WorldWideScience

Sample records for vibrationally optimized force

  1. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  2. Topology optimization of free vibrations of fiber laser packages

    DEFF Research Database (Denmark)

    Hansen, Lars Voxen

    2005-01-01

    The optimization problems described in the present paper are inspired by the problem of fiber laser package design for vibrating environments. The optical frequency of tuned fiber lasers glued to stiff packages is sensitive to acoustic or other mechanical vibrations. The paper presents a method...... for reducing this sensitivity by limiting the glue point movement on the package while using only a limited knowledge of vibrating external forces. By use of topology optimization a density distribution for the package is obtained, where the critical eigenmode of the package only effects a small elongation...

  3. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...

  4. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  5. Geometry optimization and vibrational frequencies of tetracene ...

    African Journals Online (AJOL)

    Tetracene is an organic semiconductor with chemical formula C18H12 used in organic field effecttransistor (OFET) and organic light emitting diode (OLED). In this work, the molecular geometry (optimized bond lengths and bond angles), vibrational frequencies and intensities, HOMO-LUMO Energy gap and Atomic charge ...

  6. Isogeometric Shape Optimization of Vibrating Membranes

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund

    2011-01-01

    We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization.......We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... to be performed in every optimization iteration. We experiment with two numerical methods (one is based on the idea of constructing a quasi-conformal mapping, whereas the other is based on a spring-based mesh model) for carrying out this task, which turn out to work sufficiently well in the present situation. We...

  7. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    Science.gov (United States)

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (Pvibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician

  8. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  9. Studies of wood pallet response to forced vibration

    OpenAIRE

    Lauer, Ira Edwin

    1991-01-01

    Wood pallets serve as interfaces between packaged products and transport vehicles. vertical vibrations are transmitted through pallets into unit-loads. Pallet response to forced vibration affects forces experienced by products. A study was conducted to determine how pallet design influenced the resonant response of a uniformly distributed case goods unit-load. other studies were conducted to develop a pallet section model to emulate the response of three stringer wood ...

  10. Effect of vibration frequency on biopsy needle insertion force.

    Science.gov (United States)

    Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei

    2017-05-01

    Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  12. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI

    2017-07-11

    Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...

  13. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,

  14. Vibration control of an elastic strip by a singular force

    Indian Academy of Sciences (India)

    Vibration characteristics of an elastic plate in the shape of an infinite strip are changed by applying a lateral concentrated force to the plate. The homogeneous, isotropic, elastic plate is infinite in the -direction and the sides are simply supported. The size of the force is changed in proportion to the displacement measured at ...

  15. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  16. Microscopic calculation of the restoring force for scissor isovector vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Bochnacki, Z.; Faessler, A.

    1986-07-01

    The restoring force for scissor isovector vibrations is calculated microscopically with the wave functions of an axially symmetric Woods-Saxon potential from a density-dependent symmetry energy. The experimental energies of the low-lying magnetic dipole states in rare-earth nuclei are well reproduced. It is found that only outer particles, which contribute to the nuclear moment of inertia, take part in this collective vibration. They are about half of the total number of nucleons.

  17. Qualification of the JWST MIRI Instrument Using Force Limited Vibration

    Science.gov (United States)

    Sykes, J.; Eccleston, P.; Laine, B.; Ngan, I.; Salvignol, J. C.

    2012-07-01

    The MIRI instrument design was qualified for sine and random environments using force limited testing to limit the dynamic responses of the sensitive optical components and mechanisms while demonstrating adequate margin with regard to the environmental flight conditions. Force limiting was achieved using force transducers located between the interface of the instrument and the shaker adapter during the vibration test. Interface forces for each of the three interface points were measured in three orthogonal axes during the low level sine test and used to compute the overturning moment, while the resulting global interface force was directly measured by combining the signals from three individual interfaces during the high level vibrations such that automatic notching could be applied. The test was performed in the recently upgraded vibration facility of the Rutherford Appleton Laboratory. In order to demonstrate and develop the MIRI flight model test approach and procedures, a pull- through test was carried out using the Structural Model of the instrument which had been previously vibrated in 2005 at a different facility. This early test allowed measurement of the facility behaviour with the test article, exercising the notching and abort functions, and highlighting an issue with the stiffness of the adapter, as well as several other lessons learned. An adapter with additional in-plane stiffness to ensure in-phase movement of the interfaces and correct functioning of the force-limiting system was subsequently designed, manufactured and tested in time for the instrument FM test. The vibration test was executed very smoothly thanks to the lessons learned from the preparatory test and the work carried out by the team in advance of the test in preparing modelling and analysis tools which could be used in quasi-real time during the test campaign. The paper intends to present the force limited vibration notching approach as well as the lessons learned from this test.

  18. Pseudorandomness in Central Force Optimization

    OpenAIRE

    Formato, Richard A.

    2010-01-01

    Central Force Optimization is a deterministic metaheuristic for an evolutionary algorithm that searches a decision space by flying probes whose trajectories are computed using a gravitational metaphor. CFO benefits substantially from the inclusion of a pseudorandom component (a numerical sequence that is precisely known by specification or calculation but otherwise arbitrary). The essential requirement is that the sequence is uncorrelated with the decision space topology, so that its effect i...

  19. Non-equilibrium Casimir force between vibrating plates.

    Directory of Open Access Journals (Sweden)

    Andreas Hanke

    Full Text Available We study the fluctuation-induced, time-dependent force between two plates confining a correlated fluid which is driven out of equilibrium mechanically by harmonic vibrations of one of the plates. For a purely relaxational dynamics of the fluid we calculate the fluctuation-induced force generated by the vibrating plate on the plate at rest. The time-dependence of this force is characterized by a positive lag time with respect to the driving. We obtain two distinctive contributions to the force, one generated by diffusion of stress in the fluid and another related to resonant dissipation in the cavity. The relation to the dynamic Casimir effect of the electromagnetic field and possible experiments to measure the time-dependent Casimir force are discussed.

  20. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine.

  1. Lift Force Acting on Bodies in Viscous Liquid Under Vibration

    Science.gov (United States)

    Schipitsyn, Vitaliy; Ivanova, Alevtina; Vlasova, Olga; Kozlov, Victor

    2014-11-01

    The averaged lift force acting on a rigid body located near the wall of the cavity with a viscous liquid under high-frequency oscillations of various types is studied experimentally and theoretically. The experiments are conducted with cylindrical and rectangular solids. Amplitude and frequency of vibration, viscosity and density of fluid, specific solid size, its density and shape vary. Lift force was measured by the dynamic hanging of the body in the gravity when the body oscillates without touching the cavity walls. The vibrations generate a repulsive force, holding a heavy body above the bottom of the cavity, and the light one at some distance from the ceiling. Lift force changes qualitatively in case of combined translational and rotational oscillations of the cavity containing fluid and solid; it is much greater than at the translational vibrations and appears throughout the entire volume of the liquid. The work contains a theoretical description of the mechanism of lift force generation and the comparison of the experimental and theoretical results. The agreement of the results is found in the limit of high dimensionless frequencies. The considered effects could be interesting for vibrational control of solid inclusions in viscous liquids. Work was done in the framework of the Program of strategic development of PSHPU (project 030-F) and supported by Ministry of Education of Perm Region (project C26/625) and grant 4022.2014.1 (Leading Scientific School).

  2. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  3. Analysis of a Lorentz force based vibration exciter using permanent ...

    Indian Academy of Sciences (India)

    This work presents performance analysis of a Lorentz force based noncontact vibration exciter by mounting a couple of permanent magnets on a piezoelectric stack. A conductor is attached to the structure to be excited and is placed midway between unlike poles of a couple of permanent magnets. The permanent magnets ...

  4. Vibration control of an elastic strip by a singular force

    Indian Academy of Sciences (India)

    MS received 10 September 2008; revised 27 August 2009; accepted 17 December. 2009. Abstract. Vibration characteristics of an elastic plate in the shape of an infinite strip are changed by applying a lateral concentrated force to the plate. The homo- geneous, isotropic, elastic plate is infinite in the x-direction and the sides ...

  5. Formula for Forced Vibration Analysis of Structures Using Static ...

    African Journals Online (AJOL)

    This Paper proposed and examined a formula for forced vibration analysis of structures using static factored response as equivalent dynamic response. Some methods of dynamic analysis are based on using static factored response as equivalent dynamic response thereby excluding the formulation of the equations of ...

  6. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  7. Transformation of ab initio force fields in calculations of molecular vibrations using regundand vibrational coordinates

    Science.gov (United States)

    Pitsevich, G. A.; Kostopravova, A. V.; Umreiko, D. S.; Ksenofontov, M. A.

    2011-11-01

    A technique was suggested to transform ab initio molecular force fields calculated using a set of independent vibrational coordinates into a form corresponding to a complete set of regundand coordinates and reflecting the molecular symmetry. Conditions necessary for the appropriate transformations to be possible are formulated. The possibility of transforming the force field for the simplest fragment containing regundand coordinates was demonstrated using ethylene as an example.

  8. Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten saccadic reaction time.

    Science.gov (United States)

    Fujiwara, Katsuo; Kunita, Kenji; Furune, Naoe; Maeda, Kaoru; Asai, Hitoshi; Tomita, Hidehito

    2006-09-01

    Optimal vibration stimulation to the neck extensor muscles using hydraulic vibrators to shorten the saccadic reaction time was examined. Subjects were 14 healthy young adults. Visual targets (LEDs) were located 10 degrees left and right of a central point. The targets were alternately lit for random durations of 2-4 seconds in a resting neck condition and various vibration conditions, and saccadic reaction times were measured. Vibration amplitude was 0.5 mm in every condition. The upper trapezius muscles were vibrated at 40, 60, 80, and 100 Hz in a sub-maximum stretch condition in which the muscles were stretched at 70% of maximum stretch. In addition, the muscles were vibrated at 60 Hz with the muscles maximally stretched, with 70% vertical pressure without stretching, and with vibration applied to the skin in the same area as the muscle vibration. At 60, 80, and 100 Hz at 70% maximum stretch, saccadic reaction time shortened significantly compared with the resting neck condition. However, no significant difference in the reaction time was observed among the frequencies. The saccadic reaction times in the maximum stretch condition, muscle pressure condition, and skin contact condition did not differ significantly from that in the resting neck condition. Vibration stimulation to the trapezius with 60-100 Hz frequencies at 0.5 mm amplitude in the sub-maximum stretch condition was effective for shortening saccadic reaction time. The main mechanism appears to be Ia information originating from the muscle spindle.

  9. Optimal control of vibrational transitions of HCl

    Indian Academy of Sciences (India)

    Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...

  10. Piezoelectrically forced vibrations of rectangular SC-cut quartz plates

    Science.gov (United States)

    Lee, P. C. Y.; Lin, W. S.

    1998-06-01

    A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.

  11. Optimizing Global Force Management for Special Operations Forces

    Science.gov (United States)

    2016-12-01

    FORCE MANAGEMENT FOR SPECIAL OPERATIONS FORCES by Emily A. LaCaille December 2016 Thesis Advisor: Paul L. Ewing Second Reader: Jeffrey...Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZING GLOBAL FORCE MANAGEMENT FOR SPECIAL OPERATIONS FORCES 5. FUNDING NUMBERS 6

  12. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve

    Science.gov (United States)

    Li, Lei; Yan, Hao; Zhang, Hengxuan; Li, Jing

    2018-01-01

    In the pilot stage of nozzle-flapper servo valve, the flow force on the flapper is the key reason that leads to forced vibration of the armature assembly, which may result in the fatigue of the flexure tube in torque motor. To master the principles and features of the flow force and the source of the forced vibration of the armature assembly, mathematical models of flow force and the forced vibration are deduced in this paper. For validating the model, a three-dimensional model is built and a finite element analysis of the flow force with different inlet pressure and deflections is presented and an innovative and experimental rig for measuring the steady and dynamic frequency of flow force is also designed. The characteristic of the main flow force, minor flow force and total flow force are analyzed contrastively, and the experimental results agree well with the CFD results and mathematical model analysis. To find the source of forced vibration of the armature assembly, a knocking method is proposed to measure the natural frequency of armature assembly. By comparing the spectrum of the pressure and vibration movement through experiments, a conclusion can be drawn that the inlet pressure fluctuation near the natural frequency of armature assembly and the asymmetric structure of pilot stage are the necessary and sufficient conditions to make the armature assembly yield forced vibration. In the end, some suggestions have been made to decrease the intensity of forced vibration of the pilot stage according to the findings.

  13. Optimization of the impact multi-mass vibration absorbers

    Directory of Open Access Journals (Sweden)

    Ivan Kernytskyy

    2017-09-01

    Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.

  14. Active Vibration Control of a Large Flexible Manipulator by Inertial Force and Joint Torque. Ph.D. Thesis

    Science.gov (United States)

    Lee, Soo Han

    1988-01-01

    The efficiency and positional accuracy of a lightweight flexible manipulator are limited by its flexural vibrations, which last after a gross motion is completed. The vibration delays subsequent operations. In the proposed work, the vibration is suppressed by inertial force of a small arm in addition to the joint actuators and passive damping treatment. The proposed approach is: (1) Dynamic modeling of a combined system, a large flexible manipulator and a small arm, (2) Determination of optimal sensor location and controller algorithm, and (3) Verification of the fitness of model and the performance of controller.

  15. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  16. Topology optimization for free vibrations using combined approximations

    DEFF Research Database (Denmark)

    Bogomolny, Michael

    2010-01-01

    This study shows how the Combined Approximations (CA) can be used for reducing the computational effort in Topology Optimization for free vibrations. The previously developed approach is based on the integration of several concepts and methods, including matrix factorization, series expansion...

  17. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  18. Rotorcraft airframe structural optimization for combined vibration and fatigue constraints

    Science.gov (United States)

    Sareen, Ashish K.; Schrage, Daniel P.; Murthy, T. S.

    1991-01-01

    This paper addresses the application of a formal optimization technique in rotorcraft airframe structural design studies to reduce the structural weight, to lower airframe vibrations, and to enhance fatigue life of the structure. Vibration and fatigue considerations in airframe design are described. An optimization methodology based on the use of a nonlinear programming technique to size airframe structural members subjected to constraints on weight, vibration response and fatigue stresses under dynamic loads, are described. The paper focuses on the development of necessary computational tools for airframe structural optimization and describes the sensitivity analysis procedure for these types of design constraints. Further, the paper describes the optimization procedure as implemented in a computer code called DYNOPT which is a unique operational combination of several newly developed Fortran codes as well as modification of existing codes consisting of the direct matrix abstraction modules of the MSC/NASTRAN Program and CONMIN optimizer. The application of the optimization procedure is demonstrated using an elastic-line model of the Bell AH-1G helicopter airframe structure and computational results are discussed.

  19. WORK FORCE OPTIMIZATION FOR 2025

    Science.gov (United States)

    2016-02-08

    gain maximum return on investment in the workforce.15 Within the military, this applies to the total work force; Active, National Guard, Reserve...in a team environment.18 The best example of this application is the ability of Special Forces teams (Seals, Rangers, Green Beret) to execute...execution of a capital investment program is required to provide other capabilities within fitness facilities. Civilian personnel involvement in

  20. High force vibration testing with wide frequency range

    Science.gov (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  1. Experimental and theoretical investigation of passive damping concepts for member forced and free vibration

    Science.gov (United States)

    Razzaq, Zia; Mykins, David W.

    1987-01-01

    Potential passive damping concepts for use in space structures are identified. The effectiveness of copper brush, wool swab, and silly putty in chamber dampers is investigated through natural vibration tests on a tubular aluminum member. The member ends have zero translation and possess partial rotational restraints. The silly putty in chamber dampers provide the maximum passive damping efficiency. Forced vibration tests are then conducted with one, two, and three damper chambers containing silly putty. Owing to the limitation of the vibrator used, the performance of these dampers could not be evaluated experimentally until the forcing function was disengaged. Nevertheless, their performance is evaluated through a forced dynamic finite element analysis conducted as a part of this investigation. The theoretical results based on experimentally obtained damping ratios indicate that the passive dampers are considerably more effective under member natural vibration than during forced vibration. Also, the maximum damping under forced vibration occurs at or near resonance.

  2. Free and Forced Vibrations of Periodic Multispan Beams

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    1994-01-01

    Full Text Available In this study, the following two topics are considered for uniform multispan beams of both finite and infinite lengths with rigid transversal and elastic rotational constraints at each support: (a free vibration and the associated frequencies and mode shapes; (b forced vibration under a convected harmonic loading. The concept of wave propagation in periodic structures of Brillouin is utilized to investigate the wave motion at periodic supports of a multispan beam. A dispersion equation and its asymptotic form is obtained to determine the natural frequencies. For the special case of zero rotational spring stiffness, an explicit asymptotic expression for the natural frequency is also given. New expressions for the mode shapes are obtained in the complex form for multispan beams of both finite and infinite lengths. The orthogonality conditions of the mode shapes for two cases are formulated. The exact responses of both finite and infinite span beams under a convected harmonic loading are obtained. Thus, the position and the value of each peak in the harmonic response function can be determined precisely, as well as the occurrence of the so-called coincidence phenomenon, when the response is greatly enhanced.

  3. Non-Linear Forced Vibrations of AN Inhomogeneous Layer

    Science.gov (United States)

    COSKUN, I.; ENGIN, H.; ERGÜVEN, M. E.

    1999-11-01

    The non-linear vibrations of an inhomogeneous soil layer which is subjected to a harmonic motion along its bottom are investigated in this study. The Ramberg-Osgood model is transformed to a suitable form to obtain an analytical solution and it is assumed that the shear modulus of the layer varies with depth. The governing equation is a non-linear partial differential equation. Because of weak non-linearity, the displacement and forcing frequency are expanded into perturbation series by using the Lindstedt-Poincaré technique, and it is assumed that the response has the same periodicity as the forcing. Then, the zeroeth and the first order linear equations of motion and boundary conditions are obtained. Different types of solutions are obtained for the zeroeth order equation depending on the inhomogeneity parameter α. The orthogonality condition of Millman-Keller [1] is used to extract secular terms which are important in the resonance region. Then, the variation of the amplitude at the top versus the forcing frequency Ω is investigated for some values of inhomogeneity and perturbation parameters.

  4. Vibrational self-consistent field theory using optimized curvilinear coordinates

    Science.gov (United States)

    Bulik, Ireneusz W.; Frisch, Michael J.; Vaccaro, Patrick H.

    2017-07-01

    A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).

  5. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    Science.gov (United States)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations

  6. Consideration of grip and push forces for the assessment of vibration exposure.

    Science.gov (United States)

    Riedel, S

    1995-01-01

    There is much influence of the coupling forces between hand and grip of the vibrating tool on the measuring results as well as on the vibration effects on the hand-arm system. In a research project the effects of grip and push forces on acute responses of the hand-arm system under vibration conditions have been studied. Using these results of the biodynamic response, vibration perception threshold and subjective vibration sensation a bonus/malus system for a correction of the measured frequency-weighted r.m.s. acceleration was drafted, to assess the hand-arm vibration at the workplace: Since there is no difference between the acute effects of grip force and push force, so the forces have to be added and defined as coupling force Fcf. On the basis of this coupling force Fcf a correcting factor cF may be calculated. The factor amounts to 0.6 at Fcf = 20 N, 1.0 at Fcf = 120 N and 1.1 at Fcf = 200 N. To correct the measured weighted r.m.s. acceleration ahwz (Fcf) depending on coupling forces the r.m.s. acceleration has to be multiplied with the correcting factor cF. The drafted procedure enables to assess vibration exposure depending on coupling forces in a standardized way.

  7. Optimal ossicular site for maximal vibration transmissions to coupled transducers.

    Science.gov (United States)

    Chung, Juyong; Song, Won Joon; Sim, Jae Hoon; Kim, Wandoo; Oh, Seung-Ha

    2013-07-01

    Totally implantable middle-ear prosthetic devices, such as the Esteem system (Envoy Medical Corporation), detect vibrational motion of the middle-ear ossicles rather than acoustic stimulation to the eardrum. This eliminates the need for a subcutaneous microphone, which is susceptible to interference by ambient noises. Study of the vibrational characteristics of the human ossicles provides valuable information for determining the site of maximum ossicular motion that would be optimal for attachment of the sensor portion of the prosthesis. In this study, vibrational responses at seven locations on the middle-ear ossicles (i.e., the malleus head, 4 different points on the incus body, middle of the incus long process, tip of the incus long process) in human temporal bones (n = 6) were measured using a laser Doppler vibrometer. The measurements were repeated after separating the incudostapedial joint (ISJ). Measured displacement at each location was normalized with the sound pressure level near the tympanic membrane (TM) for representation in the form of a displacement transfer function (DTF). The normalized squared sum of the DTFs (NSSDTF) was then calculated as a measure of vibration motion through a specific frequency range at the considered sites. The relatively large NSSDTF was observed at the sites on the superior part of the malleus head (MH), on the lateral part of the incus body (IBL), and on the superior part of the incus body near the incudomalleal joint (IBS1) for the frequency ranges of 1-4 kHz and 1-9 kHz, regardless of the condition of the ISJ. This indicates that maximum vibrational motion of the middle-ear is deliverable to the piezoelectric transducer of totally implantable devices through these sites. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Transversal vibrations of elastic rod in magnetic field under simultaneous kinematic and force action

    Science.gov (United States)

    Tomilin, A. K.; Kurilskaya, N. F.

    2017-10-01

    A model problem of transversal vibrations of an elastic conducting rod in the magnetic field is studied. Vibrations in the rod are excited due to kinematic and force factors. A partial differential equation of motion containing the integral term for the electromagnetic force was constructed. After applying the Fourier procedure, the problem is reduced to a set of ODEs. The condition for passive stabilization of the main vibrational mode’s amplitude is derived. A method of active electromagnetic suppression of certain vibrational modes is proposed.

  9. Optimization of Marine Forces Reserve Equipment Redistribution

    Science.gov (United States)

    2016-06-01

    industry as an example. Bertrand and Bookbinder begin with a basic supply chain logistics model of a large warehouse supplying a number of retail...solutions, and perform fast sensitivity analysis on the competing objectives. 14. SUBJECT TERMS Optimization, Marine Forces Reserve, redistribution...reallocation, equipment supply , logistics 15. NUMBER OF PAGES 61 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  10. Combining configurational energies and forces for molecular force field optimization

    Science.gov (United States)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    2017-10-01

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. Here we propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information is used to optimize a molecular force field by minimizing the statistical distance similarity metric. We illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.

  11. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  12. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu

    2017-12-01

    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  13. Lock-in in forced vibration of a circular cylinder

    Science.gov (United States)

    Kumar, Samvit; Navrose, Mittal, Sanjay

    2016-11-01

    The phenomenon of lock-in/synchronization in uniform flow past an oscillating cylinder is investigated via a stabilized finite element method at Re = 100. Computations are carried out for various amplitudes and frequencies of cylinder oscillation to accurately obtain the boundary of the lock-in regime. Results from earlier studies show a significant scatter in the lock-in boundary. The scatter might be an outcome of the difference in data collection or the use of a different criterion for identifying lock-in. A new criterion for lock-in is proposed, wherein the following two conditions are to be satisfied. (i) The most dominant frequency in the power spectrum of lift coefficient matches the frequency of cylinder oscillation (fy) and (ii) other peaks in the power spectrum, if any, are present only at super-harmonics of fy. Utilizing this criterion, three flow regimes are identified on the frequency-amplitude plane: lock-in, transition, and no lock-in. The behaviour of the wake is also investigated by examining the power spectra of the velocity traces at various locations downstream of the cylinder. Wake-lock-in is observed during lock-in. A wake-transition regime is identified wherein the near wake, up to a certain streamwise location, is in a lock-in state while the downstream region is in a desynchronized state. For a fixed fy, the location beyond which the wake is desynchronized moves downstream as the amplitude of oscillation is increased. The proposed criterion for lock-in addresses the wide scatter in the boundary of the lock-in regime among earlier studies. Energy transfer from the fluid to the structure, per cycle of cylinder oscillation, is computed from the data for forced vibration. The data is utilized to generate iso-energy transfer contours in the frequency-amplitude plane. The free vibration response with zero structural damping is found to be in very good agreement with the contour corresponding to zero energy transfer.

  14. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.

    Science.gov (United States)

    Killgore, Jason P; Tung, Ryan C; Hurley, Donna C

    2014-08-29

    Combining heated-tip atomic force microscopy (HT-AFM) with quantitative methods for determining surface mechanical properties, such as contact resonance force microscopy, creates an avenue for nanoscale thermomechanical property characterization. For nanomechanical methods that employ an atomic force microscope cantilever's vibrational modes, it is essential to understand how the vibrations of the U-shaped HT-AFM cantilever differ from those of a more traditional rectangular lever, for which analytical techniques are better developed. Here we show, with a combination of finite element analysis (FEA) and experiments, that the HT-AFM cantilever exhibits many more readily-excited vibrational modes over typical AFM frequencies compared to a rectangular cantilever. The arms of U-shaped HT-AFM cantilevers exhibit two distinct forms of flexural vibrations that differ depending on whether the two arms are vibrating in-phase or out-of-phase with one another. The in-phase vibrations are qualitatively similar to flexural vibrations in rectangular cantilevers and generally show larger sensitivity to surface stiffness changes than the out-of-phase vibrations. Vibration types can be identified from their frequency and by considering vibration amplitudes in the horizontal and vertical channels of the AFM at different laser spot positions on the cantilever. For identifying contact resonance vibrational modes, we also consider the sensitivity of the resonant frequencies to a change in applied force and hence to tip-sample contact stiffness. Finally, we assess how existing analytical models can be used to accurately predict contact stiffness from contact-resonance HT-AFM results. A simple two-parameter Euler-Bernoulli beam model provided good agreement with FEA for in-phase modes up to a contact stiffness 500 times the cantilever spring constant. By providing insight into cantilever vibrations and exploring the potential of current analysis techniques, our results lay the groundwork

  15. Influence of the Posture of the Trunk on the Spine Forces during Whole-Body Vibration

    National Research Council Canada - National Science Library

    Fritz, Martin; Schäfer, Klaus

    2011-01-01

    .... Assuming that these inclined postures result in a higher health risk than vibration exposure in the upright sitting posture the forces transmitted in the lumbar spine were assessed by means of a biomechanical model...

  16. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2009-01-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  17. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2010-05-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  18. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    Science.gov (United States)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound – impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  19. Forced Vibrations of a Two-Layer Orthotropic Shell with an Incomplete Contact Between Layers

    Science.gov (United States)

    Ghulghazaryan, L. G.; Khachatryan, L. V.

    2018-01-01

    Forced vibrations of a two-layer orthotropic shell, with incomplete contact conditions between layers, when the upper face of the shell is free and the lower one is subjected to a dynamic action are considered. By an asymptotic method, the solution of the corresponding dynamic equations and correlations of a 3D problem of elasticity theory is obtained. The amplitudes of forced vibrations are determined, and resonance conditions are established.

  20. Semiempirical force method treatment of the vibrational spectra of amides. Pt. 1. In-plane vibrations of some simple amides

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, A. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Altalanos es Szervetlen Kemiai Intezet)

    1981-01-01

    A CNDO/2 force method calculation has been carried out on the in-plane force field of formamide, acetamide, N-methylformamide, and N-methylacetamide. After a least-squares fitting for the spectra with a few empirical scalling parameters, the force constant matrices are reasonably good even to permit critical judgement of the vibrational assignments of all the four molecules including N-deuterated derivatives. The /sup 15/N isotope shifts of formamide and acetamide are also correctly reproduced. The scaling factors are proved to be transferable and are shown to permit calculation of fundamental frequencies of related molecules within a mean deviation of 30 cm/sup -1/.

  1. Cause elucidation of sodium leakage incident at `Monju` reactor. Vibration of thermometer due to fluid force

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Koji; Wada, Yusaku; Morishita, Masaki; Yamaguchi, Akira; Ichimiya, Masakazu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-01-01

    This is a report of summarized results of investigation and analysis on fracture of thermometer which is direct reason of sodium leakage incident at the second main cooling system of fast breeder reactor `Monju`. Various surveys such as on various damage factors, on flowing power vibrational features containing flowing power vibrational test of thermometer, on evaluation of high cycle fatigue due to flowing power vibration and details on propagation of and fracture due to fatigue crack, on why only said thermometer damaged, and so forth were executed. As results of these examinations, a decision was arrived that high cycle fatigue due to vibration formed by fluid force (fluid force vibration) was a direct cause of the thermometer damage. (G.K.)

  2. Optimized Vibration Chamber for Landslide Sensory and Alarm System

    Science.gov (United States)

    Ismail, Eliza Sabira Binti; Hadi Habaebi, Mohamed; Daoud, Jamal I.; Rafiqul Islam, Md

    2017-11-01

    Landslide is one of natural hazard that is not unfamiliar disaster in Malaysia. Malaysia has experienced this disaster many times since 1969. This natural hazard has become a major research concern for Malaysian government when many people were injured badly and even had been killed. Many previous research works published in the open literature aimed at designing a system that could detect landslide in early stage before the landslide becomes catastrophic. This paper presents the early works on a major work-in-progress landslide early warning system for Malaysian environment. The aim of this system is to develop the most efficiently reliable cost-effective system in which slight earth movements are monitored continuously. The challenge this work aims at is to work with a low budget system that produces efficient performance. Hence, the material used is off-the-shelf. Early design optimization results of the vibration sensor used is quite promising detecting the slightest faint tremors, which are amplified using the best vibration chamber available. It is shown that the choice of proper pipe length and diameter dimensions in combination to a gravel to exaggerate the produced higher sensitivity level noise of 5 dB.

