydroxyl stretch on the hydrogen-bond structure and dynamics of stereoselectively synthesized syn-tetrol and anti-tetrol dissolved in deuterated chloroform are investigated via a mixed quantum-classical molecular dynamics simulation. Emphasis is placed on the changes in hydrogen-bond structure upon photoexcitation and the nonequilibrium hydrogen-bond dynamics that follows the subsequent relaxation from the excited to the ground vibrational state. The propensity to form hydrogen bonds is shown to increase upon photoexcitation of the hydroxyl stretch, thereby leading to a sizable red-shift of the infrared emission spectra relative to the corresponding absorption spectra. The vibrational excited state lifetimes are calculated within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, and found to be sensitive reporters of the underlying hydrogen-bond structure. The energy released during the relaxation from the excited to the ground state is shown to break hydrogen bonds involving the relaxing hydroxyl. The spectral signature of this nonequilibrium relaxation process is analyzed in detail.

  10. Dissociative electron attachment to vibrationally excited H{sub 2} molecules involving the {sup 2}{Sigma}{sub g}{sup +} resonant Rydberg electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Celiberto, R., E-mail: r.celiberto@poliba.it [Department of Water Engineering and Chemistry, Polytechnic of Bari, 70125 Bari (Italy); Institute of Inorganic Methodologies and Plasmas, CNR, 70125 Bari (Italy); Janev, R.K., E-mail: r.janev@fz-juelich.de [Macedonian Academy of Sciences and Arts, P.O.B 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH Association EURATOM-FZJ, Partner in Trilateral Euregio Cluster, 52425 Juelich (Germany); Wadehra, J.M., E-mail: wadehra@wayne.edu [Physics Department, Wayne State University, Detroit, MI 48202 (United States); Tennyson, J., E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2012-04-04

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v{sub i} = 0-5, 10 of the H{sub 2} molecule. Highlights: Black-Right-Pointing-Pointer We calculated electron-hydrogen dissociative attachment cross sections and rates coefficients. Black-Right-Pointing-Pointer Collision processes occurring through a resonant Rydberg state are considered. Black-Right-Pointing-Pointer Cross sections and rates were obtained for vibrationally excited hydrogen molecules. Black-Right-Pointing-Pointer The cross sections exhibit pronounced oscillatory structures. Black-Right-Pointing-Pointer A comparison with the process involving the electron-hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H{sub 2} molecule taking place via the {sup 2}{Sigma}{sub g}{sup +} Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v{sub i} = 0-14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v{sub i}, when the process proceeds via the X {sup 2}{Sigma}{sub u}{sup +} shape resonance of H{sub 2}, for the {sup 2}{Sigma}{sub g}{sup +} Rydberg resonance the cross sections increase only gradually up to v{sub i} = 3 and then decrease. Moreover, the cross sections for v{sub i} Greater-Than-Or-Slanted-Equal-To 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v{sub i} levels are also calculated in the 0.5-1000 eV temperature range.

  11. Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

    Directory of Open Access Journals (Sweden)

    Mudar A. Abdulsattar

    2013-04-01

    Full Text Available Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm−1 broad-peak acoustical branch region is characterized by pure C–C vibrations. The optical branch is centered at 1185 cm−1. Calculations show that several C–C vibrations are mixed with some C–H vibrations in the first region. In the second region the matching also extends to C–H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm−1 in ethane. Variation of the highest reduced-mass-mode C–C vibrations from 1332 cm−1 of bulk diamond to 963 cm−1 for ethane (red shift is shown. The analysis also shows the variation of the radial breathing mode from 0 cm−1 of bulk diamond to 963 cm−1 for ethane (blue shift. These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes.

  12. Hydrogen Bonds and the Vibrational Modes of Water at Interfaces: ab-initio Molecular Dynamics meets Neutron Scattering

    Science.gov (United States)

    Kumar, Nitin; Neogi, Sanghamitra; Kent, Paul; Bandura, Andrei; Kubicki, James; Wesolowski, David; Sofo, Jorge

    2008-03-01

    We study the vibrational density of states (VDOS) of a thin water layer on the rutile (110) surface. The VDOS is obtained from the velocity-velocity autocorrelation function calculated from trajectories of large scale ab-initio molecular dynamics simulations. The rutile surface induces a shift to lower frequencies of the stretching modes with respect to pure water. The water vapor surface shows a peak at the vibrational frequency of free hydroxyls. Overall, the average stretching mode vibrational frequency increases with decreasing hydrogen bonding density. This density depends strongly on temperature. The water dissociation percentage at the surface can be correlated with the ratio between the weights of the stretching and the bending modes. Our results are in good agreement with inelastic neutron scattering measurements done on wet titania nanoparticles.

  13. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  14. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    Science.gov (United States)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  15. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    Science.gov (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  16. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Wang [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Chaoshu, Tang [Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100034 (China); Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education (China); Hongfang, Jin, E-mail: jinhongfang51@126.com [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Junbao, Du, E-mail: junbaodu1@126.com [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China)

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  17. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    Science.gov (United States)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  18. Imaging the state-specific vibrational predissociation of the C2H2-NH3 hydrogen-bonded dimer.

    Science.gov (United States)

    Parr, Jessica A; Li, Guosheng; Fedorov, Igor; McCaffery, Anthony J; Reisler, Hanna

    2007-08-09

    The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-acetylene dimer were studied following excitation in the asymmetric CH stretch. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the asymmetric CH stretch fundamental, ammonia fragments were detected by 2 + 1 REMPI via the B1E'' acetylene co-fragment. The latter is always generated with one or two quanta of bending excitation. All the distributions could be fit well when using a dimer dissociation energy of D0 = 900 +/- 10 cm(-1). Only channels with maximum translational energy acetylene co-fragment pair-correlated with specific rovibrational states of ammonia appear statistical as well. The vibrational-state distributions, however, show distinct state specificity among channels with low translational energy release. The predominant channel is NH3(1nu2) + C2H2(2nu4 or 1nu4 + 1nu5), where nu4 and nu5 are the trans- and cis-bend vibrations of acetylene, respectively. A second observed channel, with much lower population, is NH3(2nu2) + C2H2(1nu4). No products are generated in which the ammonia is in the vibrational ground state or the asymmetric bend (1nu4) state, nor is acetylene ever generated in the ground vibrational state or with CC stretch excitation. The angular momentum (AM) model of McCaffery and Marsh is used to estimate impact parameters in the internal collisions that give rise to the observed rotational distributions. These calculations show that dissociation takes place from bent geometries, which can also explain the propensity to excite fragment bending levels. The low recoil velocities associated with the observed channels facilitate energy exchange in the exit channel, which results in statistical-like fragment rotational distributions.

  19. Molecular structure and vibrational spectroscopic analysis of an antiplatelet drug; clopidogrel hydrogen sulphate (form 2) - A combined experimental and quantum chemical approach

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Soni; Tandon, Poonam; Patel, Sarasvatkumar; Ayala, A. P.; Bansal, A. K.; Siesler, H. W.

    2010-02-01

    Clopidogrel hydrogen sulphate which belongs to a class of medicine called antiplatelet drugs. Chemically it is methyl (+)-(S)-α-(2-chlorophenyl)-4,5,6,7-tetrahydrothieno [3,2- c] pyridine-5-acetate hydrogen sulphate having the empirical formula C 16H 17ClNO 2S.HSO 4 and molecular mass 321.82 g/mol. The present study is confined to vibrational spectroscopy of the polymorph identified as form 2 of the clopidogrel hydrogen sulphate. The vibrational analysis of clopidogrel hydrogen sulphate salt (form 2) considering separately the two counterions has been performed. We also report a theoretical and experimental study of the molecular conformation and vibrational dynamics of the independent moieties of the clopidogrel hydrogen sulphate salt. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The calculated wavenumbers after a proper scaling show a very good agreement with the observed values. A complete vibrational assignment is provided for the observed Raman and infrared spectra of clopidogrel hydrogen sulphate form 2.

  20. Vibrational analysis on the revised potential energy curve of the low-barrier hydrogen bond in photoactive yellow protein.

    Science.gov (United States)

    Kanematsu, Yusuke; Kamikubo, Hironari; Kataoka, Mikio; Tachikawa, Masanori

    2016-01-01

    Photoactive yellow protein (PYP) has a characteristic hydrogen bond (H bond) between p-coumaric acid chromophore and Glu46, whose OH bond length has been observed to be 1.21 Å by the neutron diffraction technique [Proc. Natl. Acad. Sci. 106, 440-4]. Although it has been expected that such a drastic elongation of the OH bond could be caused by the quantum effect of the hydrogen nucleus, previous theoretical computations including the nuclear quantum effect have so far underestimated the bond length by more than 0.07 Å. To elucidate the origin of the difference, we performed a vibrational analysis of the H bond on potential energy curve with O…O distance of 2.47 Å on the equilibrium structure, and that with O…O distance of 2.56 Å on the experimental crystal structure. While the vibrationally averaged OH bond length for equilibrium structure was underestimated, the corresponding value for crystal structure was in reasonable agreement with the corresponding experimental values. The elongation of the O…O distance by the quantum mechanical or thermal fluctuation would be indispensable for the formation of a low-barrier hydrogen bond in PYP.

  1. Vibrational analysis on the revised potential energy curve of the low-barrier hydrogen bond in photoactive yellow protein

    Directory of Open Access Journals (Sweden)

    Yusuke Kanematsu

    2016-01-01

    Full Text Available Photoactive yellow protein (PYP has a characteristic hydrogen bond (H bond between p-coumaric acid chromophore and Glu46, whose OH bond length has been observed to be 1.21 Å by the neutron diffraction technique [Proc. Natl. Acad. Sci. 106, 440–4]. Although it has been expected that such a drastic elongation of the OH bond could be caused by the quantum effect of the hydrogen nucleus, previous theoretical computations including the nuclear quantum effect have so far underestimated the bond length by more than 0.07 Å. To elucidate the origin of the difference, we performed a vibrational analysis of the H bond on potential energy curve with O…O distance of 2.47 Å on the equilibrium structure, and that with O…O distance of 2.56 Å on the experimental crystal structure. While the vibrationally averaged OH bond length for equilibrium structure was underestimated, the corresponding value for crystal structure was in reasonable agreement with the corresponding experimental values. The elongation of the O…O distance by the quantum mechanical or thermal fluctuation would be indispensable for the formation of a low-barrier hydrogen bond in PYP.

  2. Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.

    1943-02-19

    A transcript is presented of a speech on the history of the development of hydrogenation of coal and tar. Apparently the talk had been accompanied by the showing of photographic slides, but none of the pictures were included with the report. In giving the history, Dr. Pier mentioned the dependence of much of the development of hydrogenation upon previous development in the related areas of ammonia and methanol syntheses, but he also pointed out several ways in which equipment appropriate for hydrogenation differed considerably from that used for ammonia and methanol. Dr. Pier discussed the difficulties encountered with residue processing, design of the reaction ovens, manufacture of ovens and preheaters, heating of reaction mixtures, development of steels, and development of compressor pumps. He described in some detail his own involvement in the development of the process. In addition, he discussed the development of methods of testing gasolines and other fuels. Also he listed some important byproducts of hydrogenation, such as phenols and polycyclic aromatics, and he discussed the formation of iso-octane fuel from the butanes arising from hydrogenation. In connection with several kinds of equipment used in hydrogenation (whose pictures were being shown), Dr. Pier gave some of the design and operating data.

  3. Evidence for cooperative vibrational relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids using infrared pump-probe spectroscopy.

    Science.gov (United States)

    Shaw, D J; Panman, M R; Woutersen, S

    2009-11-27

    Vibrational energy relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids has been investigated by means of infrared pump-probe spectroscopy. The relaxation rates have been determined both in neat liquids and in isotopic mixtures with systematically varied isotope fractions. In all liquids, the vibrational relaxation rate increases as the isotope fraction is increased and reaches a maximum in the neat liquid. The dependence of the relaxation rate on the isotope fraction suggests a relaxation channel in which the vibrational energy is partitioned between accepting modes of two neighboring molecules.

  4. Bimodal dynamics of mechanically constrained hydrogen bonds revealed by vibrational photon echoes.

    Science.gov (United States)

    Bodis, Pavol; Yeremenko, Sergiy; Berná, José; Buma, Wybren J; Leigh, David A; Woutersen, Sander

    2011-04-07

    We have investigated the dynamics of the hydrogen bonds that connect the components of a [2]rotaxane in solution. In this rotaxane, the amide groups in the benzylic-amide macrocycle and the succinamide thread are connected by four equivalent N-H⋅⋅⋅O=C hydrogen bonds. The fluctuations of these hydrogen bonds are mirrored by the frequency fluctuations of the NH-stretch modes, which are probed by means of three-pulse photon-echo peak shift spectroscopy. The hydrogen-bond fluctuations occur on three different time scales, with time constants of 0.1, 0.6, and ≥200 ps. Comparing these three time scales to the ones found in liquid formamide, which contains the same hydrogen-bonded amide motif but without mechanical constraints, we find that the faster two components, which are associated with small-amplitude fluctuations in the strength of the N-H⋅⋅⋅O=C hydrogen bonds, are very similar in the liquid and the rotaxane. However, the third component, which is associated with the breaking and subsequent reformation of hydrogen bonds, is found to be much slower in the rotaxane than in the liquid. It can be concluded that the mechanical bonding in a rotaxane does not influence the amplitude and time scale of the small-amplitude fluctuations of the hydrogen bonds, but strongly slows down the complete dissociation of these hydrogen bonds. This is probably because in a rotaxane breaking of the macrocycle-axle contacts is severely hindered by the mechanical constraints. The hydrogen-bond dynamics in rotaxane-based molecular machines can therefore be regarded as liquidlike on a time scale 1 ps and less, but structurally frozen on longer (up to at least 200 ps) time scales.

  5. Identification of new, well-populated amino-acid sidechain rotamers involving hydroxyl-hydrogen atoms and sulfhydryl-hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Agard David A

    2008-10-01

    Full Text Available Abstract Background An important element in homology modeling is the use of rotamers to parameterize the sidechain conformation. Despite the many libraries of sidechain rotamers that have been developed, a number of rotamers have been overlooked, due to the fact that they involve hydrogen atoms. Results We identify new, well-populated rotamers that involve the hydroxyl-hydrogen atoms of Ser, Thr and Tyr, and the sulfhydryl-hydrogen atom of Cys, using high-resolution crystal structures ( Conclusion Knowledge of these new rotamers will improve the evaluation of hydrogen-bonding networks in protein structures.

  6. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    , weak intramolecular hydrogen bonds in methyl lactate, allyl carbinol and methallyl carbinol have been identified and characterized. The effect of substitution of two hydrogen atoms on one of the methylene groups with either methyl groups or tri uoromethyl groups on the intramolecular......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl......This PhD thesis describes the gas phase studies of four intramolecular hydrogen bonds: O-H···O (in methyl lactate), O-H···π (in methallyl carbinol and allyl carbinol), O-H···N (in methylated and triuoromethylated 2-aminoethanol) and N-H···N (in the diamines 1,2-diaminoethane, 1,3-diaminopropane...

  7. Buzz pollination in eight bumblebee-pollinated Pedicularis species: does it involve vibration-induced triboelectric charging of pollen grains?

    Science.gov (United States)

    Corbet, Sarah A; Huang, Shuang-Quan

    2014-12-01

    Buzz pollination involves explosive pollen release in response to vibration, usually by bees. The mechanism of pollen release is poorly understood, and it is not clear which component of vibration (acceleration, frequency, displacement or velocity) is critical; the role of buzz frequency has been particularly controversial. This study proposes a novel hypothesis that explosive pollen release results from vibration-induced triboelectric charging. If it does, pollen release is expected to depend on achievement of a critical threshold velocity. Eight sympatric buzz-pollinated species of Pedicularis that share bumblebee pollinator species were studied, giving a rare opportunity to compare sonication behaviour of a shared pollinator on different plant species. Reconsidering previous experimental studies, it is argued that they establish the critical role of the velocity component of vibration in pollen release, and that when displacement is constrained by body size bees can achieve the critical velocity by adjusting frequency. It was shown that workers of Bombus friseanus assorted themselves among Pedicularis species by body size, and that bees adjusted their buzz/wingbeat frequency ratio, which is taken as an index of the velocity component, to a value that corresponds with the galea length and pollen grain volume of each species of Pedicularis. Sonication behaviour of B. friseanus differs among Pedicularis species, not only because worker bees assort themselves among plant species by body size, but also because bees of a given size adjust the buzz frequency to achieve a vibration velocity corresponding to the floral traits of each plant species. These findings, and the floral traits that characterize these and other buzz-pollinated species, are compatible with the hypothesis of vibration-induced triboelectric charging of pollen grains. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  8. Predictions of Si-H/sub n/ stretching vibrations on atmospheric contamination of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, E.

    1986-07-01

    Among the ir spectral changes occurring in a-Si:H exposed to ambient atmosphere is the change in magnitude of the Si-H/sub n/ stretching region. While this change is correlated with the extent of oxidation, no frequency shifts occur until the material is heavily oxidized. Inductive effects, previously used to correlate all known Si-H/sub n/ stretching vibrations in monomers and in a-Si:H, are used to predict the behavior of these vibrations on contamination with adjacent carbon- and oxygen-containing species. The predicted peaks all fall at the Si-H, Si-H/sub 2/ and Si-H/sub 3/ stretching frequencies except at high oxygen contents; there, the experimental red shifts are predicted. The relative lack of influence of carbon-containing species on these vibrations is shown to be due to its inductive effect, almost identical in sign and magnitude to that of the pristine silicon structure. 2 tabs., 39 refs.

  9. Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups

    Energy Technology Data Exchange (ETDEWEB)

    Asami, Hiroya [Graduate School of Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Yagi, Kiyoshi [Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Ohba, Masashi [Yokohama College of Pharmacy, Yokohama 245-0066 (Japan); Urashima, Shu-hei [Graduate School of Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Saigusa, Hiroyuki, E-mail: saigusa@yokohama-cu.ac.jp [Graduate School of Bio- and Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan)

    2013-06-20

    Highlights: ► A combination of laser desorption and supersonic jet-cooling is used to produce base pairs of adenine nucleosides. ► Stacked base-pair structure of N6,N6-dimethyladnosine is identified by IR vibrational spectroscopy. ► Anharmonic vibrational calculation is employed to analyze the vibrational mode coupling in the stacked base pair. - Abstract: We have employed a laser desorption technique combined with supersonic-jet cooling for producing base pairs of adenine nucleosides, adenosine (Ado) and N6,N6-dimethyladenosine (DMAdo) under low-temperature conditions. The resulting base pairs are then ionized through resonant two-photon ionization (R2PI) and analyzed by time-of-flight mass spectrometry. It is found that dimers of these adenine nucleosides are stable, especially in the case of DMAdo, with respect to those of the corresponding bases, i.e., adenine and N6,N6-dimethyladenine. Structural analysis of the DMAdo dimer is performed based on the IR–UV double resonance measurements and theoretical calculations. The result demonstrates that the dimer possesses a stacked structure being stabilized by the formation of hydrogen-bonding network involving the two sugar groups. The occurrence of the frequency shift and broadening is explained satisfactorily based on the anharmonic coupling of the OH stretching modes with specific bending modes and low-frequency modes of base and sugar moieties.

  10. Intramolecular Hydrogen Bonding Involving Organic Fluorine: NMR Investigations Corroborated by DFT-Based Theoretical Calculations

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Mishra

    2017-03-01

    Full Text Available The combined utility of many one and two dimensional NMR methodologies and DFT-based theoretical calculations have been exploited to detect the intramolecular hydrogen bond (HB in number of different organic fluorine-containing derivatives of molecules, viz. benzanilides, hydrazides, imides, benzamides, and diphenyloxamides. The existence of two and three centered hydrogen bonds has been convincingly established in the investigated molecules. The NMR spectral parameters, viz., coupling mediated through hydrogen bond, one-bond NH scalar couplings, physical parameter dependent variation of chemical shifts of NH protons have paved the way for understanding the presence of hydrogen bond involving organic fluorine in all the investigated molecules. The experimental NMR findings are further corroborated by DFT-based theoretical calculations including NCI, QTAIM, MD simulations and NBO analysis. The monitoring of H/D exchange with NMR spectroscopy established the effect of intramolecular HB and the influence of electronegativity of various substituents on the chemical kinetics in the number of organic building blocks. The utility of DQ-SQ technique in determining the information about HB in various fluorine substituted molecules has been convincingly established.

  11. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights

    Science.gov (United States)

    Chakraborty, Somendra Nath; English, Niall J.

    2015-10-01

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein.

  12. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  13. Middle atmosphere heating by exothermic chemical reactions involving odd-hydrogen species

    Science.gov (United States)

    Mlynczak, Martin G.; Solomon, Susan

    1991-01-01

    The rate of heating which occurs in the middle atmosphere due to four exothermic reactions involving members of the odd-hydrogen family is calculated. The following reactions are considered: O + OH yields O2 + H; H + O2 + M yields HO2 + M; H + O3 yields OH + O2; and O + HO2 yields OH + O2. It is shown that the heating rates due to these reactions rival the oxygen-related heating rates conventionally considered in middle-atmosphere models. The conversion of chemical potential energy into molecular translational energy (heat) by these odd-hydrogen reactions is shown to be a significant energy source in the middle atmosphere that has not been previously considered.

  14. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  15. Proton Transfer and Low-Barrier Hydrogen Bonding: a Shifting Vibrational Landscape Dictated by Large Amplitude Tunneling

    Science.gov (United States)

    Vealey, Zachary; Foguel, Lidor; Vaccaro, Patrick

    2017-06-01

    Our fundamental understanding of synergistic hydrogen-bonding and proton-transfer phenomena has been advanced immensely by studies of model systems in which the coherent transduction of hydrons is mediated by two degenerate equilibrium configurations that are isolated from one another by a potential barrier of substantial height. This topography advantageously affords unambiguous signatures for the underlying state-resolved dynamics in the form of tunneling-induced spectral bifurcations, the magnitudes of which encode both the overall efficacy and the detailed mechanism of the unimolecular transformation. As a prototypical member of this class of compounds, 6-hydroxy-2-formylfulvene (HFF) supports an unusual quasi-linear O-H...O \\leftrightarrow O...H-O reaction coordinate that presents a minimal impediment to proton migration - a situation commensurate with the concepts of low-barrier hydrogen bonding (which are characterized by great strength, short distance, and a vanishingly small barrier for hydron migration). A variety of fluorescence-based, laser-spectroscopic probes have been deployed in a cold supersonic free-jet expansion to explore the vibrational landscape and anomalously large tunneling-induced shifts that dominate the ˜{X}^{1}A_{1} potential-energy surface of HFF, thus revealing the most rapid proton tunneling ever reported for a molecular ground state (τ_{pt}≤120fs). The surprising efficiency of such tunneling-mediated processes stems from proximity of the zero-point level to the barrier crest and produces a dramatic alteration in the canonical pattern of vibrational features that reflects, in part, the subtle transition from quantum-mechanical barrier penetration to classical over-the-barrier dynamics. The ultrafast proton-transfer regime that characterizes the ˜{X}^{1}A_{1} manifold will be juxtaposed against analogous findings for the lowest-lying singlet excited state ˜{A}^{1}B_{2} (π*←π), where a marked change in the nature of the

  16. Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation

    Directory of Open Access Journals (Sweden)

    Bryan Regis Crable

    2016-11-01

    Full Text Available Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in coculture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and cocultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic

  17. Study of vibrational spectra and hydrogen bonding network in dimeric and tetrameric model of ampicillin using DFT and AIM approach

    Science.gov (United States)

    Shukla, Anuradha; Khan, Eram; Tandon, Poonam; Sinha, Kirti

    2017-03-01

    Ampicillin is a β-lactam antibiotic that is active against both gram-positive and gram-negative bacteria and is widely used for the treatment of infections. In this work, molecular properties of ampicillin are calculated on the basis of calculations on its dimeric and tetrameric models using DFT/B3LYP/6-311G(d,p). HOMO-LUMO energy gap shows that chemical reactivity of tetrameric model of ampicillin is higher than the dimeric and monomeric model of ampicillin. To get a better understanding of intra and intermolecular bonding and interactions among bonds, NBO analysis is carried out with tetrameric model of ampicillin, and is further finalized with an 'quantum theory of atoms-in-molecules' (QTAIM) analysis. The binding energy of dimeric model of ampicillin is calculated as -26.84 kcal/mol and -29.34 kcal/mol using AIM and DFT calculations respectively. The global electrophilicity index (ω = 2.8118 eV) of tetrameric model of ampicillin shows that this behaves as a strong electrophile in comparison to dimeric and monomeric model of ampicillin. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution analysis. A collective theoretical and experimental vibrational analysis approves the presence of hydrogen bonds in the ampicillin molecule.

  18. On the effect of thermal treatment and hydrogen vibrational dynamics in sodium alanates: An inelastic neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Albinati, A., E-mail: Alberto.Albinati@unimi.it [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, via G. Venezian 21, 20133 Milan (Italy); Colognesi, D. [Consiglio Nazionale delle Ricerche, Istituto di Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino (Finland) (Italy); Georgiev, P.A. [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, via G. Venezian 21, 20133 Milan (Italy); Jensen, C.M. [Department of Chemistry, University of Hawaii, Honolulu, HI 96822 (United States); Ramirez-Cuesta, A.J. [ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer High resolution INS spectra of thermally treated NaAlH{sub 4} and Na{sub 3}AlH{sub 6}. Black-Right-Pointing-Pointer Detailed spectral features assignments based on high quality DFT(GGA) calculations. Black-Right-Pointing-Pointer Treated materials spectra are described as sum of the corresponding reactants and products. Black-Right-Pointing-Pointer The existence of AlH{sub 3} and AlH{sub 5}{sup 2-} species is not observed in the bulk, under equilibrium. - Abstract: We have measured inelastic neutron scattering (INS) spectra from Ti-doped polycrystalline alanates (NaAlH{sub 4} and Na{sub 3}AlH{sub 6}), at low temperature, in the energy transfer range 3-500 meV, both for thermally treated and untreated samples. From the spectral range corresponding to the fundamental vibrational bands of these aluminohydrides, accurate one-phonon spectra and hydrogen-projected densities of phonon states have been extracted and analyzed using ab initio lattice dynamics calculations. Satisfactory agreement has been found for the untreated samples. In the case of thermally treated samples, due to thermal decomposition, different ionic species are present and the sample composition could be quantitatively evaluated. No evidence for the existence of intermediate species such as AlH{sub 3} or AlH{sub 5}{sup 2-} has been found.

  19. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar

    2011-04-28

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 °C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MF and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. © 2011 American Chemical Society.

  20. Intermolecular and intramolecular hydrogen bonds involving fluorine atoms: implications for recognition, selectivity, and chemical properties.

    Science.gov (United States)

    Dalvit, Claudio; Vulpetti, Anna

    2012-02-06

    A correlation between 19F NMR isotropic chemical shift and close intermolecular F⋅⋅⋅H-X contacts (with X=N or O) has been identified upon analysis of the X-ray crystal structures of fluorinated molecules listed in the Cambridge Structural Database (CSD). An optimal F⋅⋅⋅X distance involving primary and shielded secondary fluorine atoms in hydrogen-bond formation along with a correlation between F⋅⋅⋅H distance and F⋅⋅⋅H-X angle were also derived from the analysis. The hydrogen bonds involving fluorine are relevant, not only for the recognition mechanism and stabilization of a preferred conformation, but also for improvement in the permeability of the molecules, as shown with examples taken from a proprietary database. Results of an analysis of the small number of fluorine-containing natural products listed in the Protein Data Bank (PDB) appear to strengthen the derived correlation between 19F NMR isotropic chemical shift and interactions involving fluorine (also known as the "rule of shielding") and provides a hypothesis for the recognition mechanism and catalytic activity of specific enzymes. Novel chemical scaffolds, based on the rule of shielding, have been designed for recognizing distinct structural motifs present in proteins. It is envisaged that this approach could find useful applications in drug design for the efficient optimization of chemical fragments or promising compounds by increasing potency and selectivity against the desired biomolecular target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    Science.gov (United States)

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  2. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.