  3. H-infinity optimization of a variant design of the dynamic vibration absorber—Revisited and new results

    Science.gov (United States)

    Cheung, Y. L.; Wong, W. O.

    2011-08-01

    The H∞ optimum parameters of a dynamic vibration absorber (DVA) with ground-support are derived to minimize the resonant vibration amplitude of a single degree-of-freedom (sdof) system under harmonic force excitation. The optimum parameters which are derived based on the classical fixed-points theory and reported in literature for this non-traditional DVA are shown to be not leading to the minimum resonant vibration amplitude of the controlled mass. A new procedure is proposed for the H∞ optimization of such a dynamic vibration absorber. A new set of optimum tuning frequency and damping of the absorber is derived, thereby resulting in lower maximum amplitude responses than those reported in the literature. The proposed optimized variant DVA is also compared to a ground-hooked damper of the same damping capacity of the damper in the DVA. It is proved that the proposed optimized DVA has better suppression of the resonant vibration amplitude of the controlled system than both the traditional DVA and also the ground-hooked damper if the proposed design procedure of the variant DVA is followed.

  4. Modeling of the interaction between grip force and vibration transmissibility of a finger.

    Science.gov (United States)

    Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G

    2017-07-01

    It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.

  5. ELECTROMAGNETIC VIBRATION DISTURBING FORCES AT THE ECCENTRICITY OF ROTOR OF TURBOGENERATOR

    Directory of Open Access Journals (Sweden)

    Yu.M. Vaskovskyi

    2016-09-01

    Full Text Available Electromagnetic vibration disturbing forces in different variants of the rotor displacement from an axis of the stator bore is carried out. Investigation for ТG type ТGV-200-2 by finite element method in COMSOL Multiphysics is carried out. The field mathematical model of static and dynamic eccentricity is described. The amplitude vibration disturbing forces are greatest, when a static eccentricity direction coincides with an axis of the stator winding phase is shown. The diagnostic features static and dynamic eccentricities are formulated. The most value of forces in the point with minimal air gap is shown. The diagnostic features static and dynamic eccentricities and the method of diagnostic eccentricity are formulated. Diagnostic feature of static eccentricity is to change the amplitude Maxwell stress tensor is established. The dynamic eccentricity diagnostic features are appearance in the spectrum of vibration disturbing forces rotating and multiple harmonics.

  6. Reducing friction-induced vibration using intelligent active force ...

    Indian Academy of Sciences (India)

    (FIV). Thus, it should be reduced or controlled as much as possible in order to achieve quieter vehicle (brake system), better performance (position control systems and clutches) and quality products. There were typically three major mechanisms that contributing to the generation of friction induced vibration namely: negative ...

  7. Hip joint contact forces calculated using different muscle optimization techniques

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2013-01-01

    The goal of this study was to calculate muscle forces using different optimization techniques and investigate their effect on hip joint contact forces in gait and sit to stand. These contact forces were compared to measured hip contact forces [3]. The results showed that contact forces were

  8. Study on Forced Torsional Vibration of CFRP Drive-Line System with Internal Damping

    Science.gov (United States)

    Yang, Mo; Hu, Yefa; Zhang, Jinguang; Ding, Guoping; Song, Chunsheng

    2017-12-01

    The use of CFRP transmission shaft has positive effect on the weight and flexural vibration reduction of drive-line system. However, the application of CFRP transmission shaft will greatly reduce the torsional stiffness of the drive-line, and may cause strong transient torsional vibration. Which will seriously affect the performance of CFRP drive-line. In this study, the forced torsional vibration of the CFRP drive-line system is carried out using the lumped parameter model. In addition, the effect of rotary inertia, internal damping, coupling due to the composite laminate, and excitation torque are incorporated in the modified transfer matrix model (TMM). Then, the modified TMM is used to predict the torsional frequency and forced torsional vibration of a CFRP drive-line with three-segment drive shafts. The results of modified TMM shown that the rotational speed difference of the CFRP transmission shaft segment is much larger than metal transmission shaft segment under excitation torque. And compared the results from finite element simulation, modified TMM and torsional vibration experiment respectively, and it has shown that the modified TMM can accurately predict forced torsional vibration behaviors of the CFRP drive-line system.

  9. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  10. Vibrational Analysis and Valence Force Field for Nitrotoluenes, Dimethylanilines and Some Substituted Methylbenzenes

    Science.gov (United States)

    Reddy, B. Venkatram; Ojha, Jai Kishan; Rao, G. Ramana

    2011-06-01

    The Fourier transform infrared (FTIR) and Raman spectra of 2-amino-4-nitro-toluene; 2-amino-5-nitrotoluene; 2,4-dimethylaniline; 2,5-dimethylaniline; 2,6-dimethylaniline; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene and pentamethyl-benzene have been recorded in the range 4000-400 Cm-1 and 4000-30 Cm-1, respectively. A normal coordinate analysis was carried out for both in-plane and out-of-plane vibrations of these molecules using an 81-parameter modified valence force field. The force constants were refined using 251 frequencies of eight molecules in the Overlay least-square technique. The reliability of force constants was tested by making zero-order calculations for both in-plane and out-of plane vibrations for five related molecules. The potential energy distribution (PED) and eigen vectors calculated in the process were used to make unambiguous vibrational assignment of all the fundamentals.

  11. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  12. Characterization of real-world vibration sources with a view toward optimal energy harvesting architectures

    Science.gov (United States)

    Rantz, Robert; Roundy, Shad

    2016-04-01

    A tremendous amount of research has been performed on the design and analysis of vibration energy harvester architectures with the goal of optimizing power output; most studies assume idealized input vibrations without paying much attention to whether such idealizations are broadly representative of real sources. These "idealized input signals" are typically derived from the expected nature of the vibrations produced from a given source. Little work has been done on corroborating these expectations by virtue of compiling a comprehensive list of vibration signals organized by detailed classifications. Vibration data representing 333 signals were collected from the NiPS Laboratory "Real Vibration" database, processed, and categorized according to the source of the signal (e.g. animal, machine, etc.), the number of dominant frequencies, the nature of the dominant frequencies (e.g. stationary, band-limited noise, etc.), and other metrics. By categorizing signals in this way, the set of idealized vibration inputs commonly assumed for harvester input can be corroborated and refined, and heretofore overlooked vibration input types have motivation for investigation. An initial qualitative analysis of vibration signals has been undertaken with the goal of determining how often a standard linear oscillator based harvester is likely the optimal architecture, and how often a nonlinear harvester with a cubic stiffness function might provide improvement. Although preliminary, the analysis indicates that in at least 23% of cases, a linear harvester is likely optimal and in no more than 53% of cases would a nonlinear cubic stiffness based harvester provide improvement.

  13. Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

    NARCIS (Netherlands)

    Wijker, Jacob J; de Boer, Andries; Ellenbroek, Marcellinus Hermannus Maria

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), is a

  14. Response of a flexible filament in a flowing soap film subject to a forced vibration

    Science.gov (United States)

    Jia, Laibing; Xiao, Qing; Wu, Haijun; Wu, Yanfeng; Yin, Xiezhen

    2015-01-01

    The interactions between flexible plates and fluids are important physical phenomena. A flag in wind is one of the most simplified and classical models for studying the problem. In this paper, we investigated the response of a flag in flow with an externally forced vibration by using flexible filaments and soap film. Experiments show that for a filament that is either in oscillation or stationary, the external forced vibration leads to its oscillation. A synchronization phenomenon occurs in the experiments. A small perturbation leads to a large response of flapping amplitude in response. The insight provided here is helpful to the applications in the flow control, energy harvesting, and bionic propulsion areas.

  15. Reliability-based optimization of an active vibration controller using evolutionary algorithms

    Science.gov (United States)

    Saraygord Afshari, Sajad; Pourtakdoust, Seid H.

    2017-04-01

    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.

  16. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI

    2014-08-01

    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  17. Photo-electromotive-force from vibrating speckled pattern of light on photorefractive CdTe:V

    Science.gov (United States)

    Santos, T. O.; Launay, J. C.; Frejlich, J.

    2008-04-01

    We report the use of the photo-electromotive force (photo-emf) effect produced by a vibrating speckle pattern of light, generated by laser radiation at 1064nm, in the volume of a photorefractive vanadium doped CdTe crystal. This effect is used to measure the sample's photocondutivity and the vibration amplitude of the pattern of light. When the vibrations are much faster than the photorefractive material reponse time the photocurrent is independent of the response time. The theoretical model predicts a maximum value for the first temporal harmonic term of the photocurrent at a fixed value for the vibration amplitude-to-speckle size ratio. This prediction was experimentally confirmed and this maximum can be used to calibrate the setup in order to facilitate practical applications.

  18. A novel technique for active vibration control, based on optimal tracking control

    Science.gov (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  19. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  20. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi [Kanazawa University, Kakuma-machi, Kanazawa-city, Ishikawa 920-1164 (Japan)

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  1. Optimal Search Strategy of Robotic Assembly Based on Neural Vibration Learning

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2011-01-01

    Full Text Available This paper presents implementation of optimal search strategy (OSS in verification of assembly process based on neural vibration learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of robots gripe vibration and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation of unexpected events due to uncertainties.

  2. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  3. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics Impact factor: 1.329, year: 2016

  4. The vibrational source strength descriptor using power input from equivalent forces: a simulation study

    DEFF Research Database (Denmark)

    Laugesen, Søren; Ohlrich, Mogens

    1994-01-01

    Simple, yet reliable methods for the approximate determination of the vibratory power supplied by the internal excitation forces of a given vibrational source are of great interest. One such method that relies on the application of a number of “equivalent forces” and measurements of the mean squa...

  5. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    user

    spatially dependent ordinary differential equation, which upon solution and application of the boundary conditions yielded a closed ...... To overcome this amplitude the reaction force ( R ) is assumed to be a fraction ( )q of the amplitude of harmonic excitation applied to the structure. At the start, the correct value of q. ( exact q. ) ...

  6. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  7. Older Age Is Associated with Lower Optimal Vibration Frequency in Lower-Limb Muscles During Whole-Body Vibration.

    Science.gov (United States)

    Carlucci, Flaminia; Orlando, Giorgio; Haxhi, Jonida; Laudani, Luca; Giombini, Arrigo; Macaluso, Andrea; Pigozzi, Fabio; Sacchetti, Massimo

    2015-07-01

    The aim of this study was to compare the optimal vibration frequency (OVF), which corresponds to maximal electromyographic muscle response during whole-body vibration, between young, middle-aged, and older women in four muscles of the lower-limbs. OVF was measured as the frequency corresponding to maximal root mean square of the surface electromyogram (RMSmax) during a continuous incremental protocol, with a succession of vibration frequencies from 20 to 55 Hz (A = 2 mm), on the vastus lateralis, vastus medialis, rectus femoris, and gastrocnemius lateralis muscles of the dominant lower-limb. Seventy-eight women were divided into three age groups, that is, young, 21.6 ± 2.4 yrs; middle aged, 43.0 ± 5.2 yrs; and older, 74.2 ± 6.0 yrs. OVF in the vastus medialis was lower in the older women than in the middle-aged and young women, whereas OVF in the vastus lateralis was lower in the older than in the young women. There were no differences in OVF between muscles within each group. RMSmax was higher in the older than in the young women in all muscles. Age range should be taken into consideration when determining OVF because it decreases with age. Properly individualizing the vibration protocol might greatly influence neuromuscular effects of vibration training.

  8. Optimal Load and Stiffness for Displacement-Constrained Vibration Energy Harvesters

    CERN Document Server

    Halvorsen, Einar

    2016-01-01

    The power electronic interface to a vibration energy harvester not only provides ac-dc conversion, but can also set the electrical damping to maximize output power under displacement-constrained operation. This is commonly exploited for linear two-port harvesters by synchronous switching to realize a Coulomb-damped resonant generator, but has not been fully explored when the harvester is asynchronously switched to emulate a resistive load. In order to understand the potential of such an approach, the optimal values of load resistance and other control parameters need to be known. In this paper we determine analytically the optimal load and stiffness of a harmonically driven two-port harvester with displacement constraints. For weak-coupling devices, we do not find any benefit of load and stiffness adjustment beyond maintaining a saturated power level. For strong coupling we find that the power can be optimized to agree with the velocity damped generator beyond the first critical force for displacement-constra...

  9. Vibrational spectra and force constants of symmetric tops. Pt. 33

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, H.; Eujen, R.; Rahner, A.; Schulz, P.; Drake, J.E.; Cradock, S.

    1983-07-01

    The infrared spectrum of monoisotopic H/sub 3//sup 74/GeI has been investigated with a resolution of 0.04 cm/sup -1/ in the region of ..nu../sub 6/ and 2 ..nu../sub 6/. Rotational analyses (sigma(J,K)proportional7x10/sup -3/ cm/sup -1/) of ..nu../sub 6/, 546.117(3), 2 ..nu../sub 6/sup(+-2), 1094.731(4), and 2 ..nu../sub 6//sup 0/, 1091.530(4) cm/sup -1/, have been performed, and vibrational and rotational parameters of the apparently unperturbed theta/sub 6/=1 and 2 states have been obtained. Q branches of hot bands with ..nu../sub 3/ and ..nu../sub 6/ as lower states have been detected, and the anharmonocity constants, chi/sub 36/, chi/sub 66/ and g/sub 66/ have been determined. The stimultaneous analysis of ..nu../sub 6/sup(+-1), 2 ..nu../sub 6/sup(+-2) and 2 ..nu../sub 6/sup(+-2)-..nu../sub 6/sup(+-1) provides an improved A/sub 0/ value.

  10. Optimizing feed force for turned parts through the Taguchi technique

    Indian Academy of Sciences (India)

    Abstract. The objective of the paper is to obtain an optimal setting of turning process parameters (cutting speed, feed rate and depth of cut) resulting in an optimal value of the feed force when machining EN24 steel with TiC-coated tungsten- carbide inserts. The effects of the selected turning process parameters on feed force.

  11. Separation of binary granular mixtures under vibration and differential magnetic levitation force.

    Science.gov (United States)

    Catherall, A T; López-Alcaraz, P; Sánchez, P; Swift, Michael R; King, P J

    2005-02-01

    The application of both a strong magnetic field and a magnetic field gradient to a diamagnetic or paramagnetic material can produce a vertical force that acts in concert with the force of gravity. We consider a binary granular mixture in which the two components have different magnetic susceptibilities and therefore experience different effective forces of gravity when subjected to an inhomogeneous magnetic field. Under vertical vibration, such a mixture may rapidly separate into regions almost pure in the two components. We investigate the conditions for this behavior, studying the speed and completeness of separation as a function of differential effective gravity and the frequency and amplitude of vibration. The influence of the cohesive magnetic dipole-dipole interactions on the separation process is also investigated. In our studies insight is gained through the use of a molecular dynamics simulation model.

  12. Control of forced vibrations of mechanical structures by an electromagnetic controller with a permanent magnet

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force....... The so generated magnetic flux variation induces alternating voltage in the electric circuit, which is dissipated in a shunt resistor. The induced current driven through the coil generates magnetic force, which damps the excitation force and changes the damped natural frequency of the oscillatory system...

  13. Investigations on the Effects of Vortex-Induced Vibration with Different Distributions of Lorentz Forces

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.

  14. Optimization of linear zigzag insert metastructures for low-frequency vibration attenuation using genetic algorithms

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Inman, Daniel J.

    2017-02-01

    Vibration suppression remains a crucial issue in the design of structures and machines. Recent studies have shown that with the use of metamaterial inspired structures (or metastructures), considerable vibration attenuation can be achieved. Optimization of the internal geometry of metastructures maximizes the suppression performance. Zigzag inserts have been reported to be efficient for vibration attenuation. It has also been reported that the geometric parameters of the inserts affect the vibration suppression performance in a complex manner. In an attempt to find out the most efficient parameters, an optimization study has been conducted on the linear zigzag inserts and is presented here. The research reported in this paper aims at developing an automated method for determining the geometry of zigzag inserts through optimization. This genetic algorithm based optimization process searches for optimal zigzag designs which are properly tuned to suppress vibrations when inserted in a specific host structure (cantilever beam). The inserts adopted in this study consist of a cantilever zigzag structure with a mass attached to its unsupported tip. Numerical simulations are carried out to demonstrate the efficiency of the proposed zigzag optimization approach.

  15. Optimization of Vibration Reduction Ability of Ladder Tracks by FEM Coupled with ACO

    Directory of Open Access Journals (Sweden)

    Hao Jin

    2015-01-01

    Full Text Available Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from underground railways. In order to optimize the vibration reduction ability of ladder track, a new method, that is, the finite element method (FEM coupled with ant colony optimization (ACO, has been proposed in this paper. We describe how to build the FEM model verified by the vibration tests in the Track Vibration Abatement and Control Laboratory and how to couple the FEM with ACO. The density and elasticity modulus of the sleeper pad are optimized using this method. After optimization, the vibration acceleration level of the supporting platform in the 1–200 Hz range was reduced from 102.8 dB to 94.4 dB. The optimized density of the sleeper pad is 620 kg/m3, and the optimized elasticity modulus of the sleeper pad is 6.25 × 106 N/m2.

  16. Optimal Placement of Piezoelectric Plates to Control Multimode Vibrations of a Beam

    Directory of Open Access Journals (Sweden)

    Fabio Botta

    2013-01-01

    Full Text Available Damping of vibrations is often required to improve both the performance and the integrity of engineering structures, for example, gas turbine blades. In this paper, we explore the possibility of using piezoelectric plates to control the multimode vibrations of a cantilever beam. To develop an effective control strategy and optimize the placement of the active piezoelectric elements in terms of vibrations amplitude reduction, a procedure has been developed and a new analytical solution has been proposed. The results obtained have been corroborated by comparison with the results from a multiphysics finite elements package (COMSOL, results available in the literature, and experimental investigations carried out by the authors.

  17. Passive damping concepts for free and forced member and grillage vibration

    Science.gov (United States)

    Razzaq, Zia; Najjar, Bassam

    1988-01-01

    The performance of potential passive damping concepts is investigted for a long tubular aluminum alloy member, and a two-bar grillage structure. The members are restrained partially at the ends and are of the type being considered by NASA for possible use in the construction of a future space station. Four different passive damping concepts are studied and include nylon brush, wool swab, copper brush, and silly putty in chamber dampers. Both free and forced vibration tests are conducted. It is found that the silly putty in chamber damper concept provides considerably greater passive damping as compared to that of the other three concepts. For the grillage natural vibration, a five wool swab damper configuration provides greater damping than the five silly putty dampers in chamber configuration. Due to the constrained motion imposed by the vibrator used in the tests, the effectiveness of the passive dampers could not be adequately evaluated for the individual member. However, it is found that for the grillage under forced vibration, the five silly putty dampers in chamber damper configuration provides very effective passive damping although only at and around the resonant frequency. At resonance, these dampers provide a 51 percent reduction in the dynamic magnification factor for this case.

  18. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  19. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies

    Science.gov (United States)

    Sreekanta Murthy, T.

    1992-01-01

    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  20. Research of the ForCES Routing Optimization

    OpenAIRE

    Jingjing Zhou; Weiming Wang; Xudong Zhu

    2013-01-01

    The research on ForCES technology has made a great progress. However current researches on ForCES mainly focus on architecture and techniques. In order to ensure ForCES architecture network works well, it is significant to take account of performance (such as routing) optimization for ForCES architecture. In this paper, we introduced a minimizing sum of path-cost model based on multiple traffic matrices, combined with negative valence ring algorithm, to optimize the traffic at FE sides in For...

  1. Method for analyzing electromagnetic-force-induced vibration and noise analysis; Denjiryoku reiki ni yoru dendoki no shindo hoshaon kaisekiho

    Energy Technology Data Exchange (ETDEWEB)

    Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)

    1998-11-01

    In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.

  2. Force Limited Vibration Testing and Subsequent Redesign of the Naval Postgraduate School CubeSat Launcher

    Science.gov (United States)

    2014-06-01

    complex (e.g., Honeycomb ), this approach can significantly increase the cost of a satellite program. 3. Limit the responses of the satellite to match...LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ABC Aft Bulkhead Carrier ADaMSat AS&T Development and Maturation Satellite AFSPC Air Force Space...vibration testing FRF frequency response function GEMSat Government Experimental Multi- Satellite GRACE Government Rideshare Advanced Concepts Experiments

  3. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill

    Science.gov (United States)

    Truyen Luong, Hung; Goo, Nam Seo

    2012-02-01

    A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.

  4. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  5. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    Science.gov (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi

    2017-12-01

    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  6. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin

    2017-12-01

    Full Text Available In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It’s difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  7. Vibration Transfer Path Analysis and Path Ranking for NVH Optimization of a Vehicle Interior

    Directory of Open Access Journals (Sweden)

    B. Sakhaei

    2014-01-01

    Full Text Available By new advancements in vehicle manufacturing, evaluation of vehicle quality assurance has got a more critical issue. Today noise and vibration generated inside and outside the vehicles are more important factors for customers than before. So far several researchers have focused on interior noise transfer path analysis and the results have been published in related papers but each method has its own limitations. In present work, the vibration transfer path analysis and vibration path ranking of a car interior have been performed. As interior vibration is a source of structural borne noise problem, thus, the results of this research can be used to present the structural borne noise state in a vehicle. The proposed method in this paper does not need to disassemble the powertrain from the chassis. The procedure shows a good ability of vibration path ranking in a vehicle and is an effective tool to diagnose the vibration problem inside the vehicle. The simulated vibration spectrums in different speeds of the engine have a good compliance with the tested results; however, some incompatibilities exist and have been discussed in detail. The simulated results show the strength of the method in engine mount optimization.

  8. Effects of vibration training on force production in female basketball players.

    Science.gov (United States)

    Fernandez-Rio, Javier; Terrados, Nicolas; Fernandez-Garcia, Benjamin; Suman, Oscar E

    2010-05-01

    The goal of this research project was to investigate the long-term effects of whole-body vibration (WBV) training on force production. Thirty-one female basketball players were randomly distributed in an experimental group: VG (vibration) and a control group: CG (no vibration). Both groups participated in the same training program; however, the experimental group (VG) performed a set of exercises on a vibration platform (Power Plate) at 30- to 35-Hz frequency and 4 mm amplitude, whereas the CG performed the same exercises at 0 Hz. Muscle performance of the legs was tested on a contact-time platform (Ergojump, Finland) through several tests: squat jump (SJ), countermovement jump (CMJ), and 15-second maximal performance jump; squat leg power (knee extension) was also evaluated using an Ergopower machine (Bosco, Italy). After 14 weeks, there was a significant increase (p power. However, there were no significant differences between the VG and the CG for any of the parameters evaluated. The findings of this study indicate that WBV training has no additive or discernible effect on the strength development of female basketball players after several weeks of use, suggesting that the application of this technology has no advantages over traditional strength training methods.

  9. An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments

    Directory of Open Access Journals (Sweden)

    J.S. Wu

    2012-01-01

    of the same vibrating system are calculated by using a relationship between |Y(x|t and |Y(x|s obtained from the single-degree-of-freedom (SDOF vibrating system. It is noted that, near resonance (i.e., we/w≈ 1.0, the entire MDOF system (with natural frequency w will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes |Y(x|t of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency we. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.

  10. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    Science.gov (United States)

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  11. Identification of cutting force coefficients in machining process considering cutter vibration

    Science.gov (United States)

    Yao, Qi; Luo, Ming; Zhang, Dinghua; Wu, Baohai

    2018-03-01

    Among current cutting force models, cutting force coefficients still are the foundation of predicting calculation combined with consideration of geometry engagement variation, equipment characteristics, material properties and so on. Attached with unimpeachable significance, the traditional and some novel identification methods of cutting force coefficient are still faced with trouble, including repeated onerous work, over ideal measuring condition, variation of value due to material divergence, interference from measuring units. To utilize the large amount of data from real manufacturing section, enlarge data sources and enrich cutting data base for former prediction task, a novel identification method is proposed by considering stiffness properties of the cutter-holder-spindle system in this paper. According to previously proposed studies, the direct result of cutter vibration is the form of dynamic undeformed chip thickness. This fluctuation is considered in two stages of this investigation. Firstly, a cutting force model combined with cutter vibration is established in detailed way. Then, on the foundation of modeling, a novel identification method is developed, in which the dynamic undeformed chip thickness could be obtained by using collected data. In a carefully designed experiment procedure, the reliability of model is validated by comparing predicted and measured results. Under different cutting condition and cutter stiffness, data is collected for the justification of identification method. The results showed divergence in calculated coefficients is acceptable confirming the possibility of accomplishing targets by applying this new method. In discussion, the potential directions of improvement are proposed.

  12. Application of Taguchi method for cutting force optimization in rock ...

    Indian Academy of Sciences (India)

    In this paper, an optimization study was carried out for the cutting force (Fc) acting on circular diamond sawblades in rock sawing. The peripheral speed, traverse speed, cut depth and flow rate of cooling fluid were considered as operating variables and optimized by using Taguchi approach for the Fc. L16(44) orthogonal ...

  13. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  14. Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy

    Science.gov (United States)

    Ansari, R.; Hasrati, E.; Faghih Shojaei, M.; Gholami, R.; Shahabodini, A.

    2015-05-01

    In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.

  15. Optimal location of piezoelectric patches for active vibration control

    Science.gov (United States)

    Labanie, Mohammad F.; Ali, J. S. Mohamed; Shaik Dawood, M. S. I.

    2017-03-01

    This paper focuses on finding the optimal location for a piezoelectric patch for minimizing the settling time of an excited isotropic and orthotropic plate. COMSOL Multiphysics has been used to design and model the plate with PID controller. Classical Optimization tool called Parametric Sweep has been used to achieve the objective of the experiment. Five different stacking sequences were used in the study of orthotropic plate. The results obtained by the FEA software indicated that by placing the piezoelectric patches at the optimal location, the settling time of a plate can decrease by 40% compared to placing it at the centre of the fixed end.

  16. Adaptive Central Force Optimization Algorithm Based on the Stability Analysis

    Directory of Open Access Journals (Sweden)

    Weiyi Qian

    2015-01-01

    Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.

  17. The optimization of single mode basis functions for polyatomic vibrational problems with application to the water molecule

    Science.gov (United States)

    Schwenke, David W.

    1992-01-01

    The optimization of the wave functions is considered for coupled vibrations represented by linear combinations of products of functions depending only on a single vibrational coordinate. The functions themselves are optimized as well as configuration list. For the H2O molecule highly accurate results are obtained for the lowest 15 levels using significantly shorter expansions than would otherwise be possible.

  18. Optimizing Armed Forces Capabilities for Hybrid Warfare - New Challenge for Slovak Armed Forces

    National Research Council Canada - National Science Library

    Peter Pindják

    2015-01-01

      The paper deals with the optimization of military capabilities of the Slovak Armed Forces for conducting operations in a hybrid conflict, which represents one of the possible scenarios of irregular warfare...

  19. An Optimization-Based Impedance Approach for Robot Force Regulation with Prescribed Force Limits

    Directory of Open Access Journals (Sweden)

    R. de J. Portillo-Vélez

    2015-01-01

    Full Text Available An optimization based approach for the regulation of excessive or insufficient forces at the end-effector level is introduced. The objective is to minimize the interaction force error at the robot end effector, while constraining undesired interaction forces. To that end, a dynamic optimization problem (DOP is formulated considering a dynamic robot impedance model. Penalty functions are considered in the DOP to handle the constraints on the interaction force. The optimization problem is online solved through the gradient flow approach. Convergence properties are presented and the stability is drawn when the force limits are considered in the analysis. The effectiveness of our proposal is validated via experimental results for a robotic grasping task.

  20. Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness

    Directory of Open Access Journals (Sweden)

    Jong-Jin Bae

    2016-01-01

    Full Text Available Mecanum wheels are capable of moving a vehicle to any direction instantaneously by the combination of independent wheel rotations. Because the mecanum wheel is composed of a hub and rollers, however, it has unavoidable drawbacks such as vertical and horizontal vibrations due to the sequential contacts between rollers and ground. In order to investigate the dynamic characteristics of a mecanum wheel, we made a prototype and performed experiments to measure the vertical vibrations. Interestingly, it was observed that the vertical accelerations were asymmetric with respect to the average value of signals; the vibration signals of upward and downward directions show quite different shape. This asymmetric phenomenon was confirmed through the dynamic simulations performed by RecurDyn. In addition, the peak-to-peak and RMS values of the displacements and accelerations were calculated to investigate the effects of the curvature of rollers on the vertical vibrations of the vehicle. Furthermore, we proposed a mecanum wheel having a spring to attenuate the vibrations. It was also noted that the significant reduction of the vertical accelerations was observed due to the absence of the spring. Finally, considering the equivalent stiffness of the mecanum wheel for several different fillet radii, we found the optimal geometric design which minimizes the vertical vibration of a mecanum wheel.

  1. Sensor Placement Optimization of Vibration Test on Medium-Speed Mill

    Directory of Open Access Journals (Sweden)

    Lihua Zhu

    2015-01-01

    Full Text Available Condition assessment and decision making are important tasks of vibration test on dynamic machines, and the accuracy of dynamic response can be achieved by the sensors placed on the structure reasonably. The common methods and evaluation criteria of optimal sensor placement (OSP were summarized. In order to test the vibration characteristic of medium-speed mill in the thermal power plants, the optimal placement of 12 candidate measuring points in X, Y, and Z directions on the mill was discussed for different targeted modal shapes, respectively. The OSP of medium-speed mill was conducted using the effective independence method (EfI and QR decomposition algorithm. The results showed that the order of modal shapes had an important influence on the optimization results. The difference of these two methods on the sensor placement optimization became smaller with the decrease of the number of target modes. The final scheme of OSP was determined based on the optimal results and the actual test requirements. The field test results were basically consistent with the finite element analysis results, which indicated the sensor placement optimization for vibration test on the medium-speed mill was feasible.

  2. Optimization procedure to control the coupling of vibration modes in flexible space structures

    Science.gov (United States)

    Walsh, Joanne L.

    1987-01-01

    As spacecraft structural concepts increase in size and flexibility, the vibration frequencies become more closely-spaced. The identification and control of such closely-spaced frequencies present a significant challenge. To validate system identification and control methods prior to actual flight, simpler space structures will be flown. To challenge the above technologies, it will be necessary to design these structures with closely-spaced or coupled vibration modes. Thus, there exists a need to develop a systematic method to design a structure which has closely-spaced vibration frequencies. This paper describes an optimization procedure which is used to design a large flexible structure to have closely-spaced vibration frequencies. The procedure uses a general-purpose finite element analysis program for the vibration and sensitivity analyses and a general-purpose optimization program. Results are presented from two studies. The first study uses a detailed model of a large flexible structure to design a structure with one pair of closely-spaced frequencies. The second study uses a simple equivalent beam model of a large flexible structure to obtain a design with two pairs of closely-spaced frequencies.

  3. Design and optimization of a bi-axial vibration-driven electromagnetic generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping; Qiu, Jing [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)

    2014-09-21

    To scavenge energy from ambient vibrations with arbitrary in-plane motion directions and over a wide frequency range, a novel electromagnetic vibration energy harvester is designed and optimized. In the harvester, a circular cross-section elastic rod, not a traditional thin cantilever beam, is used to extract ambient vibration energy because of its capability to collect vibration from arbitrary in-plane motion directions. The magnetic interaction between magnets and the iron core contributes to a nonlinear oscillation of the rod with increased frequency bandwidth. The influences of the structure configurations on the electrical output and the working bandwidth of the harvester are investigated using Ansoft's Maxwell 3D to achieve optimal performance. The experimental results show that the harvester is sensitive to vibrations from arbitrary in-plane directions and it exhibits a bandwidth of 5.7 Hz and a maximum power of 13.4 mW at an acceleration of 0.6 g (with g=9.8 ms⁻²).

  4. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  5. Vibration Characteristics of a Mistuned Bladed Disk considering the Effect of Coriolis Forces

    Directory of Open Access Journals (Sweden)

    Xuanen Kan

    2016-01-01

    Full Text Available To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequency veering region. In addition, the amplitude magnification factor considering the Coriolis effects is increased by 1.02% compared to the system without considering the Coriolis effects as the rotating speed is 3000 rpm, while the amplitude magnification factor is increased by 2.76% as the rotating speed is 10000 rpm. The results indicate that the amplitude magnification factor may be moderately enhanced with the increasing of rotating speed. Moreover, the position of the maximum forced response of bladed disk may shift from one blade to another with the increasing of the rotational speed, when the effects of Coriolis forces are considered.

  6. Optimal and robust feedback controller estimation for a vibrating plate

    NARCIS (Netherlands)

    Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.

    2004-01-01

    This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2

  7. Rotation in vibration, optimization, and aeroelastic stability problems. Ph.D. Thesis

    Science.gov (United States)

    Kaza, K. R. V.

    1974-01-01

    The effects of rotation in the areas of vibrations, dynamic stability, optimization, and aeroelasticity were studied. The governing equations of motion for the study of vibration and dynamic stability of a rapidly rotating deformable body were developed starting from the nonlinear theory of elasticity. Some common features such as the limitations of the classical theory of elasticity, the choice of axis system, the property of self-adjointness, the phenomenon of frequency splitting, shortcomings of stability methods as applied to gyroscopic systems, and the effect of internal and external damping on stability in gyroscopic systems are identified and discussed, and are then applied to three specific problems.

  8. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge-Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  9. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    Science.gov (United States)

    Daraji, A. H.; Hale, J. M.

    2014-10-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system.

  10. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... is laid on investigating resonant periodic point loading and its pronounced effect on the propagation of longitudinal waves. General mono-coupled periodic systems are first assumed to be infinite in extent; thereafter reflections caused by arbitrary end terminations of finite structures are considered...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...

  11. Influence of vegetable based cutting fluids on cutting force and vibration signature during milling of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    S. Shankar

    2017-03-01

    Full Text Available Due to the environmental and health issues, there is an enormous requirement for developing the novel cutting fluids (CFs. The vegetable based cutting fluid (VBCFs doesn’t affect the environment, diminish the harmful effects to the operator and also enhance the machining performances such as surface roughness, tool life, minimum vibration and cutting forces. In this work, the performances of four different VBCFs like palm, coconut, sunflower, soya bean oils, and a commercial type of CFs were considered to analyze the influence of cutting fluids while measuring the cutting force and vibration signatures during milling of 7075–T6 hybrid aluminium metal matrix composite with carbide insert tool. The experiments were conducted in CNC L-MILL 55 vertical machining center, with milling tool dynamometer to measure the cutting force and a tri-axial accelerometer to measure the vibration signals. The flow rate of the VBCFs were maintained at a constant rate and the results were compared with a commercial cutting fluid. The obtained result shows that palm oil suits better than the other vegetable based cutting fluids in terms of minimum cutting force requirement and minimum vibration. Also, the experimental result shows that the cutting fluid was one of the important parameter needs to be considered which influences the cutting force and vibration signals.

  12. Forced Vibration of Delaminated Timoshenko Beams under the Action of Moving Oscillatory Mass

    Directory of Open Access Journals (Sweden)

    M.H. Kargarnovin

    2013-01-01

    Full Text Available This paper presents the dynamic response of a delaminated composite beam under the action of a moving oscillating mass. In this analysis the Poisson's effect is considered for the first time. Moreover, the effects of rotary inertia and shear deformation are incorporated. In our modeling linear springs are used between delaminated surfaces to simulate the dynamic interaction between sub-beams. To solve the governing differential equations of motion using modal expansion series, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes necessary for forced vibration analysis. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the literatures. Moreover, the maximum dynamic response of such beam is compared with an intact beam. The effects of different parameters such as the velocity of oscillating mass, different ply configuration and the delamination length, its depth and spanwise location on the dynamic response of the beam are studied. In addition, the effects of delamination parameters on the oscillator critical speed are investigated. Furthermore, different conditions under which the detachment of moving oscillator from the beam will initiate are investigated.

  13. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  14. Statistical Analysis of Deep Drilling Process Conditions Using Vibrations and Force Signals

    Directory of Open Access Journals (Sweden)

    Syafiq Hazwan

    2016-01-01

    Full Text Available Cooling systems is a key point for hot forming process of Ultra High Strength Steels (UHSS. Normally, cooling systems is made using deep drilling technique. Although deep twist drill is better than other drilling techniques in term of higher productivity however its main problem is premature tool breakage, which affects the production quality. In this paper, analysis of deep twist drill process parameters such as cutting speed, feed rate and depth of cut by using statistical analysis to identify the tool condition is presented. The comparisons between different two tool geometries are also studied. Measured data from vibrations and force sensors are being analyzed through several statistical parameters such as root mean square (RMS, mean, kurtosis, standard deviation and skewness. Result found that kurtosis and skewness value are the most appropriate parameters to represent the deep twist drill tool conditions behaviors from vibrations and forces data. The condition of the deep twist drill process been classified according to good, blunt and fracture. It also found that the different tool geometry parameters affect the performance of the tool drill. It believe the results of this study are useful in determining the suitable analysis method to be used for developing online tool condition monitoring system to identify the tertiary tool life stage and helps to avoid mature of tool fracture during drilling process.

  15. Vibration characteristics and optimization for panel elastically supported in mobile phone

    Science.gov (United States)

    Kaito, Y.; Honda, S.; Narita, Y.

    2016-09-01

    In recent years, usage of smartphones and tablet terminals have spread around the world. These devices using touchscreen as a user interface are currently mainstream. Also, in order to let information of input or output surely know to users, there are some types of equipment having vibrational function in touchscreen. Here, the material of touchscreen consists of glass and the glass panel is fixed to a mobile phone's body by adhesive tapes along the edge of the panel. However, due to the difficulty of design of vibration, it needs investigation with a vast number of manufacturing prototypes. Moreover, the vibration characteristic of panels is not enough regarding intensity and a tactile impression. Therefore, in this study, the authors consider the vibration characteristic of glass panel elastically fixed by adhesive tapes along edges. First, they show modeling of adhesive tapes along edges of panel by using translational and rotational springs. Second, they show formulating vibration characteristic by using an energy method. Third, they optimize spring constants of translational and rotational springs by using Genetic Algorithm(GA) from the obtained expression. Finally, they consider natural frequencies and eigenmodes which were acquired from experiments and simulations.

  16. Optimization of Surface Finish in Turning Operation by Considering the Machine Tool Vibration using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Muhammad Munawar

    2012-01-01

    Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.

  17. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  18. Optimized design of suspension systems for hand-arm transmitted vibration reduction

    Science.gov (United States)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco

    2012-05-01

    This paper describes a systematic approach for optimizing suspension systems to reduce the vibrations transmitted to workers by hand-held power tools. The optimization is based on modeling tool-operator interactions using a mobility scheme. The tool is modeled as a vibration generator, and its internal impedance is included. A hand-arm impedance matrix is used to model the operator upper limbs. The mobility model is used to identify the optimal suspension characteristics, which in our study were the set of parameters that minimizes the frequency-weighted acceleration at the hand-tool interface. Different handling conditions (one and two hands) and different working cycles with the same tools can be included in the optimization process. The constraints derived from the limitation on the increase in the tool mass and the static deflection of the mounting system under the working loads are also considered. The proposed method has been applied to the reduction of the vibrations transmitted to the operator by a small pneumatic hammer. The designed system reduced the worker's exposure so that it is within the limits of the EU directive. The agreement between the model predictions and the measured suspension performances validates the effectiveness of this approach.

  19. Optimization of constrained layer damping for strain energy minimization of vibrating pads

    Directory of Open Access Journals (Sweden)

    Supachai Lakkam1

    2012-04-01

    Full Text Available An optimization study for brake squeals aims to minimize the strain energy of vibrating pads with constrained layerdamping. To achieve this, using finite element method and experiments were operated and assumed-coupling mode methodwas used to solve it. The integrated global strain energy of the pad over a frequency range of interesting mode was calculated.Parametric studies were then performed to identify those dominant parameters on the vibration response of the damped pad.Moreover, the proposed methodology was employed to search for the optimum of the position/geometry of the constrainedlayer damping patch. Optimal solutions are given and discussed for different cases where the strain energy of the pad over afrequency range is covering the first bending mode and with the inclusion of the restriction of minimum damping materialutilization. As a result, the integrated strain energy is then performed to identify and optimize the position and geometry of thedamping shim. The optimization of the constrained layer damping for strain energy minimization of vibrating pads depend onthe position of the shape of the damping patch. These data can guide to specify the position of the constrained layer dampingpatch under pressure conditions.

  20. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  1. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  2. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.

    Science.gov (United States)

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2017-08-16

    Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Force limited random vibration testing: the computation of the semi-empirical constant C2 for a real test article and unknown supporting structure

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load),

  4. Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm

    Science.gov (United States)

    Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad

    2017-09-01

    When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.

  5. An Experiment Monitoring Signals of Coal Bed Simulation under Forced Vibration Conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2015-01-01

    Full Text Available An experiment simulating coal seam under forced vibration conditions was conducted. Acceleration response and microseism signal during the experiment were collected and analyzed. It is found that, with an increasing amount of vibration, the natural frequency of the specimen decreases, and this phenomenon reflects fractures appearing in the specimen. Acceleration response signals show that peaks in shock excitation frequency and shock excitation acceleration affect the acceleration response, which reflects damage to the specimen. When shock excitation frequency nears natural frequency, the acceleration response first decreases and then increases. When resonance occurs, it reaches its maximum value. As shock excitation acceleration peaks increase, the acceleration response peak of the specimen also increases. We conclude that destruction is mainly concentrated in the coal seam evidenced by specimen destruction situation. Then shock excitation frequency and shock excitation acceleration influence on microseism signals were analyzed by Hilbert-Huang transform. By receiving these signals and analyzing their characteristics, it is beneficial to develop new methods to predict disasters underground dynamically in the future.

  6. Minimally invasive intracellular delivery based on electrokinetic forces combined with vibration-assisted cell membrane perforation

    Science.gov (United States)

    Shibata, Takayuki; Ozawa, Tatsuya; Ito, Yasuharu; Yamamoto, Keita; Nagai, Moeto

    2017-01-01

    To provide an effective platform for the fundamental analysis of cellular mechanisms and the regulation of cellular functions, we developed a unique method of minimally invasive intracellular delivery. Using this method, we successfully demonstrated the delivery of DNA molecules into living HeLa cells via a glass micropipette based on DC-biased AC-driven electrokinetic forces with much better controllability than that of the pressure-driven flow method. We also proposed a vibration-assisted insertion method for penetrating the cell membrane to reduce cell damage. Preliminary insertion tests revealed that application of mechanical oscillation can reduce the deformation of cells due to increases in their viscous resistance, resulting in a high probability of cell membrane perforation and cell viability. Moreover, to overcome the intrinsic low throughput of intracellular delivery with a single glass micropipette, we developed a fabrication process involving an array of stepped hollow silicon dioxide (SiO2) nanoneedles with well-defined tips.

  7. Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers

    Science.gov (United States)

    Karlash, V. L.

    2017-09-01

    A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.

  8. Aircraft vibration and other factors related to high systolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2013-05-01

    Indonesian Air Force pilots doing annual medical check-ups at the Saryanto Institute for Medical and Health Aviation and Aerospace (LAKESPRA from 2003 – 2008. The data extracted from medical records were age, total flight hours, type of aircraft, fasting blood glucose and cholesterol levels, waist circumference, height and weight (Body Mass Index, and blood pressure.Results: Of 336 pilots, there were 16 with systolic pressure  140 mmHg. The pilot who had high vibration than low vibration had 2.8-fold to be high systolic blood pressure [adjusted odds ratio (ORa = 2.83; 95%confidence interval (CI =1.16-22.04. In term of average flight hours, those who had average flight hours of 300-622 hours per year compared to 29-299 hours per year had 5-fold increased risk to be high systolic blood pressure (ORa = 5.05; 95% CI =1.16-22.04]. Furthermore, those who had high than normal resting pulse rate had 2.4 times to be high systolic blood pressure (ORa = 2.37; 95 CI =0.81-6.97; P = 0.115.Conclusion:High aircraft vibration, high average flight hours per year, and high resting pulse rate increase risk high systolic blood pressure in air force pilots.Keywords: systolic blood pressure, aircraft vibration, resting pulse rate, pilots

  9. Development of linear and nonlinear hand-arm vibration models using optimization and linearization techniques.

    Science.gov (United States)

    Rakheja, S; Gurram, R; Gouw, G J

    1993-10-01

    Hand-arm vibration (HAV) models serve as an effective tool to assess the vibration characteristics of the hand-tool system and to evaluate the attenuation performance of vibration isolation mechanisms. This paper describes a methodology to identify the parameters of HAV models, whether linear or nonlinear, using mechanical impedance data and a nonlinear programming based optimization technique. Three- and four-degrees-of-freedom (DOF) linear, piecewise linear and nonlinear HAV models are formulated and analyzed to yield impedance characteristics in the 5-1000 Hz frequency range. A local equivalent linearization algorithm, based upon the principle of energy similarity, is implemented to simulate the nonlinear HAV models. Optimization methods are employed to identify the model parameters, such that the magnitude and phase errors between the computed and measured impedance characteristics are minimum in the entire frequency range. The effectiveness of the proposed method is demonstrated through derivations of models that correlate with the measured X-axis impedance characteristics of the hand-arm system, proposed by ISO. The results of the study show that a linear model cannot predict the impedance characteristics in the entire frequency range, while a piecewise linear model yields an accurate estimation.

  10. Direct computation of optimal control of forced linear system

    Science.gov (United States)

    Utku, S.; Kuo, C.-P.; Salama, M.

    1985-01-01

    It is known that the optimal control of a forced linear system may be reduced to that of tracking the system without forces. The solution of the tracking problem is available via the costate variables method. This procedure is computationally expensive for large order systems. It requires solution of matrix Riccati equation and two final value problems. An alternate approach is outlined for the direct computation of the optimal control. Instead of Riccati equation, a matrix Volterra integral must be solved. For this purpose two computational schemes are described, and an illustrative example is given. The results compare favorably with the classical solution. This alternative approach may be especially useful for the control of large space structure where large order models are required.

  11. Structure optimization of a micro drill bit with nonlinear constraints considering the effects of eccentricity, gyroscopic moments, lateral and torsional vibrations

    Science.gov (United States)

    Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen

    2017-10-01

    A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.

  12. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2018-01-01

    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  13. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Science.gov (United States)

    Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu; Ganesh, Panchapakesan; Sumpter, Bobby G.; Proffen, Thomas E.; Goswami, Monojoy

    2017-07-01

    Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D2O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  14. Optimizing Armed Forces Capabilities for Hybrid Warfare – New Challenge for Slovak Armed Forces

    Directory of Open Access Journals (Sweden)

    Peter PINDJÁK

    2015-09-01

    Full Text Available The paper deals with the optimization of military capabilities of the Slovak Armed Forces for conducting operations in a hybrid conflict, which represents one of the possible scenarios of irregular warfare. Whereas in the regular warfare adversaries intend to eliminate the centers of gravity of each other, most often command and control structures, in irregular conflicts, the center of gravity shifts towards the will and cognitive perception of the target population. Hybrid warfare comprises a thoroughly planned combination of conventional military approaches and kinetic operations with subversive, irregular activities, including information and cyber operations. These efforts are often accompanied by intensified activities of intelligence services, special operation forces, and even mercenary and other paramilitary groups. The development of irregular warfare capabilities within the Slovak Armed Forces will require a progressive transformation process that may turn the armed forces into a modern and adaptable element of power, capable of deployment in national and international crisis management operations.

  15. Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)

    2014-05-15

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  16. Relationship between sound radiation from sound-induced and force-excited vibration: Analysis using an infinite elastic plate model.

    Science.gov (United States)

    Yairi, Motoki; Sakagami, Kimihiro; Nishibara, Kosuke; Okuzono, Takeshi

    2016-07-01

    Although sound radiation from sound-induced vibration and from force-excited vibration of solid structures are similar phenomena in terms of radiating from vibrating structures, the general relationship between them has not been explicitly studied to date. In particular, airborne sound transmission through walls and sound radiation from structurally vibrating surfaces in buildings are treated as different issues in architectural acoustics. In this paper, a fundamental relationship is elucidated through the use of a simple model. The transmission coefficient for random-incidence sound and the radiated sound power under point force excitation of an infinite elastic plate are both analyzed. Exact and approximate solutions are derived for the two problems, and the relationship between them is theoretically discussed. A conversion function that relates the transmission coefficient and radiated sound power is obtained in a simple closed form through the approximate solutions. The exact solutions are also related by the same conversion function. It is composed of the specific impedance and the wavenumber, and is independent of any elastic plate parameters. The sound radiation due to random-incidence sound and point force excitation are similar phenomena, and the only difference is the gradient of those characteristics with respect to the frequency.

  17. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  18. Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix: Application to vibration fault detection

    Science.gov (United States)

    McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection from vibration data, however this method has limitations. A convolution adjustment to the MED definition and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases causing spurious impulses to be erroneously deconvolved. A problem with the MED solution is that it is an iterative selection process, and will not necessarily design an optimal filter for the posed problem. Additionally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target goal of multiple periodic impulses, it is still an iterative non-optimal solution to the posed problem and only solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the output goal, and should directly solve for the optimal filter in a non-iterative manner. To meet these goals, we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA). MOMEDA proposes a deconvolution problem with an infinite impulse train as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox with and without a gear tooth chip, we show that MOMEDA and its deconvolution spectrums according to the period between the impulses can be used to detect faults and study the health of rotating machine elements effectively.

  19. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Directory of Open Access Journals (Sweden)

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  20. Optimal linear generator with Halbach array for harvesting of vibration energy during human walking

    Directory of Open Access Journals (Sweden)

    Joonsoo Jun

    2016-05-01

    Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.

  1. Optimal Damping of Stays in Cable-Stayed Bridges for In-Plane Vibrations

    DEFF Research Database (Denmark)

    Jensen, C.N.; Nielsen, S.R.K.; Sørensen, John Dalsgaard

    2002-01-01

    cable-stayed bridges are often designed as twin cables with a spacing of, say 1m. In such cases, it is suggested in the paper to suppress the mentioned in-plane types of vibrations by means of a tuned mass–damper (TMD) placed between the twin cables at their midpoints. The TMD divides the stay into four...... of the mentioned frequencies. The spring and the damper constants of the TMD are optimized so that the variances of the displacement of the adjacent four half-cables, the support point of the TMD and the secondary mass are minimized. At optimal design, it is shown that the variances reduce below 14% of those...

  2. Optimal Vibration Control for Half-Car Suspension on In-Vehicle Networks in Delta Domain

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper explores the optimal vibration control design problem for a half-car suspension working on in-vehicle networks in delta domain. First, the original suspension system with ECU-actuator delay and sensor-ECU delay is modeled. By using delta operators, the original system is transformed into an associated sampled-data system with time delays in delta domain. After model transformation, the sampled-data system equation is reduced to one without actuator delays and convenient to calculate the states with nonintegral time delay. Therefore, the sampled-data optimal vibration control law can be easily obtained deriving from a Riccati equation and a Stein equation of delta domain. The feedforward control term and the control memory terms designed in the control law ensure the compensation for the effects produced by disturbance and actuator delay, respectively. Moreover, an observer is constructed to implement the physical realizability of the feedforward term and solve the immeasurability problem of some state variables. A half-car suspension model with delays is applied to simulate the responses through the designed controller. Simulation results illustrate the effectiveness of the proposed controller and the simplicity of the designing approach.

  3. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  4. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions.

    Science.gov (United States)

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-02-08

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  5. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  6. Influence of Whole Body Vibration and Specific Warm-ups on Force during an Isometric Mid-Thigh Pull

    Directory of Open Access Journals (Sweden)

    Vanessa L. Cazás-Moreno

    2015-10-01

    Full Text Available Purpose: The purpose of this study was to investigate the effects of general and specific warm-up protocols on rate of force development (RFD, relative RFD (rRFD, ground reaction force (GRF and relative ground reaction force (rGRF during an isometric mid-thigh pull (IMTP, after WBV exposure. Methods: Fifteen healthy recreationally trained males  (age: 24.1 ± 2.3 yrs, height: 72.9 ± 7.8 cm; mass: 86.9 ± 8.3 completed five protocols: baseline, isometric vibration (iVib, isometric no vibration (iNV, dynamic vibration (dVib and dynamic no vibration (dNV. The baseline was completed without any warm-up prior to the IMTP. The intervention protocols had the same prescription of 4 sets of 30-second bouts of quarter squats (dynamic [DQS] and isometric [IQS] on the WBV platform with or without vibration. Following a one-minute rest period after each protocol, participants completed three maximal IMTPs. Results: Repeated measures ANOVA with a Bonferroni post hoc demonstrated that RFD in dNV (7657.8 ± 2292.5 N/s was significantly greater than iVib (7156.4 ± 2170.0 N/s. However, the other experimental trials for RFD demonstrated no significant differences (p>0.05. There were also no significant differences for rRFD, GRF or rGRF between protocols. Conclusion: These results demonstrate that a dynamic warm-up without WBV elicits greater RFD than an isometric warm-up with WBV prior to a maximal isometric exercise. Further research needs to be investigated utilizing dynamic and isometric warm-ups in conjunction with WBV and power output. Keywords: males, recreationally trained, power

  7. Effects of muscle fatigue on the ground reaction force and soft-tissue vibrations during running: a model study.

    Science.gov (United States)

    Nikooyan, Ali Asadi; Zadpoor, Amir Abbas

    2012-03-01

    A modeling approach is used in this paper to study the effects of fatigue on the ground reaction force (GRF) and the vibrations of the lower extremity soft tissues. A recently developed multiple degrees-of-freedom mass-spring-damper model of the human body during running is used for this purpose. The model is capable of taking the muscle activity into account by using a nonlinear controller that tunes the mechanical properties of the soft-tissue package based on two physiological hypotheses, namely, "constant force" and "constant vibration." In this study, muscle fatigue is implemented in the model as the gradual reduction of the ability of the controller to tune the mechanical properties of the lower body soft-tissue package. Simulations are carried out for various types of footwear in both pre- and postfatigue conditions. The simulation results show that the vibration amplitude of the lower body soft-tissue package may considerably increase (up to 20%) with muscle fatigue, while the effects of fatigue on the GRF are negligible. The results of this modeling study are in line with the experimental studies that found muscle fatigue does not significantly change the GRF peaks, but may increase the level of soft-tissue vibrations (particularly for hard shoes). A major contribution of the current study is the formulation of a hypothesis about how the central nervous system tunes the muscle properties after fatigue.

  8. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    Science.gov (United States)

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  9. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gaigong [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hu, Wei, E-mail: whu@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Pask, John E., E-mail: pask1@llnl.gov [Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2017-04-15

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  10. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    Science.gov (United States)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  11. Experiments on Optimal Vibration Control of a Flexible Beam Containing Piezoelectric Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Gustavo L.C.M. Abreu

    2003-01-01

    Full Text Available In this paper, a digital regulator is designed and experimentally implemented for a flexible beam type structure containing piezoelectric sensors and actuators by using optimal control design techniques. The controller consists of a linear quadratic regulator with a state estimator, namely a Kalman observer. The structure is a cantilever beam containing a set of sensor/actuator PVDF/PZT ceramic piezoelectric patches bonded to the beam surface at the optimal location obtained for the first three vibration modes. The equations of motion of the beam are developed by using the assumed modes technique for flexible structures in infinite-dimensional models. This paper uses a method of minimizing the effect of the removed higher order modes on the low frequency dynamics of the truncated model by adding a zero frequency term to the low order model of the system. A measure of the controllability and observability of the system based on the modal cost function for flexible structures containing piezoelectric elements (intelligent structures is used. The observability and controllability measures are determined especially to guide the placement of sensors and actuators, respectively. The experimental and numerical transfer functions are adjusted by using an optimization procedure. Experimental results illustrate the optimal control design of a cantilever beam structure.

  12. Optimal placement of water-lubricated rubber bearings for vibration reduction of flexible multistage rotor systems

    Science.gov (United States)

    Liu, Shibing; Yang, Bingen

    2017-10-01

    Flexible multistage rotor systems with water-lubricated rubber bearings (WLRBs) have a variety of engineering applications. Filling a technical gap in the literature, this effort proposes a method of optimal bearing placement that minimizes the vibration amplitude of a WLRB-supported flexible rotor system with a minimum number of bearings. In the development, a new model of WLRBs and a distributed transfer function formulation are used to define a mixed continuous-and-discrete optimization problem. To deal with the case of uncertain number of WLRBs in rotor design, a virtual bearing method is devised. Solution of the optimization problem by a real-coded genetic algorithm yields the locations and lengths of water-lubricated rubber bearings, by which the prescribed operational requirements for the rotor system are satisfied. The proposed method is applicable either to preliminary design of a new rotor system with the number of bearings unforeknown or to redesign of an existing rotor system with a given number of bearings. Numerical examples show that the proposed optimal bearing placement is efficient, accurate and versatile in different design cases.

  13. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    Science.gov (United States)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  14. Optimizing significance testing of astronomical forcing in cyclostratigraphy

    Science.gov (United States)

    Kemp, David B.

    2016-12-01

    The recognition of astronomically forced (Milankovitch) climate cycles in geological archives marked a major advance in Earth science, revealing a heartbeat within the climate system of general importance and key utility. Power spectral analysis is the primary tool used to facilitate identification of astronomical cycles in stratigraphic data, but commonly employed methods for testing the statistical significance of relatively high narrow-band variance of potential astronomical origin in spectra have been criticized for inadequately balancing the respective probabilities of type I (false positive) and type II (false negative) errors. This has led to suggestions that the importance of astronomical forcing in Earth history is overstated. It can be readily demonstrated, however, that the imperfect nature of the stratigraphic record and the quasiperiodicity of astronomical cycles sets an upper limit on the attainable significance of astronomical signals. Optimized significance testing is that which minimizes the combined probability of type I and type II errors. Numerical simulations of stratigraphically preserved astronomical signals suggest that optimum significance levels at which to reject a null hypothesis of no astronomical forcing are between 0.01 and 0.001 (i.e., 99-99.9% confidence level). This is lower than commonly employed in the literature (90-99% confidence levels). Nevertheless, in consonance with the emergent view from other scientific disciplines, fixed-value null hypothesis significance testing of power spectra is implicitly ill suited to demonstrating astronomical forcing, and the use of spectral analysis remains a difficult and subjective endeavor in the absence of additional supporting evidence.

  15. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    Science.gov (United States)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure

  16. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  17. Research on the Effect of Cutting Parameters on Chip Formation and Cutting Force in Elliptical Vibration Cutting Process

    Science.gov (United States)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Feng, Da

    2017-12-01

    Elliptical vibration cutting (EVC) has been widely concerned since it was proposed, and its unique characteristics such as friction reversal and intermittent cutting can effectively extend the tool life, improve the machined surface roughness and so on. The objective of this paper was to predict the behavior of cutting force. A method of predicting the behavior of cutting force based on the chip thickness under various cutting conditions is proposed. Based on the established tool motion model, the chip model was founded. By numerical simulation, the effects of cutting parameters on cutting force under various cutting conditions were studied. The results show that the chip thickness can be used to predict the behavior of cutting force.