    Science.gov (United States)

    Dance, Ian

    2011-06-28

    The intramolecular hydrogenation paradigm for the reducing actions of the enzyme nitrogenase postulates that the iron-molybdenum cofactor (FeMo-co, Fe(7)MoS(9)N(homocitrate)) as active site contains H atoms bound to Fe and S during the catalytic cycle, and that these H atoms are the reducing agents. The reduction of N(2) and of all other non-physiological substrates is strongly inhibited by carbon monoxide, except for the formation of H(2) from protons. It has been recently reported that vanadium nitrogenase and modified molybdenum nitrogenase reduce CO to hydrocarbons. Therefore many questions now arise about relationships between CO and H on the nitrogenase cofactors. In order to assist the interpretation of kinetic infrared spectral data, vibrational frequencies and modes have been calculated for a variety of possible structures in which FeMo-co bears H atoms, or CO ligands, or both. Fe-H stretching frequencies occur in the same spectral window as the C-O stretching frequencies, with lesser intensity, and both stretches are strongly coupled in some structures. Symmetrical bridging of CO between two Fe atoms of FeMo-co is destabilised by the presence of other ligands on Fe, and the reason for this is evident. Two results for bound formyl, HCO, are reported. These calculations of reference structures allow some interpretation of existing experimental spectra, but, more significantly, they suggest further kinetic infrared experiments to elucidate the chemical mechanism of catalysis by nitrogenase under normal turnover conditions. This journal is © The Royal Society of Chemistry 2011

  3. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex.

    Science.gov (United States)

    Du, Lin; Mackeprang, Kasper; Kjaergaard, Henrik G

    2013-07-07

    We have measured gas phase vibrational spectra of the bimolecular complex formed between methanol (MeOH) and dimethylamine (DMA) up to about 9800 cm(-1). In addition to the strong fundamental OH-stretching transition we have also detected the weak second overtone NH-stretching transition. The spectra of the complex are obtained by spectral subtraction of the monomer spectra from spectra recorded for the mixture. For comparison, we also measured the fundamental OH-stretching transition in the bimolecular complex between MeOH and trimethylamine (TMA). The enthalpies of hydrogen bond formation (ΔH) for the MeOH-DMA and MeOH-TMA complexes have been determined by measurements of the fundamental OH-stretching transition in the temperature range from 298 to 358 K. The enthalpy of formation is found to be -35.8 ± 3.9 and -38.2 ± 3.3 kJ mol(-1) for MeOH-DMA and MeOH-TMA, respectively, in the 298 to 358 K region. The equilibrium constant (Kp) for the formation of the MeOH-DMA complex has been determined from the measured and calculated transition intensities of the OH-stretching fundamental transition and the NH-stretching second overtone transition. The transition intensities were calculated using an anharmonic oscillator local mode model with dipole moment and potential energy curves calculated using explicitly correlated coupled cluster methods. The equilibrium constant for formation of the MeOH-DMA complex was determined to be 0.2 ± 0.1 atm(-1), corresponding to a ΔG value of about 4.0 kJ mol(-1).

  4. [Possible involvement of hydrogen peroxide and salicylic acid in the legume-rhizobium symbiosis].

    Science.gov (United States)

    Glian'ko, A K; Makarova, L E; Vasil'eva, G G; Mironova, N V

    2005-01-01

    H2O2 content was studied in the roots and epicotyls of pea (Pisum sativum L.) with normal (cultivar Marat) and disturbed (non-nodulating mutant K14 and hypernodulating mutant Nod3) regulation of root nodulation after inoculation with active industrial strain of Rhizobium leguminosarum by. viceae 250a/CIAM 1026. Pea biotypes differed by H2O2 content in the roots and epicotyls. Exogenous salicylic acid (SA) (0.2 mM) affected H2O2 and SA contents in the roots in an inoculation-dependent manner. The involvement of hydrogen peroxide and SA as signaling molecules as well as of antibacterial agents in the pea-rhizobium interaction at the initial stages of symbiosis is proposed.

  5. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    Science.gov (United States)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  6. Gas phase Boudouard reactions involving singlet-singlet and singlet-triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas

    Science.gov (United States)

    Barreto, Patricia R. P.; Euclides, Henrique de O.; Albernaz, Alessandra F.; Aquilanti, Vincenzo; Capitelli, Mario; Grossi, Gaia; Lombardi, Andrea; Macheret, Sergey; Palazzetti, Federico

    2017-10-01

    Rate constants for the Boudouard reactions: CO + CO → CO2 + C and CO + CO → C2O + O, involving ground and vibrationally excited states for both singlet-singlet and singlet-triplet reactant CO molecules, have been obtained by using the transition-state theory on an ab initio generated potential energy surface. The dependence of the activation energies for the different processes on the vibrational energy of reactants has been estimated through a parametrization that accounts for the utilization of vibrational energy and is calculated by the forward and backward ab initio activation energies of the relevant processes at zero vibrational energy. The results and their comparison with available experimental reaction rates demonstrate the importance of vibrational excitation not only for the singlet-singlet reactions, but also for the singlet-triplet ones, which are here investigated for the first time. Finally, the implications of the present results on the kinetics of CO/CO2 cold plasmas are discussed: for their modeling the temperature dependence of the obtained rates for singlet-singlet and singlet-triplet reactants in the ground vibrational states have been represented by both Arrhenius and deformed Arrhenius equations.

  7. Adsorption and desorption of hydrogen at nonpolar GaN (1 1 ¯ 00 ) surfaces: Kinetics and impact on surface vibrational and electronic properties

    Science.gov (United States)

    Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.; Polyakov, V. M.

    2017-05-01

    The adsorption of hydrogen at nonpolar GaN (1 1 ¯00 ) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN (1 1 ¯00 ) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN (1 1 ¯00 ) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion.

  8. Strong Quantum Coupling in the Vibrational Signatures of a Symmetric Ionic Hydrogen Bond: The Case of (CH3OH)2H(.).

    Science.gov (United States)

    Tan, Jake A; Kuo, Jer-Lai

    2015-11-19

    Vibrational coupling between proton and flanking group motions in the ionic hydrogen bond (IHB) of (CH3OH)2H(+) were studied by solving reduced-dimension vibrational Schrödinger equations. Potential energy and dipole surfaces along a few key normal modes were constructed with high-level ab initio methods. It was found that the IHB stretch parallel to O-O axis strongly couples with the out-of-phase C-O stretch and out-of-phase in-plane CH3 rock with COH deformation. Such strong quantum coupling leads to a complex triplet at 850-1100 cm(-1) region. Furthermore, we have investigated the possible active role of torsional motion in intensity redistribution.

  9. A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D2O in hydration shells of Cl(-) ions.

    Science.gov (United States)

    Mallik, Bhabani S; Semparithi, A; Chandra, Amalendu

    2008-11-21

    A theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions is presented from first principles without employing any empirical potential models. The present calculations are based on ab initio molecular dynamics for trajectory generation and wavelet analysis of the simulated trajectories for time dependent frequency calculations. Results are obtained for two different deuterated aqueous solutions: the first one is a relatively dilute solution of a single Cl(-) ion and the second one is a concentrated solution of NaCl ( approximately 3M) dissolved in liquid D(2)O. It is found that the frequencies of OD bonds in the anion hydration shell, i.e., those which are hydrogen bonded to the chloride ion, have a higher stretch frequency than those in the bulk water. Also, on average, the frequencies of hydration shell OD modes are found to increase with increase in the anion-water hydrogen bond distance. On the dynamical side, when the vibrational spectral diffusion is calculated exclusively for the hydration shell water molecules in the first solution, the dynamics reveals three time scales: a short-time relaxation ( approximately 200 fs) corresponding to the dynamics of intact ion-water hydrogen bonds, a slower relaxation ( approximately 3 ps) corresponding to the lifetimes of chloride ion-water hydrogen bonds, and another longer-time constant ( approximately 20 ps) corresponding to the escape dynamics of water from the anion hydration shell. Existence of such three time scales for hydration shell water molecules was also reported earlier for water containing a single iodide ion using classical molecular dynamics [B. Nigro et al., J. Phys. Chem. A 110, 11237 (2006)]. Hence, the present study confirms the basic results of this earlier work using a different methodology. However, when the vibrational spectral diffusion is calculated over all the OD modes, only two time scales of approximately 150 fs and approximately 2.7 ps are

  10. Influence of varying hydrogen bond strength resulting from compositional variation on the vibration spectra of proton glasses: K1-x(NH4)xH2PO4

    Science.gov (United States)

    Choudhury, Rajul Ranjan; Chitra, R.; Abraham, Geogy J.

    2014-07-01

    Single crystal neutron diffraction investigation [Choudhury and Chitra, J. Phys. Condense Matter, 25 (2013) 075902] on four mixed crystals with composition (K1-x(NH4)xH2PO4) where x=0.0, 0.29, 0.67, and 1.0 belonging to the potassium dihydrogen phosphate family of hydrogen bonded ferroelectric crystals had revealed that the compositional variation results in subtle structural differences primarily in the hydrogen bonds of these crystals. The study indicated that there is a change in hydrogen bond strengths with the change in crystal composition. Spectral investigation of the same set of four mixed crystals is undertaken with an intention to study the influence of the varying hydrogen bond strength on the vibrational properties of the crystals. Room temperature Raman spectra for all the four crystals are recorded in the range 100-4000 cm-1. This Raman investigation correlates the structural changes observed from neutron diffraction investigations to the changes in the vibration spectra of the crystals. The varying N-H-O hydrogen bond strength in the mixed crystals is found to have an observable effect on the librational frequencies of the molecular components of these crystals. The strong OHO hydrogen bonds in these crystals give rise to four spectral bands in the 1500-3000 cm-1 spectral region; this is in accordance with the theoretical prediction from the tunneling model for the very strong OHO hydrogen bonds. These OHO bonds can be described by a low barrier double well potential; the vibrational energy levels of the potential are split due to quantum tunneling effects. It is observed that the varying OHO hydrogen bond strength of these crystals results in a variation in the splitting of the vibrational energy levels of the hydrogen bond potential. It is attempted to correlate the varying OHO hydrogen bond strength with the expected variation in the freezing temperature with composition of these proton glasses.

  11. Full dimensional Franck-Condon factors for the acetylene ˜{A} 1Au—{˜{X}} {^1Σ _g^+} transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes

    Science.gov (United States)

    Park, G. Barratt; Baraban, Joshua H.; Field, Robert W.

    2014-10-01

    A full-dimensional Franck-Condon calculation has been applied to the tilde{A} 1Au—tilde{X} ^1Σ _g^+ transition in acetylene in the harmonic normal mode basis. Details of the calculation are discussed in Part I of this series. To our knowledge, this is the first full-dimensional Franck-Condon calculation on a tetra-atomic molecule undergoing a linear-to-bent geometry change. In the current work, the vibrational intensity factors for levels involving excitation in ungerade vibrational modes are evaluated. Because the Franck-Condon integral accumulates away from the linear geometry, we have been able to treat the out-of-plane component of trans bend (ν _4^' ' }) in the linear tilde{X} state in the rotational part of the problem, restoring the χ Euler angle and the a-axis Eckart conditions. A consequence of the Eckart conditions is that the out-of-plane component of ν _4^' ' } does not participate in the vibrational overlap integral. This affects the structure of the coordinate transformation and the symmetry of the vibrational wavefunctions used in the overlap integral, and results in propensity rules involving the bending modes of the tilde{X} state that were not previously understood. We explain the origin of some of the unexpected propensities observed in IR-UV laser-induced fluorescence spectra, and we calculate emission intensities from bending levels of the tilde{A} state into bending levels of the tilde{X} state, using normal bending mode and local bending mode basis sets. Our calculations also reveal Franck-Condon propensities for the Cartesian components of the cis bend (ν _5^' ' }), and we predict that the best tilde{A}-state vibrational levels for populating tilde{X}-state levels with large amplitude bending motion localized in a single C-H bond (the acetylene↔vinylidene isomerization coordinate) involve a high degree of excitation in ν _6^' } (cis-bend). Mode ν _4^' } (torsion) populates levels with large amplitude counter-rotational motion of

  12. Cα-H carries information of a hydrogen bond involving the geminal hydroxyl group: a case study with a hydrogen-bonded complex of 1,1,1,3,3,3-hexafluoro-2-propanol and tertiary amines.

    Science.gov (United States)

    Pal, Uttam; Sen, Sudeshna; Maiti, Nakul Chandra

    2014-02-13

    Experimental measurement of the contribution of H-bonding to intermolecular and intramolecular interactions that provide specificity to biological complex formation is an important aspect of macromolecular chemistry and structural biology. However, there are very few viable methods available to determine the energetic contribution of an individual hydrogen bond to binding and catalysis in biological systems. Therefore, the methods that use secondary deuterium isotope effects analyzed by NMR or equilibrium or kinetic isotope effect measurements are attractive ways to gain information on the H-bonding properties of an alcohol system, particularly in a biological environment. Here, we explore the anharmonic contribution to the C-H group when the O-H group of 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) forms an intermolecular H-bond with the amines by quantum mechanical calculations and by experimentally measuring the H/D effect by NMR. Within the framework of density functional theory, ab initio calculations were carried out for HFP in its two different conformational states and their H-bonded complexes with tertiary amines to determine the (13)C chemical shielding, change in their vibrational equilibrium distances, and the deuterium isotope effect on (13)C2 (secondary carbon) of HFP upon formation of complexes with tertiary amines. When C2-OH was involved in hydrogen bond formation (O-H as hydrogen donor), it weakened the geminal C2-H bond; it was reflected in the NMR chemical shift, coupling constant, and the equilibrium distances of the C-H bond. The first derivative of nuclear shielding at C2 in HFP was -48.94 and -50.73 ppm Å(-1) for anti and gauche conformations, respectively. In the complex, the values were -50.28 and -50.76 ppm Å(-1), respectively. The C-H stretching frequency was lower than the free monomer, indicating enhanced anharmonicity in the C-H bond in the complex form. In chloroform, HFP formed a complex with the amine; δC2 was 69.107 ppm for HFP

  13. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  14. Aquaporin-Mediated Water and Hydrogen Peroxide Transport Is Involved in Normal Human Spermatozoa Functioning

    Directory of Open Access Journals (Sweden)

    Umberto Laforenza

    2016-12-01

    Full Text Available Different aquaporins (AQPs are expressed in human sperm cells and with a different localization. Their function has been related to cell volume control in response to the osmotic changes encountered passing from the epididymal fluid to the cervical mucus or involved in the end stage of cytoplasm removal during sperm maturation. Recently, AQPs have also shown hydrogen peroxide (H2O2 permeability properties. Here, we investigate the expression, localization and functioning of AQPs in human sperm cells with particular attention to their role as peroxiporins in reactive oxygen species (ROS scavenging in both normospermic and sub-fertile human subjects. Western blotting and immunocytochemistry were used to confirm and clarify the AQPs expression and localization. Water and H2O2 permeability was tested by stopped flow light scattering method and by the CM-H2DCFDA (5-(and-6-chloromethyl-2′,7′-dichlorodihydro-fluorescein diacetate, acetyl ester H2O2 fluorescence probe, respectively. AQP3, -7, -8, and -11 proteins were found in human sperm cells and localized in the head (AQP7, in the middle piece (AQP8 and in the tail (AQP3 and -11 in both the plasma membrane and in intracellular structures. Sperm cells showed water and H2O2 permeability which was reversibly inhibited by H2O2, heat stress and the AQP inhibitor HgCl2. Reduced functionality was observed in patients with compromised basal semen parameters. Present findings suggest that AQPs are involved in both volume regulation and ROS elimination. The relationship between sperm number and motility and AQP functioning was also demonstrated.

  15. Vibrational mode-selected differential scattering of NH3+ methanol (d1, d3, d4): Control of product branching by hydrogen-bonded complex formation

    Science.gov (United States)

    Fu, Hungshin; Qian, Jun; Green, Richard J.; Anderson, Scott L.

    1998-02-01

    We report a study of vibrational mode effects and differential scattering in reaction of NH3+ with CD3OD, CD3OH, and CH3OD over the collision energy range from 0.1 to 5 eV. At low collision energies, abstraction of both methyl and hydroxyl D atoms is observed with roughly equal probability, even though methyl D-abstraction should be favored on both energetic and statistical grounds. Branching between the two abstraction reactions is controlled by two different hydrogen-bonded complexes. Formation of these complexes is enhanced by NH3+ umbrella bending, unaffected by the NH3+ symmetric stretch, and inhibited by collision energy. Endoergic proton transfer is mediated at low energies by a third hydrogen-bonded complex, formation of which is enhanced by both umbrella bending and the symmetric stretch. Charge transfer (CT) has a significant cross section only when the NH3+ umbrella bend excitation exceeds the endoergicity. Collision energy and symmetric stretching appear to have no effect on CT. At high collision energies all reactions become direct, with near spectator stripping dynamics. In this energy range product branching appears to be controlled by collision geometry and there are no significant vibrational effects.

  16. Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations

    Science.gov (United States)

    Botella, V.; Timon, V.; Escamilla-Roa, E.; Hernández-Languna, A.; Sainz-Díaz, C. I.

    2004-10-01

    The hydroxy groups of the crystal lattice of dioctahedral 2:1 phyllosilicates were investigated by means of quantum-mechanical calculation. The standard Kohn-Sham self-consistent density functional theory (DFT) method was applied using the generalized gradient approximation (GGA) with numerical atomic orbitals and double-zeta polarized functions as basis set. Isomorphous cation substitution of different cations in the octahedral and tetrahedral sheet was included along with several interlayer cations reproducing experimental crystal lattice parameters. The effect of these substitutions and the interlayer charge on the hydroxyl group properties was also studied. These structures represent different cation pairs among Al3+, Fe3+ and Mg2+ in the octahedral sheet of clays joined to OH groups. The geometrical disposition of the OH bond in the crystal lattice and the hydrogen bonds and other electrostatic interactions of this group were analyzed. The frequencies of different vibrational modes of the OH group [ν(OH), δ(OH) and γ(OH)] were calculated and compared with experimental data, finding a good agreement. These frequencies depend significantly on the nature of cations which are joined with, and the electrostatic interactions with, the interlayer cations. Besides, hydrogen-bonding interactions with tetrahedral oxygens are important for the vibrational properties of the OH groups; however, also the electrostatic interactions of these OH groups with the rest of tetrahedral oxygens within the tetrahedral cavity should be taken into account. The cation substitution effect on the vibration modes of the OH groups was analyzed reproducing the experimental behaviour.

  17. Pyrrole Hydrogenation over Rh(111) and Pt(111) Single-Crystal Surfaces and Hydrogenation Promotion Mediated by 1-Methylpyrrole: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.

    2008-03-04

    Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate, which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.

  18. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Far-Infrared Signatures of Hydrogen Bonding in Phenol Derivatives.

    Science.gov (United States)

    Bakker, Daniël J; Peters, Atze; Yatsyna, Vasyl; Zhaunerchyk, Vitali; Rijs, Anouk M

    2016-04-07

    One of the most direct ways to study the intrinsic properties of the hydrogen-bond interaction is by gas-phase far-infrared (far-IR) spectroscopy because the modes involving hydrogen-bond deformation are excited in this spectral region; however, the far-IR regime is often ignored in molecular structure identification due to the absence of strong far-IR light sources and difficulty in assigning the observed modes by quantum chemical calculations. Far-IR/UV ion-dip spectroscopy using the free electron laser FELIX was applied to directly probe the intramolecular hydrogen-bond interaction in a family of phenol derivatives. Three vibrational modes have been identified, which are expected to be diagnostic for the hydrogen-bond strength: hydrogen-bond stretching and hydrogen-bond-donating and -accepting OH torsion vibrations. Their position is evaluated with respect to the hydrogen bond strength, that is, the length of the hydrogen-bonded OH length. This shows that the hydrogen bond stretching frequency is diagnostic for the size of the ring that is closed by the hydrogen bond, while the strength of the hydrogen bond can be determined from the hydrogen-bond-donating OH torsion frequency. The combination of these two normal modes allows the direct probing of intramolecular hydrogen-bond characteristics using conformation-selective far-IR vibrational spectroscopy.

  20. Vibrational transitions in hydrogen bonded bimolecular complexes – A local mode perturbation theory approach to transition frequencies and intensities

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Kjærgaard, Henrik Grum

    2017-01-01

    The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...... bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers...

  1. A high pressure study of the eigenvectors of the infra-red active vibrational modes of crystalline adenosine.

    Science.gov (United States)

    Starkey, Carl A; Lee, Scott A; Anderson, Anthony

    2016-01-01

    High-pressure infrared spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 298 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is that it is a diagnostic probe of the nature of the eigenvector of these vibrational modes. Stretching modes, which are predominantly internal to the molecule, have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular attention is paid to modes in the 800-1000 cm(-1) range since modes in that region of the vibrational spectrum are found to be sensitive to the conformation of double-helical DNA. Since the sugar pucker is different for the various conformations of DNA, this fact suggests that these modes involve the motion of atoms in the sugar group. The vibrations of the hydrogen atoms are also of interest to study since the vibrational frequency of hydrogen atoms involved in hydrogen bonds has a negative pressure derivative. Such behavior clearly shows which hydrogen atoms are involved in hydrogen bonding.

  2. Computationally-assisted approach to the vibrational spectra of molecular crystals: study of hydrogen-bonding and pseudo-polymorphism.

    Science.gov (United States)

    Nolasco, Mariela M; Amado, Ana M; Ribeiro-Claro, Paulo J A

    2006-10-13

    A new computationally-assisted methodology (PiMM), which accounts for the effects of intermolecular interactions in the crystal, is applied to the complete assignment of the Raman and infrared vibrational spectra of room temperature forms of crystalline caffeine, theobromine, and theophylline. The vibrational shifts due to crystal packing interactions are evaluated from ab initio calculations for a set of suitable molecular pairs, using the B3LYP/6-31G* approach. The proposed methodology provides an answer to the current demand for a reliable assignment of the vibrational spectra of these methyl-xanthines, and clarifies several misleading assignments. The most relevant intermolecular interactions in each system and their effect on the vibrational spectra are considered and discussed. Based on these results, significant insights are obtained for the structure of caffeine in the anhydrous form (stable at room temperature), for which no X-ray structure has been reported. A possible structure based on C((8))--H...N((9)) and C((1,3))--H...O intermolecular interactions is suggested.

  3. Vibrational transitions in hydrogen bonded bimolecular complexes - A local mode perturbation theory approach to transition frequencies and intensities

    Science.gov (United States)

    Mackeprang, Kasper; Kjaergaard, Henrik G.

    2017-04-01

    The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers and oscillator strengths were correlated with the strength of the hydrogen bond. Overall, we have found that the LMPT model in most cases predicts transition wavenumbers within 20 cm-1 of the experimental values.

  4. Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of rice seeds

    Directory of Open Access Journals (Sweden)

    Bing Xian Chen

    2016-08-01

    Full Text Available Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO produces hydrogen peroxide (H2O2, which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1–11 in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III. The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1–7 encode PAOs, whereas those in subfamily III (OsPAO8–11 encode histone lysine-specific demethylases. In silico–characterized expression profiles of OsPAO1–7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals.

  5. Hydrogen Bonding to Alkanes: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen; Olesen, Solveig Gaarn

    2009-01-01

    The structural, vibrational, and energetic properties of adducts of alkanes and strong cationic proton donors were studied with composite ab initio calculations. Hydrogen bonding in [D-H+ H-alkyl] adducts contributes to a significant degree to the interactions between the two components, which...... is substantiated by NBO and AIM results. The hydrogen bonds manifest themselves in the same manner as conventional hydrogen bonds, D-H bond elongation, D-H vibrational stretching frequency red shift and intensity increase, and adduct stabilization. The alkane adducts also exhibit elongation of the C-H bonds...... involved and a concurrent red shift, which is rationalized in terms of charge-transfer interactions that cause simultaneous weakening of both the O-H and C-H bonds. Like other dihydrogen-bonded adducts, the adducts possess a bent structure and asymmetric bifurcated hydrogen bonds. The hydrogen bonds...

  6. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N–H stretching motions ranging from 2800 to 3250 cm‑1. Finally, the different dynamics are also seen in the rotational correlation of the N–H bond vector, where a correlation time as short as 16.1 ps is observed.

  7. Gigantic blue shift of the H-Ar stretch vibration in pi hydrogen-bonded C(2)H(2)...HArCCF complex.

    Science.gov (United States)

    Cheng, Jianbo; Wang, Yilei; Li, Qingzhong; Liu, Zhenbo; Li, Wenzuo; Gong, Baoan

    2009-04-30

    Quantum chemical calculations have been performed to study the structure and properties of the pi hydrogen-bonded complex formed between acetylene and HArCCF at the MP2/6-311++G(2d,2p) level. The C(2)H(2)...HCCF and C(2)H(2)...HCCArF complexes were also studied for comparison with the C(2)H(2)...HArCCF complex. The basis set superposition errors (BSSE)-counterpoise corrected potential-energy surface (PES) has a larger influence on the structure and properties of the C(2)H(2)...HArCCF complex than those of the C(2)H(2)...HCCF and C(2)H(2)...HCCArF complexes. The C(2)H(2)...HArCCF complex exhibits a very large harmonic vibrational frequency blue shift of 574 cm(-1) for the H-Ar stretch, whereas the C(2)H(2)...HCCF and C(2)H(2)...HCCArF complexes exhibit a small red shift of 35 and 47 cm(-1) for the H-C stretch, respectively; upon complexation the IR intensity decreases in the former, whereas it increases in the latter. The origin of the frequency shift and nature of the hydrogen bond in these complexes have been unveiled with the natural bond orbital analysis and energy decomposition.

  8. Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties.

    Science.gov (United States)

    Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A

    2014-01-24

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Kinetics of Hydrogen Evolution on Copper Electrode Involving Organic Acids as Proton Donors

    Directory of Open Access Journals (Sweden)

    A. Survila

    2011-01-01

    Full Text Available Linear potential sweep (LPS voltammetry was applied to study the kinetics of hydrogen evolution in solutions containing glycolic, malic, tartaric, and gluconic acids. The CE mechanism of hydrogen evolution was analyzed invoking the 2nd Fick's law equations supplemented by terms that account for chemical interactions between diffusing particles. Acids are considered as components that are capable of releasing hydrated protons taking part in the charge-transfer step. Current peaks observed on LPS voltammograms are in linear dependence on ν (ν is the potential sweep rate. They obey well-known relationships obtained for simple redox processes, provided that the concentration of oxidant is treated as total concentration of proton donors. Determination of surface concentrations as current density functions makes it possible to transform LPS voltammograms into linear Tafel plots normalized with respect to the surface concentration of hydronium ions. Similar kinetic parameters (α≈0.6 and i0≈ 10 μA cm−2 obtained at pH 3 for all OA solutions indicate that the nature of OA has no noticeable influence on the charge-transfer process.

  10. Supplementary Information Table: S1 Calculated vibrational wave ...

    Indian Academy of Sciences (India)

    Administrator

    514. 511 w. 519 vvw. 6a ring o.p bend. 508. 496 s. 500 vvw. 16 b ring o.p bend. 390. 387 vvw. 16a ring o.p bend. 334. 328 vvw. 9b C-H i.p bend. 274. 267 vvw. Hydrogen bonded vibrations. 184. 171 vs. Hydrogen bonded vibrations. 112. 120 vvs. Hydrogen bonded vibrations. 64. 57 sh. Hydrogen bonded vibrations.

  11. N-H···π hydrogen-bonding and large-amplitude tipping vibrations in jet-cooled pyrrole-benzene.

    Science.gov (United States)

    Pfaffen, Chantal; Infanger, Daniel; Ottiger, Philipp; Frey, Hans-Martin; Leutwyler, Samuel

    2011-08-21

    The N-H···π hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr·Bz, Pyr·Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H···π hydrogen bond to the benzene ring. The pyrrole is tipped by ω(S(0)) = ±13° relative to the surface normal of Bz. The N···ring distance is 3.13 Å. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle ω(S(1)) = ±21°. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H···π interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1)←S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr·Bz in the same region exhibits a weak 0 band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the π-electron system of Bz by the asymmetric pyrrole NH···π hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0 band. The Bz moiety in Pyr·Bz exhibits a 6a band at 0 + 518 cm(-1) that is about 20× more intense than the origin band. The symmetry breaking by the NH···π hydrogen bond splits the degeneracy of the ν(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by ∼6 cm(-1). Both the 0 and 6 bands of Pyr·Bz carry a progression in the low

  12. Low temperature vibrational spectroscopy. II. Evidence for order–disorder phase transitions due to weak C–H···Cl hydrogen bonding in tetramethylammonium hexachloroplatinate (IV), -tellurate (IV), and -stannate (IV) and the related perdeuterated compounds

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1978-01-01

    and it is suggested that the phase transitions are caused by an ordering of rotationally disordered methyl groups via the formation of weak C–H···Cl hydrogen bonds at low temperatures. The transition temperatures and hence the interactions are shown to depend on both the kind of hydrogen isotope and metal present...... torsions and other noncubic features play a role, especially in spectra at low temperatures. Possible site symmetries of the [PtCl6]2− ion, which cannot have strictly Oh symmetry in either phase, have been deduced. The spectra of a mixed Pt : Te compound showed that the hexachlorometallate anions vibrate...

  13. Isomorphous Crystals from Diynes and Bromodiynes Involved in Hydrogen and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Pierre Baillargeon

    2016-04-01

    Full Text Available Isomorphous crystals of two diacetylene derivatives with carbamate functionality (BocNH-CH2-diyne-X, where X = H or Br have been obtained. The main feature of these structures is the original 2D arrangement (as supramolecular sheets or walls in which the H bond and halogen bond have a prominent effect on the whole architecture. The two diacetylene compounds harbor neighboring carbamate (Boc protected amine and conjugated alkyne functionalities. They differ only by the nature of the atom located at the penultimate position of the diyne moiety, either a hydrogen atom or a bromine atom. Both of them adopt very similar 2D wall organizations with antiparallel carbamates (as in antiparallel beta pleated sheets. Additional weak interactions inside the same walls between molecular bricks are H bond interactions (diyne-H···O=C or halogen bond interactions (diyne-Br···O=C, respectively. Based on crystallographic atom coordinates, DFT (B3LYP/6-31++G(d,p and DFT (M06-2X/6-31++G(d,p calculations were performed on these isostructural crystals to gain insight into the intermolecular interactions.

  14. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ogawa Yuzo

    2006-08-01

    Full Text Available Abstract Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1. Freely diffusible hydrogen peroxide (H2O2 is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.

  15. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  16. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  17. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  18. Chilling stress and hydrogen peroxide accumulation in Chrysanthemum morifolium and Spathiphyllum lanceifolium. Involvement of chlororespiration.

    Science.gov (United States)

    Paredes, Miriam; Quiles, María José

    2017-04-01

    Plants of Chrysanthemum morifolium (sun species) and Spathiphyllum lanceifolium (shade species) were used to study the effects of chilling stems under high illumination. The stress conditions resulted in a greater accumulation of H 2 O 2 in C. morifolium than in S. lanceifolium, and in the down-regulation of photosynthetic linear electron transport in both species. However, only a slight decrease in the maximal quantum yield of PSII was observed under unfavorable conditions in both species, suggesting that mechanisms exist in the chloroplasts that dissipate excess excitation energy and prevent damage to the photosynthetic apparatus. Additionally, changes were observed in the PGR5 polypeptide involved in cyclic electron flow around PSI and in chlororespiratory enzymes (plastidial NDH complex and PTOX). The level of PGR5 increased significantly only in chilled plants of C. morifolium, whereas the levels of the PTOX and NDH-H polypeptide of the plastidial NDH complex and the NDH activity increased significantly only in chilled plants of S. lanceifolium. These findings suggest that the cyclic electron flow involving PGR5 is more active in C. morifolium, while in S. lanceifolium, other mechanisms involving chlororespiratory enzymes are stimulated in response to chilling and high light, resulting in less H 2 O 2 being accumulated in leaves. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Hydrogen Sulfide-Mediated Polyamines and Sugar Changes Are Involved in Hydrogen Sulfide-Induced Drought Tolerance in Spinacia oleracea Seedlings.

    Science.gov (United States)

    Chen, Juan; Shang, Yu-Ting; Wang, Wen-Hua; Chen, Xi-Yan; He, En-Ming; Zheng, Hai-Lei; Shangguan, Zhouping

    2016-01-01

    Hydrogen sulfide (H2S) is a newly appreciated participant in physiological and biochemical regulation in plants. However, whether H2S is involved in the regulation of plant responses to drought stress remains unclear. Here, the role of H2S in the regulation of drought stress response in Spinacia oleracea seedlings is reported. First, drought stress dramatically decreased the relative water content (RWC) of leaves, photosynthesis, and the efficiency of PSII. Moreover, drought caused the accumulation of ROS and increased the MDA content. However, the application of NaHS counteracted the drought-induced changes in these parameters. Second, NaHS application increased the water and osmotic potential of leaves. Additionally, osmoprotectants such as proline and glycinebetaine (GB) content were altered by NaHS application under drought conditions, suggesting that osmoprotectant contributes to H2S-induced drought resistance. Third, the levels of soluble sugars and polyamines (PAs) were increased differentially by NaHS application in S. oleracea seedlings. Moreover, several genes related to PA and soluble sugar biosynthesis, as well as betaine aldehyde dehydrogenase (SoBADH), choline monooxygenase (SoCMO), and aquaporin (SoPIP1;2), were up-regulated by H2S under drought stress. These results suggest that H2S contributes to drought tolerance in S. oleracea through its effect on the biosynthesis of PAs and soluble sugars. Additionally, GB and trehalose also play key roles in enhancing S. oleracea drought resistance.

  20. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings

    Directory of Open Access Journals (Sweden)

    Juan Chen

    2016-08-01

    Full Text Available Hydrogen sulfide (H2S is a newly appreciated participant in physiological and biochemical regulation in plants. However, whether H2S is involved in the regulation of plant responses to drought stress remains unclear. Here, the role of H2S in the regulation of drought stress response in Spinacia oleracea seedlings is reported. First, drought stress dramatically decreased the relative water content (RWC of leaves, photosynthesis, and the efficiency of PSII. Moreover, drought caused the accumulation of ROS and increased the MDA content. However, the application of NaHS counteracted the drought-induced changes in these parameters. Second, NaHS application increased the water and osmotic potential of leaves. Additionally, osmoprotectants such as proline and glycinebetaine (GB content were altered by NaHS application under drought conditions, suggesting that osmoprotectant contributes to H2S-induced drought resistance. Third, the levels of soluble sugars and polyamines (PAs were increased differentially by NaHS application in S. oleracea seedlings. Moreover, several genes related to PA and soluble sugar biosynthesis, as well as betaine aldehyde dehydrogenase (SoBADH, choline monooxygenase (SoCMO, and aquaporin (SoPIP1;2, were up-regulated by H2S under drought stress. These results suggest that H2S contributes to drought tolerance in S. oleracea through its effect on the biosynthesis of PAs and soluble sugars. Additionally, GB and trehalose also play key roles in enhancing S. oleracea drought resistance.

  1. Estimation of individual binding energies in some dimers involving multiple hydrogen bonds using topological properties of electron charge density

    Science.gov (United States)

    Ebrahimi, A.; Habibi Khorassani, S. M.; Delarami, H.

    2009-11-01

    Individual hydrogen bond (HB) energies have been estimated in several systems involving multiple HBs such as adenine-thymine and guanine-cytosine using electron charge densities calculated at X⋯H hydrogen bond critical points (HBCPs) by atoms in molecules (AIM) method at B3LYP/6-311++G ∗∗ and MP2/6-311++G ∗∗ levels. A symmetrical system with two identical H bonds has been selected to search for simple relations between ρHBCP and individual EHB. Correlation coefficient between EHB and ρHBCP in the base of linear, quadratic, and exponential equations are acceptable and equal to 0.95. The estimated individual binding energies EHB are in good agreement with the results of atom-replacement approach and natural bond orbital analysis (NBO). The EHB values estimated from ρ values at H⋯X BCP are in satisfactory agreement with the main geometrical parameter H⋯X. With respect to the obtained individual binding energies, the strength of a HB depends on the substituent and the cooperative effects of other HBs.

  2. Vibrational kinetics of electronically excited states in H2 discharges

    Science.gov (United States)

    Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita

    2017-11-01

    The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.

  3. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi.

    Science.gov (United States)

    Papapostolou, I; Georgiou, C D

    2010-12-01

    The purpose of this study was to investigate the role of H(2) O(2) and the related oxidative stress markers catalase (CAT) and lipid peroxidation in the sclerotial differentiation of the phytopathogenic filamentous fungi Sclerotium rolfsii, Sclerotinia minor, Sclerotinia sclerotiorum and Rhizoctonia solani. Using the H(2) O(2) -specific scopoletin fluorometric assay and the CAT-dependent H(2) O(2) consumption assays, it was found that the production rate of intra/extracellular H(2) O(2) and CAT levels in the sclerotiogenic fungi were significantly higher and lower, respectively, than those of their nondifferentiating counterpart strains. They peaked in the transition between the undifferentiated and the differentiated state of the sclerotiogenic strains, suggesting both a cell proliferative and differentiative role. In addition, the indirect indicator of oxidative stress, lipid peroxidation, was substantially decreased in the nondifferentiating strains. These findings suggest that the differentiative role of H(2) O(2) is expressed via induction of higher oxidative stress in the sclerotiogenic filamentous phytopathogenic fungi. This study shows that the direct marker of oxidative stress H(2) O(2) is involved in the sclerotial differentiation of the phytopathogenic filamentous fungi S. rolfsii, S. minor, S. sclerotiorum and R. solani, which could have potential biotechnological implications in terms of developing antifungal strategies by regulating intracellular H(2) O(2) levels. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  4. Antisecretory Effect of Hydrogen Sulfide on Gastric Acid Secretion and the Involvement of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Mard

    2014-01-01

    Full Text Available The present study was designed to investigate the effect of H2S on distention-induced gastric acid secretion. Fifty-two rats were randomly assigned to seven experimental groups. The gastric acid secretion was stimulated by gastric distention. Two groups of rats received L-cysteine or saline for 5 days before stimulation of the gastric acid secretion. Two groups of animals also received NaHS or saline just prior to stimulation of the gastric acid secretion. The effect of L-NAME and propargylglycine was also investigated. The mucosal levels of the gene expression of cyclooxygenase-2 (COX-2, endothelial nitric oxide synthase (eNOS, and H+/K+-ATPase α-subunit were quantified by qPCR and luminal concentrations of NO were determined. NaHS and L-cysteine decreased the gastric acid output in response to distention. The mRNA expression of H+/K+-ATPase α-subunit decreased by NaHS and L-cysteine as compared with the control group while gene expression of eNOS and COX-2 was upregulated. The inhibitory effect of NaHS on distention-induced gastric acid secretion was mitigated by pretreatment of L-NAME. These findings suggest the involvement of NO in mediating the antisecretory effect of H2S.

  5. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    Science.gov (United States)

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Two-dimensional vibrational analysis of the Lippincott-Schröder potential for OHO, NHO and NHN hydrogen bonds and the deuterium isotope effect

    Science.gov (United States)

    Saitoh, T.; Mori, K.; Itoh, R.

    1981-09-01

    Two-dimensional vibrational analyses [i.e. crude adiabatic approximation, SCF approximation and variational method (crude adiabatic basis function)] are performed on the hydrogen bond systems consisting of the Lippincott-Schröder potentials for the OHO, NHO and NHN bonds. The OHO and NHN systems are supposed to be linear and the bent structure is considered for the NHO system. The frequency shift for the hydrogen bond length variation and its deuterium substitution effects are in good agreement with experiment. The anomalies in the frequency ratio ν OH/ν OD at an O—O distance of 2.5 Å, and in the interminimum distance shift on deuteration at 2.5 Å are well explained as the difference of double minimum behavior between the vibrational states of proton and deuterium. It is also shown that the Lippincott-Schröder model for the OHO system supplies the general features for proton tunneling, proton delocalization beyond the barrier and other type processes in hydrogen bonds.

  7. Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats.

    Science.gov (United States)

    Tang, Xiao-Qing; Zhuang, Yuan-Yuan; Zhang, Ping; Fang, Heng-Rong; Zhou, Cheng-Fang; Gu, Hong-Feng; Zhang, Hui; Wang, Chun-Yan

    2013-01-01

    Formaldehyde (FA), a well-known indoor and outdoor pollutant, has been implicated as the responsible agent in the development of neurocognitive disorders. Hydrogen sulfide (H(2)S), the third gasotransimitter, is an endogenous neuromodulator, which facilitates the induction of hippocampal long-term potentiation, involving the functions of learning and memory. In the present study, we analyzed the effects of intracerebroventricular injection of FA on the formation of learning and memory and the generation of endogenous H(2)S in the hippocampus of rats. We found that the intracerebroventricular injection of FA in rats impairs the function of learning and memory in the Morris water maze and novel object recognition test and increases the formation of apoptosis and lipid peroxidation in the hippocampus. We also showed that FA exposure inhibits the expression of cystathionine β-synthase, the major enzyme responsible for endogenous H(2)S generation in hippocampus and decreases the production of endogenous H(2)S in hippocampus in rats. These results suggested that FA-disturbed generation of endogenous H(2)S in hippocampus leads to the oxidative stress-mediated neuron damage, ultimately impairing the function of learning and memory. Our findings imply that the disturbance of endogenous H(2)S generation in hippocampus is a potential contributing mechanism underling FA-caused learning and memory impairment.

  8. Hydrogen Peroxide Is Involved in Salicylic Acid-Elicited Rosmarinic Acid Production in Salvia miltiorrhiza Cell Cultures

    Directory of Open Access Journals (Sweden)

    Wenfang Hao

    2014-01-01

    Full Text Available Salicylic acid (SA is an elicitor to induce the biosynthesis of secondary metabolites in plant cells. Hydrogen peroxide (H2O2 plays an important role as a key signaling molecule in response to various stimuli and is involved in the accumulation of secondary metabolites. However, the relationship between them is unclear and their synergetic functions on accumulation of secondary metabolites are unknown. In this paper, the roles of SA and H2O2 in rosmarinic acid (RA production in Salvia miltiorrhiza cell cultures were investigated. The results showed that SA significantly enhanced H2O2 production, phenylalanine ammonia-lyase (PAL activity, and RA accumulation. Exogenous H2O2 could also promote PAL activity and enhance RA production. If H2O2 production was inhibited by NADPH oxidase inhibitor (IMD or scavenged by quencher (DMTU, RA accumulation would be blocked. These results indicated that H2O2 is secondary messenger for signal transduction, which can be induced by SA, significantly and promotes RA accumulation.

  9. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt

    1999-01-01

    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...... at room temperature). We calculate the implications for current induced desorption of H using a recently developed first principles model of electron inelastic scattering. The calculations show that inelastic scattering events with energy transfer n (h) over bar omega, where n>1, play an important role...

  10. Computationally-Assisted Approach to the Vibrational Spectra of Molecular Crystals: Study of Hydrogen-Bonding and Pseudo-Polymorphism13

    OpenAIRE

    Nolasco, Mariela M.; Amado, Ana M.; Ribeiro-Claro, Paulo J. A.

    2006-01-01

    A new computationally-assisted methodology (PiMM), which accounts for the effects of intermolecular interactions in the crystal, is applied to the complete assignment of the Raman and infrared vibrational spectra of room temperature forms of crystalline caffeine, theobromine, and theophylline. The vibrational shifts due to crystal packing interactions are evaluated from ab initio calculations for a set of suitable molecular pairs, using the B3LYP/6-31G* approach.The proposed methodology provi...

  11. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1991-01-01

    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  12. Self-trapped vibrational states in synthetic beta-sheet helices

    NARCIS (Netherlands)

    Schwartz, Erik; Schwartz, E.; Bodis, Pavol; Koepf, Matthieu; Cornelissen, Jeroen Johannes Lambertus Maria; Rowan, Alan E.; Woutersen, Sander; Nolte, Roeland J.M.

    2009-01-01

    Femtosecond vibrational pump–probespectroscopy on β-helical polyisocyanopeptides reveals vibrational self-trapping in the well-defined hydrogen-bonded side groups that is absent when non-hydrogen bonded monomers are mixed in.

  13. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  14. The Role of Symmetric-Stretch Vibration in Asymmetric-Stretch Vibrational Frequency Shift: the Case of 2CH Excitation Infrared Spectra of Acetylene-Hydrogen Van Der Waals Complex

    Science.gov (United States)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Zhai, Yu; Li, Hui

    2016-06-01

    Direct infrared spectra predictions for van der Waals (vdW) complexes rely on accurate intra-molecular vibrationally excited inter-molecular potential. Due to computational cost increasing with number of freedom, constructing an effective reduced-dimension potential energy surface, which only includes direct relevant intra- molecular modes, is the most feasible way and widely used in the recent potential studies. However, because of strong intra-molecular vibrational coupling, some indirect relevant modes are also play important roles in simulating infrared spectra of vdW complexes. The questions are how many intra-molecular modes are needed, and which modes are most important in determining the effective potential and direct infrared spectra simulations. Here, we explore these issues using a simple, flexible and efficient vibration-averaged approach, and apply the method to vdW complex C_2H_2-H_2. With initial examination of the intra-molecular vibrational coupling, an effective seven-dimensional ab initio potential energy surface(PES) for C_2H_2-H_2, which explicitly takes into account the Q_1,Q_2 symmetric-stretch and Q_3 asymmetric-stretch normal modes of the C_2H_2 monomer, has been generated. Analytic four-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for νb{3}(C_2H_2)=0 and 1 to the Morse/long-range(MLR) potential function form. We provide the first prediction of the infrared spectra and band origin shifts for C_2H_2-H_2 dimer. We particularly examine the dependence of the symmetric-stretch normal mode on asymmetric-stretch frequency shift for the complex.

  15. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Directory of Open Access Journals (Sweden)

    Nupoor Chowdhary

    Full Text Available Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2 production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs. Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs, 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach, we strongly

  16. The involvement of carbohydrate reserves in hydrogen photoproduction by the green alga Chlamydomonas reinhardtii; L'implication des reserves carbonees dans la photoproduction d'hydrogene chez l'algue verte Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Chochois, V.

    2009-09-15

    The unicellular green alga Chlamydomonas reinhardtii is able to produce hydrogen, using water as an electron donor, and sunlight as an energy source. Although this property offers interesting biotechnological perspectives, a major limitation is related to the sensitivity of hydrogenase to oxygen which is produced by photosynthesis. It had been previously shown that in conditions of sulfur deprivation, C. reinhardtii is able to produce hydrogen during several days (Melis et an. 2000). During this process, two pathways, one direct depending on photosystem II (PSII) activity and the other involving only the PSI, are involved, starch reserves being supposed to play a role in both of these pathways. The purpose of this phD thesis was to elucidate the mechanisms linking starch catabolism to the hydrogen photoproduction process. Firstly, the analysis of mutants affected in starch biosynthesis (sta6 and sta7) showed that if starch reserves are essential to the functioning of the indirect pathway, they are not involved in the direct one. Secondly, in order to identify metabolic steps and regulatory processes involved in starch breakdown, we developed a genetic approach based on the search of mutants affected in starch reserves mobilization. Eight mutant (std1 to std8) diversely affected in their ability to degrade starch after an accumulation phase have been isolated from an insertional mutant library of 15,000 clones. One of these mutants, std1, is affected in a kinase related to the DYRK family (dual-specificity tyrosine regulated serine threonine kinase). Although the targets of this putative kinase remain to be identified, the analysis of the granule bound proteome displayed profound alterations in the expression profile of starch phosphorylases, potentially involved in starch breakdown. STD1 represents the first starch catabolism regulator identified to date in plants. (author)

  17. Hydrogen bond dynamics in bulk alcohols.

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  18. Hydrogen bond dynamics in bulk alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S., E-mail: Maxim.Pchenitchnikov@RuG.nl [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  19. Hydrogen bond dynamics in bulk alcohols

    Science.gov (United States)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  20. Research paper effects of 13-HPODE on expression of genes involved in thyroid hormone synthesis, iodide uptake and formation of hydrogen peroxide in porcine thyrocytes.

    Science.gov (United States)

    Luci, Sebastian; Bettzieche, Anja; Brandsch, Corinna; Eder, Klaus

    2006-11-01

    It has been shown that dietary oxidized fats influence thyroid function in rats and pigs. Mechanism underlying this phenomenon are unknown. This study was performed to investigate whether 13-hydroperoxy-9,11 -octadecadienic acid (13-HPODE), a primary oxidation product of linoleic acid, affects expression of gene involved in thyroid hormone synthesis and formation of hydrogen peroxide in primary porcine thyrocytes. Thyrocytes were treated with 13-HPODE in concentrations between 20 and 100 microM. Cells treated with vehicle alone ("control cells") or with equivalent concentrations of linoleic acid were considered as controls. Treatment of cells with 13-HPODE did not affect cell viability but increased the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase (p < 0.05) compared to control cells or cells treated with linoleic acid. Relative mRNA concentrations of genes involved in thyroid hormone synthesis like sodium iodide symporter, thyrotropin receptor, and thyroid peroxidase, as well as iodide uptake, did not differ between cells treated with 13-HPODE and control cells or cells treated with linoleic acid. Treatment of cells with 13-HPODE, however, reduced the relative mRNA concentrations of dual oxidase-2 and the formation of hydrogen peroxide compared to control cells or cells treated with linoleic acid (p < 0.05). Because the production of hydrogen peroxide is rate-limiting for the synthesis of thyroid hormones, it is suggested that 13-HPODE could have an impact on the formation of thyroid hormones in the thyroid gland.

  1. Hydrogen bond dynamics in bulk alcohols

    NARCIS (Netherlands)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-01-01

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen

  2. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  3. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, D; Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Kobayashi, T; Okada, T; Kobayashi, T; Nelson, KA; DeSilvestri, S

    2005-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  4. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  5. Estrogen receptor α- (ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration.

    Science.gov (United States)

    Haffner-Luntzer, Melanie; Kovtun, Anna; Lackner, Ina; Mödinger, Yvonne; Hacker, Steffen; Liedert, Astrid; Tuckermann, Jan; Ignatius, Anita

    2018-01-20

    Mechanostimulation by low-magnitude high frequency vibration (LMHFV) has been shown to provoke anabolic effects on the intact skeleton in both mice and humans. However, experimental studies revealed that, during bone fracture healing, the effect of whole-body vibration is profoundly influenced by the estrogen status. LMHFV significantly improved fracture healing in ovariectomized (OVX) mice being estrogen deficient, whereas bone regeneration was significantly reduced in non-OVX, estrogen-competent mice. Furthermore, estrogen receptors α (ERα) and β (ERβ) were differentially expressed in the fracture callus after whole-body vibration, depending on the estrogen status. Based on these data, we hypothesized that ERs may mediate vibration-induced effects on fracture healing. To prove this hypothesis, we investigated the effects of LMHFV on bone healing in mice lacking ERα or ERβ. To study the influence of the ER ligand estrogen, both non-OVX and OVX mice were used. All mice received a femur osteotomy stabilized by an external fixator. Half of the mice were sham-operated or subjected to OVX 4 weeks before osteotomy. Half of each group received LMHFV with 0.3 g and 45 Hz for 20 min per day, 5 days per week. After 21 days, fracture healing was evaluated by biomechanical testing, μCT analysis, histomorphometry and immunohistochemistry. Absence of ERα or ERβ did not affect fracture healing in sham-treated mice. Wildtype (WT) and ERβ-knockout mice similarly displayed impaired bone regeneration after OVX, whereas ERα-knockout mice did not. Confirming previous data, in WT mice, LMHFV negatively affected bone repair in non-OVX mice, whereas OVX-induced compromised healing was significantly improved by vibration. In contrast, vibrated ERα-knockout mice did not display significant differences in fracture healing compared to non-vibrated animals, both in non-OVX and OVX mice. Fracture healing in ERβ-knockout mice was similarly affected by LMHFV as in WT

  6. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  7. Cadmium-Induced Hydrogen Accumulation Is Involved in Cadmium Tolerance in Brassica campestris by Reestablishment of Reduced Glutathione Homeostasis.

    Science.gov (United States)

    Wu, Qi; Su, Nana; Chen, Qin; Shen, Wenbiao; Shen, Zhenguo; Xia, Yan; Cui, Jin

    2015-01-01

    Hydrogen gas (H2) was recently proposed as a therapeutic antioxidant and signaling molecule in clinical trials. However, the underlying physiological roles of H2 in plants remain unclear. In the present study, hydrogen-rich water (HRW) was used to characterize the physiological roles of H2 in enhancing the tolerance of Brassica campestris against cadmium (Cd). The results showed that both 50 μM CdCl2 and 50%-saturated HRW induced an increase of endogenous H2 in Brassica campestris seedlings, and HRW alleviated Cd toxicity related to growth inhibition and oxidative damage. Seedlings supplied with HRW exhibited increased root length and reduced lipid peroxidation, similar to plants receiving GSH post-treatment. Additionally, seedlings post-treated with HRW accumulated higher levels of reduced glutathione (GSH) and ascorbic acid (AsA) and showed increased GST and GPX activities in roots. Molecular evidence illustrated that the expression of genes such as GS, GR1 and GR2, which were down-regulated following the addition of Cd, GSH or BSO, could be reversed to varying degrees by the addition of HRW. Based on these results, it could be proposed that H2 might be an important regulator for enhancing the tolerance of Brassica campestris seedlings against Cd, mainly by governing reduced glutathione homeostasis.

  8. Study of volumetric properties (PVT) of mixtures made of light hydrocarbons (C1-C4), carbon dioxide and hydrogen sulfide - Experimental measurements through a vibrating tube densimeter and modelling; Etude des proprietes volumetriques (PVT) d'hydrocarbures legers (C1-C4), du dioxyde de carbone et de l'hydrogene sulfure. Mesures par densimetrie a tube vibrant et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Rivollet, F.

    2005-12-15

    Various pollutant contents (i.e. carbon dioxide, hydrogen sulphide or other sulphur products) are found in produced oils. These latter must undergo a number of transformations and purifications. The design and dimensioning of the corresponding units can well be optimized only if one has reliable and accurate data about phase equilibria and volumetric properties and of course reliable and accurate modeling. This work was devoted partly to measurements of volumetric properties on three binary mixtures (ethane - hydrogen sulphide, ethane - propane and carbon dioxide - hydrogen sulphide). These measurements were carried out using equipment, comprising a vibrating tube densimeter (Paar, model DMA 512 P), which was especially designed and built for this work. The binary mixtures were studied in the 253 to 363 K temperature range from at pressures up to either 20 or 40 MPa. Two calibration methods of the vibrating tube were used: the FPMC method (Forced Path Mechanical Calibration) described in the literature and an original method containing neural network, developed herein. The study undertaken about the modeling of volumetric properties made it possible to highlight the inadequacy of the traditional use of cubic equations of state to represent simultaneously volumetric properties and phase equilibria. Among the equations of state investigated, a close attention however was paid to cubic equations of state because of their very great use in the oil field. A new tool was found to adapt cubic equations of state to the simultaneous and satisfactory representation of volumetric properties and phase equilibria. It concerns the coupling of the cubic Redlich-Kwong-Soave equation of state with volume correction through a neural network. This new model was tested successfully, it makes it possible to benefit from the existing work of representation of phase equilibria (mixing rules and interaction coefficients) while improving calculation of the volumetric data.

  9. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy.