  18. Parameters Optimization for a Kind of Dynamic Vibration Absorber with Negative Stiffness

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2016-01-01

    Full Text Available A new type of dynamic vibration absorber (DVA with negative stiffness is studied in detail. At first, the analytical solution of the system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio is formulated by minimizing the maximum value of the amplitude-frequency curves according to H∞ optimization principle. According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show that the presented DVA performs better in vibration absorption. This result could provide theoretical basis for optimum parameters design of similar DVAs.

  19. Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures

    Science.gov (United States)

    Choy, F. K.; Veillette, R. J.; Polyshchuk, V.; Braun, M. J.; Hendricks, R. C.

    1996-01-01

    This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system.

  20. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    Directory of Open Access Journals (Sweden)

    Hongrui Cao

    2012-06-01

    Full Text Available Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones’ bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko’s beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response.

  1. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    Science.gov (United States)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  2. Bi-objective robust optimization of machined surface quality and productivity under vibrations limitation

    Directory of Open Access Journals (Sweden)

    Sahali M.A.

    2015-01-01

    Full Text Available In this contribution, a bi-objective robust optimization of cutting parameters, with the taking into account uncertainties inherent in the tool wear and the tool deflection for a turning operation is presented. In a first step, we proceed to the construction of substitution models that connect the cutting parameters to the variables of interest based on design of experiments. Our two objectives are the best machined surface quality and the maximum productivity under consideration of limitations related to the vibrations and the range of the three cutting parameters. Then, using the developed genetic algorithm that based on a robust evaluation mechanism of chromosomes by Monte-Carlo simulations, the influence and interest of the uncertainties integration in the machining optimization is demonstrated. After comparing the classical and robust Pareto fronts, A surface quality less efficient but robust can be obtained with the consideration of uncontrollable factors or uncertainties unlike that provides the deterministic and classical optimization for the same values of productivity.

  3. Determining the optimal whole-body vibration dose-response relationship for muscle performance.

    Science.gov (United States)

    Da Silva-Grigoletto, Marzo E; De Hoyo, Moisés; Sañudo, Borja; Carrasco, Luis; García-Manso, Juan M

    2011-12-01

    Da Silva-Grigoletto, ME, de Hoyo, M, Sañudo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.

  4. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  5. Multi-objective genetic algorithm optimization of 2D- and 3D-Pareto fronts for vibrational quantum processes

    Energy Technology Data Exchange (ETDEWEB)

    Gollub, C; De Vivie-Riedle, R [LMU Department Chemie, Butenandt-Str. 11, 81377 Muenchen (Germany)], E-mail: Caroline.Gollub@cup.uni-muenchen.de, E-mail: Regina.de_Vivie@cup.uni-muenchen.de

    2009-01-15

    A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.

  6. Multi-objective genetic algorithm optimization of 2D- and 3D-Pareto fronts for vibrational quantum processes

    Science.gov (United States)

    Gollub, C.; de Vivie-Riedle, R.

    2009-01-01

    A multi-objective genetic algorithm is applied to optimize picosecond laser fields, driving vibrational quantum processes. Our examples are state-to-state transitions and unitary transformations. The approach allows features of the shaped laser fields and of the excitation mechanisms to be controlled simultaneously with the quantum yield. Within the parameter range accessible to the experiment, we focus on short pulse durations and low pulse energies to optimize preferably robust laser fields. Multidimensional Pareto fronts for these conflicting objectives could be constructed. Comparison with previous work showed that the solutions from Pareto optimizations and from optimal control theory match very well.

  7. Design optimization and uncertainty quantification for aeromechanics forced response of a turbomachinery blade

    Science.gov (United States)

    Modgil, Girish A.

    Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single

  8. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  9. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  10. The multi-position calibration of the stiffness for atomic-force microscope cantilevers based on vibration

    Science.gov (United States)

    Zheng, Yelong; Song, Le; Hu, Gang; Cai, Xue; Liu, Hongguang; Ma, Jinyu; Zhao, Meirong; Fang, Fengzhou

    2015-05-01

    Calibration of the stiffness of atomic force microscope (AFM) cantilevers is critical for industry and academic research. The multi-position calibration method for AFM cantilevers based on vibration is investigated. The position providing minimum uncertainty is deduced. The validity of the multi-position approach is shown via theoretical and experimental means. We applied it to the recently developed vibration method using an AFM cantilever with a normal stiffness of 0.1 N m-1. The standard deviation of the measured stiffness is 0.002 N m-1 with a mean value of 0.189 N m-1 and the relative combined uncertainty is approximately 7%, which is better than the approach using the single position at the tip of the cantilever.

  11. Research on Electromagnetic Force Distribution and Vibration Performance of A Novel 10/4 Switched Reluctance Motor

    Science.gov (United States)

    Fu, Ziyu; Wang, Xinyu; Cao, Cheng; Liu, Meng; Wang, Kangxi

    2017-06-01

    Radial electromagnetic force is one of the main reasons causing the vibration and noise of the switched reluctance motor. Based on this, the novel structure of 10/4 pole switched reluctance motor is proposed, which increases the air gap flux and electromagnetic torque by increasing the number of stator poles. In addition, the excitation current of the stator winding is reduced by early turn-off angle. Through the finite element modelling analysis, the results show the superiority of the new type of switched reluctance motor. In the end, the vibration characteristics of the conventional motor and the new motor are compared and analysed, and the effect of the structure of this new type of switched reluctance motor is verified.

  12. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  13. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Directory of Open Access Journals (Sweden)

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  15. Semi-active on-off damping control of a dynamic vibration absorber using Coriolis force

    Science.gov (United States)

    La, Viet Duc

    2012-07-01

    A passive dynamic vibration absorber (DVA) moving along a pendulum can cause the nonlinear Coriolis damping to reduce the pendulum swing. This paper proposes a simple semi-active on-off damping controller to improve the passive Coriolis DVA. The aim of the on-off damping control is to amplify the DVA resonance motion to increase the energy dissipated. Moreover, the paper finds the analytical solution of the harmonic vibration of semi-active controlled system. The accuracy of the analytical formulas and the superior performance of the semi-active DVA are verified by numerical simulations.

  16. Forced vibration of a carbon nanotube with emission currents in an electromagnetic field

    Science.gov (United States)

    Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.

    2017-11-01

    The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.

  17. Effect of the electromagnetic force on the power-train vibration of the in-wheel motor driving system with rubber bushings

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-03-01

    Full Text Available For an in-wheel motor driving system with rubber bushings, the driving motor is integrated into the wheel. A magnet gap deformation of the motor will be inevitably caused by the road excitation, which will produce an unbalanced electromagnetic force and influence the power-train vibration. Furthermore, the rim is flexibly connected to the motor rotor by rubber bushings, and a strong coupling and nonlinear vibration of the power-train in all directions can be demonstrated under the electromagnetic excitations. Thus, a 14-degree-of-freedom coupling vibration model of the power-train is first developed for the in-wheel motor driving system with rubber bushings, including the bushing and bearing models. Then, the mathematical model is deduced using a Lagrangian approach. Finally, based on the model, a coupling vibration analysis is conducted under different electromagnetic force excitations. The results indicate that there are coupling vibration components in the torsional direction, except the one-time rotating frequency; however, in the bending direction, the vibration response includes a one-time rotating frequency component and an excitation frequency component of the electromagnetic force. Furthermore, the results indicate that the bushing plays an important role in reducing the power-train vibration, which has a positive effect on the improving vehicle dynamics.

  18. Resonant passive–active vibration absorber with integrated force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d...

  19. Vibrations of pinned-fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point

    Science.gov (United States)

    Kiss, László Péter; Szeidl, György

    2017-04-01

    This paper deals with the vibrations of isotropic, linearly elastic and heterogeneous circular beams given that a vertical force acts at the crown point. The effect of the loading is taken into account via the axial strain it causes. The material parameters, like Young's modulus, can vary arbitrarily over the symmetric, uniform cross-section. Thus, it is possible to simply model composites (not only multi-layered but also functionally graded material distributions). The main objectives are as follows: (1) to derive the equations of motion, (2) to determine the Green function matrix in closed-form both for a tensile force and for a compressive one; (3) to clarify how the load affects the natural frequencies and (4) to develop a numerical model so that we can obtain how the eigenfrequencies are related to the load. The computational results are presented in graphical format.

  20. Observer Based Optimal Vibration Control of a Full Aircraft System Having Active Landing Gears and Biodynamic Pilot Model

    Directory of Open Access Journals (Sweden)

    Hakan Yazici

    2016-01-01

    Full Text Available This paper deals with the design of an observed based optimal state feedback controller having pole location constraints for an active vibration mitigation problem of an aircraft system. An eleven-degree-of-freedom detailed full aircraft mathematical model having active landing gears and a seated pilot body is developed to control and analyze aircraft vibrations caused by runway excitation, when the aircraft is taxiing. Ground induced vibration can contribute to the reduction of pilot’s capability to control the aircraft and cause the safety problem before take-off and after landing. Since the state variables of the pilot body are not available for measurement in practice, an observed based optimal controller is designed via Linear Matrix Inequalities (LMIs approach. In addition, classical LQR controller is designed to investigate effectiveness of the proposed controller. The system is then simulated against the bump and random runway excitation. The simulation results demonstrate that the proposed controller provides significant improvements in reducing vibration amplitudes of aircraft fuselage and pilot’s head and maintains the safety requirements in terms of suspension stroke and tire deflection.

  1. Analysis the dynamic response of earth dam in free vibration and forced by introducing the effect of the interaction dam foundation

    Directory of Open Access Journals (Sweden)

    Malika Boumaiza

    2018-01-01

    Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.

  2. Maximum mistuning amplification of the forced response vibration of turbomachinery rotors in the presence of aerodynamic damping

    Science.gov (United States)

    Martel, Carlos; Sánchez-Álvarez, J. J.

    2017-06-01

    Mistuning can dangerously increase the vibration amplitude of the forced response of a turbomachinery rotor. In the case of damping coming from aerodynamic effects the situation is more complicated because the magnitude of the damping changes for the different travelling wave modes of the system. This damping variability modifies the effect of mistuning, and it can even result in a reduction of the mistuned forced response amplitude below that of the tuned case (this is not possible in the usual case of constant material damping). In this paper the Asymptotic Mistuning Model (AMM) methodology is used to analyze this situation. The AMM is a reduced order model that is systematically derived from the mistuned bladed disk full model using a perturbative procedure based on the small size of the mistuning and the damping. The AMM allows to derive a very simple expression for an upper bound of the maximum amplification factor of the vibration amplitude that the system can experience (an extension of the well known Whitehead 1966 result to include the effect of non-uniform aerodamping). This new upper bound gives information on the mechanisms involved in the amplification/reduction of the mistuned response: (i) the number of modes participating in the response, and (ii) the ratio between the aerodamping of the directly forced mode and that of the of the rest of the modes. A FEM of a mistuned bladed disk is also used to verify the AMM predictions for several different forcing configurations, and both results show a very good quantitative agreement.

  3. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  4. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    NARCIS (Netherlands)

    Palstra, A.P.; Mes, D.; Kusters, K.; Roques, J.A.C.; Flik, G.; Kloet, K.; Blonk, R.J.W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U-opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and

  5. Analyzing the vibrational response of an AFM cantilever in liquid with the consideration of tip mass by comparing the hydrodynamic and contact repulsive force models in higher modes

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-04-01

    This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural

  6. Optimization Case Study: ISR Allocation in the Global Force Management Process

    Science.gov (United States)

    2016-09-01

    REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZATION CASE STUDY: ISR ALLOCATION IN THE GLOBAL FORCE MANAGEMENT PROCESS 5...Force Management Initial Capabilities Document. Washington, DC: Department of Defense. Joint Chiefs of Staff. 2014a. Global Force Management Allocation...Defense. ———. 2012b. Capability Development Document for Global Force Management Data Initiative Increment 2 Next Steps: Manpower and Personnel

  7. Optimization of hoisting parameters in a multi-rope friction mine hoist based on the multi-source coupled vibration characteristics of hoisting catenaries

    National Research Council Canada - National Science Library

    Yao, Jiannan; Deng, Yong; Xiao, Xingming

    2017-01-01

    To avoid catenary collision in a multi-rope friction mine hoist, in this study, the relevant hoisting parameters based on the multi-source coupled vibration characteristics of hoisting catenaries are optimized...

  8. Effect of self-ligating bracket type and vibration on frictional force and stick-slip phenomenon in diverse tooth displacement conditions: an in vitro mechanical analysis.

    Science.gov (United States)

    Seo, Yu-Jin; Lim, Bum-Soon; Park, Young Guk; Yang, Il-Hyung; Ahn, Seok-Joon; Kim, Tae-Woo; Baek, Seung-Hak

    2015-10-01

    To evaluate the effects of self-ligating bracket (SLB) type and vibration on frictional force and stick-slip phenomenon (SSP) in diverse tooth displacement conditions when a levelling/alignment wire was drawn. A total of 16 groups were tested (n = 10/group): Two types of SLBs [active SLB (ASLB, In-Ovation R) and passive SLB (PSLB, Damon Q)]; vibration (30 Hz and 0.25 N) and non-vibration conditions; and 4 types of displacement [2mm lingual displacement of the maxillary right lateral incisor (LD), 2mm gingival displacement of the maxillary right canine (GD), combination of LD and GD (LGD), and control]. After applying artificial saliva to the typodont system, 0.018 copper nickel-titanium archwire was drawn by Instron with a speed of 0.5mm/min for 5 minutes at 36.5°C. After static/kinetic frictional forces (SFF/KFF), and frequency/amplitude of SSP were measured, statistical analysis was performed. ASLB exhibited higher SFF, KFF, and SSP amplitude (all P Vibration decreased SFF, KFF, and SSP amplitude and increased SSP frequency in control and all displacement groups (all P vibration condition (P vibration conditions, ASLB demonstrated higher SSP amplitude than PSLB in all displacement groups (all P vibration; all P vibration). Even in tooth displacement conditions, vibration significantly reduced SFF, KFF, SSP amplitude, and increased SPP frequency in both PSLB and ASLB. However, in vivo studies would be needed to confirm the clinical significance. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Control between coexistent attractors for optimal performance of a bistable piezoelectric vibration energy harvester

    Science.gov (United States)

    Geiyer, Daniel; Kauffman, Jeffrey L.

    2016-04-01

    Research in broadband nonlinear piezoelectric energy harvesting has gained traction in recent years as resonant, linear harvesters do not operate optimally in dynamic environments. By placing a linear harvester in a symmetric magnetic field, a nonlinear restoring force allows the system to realize motion across two potential wells. Different levels of excitation enable the system to oscillate solely in one potential well, periodically across both potential wells, or aperiodically across both potential wells. Periodic interwell motion is considered desirable for nonlinear energy harvesting systems, however, coexistent attractors inhibit uniqueness of such a solution. The authors have previously shown that chaotic, aperiodic motion between potential wells can be optimized for improved energy harvesting. The technique applied a chaotic controller to stabilize a large amplitude periodic orbit within the chaotic attractor. This work considers the basins of attraction of the two concurrent attractors and applies an intermittent control law in which the system is perturbed from a chaotic, aperiodic interwell response into the desirable large amplitude, periodic, interwell response.

  10. Buckling and Vibration of Non-Homogeneous Rectangular Plates Subjected to Linearly Varying In-Plane Force

    Directory of Open Access Journals (Sweden)

    Roshan Lal

    2013-01-01

    Full Text Available The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly varying in-plane force. For non-homogeneity of the plate material it is assumed that young's modulus and density of the plate material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This resulting equation has been solved numerically employing differential quadrature method for three different combinations of clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three dimensional mode shapes have been presented. Comparison has been made with the known results.

  11. Free and forced vibration analysis of a nonlinear system with cyclic symmetry: Application to a simplified model

    Science.gov (United States)

    Grolet, Aurelien; Thouverez, Fabrice

    2012-06-01

    This work program is devoted to studying the nonlinear dynamics of a structure with cyclic symmetry under conditions of geometric nonlinearity, through the use of the harmonic balance method (HBM). In order to study the influence of nonlinearity due to the large deflection of blades, a simplified model has been developed. This approach leads to a system of linearly coupled, second-order nonlinear differential equations, in which nonlinearity appears via cubic terms. Periodic solutions, in both the free and forced cases, are sought by applying HBM coupled with an arc-length continuation method. Solution stability has been investigated using Floquet's theorem. In addition to featuring similar and nonsimilar nonlinear modes, the unforced system is known to contain localized nonlinear modes that arise from branching point bifurcation at certain vibration amplitudes. In the forced case, these nonlinear modes give rise to a complex dynamic behavior. Many bifurcations can take place, thus leading to strong or weak localization that may or may not be stable. In this study, special attention has been paid to the influence of excitation on dynamic responses. Several cases of excitation have been analyzed herein: localized excitation, and low-engine-order excitation. In the case of low-engine-order excitation, sensitivity of the response to a perturbation of this excitation type has been investigated, and it has been shown that for a localized, or sufficiently detuned excitation, several solutions can coexist, some of which are represented by closed curves in the Frequency-Amplitude domain. These various solutions overlap when increasing the force amplitude, leading to forced nonlinear localization. Because closed curves are not tied up with the basic nonlinear solution, they can easily be overlooked. In this study, they have been calculated using a sequential continuation with the force amplitude as a parameter.

  12. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  13. Springback prediction and optimization of variable stretch force trajectory in three-dimensional stretch bending process

    Science.gov (United States)

    Teng, Fei; Zhang, Wanxi; Liang, Jicai; Gao, Song

    2015-11-01

    Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression (SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments (DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization (PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback.

  14. Biobjective Optimization of Vibration Performance of Steel-Spring Floating Slab Tracks by Four-Pole Parameter Method Coupled with Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Hao Jin

    2015-01-01

    Full Text Available Steel-spring floating slab tracks are one of the most effective methods to reduce vibrations from underground railways, which has drawn more and more attention in scientific communities. In this paper, the steel-spring floating slab track located in Track Vibration Abatement and Control Laboratory was modeled with four-pole parameter method. The influences of the fastener damping ratio, the fastener stiffness, the steel-spring damping ratio, and the steel-spring stiffness were researched for the rail displacement and the foundation acceleration. Results show that the rail displacement and the foundation acceleration will decrease with the increase of the fastener stiffness or the steel-spring damping ratio. However, the rail displacement and the foundation acceleration have the opposite variation tendency for the fastener damping ratio and the steel-spring stiffness. In order to optimize the rail displacement and the foundation acceleration affected by the fastener damping ratio and the steel-spring stiffness at the same time, a multiobjective ant colony optimization (ACO was employed. Eventually, Pareto optimal frontier of the rail displacement and the foundation acceleration was derived. Furthermore, the desirable values of the fastener damping ratio and the steel-spring stiffness can be obtained according to the corresponding Pareto optimal solution set.

  15. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, Ptraining effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  16. Investigation of Tension Forces in A Stay Cable System of A Road Bridge Using Vibration Methods

    Directory of Open Access Journals (Sweden)

    Hawryszków Paweł

    2015-01-01

    Full Text Available In the article author presents method of investigation of tension forces in stay cable systems using dynamical methods. Research was carried out during stay cable system installation on WN-24 viaduct near Poznań, that is way it was possible to compare tension forces indicated directly by devices using for tensioning of cable-stayed bridges with results achieved indirectly by means of dynamical methods. Discussion of results was presented. Advantages of dynamical methods and possible fields of application was described. This method, which has been rarely used before, may occur interesting alternative in diagnostics of bridges in comparison to traditional methods.

  17. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  18. Constrained optimal duct shapes for conjugate laminar forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, T.S.; Torrance, K.E. [Cornell Univ., Sibley School of Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    2000-01-01

    The complex variable boundary element method (CVBEM) is used to analyse conjugate heat transfer in solids with cooling passages of general, convex cross section. The method is well-suited to duct cross sections with high curvature and high aspect ratios because the whole-domain boundary integrals are path independent and analytic. The effects of channel boundary curvature on overall heat transfer are quantified for the first time. Shape-constrained optimal solutions involving fixed pressure drop and fixed pump work are presented. Increased channel boundary curvature is shown to decrease the optimal distance between parallel channels by increasing fin efficiency. (Author)

  19. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  20. Flexible Helicoids, Atomic Force Microscopy (AFM Cantilevers in High Mode Vibration, and Concave Notch Hinges in Precision Measurements and Research

    Directory of Open Access Journals (Sweden)

    Yakov Tseytlin

    2012-05-01

    Full Text Available Flexible structures are the main components in many precision measuring and research systems. They provide miniaturization, repeatability, minimal damping, low measuring forces, and very high resolution. This article focuses on the modeling, development, and comparison of three typical flexible micro- nano-structures: flexible helicoids, atomic force microscopy (AFM cantilevers, and concave notch hinges. Our theory yields results which allow us to increase the accuracy and functionality of these structures in new fields of application such as the modeling of helicoidal DNA molecules’ mechanics, the definition of instantaneous center of rotation in concave flexure notch hinges, and the estimation of the increase of spring constants and resolution at higher mode vibration in AFM cantilevers with an additional concentrated and end extended mass. We developed the original kinetostatic, reverse conformal mapping of approximating contours, and non-linear thermomechanical fluctuation methods for calculation, comparison, and research of the micromechanical structures. These methods simplify complicated solutions in micro elasticity but provide them with necessary accuracy. All our calculation results in this article and in all corresponding referenced author’s publications are in a good agreement with experimental and finite element modeling data within 10% or less.

  1. Effect of tooth displacement and vibration on frictional force and stick-slip phenomenon in conventional brackets: a preliminary in vitro mechanical analysis.

    Science.gov (United States)

    Seo, Yu-Jin; Lim, Bum-Soon; Park, Young Guk; Yang, Il-Hyung; Ahn, Seok-Joon; Kim, Tae-Woo; Baek, Seung-Hak

    2015-04-01

    To evaluate the effects of tooth displacement and vibration on frictional force and stick-slip phenomenon (SSP) when conventional brackets were used with a levelling/alignment wire. The samples consisted of six groups (n = 10 per group) with combinations of tooth displacement (2mm lingual displacement [LD], 2mm gingival displacement [GD], and no displacement [control]) and vibration conditions (absence and presence at 30 Hz and 0.25 N). A stereolithographically made typodont system was used with conventional brackets and elastomeric ligatures. After application of artificial saliva, static/kinetic frictional forces (SFF/KFF) and frequency/amplitude of SSP were measured while drawing a 0.018-inch copper nickel-titanium (Cu-NiTi) archwire at a speed of 0.5mm/min for 5 minutes at 36.5 degree celsius. Two-way analysis of variance and independent t-test were performed. Tooth displacement increased SFF and KFF (control [LD, GD], P Vibration reduced SFF, KFF, and SSP amplitude in the control group (P vibration in the control, LD, and GD groups (all P vibration did not significantly reduce SFF, KFF, or SSP amplitude. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Optimizing Air Force Depot Programming to Maximize Operational Capability

    Science.gov (United States)

    2014-03-27

    Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the...MCG, OES, PAI, TAI, WF, Z, MAX_Y; AC_PT_YR( AC, PT, YR): CST, P_RQ, P_RQ_MD, DTC , UFPC, X, Y; ENDSETS DATA: BPOS = 5 5 5; WRE = 5...6; CST = 18000 15000 12000 14000 8000 7500 11000 2000 1000 12000 11000 10000 5000 4000 6000 7500 8000 15000; DTC = .1 .1 .1 .1 .1 .1 .1 .1 .1

  3. On the low vibration modes observed in a sphere submitted to a tangential contact force.

    Science.gov (United States)

    De Billy, M

    2006-12-01

    In this paper we discuss the existence of translational and rotational displacements of a sphere submitted to a tangential contact force. On the basis of the Bogdanov and Skvortsov's works [A.N. Bogdanov, A.T. Skvortsov, Sov. Phys. Acoust. 38 (1992) 224-226.] the dispersion equation has been established and solved for any value of the frequency in the case of the linear approximation. The present experimental analysis confirms that it exists two branches: an upper branch associated to the translation of the sphere and a lower branch characteristic of the rotation of the bead.

  4. Particle Swarm Optimization as an Efficient Computational Method in order to Minimize Vibrations of Multimesh Gears Transmission

    Directory of Open Access Journals (Sweden)

    Alexandre Carbonelli

    2011-01-01

    Full Text Available The aim of this work is to present the great performance of the numerical algorithm of Particle Swarm Optimization applied to find the best teeth modifications for multimesh helical gears, which are crucial for the static transmission error (STE. Indeed, STE fluctuation is the main source of vibrations and noise radiated by the geared transmission system. The microgeometrical parameters studied for each toothed wheel are the crowning, tip reliefs and start diameters for these reliefs. Minimization of added up STE amplitudes on the idler gear of a three-gear cascade is then performed using the Particle Swarm Optimization. Finally, robustness of the solutions towards manufacturing errors and applied torque is analyzed by the Particle Swarm algorithm to access to the deterioration capacity of the tested solution.

  5. An optimal sampling approach to modelling whole-body vibration exposure in all-terrain vehicle driving.

    Science.gov (United States)

    Lü, Xiaoshu; Takala, Esa-Pekka; Toppila, Esko; Marjanen, Ykä; Kaila-Kangas, Leena; Lu, Tao

    2017-08-01

    Exposure to whole-body vibration (WBV) presents an occupational health risk and several safety standards obligate to measure WBV. The high cost of direct measurements in large epidemiological studies raises the question of the optimal sampling for estimating WBV exposures given by a large variation in exposure levels in real worksites. This paper presents a new approach to addressing this problem. A daily exposure to WBV was recorded for 9-24 days among 48 all-terrain vehicle drivers. Four data-sets based on root mean squared recordings were obtained from the measurement. The data were modelled using semi-variogram with spectrum analysis and the optimal sampling scheme was derived. The optimum sampling period was 140 min apart. The result was verified and validated in terms of its accuracy and statistical power. Recordings of two to three hours are probably needed to get a sufficiently unbiased daily WBV exposure estimate in real worksites. The developed model is general enough that is applicable to other cumulative exposures or biosignals. Practitioner Summary: Exposure to whole-body vibration (WBV) presents an occupational health risk and safety standards obligate to measure WBV. However, direct measurements can be expensive. This paper presents a new approach to addressing this problem. The developed model is general enough that is applicable to other cumulative exposures or biosignals.

  6. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Wan Sun

    2015-01-01

    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  7. A COMPARISON OF STATIC AND DYNAMIC OPTIMIZATION MUSCLE FORCE PREDICTIONS DURING WHEELCHAIR PROPULSION

    Science.gov (United States)

    Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.

    2014-01-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  8. From Vibrational Spectroscopy to Force Fields and Structures of Saccharides: New Computational Algorithms and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pincu, Madeleine [Univ. of California, Irvine, CA (United States); Gerber, Robert Benny [Univ. of California, Irvine, CA (United States). Dept. of Chemistry

    2013-07-17

    vibrational bands involving the shared proton were strongly shifted to lower frequencies ( by about ~ 500 cm-1 for the symmetric mode, in this case). A similar motif was also observed recently by us in protonated cellobiose, indicating that this might be a common mechanism for interaction of a proton with sugars, perhaps similar to the proton wires observed in proteins. The simulations with protonated sugars also shed light on different mechanisms of interaction of a sugar with a proton, including formation of a carboxonium ion, mutarotation events, ring puckering and in the disaccharide cellobiose, the breaking of the glycosidic bond (in both forms of cis and trans). One final highlight to note in this summary, is the finding that in the monosaccharide beta-D-Galactose a hydroxyl ion abstracts a proton (forming water) in a barrierless process at room temperature, but the water remains bound to the sugar backbone, though it migrates around it; actual degradation occurs at ~500 K when water leaves the sugar. However, the study also shows that the water abstraction reaction can be reversed in the presence of 2 additional water molecules complexed with the sugar.

  9. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  10. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  11. Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms

    Science.gov (United States)

    Hadi, Muhammad N. S.; Uz, Mehmet E.

    2015-02-01

    This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.

  12. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    Science.gov (United States)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  13. Multiobjective Optimization of a Vehicle Vibration Model Using the Improved Compressed-Objective Genetic Algorithm with Convergence Detection

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2013-01-01

    Full Text Available Ride quality and road holding capacity of a vehicle is significantly influenced by its suspension system. In the design process, a number of objective functions related to comfort and road holding capacity are taken into consideration. In this paper, the five-degree-of-freedom system of vehicle vibration model with passive suspension is investigated. This multiobjective optimization problem consists of five objective functions. Based on these five design objectives, this paper formulates four two-objective optimization problems by considering four pairs of design objectives and one five-objective optimization problem. This paper proposes the use of the improved compressed objective genetic algorithm (COGA-II with convergence detection. COGA-II is intentionally designed for dealing with a problem having many optimized objectives. Furthermore, the performance of COGA-II was benchmarked with the multiobjective uniform-diversity genetic algorithm (MUGA utilized in the previous study. From the simulation results, with equal population sizes, COGA-II employing the convergence detection for searching termination uses less numbers of generations for most sets of design objectives than MUGA whose termination condition is defined by the constant maximum number of generations. Moreover, the solutions obtained from COGA-II are obviously superior to those obtained from MUGA regardless of sets of design objective.

  14. Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles Capacities Tested on a Cycle Ergometer.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Jaric, Slobodan

    2017-09-27

    This study determined the optimal resistive forces for testing muscle capacities through the standard cycle ergometer test (one resistive force applied) and a recently developed two-point method (two resistive forces used for force-velocity modelling). Twenty-six men were tested twice on maximal sprints performed on a leg cycle ergometer against 5 flywheel resistive forces (R1-R5). The reliability of the cadence and maximum power measured against the 5 individual resistive forces, as well as the reliability of the force-velocity relationship parameters obtained from the selected two-point methods (R1-R2, R1-R3, R1-R4, and R1-R5) were compared. The reliability of outcomes obtained from individual resistive forces was high except for R5. As a consequence, the combination of R1 (≈175 rpm) and R4 (≈110 rpm) provided the most reliable two-point method (CV: 1.46%-4.04%; ICC: 0.89-0.96). Although the reliability of power capacity was similar for the R1-R4 two-point method (CV: 3.18%; ICC: 0.96) and the standard test (CV: 3.31%; ICC: 0.95), the two-point method should be recommended because it also reveals maximum force and velocity capacities. Finally, we conclude that the two-point method in cycling should be based on 2 distant resistive forces, but avoiding cadences below 110 rpm.

  15. Sound vibration signal processing for detection and identification detonation (knock) to optimize performance Otto engine

    Science.gov (United States)

    Sujono, A.; Santoso, B.; Juwana, W. E.

    2016-03-01

    Problems of detonation (knock) on Otto engine (petrol engine) is completely unresolved problem until now, especially if want to improve the performance. This research did sound vibration signal processing engine with a microphone sensor, for the detection and identification of detonation. A microphone that can be mounted is not attached to the cylinder block, that's high temperature, so that its performance will be more stable, durable and inexpensive. However, the method of analysis is not very easy, because a lot of noise (interference). Therefore the use of new methods of pattern recognition, through filtration, and the regression function normalized envelope. The result is quite good, can achieve a success rate of about 95%.

  16. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  17. Topology Optimization of Distributed Mass Dampers for Low-frequency Vibration Suppression

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Lazarov, Boyan Stefanov

    2007-01-01

    In this paper the method of topology optimization is used to find optimized parameter distributions for a multiple mass damper system with the purpose of minimizing the low-frequency steady-state response of a carrier structure. An effective density model that describes the steady-state effect...... of the dampers is derived based on a continuous approximation of the damper distribution. The dampers are optimized with respect to the point-wise distribution of mass ratio, natural frequency, and damping ratio....

  18. Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Vikas Panwar

    2007-01-01

    Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.

  19. Geometric optimal design of MR damper considering damping force, control energy and time constant

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Q H; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, INHA University, Incheon 402-751 (Korea, Republic of); Kim, K S [Department of Mechanical and Automotive Engineering, Kongju National University, Chonan 330-240 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents an optimal design of magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies geometric dimensions of the damper that minimizes an objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the damper. After describing the configuration of the MR damper, a quasi-static modelling of the damper is performed based on Bingham model of MR fluid. The initial geometric dimensions of the damper are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit of the damper. Subsequently, the optimal design variables that minimize the objective function are determined using a golden-section algorithm and a local quadratic fitting technique via commercial finite element method parametric design language. A comparative work on damping force and time constant between the initial and optimal design is undertaken.

  20. A frequency-domain multichannel optimal adaptive algorithm for active control of sound and vibration

    Science.gov (United States)

    Shen, Qun

    A frequency-domain multichannel optimal adaptive algorithm has been described in this paper. The domain multichannel optimal adaptive (FOMA) algorithm is an exact implementation of the multichannel optimal block adaptive (MOBA) algorithm in the frequency domain. It therefore converges to the same optimal solution with the same stability characteristics. The time-varying convergence factor was computed efficiently in the frequency domain to minimize a frequency-domain cost function at each step. The FMOA becomes efficient when the filter order is high. Different updating schemes, from block-by-block to sample-by-sample, can also be implemented with the proposed algorithm.

  1. Applying the Principle of Variables to Solve the Problems of Forced Vibration of the plate with three clamped and the other free with concentrated load

    Directory of Open Access Journals (Sweden)

    Chen Ying Jie

    2016-01-01

    Full Text Available In this paper, with the principle of least action with variables to solve the problems of forced vibration of the Rectangular plate with three clamped and the other free with concentrated load, and the stable solution can be worked out. We can compare the results with the literate; it also can be proved to be true. So the results by calculating not only it have important academic value, but also it can be directly referred in the actual work.

  2. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram

    Science.gov (United States)

    Barszcz, Tomasz; JabŁoński, Adam

    2011-01-01

    The narrowband amplitude demodulation of a vibration signal enables the extraction of components carrying information about rotating machine faults. However, the quality of the demodulated signal depends on the frequency band selected for the demodulation. The spectral kurtosis (SK) was proved to be a very efficient method for detection of such faults, including defective rolling element bearings and gears [1]. Although there are conditions, under which SK yields valid results, there are also cases, when it fails, e.g. in the presence of a relatively strong, non-Gaussian noise containing high peaks or for a relatively high repetition rate of fault impulses. In this paper, a novel method for selection of the optimal frequency band, which attempts to overcome the aforementioned drawbacks, is presented. Subsequently, a new tool for presentation of results of the method, called the Protrugram, is proposed. The method is based on the kurtosis of the envelope spectrum amplitudes of the demodulated signal, rather than on the kurtosis of the filtered time signal. The advantage of the method is the ability to detect transients with smaller signal-to-noise ratio comparing to the SK-based Fast Kurtogram. The application of the proposed method is validated on simulated and real data, including a test rig, a simulated signal, and a jet engine vibration signal.

  3. Optimal Discrete PTO Force Point Absorber Wave Energy Converters in Regular Waves

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2013-01-01

    For ocean wave energy converters (WECs) to become a cost-effective alternative in the energy production system a large increase in the conversion efficiency is needed. Fluid power technology is the leading technology for the Power Take- Off (PTO) system of wave energy converters. However...... of discrete force systems for PTO, by focusing on how to choose the optimal PTO force levels and force profile when seeking to increase energy harvesting. The work concerns point absorber WECs and utilises a simple float model based on linear wave theory. Utilising the principle of superposition...... and the Laplace transform a solution of the float movement is found when subjected an incoming wave and a discrete PTO force. Finally an optimisation leads to the force profile implying the highest harvested energy....

  4. Analytical predictions for vibration phase shifts along fluid-conveying pipes due to Coriolis forces and imperfections

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Dahl, Jonas

    2010-01-01

    Resonant vibrations of a fluid-conveying pipe are investigated, with special consideration to axial shifts in vibration phase accompanying fluid flow and various imperfections. This is relevant for understanding elastic wave propagation in general, and for the design and trouble-shooting of phase...

  5. Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis.

    Science.gov (United States)

    Bondy, Amy L; Kirpes, Rachel M; Merzel, Rachel L; Pratt, Kerri A; Banaszak Holl, Mark M; Ault, Andrew P

    2017-09-05

    Chemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm. By detecting photothermal expansion at frequencies where particle species absorb IR photons from a tunable laser, AFM-IR can study particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the potential of AFM-IR is shown for a diverse set of single-component particles, liquid-liquid phase separated particles (core-shell morphology), and ambient atmospheric particles. The spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and sucrose) had clearly identifiable features that correlate with absorption frequencies for infrared-active modes. Additionally, molecular information was obtained with <100 nm spatial resolution for phase separated particles with a ∼150 nm shell and 300 nm core. The subdiffraction limit capability of AFM-IR has the potential to advance understanding of particle impacts on climate and health by improving analytical capabilities to study water uptake, heterogeneous reactivity, and viscosity.

  6. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  7. Optimization of a micro Coriolis mass flow sensor using Lorentz force actuation

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Haneveld, J.; Lötters, Joost Conrad

    2012-01-01

    In this paper we present Finite Element models to optimize the Lorentz force actuation of a micro Coriolis mass flow sensor. These models specify six different configurations for the permanent magnets used to create the magnetic field for the actuation. The models are used to compare the various

  8. Multistep Optimization of Composite Drive Shaft Subject to Strength, Buckling, Vibration and Manufacturing Constraints

    Science.gov (United States)

    Cherniaev, Aleksandr; Komarov, Valeriy

    2015-10-01

    Composite drive shafts are extensively used in automotive and aeronautical applications due to lightweight combined with exceptional strength and stiffness. Complexity of the drive shaft design problem associated with the need to determine rational values for multiple parameters characterizing composite material (fiber orientation angles, stacking sequence and ply thicknesses), as well as with the fact that multiple conflicting design constraints should be considered simultaneously. In this paper we approach this problem considering carbon/epoxy drive shaft design as a multistep optimization process. It includes the following steps: 1) determination of fiber orientation angles and laminate stacking sequence based on analysis of loading conditions and analytical expressions predicting buckling load and minimal natural frequency of idealized drive shaft; 2) finding rational ply thicknesses using formal optimization procedure utilizing response surface approximations and gradient-based optimization algorithm; and 3) verification analysis of the optimized configuration with the use of nonlinear buckling analysis to ensure satisfaction of stability constraint.

  9. Optimization of levitation and guidance forces in a superconducting Maglev system

    Science.gov (United States)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  10. Reconstruction of Input Excitation Acting on Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Pan Zhou

    2016-01-01

    Full Text Available Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.

  11. Optimal Design of One-Folded Leaf Spring with High Fatigue Life Applied to Horizontally Vibrating Linear Actuator in Smart Phone

    Directory of Open Access Journals (Sweden)

    Ki Bum Lee

    2014-02-01

    Full Text Available Horizontally vibrating linear actuator (HVLA instead of VVLA has been under study in a few past years and recently HVLA with thickness of 2.5 mm was developed. The one-folded leaf spring to guide the moving part is newly designed and applied in HVLA, but unfortunately it makes HVLA be wider. Accordingly, this paper presents the optimal design of one-folded leaf spring, which results in reduction of HLVA width. The commercial design optimization tool “PIAnO” was utilized based on design of experiments (DOE, approximation techniques, and optimization algorithm. In addition, for the vibration modal analysis and harmonic response analysis to generate metamodeling, the software “ANSYS” is utilized. The optimal width of leaf spring was reduced by 46% compared to the initial one, while all the design constraints were satisfied, which clearly showed the validity of the proposed design approach.

  12. Local distributed estimation. [for flexible spacecraft vibration mode optimal feedback control

    Science.gov (United States)

    Schaechter, D. B.

    1980-01-01

    Based on partial differential equations of motion the closed form solution for the optimal estimation of a spatially continuous state vector is derived, using a continuously distributed sensor. Local control is shown to be the feedback that minimizes a quadratic performance index of sensor and process disturbances. A detailed example of the control of a string in tension is presented.

  13. Influence of model complexity and problem formulation on the forces in the knee calculated using optimization methods.

    Science.gov (United States)

    Hu, Chih-Chung; Lu, Tung-Wu; Chen, Sheng-Chang

    2013-03-07

    Predictions of the forces transmitted by the redundant force-bearing structures in the knee are often performed using optimization methods considering only moment equipollence as a result of simplified knee modeling without ligament contributions. The current study aimed to investigate the influence of model complexity (with or without ligaments), problem formulation (moment equipollence with or without force equipollence) and optimization criteria on the prediction of the forces transmitted by the force-bearing structures in the knee. Ten healthy young male adults walked in a gait laboratory while their kinematic and ground reaction forces were measured simultaneously. A validated 3D musculoskeletal model of the locomotor system with a knee model that included muscles, ligaments and articular surfaces was used to calculate the joint resultant forces and moments, and subsequently the forces transmitted in the considered force-bearing structures via optimization methods. Three problem formulations with eight optimization criteria were evaluated. Among the three problem formulations, simultaneous consideration of moment and force equipollence for the knee model with ligaments and articular contacts predicted contact forces (first peak: 3.3-3.5 BW; second peak: 3.2-4.2 BW; swing: 0.3 BW) that were closest to previously reported theoretical values (2.0-4.0 BW) and in vivo data telemetered from older adults with total knee replacements (about 2.8 BW during stance; 0.5 BW during swing). Simultaneous consideration of moment and force equipollence also predicted more physiological ligament forces (problem formulation affect the prediction of the forces transmitted by the force-bearing structures at the knee during normal level walking. Inclusion of the ligaments in a knee model enables the simultaneous consideration of equations of force and moment equipollence, which is required for accurately estimating the contact and ligament forces, and is more critical than the

  14. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    Science.gov (United States)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  15. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    rather than reduced velocity, indicating that Reynolds number governs the aeroelastic effects in these conditions. There is a significant drop in the aerodynamic damping in the critical Reynolds number range, which is believed to be related to the large amplitude cable vibrations observed on some bridges...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...... (ERA), the damping and stiffness matrices are identified for different vibration modes of the cables, with sufficient accuracy to identify changes in the total effective damping and stiffness matrices due to the aeroelastic forces acting on the cables. The damping matrices identified from the full...

  16. The study of the wedge-shaped vibration-driven robot motion in a viscous fluid forced by different oscillation laws of the internal mass

    Science.gov (United States)

    Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.

    2016-11-01

    A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.

  17. Optimal Multiuser Zero Forcing with Per-Antenna Power Constraints for Network MIMO Coordination

    Directory of Open Access Journals (Sweden)

    Kaviani Saeed

    2011-01-01

    Full Text Available We consider a multicell multiple-input multiple-output (MIMO coordinated downlink transmission, also known as network MIMO, under per-antenna power constraints. We investigate a simple multiuser zero-forcing (ZF linear precoding technique known as block diagonalization (BD for network MIMO. The optimal form of BD with per-antenna power constraints is proposed. It involves a novel approach of optimizing the precoding matrices over the entire null space of other users' transmissions. An iterative gradient descent method is derived by solving the dual of the throughput maximization problem, which finds the optimal precoding matrices globally and efficiently. The comprehensive simulations illustrate several network MIMO coordination advantages when the optimal BD scheme is used. Its achievable throughput is compared with the capacity region obtained through the recently established duality concept under per-antenna power constraints.

  18. Theory of Arched Structures Strength, Stability, Vibration

    CERN Document Server

    Karnovsky, Igor A

    2012-01-01

    Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches.

  19. Optimal Configuration of Discrete Fluid Power Force System Utilised in the PTO for WECs

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    . Transferring from a continuous fluid power PTO-system to a discrete poses the question of configuration and control of the discrete fluid power system utilised in a wave energy converter (WEC). The current paper presents a method for determining the optimal configuration of a discrete fluid power force system......In the pursue of lowering the cost of energy for ocean wave energy devices the energy conversion efficiency of the Power Take Off (PTO) system has attained increased focus. A discrete fluid power force system has been proposed as a possible solution to improve the conversion efficiency...

  20. Force limited random vibration testing: the computation of the semi-empirical constant $C(2) $ C 2 for a real test article and unknown supporting structure

    Science.gov (United States)

    Wijker, J. J.; Ellenbroek, M. H. M.; Boer, A. de

    2015-09-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load), C^2 is a very important parameter for FLVT. A number of computational methods to estimate C^2 are described in the literature, i.e. the simple and the complex two degree of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of C^2 to perform a representative random vibration test based on force limitation, when the description of the supporting structure (source) is more or less unknown. Marchand discussed the formal description of obtaining C^2, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between test article and supporting structure. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected. The asparagus patch model consists of modal effective masses and spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter C^2. When no mathematical model of the source can be made available, estimations of the value C^2 can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value C^2 can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two

  1. Optimizing kick rate and amplitude for Paralympic swimmers via net force measures.

    Science.gov (United States)

    Fulton, Sacha K; Pyne, David; Burkett, Brendan

    2011-02-01

    Kicking is a key component of freestyle swimming yet the optimum combination of kick rate and kick amplitude remains unknown. For Paralympic swimmers, with upper and lower limb disabilities, the influence of the kick plays an important role in net force production. To determine optimum kick characteristics, 12 Paralympic swimmers aged 19.8 ± 2.9 years (mean ± s) were towed at their individual peak freestyle speed. The experimental conditions were (i) a prone streamline glide for passive trials and (ii) maximal freestyle kicking in a prone streamline for active trials at different speeds and kick amplitudes. Kick rate was quantified using inertial sensor technology. Towing speed was assessed using a novel and validated dynamometer, and net force was assessed using a Kistler force-platform system. When peak speed was increased by 5%, the active force increased 24.2 ± 5.3% (90% confidence limits), while kick rate remained at approximately 150 kicks per minute. Larger amplitude kicking increased the net active force by 25.1 ± 10.6%, although kick rate decreased substantially by 13.6 ± 5.1%. Based on the current kick rate and amplitude profile adopted by Paralympic swimmers, these characteristics are appropriate for optimizing net force.

  2. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  3. Optimization Design Method of IIR Digital Filters for Robot Force Position Sensors

    OpenAIRE

    Zhang, Fuxiang

    2010-01-01

    Aimed at the design of IIR digital filters of robot force/position sensors, a design method is put forward. Its optimization principle is the minimum MSE between ideal and actual output signal at time-domain. And the mathematics model aiming at second-order Butterworth lowpass filter was set up. This method needn't understand the complicated design theory and method for digital filter and the characteristic of filter, such as passband frequency, cutoff frequency, passband attenuation, ripple,...

  4. Dynamics and Optimal Feet Force Distributions of a Realistic Four-legged Robot

    Directory of Open Access Journals (Sweden)

    Saurav Agarwal

    2012-08-01

    Full Text Available This paper presents a detailed dynamic modeling of realistic four-legged robot. The direct and inverse kinematic analysis for each leg has been considered in order to develop an overall kinematic model of the robot, when it follows a straight path. This study also aims to estimate optimal feet force distributions of the said robot, which is necessary for its real-time control. Three different approaches namely, minimization of norm of feet forces (approach 1, minimization of norm of joint torques (approach 2 and minimization of norm of joint power (approach 3 have been developed. Simulation result shows that approach 3 is more energy efficient foot force formulation than other two approaches. Lagrange-Euler formulation has been utilized to determine the joint torques. The developed dynamic models have been examined through computer simulation of continuous gait of the four-legged robot.

  5. Optimized Reduction of Unsteady Radial Forces in a Singlechannel Pump for Wastewater Treatment

    Science.gov (United States)

    Kim, Jin-Hyuk; Cho, Bo-Min; Choi, Young-Seok; Lee, Kyoung-Yong; Peck, Jong-Hyeon; Kim, Seon-Chang

    2016-11-01

    A single-channel pump for wastewater treatment was optimized to reduce unsteady radial force sources caused by impeller-volute interactions. The steady and unsteady Reynolds- averaged Navier-Stokes equations using the shear-stress transport turbulence model were discretized by finite volume approximations and solved on tetrahedral grids to analyze the flow in the single-channel pump. The sweep area of radial force during one revolution and the distance of the sweep-area center of mass from the origin were selected as the objective functions; the two design variables were related to the internal flow cross-sectional area of the volute. These objective functions were integrated into one objective function by applying the weighting factor for optimization. Latin hypercube sampling was employed to generate twelve design points within the design space. A response-surface approximation model was constructed as a surrogate model for the objectives, based on the objective function values at the generated design points. The optimized results showed considerable reduction in the unsteady radial force sources in the optimum design, relative to those of the reference design.

  6. Design Optimization for Vibration Reduction of Viscoelastic Damped Structures Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2009-01-01

    Full Text Available Due to the large number of design variables that can be present in complex systems incorporating visco-elastic damping, this work examines the application of genetic algorithms in optimizing the response of these structures. To demonstrate the applicability of genetic algorithms (GAs, the approach is applied to a simple viscoelastically damped constrained-layer beam. To that end, a finite element model (FEM derived by Zapfe, which was based on Rao's formulation, was used for a beam with constrained-layer damping. Then, a genetic algorithm is applied to simultaneously determine the thicknesses of the viscoelastic damping layer and the constraining layer that provide the best response. While the targeted response is ultimately at the discretion of the designer, a few different choices for the fitness function are shown along with their corresponding impact on the vibratory response. By integrating the FEM code within the GA routine, it is easier to include the frequency-dependence of both the shear modulus and the loss factors for the viscoelastic layer. Examples are provided to demonstrate the capabilities of the method. It is shown that while a multi-mode optimization target provides significant reductions, the response for that configuration is inferior to the response when only single-mode reduction is considered. The results also reveal that the optimum configuration has a lower response level than when a thick layer of damping material is used. By demonstrating the applicability of GA for a simple beam structure, the approach can be extended to more complex damped structures.

  7. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study

    Science.gov (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang

    2016-01-01

    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879

  8. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013 (Japan); Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Wang, Houng-Wei [Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan (China); Kambara, Ohki; Sasaki, Tetsuo [Research Institute of Electronics, Shizuoka University, 3-5-1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Nishizawa, Jun-ichi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Jun-ichi Nishizawa Memorial Research Center, Tohoku University, 519-1176 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.

  9. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  10. [Improving of muscle mass and force in rehabilitation of heart-lung patients. Aerobic interval training, resistance-exercises, excentric exercises, vibration].

    Science.gov (United States)

    Apor, Péter; Tihanyi, József; Borka, Péter

    2005-09-18

    Improvement of muscle mass and force which got depleted by inactivity or pathological processes is one of the aims and also a prerequisite of a rehabilitative intervention. Metabolically active larger and stronger muscles diminish the cardiovascular risk, permit the aerobic preventive and rehabilitative activities and enables a higher quality of life. Interval forms of aerobic exercise improves also the muscles. The resistance training plays an important part in rehabilitation. Beside the traditional dynamic strength training with weights, gym machines, body weight etc. the excentric type of muscle activity potentiates higher muscle load with lesser energy consumption, therefore it is suitable in the case of smaller performance ability. Vibration of the whole body or parts of it by machines improves the co-activity of the motor units and results in force development with small metabolic involvement.

  11. Genetic algorithm optimization of point charges in force field development: challenges and insights.

    Science.gov (United States)

    Ivanov, Maxim V; Talipov, Marat R; Timerghazin, Qadir K

    2015-02-26

    Evolutionary methods, such as genetic algorithms (GAs), provide powerful tools for optimization of the force field parameters, especially in the case of simultaneous fitting of the force field terms against extensive reference data. However, GA fitting of the nonbonded interaction parameters that includes point charges has not been explored in the literature, likely due to numerous difficulties with even a simpler problem of the least-squares fitting of the atomic point charges against a reference molecular electrostatic potential (MEP), which often demonstrates an unusually high variation of the fitted charges on buried atoms. Here, we examine the performance of the GA approach for the least-squares MEP point charge fitting, and show that the GA optimizations suffer from a magnified version of the classical buried atom effect, producing highly scattered yet correlated solutions. This effect can be understood in terms of the linearly independent, natural coordinates of the MEP fitting problem defined by the eigenvectors of the least-squares sum Hessian matrix, which are also equivalent to the eigenvectors of the covariance matrix evaluated for the scattered GA solutions. GAs quickly converge with respect to the high-curvature coordinates defined by the eigenvectors related to the leading terms of the multipole expansion, but have difficulty converging with respect to the low-curvature coordinates that mostly depend on the buried atom charges. The performance of the evolutionary techniques dramatically improves when the point charge optimization is performed using the Hessian or covariance matrix eigenvectors, an approach with a significant potential for the evolutionary optimization of the fixed-charge biomolecular force fields.

  12. Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures.

    Science.gov (United States)

    Nishikawa, Shin; Hirashima, Naohide; Tanaka, Masahiko

    2014-09-01

    The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

  13. Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2010-01-01

    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols.

  14. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  15. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  16. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  17. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.

    Science.gov (United States)

    Ravera, Emiliano Pablo; Crespo, Marcos José; Braidot, Ariel Andrés Antonio

    2016-01-01

    Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real EMG data recorded from the subjects doing the same movement.

  18. Forces for structural optimizations in correlated materials within a DFT+embedded DMFT functional approach

    Science.gov (United States)

    Haule, Kristjan; Pascut, Gheorghe L.

    2016-11-01

    We implemented the derivative of the free energy functional with respect to the atom displacements, so called force, within the combination of density functional theory and the embedded dynamical mean-field theory. We show that in combination with the numerically exact quantum Monte Carlo (MC) impurity solver, the MC noise cancels to a great extend, so that the method can be used very efficiently for structural optimization of correlated electron materials. As an application of the method, we show how strengthening of the fluctuating moment in FeSe superconductor leads to a substantial increase of the anion height, and consequently to a very large effective mass, and also strong orbital differentiation.

  19. Determination of Optimal Energy Efficient Separation Schemes based on Driving Forces

    DEFF Research Database (Denmark)

    Bek-Pedersen, Erik; Gani, Rafiqul; Levaux, O.

    2000-01-01

    A new integrated approach for synthesis, design and operation of separation schemes is presented. This integrated approach is based on driving forces that promote the desired separation for different separation techniques. A set of algorithms needed by the integrated approach for sequencing...... and design of distillation columns and for generating hybrid separation schemes are presented. The main feature of these algorithms is that they provide a 'visual' solution that also appears to be near optimal in terms of energy consumption. Several illustrative examples highlighting the application...

  20. An Initial Value Calibration Method for the Wheel Force Transducer Based on Memetic Optimization Framework

    Directory of Open Access Journals (Sweden)

    Guoyu Lin

    2013-01-01

    Full Text Available Some initial values of the wheel force transducer (WFT change after being mounted in the vehicle. The traditional static calibration is inadequate to fully obtain these initial values. Aiming to this problem, an online initial value calibration method is proposed. The method does not require any additional calibration equipment or manual operation and just requires the vehicle mounted with the WFT to be driven on a flat road with constant speed. In this way, an initial value mode is constructed and then converted to an optimization problem. To solve this problem and acquire the right initial value, an improved Memetic framework based on particle swarm optimization (PSO and Levenberg-Marquardt (LM is adopted. To verify the effect of the proposed method, the real WFT data is used and the comparative test is carried out. The experiment result shows that the proposed method is superior to the traditional one and can improve the measurement accuracy effectively.

  1. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    Science.gov (United States)

    Cai, Jiandong; Wang, Michael Yu; Zhang, Li

    2015-12-01

    In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  2. OPTIMIZATION OF FINANCIAL PERSONNEL NUMBER IN ARMED FORCES OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    A. V. Bolshakova

    2014-01-01

    Full Text Available The paper considers a problem pertaining to reduction of the Armed Forces of the Republic of Belarus and necessity to carry out economically reasonable reforms optimizing strength of financial personnel with the purpose to decrease its number but without undermining financial and operational activities of the Armed Forces as a whole. It has been proposed to optimize strength of financial personnel in the Armed Forces while executing organizational staff transformations such as introduction of a centralized accounting system for service personnel by an example of the Ministry of Defense of the Russian Federation.Normative for financial personnel strength of the supposed unified financial centre which is involved in accounting recordings on salary and other payments has been calculated on the basis of inter-branch standards. While taking as an example a conventional organization “B” with staff strength which is equal to the strength of the Armed Forces of the Republic of Belarus the possible efficiency in introduction of the centralized accounting system for service personnel has been determined in the paper. According to represented calculations reduction of financial personnel dealing with accounting recordings on salary and other payments in the whole organization “B” can constitute up to 60 persons with more than 200 branches which are carrying out independent payment accounting for personnel concerned.Dependence of strength normative on number of financial bodies, percentage of personnel receiving payments through a unified financial centre and concentration of financial and economic document circulation has been determined in the paper. It has been pointed out that it is not sufficient to determine quantitative indices in order to ensure an objective reflection of the efficiency of possible introduction of the centralized accounting system for service personnel in the Armed Forces. In order to obtain complete information it is

  3. Teaching anaesthetic nurses optimal force for effective cricoid pressure: a literature review.

    Science.gov (United States)

    Parry, Andrew

    2009-01-01

    This literature review explores the role of force and education in cricoid pressure, an essential aspect of practice for any nurse within a critical care environment. Cricoid pressure is utilized in everyday practice during rapid sequence induction (RSI) of anaesthesia. The purpose of cricoid pressure is to occlude the oesophagus in order to reduce the risk of acid aspiration during emergency induction of anaesthesia. The importance of best practice cannot be overstated because of high rates of mortality following acid aspiration. Literature searches were conducted using the key words cricoid pressure, Sellick manoeuvre, rapid sequence induction and acid aspiration syndrome. Articles were obtained from online searches, with literature published in the last 10 years being used; some seminal literature and textbooks were incorporated for definition purposes. The literature displayed a disparity in practice and differing opinions on the optimal force to occlude the oesophagus. The role of education in correct application of cricoid pressure was explored, with unanimous conclusions that education plays a role in ensuring best practice. Forces of 20-30 N are adequate to occlude the oesophagus and minimize the risk of acid aspiration. However, it is difficult for practitioners to accurately estimate this force in everyday practice. Various methods of assessing force were discussed, with the use of a 50-mL syringe suggested as a cost-effective and simple method to utilize in practice. The literature review demonstrated that the subject of cricoid pressure is relevant in critical care practice in order to ensure patient safety during RSI. Thus, all critical care nurses have a duty to gain a working knowledge on the subject if patient safety is to be maintained. This paper provides a source of information on cricoid pressure and realistic methods of maintaining best practice.