    Science.gov (United States)

    Bruijn, Jeroen R; van der Loop, Tibert H; Woutersen, Sander

    2016-03-03

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 ± 0.1 (as opposed to n = 1.7 observed upon inducing ice nucleation and growth in the same sample), which indicates a transition from one liquid phase to another. Two-dimensional infrared (2D-IR) spectroscopy shows that the initial and final phases have different hydrogen-bond structures: the former has a single Gaussian distribution of hydrogen-bond lengths, whereas the latter has a bimodal distribution consisting of a broad distribution and a narrower, ice-like distribution. The 2D-IR spectrum of the final phase is identical to that of ice/glycerol at the same temperature. Combined with the kinetic data this suggests that the liquid-liquid transformation is immediately followed by a rapid formation of small (probably nanometer-sized) ice crystals.

  10. Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus

    Directory of Open Access Journals (Sweden)

    Gerrit J Schut

    2012-05-01

    Full Text Available Pyrococcus furiosus grows optimally near 100°C by fermenting carbohydrates to produce hydrogen (H2 or, if elemental sulfur (S0, is present hydrogen sulfide instead. It contains two cytoplasmic hydrogenases, SHI and SHII, that use NADP(H as an electron carrier, and a membrane bound hydrogenase (MBH, that utilizes the redox protein ferredoxin. We previously constructed deletion strains lacking SHI and/or SHII and showed that they exhibited no obvious phenotype. This study has now been extended to include biochemical analyses and growth studies using the ΔSHI and ΔSHII deletion strains together with strains lacking a functional MBH (ΔMbhL. Hydrogenase activities in cytoplasmic extracts of ΔSHII and the parent strain were similar but were much lower (<10% in the ΔSHI strain, and no activity was detected in the ΔSHIΔSHII double deletion strain, indicating that SHI is responsible for most of the cytoplasmic hydrogenase activity. In contrast, the ΔmbhL strain showed no growth in the absence of S0, confirming the hypothesis that, in the absence of S0, MBH is the only enzyme that can dispose of reductant (as H2 generated during sugar oxidation. The deletion strain devoid of all three hydrogenases also grew only in the presence of S0 and did not produce any detectable H2. When grown in the presence of limiting S0, both H2S and H2 were produced by the parent and ΔSHI/ΔSHII strains. A significant amount of H2 was also produced by the ΔmbhL strain, showing that SHI can produce H2 from NADPH in vivo, although this does not enable significant growth of ΔmbhL in the absence of S0. We propose that the physiological function of SHI is to recycle H2 and provide a link between external H2 and the intracellular pool of NADPH needed for biosynthesis. This likely has a distinct energetic advantage in the environment, but it is clearly not required for growth of the organism under the usual laboratory conditions. The function of SHII, however, remains

  11. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  12. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    Science.gov (United States)

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  13. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  14. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  15. Quantum modelling of hydrogen chemisorption on graphene and graphite

    Science.gov (United States)

    Karlický, František; Lepetit, Bruno; Lemoine, Didier

    2014-03-01

    The chemisorption of hydrogen on graphene or graphite is studied within a quantum formalism involving a subsystem coupled to a phonon bath. The subsystem includes the hydrogen atom approaching the surface perpendicularly right on top of a carbon atom which puckers out of the surface. The bath includes the acoustic and optical phonon modes vibrating perpendicularly to the surface. Couplings between subsystem and bath are obtained with a periodic density functional theory calculation. Trapping probabilities are obtained as a function of the hydrogen atom kinetic energy. These results are discussed in the light of the experimental hydrogenation studies performed on graphite by Zecho et al. [J. Chem. Phys. 117, 8486 (2002)] and on graphene by Haberer et al. [Adv. Mater. 23, 4497 (2011)].

  16. Quantum modelling of hydrogen chemisorption on graphene and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Karlický, František, E-mail: frantisek.karlicky@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Tř. 17. listopadu 12, 771 46 Olomouc (Czech Republic); Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Laboratoire Collisions Agrégats Réactivité, IRSAMC and UMR5589 du CNRS, Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse cedex (France)

    2014-03-28

    The chemisorption of hydrogen on graphene or graphite is studied within a quantum formalism involving a subsystem coupled to a phonon bath. The subsystem includes the hydrogen atom approaching the surface perpendicularly right on top of a carbon atom which puckers out of the surface. The bath includes the acoustic and optical phonon modes vibrating perpendicularly to the surface. Couplings between subsystem and bath are obtained with a periodic density functional theory calculation. Trapping probabilities are obtained as a function of the hydrogen atom kinetic energy. These results are discussed in the light of the experimental hydrogenation studies performed on graphite by Zecho et al. [J. Chem. Phys. 117, 8486 (2002)] and on graphene by Haberer et al. [Adv. Mater. 23, 4497 (2011)].

  17. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  18. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  19. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  20. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    Science.gov (United States)

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Mechanisms involved in the inhibition of glycolysis by cyanide and antimycin A in Candida albicans and its reversal by hydrogen peroxide. A common feature in Candida species.

    Science.gov (United States)

    Peña, Antonio; Sánchez, Norma Silvia; González-López, Omar; Calahorra, Martha

    2015-12-01

    In Candida albicans, cyanide and antimycin A inhibited K(+) transport, not only with ethanol-O2 as the substrate, but also with glucose. The reason for this was that they inhibited not only respiration, but also fermentation, decreasing ATP production. Measurements of oxygen levels in cell suspensions allowed identification of the electron pathways involved. NADH fluorescence levels increased in the presence of the inhibitors, indirectly indicating lower levels of NAD(+) and so pointing to glyceraldehyde-3-phosphate dehydrogenase as the limiting step responsible for the inhibition of glycolysis, which was confirmed by the levels of glycolytic intermediaries. The cyanide effect could be reversed by hydrogen peroxide, mainly due to an activity by which H2O2 can be reduced by electrons flowing from NADH through a pathway that can be inhibited by antimycin A, and appears to be a cytochrome c peroxidase. Therefore, the inhibition of glycolysis by the respiratory inhibitors seems to be due to the decreased availability of NAD(+), resulting in a decreased activity of glyceraldehyde-3-phosphate dehydrogenase. Compartmentalization of pyridine nucleotides in favor of the mitochondria can contribute to explaining the low fermentation capacity of C. albicans. Similar results were obtained with three C. albicans strains, Candida dubliniensis and, to a lower degree, Candida parapsilosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  3. Comparison of the cis-bending and C-H stretching vibration on the reaction of C2H2+ with H2 using laser induced reactions.

    Science.gov (United States)

    Schlemmer, Stephan; Asvany, Oskar; Giesen, Thomas

    2005-04-07

    Laser induced reaction (LIR) of C2H2(+) + H2 in a 22-pole ion trap at 90 K has been employed to detect the v3 C-H stretching vibration and the v5 cis bending vibration of the acetylene parent ion using the wide tunability of the free electron laser FELIX. The vibrational frequency of the bending vibration, omega5, and the corresponding Renner-Teller parameter, epsilon5, are determined to be 710 cm(-1) and 0.03, respectively. These results differ quite substantially from previous experimental work but are in line with the most recent and advanced theoretical work. The dependence of the LIR-signal of the two vibrational modes is studied systematically with respect to the laser power, storage time, and number density of the hydrogen collision partner. A reaction scheme describing all steps involved in the LIR process is set up. The corresponding rate equation system is solved numerically. From this solution the lifetimes for the vibrational excited states, tau3 = (3 +/- 1) ms and t5 = (200 +/- 50) ms and the vibrational dipole moments micro3 = 0.19(2) D and micro2 = 0.21(2) D are determined under the assumption that the excited parent ion relaxes or reacts with a net rate coefficient equal to the Langevin limit. The lifetime for the C-H stretching vibration is in agreement with a previous LIR experiment and with ab initio calculations. C-H stretching turns out to be about an order of magnitude more efficient than bending in promoting hydrogen abstraction. This strong mode dependence is discussed on the basis of the energetics for hydrogen abstraction and a possible inhibition of complex formation in the entrance channel of the C2H2+..H2 collision system.

  4. The normal modes of lattice vibrations of ice XI

    Science.gov (United States)

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-01-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm−1 and 310 cm−1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199

  5. Silane plus molecular hydrogen as a possible pathway to metallic hydrogen.

    Science.gov (United States)

    Yao, Yansun; Klug, Dennis D

    2010-12-07

    The high-pressure behavior of silane, SiH(4), plus molecular hydrogen was investigated using a structural search method and ab initio molecular dynamics to predict the structures and examine the physical origin of the pressure-induced drop in hydrogen intramolecular vibrational (vibron) frequencies. A structural distortion is predicted at 15 GPa from a slightly strained fcc cell to a rhombohedral cell that involves a small volume change. The predicted equation of state and the pressure-induced drop in the hydrogen vibron frequencies reproduces well the experimental data (Strobel TA, Somayazulu M, Hemley RJ (2009) Phys Rev Lett 103:065701). The bond weakening in H(2) is induced by intermolecular interactions between the H(2) and SiH(4) molecules. A significant feature of the high-pressure structures of SiH(4)(H(2))(2) is the dynamical behavior of the H(2) molecules. It is found that H(2) molecules are rotating in this pressure range whereas the SiH(4) molecules remain rigid. The detailed nature of the interactions of molecular hydrogen with SiH(4) in SiH(4)(H(2))(2) is therefore strongly influenced by the dynamical behavior of the H(2) molecules in the high-pressure structure. The phase with the calculated structure is predicted to become metallic near 120 GPa, which is significantly lower than the currently suggested pressure for metallization of bulk molecular hydrogen.

  6. An unexpected double Diels-Alder reaction of (E)-2-bromo-4-aryl-1,3-pentadiene involving [1,5]-hydrogen migration and HBr elimination: synthesis of bicyclo[2.2.2]octene derivatives.

    Science.gov (United States)

    Huang, Pingping; Liu, Lingyan; Chang, Weixing; Li, Jing

    2015-03-01

    An unexpected double Diels-Alder (DDA) reaction of (E)-2-bromo-4-aryl-1,3-pentadiene was developed and resulted in a series of "butterfly-like" bicyclo[2.2.2]octene derivatives in moderate to good yields without the need for a metal catalyst. The proposed mechanism involves a [1,5]-sigmatropic hydrogen migration and HBr elimination. Through this decisive [1,5]-hydrogen shift step, the electronic properties and steric hindrance of the conjugated diene substrate are completely altered and the DDA reaction of this potential diene synthon is successfully achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Kinetic theory for DNA melting with vibrational entropy

    Science.gov (United States)

    Sensale, Sebastian; Peng, Zhangli; Chang, Hsueh-Chia

    2017-10-01

    By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.

  8. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  9. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Liu, Shu-Yun; Li, Dan; Zeng, Hai-Ying; Kan, Li-Yuan; Zou, Wei; Zhang, Ping; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-11-01

    Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.

  10. Hydrogen Peroxide and Nitric Oxide are Involved in Salicylic Acid-Induced Salvianolic Acid B Production in Salvia miltiorrhiza Cell Cultures

    Directory of Open Access Journals (Sweden)

    Hongbo Guo

    2014-05-01

    Full Text Available Hydrogen peroxide (H2O2 and nitric oxide (NO are key signaling molecules in cells whose levels are increased in response to various stimuli and are involved in plant secondary metabolite synthesis. In this paper, the roles of H2O2 and NO on salvianolic acid B (Sal B production in salicylic acid (SA-induced Salvia miltiorrhiza cell cultures were investigated. The results showed that H2O2 could be significantly elicited by SA, even though IMD (an inhibitor of NADPH oxidase or DMTU (a quencher of H2O2 were employed to inhibit or quench intracellular H2O2. These elicited H2O2 levels significantly increased NO production by 1.6- and 1.46 fold in IMD+SA and DMTU+SA treatments, respectively, and induced 4.58- and 4.85-fold Sal B accumulation, respectively. NO was also markedly elicited by SA, in which L-NNA (an inhibitor of NO synthase and cPTIO (a quencher of NO were used to inhibit or quench NO within cells, and the induced NO could significantly enhance H2O2 production by 1.92- and 1.37-fold in L-NNA+SA and cPTIO+SA treatments, respectively, and 3.27- and 1.50-fold for Sal B accumulation, respectively. These results indicate that elicitation of SA for either H2O2 or NO was independent, and the elicited H2O2 or NO could act independently or synergistically to induce Sal B accumulation in SA-elicited cells.

  11. Involvement of NF-κB in the upregulation of cystathionine-γ-lyase, a hydrogen sulfide-forming enzyme, and bladder pain accompanying cystitis in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Tsubota, Maho; Sekiguchi, Fumiko; Kawabata, Atsufumi

    2017-10-17

    Hydrogen sulfide (H2 S) is generated from L-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE), and promotes nociception by targeting multiple molecules such as Cav 3.2 T-type Ca(2+) channels. Bladder pain accompanying cyclophosphamide (CPA)-induced cystitis in mice has been shown to involve the functional upregulation of the CSE/H2 S/Cav 3.2 pathway. Therefore, we investigated whether NF-κB, as an upstream signal of the CSE/H2 S system, contributes to bladder pain in mice with CPA-induced cystitis. Bladder pain-like nociceptive behavior was observed in CPA-treated mice, and referred hyperalgesia was evaluated by the von Frey test. Isolated bladder weights were assessed to estimate bladder swelling, and protein levels were measured by Western blotting. CPA, administered i.p., induced nociceptive behavior, referred hyperalgesia and increased bladder weights in mice. β-cyano-L-alanine, a reversible selective CSE inhibitor, prevented CPA-induced nociceptive behavior, referred hyperalgesia, and, in part, increases in bladder weight. CPA markedly increased phosphorylated NF-κB p65 levels in the bladder, an effect that was prevented by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor. PDTC and curcumin, which inhibits NF-κB signals, abolished CPA-induced nociceptive behavior, referred hyperalgesia and, in part, increases in bladder weight. CPA caused the overexpression of CSE in the bladder, and this was prevented by PDTC or curcumin. The CPA-induced activation of NF-κB signals appeared to cause CSE overexpression in the bladder, contributing to bladder pain and in part swelling, possibly through H2 S/Cav 3.2 signaling. Therefore, NF-κB-inhibiting compounds including curcumin may be useful for the treatment of cystitis-related bladder pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwen; Wang, Xiyao [Department of Clinical Laboratory, The second Affiliated Hospital of Harbin Medical University, Harbin 150081 (China); Liang, Xiaohui [Department of Radiology, Central Hospital of the Red Cross, Harbin 150080 (China); Wu, Jichao; Dong, Shiyun; Li, Hongzhu [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China); Jin, Meili [Department of Clinical Laboratory, The second Affiliated Hospital of Harbin Medical University, Harbin 150081 (China); Sun, Dianjun [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150086 (China); Zhang, Weihua [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China); Zhong, Xin, E-mail: xzhong1111@163.com [Department of Pathophysiology, Harbin Medical University, Harbin 150081 (China)

    2016-09-10

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H{sub 2}S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H{sub 2}S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H{sub 2}S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H{sub 2}S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca{sup 2+}]{sub i} and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H{sub 2}S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21{sup Cip/WAK−1} and Calponin decreased. The CaSR agonist or exogenous H{sub 2}S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H{sub 2}S is related to the PLC-IP{sub 3} receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H{sub 2}S in high homocysteine VSMCs. • CaSR modulated the CSE/H{sub 2}S are related to the PLC-IP{sub 3}R and Ca{sup 2+}-CaM signal pathways. • Inhibition of H{sub 2}S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  13. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  14. Tuning the halogen/hydrogen bond competition: a spectroscopic and conceptual DFT study of some model complexes involving CHF2I.

    Science.gov (United States)

    Nagels, Nick; Geboes, Yannick; Pinter, Balazs; De Proft, Frank; Herrebout, Wouter A

    2014-07-01

    Insight into the key factors driving the competition of halogen and hydrogen bonds is obtained by studying the affinity of the Lewis bases trimethylamine (TMA), dimethyl ether (DME), and methyl fluoride (MF) towards difluoroiodomethane (CHF(2) I). Analysis of the infrared and Raman spectra of solutions in liquid krypton containing mixtures of TMA and CHF(2) I and of DME and CHF(2) I reveals that for these Lewis bases hydrogen and halogen-bonded complexes appear simultaneously. In contrast, only a hydrogen-bonded complex is formed for the mixtures of CHF(2) I and MF. The complexation enthalpies for the C-H⋅⋅⋅Y hydrogen-bonded complexes with TMA, DME, and MF are determined to be -14.7(2), -10.5(5) and -5.1(6) kJ mol(-1), respectively. The values for the C-I⋅⋅⋅Y halogen-bonded isomers are -19.0(3) kJ mol(-1) for TMA and -9.9(8) kJ mol(-1) for DME. Generalization of the observed trends suggests that, at least for the bases studied here, softer Lewis bases such as TMA favor halogen bonding, whereas harder bases such as MF show a substantial preference for hydrogen bonding. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  16. Liquid mixtures involving hydrogenated and fluorinated chains: (p, ρ, T, x) surface of (ethanol + 2,2,2-trifluoroethanol), experimental and simulation.

    Science.gov (United States)

    Duarte, Pedro; Silva, Marcelo; Rodrigues, Djêide; Morgado, Pedro; Martins, Luís F G; Filipe, Eduardo J M

    2013-08-22

    The effect of mixing hydrogenated and fluorinated molecules that simultaneously interact through strong hydrogen bonding was investigated: (ethanol + 2,2,2-trifluoroethanol) binary mixtures were studied both experimentally and by computer simulation. This mixture displays a very complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The excess volumes are large and positive (unlike those of mixtures of hydrogenated alchools), while the excess enthalpies are large and negative (contrasting with those of mixtures of alkanes and perfluoroalkanes). In this work, the liquid density of the mixtures was measured as a function of composition, at several temperatures from 278.15 to 353.15 K and from atmospheric pressure up to 70 MPa. The corresponding excess molar volumes, compressibilities, and expansivities were calculated over the whole (p, ρ, T, x) surface. In order to obtain molecular level insight, the behavior of the mixture was also studied by molecular dynamics simulation, using the OPLS-AA force field. The combined analysis of the experimental and simulation results indicates that the peculiar phase behavior of this system stems from a balance between the weak dispersion forces between the hydrogenated and fluorinated groups and a preferential hydrogen bond between ethanol and 2,2,2-trifluoroethanol. Additionally, it was observed that a 25% reduction of the F-H dispersive interaction in the simulations brings agreement between the experimental and simulated excess enthalpy but produces no effect in the excess volumes. This reveals that the main reason causing the volume increase in these systems is not entirely related to the weak dispersive interactions, as it is usually assumed, and should thus be connected to the repulsive part of the intermolecular potential.

  17. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  18. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  19. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens

    DEFF Research Database (Denmark)

    Rand, Kasper D; Adams, Christopher M; Zubarev, Roman A

    2008-01-01

    scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon...... ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited...

  20. Sites involved in intra- and interdomain allostery associated with the activation of factor VIIa pinpointed by hydrogen-deuterium exchange and electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Song, Hongjian; Olsen, Ole H; Persson, Egon

    2014-01-01

    enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form...

  1. Solvent effects on a Diels-Alder reaction involving a cationic diene: Consequences of the absence of hydrogen-bond interactions for accelerations in aqueous media

    NARCIS (Netherlands)

    van der Wel, Gerben K.; Wijnen, Jan W.; Engberts, Jan B.F.N.

    1996-01-01

    In order to study the influence of hydrogen-bond interactions on the accelerations of Diels-Alder reactions in water and highly aqueous mixed solvent systems, second-order rate constants for the Diels-Alder reaction of acridizinium bromide (1a) with cyclopentadiene (CP) have been measured in aqueous

  2. Coumarin or benzoxazinone bearing benzimidazolium and bis(benzimidazolium) salts; involvement in transfer hydrogenation of acetophenone derivatives and hCA inhibition

    OpenAIRE

    Mert Olgun Karataş; Serkan Dayan; Nilgün Kayacı; Çiğdem Bilen; Emre Yavuz; Nahit Gencer; Bülent Alıcı; Nilgün Ozpozan Kalaycıoğlu; Oktay Arslan

    2015-01-01

    Four new salts of benzimidazolium and bis(benzimidazolium) which include coumarin or benzoxazinone moieties were synthesized and the structures of the newly synthesized compounds were elucidated on the basis of spectral analyses such as 1H-NMR, 13C-NMR, HSQC, IR, LC-MS and elemental analysis. Benzimidazolium salts were used intensively as N-heterocyclic carbene (NHC) precursors in the various catalytic reactions such as transfer hydrogenation (TH), C-H bond activation, Heck, Suzuki reaction e...

  3. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  4. Ultrafast Dynamics of Hydrogen Bond Breaking and Making in the Excited State of Fluoren-9-one: Time-Resolved Visible Pump-IR Probe Spectroscopic Study.

    Science.gov (United States)

    Ghosh, Rajib; Mora, Aruna K; Nath, Sukhendu; Palit, Dipak K

    2017-02-09

    The fluoren-9-one (FL) molecule, with a single hydrogen bond-accepting site (C═O group), has been used as a probe for investigation of the dynamics of a hydrogen bond in its lowest excited singlet (S1) state using the subpicosecond time-resolved visible pump-IR probe spectroscopic technique. In 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), a strong hydrogen bond-donating solvent, the formation of an FL-alcohol hydrogen-bonded complex in the ground electronic (S0) state is nearly complete, with a negligible concentration of the FL molecule remaining free in solution. In addition to the presence of a band due to the hydrogen-bonded complex in the transient IR spectrum recorded immediately after photoexcitation of FL in HFIP solution, appearance of the absorption band due to a free C═O stretch provides confirmatory evidence of ultrafast photodissociation of hydrogen bonds in some of the complexes formed in the S0 state. The peak-shift dynamics of the C═O stretch bands reveal two major relaxation pathways, namely, vibrational relaxation in the S1 state of the free FL molecules and the solvent reorganization process in the hydrogen-bonded complex. The latter process follows bimodal exponential dynamics involving hydrogen bond-making and hydrogen bond-reorganization processes. The similar lifetimes of the S1 states of the FL molecules, both free and hydrogen-bonded, suggest establishment of a dynamic equilibrium between these two species in the excited state. However, investigations in two other weaker hydrogen bond-donating solvents, namely, trifluoroethanol (TFE) and perdeuterated methanol (CD3OD), reveal different features of peak-shift dynamics because of the prominence of the vibrational relaxation process over the hydrogen bond-reorganization process during the early time.

  5. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  6. Insights into the spontaneity of hydrogen bond formation between formic acid and phthalimide derivatives.

    Science.gov (United States)

    Júnior, Rogério V A; Moura, Gustavo L C; Lima, Nathalia B D

    2016-11-01

    We evaluated a group of phthalimide derivatives, which comprise a convenient test set for the study of the multiple factors involved in the energetics of hydrogen bond formation. Accordingly, we carried out quantum chemical calculations on the hydrogen bonded complexes formed between a sample of phthalimide derivatives with formic acid with the intent of identifying the most important electronic and structural factors related to how their strength and spontaneity vary across the series. The geometries of all species considered were fully optimized at DFT B3LYP/6-31++G(d,p), RM1, RM1-DH2, and RM1-D3H4 level, followed by frequency calculations to determine their Gibbs free energies of hydrogen bond formation using Gaussian 2009 and MOPAC 2012. Our results indicate that the phthalimide derivatives that form hydrogen bond complexes most favorably, have in their structures only one C=O group and at least one NH group. On the other hand, the phthalimide derivatives predicted to form hydrogen bonds least favorably, possess in their structures two carbonyl groups, C=O, and no NH group. The ability to donate electrons and simultaneously receive one acidic hydrogen is the most important property related to the spontaneity of hydrogen bond formation. We further chose two cyclic compounds, phthalimide and isoindolin-1-one, in which to study the main changes in molecular, structural and spectroscopic properties as related to the formation of hydrogen bonds. Thus, the greatest ability of the isoindolin-1-one compound in forming hydrogen bonds is evidenced by the larger effect on the structural, vibrational, and chemical shifts properties associated with the O-H group. In summary, the electron-donating ability of the hydrogen bond acceptor emerged as the most important property differentiating the spontaneity of hydrogen bond formation in this group of complexes.

  7. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.

    Science.gov (United States)

    Oka, Kaneo; Hayashi, Teruhiko; Matsumoto, Nobuya; Yanase, Hideshi

    2008-09-01

    We observed a rapid decrease in hydrogen sulfide content in the final stage of beer fermentation that was attributed to yeast and not to the purging of carbon dioxide (CO(2)) gas. The well known immature off-flavor in beer due to hydrogen sulfide (H(2)S) behavior during beer fermentation was closely investigated. The H(2)S decrease occurred during the final stage of fermentation when the CO(2)-evolution rate was extremely small and there was a decrease in the availability of fermentable sugars, suggesting that the exhaustion of fermentable sugars triggered the decrease in H(2)S. An H(2)S-balance analysis suggested that the H(2)S decrease might have been caused due to sulfide uptake by yeast. Further investigation showed that the time necessary for H(2)S to decrease below the sensory threshold was related to the number of suspended yeast cells. This supported the hypothesis that yeast cells contributed to the rapid decrease in H(2)S during the final stage of beer fermentation.

  8. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  9. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  10. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    Science.gov (United States)

    Allodi, Marco A.

    . We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab

  11. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  12. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  13. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  14. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  15. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  16. Coumarin or benzoxazinone bearing benzimidazolium and bis(benzimidazolium salts; involvement in transfer hydrogenation of acetophenone derivatives and hCA inhibition

    Directory of Open Access Journals (Sweden)

    Mert Olgun Karataş

    2015-10-01

    Full Text Available Four new salts of benzimidazolium and bis(benzimidazolium which include coumarin or benzoxazinone moieties were synthesized and the structures of the newly synthesized compounds were elucidated on the basis of spectral analyses such as 1H-NMR, 13C-NMR, HSQC, IR, LC-MS and elemental analysis. Benzimidazolium salts were used intensively as N-heterocyclic carbene (NHC precursors in the various catalytic reactions such as transfer hydrogenation (TH, C-H bond activation, Heck, Suzuki reaction etc. With the prospect of potential NHC precursor properties of the synthesized compounds, they were employed in the (TH reaction of p-substitute acetophenones (acetophenone, p-methyl acetophenone, p-chloro acetophenone and good yields were observed. Coumarin compounds are known as inhibitor of carbonic anhydrase and inhibition effects of the synthesized compounds on human carbonic anhydrases (hCA were investigated as in vitro. The in vitro results demonstrated that all compounds inhibited hCA I and hCA II activity. Among the synthesized compounds 1,4-bis(1-((6,8-dimethyl-2H-chromen-2-one-4-ylmethylbenzimidazolium-3-ylbutane dichloride was found to be the most active IC50= 5.55 mM and 6.06 mM for hCA I and hCA II, respectively.

  17. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haifeng; Yu Shuqiong; Sun Zhengqi; Xie Xiucai; Liu Weiping [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China); Fu Zhengwei, E-mail: azwfu2003@yahoo.com.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032 (China)

    2010-09-01

    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H{sub 2}O{sub 2}) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H{sub 2}O{sub 2} treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H{sub 2}O{sub 2} has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis.

  18. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    Science.gov (United States)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  19. Hydrogen Generator

    Science.gov (United States)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  20. Vibrational frequency fluctuations of ionic vibrational probe in water: Theoretical study with molecular dynamics simulation

    Science.gov (United States)

    Okuda, Masaki; Higashi, Masahiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2017-09-01

    The vibrational dynamics of SCN- in H2O are theoretically investigated by molecular dynamics simulations. Based on the vibrational solvatochromism theory, we calculate the frequency-frequency time correlation function of the SCN anti-symmetric stretching mode, which is characterized by time constants of 0.13 and 1.41 ps. We find that the frequency fluctuation is almost determined by the electrostatic interaction from the water molecules in the first-hydration shell. The collective dynamics of the water molecules in the first-hydration shell is found to be similar to that of bulk water, though the hydrogen bond between the ion and water molecule is very strong.