  4. Evaluating dispersion forces for optimization of van der Waals complexes using a non-empirical functional.

    Science.gov (United States)

    Arabi, Alya A

    2016-11-13

    Modelling dispersion interactions with traditional density functional theory (DFT) is a challenge that has been extensively addressed in the past decade. The exchange-dipole moment (XDM), among others, is a non-empirical add-on dispersion correction model in DFT. The functional PW86+PBE+XDM for exchange, correlation and dispersion, respectively, compromises an accurate functional for thermochemistry and for van der Waals (vdW) complexes at equilibrium and non-equilibrium geometries. To use this functional in optimizing vdW complexes, rather than computing single point energies, it is necessary to evaluate accurate forces. The purpose of this paper is to validate that, along the potential energy surface, the distance at which the energy is minimum is commensurate with the distance at which the forces vanish to zero. This test was validated for 10 rare gas diatomic molecules using various integration grids and different convergence criteria. It was found that the use of either convergence criterion, 10-6 or 10-8, in Gaussian09, does not affect the accuracy of computed optimal distances and binding energies. An ultra-fine grid needs to be used when computing accurate energies using generalized gradient approximation functionals.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  5. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  6. Application of the variational iteration method to nonlinear vibrations of nanobeams induced by the van der Waals force under different boundary conditions

    Science.gov (United States)

    Mohammadian, Mostafa

    2017-04-01

    The pull-in instability is one of the most important phenomena which is usually associated with nanobeams when they are used in nanoelectromechanical systems (NEMS). This phenomenon may occur without electrical excitation and depends on different parameters. The aim of this paper is to investigate the nonlinear vibrations and pull-in instability of nanobeams in the presence of the van der Waals (vdW) force without electrical excitation. Utilizing Galerkin's method, the partial differential equation of motion is transferred to a nonlinear ordinary differential equation. Afterwards, the variational iteration method (VIM) is employed to obtain the nonlinear frequency and deflection of the nanobeam. The study is performed on doubly clamped, doubly simply supported and clamped-simply supported boundary conditions. The effects of boundary conditions, axial load, aspect ratio and the vdW force on nonlinear frequency and deflection as well as pull-in instability are discussed in details. In addition, three simple and useful equations are developed for predicting the critical values of the vdW force parameter in terms of axial load and aspect ratio parameters. These equations can be employed to estimate the dimensions of nanobeams before their fabrication and using them in the NEMS devices.

  7. Synthesis, crystal structure, vibrational spectral analysis and Z-scan studies of a new organic crystal N,N‧dimethylurea ninhydrin: A scaled quantum mechanical force field study

    Science.gov (United States)

    John, Jerin Susan; Sajan, D.; Umadevi, T.; Chaitanya, K.; Sankar, Pranitha; Philip, Reji

    2015-10-01

    A new organic material, N,N‧dimethylurea ninhydrin (3a,8a-dihydroxy-1,3-dimethyl-1,3,3a,8a-tetrahydroindeno[2,1-d]imidazole-2,8-dione) (NDUN) was synthesized. Structural details were obtained from single crystal X-ray diffraction (XRD) data. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. TG/DTA and 1H NMR studies were carried out. Linear optical properties were studied from UV-Vis spectra. From the open aperture Z-scan data, it is found that the molecule shows third order nonlinear optical behaviour due to two photon absorption (2PA) mechanism.

  8. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  9. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields.

    Science.gov (United States)

    Xiao, Yuming; Koutmos, Markos; Case, David A; Coucouvanis, Dimitri; Wang, Hongxin; Cramer, Stephen P

    2006-05-14

    We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT

  10. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  11. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  12. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  13. Commentary on "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153"

    Science.gov (United States)

    Ritto, T. G.; Sampaio, Rubens; Rosales, M. B.

    2016-12-01

    The goal of this article is to clarify some points of the formulation presented in the "T.G. Ritto, M.R. Escalante, Rubens Sampaio, M.B. Rosales, Drill-string horizontal dynamics with uncertainty on the frictional force, Journal of Sound and Vibration 332 (2013) 145-153".

  14. The utility of an empirically derived co-activation ratio for muscle force prediction through optimization.

    Science.gov (United States)

    Brookham, Rebecca L; Middlebrook, Erin E; Grewal, Tej-jaskirat; Dickerson, Clark R

    2011-05-17

    Biomechanical optimization models that apply efficiency-based objective functions often underestimate or negate antagonist co-activation. Co-activation assists movement control, joint stabilization and limb stiffness and should be carefully incorporated into models. The purposes of this study were to mathematically describe co-activation relationships between elbow flexors and extensors during isometric exertions at varying intensity levels and postures, and secondly, to apply these co-activation relationships as constraints in an optimization muscle force prediction model of the elbow and assess changes in predictions made while including these constraints. Sixteen individuals performed 72 isometric exertions while holding a load in their right hand. Surface EMG was recorded from elbow flexors and extensors. A co-activation index provided a relative measure of flexor contribution to total activation about the elbow. Parsimonious models of co-activation during flexion and extension exertions were developed and added as constraints to a muscle force prediction model to enforce co-activation. Three different PCSA data sets were used. Elbow co-activation was sensitive to changes in posture and load. During flexion exertions the elbow flexors were activated about 75% MVC (this amount varied according to elbow angle, shoulder flexion and abduction angles, and load). During extension exertions the elbow flexors were activated about 11% MVC (this amount varied according to elbow angle, shoulder flexion angle and load). The larger PCSA values appeared to be more representative of the subject pool. Inclusion of these co-activation constraints improved the model predictions, bringing them closer to the empirically measured activation levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  16. Atropisomerism at C ̶ N bonds: Structural conformations and vibrational spectral study of Iminothiazoline Derivatives with density functional theoretical optimizations

    Directory of Open Access Journals (Sweden)

    F.Z. MIMOUNI

    2013-03-01

    Full Text Available The isolation of the pair atropisomers of the both iminothiazoline derivatives and the spectroscopic analytical of the compound have been computed using B3LYP/6-31G(d,p level to derive the equilibrium geometry, conformational stability, molecular orbital energies and vibrational frequencies was studied in this paper.

  17. A Model-Based Approach to Optimizing Ultradian Forced Desynchrony Protocols for Human Circadian Research.

    Science.gov (United States)

    Stack, Nora; Barker, David; Carskadon, Mary; Diniz Behn, Cecilia

    2017-10-01

    The human circadian system regulates internal 24-h rhythmicity and plays an important role in many aspects of human health and behavior. To investigate properties of the human circadian pacemaker such as intrinsic period and light sensitivity, experimental researchers have developed forced desynchrony (FD) protocols in which manipulations of the light-dark (LD) cycle are used to desynchronize the intrinsic circadian rhythm from the rest-activity cycle. FD protocols have typically been based on exposure to long LD cycles, but recently, ultradian FD protocols with short LD cycles have been proposed as a new methodology for assessing intrinsic circadian period. However, the effects of ultradian FD protocol design, including light intensity or study duration, on estimates of intrinsic circadian period have not, to our knowledge, been systematically studied. To address this gap, we applied a light-sensitive, dynamic mathematical model of the human circadian pacemaker to simulate ultradian FD protocols and analyze the effects of protocol design on estimates of intrinsic circadian period. We found that optimal estimates were obtained using protocols with low light intensities, at least 10 d of exposure to ultradian cycling, and a 7-h LD cycle duration that facilitated uniform light exposure across all circadian phases. Our results establish a theoretical framework for ultradian FD protocols that can be used to provide insights into data obtained under existing protocols and to optimize protocols for future experiments.

  18. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    Science.gov (United States)

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy.

    Science.gov (United States)

    Öztürk, Zafer; Filez, Matthias; Weckhuysen, Bert M

    2017-08-10

    The synthesis of metal-organic framework (MOF) thin films has garnered significant attention during the past decade. By better understanding the parameters governing the nucleation and growth of such thin films, their properties can be rationally tuned, empowering their application as (reactive) membranes. Here, a combined AFM-vibrational spectroscopy research strategy is employed to detail the chemistries governing the nucleation and growth of zeolitic imidazolate framework (ZIF) thin films, in particular isostructural Co-ZIF-67 and Zn-ZIF-8. First, a single step direct synthesis approach is used to investigate the influence of different synthesis parameters -metal/linker ratio, temperature, and metal type- on the thin film nucleation and growth behaviour. While the metal/linker ratio has a pronounced effect on the thin film nucleation rate, the temperature mainly influences the growth kinetics of nuclei forming the thin film. In addition, the nucleation and growth of ZIF thin films is shown to be highly dependent on the electronegativity of the metal type. Thin-film thickness control can be achieved by using a multistep synthesis strategy, implying repetitive applications of single step deposition under identical synthesis conditions, for which a growth mechanism is proposed. This study provides insight into the influence of synthesis parameters on the ZIF thin film properties, using tools at hand to rationally tune MOF thin film properties. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Optimal radial force and size for palliation in gastroesophageal adenocarcinoma: a comparative analysis of current stent technology.

    Science.gov (United States)

    Mbah, Nsehniitooh; Philips, Prejesh; Voor, Michael J; Martin, Robert C G

    2017-12-01

    The optimal use of esophageal stents for malignant and benign esophageal strictures continues to be plagued with variability in pain tolerance, migration rates, and reflux-related symptoms. The aim of this study was to evaluate the differences in radial force exhibited by a variety of esophageal stents with respect to the patient's esophageal stricture. Radial force testing was performed on eight stents manufactured by four different companies using a hydraulic press and a 5000 N force gage. Radial force was measured using three different tests: transverse compression, circumferential compression, and a three-point bending test. Esophageal stricture composition and diameters were measured to assess maximum diameter, length, and proximal esophageal diameter among 15 patients prior to stenting. There was a statistically significant difference in mean radial force for transverse compression tests at the middle (range 4.25-0.66 newtons/millimeter N/mm) and at the flange (range 3.32-0.48 N/mm). There were also statistical differences in mean radial force for circumferential test (ranged from 1.19 to 10.50 N/mm, p force, which provides further clarification of stent pain and intolerance in certain patients, with either benign or malignant disease. Similarly, current stent diameters do not successfully exclude the proximal esophagus, which can lead to obstructive-type symptoms. Awareness of radial force, esophageal stricture composition, and proximal esophageal diameter must be known and understood for optimal stent tolerance.

  1. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  2. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  3. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  4. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  5. Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control

    Directory of Open Access Journals (Sweden)

    Matthew Millard

    2017-08-01

    Full Text Available Wearable robotic systems are being developed to prevent injury to the low back. Designing a wearable robotic system is challenging because it is difficult to predict how the exoskeleton will affect the movement of the wearer. To aid the design of exoskeletons, we formulate and numerically solve an optimal control problem (OCP to predict the movements and forces of a person as they lift a 15 kg box from the ground both without (human-only OCP and with (with-exo OCP the aid of an exoskeleton. We model the human body as a sagittal-plane multibody system that is actuated by agonist and antagonist pairs of muscle torque generators (MTGs at each joint. Using the literature as a guide, we have derived a set of MTGs that capture the active torque–angle, passive torque–angle, and torque–velocity characteristics of the flexor and extensor groups surrounding the hip, knee, ankle, lumbar spine, shoulder, elbow, and wrist. Uniquely, these MTGs are continuous to the second derivative and so are compatible with gradient-based optimization. The exoskeleton is modeled as a rigid-body mechanism that is actuated by a motor at the hip and the lumbar spine and is coupled to the wearer through kinematic constraints. We evaluate our results by comparing our predictions with experimental recordings of a human subject. Our results indicate that the predicted peak lumbar-flexion angles and extension torques of the human-only OCP are within the range reported in the literature. The results of the with-exo OCP indicate that the exoskeleton motors should provide relatively little support during the descent to the box but apply a substantial amount of support during the ascent phase. The support provided by the lumbar motor is similar in shape to the net moment generated at the L5/S1 joint by the body; however, the support of the hip motor is more complex because it is coupled to the passive forces that are being generated by the hip extensors of the human subject

  6. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.

    Science.gov (United States)

    Muller, A; Pontonnier, C; Dumont, G

    2018-02-16

    The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.

  7. Optimization of Turkish Air Force SAR Units Forward Deployment Points for a Central Based SAR Force Structure

    Science.gov (United States)

    2015-03-26

    Applications ( VBA ) & LINGO Optimization Software interface that allows changing each exogenous variable of the models in a flexible way. The...Median Model ................................................................ 44 3.7 Generating VBA & Lingo Combination as a Useful Tool...46 3.7.2 Logic of VBA & LINGO Interface .............................................................................. 46 3.8 Summary

  8. OPTIMIZATION AND CHARACTERIZATION OF ELECTRON BEAM RESIST USING ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    - Sutikno

    2012-01-01

    Full Text Available Resis negatif ma-N 2403 dan 495 K PMMA memiliki resolusi yang baik untuk aplikasi litografi berkas elektron (EBL. Ketebalanresist optimal memainkan peran penting dalam paparan berkas elektron. Oleh karena itu, dalam penelitian ini, ketebalan darikedua resist yang dioptimalkan menggunakan spincoater dalam jangkauan laju spin 1000-6000 rpm. Semakin laju spin meningkat,ketebalan resist menurun juga. Morfologi permukaan resist dikarakterisasi dengan mikroskop gaya atom. Butir butir resist nampakpanjang. Dalam analisis AFM, permukaan profil resist negatif ma-N 2403 dan 495 K PMMA nampak seperti kerucut. Negative resist ma-N 2403 and 495 K PMMA have good resolution for electron beam lithography (EBL application. The optimumresist thickness plays significant role in e-beam exposure. Therefore, in this research, thicknesses of both resists were optimizedusing spincoater within spin speeds of 1000-6000 rpm. As spin speed increased, resist thickness decreased as well. Morphology ofresist surfaces were characterized using atomic force microscopy (AFM. Grains of resist show long grains. In AFM analyses,surface profiles of negative resist ma-N 2403 and 495 K PMMA show cone peaks.Keywords: e-beam resist; spincoater; e-beam lithography

  9. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  10. Au Colloids Formed by Ion Implantation in Muscovite Mica Studied by Vibrational and Electronic Spectroscopes and Atomic Force Microscopy

    Science.gov (United States)

    Tung, Y. S.; Henderson, D. O.; Mu, R.; Ueda, A.; Collins, W. E.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.

    1997-01-01

    Au was implanted into the (001) surface of Muscovite mica at an energy of 1.1 MeV and at doses of 1, 3, 6, and 10 x 10(exp 16) ions/cu cm. Optical spectra of the as-implanted samples revealed a peak at 2.28 eV (545 nm) which is attributed to the surface plasmon absorption of Au colloids. The infrared reflectance measurements show a decreasing reflectivity with increasing ion dose in the Si-O stretching region (900-1200 /cm). A new peak observed at 967 /cm increases with the ion dose and is assigned to an Si-O dangling bond. Atomic force microscopy images of freshly cleaved samples implanted with 6 and 10 x 10(exp 16) ions/sq cm indicated metal colloids with diameters between 0.9- 1.5 nm. AFM images of the annealed samples showed irregularly shaped structures with a topology that results from the fusion of smaller colloids.

  11. Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-11-01

    Full Text Available In this study, the multi-objective optimization of an indirect forced-circulation solar water heating (SWH system was performed to obtain the optimal configuration that minimized the life cycle cost (LCC and maximized the life cycle net energy saving (LCES. An elitist non-dominated sorting genetic algorithm (NSGA-II was employed to obtain the Pareto optimal solutions of the multi-objective optimization. To incorporate the characteristics of practical SWH systems, operation-related decision variables as well as capacity-related decision variables were included. The proposed method was used to conduct a case study wherein the optimal configuration of the SWH system of an office building was determined. The case study results showed that the energy cost decreases linearly and the equipment cost increases more significantly as the LCES increases. However, the results also showed that it is difficult to identify the best solution among the Pareto optimal solutions using only the correlation between the corresponding objective function values. Furthermore, regression analysis showed that the energy and economic performances of the Pareto optimal solutions are significantly influenced by the ratio of the storage tank volume to the collector area (RVA. Therefore, it is necessary to simultaneously consider the trade-off and the effect of the RVA on the Pareto optimal solutions while selecting the best solution from among the optimal solutions.

  12. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  13. The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method

    Directory of Open Access Journals (Sweden)

    Shui-Ting Zhou

    2017-01-01

    Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.

  14. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    Science.gov (United States)

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the

  15. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Si

    2016-01-01

    Full Text Available Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system.

  16. Effects of 8 weeks of vibration training at different frequencies (1 or 15 Hz) in senior sportsmen on torque and force development and of 1 year of training on muscle fibers.

    Science.gov (United States)

    Kern, H; Kovarik, J; Franz, C; Vogelauer, M; Löfler, S; Sarabon, N; Grim-Stieger, M; Biral, D; Adami, N; Carraro, U; Zampieri, S; Hofer, Ch

    2010-02-01

    To examine the effects of 8 weeks of vibration training at different frequencies (1 and 15 Hz) on maximal isometric torque and force development in senior sportsmen, and of 1 year of heavy-resistance and vibration trainings on muscle fibers. Seven healthy senior sportsmen (mean age: 69.0 +/- 5.4 years) performed an 8 weeks of strength training of knee extensors. Vibrations were applied vertically to the axis of movement during training. One leg of each subject was trained at a frequency of 1 Hz, while the other leg was trained at 15 Hz. Measures of isometric peak torque (at knee-angles of 60, 90 and 120 degrees ) and force development were recorded before and after training. Four sportsmen continued a year-long heavy-resistance training adding every second week a session of vibration training. After training, muscle biopsies were harvested from their quadriceps muscles and used for structural analyses. Morphometry of muscle fibers was performed by light microscopy. Immunohistochemistry using anti-MHCemb and anti-N-CAM antibodies was performed to measure potential muscle damage. Data from muscle morphometry were compared to that of a series of vastus lateralis biopsies harvested from 12 young sportsmen and four healthy elderly. Our results showed a significant increase in isometric peak torque at both 1 and 15 Hz vibration frequency in all three measured angles of the knee. There was no significant difference between the two frequencies, but we could find a higher increase in percentage of maximum power after the 1 Hz training. The results of force development showed a slight increase at the 1 Hz training in measured time frames from 0 to 50 and 200 ms, without statistical significance. A trend to significance was found at the 1 Hz training at the time window up to 200 ms. The 15 Hz training showed no significant changes of force development. Muscle biopsies show that the muscles of these well trained senior sportsmen contain muscle fibers which are 35% larger than

  17. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  18. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...... that a minimum of three braces in a symmetric circumferential configuration are needed to introduce homogeneous damping in the two lowest vibration modes, independent of the rotor direction. A novel hybrid viscous damper concept is described in the second part. The hybriddamper consists of a viscous dash...

  19. Evaluation and optimization of a force field for crystalline forms of mannitol and sorbitol

    NARCIS (Netherlands)

    de Waard, H; Amani, A; Kendrick, J; Hinrichs, W L J; Frijlink, H W; Anwar, J

    2010-01-01

    Two force fields, the GROMOS53A5/53A6 (united atom) and the AMBER95 (all atom) parameter sets, coupled with partial atomic charges derived from quantum mechanical calculations were evaluated for their ability to reproduce the known crystalline forms of the polyols mannitol and sorbitol. The force

  20. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  1. Optimization of coil geometries for bone fracture healing via dielectrophoretic force stimulation - a simulation study.

    Science.gov (United States)

    Kibritoğlu, Erman; Gülçür, Halil Özcan

    2015-01-01

    In this paper we propose a novel technique for shortening fracture healing times based on the use of dielectrophoretic forces (DEPFs). If a non-uniform electromagnetic field is applied around a fracture site, red blood cells within the blood will be polarized; creating electrical dipoles. The dielectrophoretic forces resulting from the interaction of these dipoles and the electromagnetic field, can be used to manipulate blood flow at a fracture site, promote vascularization, increase transmembrane signaling, increase supply of nutrients, necessary hormones and growth factors at the fracture site and thus may help bone healing. For the generation of non-uniform fields we considered three different coil designs (linear, parabolic and square root) and using Mathcad numerically studied the dielectrophoretic forces for a long bone fracture where the main arteries are vertically-oriented and the blood flow is downward. The gravitational force and the drag force on the red blood cells determine the steady state blood flow. The dielectrophoretic force added to the force balance is functional in increasing the blood flow. The ratio of the velocity in the presence of dielectrophoresis to the velocity without dielectrophoresis (called here as the Dielectrophoretic Force Factor, K(DEpF)) is a good measure of the performance of the dielectrophoresis, since it indicates the increase in blood flow. It was found that the dielectorophoretic force reaches peak levels at a frequency range between 5-15 Hz. At 5 Hz, the average value of dielectrophoretic force factor is 1.90, 2.51 and 1.61 for the linear, parabolic and the square root coils, respectively. The parabolic coil results in the best DEPF and therefore would be the configuration to use in an experimental study to determine if DEPF is useful for bone healing.

  2. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    Directory of Open Access Journals (Sweden)

    J Lucas McKay

    Full Text Available Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3 across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2× compared to individual muscle control. Our results are consistent with the idea that hierarchical, task

  3. High-Performance Reaction Wheel Optimization for Fine-Pointing Space Platforms: Minimizing Induced Vibration Effects on Jitter Performance plus Lessons Learned from Hubble Space Telescope for Current and Future Spacecraft Applications

    Science.gov (United States)

    Hasha, Martin D.

    2016-01-01

    The Hubble Space Telescope (HST) applies large-diameter optics (2.5-m primary mirror) for diffraction-limited resolution spanning an extended wavelength range (approx. 100-2500 nm). Its Pointing Control System (PCS) Reaction Wheel Assemblies (RWAs), in the Support Systems Module (SSM), acquired an unprecedented set of high-sensitivity Induced Vibration (IV) data for 5 flight-certified RWAs: dwelling at set rotation rates. Focused on 4 key ratios, force and moment harmonic values (in 3 local principal directions) are extracted in the RWA operating range (0-3000 RPM). The IV test data, obtained under ambient lab conditions, are investigated in detail, evaluated, compiled, and curve-fitted; variational trends, core causes, and unforeseen anomalies are addressed. In aggregate, these values constitute a statistically-valid basis to quantify ground test-to-test variations and facilitate extrapolations to on-orbit conditions. Accumulated knowledge of bearing-rotor vibrational sources, corresponding harmonic contributions, and salient elements of IV key variability factors are discussed. An evolved methodology is presented for absolute assessments and relative comparisons of macro-level IV signal magnitude due to micro-level construction-assembly geometric details/imperfections stemming from both electrical drive and primary bearing design parameters. Based upon studies of same-size/similar-design momentum wheels' IV changes, upper estimates due to transitions from ground tests to orbital conditions are derived. Recommended HST RWA choices are discussed relative to system optimization/tradeoffs of Line-Of-Sight (LOS) vector-pointing focal-plane error driven by higher IV transmissibilities through low-damped structural dynamics that stimulate optical elements. Unique analytical disturbance results for orbital HST accelerations are described applicable to microgravity efforts. Conclusions, lessons learned, historical context/insights, and perspectives on future applications

  4. Outcomes of Optimal Distraction Forces and Frequencies in Growth Rod Surgery for Different Types of Scoliotic Curves: An In Silico and In vitro Study.

    Science.gov (United States)

    Agarwal, Aakash; Agarwal, Anand K; Jayaswal, Arvind; Goel, Vijay K

    2017-01-01

    Analyze the effects of the distraction forces and frequencies on multiple representative scoliotic curves and to establish a relationship between high distraction forces and screw loosening. Multiple representative finite-element models of a juvenile scoliotic spine were used to study the effects of the magnitude and frequency of distraction on growth rods. Simulation of 6 months of growth under various distraction forces to analyze the effects of distraction forces on the biomechanics of the scoliotic spine and growth rod instrumentation; simulation of 24 months of growth under various intervals of distraction to analyze the effects of the distraction interval on the propensity for rod fracture; in vitro study to assess screw loosening after 6 months. For all scoliotic spine model instrumented with growth rods, an optimal distraction force existed at which normal T1-S1 growth was sustained, along with minimum stresses on the rods, the lowest load at the screw-bone interface, and the least alteration in the sagittal contour. The results followed similar trends for each model, with the numerical values of optimal distraction forces in proximity for all representative scoliotic spine models. The in vitro study proved that the pullout strength of pedicle screws reduced significantly after 6 months of fatigue at higher distraction forces (in comparison with optimal distraction forces). This corroborated the finite-element findings for lower loads at the screw-bone interface with optimal distraction forces. This study concludes that the optimal distraction forces exists for all types of scoliotic curves that have been instrumented with growth rods, which exhibits reduction of stresses on the rods with frequent distractions. This study also links the second most common complication, screw loosening, with high distraction forces. Therefore, optimizing the biomechanical environment of the dual growth rods could drastically reduce the biomechanical complications

  5. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    Science.gov (United States)

    Lynn, Keith C.; Dixon, Genevieve

    2015-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long-term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the flexural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the flexural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped fillets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance.

  6. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  7. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  8. The application of response surface method to optimization of precision ball end milling

    Directory of Open Access Journals (Sweden)

    Wojciechowski Szymon

    2017-01-01

    Full Text Available This paper is focused on the multi criteria optimization of precision ball end milling process of hardened 55NiCrMoV6 steel. The proposed method enables the selection of optimal input parameters which affect the minimization of cutting forces and vibrations signals, as well as the maximization of process efficiency. The experiment includes the measurement of forces and vibrations during the milling tests with variable input parameters. Ultimately, the optimization of the ball end milling process with the application of response surface method is carried out.

  9. A Quiet Gradient-Coil Set Employing Optimized, Force-Shielded, Distributed Coil Designs

    Science.gov (United States)

    Chapman, B. L. W.; Mansfield, P.

    1995-05-01

    A distributed coil design is described which employs active force shielding to reduce acoustic noise. Both axial and transverse gradients employ sets of distributed pairs of coplanar closed-are loops whose planes are normal to the static magnetic field direction. The resulting gradients are also partially magnetically screened. The design results in an axially compact coil set that provides linear gradients which extend over greater fractions of the enclosed volume than previous designs. The minimal gradient field interaction with the patient inherent in this force-shielded transverse-gradient coil design provides intrinsically safer Gx and Gy gradient fields.

  10. Simulation-Driven Development and Optimization of a High-Performance Six-Dimensional Wrist Force/Torque Sensor

    Directory of Open Access Journals (Sweden)

    Qiaokang LIANG

    2010-05-01

    Full Text Available This paper describes the Simulation-Driven Development and Optimization (SDDO of a six-dimensional force/torque sensor with high performance. By the implementation of the SDDO, the developed sensor possesses high performance such as high sensitivity, linearity, stiffness and repeatability simultaneously, which is hard for tranditional force/torque sensor. Integrated approach provided by software ANSYS was used to streamline and speed up the process chain and thereby to deliver results significantly faster than traditional approaches. The result of calibration experiment possesses some impressive characters, therefore the developed fore/torque sensor can be usefully used in industry and the methods of design can also be used to develop industrial product.

  11. Optimization of Process Parameters of Edge Robotic Deburring with Force Control

    Directory of Open Access Journals (Sweden)

    Burghardt A.

    2016-12-01

    Full Text Available The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.

  12. Optimization of Process Parameters of Edge Robotic Deburring with Force Control

    Science.gov (United States)

    Burghardt, A.; Szybicki, D.; Kurc, K.; Muszyńska, M.

    2016-12-01

    The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.

  13. Optimizing the DoD Supply Chain for the Future Joint Force

    Science.gov (United States)

    2013-05-01

    methods, to include process re-engineering, Lean Manufacturing, Six- Sigma, Theory of Constraints, ISO - 9000 family of standards, Balanced Scorecard...5 History ...iii CHAPTER 1: INTRODUCTION Orientation History has proven that the military force that understands the operating environment and adapts to

  14. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  15. Complementary numerical–experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces

    DEFF Research Database (Denmark)

    Markus, D.; Ferri, Francesco; Wüchner, R.

    2015-01-01

    A new benchmark problem is proposed and evaluated targeting fluid related shape optimization problems, motivated by design related ocean engineering tasks. The analyzed test geometry is a bottom mounted, polygonal structure in a channel flow. The aim of the study is to analyze the effect of shape...... is to provide clear and thorough information for validation and verification of methods and codes used to analyze fluid related shape optimization problems....... variations of the structure on the resulting horizontal forces. Steady current conditions, dynamic loading due to waves, and combined wave–current scenarios are considered. A clear focus is put on simplicity and reproducibility, allowing for efficient testing of related methods and codes. This is achieved...

  16. Non-traditional vibration mitigation methods for reciprocating compressor system

    NARCIS (Netherlands)

    Eijk, A.; Lange, T.J. de; Vreugd, J. de; Slis, E.J.P.

    2016-01-01

    Reciprocating compressors generate vibrations caused by pulsation-induced forces, mechanical (unbalanced) free forces and moments, crosshead guide forces and cylinder stretch forces. The traditional way of mitigating the vibration and cyclic stress levels to avoid fatigue failure of parts of the

  17. Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications

    Science.gov (United States)

    Aldrich, Jack B.; Okon, Avi B.

    2012-01-01

    The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used

  18. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

    DEFF Research Database (Denmark)

    Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.

    1999-01-01

    Recently we have looked for spectroscopic probes for secondary structural elements in the vibrational spectra of N-acetyl-L-alanine N'-methyl amide (NALANMA), L-alanine (LA), N-acetyl-L-alanyl-L-alanine N'-methyl amide (NALALANMA) and L-alanyl-L-alanine (LALA). Our goal has been to identify...... spectroscopic probes which can be used to identify specific secondary structural elements in peptides, polypeptides and proteins. In this work we present our comparative analysis of the MP2, B3LYP, RHF and SCC-DFTB quantum force fields to predict the vibrational absorption (VA) and vibrational circular...... dichroism (VCD) spectra of NALANMA. We have utilised MP2/6-31G*, B3LYP/6-31G*, RHF/6-31G* and SCC-DFTB level theory to determine the geometries and Hessians, atomic polar tensors (APT) and atomic axial tensors (AAT) which are required for simulating the VA and VCD spectra. We have also calculated the AAT...

  19. Statistical analysis of large passwords lists, used to optimize brute force attacks

    CSIR Research Space (South Africa)

    Van Heerden, RP

    2009-03-01

    Full Text Available can be used to optimise a brute force password cracking system in very limited situations. Passwords are used as the first line of defence in information systems. Thus more effective attack and defence strategies can be developed with a better.... In the movie “Hackers” (Wang 1997) , the characters discuss popular passwords as follows: PHREAK Alright, what are the three most commonly used passwords? JOEY Love, secret, and uh, sex. But not in that order...

  20. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig

    Science.gov (United States)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)

    2000-01-01

    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  1. ASSESSMENT OF THE PEDICEL DETACHING AND CRUSHING FORCES OF GRAPE BERRIES TO DETERMINE THE OPTIMAL MECHANICAL HARVESTING TIME

    Directory of Open Access Journals (Sweden)

    Michele Carrara

    2007-09-01

    Full Text Available The mechanical harvesting of grapes is an important operation in order to contain the operating costs of the viticultural farms. One of the limits of the mechanical harvesting of grapes is represented by the production of juice that is mostly due to the energetic action of the shakers that knocks against the grape clusters to allow the detachment of the berries. As a consequence, under the same structural conditions of the plants, the production of grape juice depends on the physical-mechanical characteristics of the berry and particularly on its breaking strength and on its detachment from the pedicel. In this paper the strength of the berry to the compression force is evaluated through the measurement of the crushing force and the strength of the berry linked to its pedicel measuring its detaching force. The study was performed on two variety of grapes very widespread in Sicily: Catarratto comune and Nero d’Avola. The research showed that the evaluation of the breaking strength of the berry and its pedicel detachment resistance, correlated with the sugar content, allows to find out the optimal mechanical harvesting time in order to obtain a low production of grape juice and, then, wines of quality from mechanically harvested grapes.

  2. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  3. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  4. Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling

    Science.gov (United States)

    2017-09-01

    Laboratory recently procured an Easy Atomic Force Microscope (ezAFM), from a NanoMagnetics vendor. The ezAFM can profile nanostructures on the order of 2.0 Å...just as previous AFMs do. This allows for scans of possible defects of sample surfaces, as well as displays of changes in topography. In using the...the cross-sectional graph provides an approximation of the noise. Less than 2 Å is ideal. It is possible to observe relative noise by observing the

  5. Optimization of effective atom centered potentials for london dispersion forces in density functional theory.

    Science.gov (United States)

    von Lilienfeld, O Anatole; Tavernelli, Ivano; Rothlisberger, Ursula; Sebastiani, Daniel

    2004-10-08

    We add an effective atom-centered nonlocal term to the exchange-correlation potential in order to cure the lack of London dispersion forces in standard density functional theory. Calibration of this long-range correction is performed using density functional perturbation theory and an arbitrary reference. Without any prior assignment of types and structures of molecular fragments, our corrected generalized gradient approximation density functional theory calculations yield correct equilibrium geometries and dissociation energies of argon-argon, benzene-benzene, graphite-graphite, and argon-benzene complexes.

  6. A Cartesian relative motion approach to optimal formation flight using Lorentz forces and impulsive thrusting

    Science.gov (United States)

    Vatankhahghadim, Behrad; Damaren, Christopher J.

    2017-11-01

    Hybrid combination of Lorentz forces and impulsive thrusts, provided by modulating spacecraft's electrostatic charge and propellant usage, respectively, is proposed for formation flight applications. A hybrid linear quadratic regulator, previously proposed in another work using a differential orbital elements-based model, is reconsidered for a Cartesian coordinates-based description of the spacecraft's relative states. In addition, the effects of adopting circular versus elliptic reference solutions on the performance of the controller are studied. Numerical simulation results are provided to demonstrate the functionality of the proposed controller in the presence of J2 perturbations, and to illustrate the improvements gained by assuming an elliptic reference and incorporating auxiliary impulsive thrusts.

  7. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  8. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  9. A Multi-Stage Optimization Model for Air Force Reserve Officer Training Corps Officer Candidate Selection

    Science.gov (United States)

    2012-03-01

    the optimal solution vector) [19]. 2.5 Logistic Regression Regression analysis is a statistical technique that allows modeling of relationships between...the EA and HSSP process, the relationship between various indicator variables, such as 15 standardized test scores, grade point average, etc. and the...assigned to each category of racial group Asian = 2 476 6.6 Black = 3 406 5.6 Interracial = 4 140 1.9 Pacific Islander = 5 40 0.6 Unknown = 6 446 6.2

  10. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  11. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  12. Free and Forced Vibrations of a Shaft and Propeller Using the Couple of Finite Volume Method, Boundary Element Method and Finite Element Method

    OpenAIRE

    E. Yari; H. Ghassemi

    2016-01-01

    The main objective of this paper is to provide an applied algorithm for analyzing propeller-shaft vibrations in marine vessels. Firstly an underwater marine vehicle has been analyzed at different speed in unsteady condition using the finite volume method. Based on the results of this analysis, flow field of marine vehicle (wake of stern) and velocity inlet to the marine propeller  is extracted at different times. Propeller inlet flow field is applied in the boundary element code and usin...

  13. Vibration control of rotor-bearing system by controlled squeeze-film damper bearings

    Science.gov (United States)

    He, Erming; Gu, Jialiu

    1992-07-01

    A new vibration control scheme for rotor-bearing systems is presented which offers many advantages over the scheme proposed by Gu (1990). Due to the nonlinear state feedback, closed-loop control becomes possible. Thus control can be readily adjusted in accordance with transient state information. Optimal structure parameters are determined by the optimal control law. The control force is applied on line; by merely adjusting CSFDB structure parameters, control forces can be applied to the system. The feasibility of the present design is confirmed by simulation, which is performed for a flexible Jeffcott rotor elastically supported at both ends on identical CSFDBs.

  14. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai

    2011-01-01

    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  15. Introduction of quartz vibrating beam accelerometer technology providing capability for low cost, fully digital navigation

    Science.gov (United States)

    Holdren, F. V.; Norling, B. L.

    The proprietary 'Accelerex' vibrating-beam accelerometer is based on a specialized dual-tine quartz crystal resonator whose vibrating beam crystal employs two slender beams in a double-ended tuning fork-resembling geometry. This configuration furnishes perfect resonator dynamic balance, thereby obviating coupling and energy loss to the connecting structure. The slender beams of the crystal change frequency as a function of force in a way resembling the strings of a musical instrument. The Tactical Grade Accelerex system is optimized for low-cost tactical navigation and flight-control applications.

  16. Optimization of Contact Force and Pull-in Voltage for Series based MEMS Switch

    Directory of Open Access Journals (Sweden)

    Abhijeet KSHIRSAGAR

    2010-04-01

    Full Text Available Cantilever based metal-to-metal contact type MEMS series switch has many applications namely in RF MEMS, Power MEMS etc. A typical MEMS switch consists of a cantilever as actuating element to make the contact between the two metal terminals of the switch. The cantilever is pulled down by applying a pull-in voltage to the control electrode that is located below the middle portion of the cantilever while only the tip portion of the cantilever makes contact between the two terminals. Detailed analysis of bending of the cantilever for different pull-in voltages reveals some interesting facts. At low pull-in voltage the cantilever tip barely touches the two terminals, thus resulting in very less contact area. To increase contact area a very high pull-in voltage is applied, but it lifts the tip from the free end due to concave curving of the cantilever in the middle region of the cantilever where the electrode is located. Again it results in less contact area. Furthermore, the high pull-in voltage produces large stress at the base of the cantilever close to the anchor. Therefore, an optimum, pull-in voltage must exist at which the concave curving is eliminated and contact area is maximum. In this paper authors report the finding of optimum contact force and pull-in voltage.

  17. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  18. DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING

    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE

    2015-05-01

    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  19. The fictitious force method for efficient calculation of vibration from a tunnel embedded in a multi-layered half-space

    Science.gov (United States)

    Hussein, M. F. M.; François, S.; Schevenels, M.; Hunt, H. E. M.; Talbot, J. P.; Degrande, G.

    2014-12-01

    This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel-soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel-soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green's functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element-boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.

  20. The free and forced vibrations of structures using the finite dynamic element method. Ph.D. Thesis, Aug. 1991 Final Report

    Science.gov (United States)

    Fergusson, Neil J.

    1992-01-01

    In addition to an extensive review of the literature on exact and corrective displacement based methods of vibration analysis, a few theorems are proven concerning the various structural matrices involved in such analyses. In particular, the consistent mass matrix and the quasi-static mass matrix are shown to be equivalent, in the sense that the terms in their respective Taylor expansions are proportional to one another, and that they both lead to the same dynamic stiffness matrix when used with the appropriate stiffness matrix.

  1. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem

    2015-11-13

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  2. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    system [10], bistable systems [1,11,12], time-delayed system [13] and also in a few low- dimensional maps [14] due to its ... the driving force, has attracted much attention in recent years. The study of vibrational ... odic trigonometric functions, one can expect the recurrence of multiple resonant peaks due to vibrational ...

  3. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    Abstract. The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and with. ≫ ω. In the damped and biharmoni- cally driven classical Morse oscillator, ...

  4. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  5. Reduction of belt CVT gear noise by gear train modification. Optimize vibration characteristics of gear train; Belt CVT no gear noise teigen gijutsu. Gear train shindo tokusei no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Arimatsu, M.; Kawakami, T. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    With the reduction of vehicle noise, the requirements for an efficient method to reduce transmission gear noise have become stronger yearly. So far efforts to reduce gear noise have generally focused on ways of improving the gears themselves. In addition to these traditional methods, it proved very beneficial to us to optimize the gear train structure. Nissan has just released the new Belt CVT for 2.0L Front wheel drive vehicles. We have been analyzing vibration of the gear train by using a finite element model since the early development stage, and we could achieve the quiet gears effectively. 2 refs., 9 figs.

  6. Optimization

    CERN Document Server

    Pearce, Charles

    2009-01-01

    Focuses on mathematical structure, and on real-world applications. This book includes developments in several optimization-related topics such as decision theory, linear programming, turnpike theory, duality theory, convex analysis, and queuing theory.

  7. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Vibrations of Damaged Functionally Graded Cantilever Beams

    Science.gov (United States)

    Byrd, Larry W.; Birman, Victor

    2008-02-01

    The paper discusses closed-form solutions of the problems of free and forced vibrations of a functionally graded cantilever FGM beam with and without damage. The mode of damage considered in the paper is represented by cracks that are perpendicular to the axis of the beam. Notably, such mode of damage was observed in experiments on representative FGM beams. Forced vibrations considered in the paper were generated by a kinematic excitation of the clamped end of the beam.

  9. Estimation of spinal loading in vertical vibrations by numerical simulation

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.

    2003-01-01

    Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back

  10. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  11. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  12. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A contact model to simulate human-artifact interaction based on force optimization: implementation and application to the analysis of a training machine.

    Science.gov (United States)

    Krüger, Daniel; Wartzack, Sandro

    2017-11-01

    Musculoskeletal multibody models are increasingly used to analyze and optimize physical interactions between humans and technical artifacts. Since interaction is conveyed by contact between the human body and the artifact, a computationally robust modeling approach for frictional contact forces is a crucial aspect. In this contribution, we propose a parametric contact model and formulate an associated force optimization problem to simultaneously estimate unknown muscle and contact forces in an inverse dynamic manner from a prescribed motion trajectory. Unlike existing work, we consider both the static and the kinetic regime of Coulomb's friction law. The approach is applied to the analysis of a leg extension training machine with the objective to reduce the stress on the tibiofemoral joint. The uncertainty of the simulation results due to a tunable parameter of the contact model is of particular interest.

  14. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution: Wind energy, actuator line model

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Tossas, L. A. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA; Churchfield, M. J. [National Renewable Energy Laboratory, Golden 80401 CO USA; Meneveau, C. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore 21218 MD USA

    2017-01-20

    The actuator line model (ALM) is a commonly used method to represent lifting surfaces such as wind turbine blades within large-eddy simulations (LES). In the ALM, the lift and drag forces are replaced by an imposed body force that is typically smoothed over several grid points using a Gaussian kernel with some prescribed smoothing width e. To date, the choice of e has most often been based on numerical considerations related to the grid spacing used in LES. However, especially for finely resolved LES with grid spacings on the order of or smaller than the chord length of the blade, the best choice of e is not known. In this work, a theoretical approach is followed to determine the most suitable value of e, based on an analytical solution to the linearized inviscid flow response to a Gaussian force. We find that the optimal smoothing width eopt is on the order of 14%-25% of the chord length of the blade, and the center of force is located at about 13%-26% downstream of the leading edge of the blade for the cases considered. These optimal values do not depend on angle of attack and depend only weakly on the type of lifting surface. It is then shown that an even more realistic velocity field can be induced by a 2-D elliptical Gaussian lift-force kernel. Some results are also provided regarding drag force representation.

  15. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  16. A novel method for non-parametric identification of nonlinear restoring forces in nonlinear vibrations from noisy response data: A conservative system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, T. S.; Kwon, S. H.; Han, S. L. [Pusan National University, Busan (Korea, Republic of)

    2009-11-15

    A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples

  17. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  18. Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective

    Directory of Open Access Journals (Sweden)

    Z. H. Chen

    2017-01-01

    Full Text Available An adaptive solution to semiactive control of cable vibration is formulated by extending the linear quadratic Gaussian (LQG control from time domain to frequency domain. Frequency shaping is introduced via the frequency dependent weights in the cost function to address the control effectiveness and robustness. The Hilbert-Huang transform (HHT technique is further synthesized for online tuning of the controller gain adaptively to track the cable vibration evolution, which also obviates the iterative optimal gain selection for the trade-off between control performance and energy in the conventional time domain LQG (T-LQG control. The developed adaptive frequency-shaped LQG (AF-LQG control is realized by collocated self-sensing magnetorheological (MR dampers considering the nonlinear damper dynamics for force tracking control. Performance of the AF-LQG control is numerically validated on a bridge cable transversely attached with a self-sensing MR damper. The results demonstrate the adaptivity in gain tuning of the AF-LQG control to target for the dominant cable mode for vibration energy dissipation, as well as its enhanced control efficacy over the optimal passive MR damping control and the T-LQG control for different excitation modes and damper locations.

  19. Experimental Modal Analysis on Vibrations in the Building Construction

    OpenAIRE

    成瀬, 治興; 佐野, 泰之; 北畠, 弘基

    1996-01-01

    This paper describes some results of vibration propagation characteristics of two rooms next door to each other in the actual building construction (including floor, walls, and upstairfloor) by experimental modal analysis. In addition, we investigate about vibration response of measuring points by forced response and sensitivity analysis. The results are summarized as follows. The vibration of lower modes gives larger effect to vibration propagation characteristics of building construction th...

  20. Analysis of Vibration Exercise at Varying Frequencies by Different Fatigue Estimators.

    Science.gov (United States)

    Xu, Lin; Rabotti, Chiara; Mischi, Massimo

    2016-12-01

    Vibration exercise (VE) has been suggested to improve muscle strength and power performance, due to enhanced neuromuscular demand. However, understanding of the most appropriate VE protocols is lacking, limiting the optimal use of VE in rehabilitation programs. In this study, the fatiguing effect of vibration at different frequencies was investigated by employing a force-modulation VE system. Twenty volunteers performed 12-s isometric contractions of the biceps brachii with a load consisting of a baseline force of 80% of their maximum voluntary contraction (MVC) and a superimposed sinusoidal force at 0 (control condition with no vibration), 20, 30, and 40 Hz. Mechanical fatigue was estimated by assessment of MVC decay after each task while myoelectric fatigue was estimated by analysis of multichannel electromyography (EMG) signals recorded during VE. EMG conduction velocity, spectral compression, power, and fractal dimension were estimated as indicators of myoelectric fatigue. Our results suggest vibration, in particular at 30 Hz, to produce a larger degree of fatigue as compared to control condition. These results motivate further research aiming at introducing VE in rehabilitation programs with improved training protocols.

  1. Vibration Analysis and Design of a Structure Subjected to Human Walking Excitations

    Directory of Open Access Journals (Sweden)

    M. Setareh

    2010-01-01

    Full Text Available Annoying building floor vibrations have become a serious serviceability issue. This is mainly due to decrease in the system mass resulting from the use of higher strength materials; use of computer-assisted design and the Load and Resistance Factor Design Method to optimize the structure based on the strength requirements; fewer partitions and more innovative designs by architects achieving long, column free spans resulting in a reduction in the natural frequency and damping. This paper provides details of the vibration analysis and design of a novel office building. Three-dimensional computer models of the structure were created and various modifications were made to the original structure, designed based on static loads, to reduce the possible excessive floor vibrations when subjected to walking excitations. Tuned mass dampers were also designed as a back-up vibration control system. A series of dynamic tests were conducted on the building floor to identify the dynamic properties of the structure and these were then used to update the original computer model. Finally, various forcing functions representing human walks and the updated computer model of the structure were used to evaluate the accuracy of the walking excitation force models to predict the structural response. Conclusions are made on the validity of each forcing function studied here.

  2. Reactor vibration reduction based on giant magnetostrictive materials

    Directory of Open Access Journals (Sweden)

    Yan Rongge

    2017-05-01

    Full Text Available The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  3. Reactor vibration reduction based on giant magnetostrictive materials

    Science.gov (United States)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  4. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    Science.gov (United States)

    Heo, G.; Joonryong, Jeon

    2014-07-01

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively.

  5. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  6. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  7. Lateral vibration effects in atomic-scale friction

    OpenAIRE

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E; Gnecco, E.

    2014-01-01

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superim...

  8. Transverse vibration of spinning disk with attached distributed patch ...

    African Journals Online (AJOL)

    Free and forced transverse vibration characteristics of a thin spinning disc attached to a rigid core have been investigated by finite element analysis using ANSYS software. The effect of discrete point masses and patches of distributed masses attached at the periphery of the plate on free and forced vibration behavior of a ...

  9. Cost-effective and detailed modelling of compressor manifold vibrations

    NARCIS (Netherlands)

    Eijk, A.; Egas, G.; Smeulers, J.P.M.

    1996-01-01

    In systems with large reciprocating compressors, so-called compressor manifold vibrations can contribute to fatigue failure of the pipe system. These vibrations are excited by pulsation-induced forces and by forces generated by the compressor. This paper describes an advanced and accurate method for

  10. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  11. Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution

    Science.gov (United States)

    Weber, F.; Distl, H.

    2015-11-01

    This paper derives an approximate collocated control solution for the mitigation of multi-mode cable vibration by semi-active damping with negative stiffness based on the control force characteristics of clipped linear quadratic regulator (LQR). The control parameters are derived from optimal modal viscous damping and corrected in order to guarantee that both the equivalent viscous damping coefficient and the equivalent stiffness coefficient of the semi-active cable damper force are equal to their desired counterparts. The collocated control solution with corrected control parameters is numerically validated by free decay tests of the first four cable modes and combinations of these modes. The results of the single-harmonic tests demonstrate that the novel approach yields 1.86 times more cable damping than optimal modal viscous damping and 1.87 to 2.33 times more damping compared to a passive oil damper whose viscous damper coefficient is optimally tuned to the targeted mode range of the first four modes. The improvement in case of the multi-harmonic vibration tests, i.e. when modes 1 and 3 and modes 2 and 4 are vibrating at the same time, is between 1.55 and 3.81. The results also show that these improvements are obtained almost independent of the cable anti-node amplitude. Thus, the proposed approximate real-time applicable collocated semi-active control solution which can be realized by magnetorheological dampers represents a promising tool for the efficient mitigation of stay cable vibrations.

  12. THE POTENTIAL NEURAL MECHANISMS OF ACUTE INDIRECT VIBRATION

    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane

    2011-03-01

    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  13. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  14. Simulated vibrational spectra of aflatoxins and their demethylated products and the estimation of the energies of the demethylation reactions

    Science.gov (United States)

    Billes, Ferenc; Móricz, Ágnes M.; Tyihák, Ernő; Mikosch, Hans

    2006-06-01

    The structure of four natural mycotoxins, the aflatoxin B 1, B 2, G 1 and G 2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.

  15. Algorithm For Optimal Control Of Large Structures

    Science.gov (United States)

    Salama, Moktar A.; Garba, John A..; Utku, Senol

    1989-01-01

    Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.

  16. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  17. The Vibration of a Linear Carbon Chain in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Dongqing Ding

    2017-04-01

    Full Text Available An explicit solution for the vibration of a carbon chain inside carbon nanotubes (CNTs was obtained using continuum modeling of the van der Waals (vdW interactions between them. The effect of the initial tensile force and the amplitude of the carbon chain as well as the radii of the CNTs on the vibration frequency were analyzed in detail, respectively. Our analytical results show that the vibration frequency of the carbon chain in a (5,5 CNT could be around two orders of magnitude higher than that of an independent carbon chain without initial tensile force. For a given CNT radius, the vibration frequency nonlinearly increases with increasing amplitude and initial tensile force. The obtained analytical cohesive energy and vibration frequency are reasonable by comparison of present molecular dynamics (MD simulations. These findings will be a great help towards understanding the vibration property of a nanowire in nanotubes, and designing nanoelectromechanical devices.

  18. Active control of sound transmission/radiation from elastic plates by vibration inputs. I - Analysis

    Science.gov (United States)

    Fuller, C. R.

    1990-01-01

    Active control of sound radiation from vibrating plates by oscillating forces applied directly to the structure is analytically studied. The model consists of a plane acoustic wave incident on a clamped elastic circular thin plate. Control is achieved by point forces, and quadratic optimization is used to calculate the optimal control gains necessary to minimize a cost function proportional to the radiated acoustic power (the transmitted field). The results show that global attenuation of broadband radiated sound levels for low to mid-range frequencies can be achieved with one or two control forces, irrespective of whether the system is on or off resonance. The efficiency of the control strategy is demonstrated to be related to the nature of the coupling between the plate modes of response and the radiated field.

  19. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    OpenAIRE

    Zhou Yiheng; Kou Baoquan; Yang Xiaobao; Luo Jun; Zhang He

    2017-01-01

    Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major ...

  20. Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Kailash; Chaudhary, Himanshu [Malaviya National Institute of Technology, Jaipur (Malaysia)

    2015-11-15

    In this paper, a two stage optimization technique is presented for optimum design of planar slider-crank mechanism. The slider crank mechanism needs to be dynamically balanced to reduce vibrations and noise in the engine and to improve the vehicle performance. For dynamic balancing, minimization of the shaking force and the shaking moment is achieved by finding optimum mass distribution of crank and connecting rod using the equipemental system of point-masses in the first stage of the optimization. In the second stage, their shapes are synthesized systematically by closed parametric curve, i.e., cubic B-spline curve corresponding to the optimum inertial parameters found in the first stage. The multi-objective optimization problem to minimize both the shaking force and the shaking moment is solved using Teaching-learning-based optimization algorithm (TLBO) and its computational performance is compared with Genetic algorithm (GA).

  1. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    Science.gov (United States)

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p power output.

  2. Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

    Directory of Open Access Journals (Sweden)

    Mudar A. Abdulsattar

    2013-04-01

    Full Text Available Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm−1 broad-peak acoustical branch region is characterized by pure C–C vibrations. The optical branch is centered at 1185 cm−1. Calculations show that several C–C vibrations are mixed with some C–H vibrations in the first region. In the second region the matching also extends to C–H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm−1 in ethane. Variation of the highest reduced-mass-mode C–C vibrations from 1332 cm−1 of bulk diamond to 963 cm−1 for ethane (red shift is shown. The analysis also shows the variation of the radial breathing mode from 0 cm−1 of bulk diamond to 963 cm−1 for ethane (blue shift. These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes.

  3. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  4. Chaotic Dynamics-Based Analysis of Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Using Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhongsheng Chen

    2016-01-01

    Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.

  5. Secondary flows enhance mixing in a model of vibration-assisted dialysis

    Science.gov (United States)

    Pitre, John; Mueller, Bruce; Lewis, Susan; Bull, Joseph

    2014-11-01

    Hemodialysis is an integral part of treatment for patients with end stage renal disease. While hemodialysis has traditionally been described as a diffusion-dominated process, recent in vitro work has shown that vibration of the dialyzer can enhance the clearance of certain solutes during treatment. We hypothesize that the addition of vibration generates secondary flows in the dialysate compartment. These flows, perpendicular to the longitudinal axis of the dialysis fibers, advect solute away from the fiber walls, thus maintaining a larger concentration gradient and enhancing diffusion. Using the finite element method, we simulated the flow of dialysate through a hexagonally-packed array of cylinders and the transport of solute away from the cylinder walls. The addition of vibration was modeled using sinusoidal body forces of various frequencies and amplitudes. Using the variance of the concentration field as a metric, we found that vibration improves mixing according to a power law dependency on frequency. We will discuss the implications of these computational results on our understanding of the in vitro experiments and propose optimal vibration patterns for improving clearance in dialysis treatments. This work was supported by the Michigan Institute for Clinical and Health Research and NIH Grant UL1TR000433.

  6. Vibration mode shape control by prestressing

    Science.gov (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.

    1992-01-01

    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  7. RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    V.P. Babak

    2005-02-01

    Full Text Available  Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.

  8. Internal resonance and low frequency vibration energy harvesting

    Science.gov (United States)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  9. Reduction of Structural Vibrations by Passive and Semiactively Controlled Friction Dampers

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2014-01-01

    Full Text Available Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance, transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general way. As a remedy, a special simulation framework is developed which allows efficiently modeling interfaces with friction and normal contact by appropriate constitutive laws which are implemented by contact elements in a finite-element model. Furthermore, special model reduction techniques using a substructuring approach are employed for faster simulation.

  10. Effectiveness of Different Rest Intervals Following Whole-Body Vibration on Vertical Jump Performance between College Athletes and Recreationally Trained Females

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the effect of different rest intervals following whole-body vibration on counter-movement vertical jump performance. Sixteen females, eight recreationally trained and eight varsity athletes volunteered to participate in four testing visits separated by 24 h. Visit one acted as a familiarization visit where subjects were introduced to the counter-movement vertical jump and whole-body vibration protocols. Visits 2–4 contained 2 randomized conditions. Whole-body vibration was administered in four bouts of 30 s with 30 s rest between bouts. During whole-body vibration subjects performed a quarter squat every 5 s, simulating a counter-movement vertical jump. Whole-body vibration was followed by three counter-movement vertical jumps with five different rest intervals between the vibration exposure and jumping. For a control condition, subjects performed squats with no whole-body vibration. There was a significant (p < 0.05 main effect for time for vertical jump height, peak power output, and relative ground reaction forces, where a majority of individuals max jump from all whole-body vibration conditions was greater than the control condition. There were significant (p < 0.05 group differences, showing that varsity athletes had a greater vertical jump height and peak power output compared to recreationally trained females. There were no significant (p > 0.05 group differences for relative ground reaction forces. Practitioners and/or strength and conditioning coaches may utilize whole-body vibration to enhance acute counter-movement vertical jump performance after identifying individuals optimal rest time in order to maximize the potentiating effects.

  11. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces

    Science.gov (United States)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard

    2016-04-01

    Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire

  12. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  13. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  14. High-accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 11 A' l-C3H-: A Possible Link to Lines Observed in the Horsehead Nebula Photodissociation Region

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-07-01

    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 1 A' C3H-. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D eff for C3H- is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H+. As a result, 1 1 A' C3H- is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C6H- may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C3H- could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C3H- could be greater than the rate of its destruction. C3H- would be the seventh confirmed interstellar anion detected within the past decade and the first C n H- molecular anion with an odd n.

  15. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  16. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  17. Vibration Transmission in a Multi-Storey Lightweight Building

    DEFF Research Database (Denmark)

    Niu, Bin; Andersen, Lars Vabbersgaard; Kiel, Nikolaj

    2012-01-01

    This paper develops a parametric modelling and analysis approach to investigate the vibration transmission in lightweight buildings. The main focus of the research is to investigate the influence of geometry and configuration of the building on the vibration transmission. A building with a single...... the modelling of different connections between panels in the building [2]. Using this parametric building model, free vibration analysis is first performed to obtain the distribution of Eigen frequencies of the building. Then the forced vibration of the building subjected to a mechanical excitation is analysed...... to investigate the transmission of vibration. The influence of different excitation frequencies on the vibration transmission is studied and discussed. The vibration response in two different receiving rooms, one near the source and one far from the source, is illustrated and discussed for the various geometric...

  18. Active Control of Contact Force for a Pantograph-Catenary System

    Directory of Open Access Journals (Sweden)

    Jiqiang Wang

    2016-01-01

    Full Text Available The performance of the high speed trains depends critically on the quality of the contact in the pantograph-catenary interaction. Maintaining a constant contact force needs taking special measures and one of the methods is to utilize active control to optimize the contact force. A number of active control methods have been proposed in the past decade. However, the primary objective of these methods has been to reduce the variation of the contact force in the pantograph-catenary system, ignoring the effects of locomotive vibrations on pantograph-catenary dynamics. Motivated by the problems in active control of vibration in large scale structures, the author has developed a geometric framework specifically targeting the remote vibration suppression problem based only on local control action. It is the intention of the paper to demonstrate its potential in the active control of the pantograph-catenary interaction, aiming to minimize the variation of the contact force while simultaneously suppressing the vibration disturbance from the train. A numerical study is provided through the application to a simplified pantograph-catenary model.