  1. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism.

    Science.gov (United States)

    Pan, Li-Long; Liu, Xin-Hua; Gong, Qi-Hai; Zhu, Yi-Zhun

    2011-06-01

    The present study attempts to investigate the effects of S-propargyl-cysteine (SPRC), a sulfur-containing amino acid, on lipopolysaccharide (LPS)-induced inflammatory response in H9c2 cardiac myocytes. We found that SPRC prevented nuclear factor-κB (NF-κB) activation assessed by NF-κB p65 phosphorylation and IκBα degradation, suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and intracellular reactive oxygen species (ROS) production. Furthermore, incubation of H9c2 cells with SPRC induced phosphorylation of Akt in a time- and concentration-dependent manner. In addition, SPRC attenuated LPS-induced mRNA and protein expression of tumor necrosis factor-α (TNF-α), and mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS). The effects of SPRC were abolished by cystathionine γ-lyase [CSE-an enzyme that synthesizes hydrogen sulfide (H(2)S)] inhibitor, DL: -propargylglycine (PAG), SPRC-induced Akt phosphorylation and TNF-α release was also abolished by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Furthermore, SPRC also increased LPS-induced down-regulation expression of CSE and H(2)S level in H9c2 cells. PAG abolished SPRC-induced up-regulation of H(2)S level. Therefore, we concluded that SPRC produced an anti-inflammatory effect in LPS-stimulated H9c2 cells partly through the CSE/H(2)S pathway by impairing IκBα/NF-κB signaling and by activating PI3K/Akt signaling pathway.

  2. Isotope dependent, temperature regulated, energy repartitioning in a low-barrier, short-strong hydrogen bonded cluster

    NARCIS (Netherlands)

    Li, X. H.; Oomens, J.; Eyler, J. R.; Moore, D. T.; Iyengar, S. S.

    2010-01-01

    We investigate and analyze the vibrational properties, including hydrogen/deuterium isotope effects, in a fundamental organic hydrogen bonded system using multiple experimental (infrared multiple photon dissociation and argon-tagged action spectroscopy) and computational techniques. We note a

  3. H/D isotopic recognition in hydrogen bonded systems: H/D isotopic self-organization effects in the IR spectra of the hydrogen bond in 2-methylimidazole crystals.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Stolarczyk, Agnieszka

    2012-01-01

    Polarized IR spectra of H12(3)45 2-methylimidazole and of its H1D2(3)45, D1H2(3)45 and D12(3)45 deuterium derivative crystals are reported and interpreted within the limits of the "strong-coupling" theory. The spectra interpretation facilitated the recognition of the H/D isotopic "self-organization" phenomenon, which depends on a non-random distribution of protons and deuterons in the lattices of isotopically diluted crystal samples. The H/D isotopic "self-organization" mechanism engaged all four hydrogen bonds from each unit cell. These effects basically resulted from the dynamical co-operative interactions involving adjacent hydrogen bonds in each hydrogen bond chain. A weaker exciton coupling involved the closely spaced hydrogen bonds; each belonging to a different chain of associated 2-methylimidazole molecules. The high intensity of the narrow band at ca. 1880cm(-1) was interpreted as the result of coupling between the γ(N-H⋯N) proton bending "out of plane" vibration overtone and the ν(N-H) proton stretching vibration. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    Science.gov (United States)

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  5. Sum frequency generation vibrational spectroscopy studies of adsorbates on Pt(111): Studies of CO at high pressures and temperatures, coadsorbed with olefins and its role as a poison in ethylene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kyle Yi [Univ. of California, Berkeley, CA (United States)

    2000-12-01

    High pressure high temperature CO adsorption and coadsorption with ethylene and propylene on Pt(111) was monitored in situ with infrared-visible sum frequency generation (SFG). At high pressures and high temperatures, CO dissociates on a Pt(111) surface to form carbon. At 400 torr CO pressure and 673K, CO modifies the Pt(111) surface through a carbonyl intermediate, and dissociates to leave carbon on the surface. SFG was used to follow the CO peak evolution from monolayer adsorption in ultra high vacuum (UHV) to 400 torr CO pressure. At this high pressure, a temperature dependence study from room temperature to 823K was carried out. Auger electron spectroscopy was used to identify carbon on the surface CO coadsorption with ethylene and CO coadsorption with propylene studies were carried out with 2-IR 1-visible SFG. With this setup, two spectral ranges covering the C-H stretch range and the CO stretch range can be monitored simultaneously. The coadsorption study with ethylene reveals that after 5L ethylene exposure on a Pt(111) surface to form ethylidyne , CO at high pressures cannot completely displace the ethylidyne from the surface. Instead, CO first adsorbs on defect sites at low pressures and then competes with ethylidyne for terrace sites at high pressures. Propylene coadsorption with CO at similar conditions shows that propylidyne undergoes conformation changes with increased CO pressure and at 1 torr, is absent from the Pt(111) surface. Experiments on CO poisoning of ethylene hydrogenation was carried by 2-IR 1-visible SFG. At 1 torr CO,10 torr ethylene and 100 torr hydrogen, CO was found to block active sites necessary for ethylene hydrogenation, Above 425K, CO desorbs from the surface to allow ethylene hydrogenation to occur. The gas phase species were monitored by gas chromatography.

  6. Geometric phase effects in ultracold hydrogen exchange reaction

    Science.gov (United States)

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, N.

    2016-10-01

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 (v=4,j=0) \\to HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. Experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  7. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil

    Science.gov (United States)

    Singh, J. S.

    2014-09-01

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke’s exchange in conjunction with Lee-Yang-Parr’s correlation functional and Becke’s three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) are given by 25a‧ + 11a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 6 modes (4a‧ + 2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations.

  8. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  9. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  10. Fatigue failure in metal bellows due to flow-induced vibrations

    Science.gov (United States)

    Daniels, C. M.; Fargo, C. G.

    1969-01-01

    To prevent fatigue due to flow-induced vibrations in metal bellows connected to ducts carrying liquid hydrogen, a study was made which shows that the flexure lines are in general a function of the vibration coupling between the fluid and bellows structure, and the nature of the external environment.

  11. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  12. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  13. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  14. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  15. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  16. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  17. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  18. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  19. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  20. Ethanol extract of Prunus mume fruit attenuates hydrogen peroxide-induced oxidative stress and apoptosis involving Nrf2/HO-1 activation in C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    Full Text Available ABSTRACT The fruit of the Prunus mume (Siebold Siebold & Zucc., Rosaceae (Korean name: Maesil has long been used as a health food or valuable medicinal material in traditional herb medicine in Southeast Asian countries. In this study, we determined the potential therapeutic efficacy of the ethanol extract of P. mume fruits (EEPM against H2O2-induced oxidative stress and apoptosis in the murine skeletal muscle myoblast cell line C2C12, and sought to understand the associated molecular mechanisms. The results indicated that exposure of C2C12 cells to H2O2 caused a reduction in cell viability by increasing the generation of intracellular reactive oxygen species and by disrupting mitochondrial membrane permeability, leading to DNA damage and apoptosis. However, pretreatment of the cells with EEPM before H2O2 exposure effectively attenuated these changes, suggesting that EEPM prevented H2O2-induced mitochondria-dependent apoptosis. Furthermore, the increased ex-pression and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2 and up-regulation of heme oxygenase-1 (HO-1, a phase II antioxidant enzyme, were detected in EEPM-treated C2C12 cells. We also found that zinc protoporphyrin IX, an HO-1 inhibitor, attenuated the protective effects of EEPM against H2O2-induced reactive oxygen species accumulation and cytotoxicity. Therefore, these results indicate that the activation of the Nrf2/HO-1 pathway might be involved in the protection of EEPM against H2O2-induced cellular oxidative damage. In conclusion, these results show that EEPM contributes to the prevention of oxidative damage and could be used as a nutritional agent for oxidative stress-related diseases.

  1. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  2. Intramolecular hydrogen bonding in myricetin and myricitrin

    DEFF Research Database (Denmark)

    Vojta, Danijela; Dominkovic, Katarina; Miljanic, Snezana

    2017-01-01

    -rhamnoside subunit. The rotamers are characterized by different hydrogen bonded cross-links between the hydroxy groups of the rhamnoside substituent and the parent MCE moiety. The predicted OH stretching frequencies are compared with vibrational spectra of MCE and MCI recorded for the sake of this investigation (IR...

  3. Vibration and noise characteristics of hook type olive harvesters

    African Journals Online (AJOL)

    Jane

    2011-08-03

    Aug 3, 2011 ... involves circulatory disorders (for example, vibration white finger), sensory and motor disorders and mus- culoskeletal disorders, which may occur in workers who use vibrating handheld tools (Vegara et al., 2008). The noise exposure can cause different disorders and symptoms. Levels from 66 dB (A) to 85 ...

  4. Hydrogen Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  5. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  6. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  7. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  8. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  9. Ash removal by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Rank, V.; von Hartmann, G.B.

    1942-10-17

    This method for the production of high-quality electrode coke involved the hydrogenation of coal to a filterable bitumen product. The hydrogenation and splitting processes were carried out to end at high-molecular-weight bitumens with some lighter oils produced. Variations in temperature, pressure, and throughput determined the type and amount of bitumens. Proper conditions allowed sufficient middle oil for recirculation as pasting oil as well as for increasing filterability by dilution. This partial hydrogenation could be performed without the addition of hydrogen, if hydrogen-producing aromatic compounds, such as tetraline or cresol, were used as pasting oils. For 700-atm hydrogenation, it was found that the Upper Silesian coal was the best with respect to yield, filterability, and recovery of the recycle oils. The lower pressures gave a better filterability while sacrificing yield and recycle oil. The more severe the hydrogenating conditions, the lighter the bitumens and the lower the melting point. For the range of 300 to 600 atm, it was found that filterability improved with increased temperature and decreased with a pressure gain. Larger throughputs caused relatively moderate decreases in filterability. The use of iron catalysts decreased filterability while changing gas and pasting-oil content had little effect. The optimum conditions established a pasting-oil equilibrium with the best filterability. Greater degrees of hydrogenation or splitting produced more recycle middle oils but decreased filterability, thus only the necessary paste oil was produced. By selecting proper conditions, an ashfree bituminous binder could be produced, as used in the production of the Soederberg electrode. 2 tables, 2 graphs

  10. H/D isotopic and temperature effects in the polarized IR spectra of hydrogen-bond cyclic trimers in the crystal lattices of acetone oxime and 3,5-dimethylpyrazole.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Garbacz, Aleksandra

    2012-11-29

    Polarized IR spectra of hydrogen-bonded acetone oxime and 3,5-dimethylpyrazole crystals were measured at 293 and 77 K in the ν(X-H) and ν(X-D) band frequency ranges. These crystals contain molecular trimers in their lattices. The individual crystal spectral properties remain in a close relation with the electronic structure of the two different molecular systems. We show that a vibronic coupling mechanism involving the hydrogen-bond protons and the electrons on the π-electronic systems in the molecules determines the way in which the vibrational exciton coupling between the hydrogen bonds in the trimers occurs. A strong coupling in 3,5-dimethylpyrazole trimers prefers a "tail-to-head"-type Davydov coupling widespread via the π-electrons. A weak through-space exciton coupling in acetone oxime trimers involves three adjacent hydrogen bonds in each cycle. The relative contribution of each exciton coupling mechanism in the trimer spectra generation is temperature and the molecular electronic structure-dependent. This explains the observed difference in the temperature-induced evolution of the compared spectra. The mechanism of the H/D isotopic "self-organization" processes in the crystal hydrogen bonds was also analyzed. The two types of the hydrogen-bond trimers exhibit the same way, in which the H/D isotopic recognition mechanism occurs. In acetone oxime and 3,5-dimethylpyrazole trimers, identical hydrogen isotope atoms exist in these entire hydrogen-bond systems.

  11. Hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.

    1942-10-16

    This report mentioned that not very severe demands for purity were made on the hydrogen used in hydrogenation of coal or similar raw materials, because the catalysts were not very sensitive to poisoning. However, the hydrogenation plants tried to remove most impurities anyway by means of oil washes. The report included a table giving the amount of wash oil used up and the amount of hydrogen lost by dissolving into the wash oil used up and the amount of hydrogen lost by dissolving into the wash oil in order to remove 1% of various impurities from 1000 m/sup 3/ of the circulating gas. The amounts of wash oil used up were 1.1 m/sup 3/ for removing 1% nitrogen, 0.3 m/sup 3/ for 1% carbon monoxide, 0.03 m/sup 3/ for 1% methane. The amount of hydrogen lost was 28 m/sup 3/ for 1% nitrogen, 9 m/sup 3/ for 1% methane and ranged from 9 m/sup 3/ to 39 m/sup 3/ for 1% carbon monoxide and 1 m/sup 3/ to 41 m/sup 3/ for carbon dioxide depending on whether the removal was done in liquid phase or vapor phase and with or without reduction of the oxide to methane. Next the report listed and described the major processes used in German hydrogenation plants to produce hydrogen. Most of them produced water gas, which then had its carbon monoxide changed to carbon dioxide, and the carbon oxides washed out with water under pressure and copper hydroxide solution. The methods included the Winkler, Pintsch-Hillebrand, and Schmalfeldt-Wintershall processes, as well as roasting of coke in a rotating generator, splitting of gases formed during hydrogenation, and separation of cokery gas into its components by the Linde process.

  12. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  13. Wind-induced vibration of stay cables

    Science.gov (United States)

    2007-08-01

    Cable-stayed bridges have become the form of choice over the past several decades for bridges in the medium- to long-span range. In some cases, serviceability problems involving large amplitude vibrations of stay cables under certain wind and rain co...

  14. Free-Vibration Analysis of Structures

    Science.gov (United States)

    Gupta, K. K.

    1985-01-01

    Improved numerical procedure more than twice as fast as previous methods. Unified numerical algorithm efficiently solves free-vibration problems of stationary or spinning structures with or without viscous or structural damping. Algorithm used to solve static problems involving multiple loads and to solve quadratic matrix eigenvalue problems associated with finite-dynamic-element structural discretization.

  15. Laserlike Vibrational Instability in Rectifying Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Hedegård, Per; Brandbyge, Mads

    2011-01-01

    We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission and...

  16. A novel feature of intramolecular vibrational redistribution in propargyl alcohol and propargyl amine

    Science.gov (United States)

    Makarov, A. A.; Malinovsky, A. L.; Ryabov, E. A.

    2008-09-01

    Intramolecular vibrational redistribution (IVR) from the terminal acetylene mode νHC has been studied for four molecules: H -CC-CH3 (propyne), H -CC-CH2Cl (propargyl chloride), H -CC-CH2OH (propargyl alcohol), and H -CC-CH2NH2 (propargyl amine). The experiments were performed with the room-temperature gases. The transition ∣0⟩→∣1⟩ in the mode νHC was pumped by a short laser pulse. Anti-Stokes spontaneous Raman scattering was used as a probe. The measured parameters were the de-excitation rate W and the dilution factor σ defined as the relative level of the residual energy in the νHC mode at long pump-probe delay times. The pair of these values {W,σ} allowed us to determine the density ρeff of those vibrational-rotational states, which are involved in IVR from state ∣1⟩. For two molecules, HCCCH3 and HCCCH2Cl, the experimental results were consistent with the suggestion that all close vibrational-rotational states with the same total angular momentum J and symmetry participate in the IVR regardless of the other rotator quantum number K (in the case of HCCCH3) or Ka (in the case of HCCCH2Cl) and the vibrational quantum numbers as well. For the other two molecules, HCCCH2OH and HCCCH2NH2, this effect was also present, yet the experimental results revealed certain restrictions. We have obtained a satisfactory theoretical fit with the assumption that the low-frequency torsion vibration of the hydrogen atom in the hydroxyl group (in the case of HCCCH2OH) or hydrogen atoms in the amine group (in the case of HCCCH2NH2) does not participate in the IVR. This assumption can be treated as a challenge to future studies of these molecules by high-resolution spectroscopy and various double-resonance and pump-probe techniques.

  17. A novel feature of intramolecular vibrational redistribution in propargyl alcohol and propargyl amine.

    Science.gov (United States)

    Makarov, A A; Malinovsky, A L; Ryabov, E A

    2008-09-21

    Intramolecular vibrational redistribution (IVR) from the terminal acetylene mode nu(HC) has been studied for four molecules: H-C[Triple Bond]C-CH(3) (propyne), H-C[Triple Bond]C-CH(2)Cl (propargyl chloride), H-C[Triple Bond]C-CH(2)OH (propargyl alcohol), and H-C[Triple Bond]C-CH(2)NH(2) (propargyl amine). The experiments were performed with the room-temperature gases. The transition mid R:0-->mid R:1 in the mode nu(HC) was pumped by a short laser pulse. Anti-Stokes spontaneous Raman scattering was used as a probe. The measured parameters were the de-excitation rate W and the dilution factor sigma defined as the relative level of the residual energy in the nu(HC) mode at long pump-probe delay times. The pair of these values {W,sigma} allowed us to determine the density rho(eff) of those vibrational-rotational states, which are involved in IVR from state mid R:1. For two molecules, HCCCH(3) and HCCCH(2)Cl, the experimental results were consistent with the suggestion that all close vibrational-rotational states with the same total angular momentum J and symmetry participate in the IVR regardless of the other rotator quantum number K (in the case of HCCCH(3)) or K(a) (in the case of HCCCH(2)Cl) and the vibrational quantum numbers as well. For the other two molecules, HCCCH(2)OH and HCCCH(2)NH(2), this effect was also present, yet the experimental results revealed certain restrictions. We have obtained a satisfactory theoretical fit with the assumption that the low-frequency torsion vibration of the hydrogen atom in the hydroxyl group (in the case of HCCCH(2)OH) or hydrogen atoms in the amine group (in the case of HCCCH(2)NH(2)) does not participate in the IVR. This assumption can be treated as a challenge to future studies of these molecules by high-resolution spectroscopy and various double-resonance and pump-probe techniques.

  18. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  19. Hydrogen-Bonding Modification in Biuret Under Pressure.

    Science.gov (United States)

    Borstad, Gustav M; Ciezak-Jenkins, Jennifer A

    2017-02-02

    Biuret (C2H5N3O2) has been studied to 30 GPa by Raman spectroscopy and 50 GPa by X-ray diffraction. Raman peaks exhibit shoulders and splitting that suggests that the molecules undergo reorientation in response to compression. These are observed in three pressure ranges: the first from 3-5 GPa, the second from 8-12 GPa, and finally from 16-20 GPa. The particular modes in the sample that are observed to change in the Raman are strongly linked to the molecular vibrations involving the N-H and the C═O bond, which are most strongly coupled to the hydrogen-bonded lattice structure. The X-ray diffraction suggests that the crystal maintains a monoclinic structure to the highest pressures studied. Although there was a considerable degree of hysteresis observed in some X-ray runs, all the changes observed under pressure are reversible.

  20. High-speed ground transportation noise and vibration impact assessment.

    Science.gov (United States)

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  1. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  2. Desert ants learn vibration and magnetic landmarks.

    Directory of Open Access Journals (Sweden)

    Cornelia Buehlmann

    Full Text Available The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.

  3. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  4. Classical electricity analysis of the coupling mechanisms between admolecule vibrations and localized surface plasmons in STM for vibration detectability

    Science.gov (United States)

    Inaoka, Takeshi; Uehara, Yoich

    2017-08-01

    The presence of a dynamic dipole moment in the gap between the tip of a scanning tunneling microscope (STM) and a substrate, both of which are made of metal, produces a large dynamic dipole moment via the creation of localized surface plasmons (LSPLs). With regard to the vibration-induced structures that have been experimentally observed in STM light emission spectra, we have incorporated the effect of the phonon vibrations of an admolecule below the STM tip into the local response theory, and we have evaluated the enhancement of the dynamic dipole involving phonon vibrations. Our analysis shows how effectively this vibration becomes coupled with the LSPLs. This was shown using three mechanisms that considered the vibrations of a dipole-active molecule and the vibrations of a charged molecule emitting and receiving tunneling electrons. In each of the mechanisms, phonon vibrations with angular frequency ωp shifted each LSPL resonance by ℏωp or by a multiple of ℏωp . The phonon effect was negligibly small when the position of the dipole-active molecule vibrated with ωp, but it was largest and most detectable when the point charge corresponding to the admolecule at the surface of the tip vibrated with ωp. It was found that a series of LSPL resonances with or without phonon-energy shifts can be characterized by a few dominant orders of multipole excitations, and these orders become higher as the resonance energy increases.

  5. Theory of single molecule vibrational spectroscopy and microscopy.

    Science.gov (United States)

    Lorente, N; Persson, M

    2000-10-02

    We have carried out a density functional study of vibrationally inelastic tunneling in the scanning tunneling microscope of acetylene on copper. Our approach is based on a many-body generalization of the Tersoff-Hamann theory. We explain why only the carbon-hydrogen stretch modes are observed in terms of inelastic and elastic contributions to the tunneling conductance. The inelastic tunneling is found to be efficient and highly localized in space without any resonant interaction and to be governed by a vibration-induced change in tunneling amplitude.

  6. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  7. Hydrogen usage

    Energy Technology Data Exchange (ETDEWEB)

    1942-10-22

    This short tabular report listed the number of m/sup 3/ of hydrogen required for a (metric) ton of product for various combinations of raw material and product in a hydrogenation procedure. In producing auto gasoline, bituminous coal required 2800 m/sup 3/, brown coal required 2400 m/sup 3/, high-temperature-carbonization tar required 2100 m/sup 3/, bituminous coal distillation tar required 1300 m/sup 3/, brown-coal low-temperature-carbonization tar required 850 m/sup 3/, petroleum residues required 900 m/sup 3/, and gas oil required 500 m/sup 3/. In producing diesel oil, brown coal required 1900 m/sup 3/, whereas petroleum residues required 500 m/sup 3/. In producing diesel oil, lubricants, and paraffin by the TTH (low-temperature-hydrogenation) process, brown-coal low-temperature-carbonization tar required 550 m/sup 3/. 1 table.

  8. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  9. Measurements of capillary system degradation. [liquid hydrogen propellant retention capability

    Science.gov (United States)

    Warren, R. P.; Butz, J. R.; Maytum, C. D.; Fester, D. A.; Young, G. M.

    1975-01-01

    The effects of vibration, flow transients, and warm gas pressurization on capillary acquisition system performance were evaluated. The degradation observed under wide band random and high frequency sinusoidal vibration was of a substantially different nature from that obtained under low frequency sinusoidal vibration. With the former, ingestion of small gas bubbles into the liquid region was correlated by a hydrostatic model, while the capillary stability was destroyed and liquid was lost from the liquid region with the latter. No degradation was observed as a result of flow transients in a flight-type multichannel screen device, but it was observed in a transparent laboratory device. Liquid hydrogen outflow tests were conducted with a multilayer dual-screen-liner system with both helium and hydrogen pressurant gases. The tendency towards dryout of the device with hydrogen pressurant was found to increase with increasing pressurant temperature and length of prepressurization period. Dryout did not occur with helium pressurant.

  10. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  11. Phonon driven proton transfer in crystals with short strong hydrogen bonds

    NARCIS (Netherlands)

    Fontaine-Vive, F.; Johnson, M.R.; Kearley, G.J.; Cowan, J.A.; Howard, J.A.K.; Parker, S.F.

    2006-01-01

    Recent work on understanding why protons migrate with increasing temperature in short, strong hydrogen bonds is extended here to three more organic, crystalline systems. Inelastic neutron scattering and density functional theory based simulations are used to investigate structure, vibrations, and

  12. Vibrational lineshapes of adsorbates on solid surfaces

    Science.gov (United States)

    Ueba, H.

    A review is presented of the current activity in vibrational spectroscopy of adsorbates on metal surfaces. A brief introduction of the representative spectroscopies is given to demonstrate the rich information contained in vibrational spectra, which are characterized by their intensity, peak position and width. Analysis of vibrational spectra enables us to gain the deep insight into not only the local character of adsorption site or geometry, but also the dynamical interaction between the adsorbates or between the adsorbate and the substrate. Some recent instructive experimental results, mostly of a CO molecule adsorbed on various metal surfaces, are accompanied by the corresponding theoretical recipe for vibrational excitation mechanisms. Wide spread experimental results of the C-O stretching frequency of CO adsorbed on metal surfaces are discussed in terms of the chemical effect involving the static and dynamic charge transfers between the chemisorbed CO and metal, and also of the electrostatic dipole-dipole interaction between the molecules. The central subject of this review is directed to the linshapes characterized by the vibrational relaxation processes of adsorbates. A simple and transparent model is introduced to show that the characteristic decay time of the correlation function for the vibrational coordinates is the key quantity to determine the spectral lineshapes. Recent experimental results focused on a search for an intrinsic broadening mechanism are reviewed in the light of the so-called T1 (energy) and T2 (phase) relaxation processesof the vibrational excited states of adsorbates. Those are the vibrational energy dissipation into the elementary excitation, such as phonons or electron-hole pairs in the metal substrate, and pure dephasing due to the energy exchange with the sorroundings. The change of width and frequency by varying the experimental variables, such as temperature or isotope effect, provides indispensable knowledge for the dynamical

  13. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  14. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  15. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  16. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  17. Vibrational spectroscopic characterization of fluoroquinolones

    Science.gov (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  18. Experimental and DFT dimer modeling studies of the H-bond induced-vibration modes of l-β-Homoserine.

    Science.gov (United States)

    Yalagi, Shashikala; Tonannavar, J; Yenagi, Jayashree

    2017-06-15

    The vibrational spectra for l-β-Homoserine have been measured (IR absorption: 4000-400cm(-1)/Raman spectra: 4000-200cm(-1)). Characteristic vibrational modes of ammonium (-NH3(+)), carboxylate (-CO2(-)) and hydroxyl (-OH) groups across the 3700-1400cm(-1) are all identified to have originated in inter-molecular hydrogen bonding involving these functional groups. DFT calculations at B3LYP/6-311++G(d, p) level have yielded a single neutral monomer in the gas phase. Since as a member of the amino acids which are known to possess zwitterionic structure in condensed phase, the neutral monomer of l-β-Homoserine is optimized to a zwitterionic structure in a water medium. Consideration of two dimer structures, one dimer with -NH‧‧‧O bond and another -OH‧‧‧O bond, has given rise to vibrational modes that satisfactorily fit to all the observed absorption and Raman bands. It is found that the dimer with -OH‧‧‧O bond (binding energy, 8.896kcal/mol) is more tightly bound than the dimer with -NH‧‧‧O bond (8.363kcal/mol). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  20. The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution.

    Science.gov (United States)

    Zhang, Haochen; Goddard, William A; Lu, Qi; Cheng, Mu-Jeng

    2018-01-10

    The rational design of electrocatalysts to convert CO2 to fuel requires predicting the effect of the electrode potential (U) on the binding and structures of the intermediates involved in CO2 electrochemical reduction (CO2ER). In this study, we used grand-canonical quantum mechanics (GC-QM) to keep the potential constant during the reactions (rather than keeping the charge constant as in standard QM) to investigate the effect of U on adsorption free energies (ΔGs) of 14 CO2ER intermediates on Cu(111) as well as the intermediates involved in the competitive hydrogen evolution reaction (HER). In contrast to most previous theoretical studies where ΔGs were calculated under constant charge (= 0, neutral), we calculated ΔGs under constant potential (U = 0.0, -0.5, -1.0, and -1.5 VSHE). By comparing the ΔGs calculated under constant U (= 0.0 VSHE) to those calculated under constant charge, we found differences up to 0.22 eV which would change the rates at 298 K by a factor of about 5300. In particular we found that the adsorption of species with a C[double bond, length as m-dash]O functional group (i.e., *COOH, *CO, and *CHO) strengthened by up to 0.16 eV as U became more negative by 1 V, whereas the adsorption of -O- species (i.e., *OH, *OCH3, *COH, and *CHOH) weakened by up to 0.20 eV. For the (111) index surfaces of Cu, Au, Ag, Ir, Ni, Pd, Pt and Rh, we investigated the effect of U on the reaction free energy (ΔG) at pH = 0 for the crucial elementary steps for CO2ER (*CO + (H+/e-) → *CHO, ΔG = (ΔG*CHO - ΔG*CO) + eU) and HER (* + (H+/e-) → *H, ΔG = ΔG*H + eU. Our results indicated that the influence of U on (ΔG*CHO - ΔG*CO) was metal dependent. In contrast, the energy for converting a proton in solution to H* on the surface, ΔG*H, was barely affected by U (for the studied metals). Overall we found substantial differences (MAD > 0.18 eV) between the ΔGs calculated under U = -1.0 VSHE (relevant to experiments) and those calculated under constant charge

  1. Versatile Hydrogen

    Indian Academy of Sciences (India)

    Hydrogen is probably the most intriguing ele- ment in the periodic table. Although it is only the seventh most abundant element on earth, it is the most abundant element in the uni- verse. It combines with almost all the ele- ments of the periodic table, except for a few transition elements, to form binary compounds of the type E.