  19. A new scaling algorithm for predicting vibrational spectra of ...

    Indian Academy of Sciences (India)

    Administrator

    FL = Λ. Keywords. Vibrational spectra; force constants; scaling algorithms; ab initio; DFT calculations. 1. Introduction. Theoretical prediction of vibrational spectra of polyatomic molecules has been the goal for a long time. 1–7. The recent advances in ab initio and density functional methods (DFT) met considerable success.

  20. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optimal waveform for the entrainment of oscillators perturbed by an amplitude-modulated high-frequency force.

    Science.gov (United States)

    Novičenko, Viktor; Ratas, Irmantas

    2016-12-01

    We analyze limit cycle oscillators under perturbation constructed as a product of two signals, namely, an envelope with a period close to natural period of an oscillator and a high-frequency carrier signal. A theory for obtaining an envelope waveform that achieves the maximal frequency interval of entrained oscillators is presented. The optimization problem for fixed power and maximal allowed amplitude is solved by employing the phase reduction method and the Pontryagin's maximum principle. We have shown that the optimal envelope waveform is a bang-bang-type solution. Also, we have found "inversion" symmetry that relates two signals with different powers but the same interval of entrained frequencies. The theoretical results are confirmed numerically on FitzHugh-Nagumo oscillators.

  2. AN OPTIMIZATION METHOD FOR STEEL FRAMES CONSIDERING THE DISCONTINUITY OF THE STRUCTURAL PROPERTY COEFFICIENT IN NECESSARY ULTIMATE HORIZONTAL RESISTANT FORCE

    OpenAIRE

    宋, 昶; 山川, 誠; 上谷, 宏二

    2011-01-01

    Horizontal load-carrying capacity of steel rigid-frames is one of the most important mechanical performances required in the practical design. Design horizontal load is lowered by the structural property coefficient Ds, which is determined by the plastic deformation capacity of the frame. A practical method using branch and bound approach for the optimization of steel frame structures considering the discontinuity of structural property coefficient Ds is proposed in this paper, and is verifie...

  3. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  4. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  5. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.

    Science.gov (United States)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2013-07-01

    Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

  6. A Novel Design Method for Optimizing an Indirect Forced Circulation Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-10-01

    Full Text Available To maximize the energy performance and economic benefits of solar water heating (SWH systems, the installation and operation-related design variables as well as those related to capacity must be optimized. This paper presents a novel design method for simultaneously optimizing the various design variables of an indirect forced-circulation SWH system that is based on the life cycle cost and uses a genetic algorithm. The effectiveness of the proposed method is assessed by evaluating the long-term performance corresponding to four cases, which are optimized using different annual solar fractions and sets of the design variables. When the installation and operation-related design variables were taken into consideration, it resulted in an efficient and economic design and an extra cost reduction of 3.2%–6.1% over when only the capacity-related design variables were considered. In addition, the results of parametric studies show that the slope and mass flow rate of the collector have a significant impact on the energy and economic performances of SWH systems. In contrast, the mass flow rate in the secondary circuit and the differences in the temperatures of the upper and lower dead bands of the differential controller have a smaller impact.

  7. A structural and vibrational study of the chromyl chlorosulfate, fluorosulfate, and nitrate compounds

    CERN Document Server

    Brandán, Silvia A

    2014-01-01

    A Structural and Vibrational Study of the Chromyl Chlorosulfate, Fluorosulfate and Nitrate Compounds presents important studies related to the structural and vibrational properties on the chromyl compounds based on Ab-initio calculations. The synthesis and the study of such properties are of chemical importance because the stereo-chemistries and reactivities of these compounds are strongly dependent on the coordination modes that adopt the different ligands linked to the chromyl group. In this book, the geometries of all stable structures in gas phase for chromyl chlorosulfate, fluorosulfate, and nitrate are optimized by using Density functional Theory (DFT). Then, the complete assignments of all observed bands in the infrared and Raman spectra are performed combining DFT calculations with Pulay´s Scaled Quantum Mechanics Force Field (SQMFF) methodology and taking into account the type of coordination adopted by the chlorosulfate, fluorosulfate and nitrate ligands as monodentate and bidentate. Moreover, the ...

  8. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  9. Vibrations and alternated stresses in turbomachineries; Vibrations et contraintes alternees dans les turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[FRAMATOME, 92 - Paris-La-Defense (France); Pugnet, J.M. [Conservatoire National des Arts et Metiers (CNAM), Grenoble-1 Univ., 38 (France)]|[FRAMATOME, 92 - Paris-La-Defense (France)

    1999-07-01

    Vibration phenomena are sources of mechanical incidents in turbomachineries. A calculation of the Eigenmodes of machine parts and a knowledge of their possible excitation during the machine operation can greatly improve the reliability and availability of the equipments. The development of computer tools and in particular the use of finite-element codes has allowed a more and more precise calculation of Eigenmodes and Eigenfrequencies. However, the analysis of excitation sources remains sometimes insufficient to explain and anticipate some complex vibrational phenomena encountered in rotative machines. The aim of this paper is to present, using two different examples, the methodology to be used in order to perform a complete vibrational analysis of mechanical components. The following aspects are reviewed successively: 1 - the damped vibrational system: study of the free motion, study of the response to an harmonic forced excitation; 2 - vibrational analysis of turbine blades: steam turbine blades, Eigenmodes of mobile blades, excitation sources, Campbell diagram, calculation of static and dynamical stresses, Haigh diagram, acceptance criteria and safety coefficient, influence of corrosion; 3 - dynamical analysis of the bending of a lineshaft: different flexion Eigenmodes, stiffness and damping of bearings, calculation of flexion Eigenmodes, excitation sources, vibrational stability of the lineshaft and vibration level; 3 - generalization: vibration of blades, shaft dynamics, alternative machines. (J.S.) 10 refs.

  10. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  11. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  12. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.

    Science.gov (United States)

    Karimpour, Masoud; Ghaderi, Reza; Raeiszadeh, Farhad

    2017-10-01

    The present study aims to analyze the vibrating behavior of a piezoelectric microcantilever (MC) as a mass nanosensor. The vibrating behavior of the MC as well as its sensitivity as a mass nanosensor are investigated and compared in both air and liquid environments. To this end, Euler-Bernoulli theory was used to model the vibrating behavior of piezoelectric MC with added mass at its free end. Frequency analysis was conducted by considering geometric discontinuities and taking added mass into account. The effect of liquid environment applied to the MC (as hydrodynamic forces) was based on a string of spheres model. Since changes in resonance frequency are used as the measurement parameter in mass sensors, changes in resonance frequency during absorption of nanoparticles was selected as the main parameter to be investigated in this study. Ultimately, with the aim to achieve optimal geometric dimensions for the piezoelectric MC, sensitivity analysis was additionally performed in order to increase the frequency sensitivity. According to the results, frequency sensitivity of the piezoelectric MC decreased in liquid environment compared to air environments. Moreover, increases in fluid density and viscosity caused a decreased frequency sensitivity. Simulation results indicate that the second vibrating mode in air and liquid environments is the appropriate operating mode for this type of MC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dynamic Vibration Analysis of Heavy Vehicle Truck Transmission Gearbox Housing Using FEA

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar

    2014-09-01

    Full Text Available The main objective of this original research article is to study the loose fixture mounting affect of heavy vehicle transmission gearbox housing. The studies were completed in three phases. In first phase the aim was to find the actual suitable boundary condition. After finding the boundary condition in second phase the fixture bolts were loosened to monitor the affect of looseness and in third phase the positional looseness based study were completed. The looseness of transmission housing causes heavy vibration and noise. In order to prevent this noise and vibration the transmission housing is tightly mounted on the chassis frame using bolts. In our design transmission housing is constraint on chassis frame using 37 bolts. Truck transmission system determines the level of noise together with the chassis, engine and bodywork. Vehicle transmissions under torsional vibration condition caused rattling and clattering noises. Reciprocity Principle was used to determine the failure frequencies for transmission housing. In reciprocity principle gear and shafts are suppressed and all the forces transmitted through the bearings are applied on the empty housing. FEA based ANSYS 14.5 has been used as analysis tool. The free vibration frequency for zero displacement condition varies from 1669 Hz to 2865 Hz and for loose transmission casing frequency varies from 1311 Hz to 3110 Hz. The analysis have theoretical and practical aspects and useful for transmission housing structure optimization.

  14. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  15. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  16. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  17. Vibrations of a pipe on elastic foundations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    is investigated. Two cases of elastic foundations are considered: rotational and both linear and rotational. The major findings are the variations in frequency with flow velocity and displacements at different points and times. Keywords. Cantilevered pipe; vibrations of pipes; elastic foundations; exter- nal transverse force. 1.

  18. Vibration Measurements on the Frejlev Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    The present report presents full-scale measurements on the Frejlev-mast which is a 200 meter hight guyed steel mast located 10 km. from Aalborg. The goal of the research was to investigate various techniques which could be used to estimate cable forces from vibration measurements. The cables...

  19. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  20. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  1. Optimization of Semi-active Seat Suspension with Magnetorheological Damper

    Science.gov (United States)

    Segla, Stefan; Kajaste, J.; Keski-Honkola, P.

    The paper deals with modeling, control and optimization of semiactive seat suspension with pneumatic spring and magnetorheological damper. The main focus is on isolating vertical excitation from the cabin of a bucket-wheel excavator in order to protect the excavator driver against harmful vibration. Three different control algorithms are used to determine the desired semi-active damping force: skyhook control, balance control and combination of balance and skyhook controls. The dynamic behavior of the semi-active system is optimized using genetic algorithms. As the objective function the effective value of the seat (sprung mass) acceleration is used.

  2. Adaptations of mouse skeletal muscle to low intensity vibration training

    Science.gov (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  3. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Compact Active Vibration Control System for a Flexible Panel

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  5. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    Science.gov (United States)

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  6. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2017-01-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  7. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  8. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  9. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    Science.gov (United States)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  10. Granular dampers for the reduction of vibrations of an oscillatory saw

    Science.gov (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E.; Pöschel, Thorsten

    2012-10-01

    Instruments for surgical and dental application based on oscillatory mechanics submit unwanted vibrations to the operator's hand. Frequently the weight of the instrument's body is increased to dampen its vibration. Based on recent research regarding the optimization of granular damping we developed a prototype granular damper that attenuates the vibrations of an oscillatory saw twice as efficiently as a comparable solid mass.

  11. Development of a Modified Embedded Atom Force Field for Zirconium Nitride Using Multi-Objective Evolutionary Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang; Kinaci, Alper; Sen, Fatih G.; Davis, Michael J.; Gray, Stephen K.; Chan, Maria K. Y.; Sankaranarayanan, Subramanian K. R. S.

    2016-07-07

    Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potential for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature

  12. Noise and Vibration Modeling for Anti-Lock Brake Systems

    Science.gov (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  13. Vibration Suppression of Axial Drive High Temperature Superconducting Levitation Synchronous Motor with Magnetic Damper

    OpenAIRE

    村上, 岩範; 陸浦, 優輔; 小林, 祐介; 安藤, 嘉則; 山田, 功; Iwanori, MURAKAMI; Yusuke, MUTSUURA; Yusuke, KOBAYASHI; Yoshinori, ANDO; Kou, YAMADA; 群馬大学; 群馬大学; 群馬大学; 群馬大学; 群馬大学

    2010-01-01

    In this research, we propose the method of the vibration suppression by the magnetic damper system of the axial drive high temperature superconducting levitation synchronous motor. As for this motor, rotor eccentricity causes the vibration though the sway vibratory force by the drive is not generated. Then, we propose an easy magnetic damper system. It consists of four coils. When the rotor vibrates in the radial direction, current flows in the damper coil. It generates the magnetic force. Th...

  14. Modeling in Nonlinear Vibrations of a High-Tc Superconducting Levitation System

    OpenAIRE

    長屋, 幸助; 周東, 俊介

    1996-01-01

    Three dimensional analytical results for the levitation force of a vibrating high-Tc superconducting levitation system were presented. When the levitated superconductor vibrates, the levitation force shows nonlinear relationships with the air gap, amplitude and vibration frequency, so that the convensional models which do not consider dynamic effects cannot be applied. In the model proposed by(Uesaka et al.), dynamic effects are considered, but the critical current is constant. We propose an ...

  15. NON-HOLONOMIC DYNAMICS OF WHIRLING VIBRATIONS OF DEEP DRILL COLUMNS

    Directory of Open Access Journals (Sweden)

    Gaidaichuk V.V.

    2014-06-01

    Full Text Available On the basis of the non-holonomic mechanics methods, the problem of the whirling vibrations of a bit of a drillstring, which is prestressed by longitudinal force and rotates under the applied forces is stated. The analysis of the mechanism of the vibration self-excitation is performed. It is shown that they can be both stable and unstable.

  16. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  17. Effects of Hand Vibration on Motor Output in Chronic Hemiparesis

    Directory of Open Access Journals (Sweden)

    Sibele de Andrade Melo

    2015-01-01

    Full Text Available Background. Muscle vibration has been shown to increase the corticospinal excitability assessed by transcranial magnetic stimulation (TMS and to change voluntary force production in healthy subjects. Objectives. To evaluate the effect of vibration on corticospinal excitability using TMS and on maximal motor output using maximal voluntary contraction (MVC in individuals with chronic hemiparesis. Methodology. Nineteen hemiparetic and 17 healthy control subjects participated in this study. Motor evoked potentials (MEPs and MVC during lateral pinch grip were recorded at first dorsal interosseous muscle in a single session before, during, and after one-minute trials of 80 Hz vibration of the thenar eminence. Results. In hemiparetic subjects, vibration increased MEP amplitudes to a level comparable to that of control subjects and triggered a MEP response in 4 of 7 patients who did not have a MEP at rest. Also, vibration increased the maximal rate of force production (dF/dtmax⁡ in both control and hemiparetic subjects but it did not increase MVC. Conclusion. Motor response generated with a descending cortical drive in chronic hemiparetic subjects can be increased during vibration. Vibration could be used when additional input is needed to reveal motor responses and to increase rate of force generation.

  18. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  19. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  20. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  1. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  2. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  3. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  4. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  5. Collective model for isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.

    1987-03-01

    The vibrational model is extended by introducing isospin-dependent collective coordinates, permitting a description out-of-phase neutron-proton vibrations coupled by a density-dependent symmetry energy. The restoring force is calculated microscopically using the wavefunctions of a Woods-Saxon potential and the coupling with three-phonon states is taken into account. The model is able to describe the available experimental data (energies and multipole mixing ratios) on low-lying 2/sup +/ states, which were observed recently in nuclei near the shell closures (/sup 124/Te, /sup 140/Ba, /sup 142/Ce and /sup 144/Nd), supporting the identification of these states as isovector quadrupole vibrations and predicting such states in /sup 126 -130/ Te.

  6. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  7. Optimal control of vibrational transitions of HCl

    Indian Academy of Sciences (India)

    2016-09-07

    1]. Lasers have the advantage of depositing energy in a non-statistical fashion. Shaped femtosecond laser pulses, due to technological advance- ment of lasers, can be employed as a new class of reagents to alter the course ...

  8. Optimal Vibration Control of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Thesbjerg, Leo

    In designing large civil engineering structures, an important consideration is prospective dynamic loadings which may include earthquake ground motion, wind gusts, severe sea states and moving vehicles, rotating and reciprocating machinery and others. successful design of such structures requires...

  9. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

    Science.gov (United States)

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2016-02-01

    Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

  10. Tndon vibration does not alter recovery time following fatigue.

    Science.gov (United States)

    Christie, Anita D; Miller, Nick R

    2015-05-01

    Tendon vibration has been shown to enhance muscle activity and to increase muscular endurance times. The impact of vibration on recovery from fatigue, however, is not known. This study aims to determine whether tendon vibration reduces recovery time following fatiguing contractions. Eight sedentary males (22 ± 2.8 yr) performed a fatiguing protocol of ankle dorsiflexor muscles on two separate days, with a minimum of 48 h between visits. Surface EMG was recorded from the tibialis anterior muscle while participants were performing 25 maximal voluntary contractions (MVCs), each lasting 5 s and separated by 2 s. Following the fatiguing protocol, recovery was assessed with 3-s MVC each minute over a 10-min period. Recovery time was defined as the time at which force had returned to 90% of baseline values. At one visit, vibration was applied to the distal tendon of the tibialis anterior muscle between MVCs (throughout recovery). The alternate visit involved a sham condition in which no vibration was applied. MVC force (P = 0.48) and EMG amplitude (P = 0.26) were not significantly different across testing days. Both MVC force (P fatigue protocol. However, there were no significant interaction effects for MVC force (P = 0.82) or EMG amplitude (P = 0.09), indicating similar levels of fatigue across days. With tendon vibration, MVC force recovered within 4.0 ± 2.5 min, which was not different from the sham condition (5.3 ± 1.8 min; P = 0.42). Similarly, EMG recovery time was not different between vibration condition (3.9 ± 3.8 min) and sham condition (4.9 ± 2.5 min) (P = 0.41). These results suggest that activation of excitatory group Ia afferents through tendon vibration does not substantially alter recovery time following fatigue.

  11. An electroactive polymer based concept for vibration reduction via adaptive supports

    Science.gov (United States)

    Wolf, Kai; Röglin, Tobias; Haase, Frerk; Finnberg, Torsten; Steinhoff, Bernd

    2008-03-01

    A concept for the suppression of resonant vibration of an elastic system undergoing forced vibration coupled to electroactive polymer (EAP) actuators based on dielectric elastomers is demonstrated. The actuators are utilized to vary the stiffness of the end support of a clamped beam, which is forced to harmonic vibration via a piezoelectric patch. Due to the nonlinear dependency of the elastic modulus of the EAP material, the modulus can be changed by inducing an electrostrictive deformation. The resulting change in stiffness of the EAP actuator leads to a shift of the resonance frequencies of the vibrating beam, enabling an effective reduction of the vibration amplitude by an external electric signal. Using a custom-built setup employing an aluminum vibrating beam coupled on both sides to electrodized strips of VHB tape, a significant reduction of the resonance amplitude was achieved. The effectiveness of this concept compared to other active and passive concepts of vibration reduction is discussed.

  12. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  13. A new vibration mechanism of balancing machine for satellite-borne spinning rotors

    Directory of Open Access Journals (Sweden)

    Wang Qiuxiao

    2014-10-01

    Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.

  14. Modeling and Analysis of a Multi-Degree-of-Freedom Micro-Vibration Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    2017-01-01

    Full Text Available To reproduce the disturbance forces and moments generated by the reaction/momentum wheel assembly, a multi-degree-of-freedom micro-vibration simulator is proposed. This can be used in the ground vibration experiments of an optical payload replacing the real action/momentum wheel assembly. First, the detailed structure of the micro-vibration simulator is introduced. Then, the complete system kinematic and dynamic models of the micro-vibration simulator are derived. In addition, the disturbance forces and moments produced by the micro-vibration simulator are calculated. Finally, the normal mode analysis and a cosimulation are adopted to verify the validity of this method. The analysis and simulation results show that the micro-vibration simulator can exactly reproduce the disturbance forces and moments with different amplitudes and different frequency ranges.

  15. Atomic force microscopy analysis of IgG films at hydrophobic surfaces: a promising method to probe IgG orientations and optimize ELISA tests performance.

    Science.gov (United States)

    de Thier, Pierre; Bacharouche, Jalal; Duval, Jérôme F L; Skali-Lami, Salaheddine; Francius, Grégory

    2015-02-01

    IgG films are widely used in the field of immunoassays, especially in (double) antibody-sandwich ELISA tests where capture antibodies are coated on surfaces like polystyrene or hydrophobic self-assembled monolayers (h-SAMs). It is critical to analyze-at a molecular scale and under liquid conditions-the structure of the deposited IgG film in order to quantitatively address the efficiency of the ELISA test in terms of antigen detection. In this communication, we report an atomic force microscopy (AFM) analysis evidencing a strong relationship between immunological activities of mouse monoclonal anti-human interleukin-2 (IL-2) and 6 (IL-6) antibodies, thickness and roughness of the IgG monolayer adsorbed onto h-SAMs, and surface concentration of IgG molecules. Indirect information may be further obtained on antibody orientation. Collating the results obtained by AFM and those from ELISA tests leads us to conclude that antibodies like anti-IL-6 forming flat monolayers should be more efficient under ELISA detection conditions. In addition, the concentration of IgG in the coating suspension should be optimized to obtain a monolayer heavily populated by "end-on" adsorbed molecules, an orientation that is desirable for enhancing ELISA tests performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  17. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  18. ForcePAD And Optimization -

    DEFF Research Database (Denmark)

    Jonas, Lindemann; Damkilde, Lars

    2008-01-01

    Design of structures such as bridges, wind turbine wings or mechanical components is a very challenging task and involves both finding the structural layout and analysis of the bearing capacity of the structure. The analysis part is almost always solved by Finite Elements and involves defining...

  19. Minimization of the Vibration Energy of Thin-Plate Structures and the Application to the Reduction of Gearbox Vibration

    Science.gov (United States)

    Inoue, Katsumi; Krantz, Timothy L.

    1995-01-01

    While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.

  20. Vibration and Deflection Behavior of a Coal Auger Working Mechanism

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2016-01-01

    Full Text Available Because coal auger working mechanism faces problems such as excessive vibration, serious deflection, and low drilling efficiency, a new five-bit coal auger working mechanism test model was established to explore the influence factor on vibration and deflection under different conditions. Additionally, a simulation model was built to further research the effect of partial load and stabilizer arrangement, the correctness of which was proved by experiments. The results show that the vibration and deflection increase with drilling depth in the x direction, and they first increase and then gradually become stable in the y direction. In addition, the vibration, deflection, and deflection force increase with the partial load. By arranging the stabilizer every five drill-rod section intervals, the vibration and deflection can be decreased by 30% and 40% in the x direction and by 14.3% and 65.7% in y direction, respectively.

  1. Modal simulation of gearbox vibration with experimental correlation

    Science.gov (United States)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predicitions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  2. Postural sway under muscle vibration and muscle fatigue in humans.

    Science.gov (United States)

    Vuillerme, Nicolas; Danion, Frédéric; Forestier, Nicolas; Nougier, Vincent

    2002-11-22

    Separate studies have demonstrated that vibration and fatigue of ankle muscles alter postural control. The purpose of the present experiment was to investigate the effect of ankle muscle vibration on the regulation of postural sway in bipedal stance following ankle muscle fatigue. Center of foot pressure displacements were recorded using a force platform. Results showed a similar increase in postural sway under muscle fatigue as well as under muscle vibration. Interestingly, under muscle fatigue muscle vibration did not induce a further increase in postural sway. Two hypotheses could, at least, account for this observation: (1). fatigued muscles are less sensitive to muscle vibration and (2). the central nervous system relies less upon proprioceptive information originating from fatigued muscles for regulating postural sway.

  3. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  4. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  5. Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping

    DEFF Research Database (Denmark)

    Weber, Felix; Høgsberg, Jan Becker; Krenk, Steen

    2010-01-01

    This paper investigates numerically the optimal tuning of Coulomb friction dampers on cables, where the optimality criterion is maximum additional damping in the first vibration mode. The expression for the optimal friction force level of Coulomb friction dampers follows from the linear viscous...... damper via harmonic averaging. It turns out that the friction force level has to be adjusted in proportion to cable amplitude at damper position which is realized by amplitude feedback in real time. The performance of this adaptive damper is assessed by simulated free decay curves from which the damping...... to higher modes evoked by the amplitude proportional Coulomb friction damper which clamps the cable at its upper and lower positions. The resulting nonsinusoidal cable motion clearly violates the assumption of pure harmonic motion and explains why such dampers have to be tuned differently from optimal...

  6. The Shock and Vibration Digest. Volume 15, Number 4

    Science.gov (United States)

    1983-04-01

    turbogenerator rotors, bow behavior, squeeze - film dampers for turbomachinery, advanced concepts in troubleshooting and instrumentation, and case...stiff- ness is substantially constant in this range. Oil- film stiffness at the bearings was found to have a minor effect on vibration transmission...cylinder petrol engine oil- film thicknesses and forces were measured at the main bearings [74]. The vibrations of the bearing panels and the crankshaft

  7. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  8. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  9. Do whole-body vibrations affect spatial hearing?

    Science.gov (United States)

    Frissen, Ilja; Guastavino, Catherine

    2014-01-01

    To assist the human operator, modern auditory interfaces increasingly rely on sound spatialisation to display auditory information and warning signals. However, we often operate in environments that apply vibrations to the whole body, e.g. when driving a vehicle. Here, we report three experiments investigating the effect of sinusoidal vibrations along the vertical axis on spatial hearing. The first was a free-field, narrow-band noise localisation experiment with 5- Hz vibration at 0.88 ms(-2). The other experiments used headphone-based sound lateralisation tasks. Experiment 2 investigated the effect of vibration frequency (4 vs. 8 Hz) at two different magnitudes (0.83 vs. 1.65 ms(-2)) on a left-right discrimination one-interval forced-choice task. Experiment 3 assessed the effect on a two-interval forced-choice location discrimination task with respect to the central and two peripheral reference locations. In spite of the broad range of methods, none of the experiments show a reliable effect of whole-body vibrations on localisation performance. We report three experiments that used both free-field localisation and headphone lateralisation tasks to assess their sensitivity to whole-body vibrations at low frequencies. None of the experiments show a reliable effect of either frequency or magnitude of whole-body vibrations on localisation performance.

  10. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  11. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  12. Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations.

    Science.gov (United States)

    Aviat, Félix; Levitt, Antoine; Stamm, Benjamin; Maday, Yvon; Ren, Pengyu; Ponder, Jay W; Lagardère, Louis; Piquemal, Jean-Philip

    2017-01-10

    We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production

  13. Coherent excitation of vibrational levels using ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, LE

    2009-07-01

    Full Text Available The purpose of this study was to develop a model of the coherent excitation of the first few vibrational modes in the electronic ground state of the molecule. The model will be used in combination with an optimization algorithm to optimize a...

  14. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field ...

  15. Vibration Characteristics of Roundabout Swing of HAWT Wind Wheel

    Directory of Open Access Journals (Sweden)

    Jian-long Ma

    2016-01-01

    Full Text Available Modal testing was used to show that the roundabout swing was a natural vibration mode of the wind wheel of a horizontal-axis wind turbine (HAWT. During the vibration, the blade root was simultaneously subjected to bending and rotary shear stresses. A method for indirect testing and determination of the dynamic frequencies of the typical vibrations of the wind wheel was developed, based on the frequency-holding characteristic of each subsignal during the transmission of the multiple mixed-vibration signals. The developed method enabled simple and accurate acquisition of the dynamic frequencies without destruction of the flow and structural fields. The dynamic vibration stress of the roundabout swing was found to be significantly stronger than those of the first- and second-order flexural vibrations of the blades. By a combination of numerical simulations and tests, it was determined that the pneumatic circumferential force was the primary determinant of the roundabout swing vibration frequencies, the relationship being quadratic. The roundabout swing vibration potentially offers new explanations and analytical pathways regarding the behavior of horizontal-axis wind turbines, which have been found to be frequently involved in fatigue-damage accidents within periods shorter than their design lives.

  16. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  17. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-11-01

    Full Text Available A novel wireless and passive surface acoustic wave (SAW based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

  18. Acoustic vibration problem for dissipative fluids

    OpenAIRE

    Lepe, Felipe; Meddahi, Salim; Mora, David; Rodríguez, Rodolfo

    2016-01-01

    In this paper we analyze a finite element method for solving a quadratic eigenvalue problem derived from the acoustic vibration problem for a heterogeneous dissipative fluid. The problem is shown to be equivalent to the spectral problem for a noncompact operator and athorough spectral characterization is given. The numerical discretization of the problem is based on Raviart-Thomas finite elements. The method is proved to be free of spurious modes and to converge with optimal order. Finally, w...

  19. Hand vibration: non-contact measurement of local transmissibility.

    Science.gov (United States)

    Scalise, Lorenzo; Rossetti, Francesco; Paone, Nicola

    2007-10-01

    Grip and push forces required for the use of vibrating tools are considered important influencing inputs for the assessment of hand-vibration transmissibility (TR). At present TR measurements are usually referred to the palm of the hand The aims of the present paper are: to present an original measurement procedure for non-contact assessment of the transmissibility of fingers; to report TR data measured on six points of the hand of nine subjects; to correlate TR with: grip, push, hand volume and BMI. Tests have been carried out using a cylindrical handle mounted on an shaker. A laser Doppler vibrometer is used to measure the vibration velocity. Push force is measured using a force platform, whereas grip force is measured using a capacitive pressure sensor matrix wrapped around the handle. Tests have been conducted on nine healthy subjects. Proximal and distal regions of the second, fourth and fifth fingers have been investigated. Tests were carried out using a push force of: 25, 50 and 75 N. The excitation signal was a broadband random vibration in the band 16-400 Hz with un-weighted rms acceleration level of 6 m/s(2). Results show how in general TR values measured on distal points are higher respect to the proximal points. A resonance peak is present for all the measured points in the band 55-80 Hz. ANOVA analysis showed that TR is not significantly dependent on: BMI, hand volume and push force alone. While TR is significantly dependent on: grip force alone, measurement positions and grip and push force together. The proposed procedure shows the advantage to allow local vibration measurement directly on the fingers without the necessity to apply any contact sensor. Results demonstrate how the transmissibility is significantly different on the point where the acceleration is measured.

  20. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time