  2. Water, Hydrogen Bonding and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available n this work, the properties of the water are briefly revisited. Though liquid water has a fleeting structure, it displays an astonishingly stable network of hydrogen bonds. Thus, even as a liquid, water possesses a local lattice with short range order. The presence of hydroxyl (O-H and hydrogen (H....OH2 bonds within water, indicate that it can simultaneously maintain two separate energy systems. These can be viewed as two very different temperatures. The analysis presented uses results from vibrational spec- troscopy, extracting the force constant for the hydrogen bonded dimer. By idealizing this species as a simple diatomic structure, it is shown that hydrogen bonds within wa- ter should be able to produce thermal spectra in the far infrared and microwave regions of the electromagnetic spectrum. This simple analysis reveals that the oceans have a physical mechanism at their disposal, which is capable of generating the microwave background.

  3. Vibration Characteristics of Roundabout Swing of HAWT Wind Wheel

    Directory of Open Access Journals (Sweden)

    Jian-long Ma

    2016-01-01

    Full Text Available Modal testing was used to show that the roundabout swing was a natural vibration mode of the wind wheel of a horizontal-axis wind turbine (HAWT. During the vibration, the blade root was simultaneously subjected to bending and rotary shear stresses. A method for indirect testing and determination of the dynamic frequencies of the typical vibrations of the wind wheel was developed, based on the frequency-holding characteristic of each subsignal during the transmission of the multiple mixed-vibration signals. The developed method enabled simple and accurate acquisition of the dynamic frequencies without destruction of the flow and structural fields. The dynamic vibration stress of the roundabout swing was found to be significantly stronger than those of the first- and second-order flexural vibrations of the blades. By a combination of numerical simulations and tests, it was determined that the pneumatic circumferential force was the primary determinant of the roundabout swing vibration frequencies, the relationship being quadratic. The roundabout swing vibration potentially offers new explanations and analytical pathways regarding the behavior of horizontal-axis wind turbines, which have been found to be frequently involved in fatigue-damage accidents within periods shorter than their design lives.

  4. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  5. Review of vibration effect during piling installation to adjacent structure

    Science.gov (United States)

    Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd

    2017-12-01

    Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.

  6. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  7. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  8. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  9. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  10. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  11. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  12. Hydrogen in metals

    CSIR Research Space (South Africa)

    Carter, TJ

    2001-04-01

    Full Text Available The effects of hydrogen on various metals and the use of metal hydrides for hydrogen storage are discussed. The mechanisms of, and differences between, hydrogen embrittlement and hydrogen attack of ferritic steels are compared, common sources...

  13. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  14. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail: yakashlev@yandex.ru

    2017-04-15

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  15. Vibration considerations for cryogenic tanks using glass bubbles insulation

    Science.gov (United States)

    Werlink, Rudy John; Fesmire, James; Sass, Jared P.

    2012-06-01

    The use of glass bubbles as an efficient and practical thermal insulation system hasbeen previously demonstrated in cryogenic storage tanks. One such example is a spherical,vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate hasbeen reduced by approximately 50 percent. Further applications may include non-stationarytanks such as mobile tankers and tanks with extreme duty cycles or exposed to significantvibration environments. Space rocket launch events and mobile tanker life cycles representtwo harsh cases of mechanical vibration exposure. A number of bulk fill insulationmaterials including glass bubbles, perlite powders, and aerogel granules were tested forvibration effects and mechanical behavior using a custom design holding fixture subjectedto random vibration on an Electrodynamic Shaker. The settling effects for mixtures ofinsulation materials were also investigated. The vibration test results and granular particleanalysis are presented with considerations and implications for future cryogenic tankapplications.

  16. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    Science.gov (United States)

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  17. Hydrogen bonded complexes of acetylene and boric acid: A matrix isolation infrared and ab initio study

    Science.gov (United States)

    Sundararajan, K.; Ramanathan, N.; Kar, Bishnu Prasad; Viswanathan, K. S.

    2011-04-01

    The infrared spectra of the hydrogen bonded complexes of acetylene-boric acid have been investigated in solid nitrogen matrix. We have observed the 1:1 acetylene-boric acid complex in the nitrogen matrix. Formation of the complex was evidenced from the shifts in the vibrational frequencies corresponding to the modes involving the acetylene and boric acid submolecules in the complex. The structure of the complexes and the energies were computed at HF, B3LYP and MP2 levels of theory using 6-31++G ** basis sets. Only one minimum was obtained, which corresponded to a complex with both O sbnd H⋯π and C sbnd H⋯O interactions. In this complex boric acid acts as a proton donor to the acetylene π-cloud and proton acceptor to the acidic hydrogen in acetylene. The computed vibrational frequencies of acetylene-boric acid complexes at B3LYP/6-31++G ** level corroborated well with the experimental frequencies. Calculations were also performed for the higher 2:1 and 3:1 acetylene-boric acid complexes.

  18. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Jay-Gerin, J.-P.; Frongillo, Y. [Sherbrooke Univ., PQ (Canada). Faculte de Medecine; Patau, J.P. [Toulouse-3 Univ., 31 (France)

    1996-02-01

    In the radiolysis of liquid water, different mechanisms for the formation of molecular hydrogen (H{sub 2}) are involved at different times after the initial energy disposition. It has been suggested that the contributions of the e{sub aq}{sup -} + e{sub aq}{sup -}, H + e{sub aq}{sup -} and H + H reactions between hydrated electrons (e{sub aq}{sup -}) and hydrogen atoms in the spurs are not sufficient to account for all of the observed H{sub 2} yield (0.45 molecules/100 eV) on the microsecond time scale. Addressing the question of the origin of an unscavengeable H{sub 2} yield of 0.15 molecules/100 eV produced before spur expansion, we suggest that the dissociative capture of the so-called vibrationally-relaxing electrons by H{sub 2}O molecules is a possible pathway for the formation of part of the initial H{sub 2} yield. Comparison of recent dissociative-electron-attachment H{sup -}-anion yield-distribution measurements from amorphous H{sub 2}O films with the energy spectrum of vibrationally-relaxing electrons in irradiated liquid water, calculated by Monte Carlo simulations, plays in favor of this hypothesis. (author).

  19. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  20. Temperature and H/D isotopic "self-organization" effects in the IR spectra of the hydrogen bond tetramer systems in 3,5-diphenylpyrazole and 4-methyl-1,2,4-triazolethione crystals.

    Science.gov (United States)

    Flakus, Henryk T; Hachuła, Barbara; Majchrowska, Aleksandra

    2012-08-02

    Polarized IR spectra of hydrogen-bonded 3,5-diphenylpyrazole and of 4-methyl-1,2,4-triazolethione crystals were measured at 293 and 77 K in the νN-H and νN-D band frequency ranges. These crystals contain molecular tetramers in their lattices. The individual crystal spectral properties remain in close relation with the electronic structure of the two different molecular systems. We show that a vibronic coupling mechanism involving the hydrogen bond protons and the electrons on the π-electronic systems in the molecules determines the way in which the vibrational exciton coupling between the hydrogen bonds in the tetramers occurs. A strong coupling in 3,5-diphenylpyrazole tetramers prefers a "tail-to-head"-type Davydov coupling widespread via the π-electrons. A weak through-space exciton coupling in 4-methyl-1,2,4-triazolethione tetramers involves two opposite hydrogen bonds in the cycles. The relative contributions of each exciton coupling mechanism in the tetramer spectra generation are temperature and the molecular electronic structure dependence. This explains the observed difference in the temperature-induced evolution of the compared spectra. The mechanism of the H/D isotopic ''self-organization'' processes in the crystal hydrogen bonds was also analyzed. The two types of hydrogen bond tetramers differ by the way in which the processes occur. In 3,5-diphenylpyrazole tetramers, identical hydrogen isotope atoms exist in the entire hydrogen bond system, whereas in the case of 4-methyl-1,2,4-triazolethione crystals, the H/D isotopic self-organization mechanism involves the opposite hydrogen bonds in a tetramer.

  1. Infrared intensities and charge mobility in hydrogen bonded complexes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta,” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-08-21

    The analytical model for the study of charge mobility in the molecules presented by Galimberti et al.[J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X–H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the –XH⋯Y– fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.

  2. The quantum structure of anionic hydrogen clusters

    Science.gov (United States)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  3. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu [JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440 (United States); Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Baraban, Joshua H. [Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Matthews, Devin A. [Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)

    2015-06-21

    We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  4. Theoretical studies of a hydrogen abstraction tool for nanotechnology

    OpenAIRE

    Musgrave, Charles B.; Perry, Jason K.; Merkle, Ralph C.; Goddard, William A.

    1991-01-01

    In the design of a nanoscale, site-specific hydrogen abstraction tool, the authors suggest the use of an alkynyl radical tip. Using ab initio quantum-chemistry techniques including electron correlation they model the abstraction of hydrogen from dihydrogen, methane, acetylene, benzene and isobutane by the acetylene radical. By conservative estimates, the abstraction barrier is small (less than 7.7 kcal mol^-1) in all cases except for acetylene and zero in the case of isobutane. Thermal vibrat...

  5. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  6. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  7. Temperature, H/D isotopic and Davydov-splitting effects in the polarized IR spectra of hydrogen bond chain systems: 1,2,4-Triazole and 3-methyl-2-oxindole crystals.

    Science.gov (United States)

    Hachuła, Barbara; Flakus, Henryk T; Polasz, Anna

    2014-01-01

    The spectral properties of two different hydrogen-bonded crystalline systems, 1,2,4-triazole and 3-methyl-2-oxindole, containing molecular chains in their lattices, were examined by polarized IR spectroscopy, aided by the calculations utilizing the "strong-coupling" model. The experimental and theoretical approaches have shown that the individual crystal spectral properties in IR remain in a close relation with the electronic structure of the individual molecular systems. A vibronic coupling mechanism involving the hydrogen bond protons and the electrons occupying the π-electronic orbitals in the molecules determines the way in which the vibrational exciton coupling between the hydrogen bonds in the crystals occurs. For the associating systems, which molecules contain large delocalized π-electronic systems coupled directly with H-bonds, strong exciton interactions involving the vibrationally excited hydrogen bonds in the chains prefer a "tail-to-head"-type Davydov-coupling widespread via the π-electrons. A weak through-space exciton coupling involves two closely-spaced hydrogen bonds belonging to two different adjacent chains in the case, when large π-electronic systems in the molecules are absent. The relative contribution of each exciton coupling mechanism in the chain system spectra generation is temperature-dependent. The two competing individual Davydov-coupling mechanism are responsible for the appearance in the polarized spectra of temperature-dependent Davydov-splitting effects differentiating the spectral properties of the two crystalline systems. The H/D isotopic ''self-organization'' phenomenon, depending on a non-random distribution of protons and deuterons in the crystal hydrogen bridges was also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  9. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  10. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  11. Vibrational spectra and normal coordinate analysis of plant growth regulator 1-naphthalene acetamide

    Science.gov (United States)

    Ravikumar, C.; Padmaja, L.; Hubert Joe, I.

    2010-02-01

    FT Raman and IR spectra of the biologically active molecule, 1-naphthalene acetamide (NA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers of NA have been calculated with the help of B3LYP density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The downshifting of NH 2 stretching wavenumber indicates the formation of intermolecular N-H⋯O hydrogen bonding. The NBO analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule.

  12. The effect of large amplitude motions on the transition frequency redshift in hydrogen bonded complexes

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Kjærgaard, Henrik Grum; Salmi, Teemu

    2014-01-01

    We describe the vibrational transitions of the donor unit in water dimer with an approach that is based on a three-dimensional local mode model. We perform a perturbative treatment of the intermolecular vibrational modes to improve the transition wavenumber of the hydrogen bonded OH......-stretching transition. The model accurately predicts the transition wavenumbers of the vibrations in water dimer compared to experimental values and provides a physical picture that explains the redshift of the hydrogen bonded OH-oscillator. We find that it is unnecessary to include all six intermolecular modes...

  13. Method for charging a hydrogen getter

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, C. Edwin (Golden, CO); Keyser, Matthew A. (Westminster, CO); Benson, David K. (Golden, CO)

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  14. Method for charging a hydrogen getter

    Science.gov (United States)

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  15. Hydrogen program summary Fiscal Year 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-03-01

    The annual program summary provides stakeholders within the hydrogen community with a snapshop of important advances that have occurred in the National Hydrogen Program over the fiscal year, including industry interactions and cooperation. The document will also be used to encourage additional potential industrial partners to join the Hydrogen Program Team. Fiscal Year 1994 marked a turning point for the Hydrogen Program, with a budget that grew significantly. The focus of the program was broadened to include development of hydrogen production technologies using municipal solid waste and biomass, in addition to an increased emphasis on industrial involvement and near-term demonstration projects. In order to maintain its near- and long-term balance, the Hydrogen Program will continue with basic, fundamental research that provides the long-term, high-risk, high-payoff investment in hydrogen as an energy carrier.

  16. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Science.gov (United States)

    Durndell, Lee J.; Parlett, Christopher M. A.; Hondow, Nicole S.; Isaacs, Mark A.; Wilson, Karen; Lee, Adam F.

    2015-03-01

    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C = O over C = C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C = O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes.

  17. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  18. Proton translocation in cytochrome c oxidase: insights from proton exchange kinetics and vibrational spectroscopy.

    Science.gov (United States)

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L

    2015-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLoS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  20. Local orientational order in liquids revealed by resonant vibrational energy transfer.

    Science.gov (United States)

    Panman, M R; Shaw, D J; Ensing, B; Woutersen, S

    2014-11-14

    We demonstrate that local orientational ordering in a liquid can be observed in the decay of the vibrational anisotropy caused by resonant transfer of vibrational excitations between its constituent molecules. We show that the functional form of this decay is determined by the (distribution of) angles between the vibrating bonds of the molecules between which energy transfer occurs, and that the initial drop in the decay reflects the average angle between nearest neighbors. We use this effect to observe the difference in local orientational ordering in the two hydrogen-bonded liquids ethanol and N-methylacetamide.

  1. Structural and vibrational spectral studies on hydrogen bonded salts ...

    Indian Academy of Sciences (India)

    compounds were optimized with the Density Functional Theory (DFT) using B3LYP function and the Hartree-. Fock (HF) level with a6-311++G(d ... which have more importance in the areas of molecular recognition, crystal engineering ... acceptor sites, viz., nitrogen and chlorine atoms in the present case. The present work ...

  2. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    Marx D and Hutter J 2000 in Modern methods and algorithms of quantum chemistry (ed) J Grotendorst. (NIC, FZ Jülich, ADDRESS) for downloads see . 27. Fuentes M, Guttorp P and Sampson P D 2007 in Statisti- cal methods for spatio-temporal systems, chapter 3 (eds).

  3. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  4. Perturbation calculations of the interaction energies between non-bonded hydrogen atoms - Part 2

    NARCIS (Netherlands)

    Laidlaw, W.G.; Lekkerkerker, H.N.W.; Wieser, H.

    1971-01-01

    Calculations of the interaction energy between non-bonded hydrogen atoms in the fragments A—H---H'—A' for selected displacements of the hydrogen atoms enable one to evaluate corrections to the force field due to the non-bonded interactions and to discuss the changes in the stretching vibration

  5. A computational investigation of the red and blue shifts in hydrogen ...

    Indian Academy of Sciences (India)

    MITRADIP Das

    Abstract. The present work reports results of computational investigations of hydrogen bonding, with regard to the most common red shift in the vibrational frequency, as well as the less common blue shift in several hydrogen bonded systems. A few new correlations of the frequency shifts with the calculated electrostatic ...

  6. A computational investigation of the red and blue shifts in hydrogen ...

    Indian Academy of Sciences (India)

    The presentwork reports results of computational investigations of hydrogen bonding, with regard to the most common red shift in the vibrational frequency, as well as the less common blue shift in several hydrogen bonded systems. A few new correlations of the frequency shifts with the calculated electrostatic parameters ...

  7. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations

    Science.gov (United States)

    2017-01-01

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute–water and water–water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy. PMID:28783431

  8. Signatures of Solvation Thermodynamics in Spectra of Intermolecular Vibrations.

    Science.gov (United States)

    Persson, Rasmus A X; Pattni, Viren; Singh, Anurag; Kast, Stefan M; Heyden, Matthias

    2017-09-12

    This study explores the thermodynamic and vibrational properties of water in the three-dimensional environment of solvated ions and small molecules using molecular simulations. The spectrum of intermolecular vibrations in liquid solvents provides detailed information on the shape of the local potential energy surface, which in turn determines local thermodynamic properties such as the entropy. Here, we extract this information using a spatially resolved extension of the two-phase thermodynamics method to estimate hydration water entropies based on the local vibrational density of states (3D-2PT). Combined with an analysis of solute-water and water-water interaction energies, this allows us to resolve local contributions to the solvation enthalpy, entropy, and free energy. We use this approach to study effects of ions on their surrounding water hydrogen bond network, its spectrum of intermolecular vibrations, and resulting thermodynamic properties. In the three-dimensional environment of polar and nonpolar functional groups of molecular solutes, we identify distinct hydration water species and classify them by their characteristic vibrational density of states and molecular entropies. In each case, we are able to assign variations in local hydration water entropies to specific changes in the spectrum of intermolecular vibrations. This provides an important link for the thermodynamic interpretation of vibrational spectra that are accessible to far-infrared absorption and Raman spectroscopy experiments. Our analysis provides unique microscopic details regarding the hydration of hydrophobic and hydrophilic functional groups, which enable us to identify interactions and molecular degrees of freedom that determine relevant contributions to the solvation entropy and consequently the free energy.

  9. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  10. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  11. Metabolic engineering to enhance bacterial hydrogen production

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2008-01-01

    Summary Hydrogen fuel is renewable, efficient and clean, and fermentative bacteria hold great promise for its generation. Here we use the isogenic Escherichia coli K‐12 KEIO library to rapidly construct multiple, precise deletions in the E. coli genome to direct the metabolic flux towards hydrogen production. Escherichia coli has three active hydrogenases, and the genes involved in the regulation of the formate hydrogen lyase (FHL) system for synthesizing hydrogen from formate via hydrogenase 3 were also manipulated to enhance hydrogen production. Specifically, we altered regulation of FHL by controlling the regulators HycA and FhlA, removed hydrogen consumption by hydrogenases 1 and 2 via the hyaB and hybC mutations, and re‐directed formate metabolism using the fdnG, fdoG, narG, focA, fnr and focB mutations. The result was a 141‐fold increase in hydrogen production from formate to create a bacterium (BW25113 hyaB hybC hycA fdoG/pCA24N‐FhlA) that produces the largest amount of hydrogen to date and one that achieves the theoretical yield for hydrogen from formate. In addition, the hydrogen yield from glucose was increased by 50%, and there was threefold higher hydrogen production from glucose with this strain. PMID:21261819

  12. Kinetics of hydrogen molecules in MAGNUM-PSI

    NARCIS (Netherlands)

    Baeva, M.; W. J. Goedheer,; Cardozo, N. J. L.

    2008-01-01

    Results from simulations of plasma and neutrals under conditions predictively characterizing the detached plasma regime in the linear machine MAGNUM-PSI are presented. The relaxation of the vibrationally excited hydrogen molecules is investigated in order to establish a relation between their

  13. Study on Hydrogen Interaction with Graphene, Graphene Hydroxide, and Lithiated Graphene

    Science.gov (United States)

    Adak, S.; Acatrinei, A. I.; Daemen, L. L.; Estes, B.; Hartl, M. H.; Larese, J. Z.

    2013-03-01

    Neutron vibrational spectroscopy, together with adsorption isotherm measurements, has been employed to investigate interaction of hydrogen with graphene, hydroxylated graphene, and lithium incorporated graphene. The adsorption studies of hydrogen on these materials indicate varying degrees of hydrogen storage capacity. Graphene is found to have significantly higher hydrogen uptake than graphite and graphite oxide. Neutron vibrational spectroscopy provides direct information concerning hydrogen dynamics including the occurrence of the rotational mode at 119 cm-1; slightly below the free rotor position observed for H2 rotation on graphite. We have also explored how the interaction of hydrogen changes when hydroxyl groups are attached onto the graphene surface and when lithium is incorporated into graphene. The outcome of these studies will also be discussed.

  14. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine)

    Science.gov (United States)

    Singh, J. S.

    2015-02-01

    group are distinctly separated from the CH/NH ring stretching frequencies. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of methyl group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the CH3 group in place of the hydrogen atom at the site of C5 atom on pyrimidine ring of uracil.

  15. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  16. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  17. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  18. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  19. Microalgal hydrogen production - A review.

    Science.gov (United States)

    Khetkorn, Wanthanee; Rastogi, Rajesh P; Incharoensakdi, Aran; Lindblad, Peter; Madamwar, Datta; Pandey, Ashok; Larroche, Christian

    2017-11-01

    Bio-hydrogen from microalgae including cyanobacteria has attracted commercial awareness due to its potential as an alternative, reliable and renewable energy source. Photosynthetic hydrogen production from microalgae can be interesting and promising options for clean energy. Advances in hydrogen-fuel-cell technology may attest an eco-friendly way of biofuel production, since, the use of H 2 to generate electricity releases only water as a by-product. Progress in genetic/metabolic engineering may significantly enhance the photobiological hydrogen production from microalgae. Manipulation of competing metabolic pathways by modulating the certain key enzymes such as hydrogenase and nitrogenase may enhance the evolution of H 2 from photoautotrophic cells. Moreover, biological H 2 production at low operating costs is requisite for economic viability. Several photobioreactors have been developed for large-scale biomass and hydrogen production. This review highlights the recent technological progress, enzymes involved and genetic as well as metabolic engineering approaches towards sustainable hydrogen production from microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  1. Ultrafast Vibrational Dynamics of Water Disentangled by Reverse Nonequilibrium Ab Initio Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Yuki Nagata

    2015-04-01

    Full Text Available Water is a unique solvent with strong, yet highly dynamic, intermolecular interactions. Many insights into this distinctive liquid have been obtained using ultrafast vibrational spectroscopy of water’s O-H stretch vibration. However, it has been challenging to separate the different contributions to the dynamics of the O-H stretch vibration in H_{2}O. Here, we present a novel nonequilibrium molecular dynamics (NEMD algorithm that allows for a detailed picture of water vibrational dynamics by generating nonequilibrium vibrationally excited states at targeted vibrational frequencies. Our ab initio NEMD simulations reproduce the experimentally observed time scales of vibrational dynamics in H_{2}O. The approach presented in this work uniquely disentangles the effects on the vibrational dynamics of four contributions: the delocalization of the O-H stretch mode, structural dynamics of the hydrogen bonded network, intramolecular coupling within water molecules, and intermolecular coupling between water molecules (near-resonant energy transfer between O-H groups. Our results illustrate that intermolecular energy transfer and the delocalization of the O-H stretch mode are particularly important for the spectral diffusion in H_{2}O.

  2. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  3. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  4. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  5. Strong enhancement of vibrational relaxation by Watson-Crick base pairing.

    Science.gov (United States)

    Woutersen, Sander; Cristalli, Gloria

    2004-09-15

    We have studied the ultrafast dynamics of NH-stretch vibrational excitations in Watson-Crick base pairs consisting of adenine and uracil derivatives. To estimate the influence of the A:U hydrogen bonding on the vibrational dynamics, we have also studied the uracil derivative in monomeric form. The vibrational relaxation of the NH-stretching mode is found to occur much faster in the Watson-Crick base pair than in monomeric uracil. From the delay dependence of the transient vibrational spectra, it can be concluded that both in base-paired and monomeric uracil, the energy relaxation takes place in two steps, the first step being a rapid transfer of energy from the NH-stretching mode to an accepting mode, the second step the relaxation of this accepting mode. The transient spectra show evidence that in the base pair the hydrogen bond between the nucleobases acts as the accepting mode, and that the hydrogen bonding between the bases is responsible for the extremely fast vibrational relaxation in this system.

  6. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  7. Photobiological production of hydrogen using cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Borthakur, D.; McKinley, K.R.; Bylina, E.J. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Cyanobacteria are capable of generating hydrogen using sunlight and water. In both Spirulina and Anabaena, there is a soluble reversible hydrogenase that is involved in hydrogen evolution under anaerobic conditions in the dark. In addition, the nitrogen-fixing cyanobacterium Anabaena produces hydrogen as a by-product of nitrogen fixation. Most of this hydrogen is recaptured by a membrane-bound uptake hydrogenase present in Anabaena cells. Experiments have continued to develop a gene transfer system in Spirulina in preparation for improved hydrogen production via genetic manipulation of the reversible hydrogenase. We have identified and characterized four restriction enzymes in Spirulina and cloned the genes for two methylases that protect their own DNA from cleavage by restriction enzymes. We have also cloned and sequenced parts of hupB and hupM genes involved in the synthesis of uptake hydrogenase in Anabaena. Successful cloning of these hup genes represents an important and necessary step in our project because this will enable us to construct Anabaena strains with enhanced hydrogen production ability by disrupting the hup genes involved in hydrogen uptake. We are also setting up a bio-reactor to determine the amount of hydrogen released by different Spirulina and Anabaena strains under different physiological conditions.

  8. Redox-controlled hydrogen bonding: turning a superbase into a strong hydrogen-bond donor.

    Science.gov (United States)

    Wild, Ute; Neuhäuser, Christiane; Wiesner, Sven; Kaifer, Elisabeth; Wadepohl, Hubert; Himmel, Hans-Jörg

    2014-05-12

    Herein the synthesis, structures and properties of hydrogen-bonded aggregates involving redox-active guanidine superbases are reported. Reversible hydrogen bonding is switched on by oxidation of the hydrogen-donor unit, and leads to formation of aggregates in which the hydrogen-bond donor unit is sandwiched by two hydrogen-bond acceptor units. Further oxidation (of the acceptor units) leads again to deaggregation. Aggregate formation is associated with a distinct color change, and the electronic situation could be described as a frozen stage on the way to hydrogen transfer. A further increase in the basicity of the hydrogen-bond acceptor leads to deprotonation reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Laser-induced photochemical gas-phase reactions of vibrationally excited triplet molecules

    Science.gov (United States)

    Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.

    2002-05-01

    Mechanisms and rates of laser-induced gas-phase reactions of vibrationally excited triplet ketones were studied after adding electron and hydrogen donors using time-resolved delayed fluorescence. The influence of various bimolecular competing processes on DF quenching was analyzed.

  10. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  11. On the equivalence of conformational and enantiomeric changes of atomic configuration for vibrational circular dichroism

    NARCIS (Netherlands)

    Heshmat, M.; Nicu, V.P.; Baerends, E.J.

    2012-01-01

    We study systematically the vibrational circular dichroism (VCD) spectra of the conformers of a simple chiral molecule, with one chiral carbon and an "achiral" alkyl substituent of varying length. The vibrational modes can be divided into a group involving the chiral center and its direct neighbors

  12. The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations

    Science.gov (United States)

    Li, Yin; Lukács, András; Bordács, Sándor; Móczár, János; Nyitrai, Miklós; Hebling, János

    2018-02-01

    Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0 THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted ;vibrational character ID strips; proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.

  13. Whole-body vibration exercise in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Magdalena Weber-Rajek

    2015-01-01

    Full Text Available The report of the World Health Organization (WHO of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’.

  14. Switching off hydrogen peroxide hydrogenation in the direct synthesis process.

    Science.gov (United States)

    Edwards, Jennifer K; Solsona, Benjamin; N, Edwin Ntainjua; Carley, Albert F; Herzing, Andrew A; Kiely, Christopher J; Hutchings, Graham J

    2009-02-20

    Hydrogen peroxide (H2O2) is an important disinfectant and bleach and is currently manufactured from an indirect process involving sequential hydrogenation/oxidation of anthaquinones. However, a direct process in which H2 and O2 are reacted would be preferable. Unfortunately, catalysts for the direct synthesis of H2O2 are also effective for its subsequent decomposition, and this has limited their development. We show that acid pretreatment of a carbon support for gold-palladium alloy catalysts switches off the decomposition of H2O2. This treatment decreases the size of the alloy nanoparticles, and these smaller nanoparticles presumably decorate and inhibit the sites for the decomposition reaction. Hence, when used in the direct synthesis of H2O2, the acid-pretreated catalysts give high yields of H2O2 with hydrogen selectivities greater than 95%.

  15. Carrier-envelope phase dependence of the directional fragmentation and hydrogen migration in toluene in few-cycle laser fields

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-07-01

    Full Text Available The dissociative ionization of toluene initiated by a few-cycle laser pulse as a function of the carrier envelope phase (CEP is investigated using single-shot velocity map imaging. Several ionic fragments, CH3+, H2+, and H3+, originating from multiply charged toluene ions present a CEP-dependent directional emission. The formation of H2+ and H3+ involves breaking C-H bonds and forming new bonds between the hydrogen atoms within the transient structure of the multiply charged precursor. We observe appreciable intensity-dependent CEP-offsets. The experimental data are interpreted with a mechanism that involves laser-induced coupling of vibrational states, which has been found to play a role in the CEP-control of molecular processes in hydrocarbon molecules, and appears to be of general importance for such complex molecules.

  16. Tndon vibration does not alter recovery time following fatigue.

    Science.gov (United States)

    Christie, Anita D; Miller, Nick R

    2015-05-01

    Tendon vibration has been shown to enhance muscle activity and to increase muscular endurance times. The impact of vibration on recovery from fatigue, however, is not known. This study aims to determine whether tendon vibration reduces recovery time following fatiguing contractions. Eight sedentary males (22 ± 2.8 yr) performed a fatiguing protocol of ankle dorsiflexor muscles on two separate days, with a minimum of 48 h between visits. Surface EMG was recorded from the tibialis anterior muscle while participants were performing 25 maximal voluntary contractions (MVCs), each lasting 5 s and separated by 2 s. Following the fatiguing protocol, recovery was assessed with 3-s MVC each minute over a 10-min period. Recovery time was defined as the time at which force had returned to 90% of baseline values. At one visit, vibration was applied to the distal tendon of the tibialis anterior muscle between MVCs (throughout recovery). The alternate visit involved a sham condition in which no vibration was applied. MVC force (P = 0.48) and EMG amplitude (P = 0.26) were not significantly different across testing days. Both MVC force (P fatigue protocol. However, there were no significant interaction effects for MVC force (P = 0.82) or EMG amplitude (P = 0.09), indicating similar levels of fatigue across days. With tendon vibration, MVC force recovered within 4.0 ± 2.5 min, which was not different from the sham condition (5.3 ± 1.8 min; P = 0.42). Similarly, EMG recovery time was not different between vibration condition (3.9 ± 3.8 min) and sham condition (4.9 ± 2.5 min) (P = 0.41). These results suggest that activation of excitatory group Ia afferents through tendon vibration does not substantially alter recovery time following fatigue.

  17. A hydrogen ice cube

    NARCIS (Netherlands)

    Peters, C.J.; Schoonman, J.; Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept

  18. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  19. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Vibrational self-trapping in beta-sheet structures observed with femtosecond nonlinear infrared spectroscopy.

    Science.gov (United States)

    Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander

    2009-09-28

    Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.

  1. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  2. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  3. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  4. Nightmare from which you will never awake: Electronic to vibrational spectra!

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Nuwon [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The theoretical background of ab initio methods and density functional theory is provided. The anharmonicity associated with weakly bound metal cation dihydrogen complexes is examined using the vibrational self-consistent field (VSCF) method and the interaction between a hydrogen molecule and a metal cation is characterized. A study of molecular hydrogen clustering around the lithium cation and their accompanied vibrational anharmonicity employing VSCF is illustrated. A qualitative interpretation is provided of solvent-induced shifts of amides and simulated electronic absorption spectra using the combined time-dependent density functional theory/effective fragment potential method (TDDFT/EFP). An excited-state solvent assisted quadruple hydrogen atom transfer reaction of a coumarin derivative is elucidated using micro solvated quantum mechanical (QM) water and macro solvated EFP water. A dispersion correction to the QM-EFP1 interaction energy is presented.

  5. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  6. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  7. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  8. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  9. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  10. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  11. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  12. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  13. Predicting vibration-induced displacement for a resonant friction slider

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2001-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider, sandwiched between friction layers with different coefficients of friction, and equipped with an imbedded resonator that oscillates at high frequency and small amplitude. This model is highly nonlinear, involving no...

  14. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  15. Parental involvement

    OpenAIRE

    Ezra S Simon

    2005-01-01

    This study was conducted in Ghana to investigate, (1) factors that predict parental involvement, (2) the relationship between parental home and school involvement and the educational achievement of adolescents, (3) the relationship between parental authoritativeness and the educational achievement of adolescent students, (4) parental involvement serving as a mediator between their authoritativeness and the educational achievement of the students, and (5) whether parental involvement decreases...

  16. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  17. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  18. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  19. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  20. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  1. Hydrogen nanobubble at normal hydrogen electrode

    Science.gov (United States)

    Nakabayashi, S.; Shinozaki, R.; Senda, Y.; Yoshikawa, H. Y.

    2013-05-01

    Electrochemically formed hydrogen nanobubbles at a platinum rotating disk electrode (RDE) were detected by re-oxidation charge. The dissolution time course of the hydrogen nanobubbles was measured by AFM tapping topography under open-circuit conditions at stationary platinum and gold single-crystal electrodes. The bubble dissolution at platinum was much faster than that at gold because two types of diffusion, bulk and surface diffusion, proceeded at the platinum surface, whereas surface diffusion was prohibited at the gold electrode. These findings indicated that the electrochemical reaction of normal hydrogen electrode partly proceeded heterogeneously on the three-phase boundary around the hydrogen nanobubble.

  2. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  3. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  4. Simulations of vibrational relaxation in dense molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holian, B.L.

    1985-07-01

    In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented.

  5. The discovery of the hydrogen bond from p-Nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule recognition tool.

    Science.gov (United States)

    Ling, Yun; Xie, Wen Chang; Liu, Guo Kun; Yan, Run Wen; Wu, De Yin; Tang, Jing

    2016-09-23

    Inter- and intra- molecular hydrogen bonding plays important role in determining molecular structure, physical and chemical properties, which may be easily ignored for molecules with a non-typical hydrogen bonding structure. We demonstrated in this paper that the hydrogen bonding is responsible for the different Raman spectra in solid and solution states of p-Nitrothiophenol (PNTP). The consistence of the theoretical calculation and experiment reveals that the intermolecular hydrogen bonding yields an octatomic ring structure (8) of PNTP in the solid state, confirmed by the characteristic S-H---O stretching vibration mode at 2550 cm-1; when it comes to the solution state, the breakage of hydrogen bond of S-H---O induced the S-H stretching vibration at 2590 cm-1. Our findings may provide a simple and fast method for identifying the intermolecular hydrogen bonding.

  6. Probing the Intermolecular Hydrogen Bonding of Water Molecules at the CCl sub 4 Water Interface in the Presence of Charged Soluble Surfactant

    National Research Council Canada - National Science Library

    Gragson, D

    1998-01-01

    The molecular structure and hydrogen bonding of water molecules at the CCl sub 4/water interface in the presence of a charged soluble surfactant has been explored in this study using vibrational sum frequency generation...

  7. Water lubricates hydrogen-bonded molecular machines.

    Science.gov (United States)

    Panman, Matthijs R; Bakker, Bert H; den Uyl, David; Kay, Euan R; Leigh, David A; Buma, Wybren Jan; Brouwer, Albert M; Geenevasen, Jan A J; Woutersen, Sander

    2013-11-01

    The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'.

  8. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    Science.gov (United States)

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-02-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.

  9. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  10. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  11. Vibrational spectroscopy and density functional theory study of ninhydrin

    Science.gov (United States)

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level.

  12. Hydrogen Sulfide and Polysulfide Signaling.

    Science.gov (United States)

    Kimura, Hideo

    2017-10-01

    Hydrogen sulfide (H2S) has been demonstrated to have physiological roles such as neuromodulation, vascular tone regulation, cytoprotection, oxygen sensing, inflammatory regulation, and cell growth. Recently, hydrogen polysulfides (H2Sn) have been found to be produced by 3-mercaptopyruvate sulfurtransferase and to regulate the activity of ion channels, tumor suppressers, and protein kinases. Furthermore, some of the effects previously reported to be mediated by H2S are now ascribed to H2Sn. Cysteine persulfide and cysteine polysulfide may also be involved in cellular redox regulation. The chemical interaction between H2S and nitric oxide (NO) can also produce H2Sn, nitroxyl, and nitrosopersulfide, suggesting their involvement in the reactions previously thought to be mediated by NO alone. This Forum focuses on and critically discusses the recent progress in the study of H2Sn, H2S, and NO as well as other per- or polysulfide species. Antioxid. Redox Signal. 00, 000-000.

  13. Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2010-01-01

    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols.

  14. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    Science.gov (United States)

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  15. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  16. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  17. DIAGNOSIS SHAFT BEARINGS NODE KNIFE CUTTER FOR LOW-FREQUENCY VIBRATION

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The currently used system of preventive maintenance is not effective enough. Vibration diagnostics is one of the modern methods of non-destructive testing equipment components, allowing to define the appearance of defects in the early stages. The paper identifies the main areas of research, as well as selected research object, selected non-destructive testing method for efficiently determining the actual state of dynamically operating equipment. Is a schematic of vibration sensors. Measuring point vibration parameters were determined experimentally based on the conditions for obtaining the most informative vibroacoustic signal. Determine the behavior of the cutter under which minimizes the occurrence of a wide range of fluctuations that affects the accuracy of the measurements. For vibration analysis method was chosen direct spectral analysis, which involves the detection of repetitive vibrations. Presented graphically vibration spectra and spectra of vibration signals. Analysis of a wide range of vibration spectrum allowed to allocate land on which showed a significant increase in the values of vibration. Processing of the selected portion of the spectrum has led to the conclusion that in the bearing, shock pulses are in contact with each rolling body shell, and as a result, a number of harmonics in the individual frequencies. Was made a comparative analysis of the spectra of working with a defective bearing bearing on the same frequencies and determine the average increase in the values of vibration. Spectral analysis is an effective method to determine not only the extent of the defect and its location, but also allows you to effectively predict its development. The results may be useful for specialists involved in vibration diagnostics, calculation and design of rotary machines.

  18. Spectroscopic Evidences for Strong Hydrogen Bonds with Selenomethionine in Proteins.

    Science.gov (United States)

    Mundlapati, V Rao; Sahoo, Dipak Kumar; Ghosh, Sanat; Purame, Umesh Kumar; Pandey, Shubhant; Acharya, Rudresh; Pal, Nitish; Tiwari, Prince; Biswal, Himansu S

    2017-02-16

    Careful protein structure analysis unravels many unknown and unappreciated noncovalent interactions that control protein structure; one such unrecognized interaction in protein is selenium centered hydrogen bonds (SeCHBs). We report, for the first time, SeCHBs involving the amide proton and selenium of selenomethionine (Mse), i.e., amide-N-H···Se H-bonds discerned in proteins. Using mass selective and conformer specific high resolution vibrational spectroscopy, gold standard quantum chemical calculations at CCSD(T), and in-depth protein structure analysis, we establish that amide-N-H···Se and amide-N-H···Te H-bonds are as strong as conventional amide-NH···O and amide-NH···O═C H-bonds despite smaller electronegativity of selenium and tellurium than oxygen. It is in fact, electronegativity, atomic charge, and polarizability of the H-bond acceptor atoms are at play in deciding the strength of H-bonds. The amide-N-H···Se and amide-N-H···Te H-bonds presented here are not only new additions to the ever expanding world of noncovalent interactions, but also are of central importance to design new force-fields for better biomolecular structure simulations.

  19. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  20. Methods of Identification of Nonlinear Mechanical Vibrating Systems

    Science.gov (United States)

    Plakhtienko, N. P.

    2000-12-01

    Methods for determination of the dynamic characteristics and parameters of mechanical vibrating systems by processing experimental data on controlled vibrations are presented. These methods are intended for construction of mathematical models of objects to be identified and classed as parametric and nonparametric methods. The quadrature formulas of the nonparametric-identification method are derived by inverting the integral parameters of approximate analytical solutions of nonlinear differential equations. The parametric-identification method involves setting up and solving systems of linear algebraic equations in the sought-for inertia, stiffness, and dissipation parameters by integrating experimental processes using special weighting functions. Depending on the type of the nonlinearity of the vibrating system and the method of representing experimental processes, the weighting functions can be oriented toward displacement, velocity, or acceleration gauges. The results of studies made mainly at the Institute of Mechanics of the National Academy of Sciences of Ukraine are presented

  1. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    Science.gov (United States)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  2. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  3. Center for Hydrogen Storage.

    Science.gov (United States)

    2013-06-01

    The main goals of this project were to (1) Establish a Center for Hydrogen Storage Research at Delaware State University for the preparation and characterization of selected complex metal hydrides and the determination their suitability for hydrogen ...

  4. Hydrogen transport membranes

    Science.gov (United States)

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  5. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin

    Science.gov (United States)

    Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva, D.

    2017-04-01

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  6. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kenneth I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pires, Richard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ronnebro, Ewa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design and evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.

  7. Solar hydrogen generator

    Science.gov (United States)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  8. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  9. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    Science.gov (United States)

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  10. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2017-10-01

    Full Text Available It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO and NH3 and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O, NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2 can be represented to good approximation by means of the equation D e = c ′ N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ′ is a constant, conveniently chosen to have the value 1.00 kJ mol−1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1 the hydrogen bond; (2 the halogen bond; (3 the tetrel bond; (4 the pnictogen bond; and (5 the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  11. Revisiting Hydrogen Bond Thermodynamics in Molecular Simulations.

    Science.gov (United States)

    Sapir, Liel; Harries, Daniel

    2017-06-13

    In processes involving aqueous solutions and in almost every biomolecular interaction, hydrogen bonds play important roles. Though weak compared to the covalent bond, hydrogen bonds modify the stability and conformation of numerous small and large molecules and modulate their intermolecular interactions. We propose a simple methodology for extracting hydrogen bond strength from atomistic level simulations. The free energy associated with hydrogen bond formation is conveniently calculated as the reversible work required to reshape a completely random pair probability distribution reference state into the one found in simulations where hydrogen bonds are formed. Requiring only the probability density distribution of donor-acceptor pairs in the first solvation shell of an electronegative atom, the method uniquely defines the free energy, entropy, and enthalpy of the hydrogen bond. The method can be easily extended to molecules other than water and to multiple component mixtures. We demonstrate and apply this methodology to hydrogen bonds that form in molecular dynamics simulations between water molecules in pure water, as well as to bonds formed between different molecules in a binary mixture of a sugar (trehalose) and water. Finally, we comment on how the method should be useful in assessing the role of hydrogen bonds in different molecular mechanisms.

  12. Hydrogen bonding penalty upon ligand binding.

    Directory of Open Access Journals (Sweden)

    Hongtao Zhao

    Full Text Available Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change of hydrogen bonding energy in the binding process, namely hydrogen bonding penalty, is evaluated with a new method. The hydrogen bonding penalty can not only be used to filter unrealistic poses in docking, but also improve the accuracy of binding energy calculation. A new model integrated with hydrogen bonding penalty for free energy calculation gives a root mean square error of 0.7 kcal/mol on 74 inhibitors in the training set and of 1.1 kcal/mol on 64 inhibitors in the test set. Moreover, an application of hydrogen bonding penalty into a high throughput docking campaign for EphB4 inhibitors is presented, and remarkably, three novel scaffolds are discovered out of seven tested. The binding affinity and ligand efficiency of the most potent compound is about 300 nM and 0.35 kcal/mol per non-hydrogen atom, respectively.

  13. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa.

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  14. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  15. Hydrogen recovery by novel solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Shinnar, R.; Ludmer, Z.; Ullmann, A.

    1991-08-01

    The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

  16. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  17. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  18. Chemical storage of hydrogen in few-layer graphene

    Science.gov (United States)

    Subrahmanyam, K. S.; Kumar, Prashant; Maitra, Urmimala; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, Umesh V.; Rao, C. N. R.

    2011-01-01

    Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp3 C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice. PMID:21282617

  19. Vibrational Spectral Studies and Ab initio Computations of a Nonlinear Food Dye Carmoisine

    Science.gov (United States)

    Snehalatha, M.; Ravikumar, C.; Sekar, N.; Jayakumar, V. S.; Joe, I. Hubert

    2008-11-01

    FT-IR and Raman techniques were employed for the vibrational characterization of the food dye Carmoisine (E122). The equilibrium geometry, various bonding features, and harmonic vibrational wavenumbers have been investigated with the help of density functional theory (DFT) calculations. The first hyperpolarizability of the molecule is calculated. A good correlation was found between the computed and experimental wavenumbers. Azo stretching wavenumbers have been lowered due to conjugation and π-electron delocalization. The optimized structure indicates intramolecular C-H …O=S hydrogen bonding in the molecule. Intramolecular charge transfer (ICT) responsible for the optical nonlinearity of the dye molecule has been discussed theoretically and experimentally.

  20. Sum frequency generation spectroscopy study of hydrogenated stepped Si(111) surfaces made by molecular hydrogen exposure

    Science.gov (United States)

    Hien, K. T. T.; Sattar, M. A.; Miyauchi, Y.; Mizutani, G.; Rutt, H. N.

    2017-09-01

    Hydrogen adsorption on stepped Si(111) surfaces 9.5° miscut in the [ 1 ̅ 1 ̅ 2 ] direction has been investigated in situ in a UHV chamber with a base pressure of 10-8 Pa. The H-Si(111)1×1 surface was prepared by exposing the wafer to ultra-pure hydrogen gas at a pressure of 470 Pa. Termination of hydrogen on terraces and steps was observed by sum frequency generation (SFG) with several polarization combinations such as ppp, ssp, pps, spp, psp, sps, pss and sss. Here the 1st, 2nd and 3rd symbols indicate SFG, visible and IR polarizations, respectively. ppp and ssp-SFG clearly showed only two modes: the Si-H stretching vibration terrace mode at 2082 cm-1 (A) and the vertical step dihydride vibration mode at 2094 cm-1 (C1). Interesting points are the appearance of the C1 mode in contrast to the previous SFG spectrum of the H-Si(111)1×1 surface with the same miscut surface angle prepared by wet chemical etching. We suggest that the formation of step dihydride and its orientation on the Si(111) stepped surfaces depend strongly on the preparation method.

  1. Search for Hydrogenated C60 (Fulleranes) in Circumstellar Envelopes

    Science.gov (United States)

    Zhang, Yong; Sadjadi, SeyedAbdolreza; Hsia, Chih-Hao; Kwok, Sun

    2017-08-01

    The recent detection of fullerene (C60) in space and the positive assignment of five diffuse interstellar bands to {{{C}}}60+ reinforce the notion that fullerene-related compounds can be efficiently formed in circumstellar envelopes and be present in significant quantities in the interstellar medium. Experimental studies have shown that C60 can be readily hydrogenated, raising the possibility that hydrogenated fullerenes (or fulleranes, C60H m , m = 1-60) may be abundant in space. In this paper, we present theoretical studies of the vibrational modes of isomers of C60H m . Our results show that the four mid-infrared bands from the C60 skeletal vibrations remain prominent in slightly hydrogenated C60, but their strengths diminish in different degrees with increasing hydrogenation. It is therefore possible that the observed infrared bands assigned to C60 could be due to a mixture of fullerenes and fulleranes. This provides a potential explanation for the observed scatter of the C60 band ratios. Our calculations suggest that a feature around 15 μm due to the breathing mode of heavily hydrogenated C60 may be detectable astronomically. A preliminary search for this feature in 35 C60 sources is reported.

  2. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  3. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  4. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  5. Hydrogenation balances for bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Hoelscher

    1944-02-11

    This report was intended to set up predictive curves concerning how certain variables involved in coal hydrogenation output would change in response to changes in certain operational or input variables, for hydrogenation of Gelsenberg coal. The particular dependences investigated in the article were the following: (1) for liquid phase, the dependence of oil output, amount of product to be distilled, and hydrogen use upon the ash content of the coal, the carbon content of the coal, and the percentage of formation of gases, and (2) for vapor phase, the dependence of gasoline yield, hydrogen use, and excess hydrocarbon gas products on the percentage of gasification in the 6434 step. Within certain limits of validity, these dependences seemed mostly to be linear and were illustrated in graphs in the report (most of which were very hard to read on the microfilm image). The limits of validity were 2 to 8% ash content, 80 to 86.2% carbon content, 20 to 25% gasification in liquid phase, and 17 to 25% gasification in the 6434 vapor phase. As an example of the data and calculations, it was observed that at 2% ash content, there was 628 kg of oil output in the liquid phase, at 4% ash content, there was 621 kg oil output, and at 8% ash content, there was 607 kg oil output, so it was calculated that oil output would decrease by 0.56% for each percent increase in ash content between 2% and 8%. 7 tables, 2 graphs.

  6. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  7. Safe venting of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  8. Infrared spectra of OCS-hydrogen complexes

    Science.gov (United States)

    Tang, Jian; McKellar, A. R. W.

    2002-01-01

    Five distinct species of OCS-hydrogen van der Waals complexes (OCS-orthoH2,-paraH2,-paraD2,-orthoD2, and -HD) have been observed by infrared spectroscopy in the region of the OCS ν1 vibration (≈2062 cm-1) in a pulsed supersonic jet expansion using a tunable diode laser probe. The spectra are those of prolate asymmetric rotors, with observed a-type transitions (ΔK=0), but no b-type transitions (ΔK=±1). The fitted rotational parameters are consistent with structures having intermolecular separations in the range of 3.6-3.8 Å and angles of about 70° between the OCS axis and the hydrogen center of mass. The band origins are slightly red-shifted (-0.05 to -0.20 cm-1) relative to that of the free OCS molecule. The results are of interest due to recent observations of the same complexes trapped in ultracold helium droplets; there is a remarkably close correspondence of the vibrational band origins of the free and trapped species.

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  11. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  12. Cyclooctanaminium hydrogen succinate monohydrate

    Directory of Open Access Journals (Sweden)

    Sanaz Khorasani

    2012-04-01

    Full Text Available In the title hydrated salt, C8H18N+·C4H5O4−·H2O, the cyclooctyl ring of the cation is disordered over two positions in a 0.833 (3:0.167 (3 ratio. The structure contains various O—H.·O and N—H...O interactions, forming a hydrogen-bonded layer of molecules perpendicular to the c axis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water molecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of molecules along the b axis. In addition, each hydrogen succinate anion hydrogen bonds to two water molecules and the ammonium cation.

  13. Vibrational and rotational relaxation times of solvated molecular ions

    Science.gov (United States)

    Li, M.; Owrutsky, J.; Sarisky, M.; Culver, J. P.; Yodh, A.; Hochstrasser, R. M.

    1993-04-01

    Infrared pump-probe and infrared polarization spectroscopy have been used to measure the vibrational relaxation times (T1) of the antisymmetric stretching mode and the reorientation times (TR) for N3-, NCS-, and NCO- in D2O and/or methanol. For N3-, experiments were also conducted in H2O and hexamethyl-phosphamide (HPMA) solutions. The rapid vibrational relaxation and slow reorientation observed demonstrate strong coupling between the ions and the solvents. Longer vibrational relaxation and shorter reorientation times measured for NCS- reveal weaker solvent interactions that may be due to the importance of the charge distribution and the form of the normal coordinate. A comparison of the T1 and TR times in different solvents permits a determination of the relative interaction strengths for the solvents investigated. The relatively weaker coupling of N3- in the aprotic solvent HMPA demonstrates the importance of hydrogen bonding in strong solvent interactions in ionic solutions. The experimental results are compared with recent molecular dynamics simulations of ionic solutions.

  14. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  15. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2017-06-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  16. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  17. Evaluation of hydrogen demonstration systems (Task 18 of IEA Implementing Agreement on Hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.N.; Carter, S.

    2005-07-01

    Task 18 aims to gather information about the integration of hydrogen into society around the world. As part of subtask B (demonstration projects), EA Technology Limited collected information and data on specific UK hydrogen demonstration projects and case studies. The work involved desk research, a literature review, telephone conversations and meetings with developers and operators of hydrogen-related projects in the UK. Various examples were identified in phase 1 that were either proposed, planned, under construction, commissioned or operational. The main demonstration activities described in the report are: the Clean Urban Transport for Europe (CUTE) refuelling station at Hornchurch in Essex; the Hydrogen and Renewables Integration (HARI) project at West Beacon Farm, Leicestershire; the Promoting Unst Renewable Energy (PURE) project on Unst in the Shetland Isles; the Hunterston Hydrogen Project in North Ayrshire, Scotland; and the Tees Valley Hydrogen Project. The CUTE, HARI and PURE projects were selected for inclusion in the overall Task 18 workplan. The report also covers developments associated with the Fuel Cell House, the Hydrogen Office, INEOS Chlor, the London Hydrogen Partnership and the Wales Hydrogen Project.

  18. Overview of interstate hydrogen pipeline systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  19. Direct observation of intermolecular interactions mediated by hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    De Marco, Luigi; Reppert, Mike [Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637 (United States); Thämer, Martin; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu [Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637 (United States)

    2014-07-21

    Although intermolecular interactions are ubiquitous in physicochemical phenomena, their dynamics have proven difficult to observe directly, and most experiments rely on indirect measurements. Using broadband two-dimensional infrared spectroscopy (2DIR), we have measured the influence of hydrogen bonding on the intermolecular vibrational coupling between dimerized N-methylacetamide molecules. In addition to strong intramolecular coupling between N–H and C=O oscillators, cross-peaks in the broadband 2DIR spectrum appearing upon dimerization reveal strong intermolecular coupling that changes the character of the vibrations. In addition, dimerization changes the effects of intramolecular coupling, resulting in Fermi resonances between high and low-frequency modes. These results illustrate how hydrogen bonding influences the interplay of inter- and intramolecular vibrations, giving rise to correlated nuclear motions and significant changes in the vibrational structure of the amide group. These observations have direct impact on modeling and interpreting the IR spectra of proteins. In addition, they illustrate a general approach to direct molecular characterization of intermolecular interactions.

  20. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy.

    Science.gov (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2017-10-12

    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm-1). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  1. Moving contact lines on vibrating surfaces

    Science.gov (United States)

    Solomenko, Zlatko; Spelt, Peter; Scott, Julian

    2017-11-01

    Large-scale simulations of flows with moving contact lines for realistic conditions generally requires a subgrid scale model (analyses based on matched asymptotics) to account for the unresolved part of the flow, given the large range of length scales involved near contact lines. Existing models for the interface shape in the contact-line region are primarily for steady flows on homogeneous substrates, with encouraging results in 3D simulations. Introduction of complexities would require further investigation of the contact-line region, however. Here we study flows with moving contact lines on planar substrates subject to vibrations, with applications in controlling wetting/dewetting. The challenge here is to determine the change in interface shape near contact lines due to vibrations. To develop further insight, 2D direct numerical simulations (wherein the flow is resolved down to an imposed slip length) have been performed to enable comparison with asymptotic theory, which is also developed further. Perspectives will also be presented on the final objective of the work, which is to develop a subgrid scale model that can be utilized in large-scale simulations. The authors gratefully acknowledge the ANR for financial support (ANR-15-CE08-0031) and the meso-centre FLMSN for use of computational resources. This work was Granted access to the HPC resources of CINES under the allocation A0012B06893 made by GENCI.

  2. Vibration Isolation Technology (VIT) ATD Project

    Science.gov (United States)

    Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.

    1994-01-01

    A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of

  3. Influence of hydrogen on corrosion and stress induced cracking of stainless steel

    OpenAIRE

    Kivisäkk, Ulf

    2010-01-01

    Hydrogen is the smallest element in the periodical table. It has been shown in several studies that hydrogen has a large influence on the corrosion and cracking behaviour of stainless steels. Hydrogen is involved in several of the most common cathode reactions during corrosion and can also cause embrittlement in many stainless steels. Some aspects of the effect of hydrogen on corrosion and hydrogen-induced stress cracking, HISC, of stainless steels were studied in this work. These aspects rel...

  4. Hydrogen storage methods

    Science.gov (United States)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at Tchemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m-3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a

  5. Solvent effects on the Raman spectra of the isolated carbon-hydrogen stretches of cyclohexane-d11: A molecular dynamics simulation study of liquid and supercritical solvation

    Science.gov (United States)

    Frankland, Sarah-Jane Victoria

    Molecular dynamics simulations of solvent effects on the Raman spectra of isotopically isolated C-H stretches of cyclohexane-d11 were performed in liquids and supercritical CO2. The red spectral shifts from the gas phase origin were derived three different ways: (1) from the Lennard-Jones force on the normal coordinate of the vibration; (2) from this force with an additional term to account for the polarizabilily change on excitation, and (3) as an empirical difference potential between the v = 0 and v = 1 state of the hydrogen atom involved in the vibration. Model 3 was successfully parametrized to reproduce the experimental spectral shifts and linewidths. The simulated lineshapes from these models were homogeneously broadened from gas to liquid densities primarily by collisions of nearby solvent molecules with the solute. Both the simulations and isolated binary collision theory showed the density dependence of the linewidth to be related to that of the collision rate. Two additional projects were done which use Monte-Carlo algorithms involving two molecules. In the first project 1:1 complexes of solute and solvent were formed at the potential surface minima such that the geometries of conformers, energies of formation, and electronic spectral shifts could be studied. Complexes between 7- azaindole, indole, carbazole, and 1-azacarbazole and hydrogen-bonding solvents were most stable when the solvent was hydrogen-bonded at the solute N-H site. The energies of formation compared well with values obtained from ab initio calculations. Complexes of coumarins 102 and 153 and fluorinated alcohols showed the more stable conformers to have the alcohols bound at the coumarin carbonyl group. In the second project, one solvent molecule was randomly placed around the solute molecule in order to simplify bulk liquid simulation to only two molecules. This approximation was rised to show that the dynamic Stokes shift of coumarin 153 in over 30 solvents correlates with the

  6. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    bonding configuration due to hydrogen migration have been proposed as a mechanism of defect generation in a-Si:H [6,7]. Thus hydrogen plays a dual role in a-Si:H: (1) acting as a .... the sphere of radius R0 and allows to express. ∆F as a function of localization radius R0. Using eqs (10) and (11), the volume integration.

  7. Effective-medium calculations for hydrogen in Ni, Pd, and Pt

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Stoltze, Per; Jacobsen, Karsten Wedel

    1990-01-01

    structure for PdHθ by calculating the total energy and lattice expansion of different configurations. Vibrational frequencies and diffusion barriers of H in Pd are also treated. A simple and transparent physical picture of the hydrogen-metal interaction is developed. From the calculated energetics we make...... a model calculation of the phase diagram of hydrogen in palladium in qualitative agreement with experiment. On this basis we propose a new explanation of the peculiarities of the Pd-H system....

  8. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G(0)=2e(2)/h, carried by a single channel. Using point-contact spectroscopy three vibration modes are observed and their variation upon...

  9. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  10. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  11. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.

    1986-01-23

    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  12. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  13. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  14. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  15. 14 CFR 27.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  16. 14 CFR 29.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  17. 14 CFR 29.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  18. 14 CFR 27.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  19. 49 CFR 178.608 - Vibration standard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  20. 49 CFR 178.985 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  1. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  2. Vibrations in a moving flexible robot arm

    Science.gov (United States)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  4. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  5. Vibration Damping Circuit Card Assembly

    Science.gov (United States)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  6. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  7. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  8. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  9. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.

    Science.gov (United States)

    Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Soferová, Lýdie; Sedmidubský, David; Pumera, Martin

    2014-02-21

    Hydrogenated graphene and graphane are in the forefront of graphene research. Hydrogenated graphene is expected to exhibit ferromagnetism, tunable band gap, fluorescence, and high thermal and low electrical conductivity. Currently available techniques for fabrication of highly hydrogenated graphene use either a liquid ammonia (-33 °C) reduction pathway using alkali metals or plasma low pressure or ultra high pressure hydrogenation. These methods are either technically challenging or pose inherent risks. Here we wish to demonstrate that highly hydrogenated graphene can be prepared at room temperature in the aqueous phase by reduction of graphene oxide by nascent hydrogen generated by dissolution of metal in acid. Nascent hydrogen is known to be a strong reducing agent. We studied the influence of metal involved in nascent hydrogen generation and characterized the samples in detail. The resulting reduced graphenes and hydrogenated graphenes were characterized in detail. The resulting hydrogenated graphene had the chemical formula C1.16H1O0.66. Such simple hydrogenation of graphene is of high importance for large scale safe synthesis of hydrogenated graphene.

  10. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  11. Construction of hydrogenation stalls for explosions

    Energy Technology Data Exchange (ETDEWEB)

    Raichle, L.

    1943-05-03

    This report contained explanations for different questions that had been asked by the Association of Chemical Manufacturers. The first item discussed was the pressure occurring in hydrogenation stalls in hydrogen explosions. The pressures actually used were much smaller than the maximum design pressure due to burning gases being allowed to escape from the top and front of the stalls since these areas were open and it could not be assumed that the whole stall space was filled with a 32% hydrogen concentration at the beginning of an explosion. The second item discussed was specifications and rules for the building of hydrogenation stalls. These included the calculations for simple wind pressure according to the Building Code with the usual safety factors and the calculations for an inner pressure of 300 kg/m/sup 2/ with the usual safety factors. An explanation of a stall explosion in Poelitz and reinforced stall construction in Poelitz were two other items that were discussed. Appendix I of the report involved maximum pressures and temperature in hydrogen explosions. Diagram I was involved with this. Appendix II discussed the behavior of a hydrogen flame at high emerging velocities and Appendix III discussed stall construction at Poelitz.

  12. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution.

    Science.gov (United States)

    Adhikary, Ramkrishna; Zimmermann, Jörg; Romesberg, Floyd E

    2017-02-08

    Vibrational spectroscopy provides a direct route to the physicochemical characterization of molecules. While both IR and Raman spectroscopy have been used for decades to provide detailed characterizations of small molecules, similar studies with proteins are largely precluded due to spectral congestion. However, the vibrational spectra of proteins do include a "transparent window", between ∼1800 and ∼2500 cm-1, and progress is now being made to develop site-specifically incorporated carbon-deuterium (C-D), cyano (CN), thiocyanate (SCN), and azide (N3) "transparent window vibrational probes" that absorb within this window and report on their environment to facilitate the characterization of proteins with small molecule-like detail. This Review opens with a brief discussion of the advantages and limitations of conventional vibrational spectroscopy and then discusses the strengths and weaknesses of the different transparent window vibrational probes, methods by which they may be site-specifically incorporated into peptides and proteins, and the physicochemical properties they may be used to study, including electrostatics, stability and folding, hydrogen bonding, protonation, solvation, dynamics, and interactions with inhibitors. The use of the probes to vibrationally image proteins and other biomolecules within cells is also discussed. We then present four case studies, focused on ketosteroid isomerase, the SH3 domain, dihydrofolate reductase, and cytochrome c, where the transparent window vibrational probes have already been used to elucidate important aspects of protein structure and function. The Review concludes by highlighting the current challenges and future potential of using transparent window vibrational probes to understand the evolution and function of proteins and other biomolecules.

  13. Allylammonium hydrogen oxalate hemihydrate

    Directory of Open Access Journals (Sweden)

    Błażej Dziuk

    2014-08-01

    Full Text Available In the title hydrated molecular salt, C3H8N+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4°. In the crystal, the hydrogen oxalate ions are linked by O—H...O hydrogen bonds, generating [010] chains. The allylammonium cations bond to the chains through N—H...O and N—H...(O,O hydrogen bonds. The water molecule accepts two N—H...O hydrogen bonds and makes two O—H...O hydrogen bonds. Together, the hydrogen bonds generate (100 sheets.

  14. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  15. Vibrational assignments for 7-methyl-4-bromomethylcoumarin, as aided by RHF and B3LYP/6-31G* calculations.

    Science.gov (United States)

    Sortur, Veenasangeeta; Yenagi, Jayashree; Tonannavar, J; Jadhav, V B; Kulkarni, M V

    2008-11-15

    Infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectral measurements have been made for the solid sample of 7-methyl-4-bromomethylcoumarin. Electronic structure calculations at RHF/6-31G* and B3LYP/6-31G* levels of theory have been performed, giving equilibrium geometries, harmonic vibrational spectra and normal modes. Different orientations of bromomethyl group have yielded only two conformers, of which the most stable one lying lower from the other conformer by approximately 7.99 kJ/mol, is non-planar with no symmetry. A complete assignment of the vibrational modes, aided by the calculations, has been proposed. Coupled vibrations are manifest in many modes. Some spectral features, compared to 6-methyl-4-bromomethylcoumarin, show changes across both IR and Raman spectra, involving mainly skeletal vibrations, and to a lesser degree, methyl and bromomethyl vibrations. Low-frequency vibrations below 150 cm(-1) are assigned to lattice modes.

  16. Electronic Properties of Si-Hx Vibrational Modes at Si Waveguide Interface.

    Science.gov (United States)

    Bashouti, Muhammad Y; Yousefi, Peyman; Ristein, Jürgen; Christiansen, Silke H

    2015-10-01

    Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids.

  17. Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.

    Science.gov (United States)

    Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji

    2014-01-16

    The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.

  18. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    Science.gov (United States)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  19. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.

    Science.gov (United States)

    Huang, Yu; Griffin, Michael J

    2012-06-01

    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  20. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  1. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  2. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  3. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  4. Pathways to Metallic Hydrogen

    OpenAIRE

    Silvera, Isaac F.; Deemyad, Shanti

    2008-01-01

    The traditional pathway that researchers have used in the goal of producing atomic metallic hydrogen is to compress samples with megabar pressures at low temperature. A number of phases have been observed in solid hydrogen and its isotopes, but all are in the insulating phase. The results of experiment and theory for this pathway are reviewed. In recent years a new pathway has become the focus of this challenge of producing metallic hydrogen, namely a path along the melting line. It has bee...

  5. Hydrogen rich gas generator

    Science.gov (United States)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  6. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  7. Transient vibration of wind turbine blades

    Science.gov (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng

    2017-09-01

    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  8. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  9. Investigation of structure and vibrational properties of cyclobutane pirimidine dimer

    Directory of Open Access Journals (Sweden)

    Petković Milena M.

    2013-01-01

    Full Text Available We performed a theoretical analysis of the structure and vibrational properties of cyclobutane pyrimidine dimer, which is the main product in a photochemical reaction involving two molecules of 1-methylthymine. Thymine is a pyrimidine base that has the highest yield of the dimerization photoproducts. Methylation in position one was chosen because in this position thymine is linked to sugar in DNA. The calculations were performed at the B3LYP/cc-pVTZ level with a Gaussian program package. All molecular geometries were optimized without symmetry constraints in vacuum and D2O. Vibrational frequencies were calculated in the harmonic approximation. It was shown that there are two stable isomers, CPD(cis-syn and CPD(trans-syn. CPD(trans-syn is more stable both in vacuum and in D2O. By dissolving these molecules in D2O, both structures become more stable, although the stabilization of the less stable isomer is more pronounced due to its larger dipole moment. Thus, the difference in stability of the two isomers in D2O is almost two times lower than in vacuum. Because of the similarity of the two isomers’ structures, the difference in their vibrational spectra is not pronounced. Within the harmonic approximation, there is only a slight difference in the C=O and C-H stretching region. The difference in the N-H stretching region is more pronounced; in the CPD(cis-syn molecule the two bonds vibrate separately, whereas in the CPD(trans-syn the two modes couple, and this coupling results in symmetric and asymmetric N-H stretching. The observation shows that a slight difference in geometry can be reflected in the shape of the infrared spectra. A more detailed analysis of the vibrational properties would involve computation of anharmonic coupling terms, which would enable a more precise determination of the peak positions.

  10. Deactivation of Highly Vibrationally Excited OH by O Atoms

    Science.gov (United States)

    Copeland, R. A.; Smith, G. P.; Mlynczak, M. M.; Kalogerakis, K. S.

    2006-12-01

    The hydroxyl radical is a key player in the chemistry and energetics of the middle terrestrial atmosphere, and several studies have investigated energy transfer processes between OH(υ) and atmospheric molecules. Nevertheless, a gap exists in our understanding of its interaction with oxygen atoms. Oxygen atoms are present at about 10% of the oxygen molecule concentration at ~95 km and about 1% at 88 km, so if their rate constant is significantly faster than that of O2 and N2, they will strongly influence the intensity and the vibrational distribution extracted from the OH(υ) emission. We report laboratory measurements of the total removal rate constants of OH(υ = 8, 9) by O(3 P) atoms and preliminary measurements on CO2. These measurements are required so that we can quantify the importance of these collisional processes in the modeling of atmospheric OH emissions and evaluate the chemical heating rate from measurements by the SABER instrument aboard the TIMED satellite. In the experiments, we generate O(3P) and OH(υ) by photodissociation of ozone at 250 nm in a mixture of ozone, nitrogen, hydrogen. The highly excited vibrational levels OH(υ = 7-9) are produced in the reaction of H atoms with ozone that has not been photodissociated. We monitor the temporal evolution of the OH(υ = 8 and 9) population by laser excitation via the \\it B3Σ_u- \\textendash \\it X3Σ_g- (0,9) and (0,8) transitions near 237 nm and 226 nm, respectively, and subsequent detection of visible fluorescence emitted from the \\it B3Σ_u^{- } \\textendash \\it A3Σ_u+ band, an approach developed previously in our laboratory [1]. By controlling the initial conditions of the experiments, we can extract the rate coefficient for OH removal by O atoms in the system. For direct analysis of the OH signal rise to yield accurate rate coefficients an extremely good signal-to-noise-ratio is required. However, a preferred approach involves comparison of the OH signal relative intensity changes when

  11. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  12. HYDROGEN INDUCED CRACKING IN MICROALLOYED STEELS

    Directory of Open Access Journals (Sweden)

    Duberney Hincapie-Ladino

    2015-03-01

    Full Text Available The need for microalloyed steels resistant to harsh environments in oil and gas fields, such as pre-salt which contain considerable amounts of hydrogen sulfide (H2 S and carbon dioxide (CO2 , requires that all sectors involved in petroleum industry know the factors that influence the processes of corrosion and failures by hydrogen in pipelines and components fabricated with microalloyed steels. This text was prepared from a collection of selected publications and research done at the Electrochemical Processes Laboratory of Metallurgical and Materials Engineering Department, Polytechnic School, São Paulo University. This document does not intend to be a complete or exhaustive review of the literature, but rather to address the main scientific and technological factors associated with failures by hydrogen in the presence of wet hydrogen sulfide (H2 S, particularly, when related to the Hydrogen Induced Cracking (HIC phenomenon. This complex phenomenon that involves several successive stages, HIC phenomena were discussed in terms of environmental and metallurgical variables. The HIC starts with the process of corrosion of steel, therefore must be considered the corrosive media (H2 S presence effect. Moreover, it is necessary to know the interactions of compounds present in the electrolyte with the metal surface, and how they affect the hydrogen adsorption and absorption into steel. The following stages are hydrogen diffusion, trapping and metal cracking, directly related to the chemical composition and the microstructure, factors that depend strongly on the manufacture of steel. The purpose of this paper is to provide the scientific information about the failures caused by hydrogen and challenge for the Oil and Gas Pipeline Industry.

  13. Safety aspects of large-scale combustion of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edeskuty, F.J.; Haugh, J.J.; Thompson, R.T.

    1986-01-01

    Recent hydrogen-safety investigations have studied the possible large-scale effects from phenomena such as the accumulation of combustible hydrogen-air mixtures in large, confined volumes. Of particular interest are safe methods for the disposal of the hydrogen and the pressures which can arise from its confined combustion. Consequently, tests of the confined combustion of hydrogen-air mixtures were conducted in a 2100 m/sup 3/ volume. These tests show that continuous combustion, as the hydrogen is generated, is a safe method for its disposal. It also has been seen that, for hydrogen concentrations up to 13 vol %, it is possible to predict maximum pressures that can occur upon ignition of premixed hydrogen-air atmospheres. In addition information has been obtained concerning the survivability of the equipment that is needed to recover from an accident involving hydrogen combustion. An accident that involved the inadvertent mixing of hydrogen and oxygen gases in a tube trailer gave evidence that under the proper conditions hydrogen combustion can transit to a detonation. If detonation occurs the pressures which can be experienced are much higher although short in duration.

  14. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    Science.gov (United States)

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  15. High Accuracy ab Initio Calculations of Rotational-Vibrational Levels of the HCN/HNC System.

    Science.gov (United States)

    Makhnev, Vladimir Yu; Kyuberis, Aleksandra A; Zobov, Nikolai F; Lodi, Lorenzo; Tennyson, Jonathan; Polyansky, Oleg L

    2018-02-08

    Highly accurate ab initio calculations of vibrational and rotational-vibrational energy levels of the HCN/HNC (hydrogen cyanide/hydrogen isocyanide) isomerising system are presented for several isotopologues. All-electron multireference configuration interaction (MRCI) electronic structure calculations were performed using basis sets up to aug-cc-pCV6Z on a grid of 1541 geometries. The ab initio energies were used to produce an analytical potential energy surface (PES) describing the two minima simultaneously. An adiabatic Born-Oppenheimer diagonal correction (BODC) correction surface as well as a relativistic correction surface were also calculated. These surfaces were used to compute vibrational and rotational-vibrational energy levels up to 25 000 cm -1 which reproduce the extensive set of experimentally known HCN/HNC levels with a root-mean-square deviation σ = 1.5 cm -1 . We studied the effect of nonadiabatic effects by introducing opportune radial and angular corrections to the nuclear kinetic energy operator. Empirical determination of two nonadiabatic parameters results in observed energies up to 7000 cm -1 for four HCN isotopologues (HCN, DCN, H 13 CN, and HC 15 N) being reproduced with σ = 0.37 cm -1 . The height of the isomerization barrier, the isomerization energy and the dissociation energy were computed using a number of models; our best results are 16 809.4, 5312.8, and 43 729 cm -1 , respectively.

  16. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Rasmus; Sauer, Stephan P. A. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  17. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  18. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  19. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes

    Directory of Open Access Journals (Sweden)

    David W. Manley

    2014-09-01

    Full Text Available A mild procedure for the reduction of electron-deficient alkenes and carbonyl compounds is described. UVA irradiations of substituted maleimides with dispersions of titania (Aeroxide P25 in methanol/acetonitrile (1:9 solvent under dry anoxic conditions led to hydrogenation and production of the corresponding succinimides. Aromatic and heteroaromatic aldehydes were reduced to primary alcohols in similar titania photocatalyzed reactions. A mechanism is proposed which involves two proton-coupled electron transfers to the substrates at the titania surface.

  20. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  1. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  2. Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals

    Directory of Open Access Journals (Sweden)

    Mudar Ahmed Abdulsattar

    2014-12-01

    Full Text Available Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm-1 compared to experimental 0.035 eV (285.2 cm-1. Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å. Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.

  3. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  4. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  5. Beyond local group modes in vibrational sum frequency generation.

    Science.gov (United States)

    Chase, Hilary M; Psciuk, Brian T; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Geiger, Franz M

    2015-04-09

    We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.

  6. External-field shifts in precision spectroscopy of hydrogen molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [INRNE, Bulgarian Academy of Sciences (Bulgaria); Korobov, Vladimir [Joint Institute for Nuclear Research (Russian Federation); Schiller, Stephan [Heinrich-Heine-Universitat Dusseldorf, Institut fur Experimentalphysik (Germany)

    2015-08-15

    The Effective Hamiltonian of the hydrogen molecular ions is a convenient tool for the evaluation of the shift of the energy levels of the ro-vibrational states and the frequencies of the transitions between them, due to external electric and magnetic fields. Using the Effective Hamiltonian, composite frequencies of suppressed susceptibility to external fields are constructed.

  7. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann

    2010-01-01

    Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments with ...

  8. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    NARCIS (Netherlands)

    Peerenboom, K. S. C.; van Dijk, J.; W. J. Goedheer,; Kroesen, G. M. W.

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been

  9. Hydrogen bond fluctuations of the hydration shell of the bromide anion

    NARCIS (Netherlands)

    Timmer, R.L.A.; Bakker, H.J.

    2009-01-01

    We study the hydrogen bond dynamics of solutions of LiBr and NaBr in isotopically diluted water (2% HDO:D2O) with femtosecond spectral hole-burning spectroscopy. We study the frequency fluctuations of the O-H stretch vibrations of the HDO molecules and observe spectral dynamics with time constants

  10. Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo

    NARCIS (Netherlands)

    Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Pshenichnikov, Maxim S.

    2003-01-01

    Results of heterodyne-detected photon echo experiments on the OH stretching mode of water are reported and discussed. Two vibrational dynamical processes with time constants of 130 and 900 fs were identified. The former is attributed to bond breaking dynamics of a single hydrogen bond, the latter to

  11. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  12. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved

  13. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  14. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  15. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  16. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  17. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  18. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  19. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  20. Metastable ultracondensed hydrogenous materials

    Science.gov (United States)

    Nellis, W. J.

    2017-12-01

    The primary purpose of this paper is to stimulate theoretical predictions of how to retain metastably hydrogenous materials made at high pressure P on release to ambient. Ultracondensed metallic hydrogen has been made at high pressures in the fluid and reported made probably in the solid. Because the long quest for metallic hydrogen is likely to be concluded in the relatively near future, a logical question is whether another research direction, comparable in scale to the quest for metallic H, will arise in high pressure research. One possibility is retention of metastable solid metallic hydrogen and other hydrogenous materials on release of dynamic and static high pressures P to ambient. If hydrogenous materials could be retained metastably on release, those materials would be a new class of materials for scientific investigations and technological applications. This paper is a review of the current situation with the synthesis of metallic hydrogen, potential technological applications of metastable metallic H and other hydrogenous materials at ambient, and general background of published experimental and theoretical work on what has been accomplished with metastable phases in the past and thus what might be accomplished in the future.

  1. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  2. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  3. Package security recorder of vibration

    Science.gov (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de

    2013-08-01

    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  4. Hydrogen bond and lifetime dynamics in diluted alcohols.

    Science.gov (United States)

    Salamatova, Evgeniia; Cunha, Ana V; Shinokita, Keisuke; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2017-10-25

    Hydrogen-bonding plays a crucial role in many chemical and biochemical reactions. Alcohols, with their hydrophilic and hydrophobic groups, constitute an important class of hydrogen-bonding molecules with functional tuning possibilities through changes in the hydrophobic tails. Recent studies demonstrated that for solutions of alcohols changes in the hydrophobic tail significantly affect a broad range of dynamics properties of the liquid. Still, the understanding is lacking on the origin of such differences in terms of a solvent- versus a solute-dominated effect. Here we reveal this origin by studying hydrogen-bond dynamics in a number of alcohol molecules - from methanol to butanol - diluted in a hydrogen-bond accepting environment, acetonitrile. The dynamics were investigated by pump-probe and 2D infrared spectroscopy combined with molecular dynamics-spectral simulations, using the OH stretching mode as a reporter. For all the considered alcohols, the vibrational lifetime of the OH stretching mode was found to be ∼3 ps. The hydrogen-bond dynamics exhibit similar behavior with a fast (∼200 fs) initial relaxation dominated by librational motion and a slow (∼4 ps) relaxation due to hydrogen-bond exchange dynamics. The similar dynamics over such a broad range of alcohols led us to conclude that the previously observed differences in dynamics in bulk alcohols originate from the dependence of the solvent properties on the hydrophobic tail, while the solute properties as found herein are essentially independent of the hydrophobic tail.

  5. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  6. Chlorific efficiency of coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, H.

    1942-10-20

    In studies on the calorific efficiency of coal hydrogenation, the efficiency for H/sub 2/ production was calculated to be 26%, the efficiency for hydrogenation was calculated to be 49%, and the efficiency of hydrogenation including H/sub 2/ production was 27.2%. The efficiency of hydrogenation plus hydrogen production was almost equal to the efficiency of hydrogen production alone, even though this was not expected because of the total energy calculated in the efficiency of hydrogenation proper. It was entirely possible, but did not affect computations, that the efficiency of one or the other components of hydrogenation process differed somewhat from 49%. The average efficiency for all cases was 49%. However, when hydrogen was not bought, but was produced--(efficiency of hydrogen production was 26%, not 100%-- then the total energy changed and the efficiency of hydrogen production and combination was not 26%, but 13%. This lower value explained the drop of hydrogenation efficiency to 27.2%.

  7. EFFECT OF HYDROGEN PEROXIDE AND THIOUREA ON ...

    African Journals Online (AJOL)

    ACSS

    2013-07-03

    Jul 3, 2013 ... temperature and humidity. The objective of this study was to evaluate the involvement of hydrogen peroxide (by direct or indirect application of thiourea, a catalase inhibitor) in dormancy release and sprouting of potato microtubers and tubers was evaluated using two complementary experiments. First, the ...

  8. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim

    2015-01-01

    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and

  9. Aircraft-Fuel-Tank Design for Liquid Hydrogen

    Science.gov (United States)

    Reynolds, T W

    1955-01-01

    Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.

  10. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  11. Hydrogen Fuel Cell Engines and Related Technologies

    Science.gov (United States)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  12. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  13. Sustainable bioreactor systems for producing hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A. [Univ. of Hawaii, Honolulu, HI (United States); Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Molecular Biology; Tredici, M.R. [Univ. of Florence (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiogiche

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  14. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  15. Isotopic fractionation in proteins as a measure of hydrogen bond length.

    Science.gov (United States)

    McKenzie, Ross H; Athokpam, Bijyalaxmi; Ramesh, Sai G

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O-H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  16. Isotopic fractionation in proteins as a measure of hydrogen bond length

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Ross H., E-mail: r.mckenzie@uq.edu.au [School of Mathematics and Physics, University of Queensland, Brisbane 4072 (Australia); Athokpam, Bijyalaxmi; Ramesh, Sai G. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2015-07-28

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor Φ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate Φ as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric O–H⋯O bonds [R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the O–H stretch vibration, O–H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total Φ as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization Φ(R), used previously to determine bond lengths.

  17. Isotopic fractionation in proteins as a measure of hydrogen bond length

    CERN Document Server

    McKenzie, Ross H; Ramesh, Sai

    2015-01-01

    If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor $\\Phi$ is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds we calculate $\\Phi$ as a function of the proton donor-acceptor distance $R$. For numerical results, we use a parameterization of the model for symmetric O-H.... O bonds. We consider the relative contributions of the O-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunnelling splitting effects at...

  18. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  19. Optically active vibrational modes of PPV derivatives on textile substrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)

    2013-02-15

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.

  20. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.